Commit Graph

1450 Commits

Author SHA1 Message Date
Stijn Tintel
53796f9248 arm-trusted-firmware-sunxi: bump to 2.8
Use latest release build instead of a git snapshot. As this tarball
extracts in a trusted-firmware-a-2.8 subdirectory, we no longer need to
override the PKG_NAME defined in trusted-firmware-a.mk. The actual
package name is still the same, so we don't need to update any
dependencies.

Tested on A64-OLinuXino-1Ge16GW.

Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
2023-04-01 01:22:19 +03:00
Stijn Tintel
17c89fd71f uboot-sunxi: bump to 2020.07
This is the newest release where 210-sunxi-deactivate-binman.patch still
applies.

Tested on A64-Olinuxino-eMMC.

Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
2023-04-01 01:22:19 +03:00
Alexey Bartenev
dc79b51533 ramips: add support for Keenetic Lite III rev. A
General specification:
SoC Type: MediaTek MT7620N (580MHz)
ROM: 8 MB SPI-NOR (W25Q64FV)
RAM: 64 MB DDR (EM6AB160TSD-5G)
Switch: MediaTek MT7530
Ethernet: 5 ports - 5×100MbE (WAN, LAN1-4)
Wireless: 2.4 GHz (MediaTek RT5390): b/g/n
Buttons: 3 button (POWER, RESET, WPS)
Slide switch: 4 position (BASE, ADAPTER, BOOSTER, ACCESS POINT)
Bootloader: U-Boot 1.1.3
Power: 9 VDC, 0.6 A

MAC in stock:
|-	+			|
| LAN 	| RF-EEPROM + 0x04	|
| WLAN	| RF-EEPROM + 0x04	|
| WAN 	| RF-EEPROM + 0x28	|

OEM easy installation
1. Use a PC to browse to http://my.keenetic.net.
2. Go to the System section and open the Files tab.
3. Under the Files tab, there will be a list of system
files. Click on the Firmware file.
4. When a modal window appears, click on the Choose File
button and upload the firmware image.
5. Wait for the router to flash and reboot.

OEM installation using the TFTP method
1. Download the latest firmware image and rename it to
klite3_recovery.bin.
2. Set up a Tftp server on a PC (e.g. Tftpd32) and place the
firmware image to the root directory of the server.
3. Power off the router and use a twisted pair cable to connect
the PC to any of the router's LAN ports.
4. Configure the network adapter of the PC to use IP address
192.168.1.2 and subnet mask 255.255.255.0.
5. Power up the router while holding the reset button pressed.
6. Wait approximately for 5 seconds and then release the
reset button.
7. The router should download the firmware via TFTP and
complete flashing in a few minutes.
After flashing is complete, use the PC to browse to
http://192.168.1.1 or ssh to proceed with the configuration.

Signed-off-by: Alexey Bartenev <41exey@proton.me>
2023-03-27 02:09:58 +02:00
Martin Kennedy
12f52336d2 ath79: Add Aruba AP-175 support
This board is very similar to the Aruba AP-105, but is
outdoor-first. It is very similar to the MSR2000 (though certain
MSR2000 models have a different PHY[^1]).

A U-Boot replacement is required to install OpenWrt on these
devices[^2].

Specifications
--------------
* Device:	Aruba AP-175
* SoC:		Atheros AR7161 680 MHz MIPS
* RAM:		128MB - 2x Mira P3S12D40ETP
* Flash:	16MB MXIC MX25L12845EMI-10G (SPI-NOR)
* WiFi:		2 x DNMA-H92 Atheros AR9220-AC1A 802.11abgn
* ETH:		IC+ IP1001 Gigabit + PoE PHY
* LED:		2x int., plus 12 ext. on TCA6416 GPIO expander
* Console:	CP210X linking USB-A Port to CPU console @ 115200
* RTC:		DS1374C, with internal battery
* Temp:		LM75 temperature sensor

Factory installation:

- Needs a u-boot replacement. The process is almost identical to that
  of the AP105, except that the case is easier to open, and that you
  need to compile u-boot from a slightly different branch:
  https://github.com/Hurricos/u-boot-ap105/tree/ap175

  The instructions for performing an in-circuit reflash with an
  SPI-Flasher like a CH314A can be found on the OpenWrt Wiki
  (https://openwrt.org/toh/aruba/ap-105); in addition a detailed guide
  may be found on YouTube[^3].

- Once u-boot has been replaced, a USB-A-to-A cable may be used to
  connect your PC to the CP210X inside the AP at 115200 baud; at this
  point, the normal u-boot serial flashing procedure will work (set up
  networking; tftpboot and boot an OpenWrt initramfs; sysupgrade to
  OpenWrt proper.)

- There is no built-in functionality to revert back to stock firmware,
  because the AP-175 has been declared by the vendor[^4] end-of-life
  as of 31 Jul 2020. If for some reason you wish to return to stock
  firmware, take a backup of the 16MiB flash before flashing u-boot.

[^1]: https://github.com/shalzz/aruba-ap-310/blob/master/platform/bootloader/apboot-11n/include/configs/msr2k.h#L186

[^2]: https://github.com/Hurricos/u-boot-ap105/tree/ap175

[^3]: https://www.youtube.com/watch?v=Vof__dPiprs

[^4]: https://www.arubanetworks.com/support-services/end-of-life/#product=access-points&version=0

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
2023-03-27 00:27:59 +02:00
Lech Perczak
0eebc6f0dd ath79: support Ruckus ZoneFlex 7341/7343/7363
Ruckus ZoneFlex 7363 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point. ZoneFlex 7343 is the single band variant of 7363
restricted to 2.4GHz, and ZoneFlex 7341 is 7343 minus two Fast Ethernet
ports.

