The COVR-X1860 are MT7621-based AX1800 devices (similar to DAP-X1860, but
with two Ethernet ports and external power supply) that are sold in sets
of two (COVR-X1862) and three (COVR-X1863).
Specification:
- MT7621
- MT7915 + MT7975 2x2 802.11ax (DBDC)
- 256MB RAM
- 128 MB flash
- 3 LEDs (red, orange, white), routed to one indicator in the top of the device
- 2 buttons (WPS in the back and Reset at the bottom of the device)
MAC addresses:
- LAN MAC (printed on the device) is stored in config2 partition as ASCII (entry factory_mac=xx:xx:xx:xx:xx:xx)
- WAN MAC: LAN MAC + 3
- 2.4G MAC: LAN MAC + 1
- 5G MAC: LAN MAC + 2
The pins for the serial console are already labeled on the board (VCC, TX, RX, GND). Serial settings: 3.3V, 115200,8n1
Flashing via OEM Web Interface:
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-factory.bin via the OEM web interface firmware update
- The configuration wizard can be skipped by directly going to http://192.168.0.1/UpdateFirmware_Simple.html
Flashing via Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-recovery.bin
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.25
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/openwrt/firmware-utils/blob/master/src/dlink-sge-image.c and https://raw.githubusercontent.com/openwrt/firmware-utils/master/src/dlink-sge-image.h
- Compile a binary from the downloaded file, e.g. gcc dlink-sge-image.c -lcrypto -o dlink-sge-image
- Run ./dlink-sge-image COVR-X1860 <OriginalFirmware> <OutputFile> -d
- Example for firmware 102b01: ./dlink-sge-image COVR-X1860 COVR-X1860_RevA_Firmware_102b01.bin COVR-X1860_RevA_Firmware_102b01_Decrypted.bin -d
The pull request is based on the discussion in https://forum.openwrt.org/t/add-support-for-d-link-covr-x1860
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Hardware:
- SoC: Mediatek MT7621 (MT7621AT)
- Flash: 32 MiB SPI-NOR (Macronix MX25L25635E)
- RAM: 128 MiB
- Ethernet: Built-in, 2 x 1GbE
- 3G/4G Modem: MEIG SLM828 (currently only supported with ModemManager)
- SLIC: Si32185 (unsupported)
- Power: 12V via barrel connector
- Wifi 2.4GHz: Mediatek MT7603BE 802.11b/g/b
- Wifi 5GHz: Mediatek MT7613BE 802.11ac/n/a
- LEDs: 8x (7 controllable)
- Buttons: 2x (RESET, WPS)
Installing OpenWrt:
- sysupgrade image is compatible with vendor firmware.
Recovery:
- Connect to any of the Ethernet ports, configure local IP:
10.10.10.3/24 (or 192.168.10.19/24, depending on OEM)
- Provide firmware file named 'mt7621.img' on TFTP server.
- Hold down both, RESET and WPS, then power on the board.
- Watch network traffic using tcpdump or wireshark in realtime to
observe progress of device requesting firmware. Once download has
completed, release both buttons and wait until firmware comes up.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Set correct GPIO (10) for the WPS button. This matches GPIO settings in
vendor GPL sources. Note that GPL sources also mention a USB indicator
LED (GPIO 13) but the device has neither an external USB port nor a USB LED.
In addition, prefixes (button-, led-) are added to relevant DT entries,
as well as color and function specifications for LEDs.
Closes: #13736
Reported-by: Waldemar Czabaj <kaball@wp.pl>
Signed-off-by: Rani Hod <rani.hod@gmail.com>
(added led mitigations for wifi leds)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
A typo snuck in with the addition of Cudy M1800, changing
"nr7101" to "nt7101". The result is a default network config
for NR7101 without the only ethernet interface on the NR7101,
thereby soft bricking it.
Fixes: f6d394e9f2 ("ramips: add support for Cudy M1800")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Add support for COMFAST CF-EW72 V2
Hardware:
- SoC: Mediatek MT7621 (MT7621DAT or MT7621AT)
- Flash: 16 MiB NOR
- RAM: 128 MiB
- Ethernet: Built-in, 2 x 1GbE
- Power: only 802.3af PD on any port, injector supplied in the box
- PoE passthrough: No
- Wifi 2.4GHz: Mediatek MT7603BE 802.11b/g/b
- Wifi 5GHz: Mediatek MT7613BEN 802.11ac/n/a
- LEDs: 8x (only 1 is both visible and controllable, see below)
- Buttons: 1x (RESET)
Installing OpenWrt:
Flashing is done using Mediatek U-Boot System Recovery Mode
- make wired connection with 2 cables like this:
- - PC (LAN) <-> PoE Injector (LAN)
- - PoE Injector (POE) <-> CF-EW72 V2 (LAN). Leave unconnected to CF-EW72 V2 yet.
- configure 192.168.1.(2-254)/24 static ip address on your PC LAN
- press and keep pressed RESET button on device
- power the device by plugging PoE Injector (POE) <-> CF-EW72 V2 (LAN) cable
- wait for about 10 seconds until wifi led stops blinking and release RESET button
- navigate from your PC to http://192.168.1.1 and upload OpenWrt *-factory.bin firmware file
- proceed until router starts blinking with wifi led again (flashing) and stops (rebooting to OpenWrt)
MAC addresses as verified by OEM firmware:
vendor OpenWrt address
LAN lan\eth0 label
WAN wan label + 1
2g phy0 label + 2
5g phy1 label + 3
The label MAC address was found in 0xe000.
LEDs detailed:
The only both visible and controllable indicator is blue:wlan LED.
It is not bound by default to indicate activity of any wireless interfaces.
Place (WAN->ANT) | Num | GPIO | LED name (LuCI) | Note
-----------------|-----|-----------------------------------------------------------------------------------------
power | 1 | | | POWER LED. Not controlled with GPIO.
hidden_led_2 | 2 | 13 | blue:hidden_led_2 | This LED does not have proper hole in shell.
wan | 3 | | | WAN LED. Not controlled with GPIO.
hidden_led_4 | 4 | 16 | blue:hidden_led_4 | This LED does not have proper hole in shell.
lan | 5 | | | LAN LED. Not controlled with GPIO.
noconn_led_6 | 6 | | | Not controlled with GPIO, possibly not connected
wlan | 7 | 15 | blue:wlan | WLAN LED. Wireless indicator.
noconn_led_8 | 8 | | | Not controlled with GPIO, possibly not connected
mt76-phy0 and mt76-phy1 leds also exist in OpenWrt, but do not exist on board.
Signed-off-by: Alexey D. Filimonov <alexey@filimonic.net>
A bug report in the forum found that the MR70X lists four LAN ports in LuCI
while it has only three. This adds the device to the network setup file
to fix the issue.
Identified-by: Forum User "Lexeyko"
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Mediatek EIP93 Crypto engine is a crypto accelerator which
is available in the Mediatek MT7621 SoC.
Signed-off-by: Aviana Cruz <gwencroft@proton.me>
Co-authored-by: Richard van Schagen <vschagen@icloud.com>
Co-authored-by: Chukun Pan <amadeus@jmu.edu.cn>
ALFA Network AX1800RM (FCC ID: 2AB877621) is a dual-band Wi-Fi 6
(AX1800) router, based on MediaTek MT7621A + MT79x5D platform.
Specifications:
- SOC: MT7621A (880 MHz)
- DRAM: DDR3 256 MiB (Nanya NT5CC128M16JR-EK)
- Flash: 16 MiB SPI NOR (EN25QH128A-104HIP)
- Ethernet: 4x 10/100/1000 Mbps (SOC's built-in switch)
- Wi-Fi: 2x2:2 2.4/5 GHz (MT7905DAN + MT7975DN)
(MT7905DAN doesn't support background DFS scan/BT)
- LED: 6x green, 1x green/red
- Buttons: 2x (reset, WPS)
- Antenna: 4x external, non-detachable omnidirectional
- UART: 1x 4-pin (2.54 mm pitch, J4, not populated)
- Power: 12 V DC/1 A (DC jack)
MAC addresses:
LAN: 00:c0:ca:xx:xx:4e (factory 0x4, +2)
WAN: 00:c0:ca:xx:xx:4f (factory 0x4, +3)
2.4 GHz: 00:c0:ca:xx:xx:4c (factory 0x4, device's label)
5 GHz: 00:c0:ca:xx:xx:4c (factory 0xa)
Flash instructions for web-based U-Boot recovery:
1. Power the device with WPS button pressed and wait around 10 seconds.
2. Setup static IP 192.168.1.2/24 on your PC.
3. Go to 192.168.1.1 in browser and upload 'recovery' image.
The device runs LEDE 17.01 (kernel 4.4.x) based firmware with 'failsafe'
mode available which allows alternative upgrade method:
1. Run device in 'failsafe' mode and change password for default user.
2. SSH to the device, transfer 'sysupgrade' image and perform upgrade
in forced mode, without preserving settings: 'sysupgrade -n -F ...'.
Other notes:
If you own early version of this device, the vendor firmware might
refuse OpenWrt image because of missing custom header. In that case,
ask vendor's customer support for stock firmware without custom header
support/requirement.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
The DRA-1360 rev A is a wall-plug AC1300 repeater.
Hardware is identical (same FCC ID, black case instead of white)
to D-Link DAP-1620 rev B, which is already supported, but a
different model name, revision, and hardware ID are needed.
Thus, the bulk of the DAP-1620 device tree is extracted to a
common dtsi included by the two models' device trees.
Repeating specs and installation instructions from e4c7703:
(note that the RAM size mentioned there was incorrect, oops)
Specs:
- SoC: MT7621AT (880MHz dual-core MIPS1004Kc)
- Memory: 128 MiB RAM, 16 MiB NOR SPI
- WiFi: MT7615DN 2x2 802.11n + 2x2 802.11ac (DBDC)
- Ethernet: 1 RJ45 port 10/100/1000
- Power/status LED: red+green
- LED RSSI bargraph: 2x green, 1x red+green
Installation:
- Keep reset button pressed during plug-in
- Web Recovery Updater is at 192.168.0.50
(pings are ignored, it listens only for http)
- Upload factory.bin, confirm flashing
(seems to work best with Chromium-based browsers)
Revert to OEM firmware:
- tail -c+117 DRA1360A1_FW112B03.bin | \
openssl aes-256-cbc -d -md md5 -out decrypted.bin \
-k c471706398cb147c6619f8a04a18d53e9c17ede8
- flash decrypted.bin via D-Link Web Recovery
Signed-off-by: Rani Hod <rani.hod@gmail.com>
I-O DATA WN-DEAX1800GR is a 2.4/5 GHz band 11ax (Wi-Fi 6) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 256 MiB (Nanya NT5CC128M16JR-EK)
- Flash : RAW NAND 128 MiB (Winbond W29N01HVSINF)
- WLAN : 2.4/5 GHz (MediaTek MT7915)
- Ethernet : 5x 10/100/1000 Mbps
- Switch : MT7530 (SoC)
- LEDs/Keys : 6x/3x
- UART : through-hole on PCB (J2)
- assignment: 3.3V, GND, TX, RX from "1" marking
- settings : 115200n8
- Power : 12 VDC, 1 A
Flash instruction using initramfs-factory image:
1. Boot WN-DEAX1800GR normally
2. Access to "http://192.168.0.1/" and open firmware update page
("ファームウェア")
3. Select the OpenWrt initramfs-factory.bin image and click update
("更新") button to perform firmware update
4. On the initramfs image, perform sysupgrade with the
squashfs-sysupgrade.bin image
5. Wait ~120 seconds to complete flashing
Note:
- This device has 2x OS images on the flash storage. In this support,
the first one will be used.
Warning:
- Do not use "saveenv" command on U-Boot CLI.
This device has wrong u-boot-env data. The actual length of individual
env data installed to the device is 0x1000 (4 KiB), but installed
U-Boot requires 0x20000 (128 KiB). So U-Boot determines the data is
invalid. Then, if you perform saving environment data with saveenv on
U-Boot CLI, installed env data will be overwritten with too few
default values without individual values (SSID, password, MAC
addresses, etc...).
MAC addresses:
LAN : 50:41:B9:xx:xx:F4 (Config, ethaddr (text))
WAN : 50:41:B9:xx:xx:F6 (Config, wanaddr (text))
2.4 GHz: 50:41:B9:xx:xx:F4 (Config, rmac (text) / Factory, 0x4 (hex))
5 GHz : 50:41:B9:xx:xx:F5 (none)
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
I-O DATA devices manufactured by MSTC (MitraStar Technology Corp.)
have some important flags for booting, "bootnum" and "debugflag".
The almost devices have both flags but some devices have only
"bootnum" flag.
So optimize helper functions in iodata.sh to set each flags.
- both:
- WN-AX1167GR2
- WN-AX2033GR
- WN-DX1167R
- WN-DX1200GR
- WN-DX2033GR
- "bootnum" only
- WN-DEAX1800GR
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
The PHY of the wan2 port on MQmaker WiTi is wired to the second MAC of the
SoC. Rename the wan interface to wan1 and define it under the switch node,
effectively disabling the PHY muxing of the MT7530 switch's phy4.
Define the PHY of the wan2 port and adjust the gmac1 node accordingly. Now
that the PHY muxing feature is not being used anymore, the wan2 port can be
used to achieve 2 Gbps total bandwidth to the CPU.
Tested-by: Demetris Ierokipides <ierokipides.dem@gmail.com>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
The TP-Link EAP613 v1 is a ceiling-mount 802.11ax access point. It can
be powered via PoE or a DC barrel connector (12V). Connecting to the
UART requires fine soldering and careful manipulation of any soldered
wires.
Device details:
* SoC: MT7621AT
* Flash: 16 MiB SPI NOR
* RAM: 256 MiB DDR3L
* Wi-Fi:
* MT7905DA + MT7975D: 2.4 GHz + 5 GHz (DBDC), 2x2:2
* Two stamped metal antennas (ANT1, ANT2)
* One PCB antenna (ANT3)
* One unpopulated antenna (ANT4)
* Ethernet:
* 1× 10/100/1000 Mbps port with PoE
* LEDs:
* Array of four blue LEDs with one control line
* Buttons:
* Reset
* Board test points:
* UART: next to CPU RF-shield and power circuits
* JTAG: under CPU RF-shield (untested)
* Watchdog: 3PEAK TPV706 (not implemented)
Althought three antennas are populated, the MT7905DA does not support
the additional Rx chain for background DFS detection (or Bluetooth)
according to commit 6cbcc34f50 ("ramips: disable unsupported
background radar detection").
MAC addresses:
* LAN: 48:22:54:xx:xx:a2 (device label)
* WLAN 2.4 GHz: 48:22:54:xx:xx:a2
* WLAN 5 GHz: 48:22:54:xx:xx:a3
The radio calibration blob stored in flash also contains valid MAC
addresses for both radio bands (OUI 00:0c:43).
Factory install:
1. Enable SSH on the device via web interface
2. Log in with SSH, and run `cliclientd stopcs`
3. Upload -factory.bin image via web interface. It may be necessary to
shorten the filename of the image to e.g. 'factory.bin'.
Recovery:
1. Open the device by unscrewing four screws from the backside
2. Carefully remove board from the housing
3. Connect to UART (3.3V):
* Find test points labelled "VCC", "GND", "UART_TX", "UART_RX"
* Solder wires to test points or connect otherwise. Be careful not
to damage the PCB e.g. by pulling on soldered wires.
* Open console with 115200n8 settings
4. Interrupt bootloader and use tftpboot to start an initramfs:
setenv ipaddr $DEVICE_IP
setenv serverip $SERVER_IP
tftpboot 84000000 openwrt-initramfs-kernel.bin
bootm
DO NOT use saveenv to store modified u-boot environment variables. The
environment is saved at flash offset 0x30000, which erases part of the
(secondary) bootloader.
The device uses two bootloader stages. The first stage will load the
second stage from a uImage stored at flash offset 0x10000. In case of
a damaged second stage, the first stage should allow uploading a new
image via y-modem (untested).
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add support for ComFast CF-E390AX. It is a 802.11 wifi6 cieling AP, based on MediaTek MT7261AT.
Specifications:
SoC: MediaTek MT7621AT
RAM: 128 MiB
Flash: 16 MiB NOR (Macronix mx25l12805d)
Wireless: MT7915E (2.4G) 802.11ax/b/g/n MT7915E (5G) 802.11ac/ax/n
Ethernet: 2 x 1Gbs
Button: 1 x "Reset" button
LED: 1x Blue LED + 1x Red LED + 1x green LED
Power: PoE
Manufacturer Page:
http://en.comfast.com.cn/index.php?m=content&c=index&a=show&catid=84&id=75
Flash Layout:
0x000000000000-0x000000030000 : "bootloader"
0x000000030000-0x000000040000 : "config"
0x000000050000-0x000000060000 : "factory"
0x000000090000-0x000001000000 : "firmware"
First install:
1. Set device into http firmware fail safe upload mode by pressing the reset button for 10 seconds while powering
it on. Once the LED stops flashing, safe mode will be running.
2. Set PC IP address to 192.168.1.2
3. Browse to 192.168.1.1 and upload the factory image using the web interface.
Signed-off-by: Usama Nassir <usama.nassir@gmail.com>
This commit adds support for following wireless routers:
- Beeline SmartBox PRO (Serсomm S1500 AWI)
- WiFire S1500.NBN (Serсomm S1500 BUC)
This commit is based on this PR:
- Link: https://github.com/openwrt/openwrt/pull/4770
- Author: Maximilian Weinmann <x1@disroot.org>
The opening of this PR was agreed with author.
My changes:
- Sorting, minor changes and some movings between dts and dtsi
- Move leds to dts when possible
- Recipes for the factory image
- Update of the installation/recovery/return to stock guides
- Add reset GPIO for the pcie1
Common specification
--------------------
SoC: MediaTek MT7621AT (880 MHz, 2 cores)
Switch: MediaTek MT7530 (via SoC MT7621AT)
Wireless: 2.4 GHz, MT7602EN, b/g/n, 2x2
Wireless: 5 GHz, MT7612EN, a/n/ac, 2x2
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
Mini PCIe: via J2 on PCB, not soldered on the board
UART: J4 -> GND[], TX, VCC(3.3V), RX
BootLoader: U-Boot SerComm/Mediatek
Beeline SmartBox PRO specification
----------------------------------
RAM (Nanya NT5CB128M16FP): 256 MiB
NAND-Flash (ESMT F59L2G81A): 256 MiB
USB ports: 2xUSB2.0
LEDs: Status (white), WPS (blue), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (reset, wps), 1 switch button (ROUT<->REP)
Power: 12 VDC, 1.5 A
PCB Sticker: 970AWI0QW00N256SMT Ver. 1.0
CSN: SG15********
MAC LAN: 94:4A:0C:**:**:**
Manufacturer's code: 0AWI0500QW1
WiFire S1500.NBN specification
------------------------------
RAM (Nanya NT5CC64M16GP): 128 MiB
NAND-Flash (ESMT F59L1G81MA): 128 MiB
USB ports: 1xUSB2.0
LEDs: Status (white), WPS (white), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (RESET, WPS)
Power: 12 VDC, 1.0 A
PCB Sticker: 970BUC0RW00N128SMT Ver. 1.0
CSN: MH16********
MAC WAN: E0:60:66:**:**:**
Manufacturer's code: 0BUC0500RW1
MAC address table (PRO)
-----------------------
use address source
LAN *:23 factory 0x1000 (label)
WAN *:24 factory $label +1
2g *:23 factory $label
5g *:25 factory $label +2
MAC addresses (NBN)
-------------------
use address source
LAN *:0e factory 0x1000
WAN *:0f LAN +1 (label)
2g *:0f LAN +1
5g *:10 LAN +2
OEM easy installation
---------------------
1. Remove all dots from the factory image filename (except the dot
before file extension)
2. Upload and update the firmware via the original web interface
3. Two options are possible after the reboot:
a. OpenWrt - that's OK, the mission accomplished
b. Stock firmware - install Stock firmware (to switch booflag from
Sercomm0 to Sercomm1) and then OpenWrt factory image.
Return to Stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock2
reboot
2. Install stock firmware via the web OEM firmware interface
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
Tested-by: Pavel Ivanov <pi635v@gmail.com>
Tested-by: Denis Myshaev <denis.myshaev@gmail.com>
Tested-by: Oleg Galeev <olegingaleev@gmail.com>
Tested-By: Ivan Pavlov <AuthorReflex@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Netgear EAX12, EAX11v2, EAX15v2 are wall-plug 802.11ax (Wi-Fi 6)
extenders that share the SoC, WiFi chip, and image format with the
WAX202.
Specifications:
* MT7621, 256 MiB RAM, 128 MiB NAND
* MT7915: 2.4/5 GHz 2x2 802.11ax (DBDC)
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)
All LEDs and buttons appear to work without state_default.
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
References in GPL source:
https://www.downloads.netgear.com/files/GPL/EAX12_EAX11v2_EAX15v2_GPL_V1.0.3.34_src.tar.gz
* target/linux/ramips/dts/mt7621-rfb-ax-nand.dts
DTS file for this device.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
CONFIG_FRAME_WARN is set dynamically, so there is no need for it to be set
in target kernel configs, so lets remove it from all configs.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This adds support for Beeline Smart Box TURBO+ (Serсomm S3 CQR) router.
Device specification
--------------------
SoC Type: MediaTek MT7621AT (880 MHz, 2 cores)
RAM (Nanya NT5CC64M16GP): 128 MiB
Flash (Macronix MX30LF1G18AC): 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615N): a/n/ac, 4x4
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
USB ports: 1xUSB3.0
Buttons: 2 button (reset, wps)
LEDs: Red, Green, Blue
Zigbee (EFR32MG1B232GG): 3.0
Stock bootloader: U-Boot 1.1.3
Power: 12 VDC, 1.5 A
Installation (fw 2.0.9)
-----------------------
1. Login to the web interface under SuperUser (root) credentials.
Password: SDXXXXXXXXXX, where SDXXXXXXXXXX is serial number of the
device written on the backplate stick.
2. Navigate to Setting -> WAN. Add:
Name - WAN1
Connection Type - Static
IP Address - 172.16.0.1
Netmask - 255.255.255.0
Save -> Apply. Set default: WAN1
3. Enable SSH and HTTP on WAN. Setting -> Remote control. Add:
Protocol - SSH
Port - 22
IP Address - 172.16.0.1
Netmask - 255.255.255.0
WAN Interface - WAN1
Save ->Apply
Add:
Protocol - HTTP
Port - 80
IP Address - 172.16.0.1
Netmask - 255.255.255.0
WAN interface - WAN1
Save -> Apply
4. Set up your PC ethernet:
Connection Type - Static
IP Address - 172.16.0.2
Netmask - 255.255.255.0
Gateway - 172.16.0.1
5. Connect PC using ethernet cable to the WAN port of the router
6. Connect to the router using SSH shell under SuperUser account
7. Make a mtd backup (optional, see related section)
8. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
9. Login to the router web interface under admin account
10. Remove dots from the OpenWrt factory image filename
11. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 172.16.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 171.16.0.2
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
MAC Addresses (fw 2.0.9)
------------------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | *:e8 |
| WAN | label + 1 | *:e9 |
| 2g | label + 4 | *:ec |
| 5g | label + 5 | *:ed |
+-----+------------+---------+
The label MAC address was found in Factory 0x21000
Factory image format
--------------------
+---+-------------------+-------------+--------------------+
| # | Offset | Size | Description |
+---+-------------------+-------------+--------------------+
| 1 | 0x0 | 0x200 | Tag Header Factory |
| 2 | 0x200 | 0x100 | Tag Header Kernel1 |
| 3 | 0x300 | 0x100 | Tag Header Kernel2 |
| 4 | 0x400 | SIZE_KERNEL | Kernel |
| 5 | 0x400+SIZE_KERNEL | SIZE_ROOTFS | RootFS(UBI) |
+---+-------------------+-------------+--------------------+
Co-authored-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
The network configuration at first boot for TOZED ZLT S12 PRO lacks setting
up the LAN and WAN network interfaces. Address this. The WAN port is
advertised as WAN/LAN on the device and is put on LAN on stock firmware so
put it on LAN here as well.
Fixes: ce1f9fa625 ("ramips: add support for TOZED ZLT S12 PRO")
Reported-by: Andre Cruz <me@1conan.com>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
The device already has LED push button (KEY_LIGHTS_TOGGLE)
and exported GPIO control "led-light". This commit adds
button handler script for switching on/off all device LEDs.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Backport commits adding support for the MT7988 built-in switch to the
mt7530 driver.
This change results in the Kconfig symbol NET_DSA_MT7530 to be extended
by NET_DSA_MT7530_MDIO (everything formally covered by NET_DSA_MT7530)
and NET_DSA_MT7530_MMIO (a new driver for the MMIO-connected built-in
switch of the MT7988 SoC).