Hardware highligts:
- CPU: Atheros AR7161 SoC at 680 MHz
- RAM: 64MB DDR
- Flash: 16MB SPI-NOR
- Wi-Fi 2.4GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Wi-Fi 5GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Ethernet 1: single Gigabit Ethernet port through Marvell 88E1116R gigabit PHY
- Ethernet 2: two Fast Ethernet ports through Realtek RTL8363S switch,
  connected with Fast Ethernet link to CPU.
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the -U variants.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1 ----------
   |1|x3|4|5|
   ----------

Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

Installation:
- Using serial console - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server, and removing a single PH1 screw.

0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0xbf040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed.
   Use the Gigabit interface, Fast Ethernet ports are not supported
   under U-boot:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7363-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7363_fw_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7363-squashfs-sysupgrade.bin

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Copy over the backup to /tmp, for example using scp
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Use sysupgrade with force to restore the backup:
   sysupgrade -F ruckus_zf7363_backup.bin
4. System will reboot.

Quirks and known issues:
- Fast Ethernet ports on ZF7363 and ZF7343 are supported, but management
  features of the RTL8363S switch aren't implemented yet, though the
  switch is visible over MDIO0 bus. This is a gigabit-capable switch, so
  link establishment with a gigabit link partner may take a longer time
  because RTL8363S advertises gigabit, and the port magnetics don't
  support it, so a downshift needs to occur. Both ports are accessible
  at eth1 interface, which - strangely - runs only at 100Mbps itself.
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
- Both radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014
- There is second method to achieve root shell, using command injection
  in the web interface:
  1. Login to web administration interface
  2. Go to Administration > Diagnostics
  3. Enter |telnetd${IFS}-p${IFS}204${IFS}-l${IFS}/bin/sh into "ping"
     field
  4. Press "Run test"
  5. Telnet to the device IP at port 204
  6. Busybox shell shall open.
  Source: https://github.com/chk-jxcn/ruckusremoteshell

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2023-03-22 22:25:08 +01:00
Lech Perczak
694b8e6521 ath79: support Ruckus ZoneFlex 7351
Ruckus ZoneFlex 7351 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.

Hardware highligts:
- CPU: Atheros AR7161 SoC at 680 MHz
- RAM: 64MB DDR
- Flash: 16MB SPI-NOR
- Wi-Fi 2.4GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Wi-Fi 5GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Ethernet: single Gigabit Ethernet port through Marvell 88E1116R gigabit PHY
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7351-U variant.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1 ----------
   |1|x3|4|5|
   ----------

Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

Installation:
- Using serial console - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server, and removing a single T10 screw.

0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0xbf040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7351-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7351_fw_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7351-squashfs-sysupgrade.bin

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:
1. Copy over the backup to /tmp, for example using scp
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Use sysupgrade with force to restore the backup:
   sysupgrade -F ruckus_zf7351_backup.bin
4. System will reboot.

Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
- Both radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014
- There is second method to achieve root shell, using command injection
  in the web interface:
  1. Login to web administration interface
  2. Go to Administration > Diagnostics
  3. Enter |telnetd${IFS}-p${IFS}204${IFS}-l${IFS}/bin/sh into "ping"
     field
  4. Press "Run test"
  5. Telnet to the device IP at port 204
  6. Busybox shell shall open.
  Source: https://github.com/chk-jxcn/ruckusremoteshell

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2023-03-22 22:25:08 +01:00
Andre Heider
9fe7cc62a6
treewide: opt-out of tree-wide LTO usage
These fail to build with LTO enabled or packages depending on them do.

Signed-off-by: Andre Heider <a.heider@gmail.com>
2023-03-21 18:28:23 +01:00
Andre Heider
da3700988d
treewide: add support for "gc-sections" in PKG_BUILD_FLAGS
This reduces open coding and allows to easily add a knob to
enable it treewide, where chosen packages can still opt-out via
"no-gc-sections".

Note: libnl, mbedtls and opkg only used the CFLAGS part without the
LDFLAGS counterpart. That doesn't help at all if the goal is to produce
smaller binaries. I consider that an accident, and this fixes it.

Note: there are also packages using only the LDFLAGS part. I didn't
touch those, as gc might have been disabled via CFLAGS intentionally.

Signed-off-by: Andre Heider <a.heider@gmail.com>
2023-03-21 18:28:22 +01:00
Alexandru Gagniuc
7801161c4b ipq807x: add support for Netgear WAX218
Netgear WAX218 is a 802.11ax AP claiming AX3600 support. It is wall
or ceiling mountable. It can be powered via PoE, or a 12 V adapter.

The board has footprints for 2.54mm UART headers. They're difficult to
solder because the GND is connected to a large copper plane. Only try
soldering if you are very skilled. Otherwise, use pogo pins.