Select NET_DSA_MT7530_MDIO for all targets previously selecting
NET_DSA_MT7530, with the exception of mediatek/filogic which also
selects NET_DSA_MT7530_MMIO.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The TOZED ZLT S12 PRO is an AC1200 router featuring 4 Ethernet ports with a
TOZED TL70-C cellular modem which supports the NCM mode.
The stock firmware does SIM locking on the modem by stopping dialing when a
different PLMN is detected. This is not the case on OpenWrt.
Specifications:
- CPU: MediaTek MT7621AT
- RAM: 256MB DDR3
- NOR Flash: MX25L12833FM2I 16MB SPI Flash
- Wi-Fi 2.4Ghz: MT7603E
- Wi-Fi 5Ghz: MT7612E
- Switch: MT7530 4x 1Gbit Ports
- WWAN: Unisoc SL8563 based TOZED TL70-C LTE CAT6 cellular modem
- USB: 1x optional USB2.0 external port
- Switches/Buttons: WPS, Reset, Power Switch
- LEDs: Power, Wi-Fi, Data, Signal 1-5, Phone
Installation and TFTP Recovery:
- Connect to serial console.
- Boot initramfs image by choosing option 1 when U-Boot prompts.
- Install sysupgrade image via OpenWrt.
Serial Pins:
Located at the bottom right when looking from the front, right under the
Reset/WPS buttons. The pinout from the left is:
- RX
- GND
- TX
Baudrate is 115200.
When connecting from a powered off state, disconnect RX as it blocks the
boot process.
Link: http://www.sztozed.com/en/contents/58/84.html
Co-developed-by: Andre Cruz <me@1conan.com>
Signed-off-by: Andre Cruz <me@1conan.com>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
All targets are bumped to 5.15. Remove the old 5.10 patches, configs
and files using:
find target/linux -iname '*-5.10' -exec rm -r {} \;
Further, remove the 5.10 include.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Hardware specification:
- SoC: MediaTek MT7621AT (880 MHz)
- Flash: 16 MB (Macronix MX25L12835FM2I-10G)
- RAM: 128 MB (Nanya NT5CC64M16GP-DI)
- WLAN 2.4 GHz: 2x2 MediaTek MT7603EN
- WLAN 5 GHz: 2x2 MediaTek MT7615N
- Ethernet: 1x 10/100/1000 Mbps
- LED: Power, Wifi, WPS
- Button: Reset, WPS
- UART: 1:VCC, 2:GND, 3:TX, 4:RX (from LAN port)
Serial console @ 57600,8n1
Flash instructions:
Connect to serial console and start up the device. As the bootloader got
locked you need to type in a password to unlock U-Boot access.
When you see the following output on the console:
relocate_code Pointer at: 87f1c000
type in the super secure password:
1234567890
Then select TFTP boot from RAM by selecting option 1 in the boot menu.
As Linksys decided to leave out a basic TFTP configuration you need to
set server- & client ip as well as the image filename the device will
search for. You need to use the initramfs openwrt image for the TFTP
boot process.
Once openwrt has booted up, upload the sysupgrade image via scp and run
sysupgrade as normal.
Signed-off-by: Christoph Krapp <achterin@gmail.com>
Rename existing device to v1 and create common .dtsi
Difference to v1: 16MB Flash
Specifications:
SoC: MediaTek MT7621
RAM: 256 MB
Flash: 16 MB (SPI NOR, XM25QH128C on my device)
WiFi: MediaTek MT7915E
Switch: 1 WAN, 4 LAN (Gigabit)
Buttons: Reset, WPS
LEDs: Two Power LEDs (blue and red; together they form purple)
Power: DC 12V 1A center positive
Serial: 115200 8N1
C440 - (3V3 - GND - RX - TX) - C41 | v1 and v2
(P - G - R - T) | v2 labels them on the board
Installation:
Download and flash the manufacturer's built OpenWrt image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWrt image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings.
Recovery:
Loads only signed manufacture firmware due to bootloader RSA verification
Serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
Connect to any lan ethernet port
Power on the device while holding the reset button
Wait at least 8 seconds before releasing reset button for image to
download
MAC addresses as verified by OEM firmware:
use address source
LAN f4:a4:54:86:75:a2 label
WAN f4:a4:54:86:75:a3 label + 1
2g f4:a4:54:86:75:a2 label
5g f6:a4:54:b6:75:a2 label + LA-Bit set + 4th oktet increased
The label MAC address is found in bdinfo 0xde00.
Signed-off-by: Felix Baumann <felix.bau@gmx.de>
The TP-Link EC330-G5u v1 router has MAC address that stored in factory mtd
in ascii format. This commit makes the router use of "mac-address-ascii"
in dts.
After the change:
1. All MAC addresses are explicitly assigned in dts (the workarounds in
network scripts are no longer needed);
2. gmac0 (eth0) MAC address is no longer random.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
The ZyXEL WSM20 aka Multy M1 is a cheap mesh router system by ZyXEL
based on the MT7621 CPU.
Specifications
==============
SoC: MediaTek MT7621AT (880MHz)
RAM: 256MiB
Flash: 128MiB NAND
Wireless: 802.11ax (2x2 MT7915E DBDC)
Ethernet: 4x 10/100/1000 (MT7530)
Button: 1x WPS, 1x Reset, 1x LED On/Off
LED: 7 LEDs (3x white, 2x red, 2x green)
MAC address assignment
======================
The MAC address assignment follows stock: The label MAC address is the LAN
MAC address, the WAN address is read from flash.
The WiFi MAC addresses are set in userspace to label MAC + 1 and label MAC
+ 2.
Installation (web interface)
============================
The device is cloud-managed, but there is a hidden local firmware upgrade
page in the OEM web interface. The device has to be registered in the
cloud in order to be able to access this page.
The system has a dual firmware design, there is no way to tell which
firmware is currently booted. Therefore, an -initramfs version is flashed
first.
1. Log into the OEM web GUI
2. Access the hidden upgrade page by navigating to
https://192.168.212.1/gui/#/main/debug/firmwareupgrade
3. Upload the -initramfs-kernel.bin file and flash it
4. Wait for OpenWrt to boot and log in via SSH
5. Transfer the sysupgrade file via SCP
6. Run sysupgrade to install the image
7. Reboot and enjoy
NB: If the initramfs version was installed in RAS2, the sysupgrade script
sets the boot number to the first partition. A backup has to be performed
manually in case the OEM firwmare should be kept.
Installation (UART method)
==========================
The UART method is more difficult, as the boot loader does not have a
timeout set. A semi-working stock firmware is required to configure it:
1. Attach UART
2. Boot the stock firmware until the message about failsafe mode appears
3. Enter failsafe mode by pressing "f" and "Enter"
4. Type "mount_root"
5. Run "fw_setenv bootmenu_delay 3"
6. Reboot, U-Boot now presents a menu
7. The -initramfs-kernel.bin image can be flashed using the menu
8. Run the regular sysupgrade for a permanent installation
Changing the partition to boot is a bit cumbersome in U-Boot, as there is
no menu to select it. It can only be checked using mstc_bootnum. To change
it, issue the following commands in U-Boot:
nand read 1800000 53c0000 800
mw.b 1800004 1 1
nand erase 53c0000 800
nand write 1800000 53c0000 800
This selects FW1. Replace "mw.b 1800004 1 1" by "mw.b 1800004 2 1" to
change to the second slot.
Back to stock
=============
It is possible to flash back to stock, but a OEM firmware upgrade is
required. ZyXEL does not provide the link on its website, but the link
can be acquired from the OEM web GUI by analyzing the transferred JSON
objects.
It is then a matter of writing the firmware to Kernel2 and setting the
boot partition to FW2:
mtd write zyxel.bin Kernel2
echo -ne "\x02" | dd of=/dev/mtdblock7 count=1 bs=1 seek=4 conv=notrunc
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Credits to forum users Annick and SirLouen for their initial work on this
device
- Correct WiFi MACs, they didn't match oem firmware
- Move nvmem-cells to bdinfo partition and remove &bdinfo reference
- Add OEM device model name R13 to SUPPORTED_DEVICES
This allows sysupgrading from Cudy's OpenWrt fork without force
- Label red_led and use it during failsafe mode and upgrades
MAC addresses as verified by OEM firmware:
use address source
LAN b4:4b:d6:2d:c8:4a label
WAN b4:4b:d6:2d:c8:4b label + 1
2g b4:4b:d6:2d:c8:4a label
5g b6:4b:d6:3d:c8:4a label + LA-Bit set + 4th oktet increased
The label MAC address is found in bdinfo 0xde00.
Signed-off-by: Felix Baumann <felix.bau@gmx.de>
[read wifi mac from flash offset]
Signed-off-by: David Bauer <mail@david-bauer.net>
The Config partition of some machines is special, and the openwrt script
cannot read the protest_lan_mac correctly. This problem can be solved by
reading the mac address (ascii) in dts.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
PCI paths of the WLAN devices have changed between kernel 5.10 and 5.15;
migrate config so existing wifi-iface definitions don't break.
This is implemented as a hotplug handler rather than a uci-defaults script
as the migration script must run before the 10-wifi-detect hotplug handler.
based on b452af23a8
migration was forgotten when device trees were adjusted in
688697889cc77913be5bfixes#9374
affected devices:
Netgear R6220
Netgear WAC104
Netgear WNDR3700 v5
Zbtlink ZBT-WE1326
Wiflyer WF3526-P
Arcadyan WE420223-99
Beeline Smartbox Flash (Arcadyan WG443223)
MTS WG430223 (Arcadyan WG430223)
Tested-by: Maximilian Baumgartner <aufhaxer@googlemail.com>
Tested-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Felix Baumann <felix.bau@gmx.de>
From https://github.com/openwrt/openwrt/pull/12280#issuecomment-1489279860
On Ethernet and WLAN, NAPI is threaded for all queues. This means that the
processing work is not stuck on the CPU that fired the IRQ. Under heavy
load, IRQs get disabled anyway, so it should not matter at all which CPUs
the IRQs fire on.
Basic testing indicates this to be true. There's no speedup or slowdown.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
There's no valid mac address for the second band in the eeprom.
The vendor fw uses 2.4G mac + 4 as the mac for 5G radio.
Do the same in our firmware.
Fixes: 23be410b3d ("ramips: add support for TOTOLINK X5000R")
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Hardware
========
- SoC: MediaTek MT7621AT (880MHz, Duel-Core)
- RAM: DDR3 128MB
- Flash: Winbond W25Q128JV (SPI-NOR 16MB)
- WiFi: MediaTek MT7915D (2.4GHz, 5GHz, DBDC)
- Ethernet: MediaTek MT7530 (WAN x1, LAN x3, SoC)
- UART: >TX RX GND 3v3 (115200 8N1, J1)
Do not connect 3v3. TX is marked with an arrow.
Installation
============
Flash factory image. This can be done using stock web ui.
Revert to stock firmware
========================
Flash stock firmware via OEM Web UI Recovery mode.
Web UI Recovery method
======================
1. Unplug the router
2. Plug in and hold reset button 5~10 secs
3. Set your computer IP address manually to 192.168.1.x / 255.255.255.0
4. Flash image with web browser to 192.168.1.1
Co-authored-by: Robert Senderek <robert.senderek@10g.pl>
Co-authored-by: Yoonji Park <koreapyj@dcmys.kr>
Signed-off-by: David Bauer <mail@david-bauer.net>
The original claim about conflicting MAC addresses is wrong. mac80211
does increment the first octet and sets the LA bit.
This means our "workaround" actually leads to the issue while
incrementing the last octet is safe.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware
--------
CPU: MediaTek MT7621 DAT
RAM: 128MB DDR3 (integrated)
FLASH: 16MB SPI-NOR ()
WiFi: MediaTek MT7905 + MT7975 (2.4 / 5 DBDC) 802.11ax
SERIAL: 115200 8N1
LEDs - (3V3 - GND - RX - TX) - ETH ports
Installation
------------
Upload the factory image using the Web-UI.
Web-Recovery
------------
The router supports a HTTP recovery mode by holding the reset-button
when powering on. The interface is reachable at 192.168.0.1 and supports
installation using the factory image.
Signed-off-by: David Bauer <mail@david-bauer.net>
Add the missing definitions for the PoE passthrough functionality.