Specifications:
---------------
    * CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
    * RAM: 366 MB of RAM available to OS, not sure of total amount
    * Storage: Macronix MX30UF2G18AC 256MB NAND
    * Ethernet:
            * 2.5G RJ45 port (QCA8081) with PoE input
    * WLAN:
            * 2.4GHz/5GHz with 8 antennas
    * LEDs:
            * Power (Amber)
            * LAN (Blue)
            * 2G WLAN (Blue)
            * 5G WLAN (Blue)
    * Buttons:
            * 1x Factory reset
    * Power: 12V DC Jack
    * UART: Two 4-pin unpopulated headers near the LEDs
            * "J2 UART" is the CPU UART, 3.3 V level

Installation:
=============

Web UI method
-------------

Flashing OpenWRT using the vendor's Web UI is problematic on this
device. The u-boot mechanism for communicating the active rootfs is
antiquated and unreliable. Instead of setting the kernel commandline,
it relies on patching the DTS partitions of the nand node. The way
partitions are patched is incompatible with newer kernels.

Newer kernels use the SMEM partition table, which puts "rootfs" on
mtd12. The vendor's Web UI will flash to either mtd12 or mtd14. One
reliable way to boot from mtd14 and avoid boot loops is to use an
initramfs image.

 1. In the factory web UI, navigate to System Manager -> Firmware.
 2. In the "Local Firmware Upgrade" section, click Browse
 3. Navigate and select the 'web-ui-factory.fit' image
 4. Click "Upload"
 5. On the following page, click on "Proceed"

The flash proceeds at this point and the system will reboot
automatically to OpenWRT.

 6. Flash the 'nand-sysupgrade.bin' using Luci or the commandline

SSH method
----------

Enable SSH using the CLI or Web UI. The root account is locked out to
ssh, and the admin account defaults to Netgear's CLI application.
So we need to get creative:

First, make sure the device boots from the second firmware partition:

    ssh -okexalgorithms=diffie-hellman-group14-sha1 admin@<ipaddr> \
        /usr/sbin/fw_setenv active_fw 1

Then reboot the device, and run the update:

    scp -O -o kexalgorithms=diffie-hellman-group14-sha1 \
        -o hostkeyalgorithms=ssh-rsa \
        netgear_wax218-squashfs-nand-factory.ubi \
        admin@<ipaddr>:/tmp/openwrt.ubi

    ssh -okexalgorithms=diffie-hellman-group14-sha1 admin@<ipaddr> \
        /usr/sbin/ubiformat /dev/mtd12 -f /tmp/openwrt.ubi

    ssh -okexalgorithms=diffie-hellman-group14-sha1 admin@<ipaddr> \
        /usr/sbin/fw_setenv active_fw 0

Now reboot the device, and it should boot into a ready-to-use OpenWRT.

Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Tested-by: Francisco G Luna <frangonlun@gmail.com>
2023-03-20 11:40:36 -05:00
Kristjan Krušič
f574b535eb
ipq806x: add support for Nokia Airscale AC400i
Hardware
--------

SoC:    Qualcomm IPQ8065
RAM:    512 MB DDR3
Flash:  256 MB NAND (Macronix MX30UF2G18AC) (split into 2x128MB)
        4 MB SPI-NOR (Macronix MX25U3235F)
WLAN:   Qualcomm Atheros QCA9984 - 2.4Ghz
        Qualcomm Atheros QCA9984 - 5Ghz
ETH:    eth0 - POE (100Mbps in U-Boot, 1000Mbps in OpenWrt)
        eth1 - (1000Mbps in both)
        Auto-negotiation broken on both.
USB:    USB 2.0
LED:    5G, 2.4G, ETH1, ETH2, CTRL, PWR (All support green and red)
BTN:    Reset
Other:  SD card slot (non-functional)
Serial: 115200bps, near the Ethernet transformers, labeled 9X.
        Connections from the arrow to the 9X text:
		[NC] - [TXD] - [GND] - [RXD] - [NC]

Installation
------------

0. Connect to the device
Plug your computer into LAN2 (1000Mbps connection required).
If you use the LAN1/POE port, set your computer to force a 100Mbps link.

Connect to the device via TTL (Serial) 115200n8.
Locate the header (or solder pads) labeled 9X,
near the Ethernet jacks/transformers.
There should be an arrow on the other side of the header marking.
The connections should go like this:
(from the arrow to the 9X text): NC - TXD - GND - RXD - NC

1. Prepare for installation
While the AP is powering up, interrupt the startup process.
MAKE SURE TO CHECK YOUR CURRENT PARTITION!

If you see: "Current Partition is : partB" or
"Need to switch partition from partA to partB",
you have to force the device into partA mode, before continuing.
This can be done by changing the PKRstCnt to 5 and resetting the device.

setenv PKRstCnt 5
saveenv
reset

After you interrupt the startup process again,
you should see: Need to switch partition from partB to partA

You can now continue to the next step.

If you see: "Current Partition is : partA",
you can continue to the next step.

2. Prevent partition switching.
To prevent the device from switching partitions,
we are going to modify the startup command.
set bootcmd "setenv PKRstCnt 0; saveenv; bootipq"
setenv

3. First boot
Now, we have to boot the OpenWrt intifs.
The easiest way to do this is by using Tiny PXE.
You can also use the normal U-Boot tftp method.

Run "bootp" this will get an IP from the DHCP server
and possibly the firmware image.
If it doesn't download the firmware image, run "tftpboot".

Now run "bootm" to run the image.

You might see:
"ERROR: new format image overwritten - must RESET the board to recover"
this means that the image you are trying to load is too big.
Use a smaller image for the initial boot.

4. Install OpenWrt from initfs
Once you are booted into OpenWrt,
transfer the OpenWrt upgrade image and
use sysupgrade to install OpenWrt to the device.

Signed-off-by: Kristjan Krušič <kristjan.krusic@krusic22.com>
2023-03-19 18:02:34 +01:00
Aleksey Nasibulin
d45659a571 ramips: add support for SNR-CPE-ME2-SFP
SNR-CPE-ME2-SFP is a wireless router with SFP cage manufactured by SNR/NAG company.

Specification:
- SoC: MediaTek MT7621A
- CPU: 880MHz
- Flash: 16 MB (GD25Q127CSIG)
- RAM:  256 MB
- WLAN: 2.4 GHz, 5 GHz (MediaTek MT7615DN)
- Ethernet: 4x 10/100/1000 Mbps
- SFP cage (using RTL8211FS-CG)
- USB 3.0 port
- Power: 12 VDC, 2 A

Flash instruction via TFTP:
1. Boot SNR-CPE-ME2 to recovery mode
  (press reset button and power on device, hold button for ~10 seconds)
2. Send firmware via TFTP client:
 TFTP Server address: 192.168.1.1
 TFTP Client address: 192.168.1.131
3. Wait ~120 seconds to complete flashing
4. Do sysupgrade using web-interface

MAC Addresses(stock)
--------------------
+----------+------------------+-------------------+
| use      | address          | example           |
+----------+------------------+-------------------+
| Device   | label            | 6A:C4:DD:xx:xx:28 |
| Ethernet | + 1              | 6A:C4:DD:xx:xx:29 |
| 2g       | + 2              | 6A:C4:DD:xx:xx:2A |
| 5g       | + 3              | 6A:C4:DD:xx:xx:2B |
+----------+------------------+-------------------+

Notes:
- Reading sfp eeprom is not supported [1] (driver issue). Stock image has the same situation.

References:
1. https://forum.openwrt.org/t/mt7621-and-reading-sfp-eeprom/152249

Signed-off-by: Aleksey Nasibulin <alealexpro100@ya.ru>
2023-03-08 23:44:59 +01:00
David Bauer
35f6d79513 mpc85xx: add support for Watchguard Firebox T10
Hardware
--------
SoC:    Freescale P1010
RAM:    512MB
FLASH:  1 MB SPI-NOR
        512 MB NAND
ETH:    3x Gigabite Ethernet (Atheros AR8033)
SERIAL: Cisco RJ-45 (115200 8N1)
RTC:    Battery-Backed RTC (I2C)

Installation
------------

1. Patch U-Boot by dumping the content of the SPI-Flash using a SPI
   programmer. The SHA1 hash for the U-Boot password is currently
   unknown.

   A tool for patching U-Boot is available at
   https://github.com/blocktrron/t10-uboot-patcher/

   You can also patch the unknown password yourself. The SHA1 hash is
   E597301A1D89FF3F6D318DBF4DBA0A5ABC5ECBEA

2. Interrupt the bootmenu by pressing CTRL+C. A password prompt appears.
   The patched password is '1234' (without quotation marks)

3. Download the OpenWrt initramfs image. Copy it to a TFTP server
   reachable at 10.0.1.13/24 and rename it to uImage.

4. Connect the TFTP server to ethernet port 0 of the Watchguard T10.

5. Download and boot the initramfs image by entering "tftpboot; bootm;"
   in U-Boot.

6. After OpenWrt booted, create a UBI volume on the old data partition.
   The "ubi" mtd partition should be mtd7, check this using

   $ cat /proc/mtd

   Create a UBI partition by executing

   $ ubiformat /dev/mtd7 -y

7. Increase the loadable kernel-size of U-Boot by executing

   $ fw_setenv SysAKernSize 800000

8. Transfer the OpenWrt sysupgrade image to the Watchguard T10 using
   scp. Install the image by using sysupgrade:

   $ sysupgrade -n <path-to-sysupgrade>

   Note: The LAN ports of the T10 are 1 & 2 while 0 is WAN. You might
   have to change the ethernet-port.

9. OpenWrt should now boot from the internal NAND. Enjoy.

Signed-off-by: David Bauer <mail@david-bauer.net>
2023-03-07 14:05:02 +01:00
Felix Fietkau
b934c63518 uboot-mediatek: mark all packages as hidden
They are enabled by selecting devices. Fixes build errors when enabling extra
devices without creating a new config from scratch.

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2023-03-04 16:27:25 +01:00
Nick Hainke
7ce266767c kexec-tools: update to 2.0.26
Release Notes:
- 2.0.22: https://www.spinics.net/lists/kexec/msg26864.html
- 2.0.23: https://www.spinics.net/lists/kexec/msg27693.html
- 2.0.24: https://www.spinics.net/lists/kexec/msg28922.html
- 2.0.25: https://lore.kernel.org/all/YuYl22cyGldQQc5m@vergenet.net/
- 2.0.26: https://www.spinics.net/lists/kexec/msg30743.html

Remove upstreamed patch:
- 001-arm-do-not-copy-magic-4-bytes-of-appended-DTB-in-zIm.patch

Tested-by: Linhui Liu <liulinhui36@gmail.com> # x86_64
Signed-off-by: Nick Hainke <vincent@systemli.org>
2023-03-01 22:13:27 +01:00
Tomasz Maciej Nowak
bdd78897c3 grub2: re-add test module
It seems more hardware needs early load of firmware when initialised
to work properly (at least Intel hardware). One of previous case is CPU
microcode, which this series[1] tried to change. The second one is Intel
graphics IC, which needs firmware for controlling DMC circuit (switch
conncted display to DC6 power state). As it stands, the i915 module is
built-in and it seems the hardware can't cope with firmware loaded
later from rootfs, it needs to be supplied when the module is loaded.
Unfortunately we need bootloader to handle the load of firmware in this
case, but as previously mentioned series[1], there was an error when
initrd was hardcoded, instead of testing existence for it and then
loading. To remedy this in later the 55b808e0c4 ('x86: image: add test
module to bootloader') was commited. Which was later accidentally
dropped when grub2 image creation was moved to packages. Therefore bring
back test module, so we can test for cases of existing firmware in
grub.cfg.