The relevant pin is already being exported, but it is missing from
the initial board configuration file. With this change, the user is
now able to toggle the PoE passthorough functionality via the uci cli
Signed-off-by: André Fonseca <mail@andrefonseca.pt>
Specifications:
* SoC: MT7621AT
* RAM: 256MB (NT5CC64M16GP-DI)
* Flash: 16MB NOR SPI flash (GD25Q127CSIG, using GD25Q128C driver)
* WiFi: MT7615DN (2.4GHz+5Ghz) with DBDC
* Ethernet: 4x1000M LAN, 1x 1000M WAN
* LEDs: Power Blue+Orange,Wan Blue+Orange,WPS Blue,"2.4G"Blue, "5G" Blue,
USB Blue
* Buttons: Reset,WPS, Wifi
* Serial interface: on board but not populated, pinout (from the DC jack
side to the WAN port side) is "3.3V Input Output Gnd". Baud rate is 57600,
settings are 8 data bits, no parity bit, one stop bit, and no flow control.
Stock flash layout:
```
GD25Q128C(c8 40180000) (16384 Kbytes)
mtd .name = raspi, .size = 0x01000000 (16M) .erasesize = 0x00010000 (64K)
.numeraseregions = 0
Creating 7 MTD partitions on "raspi":
0x000000000000-0x000001000000 : "ALL"
0x000000000000-0x000000030000 : "Bootloader"
0x000000030000-0x000000040000 : "Config"
0x000000040000-0x000000050000 : "Factory"
0x000000050000-0x000000060000 : "Config2"
0x000000060000-0x000000fb0000 : "Kernel"
0x000000fb0000-0x000001000000 : "Private"
```
The kernel partition will be replaced with the OpenWrt image, the other
partitions are left untouched.
"Config2" seems to be the config storage used by the stock firmware.
"Private" is a 320kB empty JFFS2 partition that comes with the stock
firmware. One can get a larger space for OpenWrt by merging it with
"Kernel".
OpenWrt flash layout:
```
0x000000000000-0x000000030000 : "u-boot"
0x000000030000-0x000000040000 : "u-boot-env"
0x000000040000-0x000000050000 : "factory"
0x000000050000-0x000000060000 : "config2_stock"
0x000000060000-0x000000fb0000 : "firmware"
0x000000fb0000-0x000001000000 : "private_stock"
```
The OpenWrt image must have 96 bytes of padding in the header.
MAC addresses on OEM firmware:
| | location on the flash | notes |
|------ |----------------------- |---------- |
| lan (eth2) | factory + 0xe000 | on label |
| wan (eth3) | factory + 0xe006 | |
| 2.4g (rax0) | not on flash | lan + 1 |
| 5g (ra0) | not on flash | lan + 2 |
Mac addresses of the 2.4g and 5g interface are stored as ASCII strings in
the u-boot-env partition, but they are not used. OpenWrt calculates
Wifi Mac addresses based on the LAN Mac.
Flash and test instructions:
Flash the encrypted image (available in the OpenWrt forum) through the
stock D-Dink web interface.
1. Open the case, and solder the 4-pin header near the WAN port.
2. Connect it to a USB-UART TTL (3.3V) adapter, no need to connect VCC.
3. Open a terminal emulator (e.g. `screen /dev/ttyUSB0` on linux) with
the settings mentioned above.
4. Setup a TFTP server on your PC that can serve
`xxx-ramips-mt7621-dlink_dir-853-a1-initramfs-kernel.bin`.
5. Connect any LAN port to your PC and set a static IPv4 address to
192.168.0.101 (netmask 255.255.255.0).
6. Power on the device and keeps pressing 1 until you see the prompt.
7. Use default IP addresses and enter the file name accordingly, then hit
enter.
8. Wait until it boots to OpenWrt, the default IP address is 192.168.1.1,
you need to change your PC network adapter to use DHCP in order to access
LUCI.
9. So far, the OpenWrt runs in RAM and the flash contents are not touched.
You can try OpenWrt without having to overwrite the stock firmware, a
reboot clears all changes.
10. Optionally, backup the stock firmware (the "firmware" partition) in
Luci.
11. To permantly install OpenWrt to the device , click
on "System -> Backup/Flash Firmware" in Luci and flash
`xxx-ramips-mt7621-dlink_dir-853-a1-squashfs-sysupgrade.bin`
Known problems:
* WLAN0 defaults to 5G after a fresh installation, to enable 2.4G network,
you need to config it manually in LUCI.
* If you see jffs2 related warnings/errors after updating from the stock
web interface, you need to do a reset in LUCI. The error will be gone after
a cold reboot.
Signed-off-by: Hang Zhou <929513338qq@gmail.com>
Several devices depend on fw_printenv during sysupgrade. Make sure
it always is present in all images, including initramfs images built
by the buildbots.
Fixes: 2449a63208 ("ramips: mt7621: Add support for ZyXEL NR7101")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Specifications:
- Device: ASUS RT-AX54 (AX1800S/HP,AX54HP)
- SoC: MT7621AT
- Flash: 128MB
- RAM: 256MB
- Switch: 1 WAN, 4 LAN (10/100/1000 Mbps)
- WiFi: MT7905 2x2 2.4G + MT7975 2x2 5G
- LEDs: 1x POWER (blue, configurable)
1x LAN (blue, configurable)
1x WAN (blue, configurable)
1x 2.4G (blue, not configurable)
1x 5G (blue, not configurable)
Flash by U-Boot TFTP method:
- Configure your PC with IP 192.168.1.2
- Set up TFTP server and put the factory.bin image on your PC
- Connect serial port(rate:115200) and turn on AP, then interrupt "U-Boot Boot Menu" by hitting any key
Select "2. Upgrade firmware"
Press enter when show "Run firmware after upgrading? (Y/n):"
Select 0 for TFTP method
Input U-Boot's IP address: 192.168.1.1
Input TFTP server's IP address: 192.168.1.2
Input IP netmask: 255.255.255.0
Input file name: openwrt-ramips-mt7621-asus_rt-ax1800hp-squashfs-factory.bin
- Restart AP aftre see the log "Firmware upgrade completed!"
Signed-off-by: Karl Chan <exkc@exkc.moe>
This commit adds support for the V4 hardware revision of the Deco M4R.
V4 is a complete overhaul of the hardware compared to V1 and V2,
and is much more similar to the Archer C6 V3 and C6U V1.
Specifications:
SoC: MediaTek MT7621AT (2 cores at 880 MHz, 4 threads)
RAM: Kingston D1216ECMDXGJD (256 MB)
Wireless 2.4 GHz: MediaTek MT7603EN
Wireless 5 GHz: MediaTek MT7613BEN
Flash: 16 MB SPI NOR
Installation:
Flash the *-factory.bin image in the U-Boot recovery webserver.
You can trigger this webserver by holding the reset button until the LED
flashes yellow, or by hooking up to serial pads on the board (clearly
labeled GND, RX and TX) and pressing `x` early in boot.
Once the factory image has been flashed, you can use the regular upgrade
procedure with sysupgrade images for subsequent flashes.
Signed-off-by: Mark Ceeha <hi@shiz.me>
Tested-by: Mark Ceeha <hi@shiz.me>
Device is the same as Xiaomi Mi Router 4A Gigabit, except of:
- 5G WiFi is MT7663
- addresses of leds, wifi and eth ports are slightly changed
Specs:
SoC: MT7621
CPU: 2 x 880 MHz
ROM: 16 MB
RAM: 128 MB
WLAN: MT7603, MT7663
MAC addresses:
WAN **** factory 0xe006 (label)
LAN *:f7 factory 0xe000
2.4 GHz *:f8 factory 0x0000+0x4 (mtd-eeprom+0x4)
5 GHz *:f9 factory 0x8000+0x4 (mtd-eeprom+0x4)
Installation:
Factory firmware is based on a custom OpenWrt 17.x.
Installation is the same as for Xiaomi Mi Router 4A Gigabit.
Probably the easiest way to install is to use the script from
this repository: https://github.com/acecilia/OpenWRTInvasion/pull/155
In a more advanced case, you can do everything yourself:
- gain access to the device through one of the exploits described
in the link above
- upload sysupgrade image to /tmp
- overwrite stock firmware:
# mtd -e OS1 -r write /tmp/sysupgrade.bin OS1
Recovery:
Recovery procedure is the same as for Xiaomi Mi Router 4A Gigabit.
Possible options can be found here:
https://openwrt.org/inbox/toh/xiaomi/xiaomi_mi_router_4a_gigabit_edition
One of the ways is to use another router with OpenWrt:
- connect both routers by their LAN ports
- download stock firmware from [1]
- place it inside /tmp/test.bin on the main router
- configure PXE/TFTP on the main router
- power off 4Av2, hold Reset button, power on
- as soon as image download via TFTP starts, Reset can be released
- blinking blue wan LED will indicate the end of the flashing process,
now router can be rebooted
[1] http://cdn.cnbj1.fds.api.mi-img.com/xiaoqiang/rom/r4av2/miwifi_r4av2_firmware_release_2.30.28.bin
Signed-off-by: Dmitry Sokolov <e323w@proton.me>
The Arcadyan WE420223-99 is a WiFi AC simultaneous dual-band access
point distributed as Experia WiFi by KPN in the Netherlands. It features
two ethernet ports and 2 internal antennas.
Specifications
--------------
SOC : Mediatek MT7621AT
ETH : Two 1 gigabit ports, built into the SOC
WIFI : MT7615DN
BUTTON: Reset
BUTTON: WPS
LED : Power (green+red)
LED : WiFi (green+blue)
LED : WPS (green+red)
LED : Followme (green+red)
Power : 12 VDC, 1A barrel plug
Winbond variant:
RAM : Winbond W631GG6MB12J, 1GBIT DDR3 SDRAM
Flash : Winbond W25Q256JVFQ, 256Mb SPI
U-Boot: 1.1.3 (Nov 23 2017 - 16:40:17), Ralink 5.0.0.1
Macronix variant:
RAM : Nanya NT5CC64M16GP-DI, 1GBIT DDR3 SDRAM
Flash : MX25l25635FMI-10G, 256Mb SPI
U-Boot: 1.1.3 (Dec 4 2017 - 11:37:57), Ralink 5.0.0.1
Serial
------
The serial port needs a TTL/RS-232 3V3 level converter! The Serial
setting is 57600-8-N-1. The board has an unpopulated 2.54mm straight pin
header.
The pinout is: VCC (the square), RX, TX, GND.
Installation
------------
See the Wiki page [1] for more details, it comes down to:
1. Open the device, take off the heat sink
2. Connect the SPI flash chip to a flasher, e.g. a Raspberry Pi. Also
connect the RESET pin for stability (thanks @FPSUsername for reporting)
3. Make a backup in case you want to revert to stock later
4. Flash the squashfs-factory.trx file to offset 0x50000 of the flash
5. Ensure the bootpartition variable is set to 0 in the U-Boot
environment located at 0x30000
Note that the U-Boot is password protected, this can optionally be
removed. See the forum [2] for more details.
MAC Addresses(stock)
--------------------
+----------+------------------+-------------------+
| use | address | example |
+----------+------------------+-------------------+
| Device | label | 00:00:00:11:00:00 |
| Ethernet | + 3 | 00:00:00:11:00:03 |
| 2g | + 0x020000f00001 | 02:00:00:01:00:01 |
| 5g | + 1 | 00:00:00:11:00:01 |
+----------+------------------+-------------------+
The label address is stored in ASCII in the board_data partition
Notes
-----
- This device has a dual-boot partition scheme, but OpenWRT will claim
both partitions for more storage space.
Known issues
------------
- 2g MAC address does not match stock due to missing support for that in
macaddr_add
- Only the power LED is configured by default
References
----------
[1] https://openwrt.org/inbox/toh/arcadyan/astoria/we420223-99
[2] https://forum.openwrt.org/t/adding-openwrt-support-for-arcadyan-we420223-99-kpn-experia-wifi/132653
Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Signed-off-by: Harm Berntsen <git@harmberntsen.nl>
Add support for D-Link DIR-1935 A1 based on similarities to DIR-882 A1,
DIR-867 A1 and other DIR-8xx A1 models. Existing DIR-882 A1 openwrt
"factory" firmware installs without modificaitons via the D-Link
Recovery GUI and has no known incompatibilities with the DIR-1935 A1.
Changes to be committed:
new file: target/linux/ramips/dts/mt7621_dlink_dir-1935-a1.dts
modified: target/linux/ramips/image/mt7621.mk
modified: target/linux/ramips/mt7621/base-files/etc/board.d/01_leds
Specifications:
* Board: Not known
* SoC: MediaTek MT7621 Family
* RAM: 128 MB (DDR3)
* Flash: 16 MB (SPI NOR)
* WiFi: MediaTek MT7615 Family (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 3.0
* Buttons: Reset, WiFi Toggle, WPS
* LEDs: Power (green/orange), Internet (green/orange), WiFi 2.4G (green),
WiFi 5G (green)
Notes:
* 160MHz 5GHz is available in LuCi but does not appear to work (i.e. no
SSID is visible in wifi scanning apps on other devices) with either
official DIR-882 A1 firmware or a test build for the DIR-1935 A1 based
on the 22.03.2 branch. 80 MHz 5GHz works.
Serial port:
* Untested (potential user damage/error)
* Expected to be identical to other DIR-8xx A1 models:
* Parameters: 57600, 8N1
* Location: J1 header (close to the Reset, WiFi and WPS buttons)
* Pinout: 1 - VCC
2 - RXD
3 - TXD
4 - GND
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
Signed-off-by: Keith Harrison <keithh@protonmail.com>
This adds basic support for TP-Link EC330-G5u Ver:1.0 router (also known
as TP-Link Archer C9ERT).
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 128 MiB, Nanya NT5CC64M16GP-DI
Flash: 128 MiB NAND, ESMT F59L1G81MA-25T
Wireless 2.4 GHz (MediaTek MT7615N): b/g/n, 4x4
Wireless 5 GHz (MediaTek MT7615N): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
Button: 4 (Led, WiFi On/Off, Reset, WPS)
LEDs: 7 blue LEDs, 1 orange(amber) LED, 1 white(non-gpio) LED
Power: 12 VDC, 2 A
Connector type: Barrel
Bootloader: First U-Boot (1.1.3), Main U-Boot (1.1.3). Additionally,
original TP-Link firmware contains Image U-Boot (1.1.3).
Serial console (UART)
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
| J2
|
+--- Don't connect
Installation
------------
1. Rename OpenWrt initramfs image to test.bin and place it on tftp server
with IP 192.168.0.5
2. Attach UART, switch on the router and interrupt the boot process by
pressing 't'
3. Load and run OpenWrt initramfs image:
tftpboot
bootm
4. Once inside OpenWrt, switch to the first boot image:
fw_setenv BootImage 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Back to Stock
-------------
1. Run in the OpenWrt shell:
fw_setenv BootImage 1
reboot
Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.0.1/) and upload
the OEM firmware
MAC addresses
-------------
+---------+-------------------+-------------------+-------------+
| | MAC example 1 | MAC example 2 | Algorithm |
+---------+-------------------+-------------------+-------------+
| label | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label |
| LAN | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label |
| WAN | 72:ff:7b:xx:xx:f5 | 54:d4:f7:xx:xx:db | label+1 [1] |
| WLAN 2g | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label |
| WLAN 5g | 68:ff:7b:xx:xx:f6 | 50:d4:f7:xx:xx:dc | label+2 |
+---------+-------------------+-------------------+-------------+
label MAC address was found in factory at 0x165 (text format
xx:xx:xx:xx:xx:xx).
Notes
-----
[1] WAN MAC address:
a. First octet of WAN MAC is differ than others and OUI is not related
to TP-Link company. This probably should be fixed.
b. Flipping bits in first octet and hex delta are different for the
different MAC examples:
+-----------------+----------------+----------------+
| | Example 1 | Example 2 |
+-----------------+----------------+----------------+
| LAN | 68 = 0110 1000 | 50 = 0101 0000 |
| MAC (1st octet) | ^ ^ ^ | |
+-----------------+----------------+----------------+
| WAN | 72 = 0111 0010 | 54 = 0101 0100 |
| MAC (1st octet) | ^ ^ ^ | ^ |
+-----------------+----------------+----------------+
| HEX delta | 0xa | 0x4 |
+-----------------+----------------+----------------+
| DEC delta | 4 | 4 |
+-----------------+----------------+----------------+
c. DEC delta is a constant (4). This looks like a mistake in OEM
firmware and probably should be fixed.
Based on the above, I decided to keep correct OUI and make WAN MAC =
label + 1.
[2] Bootloaders
The device contains 3 bootloaders:
- First U-Boot: U-Boot 1.1.3 (Mar 18 2019 - 12:50:24). The First U-Boot
located on NAND Flash to load next full-feature Uboot.
- Main U-Boot + its backup: U-Boot 1.1.3 (Mar 18 2019 - 12:50:29). This
bootloader includes recovery webserver. Requires special uImages to
continue the boot process:
0x00 (os0, os1) - firmware uImage
0x40 (os0, os1) - standalone uImage (OpenWrt kernel is here)
- Additionally, both slots of the original TP-Link firmware contains
Image U-Boot: U-Boot 1.1.3 (Oct 16 2019 - 08:14:45). It checks image
magics and CRCs. We don't use this U-Boot with OpenWrt.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
The pins of the MT7530 switch that translate to GPIO 0, 3, 6, 9 and 12 has
got a function, by default, which does the same thing as the netdev
trigger. Because of bridge offloading on DSA, the netdev trigger won't see
the frames between the switch ports whilst the default function will.
Do not use the GPIO function on switch pins on devices that fall under this
category.
Keep it for:
mt7621_belkin_rt1800.dts: There's only one LED which is for the wan
interface and there's no bridge offloading between the "wan" interface and
other interfaces.
mt7621_yuncore_ax820.dts: There's no bridge offloading between the "wan"
and "lan" interfaces.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
The DAP-X1860 is a wall-plug AX1800 repeater.
Specifications:
- MT7621, 256 MiB RAM, 128 MiB SPI NAND
- MT7915 + MT7975 2x2 802.11ax (DBDC)
- Ethernet: 1 port 10/100/1000
- LED RSSI bargraph (2x green, 1x red/orange), status
and RSSI LEDs are incorrectly populated red/orange
(should be red/green according to documentation)
Installation:
- Keep reset button pressed during plug-in
- Web Recovery Updater is at 192.168.0.50
- Upload factory.bin, confirm flashing
(seems to work best with Chromium-based browsers)
Revert to OEM firmware:
- tar -xvf DAP-X1860_RevA_Firmware_101b94.bin
- openssl enc -d -md md5 -aes-256-cbc -in FWImage.st2 \
-out FWImage.st1 -k MB0dBx62oXJXDvt12lETWQ==
- tar -xvf FWImage.st1
- flash kernel_DAP-X1860.bin via Recovery
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications
SoC: MT7621
CPU: 880 MHz
Flash: 32 MiB
RAM: 256 MiB
WLAN: MT7915 WiFi 6 (2.4/5 GHz)
Ethernet: 2x Gbit ports
MAC
LAN b4:4b:d6:2e:c7:b0 (label)
WAN b4:4b:d6:2e:c7:b1
WiFi 2.4 00:0c:43:26:46:08
WiFi 5 00:0c:43:26:59:97
Installation
There are two known options:
1) The Luci-based UI.
2) Press and hold the reset button during power up.
The router will request 'recovery.bin' from a TFTP server at
192.168.1.88.
Both options require a signed firmware binary.
The openwrt image supplied by cudy is signed and can be used to
install unsigned images.
Signed-off-by: Leon M. Busch-George <leon@georgemail.eu>
This is a MT7621-based device with 128MB NAND flash, 256MB RAM, and a USB port.
The board has headers to attach console. In order for them to work two solder
bridges near those pads need to be made.
The defice has the following partition table:
```
0x000000000000-0x000000080000 : "u-boot"
0x000000080000-0x000000100000 : "u-boot-env"
0x000000100000-0x000000140000 : "factory"
0x000000140000-0x000007e00000 : "firmware"
0x000007e00000-0x000008000000 : "panic-ops"
```
`firmware` partition contains UBI volumes. Unfortunately I accidentally wiped
partition and I no longer have access to it.
`firmware` partition contains 'secondary' U-Boot which is run by 'first' u-boot.
It also contains various configuration partitions that include device info and
MAC address. There also seems to be 'primary' and 'backup' set of 'main' volumes.
U-boot has `mtkupgrade` command that just overrides data on firmware partitions.
Firmware file provided by TP-Link cannot be used with that command.
U-boot also has 'recovery' http server. Unfortunately I was not able to make it
work with manufacturer's firmware.
Manufacturer's firmware essentially contains multiple UBI volumes along with
'partition table'. Unfortunately I no longer can properly run manufacturer's
firmware so I cannot at the moment try to a support for building 'factory' images.
This patch adds support for initramfs image as well as sysupgrade image.
This seems to be pretty standard MT7621 board otherwise.
Things that work:
* network
* leds
* usb
* factory MAC detection
Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com>
This patch adds the missing LEDs to Asus RT-AX53U.
Based on PR #10400 and patch provided in #11068
- enable the two LEDs controlled by mt7915e for wireless;
- add label to power LED so it works properly and fix formatting;
- add the USB LED;
- switch LEDs are best left to be controlled by hardware for now.
Co-Authored-By: Ivan Rozhuk <rozhuk.im@gmail.com>
Co-Authored-By: Shiji Yang <yangshiji66@qq.com>
Co-Authored-By: Hartmut Birr <e9hack@gmail.com>
Tested-by: Felix Baumann <felix.bau@gmx.de>
Tested-by: Marian Sarcinschi <znevna@gmail.com>
Signed-off-by: Marian Sarcinschi <znevna@gmail.com>
Etisalat S3 is a wireless WiFi 5 router manufactured by Sercomm company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1x USB3.0
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Status (RGB)
- 1x 2.4G (blue, hardware, mt76-phy0)
- 1x 5G (blue, hardware, mt76-phy1)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface under admin account
2. Navigate to Settings -> Configuration -> Save to Computer
3. Decode the configuration. For example, using cfgtool.py tool (see
related section):
cfgtool.py -u configurationBackup.cfg
4. Open configurationBackup.xml and find the following line:
<PARAMETER name="Password" type="string" value="<your router serial \
is here>" writable="1" encryption="1" password="1"/>
5. Insert the following line after and save:
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
6. Encode the configuration. For example, using cfgtool.py tool:
cfgtool.py -p configurationBackup.xml
7. Upload the changed configuration (configurationBackup_changed.cfg) to
the router
8. Login to the router web interface (SuperUser:ETxxxxxxxxxx, where
ETxxxxxxxxxx is the serial number from the backplate label)
9. Navigate to Settings -> WAN -> Add static IP interface (e.g.
10.0.0.1/255.255.255.0)
10. Navigate to Settings -> Remote cotrol -> Add SSH, port 22,
10.0.0.0/255.255.255.0 and interface created before
11. Change IP of your client to 10.0.0.2/255.255.255.0 and connect the
ethernet cable to the WAN port of the router
12. Connect to the router using SSH shell under SuperUser account
13. Run in SSH shell:
sh
14. Make a mtd backup (optional, see related section)
15. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
16. Login to the router web interface under admin account
17. Remove dots from the OpenWrt factory image filename
18. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 10.0.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 10.0.0.2
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
MAC Addresses
-------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | *:50 |
| WAN | label + 11 | *:5b |
| 2g | label + 2 | *:52 |
| 5g | label + 3 | *:53 |
+-----+------------+---------+
The label MAC address was found in Factory 0x21000
cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker
Co-authored-by: Karim Dehouche <karimdplay@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Wavlink WS-WN572HP3 4G is an 802.11ac
dual-band outdoor router with LTE support.
Specifications;
* Soc: MT7621DAT
* RAM: 128MiB
* Flash: NOR 16MiB GD-25Q128ESIG3
* Wi-Fi:
* MT7613BEN: 5GHz
* MT7603EN: 2.4GHz
* Ethernet: 2x 1GbE
* USB: None - only used internally
* LTE Modem: Quectel EC200T-EU
* UART: 115200 baud
* LEDs:
* 7 blue at the front
* 1 Power
* 2 LAN / WAN
* 1 Status
* 3 RSSI (annotated 4G)
* 1 green at the bottom (4G LED)
* Buttons: 1 reset button
Installation:
* press and hold the reset button while powering on the device
* keep it pressed for ten seconds
* connect to 192.168.10.1 via webbrowser (chromium/chrome works, at
least Firefox 106.0.3 does not)
* upload the sysupgrade image, confirm the checksum, wait 2 minutes
until the device reboots
Revert to stock firmware:
* same as installation but use the recovery image for WL-WN572HP3
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Keenetic KN-3010 is a 2.4/5 Ghz band 11ac (Wi-Fi 5) router, based on MT7621DAT.
Specification:
- System-On-Chip: MT7621DAT
- CPU/Speed: 880 MHz
- Flash-Chip: Winbond w25q256
- Flash size: 32768 KiB
- RAM: 128 MiB
- 5x 10/100/1000 Mbps Ethernet
- 4x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- Wireless No1 (2T2R): MT7603E 2.4 GHz 802.11bgn
- Wireless No2 (2T2R): MT7613BE 5 GHz 802.11ac
- 4x LED, 2x button, 1x mode switch
Notes:
- The device supports dual boot mode
- The firmware partitions were concatinated into one
- The FN button led indicator has been reassigned as the 2.4GHz
wifi indicator.