1. https://patchwork.ozlabs.org/project/openwrt/cover/20181120162044.16371-1-tomek_n@o2.pl

Fixes: 5a5df62d95 ("x86/grub2: move grub2 image creation to package")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2023-02-26 22:22:48 +01:00
Daniel González Cabanelas
be0f1c1b26 mvebu: add support for Buffalo LinkStation LS220DE
The Buffalo LinkStation LS220DE is a dual bay NAS, based on Marvell
Armada 370

Hardware:
   SoC:         Marvell Armada 88F6707
   CPU:         Cortex-A9 800 MHz, 1 core
   Flash 1:     SPI-NOR 1 MiB (U-Boot)
   Flash 2:     NAND 512 MiB (OS)
   RAM:         DDR3 256 MiB
   Ethernet:    1x 1GbE
   USB:         1x 2.0
   SATA:        2x 3Gb/s
   LEDs/Input:  5x / 2x (1x button, 1x slide-switch)
   Fan:         1x casing

Flash instructions, from hard drive:
  1. Get access to the "boot" partition at the hard drive where the stock
     firmware is installed. It can be done with acp-commander or by
     plugging the hard drive to a computer.
  2. Backup the stock uImage:
         mv /boot/uImage.buffalo /boot/uImage.buffalo.bak
  3. Move and rename the Openwrt initramfs image to the boot partition:
         mv openwrt-initramfs-kernel.bin /boot/uImage.buffalo
  4. Power on the Linkstation with the hardrive inside. Now Openwrt will
     boot, but still not installed.
  5. Connect via ssh to OpenWrt:
         ssh root@192.168.1.1
  6. Rename boot files inside boot partition
         mount -t ext3 /dev/sda1 /mnt
         mv /mnt/uImage.buffalo /mnt/uImage.buffalo.openwrt.bak
         mv /mnt/initrd.buffalo /mnt/initrd.buffalo.bak
  7. Format ubi partitions at the NAND flash ("kernel_ubi" and "ubi"):
         ubiformat /dev/mtd0 -y
         ubidetach -p /dev/mtd1
         ubiformat /dev/mtd1 -y
  8. Flash the sysupgrade image:
         sysupgrade -n openwrt-squashfs-sysupgrade.bin
  9. Wait until it finish, the device will reboot with OpenWrt installed
     on the NAND flash.

Restore the stock firmware:
  1. Take the hard drive used for the installation and restore boot backup
     files to their original names:
         mount -t ext3 /dev/sda1 /mnt
         mv /mnt/uImage.buffalo.bak /mnt/uImage.buffalo
         mv /mnt/initrd.buffalo.bak /mnt/initrd.buffalo
  2. Boot from the hard drive and perform a stock firmware update using
     the Buffalo utility. The NAND will be restored to the original
     state.

Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
2023-02-26 22:22:48 +01:00
Michael Pratt
4ef86c620f ramips: add support for Senao Engenius EPG600
FCC ID: A8J-EPG600

Engenius EPG600 is an indoor wireless router with
1 Gb ethernet switch, dual-band wireless,
internal antenna plates, USB, and phone lines (not supported)

this board is a Senao device:
the hardware is equivalent to EnGenius ESR600 (except for phone lines)
the software is Senao SDK which is based on openwrt and uboot
which uses the legacy Senao header with Vendor / Product IDs
to verify the firmware upgrade image.

**Specification:**

  - MT7620 SOC		MIPS 24kec, 2.4 GHz WMAC, 2x2
  - RT5592N WLAN	PCI chip, 5 GHz, 2x2
  - QCA8337N Gb SW	RGMII GbE, SW P0 -- SOC P5, 5 LEDs
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 64 MB RAM		NT5TU32M16
  - UART console	J2, populated
  - USB 2.0 port	direct to SOC
  - 6 GPIO LEDs		power, 2G, 5G, wps2g, wps5g, line
  - 3 buttons		reset, wps, "reg" (registeration)
  - 4 antennas		internal omni-directional plates

NOT YET SUPPORTED: VoIP

  - Si3050-FT + Si3019-FT	Voice DAA, SPI control, PCM data
  - Phone Ports "TEL", "LINE"	RJ11, 4P2C (2 pins)

**MAC addresses:**

  MAC address labeled as MAC ADDRESS
  MACs present in both wifi cal data and uboot environment

  eth0.1/phy1	----	*:82	rf 0x4
  phy0		----	*:83	factory 0x4
  eth0.2	MAC	*:b8	"wanaddr"

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.0.1
    username and password 'admin'

    Navigate to gear icon, "Device Management", "Tools"
    select the factory.dlf image
    Upload and verify checksum

  Method 2: Serial to upload initramfs:

    Follow directions for TFTP recovery
    upload and boot initramfs and do a sysupgrade

**TFTP recovery:**

  Requires UART serial console, reset button does nothing

  rename initramfs-kernel.bin to 'uImageEPG600'
  make available on TFTP server at 192.168.99.8
  power board, interrupt boot with "4"
  execute `tftpboot` and `bootm` (with the load address)

**Return to OEM:**

  Images from OEM are provided, but not compatible
  with openwrt sysupgrade. So it must be modified.