Flash instruction:
The only way to flash OpenWrt image is to use tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24 and tftp server.
2. Rename "openwrt-ramips-mt7621-keenetic_kn-3010-squashfs-factory.bin"
to "KN-3010_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed until power led start blinking.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Hardware specification:
SoC: MediaTek MT7621AT
Flash: Winbond W29N01HVSINA 128MB
RAM: Micron MT41K128M16JT-125 256MB
Ethernet: 4x 10/100/1000 Mbps
WiFi1: MT7615DN 2.4GHz N 2x2:2
WiFi2: MT7615DN 5GHz AC 2x2:2
WiFi3: MT7615N 5GHz AC 4x4:4
Button: WPS, Reset
Flash instructions:
OpenWrt can be installed via D-Link Recovery GUI:
Push and hold reset button (on the bottom of the device) until power led starts flashing (about 10 secs or so) while plugging in the power cable.
Give it ~30 seconds, to boot the recovery mode GUI
Connect your client computer to LAN1 of the device
Set your client IP address manually to 192.168.0.2 / 255.255.255.0.
Call the recovery page for the device at http://192.168.0.1/
Use the provided emergency web GUI to upload and flash a new firmware to the device
Signed-off-by: Ivaylo Ivanov <iivailo@mail.bg>
Rostelecom RT-SF-1 is a wireless WiFi 5 router manufactured by Sercomm
company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 256 MiB, Micron MT29F2G08ABAGA3W
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
ZigBee: 3.0, EFR32 MG1B232GG
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Status (RGB)
- 1x 2.4G (blue, hardware, mt76-phy0)
- 1x 5G (blue, hardware, mt76-phy1)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Remove dots from the OpenWrt factory image filename
2. Login to the router web interface
3. Update firmware using web interface with the OpenWrt factory image
4. If OpenWrt is booted, then no further steps are required. Enjoy!
Otherwise (Stock firmware has booted again) proceed to the next step.
5. Update firmware using web interface with any version of the Stock
firmware
6. Update firmware using web interface with the OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
MAC Addresses
-------------
+-----+------------+------------+
| use | address | example |
+-----+------------+------------+
| LAN | label | *:72, *:d2 |
| WAN | label + 11 | *:7d, *:dd |
| 2g | label + 2 | *:74, *:d4 |
| 5g | label + 3 | *:75, *:d5 |
+-----+------------+------------+
The label MAC address was found in Factory 0x21000
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
previous commit ffa4b5283b introduced a bug which broke the MAC address
assignment for belkin,rt1800 and linksys,e7350.
Fixes: ffa4b5283b ("ramips: add support for Mikrotik LtAP-2HnD")
Signed-off-by: Arne Zachlod <arne@nerdkeller.org>
Mikrotik LtAP-2HnD is a outdoor/automotive WLAN 4 router with integrated GPS
receiver and two mPCIe slots.
Specifications:
* SoC: MT7621A
* RAM: 128 MiB Nanya NT5CC64M16GP-DI
* Flash: 16 MiB winbond W25Q128JV
* WLAN:
* Atheros AR9382 with power amplifier SKY 85330 (2x2 internal antennas,
with RF switches for external connectors)
* Ethernet: 1 Gbps, single port
* USB Host: USB 2.0 Speeds
* Serial: 115200 baud
* LEDs: Power, System, GPS, 5* RSSI
* mPCIe:
* miniPCIe slot 1: PCIe and USB 2.0 Host (via switch shared with USB Host)
* miniPCIe slot 2: USB 2.0 and 3.0
* SIM Cards:
* Slot 1 Connected to mPCIe slot 1
* Slot 2 and 3 connected to mPCIe slot 2 via switch
* GPS: MTK 3333 on serial port 2 (/dev/ttyS1), 115200 baud and PPS on gpio 14
gpios are exposed to /sys/class/gpio:
* usb-select: swithes USB 2.0 interface between external port and internal
mPCIe slot 1 default is the external USB interface
* gps-reset: resets the GPS interface chip
* sim-select: switches between sim slot 2 and 3 connected to mPCIe slot 2
* gps-ant-select: switches GPS antenna between internal antenna and SMA
connected antenna
* lte-reset: resets mPCIe slot 2
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Arne Zachlod <arne@nerdkeller.org>
MR600 V2(EU) is an LTE router that also supports 4G+ band aggregation
etc. and can reportedly achieve higher bandwidth with it.
- Specifications:
* SoC: Mediatek MT7621DAT 880MHz
* RAM: 128MB DDR3
* Flash: 16MB SPI NOR flash (GD25Q128C)
* LTE Modem: Qualcomm MDM9240
* WiFi 5GHz: Mediatek MT7613BEN
* WiFi 2.4GHz: Mediatek MT7603EN
* Ethernet: MT7530, 4x 1000Base-T.
* UART: Serial console (115200 8n1), J1(GND:3)
* Buttons: Reset, WPS.
* LED: Power, WAN, LTE, WiFi 2GHz and 5GHz, LAN, Signal1, Signal2,
Signal3
- MAC Addresses:
OEM firmware configuration:
54:af:97:xx:xx:7b : 2.4G
54:af:97:xx:xx:7a : 5G
54:af:97:xx:xx:7c : LTE
54:af:97:xx:xx:7b : LAN (label)
54:af:97:xx:xx:7c : WAN
- Installation:
1. Download the OpenWrt initramfs-image.
Place it into a TFTP server root directory and rename it to openwrt.img
Configure the TFTP server to listen at 192.168.0.5/24.
3. Connect to the serial console.
Attach power and interrupt the boot procedure when prompted (type `tpl`).
Credentials are admin / 1234
4. Configure U-Boot for booting OpenWrt from ram
$ tftpboot
$ bootm
5. Transfer the OpenWrt sysupgrade image to the device.
- LTE:
In order to setup the wwan0 interface:
1. Add a `qmi` proto interface under `/etc/config/network`, e.g.:
```
config interface 'wwan0'
option device '/dev/cdc-wdm0'
option proto 'qmi'
option pincode 'XXXX'
option apn 'your_isp_apn'
```
2. Add `wwan0` interface to the `wan` firewall zone
3. `/etc/init.d/network restart`
Signed-off-by: Linos Giannopoulos <linosgian00@gmail.com>
SIM AX18T and Haier HAR-20S2U1 Wi-Fi6 AX1800 routers are designed based
on Tenbay WR1800K. They have the same hardware circuits and u-boot.
SIM AX18T has three carrier customized models: SIMAX1800M (China Mobile),
SIMAX1800T (China Telecom) and SIMAX1800U (China Unicom). All of these
models run the same firmware.
Specifications:
SOC: MT7621 + MT7905 + MT7975
ROM: 128 MiB
RAM: 256 MiB
LED: status *3 R/G/B
Button: reset *1 + wps/mesh *1
Ethernet: lan *3 + wan *1 (10/100/1000Mbps)
TTL Baudrate: 115200
TFTP Server: 192.168.1.254
TFTP IP: 192.168.1.28 or 192.168.1.160 (when envs is broken)
MAC Address:
use address source
label 30:xx:xx:xx:xx:62 wan
lan 30:xx:xx:xx:xx:65 factory.0x8004
wan 30:xx:xx:xx:xx:62 factory.0x8004 -3
wlan2g 30:xx:xx:xx:xx:64 factory.0x0004
wlan5g 32:xx:xx:xx:xx:64 factory.0x0004 set 7th bit
TFTP Installation (initramfs image only & recommend):
1. Set local tftp server IP: 192.168.1.254 and NetMask: 255.255.255.0
2. Rename initramfs-kernel.bin to "factory.bin" and put it in the root
directory of the tftp server. (tftpd64 is a good choice for Windows)
3. Start the TFTP server, plug in the power supply, and wait for the
system to boot.
4. Backup "firmware" partition and rename it to "firmware.bin", we need
it to back to stock firmware.
5. Use "fw_printenv" command to list envs.
If "firmware_select=2" is observed then set u-boot enviroment:
/# fw_setenv firmware_select 1
6. Apply sysupgrade.bin in OpenWrt LuCI.
Web UI Installation:
1. Apply update by uploading initramfs-factory.bin to the web UI.
2. Use "fw_printenv" command to list envs.
If "firmware_select=2" is observed then set u-boot enviroment:
/# fw_setenv firmware_select 1
3. Apply squashfs-sysupgrade.bin in OpenWrt LuCI.
Recovery to stock firmware:
a. Upload "firmware.bin" to OpenWrt /tmp, then execute:
/# mtd -r write /tmp/firmware.bin firmware
b. We can also write factory image "UploadBrush-bin.img" to firmware
partition to recovery. Upload image file to /tmp, then execute:
/# mtd erase firmware
/# mtd -r write /tmp/UploadBrush-bin.img firmware
How to extract stock firmware image:
Download stock firmware, then use openssl:
openssl aes-256-cbc -d -salt -in [Downloaded_Firmware] \
-out "firmware.tar.tgz" -k QiLunSmartWL
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
It is an in-wall 802.11ax (Wi-Fi 6) router, based on MediaTek MT7621A.
Specifications:
- SoC: MT7621AT (880MHz, 2 Cores)
- RAM: 128 MB
- Flash: 16 MB SPI NOR
- Wi-Fi:
- MT7915DN + MT7905DAN: 2.4/5 GHz
- Ethernet: 1x 1GiE via MT7530
- UART: J4 (115200 baud)
- Pinout: [3V3] (TXD) (RXD) (GND)
- Bootloader: U-Boot
- Buttons:
- SW1 - no label on the box, combined with led
- Led: Status. RGB controlled by
- GPIO 14 - green color
- GPIO 15 - red color
- GPIO 16 - blue color
Installation:
OEM firmware is based on LEDE with custom UI and support standard sysupgrade
variant of firmware. However it requires "*.ubin" extension for sysupgrade file.
Always select "Factory reset" switch on upgrade to OpenWRT, otherwise
it will not boot.
MAC addresses as verified by OEM firmware:
vendor source
LAN factory 0x4 (label)
5g factory 0x4 (label)
2g label with flipped bits bit in 1-st byte and bits 5, 6, 7 in
4-th byte
Example
label: 44:xx:xx:b7:xx:xx
lan: 44:xx:xx:b7:xx:xx
2g 46:xx:xx:c7:xx:xx
5g 44:xx:xx:b7:xx:xx
Signed-off-by: Volodymyr Puiul <volodymyr.puiul@gmail.com>
Endianness depends on CPU architecture. CONFIG_CPU_(BIG/LITTLE)_ENDIAN should
be enabled on target or subtarget based on SoC architecture.
Fixes warning:
$ make kernel_oldconfig CONFIG_TARGET=subtarget
...
.config:1008:warning: override: CPU_LITTLE_ENDIAN changes choice state
....
Summary:
- ARC - only the CONFIG_CPU_BIG_ENDIAN symbol is defined for this architeture.
If it is disabled then the processor operates in LITTLE_ENDIAN mode (default),
- ARM32 - CONFIG_CPU_LITTLE_ENDIAN symbol available since kernel 5.19. This
option should be enabled after OpenWRT moves to kernel 6.x. After refreshing
the kernel, the symbol disappears,
- ARM64 - enabled CONFIG_CPU_LITTLE_ENDIAN,
- MIPS - enabled relevant symbols,
- POWERPC - enabled CONFIG_CPU_BIG_ENDIAN,
- UML - Symbols are not defined for this architecture,
- X86 - always little endian. Symbols are not defined for this architecture.
Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
The device has only 1 WAN + 3 LAN ports. Remove "lan4" interface
corresponding to the non-existing port.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
Convert MAC address and label_mac configuration of Buffalo
WSR-1166DHP to use the generic function of OpenWrt.
Apply commit 770cfe9 for WCR-1166DS to WSR-1166DHP too.
Tested on the device and MAC address is kept before and after this
change.
Signed-off-by: Kazuhiro Ito <kzhr@d1.dion.ne.jp>
Add the missing LEDs for GB-PC2. Some of these LEDs don't exist on the
device schematics. Tests on a GB-PC2 by me and Petr proved otherwise.
Remove ethblack-green and ethblue-green LEDs for GB-PC1. They are not wired
to GPIO 3 or 4 and the wiring is currently unknown.
Set ethyellow-orange to display link state and activity of the ethyellow
interface for GB-PC2.