  Alternatively, back up all mtd partitions before flashing

**Note on switch registers:**

  The necessary registers needed for the QCA8337 switch
  can be read from interrupted boot (tftpboot, bootm)
  by using the following lines in the switch driver ar8327.c
  in the function 'ar8327_hw_config_of'
  where 'qca,ar8327-initvals' is parsed from DTS
  before the new register values are written:

    pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE));
    pr_info("0x08 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD5_MODE));
    pr_info("0x0c %08x\n", ar8xxx_read(priv, AR8327_REG_PAD6_MODE));
    pr_info("0x10 %08x\n", ar8xxx_read(priv, AR8327_REG_POWER_ON_STRAP));

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-02-18 16:55:35 +01:00
INAGAKI Hiroshi
54c5f33b30 uboot-envtools: add support for APRESIA ApresiaLightGS120GT-SS
This patch adds support for APRESIA ApresiaLightGS120GT-SS to
uboot-envtools.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2023-02-13 12:22:17 +01:00
Karl Chan
92276eef70 ramips: add support for ASUS RT-AX54
Specifications:
- Device: ASUS RT-AX54 (AX1800S/HP,AX54HP)
- SoC: MT7621AT
- Flash: 128MB
- RAM: 256MB
- Switch: 1 WAN, 4 LAN (10/100/1000 Mbps)
- WiFi: MT7905 2x2 2.4G + MT7975 2x2 5G
- LEDs: 1x POWER (blue, configurable)
        1x LAN (blue, configurable)
        1x WAN (blue, configurable)
	1x 2.4G (blue, not configurable)
	1x 5G (blue, not configurable)

Flash by U-Boot TFTP method:
- Configure your PC with IP 192.168.1.2
- Set up TFTP server and put the factory.bin image on your PC
- Connect serial port(rate:115200) and turn on AP, then interrupt "U-Boot Boot Menu" by hitting any key
   Select "2. Upgrade firmware"
   Press enter when show "Run firmware after upgrading? (Y/n):"
   Select 0 for TFTP method
   Input U-Boot's IP address: 192.168.1.1
   Input TFTP server's IP address: 192.168.1.2
   Input IP netmask: 255.255.255.0
   Input file name: openwrt-ramips-mt7621-asus_rt-ax1800hp-squashfs-factory.bin
- Restart AP aftre see the log "Firmware upgrade completed!"

Signed-off-by: Karl Chan <exkc@exkc.moe>
2023-02-12 18:27:45 +01:00
Daniel Golle
90dbdb4941 uboot-envtools: filogic: bpi-r3: fix env selection
Selecting the environment when booting from SD card has been broken by
a previous commit. Fix it.

Fixes: f46355b4d7 ("uboot-envtools: mediatek_filogic: fix BPi-R3 when no OS is installed")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2023-01-29 03:43:58 +00:00
Daniel Golle
e51a57e192 uboot-envtools: mt7622: bpi-r64: fix env selection
Selecting the environment when booting from SD card has been broken by
a previous commit. Fix it.

Fixes: 84b5b0f88c ("uboot-envtools: mediatek/mt7622: don't rely on mapped rootfs")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2023-01-29 03:43:58 +00:00
Michael Pratt
52992efc34 ath79: add support for Senao Engenius EWS660AP
FCC ID: A8J-EWS660AP

Engenius EWS660AP is an outdoor wireless access point with
2 gigabit ethernet ports, dual-band wireless,
internal antenna plates, and 802.3at PoE+

**Specification:**

  - QCA9558 SOC		2.4 GHz, 3x3
  - QCA9880 WLAN	mini PCIe card, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - AR8033 PHY		SGMII GbE with PoE+ OUT
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM
  - UART at J1		populated, RX grounded
  - 6 internal antenna plates (5 dbi, omni-directional)
  - 5 LEDs, 1 button (power, eth0, eth1, 2G, 5G) (reset)

**MAC addresses:**

  Base MAC addressed labeled as "MAC"
  Only one Vendor MAC address in flash

  eth0 *:d4 MAC art 0x0
  eth1 *:d5 --- art 0x0 +1
  phy1 *:d6 --- art 0x0 +2
  phy0 *:d7 --- art 0x0 +3

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin

**Installation:**

  2 ways to flash factory.bin from OEM:

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot
  execute tftpboot and bootm 0x81000000

**Format of OEM firmware image:**

  The OEM software of EWS660AP is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-generic-ews660ap-uImage-lzma.bin
    openwrt-ar71xx-generic-ews660ap-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Tested-by: Niklas Arnitz <openwrt@arnitz.email>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-01-28 20:34:00 +01:00
Wenli Looi
f0eb73a888 ath79: consolidate Netgear EX7300 series images
This change consolidates Netgear EX7300 series devices into two images
corresponding to devices that share the same manufacturer firmware
image. Similar to the manufacturer firmware, the actual device model is
detected at runtime. The logic is taken from the netgear GPL dumps in a
file called generate_board_conf.sh.