Link: https://github.com/ngiger/GnuBee_Docs/blob/master/GB-PCx/Documents/GB-PC2_V1.1_schematic.pdf
Tested-by: Petr Louda <petr.louda@outlook.cz>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Hardware
--------
- SoC: MediaTek MT7621AT with 128 MiB RAM and 32 MiB Flash
- Wi-Fi: MediaTek MT7603 (b/g/n, 2x2) and MediaTek MT7615 (ac, 4x4)
- Bluetooth: CSR8811 (internal USB, install kmod-bluetooth)
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt".
2. Update the bootloader environment.
$ fw_setenv devmode TRUE
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
3. Transfer the OpenWrt sysupgrade image to the device using SCP.
4. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
5. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
7. Reboot the device. It should boot into OpenWrt.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
This patch defines the two switch LED to bring them under user control.
Fixes: a0e1d3ab7b ("ramips: improve YunCore AX820 LEDs")
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
[rmilecki: leave "label"s in place]
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Change switch port labels to ethblack & ethblue.
Change lan1 & lan2 LEDs to ethblack_act & ethblue_act and fix GPIO pins.
Add the external phy with ethyellow label on the GB-PC2 devicetree.
Do not claim rgmii2 as gpio, it's used for ethernet with rgmii2 function.
Enable ICPlus PHY driver for IP1001 which GB-PC2 has got.
Update interface name and change netdev function.
Enable lzma compression to make up for the increased size of the kernel.
Make spi flash bindings on par with mainline Linux to fix read errors.
Tested on GB-PC2 by Petr.
Tested-by: Petr Louda <petr.louda@outlook.cz>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
This commit resolves#10062. Adds decryption of the Arcadyan WG4xx223
configuration partition (board_data)to get base MAC address from it.
As a result, after this change the hack with saving MAC addressees to
u-boot-env before installation of OpenWrt is no longer necessary.
This is necessary for the following devices:
- Beeline Smartbox Flash (Arcadyan WG443223)
- MTS WG430223 (Arcadyan WG430223)
Example:
+----------------+-------------------+------------------------+
| | MTS WG430223 | Beeline Smartbox Flash |
+----------------+-------------------+------------------------+
| base mac (mtd) | A4:xx:xx:51:xx:F4 | 30:xx:xx:51:xx:06 |
| label | A4:xx:xx:51:xx:F4 | 30:xx:xx:51:xx:09 |
| LAN | A4:xx:xx:51:xx:F6 | 30:xx:xx:51:xx:09 |
| WAN | A4:xx:xx:51:xx:F4 | 30:xx:xx:51:xx:06 |
| WLAN_2g | A4:xx:xx:51:xx:F5 | 30:xx:xx:51:xx:07 |
| WLAN_5g | A6:xx:xx:21:xx:F5 | 32:xx:xx:41:xx:07 |
+----------------+-------------------+------------------------+
Collected statistic shows that the 2-4th bits of the 7th byte of the
WLAN_5g MAC are the constant (see #10062 for more details):
- Beeline Smartbox Flash - 100
- MTS WG430223 - 010
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Beeline SmartBox TURBO is a wireless WiFi 5 router manufactured by
Sercomm company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 256 MiB, Micron MT29F2G08ABAGA3W
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
Button: 2 buttons (Reset & WPS)
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface (admin:admin)
2. Navigate to Settings -> WAN -> Add static IP interface (e.g.
10.0.0.1/255.255.255.0)
3. Navigate to Settings -> Remote cotrol -> Add SSH, port 22,
10.0.0.0/255.255.255.0 and interface created before
4. Change IP of your client to 10.0.0.2/255.255.255.0 and connect the
ethernet cable to the WAN port of the router
5. Connect to the router using SSH shell (SuperUser:SNxxxxxxxxxx, where
SNxxxxxxxxxx is the serial number from the backplate label)
6. Run in SSH shell:
sh
7. Make a mtd backup (optional, see related section)
8. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
9. Login to the router web interface (admin:admin)
10. Remove dots from the OpenWrt factory image filename
11. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
1. Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
2. Optional: Update with any stock (Beeline) firmware if you want to
overwrite OpenWrt in Slot 0 completely.
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 10.0.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 10.0.0.2
MAC Addresses
-------------
+-----+-----------+---------+
| use | address | example |
+-----+-----------+---------+
| LAN | label | *:54 |
| WAN | label + 1 | *:55 |
| 2g | label + 4 | *:58 |
| 5g | label + 5 | *:59 |
+-----+-----------+---------+
The label MAC address was found in Factory 0x21000
Co-developed-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
All targets expect the malta target already activate the CONFIG_GPIOLIB
option. Move it to generic kernel configuration and also activate it for
malta.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Musl libc does not support the non-POSIX "%F" format for strptime() so
replace all occurrences of it with an equivalent "%Y-%m-%d" format.
Fixes: #10419
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
The ZyXEL LTE3301-PLUS is an 4G indoor CPE with 2 external LTE antennas.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256 MB
- Flash: 128 MB MB NAND (MX30LF1G18AC)
- WiFi: MediaTek MT7615E
- Switch: 4 LAN ports (Gigabit)
- LTE: Quectel EG506 connected by USB3 to SoC
- SIM: 1 micro-SIM slot
- USB: USB3 port
- Buttons: Reset, WPS
- LEDs: Multicolour power, internet, LTE, signal, Wifi, USB
- Power: 12V, 1.5A
The device is built as an indoor ethernet to LTE bridge or router with
Wifi.
UART Serial:
57600N1
Located on populated 5 pin header J5:
[o] GND
[ ] key - no pin
[o] RX
[o] TX
[o] 3.3V Vcc
MAC assignment:
lan: 98:0d:67:ee:85:54 (base, on the device back)
wlan: 98:0d:67:ee:85:55
Installation from web GUI:
- Log in as "admin" on http://192.168.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- format ubi device: ubiformat /dev/mtd6
- attach ubi device: ubiattach -m6
- create rootfs volume: ubimkvol /dev/ubi0 -n0 -N rootfs -s 1MiB
- rootfs_data volume: ubimkvol /dev/ubi0 -n1 -N rootfs_data -s 1MiB
- run sysupgrade with sysupgrade image
For more details about flashing see
commit 2449a63208 ("ramips: mt7621: Add support for ZyXEL NR7101").
Please note that this commit is needed:
firmware-utils: add marcant changes for ZyXEL NBG6716 and LTE3301-PLUS
Signed-off-by: André Valentin <avalentin@marcant.net>
Specifications:
CPU: MT7621A dual-core 880MHz
RAM: 64MB DDR2
FLASH: 16MB MX25L12805D NOR SPI
WIFI: 2.4GHz 2x2 MT7603 b/g/n PCI
WIFI: 5GHz 2x2 MT7662 a/b/ac PCI
ETH: 1xLAN 1000base-T integrated
SWITCH: MT7530 Port 0: LAN, Port 6: CPU
LED: Power, 2.4GHz WiFi, 5GHz WiFi
BTN: WPS, Reset
UART: Near ETH port, from ETH: 3V3-TxD-GND-RxD 57600 8n1
MISC: Audio support
Installation:
1. Update using recovery mode
- while holdig "reset" button, power on the device
- keep holding "reset" until power led is flashing yellow
- set own IP to 192.168.1.75, subnet mask: 255.255.255.0
- push firmware image (can be factory.bin or sysupgrade.bin)
using tftp client in binary mode to 192.168.1.1
Notes:
This board has only two MAC addresses programmed in the "factory" partition:
- MAC for wlan0 (2.4GHz) at offset 0x0004
- MAC for wlan1 (5GHz) at offset 0x8004
- stock firmware re-uses wlan0 MAC for ethernet
- no valid addresses found in 0x28, 0x2e, 0xe000 and 0xe006
Signed-off-by: Lea Teuberth <lea.teuberth@outlook.com>
H3C TX180x series WiFi6 routers are customized by different carrier.
While these three devices look different, they use the same motherboard
inside. Another minor difference comes from the model name definition
in the u-boot environment variable.
Specifications:
SOC: MT7621 + MT7915
ROM: 128 MiB
RAM: 256 MiB
LED: status *2
Button: reset *1 + wps/mesh *1
Ethernet: lan *3 + wan *1 (10/100/1000Mbps)
TTL Baudrate: 115200
TFTP server IP: 192.168.124.99
MAC Address:
use address(sample 1) address(sample 2) source
label 88:xx:xx:98:xx:12 88:xx:xx:a2:xx:a5 u-boot-env@ethaddr
lan 88:xx:xx:98:xx:13 88:xx:xx:a2:xx:a6 $label +1
wan 88:xx:xx:98:xx:12 88:xx:xx:a2:xx:a5 $label
WiFi4_2G 8a:xx:xx:58:xx:14 8a:xx:xx:52:xx:a7 (Compatibility mode)
WiFi5_5G 8a:xx:xx:b8:xx:14 8a:xx:xx:b2:xx:a7 (Compatibility mode)
WiFi6_2G 8a:xx:xx:18:xx:14 8a:xx:xx:12:xx:a7
WiFi6_5G 8a:xx:xx:78:xx:14 8a:xx:xx:72:xx:a7
Compatibility mode is used to guarantee the connection of old devices
that only support WiFi4 or WiFi5.
TFTP + TTL Installation:
Although a TTL connection is required for installation, we do not need
to tear down it. We can find the TTL port from the cooling hole at the
bottom. It is located below LAN3 and the pins are defined as follows:
|LAN1|LAN2|LAN3|----|WAN|
--------------------
|GND|TX|RX|VCC|
1. Set tftp server IP to 192.168.124.99 and put initramfs firmware in
server's root directory, rename it to a simple name "initramfs.bin".
2. Plug in the power supply and wait for power on, connect the TTL cable
and open a TTL session, enter "reboot", then enter "Y" to confirm.
Finally push "0" to interruput boot while booting.
3. Execute command to install a initramfs system:
# tftp 0x80010000 192.168.124.99:initramfs.bin
# bootm 0x80010000
4. Backup nand flash by OpenWrt LuCI or dd instruction. We need those
partitions if we want to back to stock firmwre due to official
website does not provide download link.
# dd if=/dev/mtd1 of=/tmp/u-boot-env.bin
# dd if=/dev/mtd4 of=/tmp/firmware.bin
5. Edit u-boot env to ensure use default bootargs and first image slot:
# fw_setenv bootargs
# fw_setenv bootflag 0
6. Upgrade sysupgrade firmware.
7. About restore stock firmware: flash the "firmware" and "u-boot-env"
partitions that we backed up in step 4.
# mtd write /tmp/u-boot-env.bin u-boot-env
# mtd write /tmp/firmware.bin firmware
Additional Info:
The H3C stock firmware has a 160-byte firmware header that appears to
use a non-standard CRC32 verification algorithm. For this part of the
data, the u-boot does not check it so we can just directly replace it
with a placeholder.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Hardware
--------
CPU: Mediatek MT7621
RAM: 256M DDR3
FLASH: 128M NAND
ETH: 1x Gigabit Ethernet
WiFi: Mediatek MT7915 (2.4/5GHz 802.11ax 2x2 DBDC)
BTN: 1x Reset (NWA50AX only)
LED: 1x Multi-Color (NWA50AX only)
UART Console
------------
NWA50AX:
Available below the rubber cover next to the ethernet port.
NWA55AXE:
Available on the board when disassembling the device.
Settings: 115200 8N1
Layout:
<12V> <LAN> GND-RX-TX-VCC
Logic-Level is 3V3. Don't connect VCC to your UART adapter!
Installation Web-UI
-------------------
Upload the Factory image using the devices Web-Interface.
As the device uses a dual-image partition layout, OpenWrt can only
installed on Slot A. This requires the current active image prior
flashing the device to be on Slot B.
If the currently installed image is started from Slot A, the device will
flash OpenWrt to Slot B. OpenWrt will panic upon first boot in this case
and the device will return to the ZyXEL firmware upon next boot.
If this happens, first install a ZyXEL firmware upgrade of any version
and install OpenWrt after that.
Installation TFTP
-----------------
This installation routine is especially useful in case
* unknown device password (NWA55AXE lacks reset button)
* bricked device
Attach to the UART console header of the device. Interrupt the boot
procedure by pressing Enter.
The bootloader has a reduced command-set available from CLI, but more
commands can be executed by abusing the atns command.
Boot a OpenWrt initramfs image available on a TFTP server at
192.168.1.66. Rename the image to owrt.bin
$ atnf owrt.bin
$ atna 192.168.1.88
$ atns "192.168.1.66; tftpboot; bootm"
Upon booting, set the booted image to the correct slot:
$ zyxel-bootconfig /dev/mtd10 get-status
$ zyxel-bootconfig /dev/mtd10 set-image-status 0 valid
$ zyxel-bootconfig /dev/mtd10 set-active-image 0
Copy the OpenWrt ramboot-factory image to the device using scp.