Hardware details for EX7300 v2 variants
---------------------------------------
SoC: QCN5502
Flash: 16 MiB
RAM: 128 MiB
Ethernet: 1 gigabit port
Wireless 2.4GHz (currently unsupported due to lack of ath9k support):
- EX6250 / EX6400 v2 / EX6410 / EX6420: QCN5502 3x3
- EX7300 v2 / EX7320: QCN5502 4x4
Wireless 5GHz:
- EX6250: QCA9986 3x3 (detected by ath10k as QCA9984 3x3)
- EX6400 v2 / EX6410 / EX6420 / EX7300 v2 / EX7320: QCA9984 4x4

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2023-01-25 00:42:52 +01:00
André Valentin
5dee596501
ipq807x: Add ZyXEL NBG7815
ZyXEL NBG7815 is a premium 802.11ax "tri"-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
* RAM: 1 GB 2x Nanya NT5CC256M16ER-EK
* Storage:
        * 8MB serial flash Winbond W25Q64DW
        * 4GB eMMC flash Kingston EMMC04G-M627
* Ethernet:
        * 4x1G RJ45 ports (QCA8074A) with 1x status LED per port
        * 1x2.5G RJ45 port (QCA8081) with 1x status LED
        * 1x10G RJ45 port (AQR113C) with 1x status LED
* Switch: Qualcomm Atheros QCA8075
* WLAN:
        * 2.4GHz: Qualcomm QCN5024 4x4@40MHz 802.11b/g/n/ax 1147 Mbps PHY rate
        * 2x 5GHz: Qualcomm QCN5054 4x4 802.11a/b/g/n/ac/ax 2402 PHY rate
* Bluetooth CSR8811 using HSUART, currently unsupported
* USB: 1x USB3.0 Type-A port
* LED-s currently not supported:
        * White
        * Dark Blu
        * Amber
        * Purple
        * Purple and dark blue
        * Red
* Buttons:
        * 1x Soft reset
* Power: 12V DC Jack

Installation instructions:
* Disconnect WAN
* Reset device to factory defaults by pushing reset button 15 sec,
  LEDs should lit orange color.
* After 5-10 minutes, when the LEDs turn constant dark blue,
  put your LAN cable and connect at address 192.168.123.1 by telnet on port 23
* Login with
  NBG7815 login: root
  password: nbg7815@2019
* cd /tmp/ApplicationData
* wget -O openwrt-ipq807x-generic-zyxel_nbg7815-squashfs-sysupgrade.bin http://...
* wget https://github.com/itorK/nbg7815_tools/blob/main/flash_to_openwrt.sh
* run flash_to_openwrt.sh
If you can't use wget, you can transfer the files via nc.
See https://openwrt.org/inbox/toh/zyxel/nbg7815_armor_g5 for installation details.

Bluetooth usage:
* you need at least package bluez-utils, recommended bluez-daemon
* run following commands to enable and start
  hciattach  /dev/ttyMSM1 bcsp
  hciconfig hci0 up

Many thanks to itorK for his work on this device:
https://github.com/itorK/openwrt/tree/nbg7815

Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: André Valentin <avalentin@marcant.net>
2023-01-19 13:26:15 +01:00
Jo Deisenhofer
ef9acfb68b uboot-mediatek: Fix ramips/mt76x8 buildbot
Move defines from header to defconfig
The package build and the Buildbot hang in 'make syncconfig' for
u-boot-ravpower_rp-wd009 because CONFIG_SYS_MIPS_TIMER_FREQ is not in
the .config, causing a console prompt. Also moved two other defines in
defconfig causing duplicate definition warnings.

Fixes: 3d5c5427e1 ("uboot-mediatek: update to U-Boot 2023.01")
Signed-off-by: Jo Deisenhofer <jo.deisenhofer@gmail.com>
2023-01-18 20:26:39 +00:00
Vincent Tremblay
afcf1a4de4
uboot-envtools: ipq40xx: fix WHW03V2 mtd partition
The configured u_env partition for the Linksys WHW03 V2 was not correct.
It should have been set to mtd6.

This fix allow to flash the OEM firmware from OpenWRT and to change the
boot partition using fw_setenv.

Fixes: 9e4ede8344 ("ipq40xx: add support for Linksys WHW03 V2")
Signed-off-by: Vincent Tremblay <vincent@vtremblay.dev>
2023-01-18 00:07:30 +01:00
Josef Schlehofer
2f83369e3e uboot-mvebu: update to version 2023.01
In the version 2023.01, the U-boot image was renamed because of the
upstream change [1]

[1] 87ac4b4b4c

Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
2023-01-17 23:17:33 +01:00
Dirk Buchwalder
26c095cb4d ipq807x: add Dynalink DL-WRX36
Dynalink DL-WRX36 is a AX WIFI router with 4 1G and 1 2.5G ports.

Specifications:

    •     CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
    •     RAM: 1024MB of DDR3
    •     Storage: 256MB Nand
    •     Ethernet: 4x 1G RJ45 ports (QCA8075) + 1 2.5G Port (QCA8081)
    •     WLAN:
          2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 1174 Mbps PHY rate
          5GHz: Qualcomm QCN5054 4x4 802.11a/b/g/n/ac/ax 2402 PHY rate
    •     1x USB 3.0

    •     1 gpio-controlled dual color led (blue/red)

            • Buttons: 1x soft reset / 1x WPS
            • Power: 12V DC jack

        A poulated serial header is onboard (J1004)
        the connector size is a 4-pin 2.0 mm JST PH.
        RX/TX is working, u-boot bootwait is active, secure boot is enabled.

        Notes:
	- Serial is completely deactivated in the stock firmware image.
	- This commit adds only single partition support, that means
	  sysupgrade is upgrading the current rootfs partition.
	- Installation can be done by serial connection or
	  SSH access on OEM firmware

	Installation Instructions:

	Most part of the installation is performed from an initramfs image
	running OpenWrt, and there are two options to boot it.