Write the factory image to NAND and reboot the device.
$ mtd write ramboot-factory.bin firmware
$ reboot
Signed-off-by: David Bauer <mail@david-bauer.net>
Netgear WAX202 is an 802.11ax (Wi-Fi 6) router.
Specifications:
* SoC: MT7621A
* RAM: 512 MiB NT5CC256M16ER-EK
* Flash: NAND 128 MiB F59L1G81MB-25T
* Wi-Fi:
* MT7915D: 2.4/5 GHz (DBDC)
* Ethernet: 4x 1GbE
* Switch: SoC built-in
* USB: None
* UART: 115200 baud (labeled on board)
Load addresses (same as ipTIME AX2004M):
* stock
* 0x80010000: FIT image
* 0x81001000: kernel image -> entry
* OpenWrt
* 0x80010000: FIT image
* 0x82000000: uncompressed kernel+relocate image
* 0x80001000: relocated kernel image -> entry
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
* Note that the bootloader accepts both encrypted and unencrypted
images, while the stock web interface only accepts encrypted ones.
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
References in WAX202 GPL source:
https://www.downloads.netgear.com/files/GPL/WAX202_V1.0.5.1_Source.rar
* openwrt/target/linux/ramips/dts/mt7621-ax-nand-wax202.dts
DTS file for this device.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
Beeline SmartBox GIGA is a wireless WiFi 5 router manufactured by
Sercomm company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB, Nanya NT5CC128M16JR-EK
Flash: 128 MiB, Macronix MX30LF1G18AC
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7613BE): a/n/ac, 2x2
Ethernet: 3 ports - 2xGbE (WAN, LAN1), 1xFE (LAN2)
USB ports: 1xUSB3.0
Button: 1 button (Reset/WPS)
PCB ID: DBE00B-1.6MM
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Downgrade stock (Beeline) firmware to v.1.0.02;
2. Give factory OpenWrt image a shorter name, e.g. 1001.img;
3. Upload and update the firmware via the original web interface.
Remark: You might need make the 3rd step twice if your running firmware
is booted from the Slot 1 (Sercomm0 bootflag). The stock firmware
reverses the bootflag (Sercomm0 / Sercomm1) on each firmware update.
Revert to stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
2. Optional: Update with any stock (Beeline) firmware if you want to
overwrite OpenWrt in Slot 0 completely.
MAC Addresses
-------------
+-----+-----------+---------+
| use | address | example |
+-----+-----------+---------+
| LAN | label | *:16 |
| WAN | label + 1 | *:17 |
| 2g | label + 4 | *:1a |
| 5g | label + 5 | *:1b |
+-----+-----------+---------+
The label MAC address was found in Factory 0x21000
Notes
-----
1. The following scripts are required for the build:
sercomm-crypto.py - already exists in OpenWrt
sercomm-partition-tag.py - already exists in OpenWrt
sercomm-payload.py - already exists in OpenWrt
sercomm-pid.py - new, the part of this pull request
sercomm-kernel-header.py - new, the part of this pull request
2. This device (same as other Sercomm S2,S3-based devices) requires
special LZMA and LOADADDR settings for successful boot:
LZMA_TEXT_START=0x82800000
KERNEL_LOADADDR=0x81001000
LOADADDR=0x80001000
3. This device (same as several other Sercomm-based devices - Beeline,
Netgear, Etisalat, Rostelecom) has partition map (mtd1) containing
real partition offsets, which may differ from device to device
depending on the number and location of bad blocks on NAND.
"fixed-partitions" is used if the partition map is not found or
corrupted. This behavour (it's the same as on stock firmware) is
provided by MTD_SERCOMM_PARTS module.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Asus RP-AC87 ac2600 Repeater
2.4GHz 800Mbps
5GHz 1733Mbps
Hardware specifications:
SoC: MT7621A 2 cores 4 threads @880MHz
WiFi2G: MT7615E 2G 4x4 b/g/n
Wifi5G: MT7615E 5G 4x4 n/ac
DRAM: 128MB DDR3 @1200mhz
Flash: 16MB MX25L12805D SPI-NOR
LAN/WAN: MT7530 1x1000M
MAC addresses as verified by OEM firmware:
use address source
Lan/W5G *:B0 factory 0x8004 (label)
W2G *:B4 factory 0x0
Installation:
Asus windows recovery tool:
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
Start the Asus firmware restoration utility, specify the factory image
and press upload
Do not power off the device after OpenWrt has booted until the LED flashing.
TFTP Recovery method:
set computer to a static ip, 192.168.1.2
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
Specifications:
- Device: ASUS RT-AX53U
- SoC: MT7621AT
- Flash: 128MB
- RAM: 256MB
- Switch: 1 WAN, 3 LAN (10/100/1000 Mbps)
- WiFi: MT7905 2x2 2.4G + MT7975 2x2 5G
- Ports: USB 3.0
- LEDs: 1x POWER (blue, configurable)
3x LAN (blue, configurable)
1x WAN (blue, configurable)
1x USB (blue, not configurable)
1x 2.4G (blue, not configurable)
1x 5G (blue, not configurable)
Flash by U-Boot TFTP method:
- Configure your PC with IP 192.168.1.2
- Set up TFTP server and put the factory.bin image on your PC
- Connect serial port(rate:115200) and turn on AP, then interrupt "U-Boot Boot Menu" by hitting any key
Select "2. Upgrade firmware"
Press enter when show "Run firmware after upgrading? (Y/n):"
Select 0 for TFTP method
Input U-Boot's IP address: 192.168.1.1
Input TFTP server's IP address: 192.168.1.2
Input IP netmask: 255.255.255.0
Input file name: openwrt-ramips-mt7621-asus_rt-ax53u-squashfs-factory.bin
- Restart AP aftre see the log "Firmware upgrade completed!"
Signed-off-by: Chuncheng Chen <ccchen1984@gmail.com>
(replaced led label, added key-* prefix to buttons, added note about
BBT)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This is now built-in, enable so it won't propagate on target configs.
Link: https://lkml.org/lkml/2022/1/3/168
Fixes: 79e7a2552e ("kernel: bump 5.15 to 5.15.44")
Fixes: 0ca9367069 ("kernel: bump 5.10 to 5.10.119")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
(Link to Kernel's commit taht made it built-in,
CRYPTO_LIB_BLAKE2S[_ARM|_X86] as it's selectable, 5.10 backport)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Make sure BootingFlag points to the system partition we install to.
The BootingFlag variable selects which system partition the system
boots from (0 => "Kernel", 1 => "Kernel2"). OpenWrt does not yet have
device specific support for this dual image scheme, and can therefore
only boot from "Kernel".
This has not been an issue until now, since all known OEM firmware
versions have ignored "Kernel2" - leaving the BootingFlag fixed at 0.
But the newest OEM firmware has a new upgrade procedure, installing
to the "inactive" system partition and setting BootingFlag accordingly.
This workaround is needed until the dual image scheme is fully
supported.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
MTS WG430223 is a wireless AC1300 (WiFi 5) router manufactured by
Arcadyan company. It's very similar to Beeline Smartbox Flash (Arcadyan
WG443223).
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 128 MiB
Flash: 128 MiB (Winbond W29N01HV)
Wireless 2.4 GHz (MT7615DN): b/g/n, 2x2
Wireless 5 GHz (MT7615DN): a/n/ac, 2x2
Ethernet: 3xGbE (WAN, LAN1, LAN2)
USB ports: No
Button: 1 (Reset/WPS)
LEDs: 2 (Red, Green)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot (Ralink UBoot Version: 5.0.0.2)
OEM: Arcadyan WG430223
Installation
------------
1. Login to the router web interface (superadmin:serial number)
2. Navigate to Administration -> Miscellaneous -> Access control lists &
enable telnet & enable "Remote control from any IP address"
3. Connect to the router using telnet (default admin:admin)
4. Place *factory.trx on any web server (192.168.1.2 in this example)
5. Connect to the router using telnet shell (no password required)
6. Save MAC adresses to U-Boot environment:
uboot_env --set --name eth2macaddr --value $(ifconfig | grep eth2 | \
awk '{print $5}')
uboot_env --set --name eth3macaddr --value $(ifconfig | grep eth3 | \
awk '{print $5}')
uboot_env --set --name ra0macaddr --value $(ifconfig | grep ra0 | \
awk '{print $5}')
uboot_env --set --name rax0macaddr --value $(ifconfig | grep rax0 | \
awk '{print $5}')
7. Ensure that MACs were saved correctly:
uboot_env --get --name eth2macaddr
uboot_env --get --name eth3macaddr
uboot_env --get --name ra0macaddr
uboot_env --get --name rax0macaddr
8. Download and write the OpenWrt images:
cd /tmp
wget http://192.168.1.2/factory.trx
mtd_write erase /dev/mtd4
mtd_write write factory.trx /dev/mtd4
9. Set 1st boot partition and reboot:
uboot_env --set --name bootpartition --value 0
Back to Stock
-------------
1. Run in the OpenWrt shell:
fw_setenv bootpartition 1
reboot
2. Optional step. Upgrade the stock firmware with any version to
overwrite the OpenWrt in Slot 1.
MAC addresses
-------------
+-----------+-------------------+----------------+
| Interface | MAC | Source |
+-----------+-------------------+----------------+
| label | A4:xx:xx:51:xx:F4 | No MACs was |
| LAN | A4:xx:xx:51:xx:F6 | found on Flash |
| WAN | A4:xx:xx:51:xx:F4 | [1] |
| WLAN_2g | A4:xx:xx:51:xx:F5 | |
| WLAN_5g | A6:xx:xx:21:xx:F5 | |
+-----------+-------------------+----------------+
[1]:
a. Label wasb't found neither in factory nor in other places.
b. MAC addresses are stored in encrypted partition "glbcfg". Encryption
key hasn't known yet. To ensure the correct MACs in OpenWrt, a hack
with saving of the MACs to u-boot-env during the installation was
applied.
c. Default Ralink ethernet MAC address (00:0C:43:28:80:A0) was found in
"Factory" 0xfff0. It's the same for all MTS WG430223 devices. OEM
firmware also uses this MAC when initialazes ethernet driver. In
OpenWrt we use it only as internal GMAC (eth0), all other MACs are
unique. Therefore, there is no any barriers to the operation of several
MTS WG430223 devices even within the same broadcast domain.
Stock firmware image format
---------------------------
The same as Beeline Smartbox Flash but with another trx magic
+--------------+---------------+----------------------------------------+
| Offset | | Description |
+==============+===============+========================================+
| 0x0 | 31 52 48 53 | TRX magic "1RHS" |
+--------------+---------------+----------------------------------------+
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Using nvmem-cells to set the MAC address for a DBDC device results in
both PHY devices using the same MAC address. This in turn will result in
multiple BSSes using the same BSSID, which can cause various problems.
Use the hotplug script for the EAP615-Wall instead to avoid this.
Fixes: a1b8a4d7b3 ("ramips: support TP-Link EAP615-Wall")
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Tested-by: Stijn Segers <foss@volatilesystems.org>
Tested-By: Andrew Powers-Holmes <aholmes@omnom.net>
The SERCOMM NA502s is a smart home gateway manufactured by SERCOMM and sold
under different brands (among others, A1 Telekom Austria SmartHome Premium
Gateway). It has multi-protocol radio support in addition to LAN and WiFi.
Note: BLE and audio are currently unsupported.
Specifications
--------------
- MT7621ST 880MHz, Single-Core, Dual-Thread
- MT7603EN 2.4GHz WiFi
- MT7662EN 5GHz WiFi + BLE
- 128MiB NAND
- 256MiB DDR3 RAM
- SD3503 ZWave Controller
- EM357 Zigbee Coordinator
- Telit UMTS module
- Rechargeable battery
- speaker and microphone
MAC address assignment
----------------------
LAN MAC is read from the config partition, WiFi 2.4GHz is LAN+2 and matches
the OEM firmware. WiFi 5GHz with LAN+1 is an educated guess since the
OEM firmware does not enable 5GHz WiFi.
Installation
------------
Attach serial console, then boot the initramfs image via TFTP.
Once inside OpenWrt, run sysupgrade -n with the sysupgrade file.
Attention: The device has a dual-firmware design. We overwrite kernel2,
since kernel1 contains an automatic recovery image.
If you get NAND ECC errors and are stuck with bad eraseblocks, try to
erase the mtd partition first with
mtd unlock ubi
mtd erase ubi
This should only be needed once.
Signed-off-by: Andreas Böhler <dev@aboehler.at>