	Boot initramfs option 1: Using serial connection (3.3V)
	1. Stop auto boot to get to U-boot shell
	2. Transfer initramfs image to device
	   (openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb)
	   Tested using TFTP and a FAT-formatted USB flash drive.
	3. Boot the initramfs image
	   # bootm

	Boot initramfs option 2: From SSH access on OEM firmware
	1. Copy the initramfs image to a FAT-formatted flash drive
	   (tested on single-partition drive) and connect it to device USB port.
	2. Change boot command so it loads the initramfs image on next boot
	   Fallback to OEM firmware is provided.
	   # fw_setenv bootcmd 'usb start && fatload usb 0:1 0x44000000 openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb && bootm 0x44000000; bootipq'
	3. Reboot the device to boot the initramfs
	   # reboot

	Install OpenWrt from initramfs image:
	1. Use SCP (or other way) to transfer OpenWrt factory image
	2. Connect to device using SSH (on a LAN port)
	3. Check MTD partition table.
	   rootfs and rootfs_1 should be mtd18 and mtd20
	   depending on current OEM slot.
	   # cat /proc/mtd
	4. Do a ubiformat to both rootfs partitions:
	   # ubiformat /dev/mtd18 -y -f /path_to/factory_image
	   # ubiformat /dev/mtd20 -y -f /path_to/factory_image
	5. Set U-boot env variable: mtdids
	   # fw_setenv mtdids 'nand0=nand0'
	6. Get offset of mtd18 to determine current OEM slot
	   - If current OEM slot is 1, offset is 16777216  (0x1000000)
	   - If current OEM slot is 2, offset is 127926272 (0x7a00000)
	   # cat /sys/class/mtd/mtd18/offset
	7. Set U-boot env variable: mtdparts
	   If current OEM slot is 1, run:
	   # fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x1000000(fs),0x6100000@0x7a00000(fs_1)'
	   If current OEM slot is 2, run:
	   # fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x7a00000(fs),0x6100000@0x1000000(fs_1)'
	8. Set U-boot env variable: bootcmd
	   # fw_setenv bootcmd 'setenv bootargs console=ttyMSM0,115200n8 ubi.mtd=rootfs rootfstype=squashfs rootwait; ubi part fs; ubi read 0x44000000 kernel; bootm 0x44000000#config@rt5010w-d350-rev0'
	9. Reboot the device
	   # reboot

        Note: this PR adds only single partition support, that means sysupgrade is
              upgrading the current rootfs partition

Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
2023-01-16 12:42:23 +01:00
Matthew Hagan
6e03304c76 ipq807x: add Edgecore EAP102
The Edgecore EAP102 is a wall/ceiling mountable AP. The AP can be
powered by either PoE or AC adapter.

Device info:
 - IPQ8071-A SoC
 - 1GiB RAM
 - 256MiB NAND flash
 - 32MiB SPI NOR
 - 2 Ethernet ports
 - 1 Console port
 - 2GHz/5GHz AX WLAN
 - 2 USB 2.0 ports

Install instructions:

Prerequistes - TFTP server, preferrably within 192.168.1.0/24
	       Console cable plugged in (115200 8N1 no flow control)

1. Power on device and interrupt u-boot to obtain u-boot CLI

2. set serverip to IP address of the TFTP server:

	`setenv serverip 192.168.1.250`

3. Download image from TFTP server:

	`tftpboot 0x44000000 openwrt-ipq807x-generic-edgecore_eap102-squashfs-nand-factory.ubi`

4. Flash ubi image to both partitions and reset:

	`sf probe
	 imxtract 0x44000000 ubi
	 nand device 0
	 nand erase 0x0 0x3400000
	 nand erase 0x3c00000 0x3400000
	 nand write $fileaddr 0x0 $filesize
	 nand write $fileaddr 0x3c00000 $filesize
	 reset`

Signed-off-by: Matthew Hagan <mnhagan88@gmail.com>
2023-01-16 12:42:23 +01:00
Robert Marko
2ddb2057cd ipq807x: Add Xiaomi AX9000
Xiaomi AX9000 is a premium 802.11ax "tri"-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
* RAM: 1024MB of DDR3
* Storage: 256MB of parallel NAND
* Ethernet:
	* 4x1G RJ45 ports (QCA8075) with 1x status LED per port
	* 1x2.5G RJ45 port (QCA8081) with 1x status LED
* WLAN:
	* PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT
	* 2.4GHz: Qualcomm QCN5024 4x4@40MHz 802.11b/g/n/ax 1147 Mbps PHY rate
	* 5.8GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402Mbps PHY rate
	* 5GHz: PCI based Qualcomm QCN9024 4x4@160MHz 802.11a/b/g/n/ac/ax 4804Mbps PHY rate
* USB: 1x USB3.0 Type-A port
* LED-s:
	* System (Blue and Yellow)
	* Network (Blue and Yellow)
	* RGB light bar on top in X shape
* Buttons:
	* 1x Power switch
	* 1x Soft reset
	* 1x Mesh button
* Power: 12V DC Jack

Installation instructions:

Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/ax9000#obtain_ssh_access

Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs

4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd21 and mtd22 are the correct indexes from above!

5. Use the command ubiformat to flash the opposite mtd with UBI image:

If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd22 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit

otherwise:
ubiformat /dev/mtd21 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit

6. Reboot the device by:
reboot

Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:

7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin

Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.

Signed-off-by: Robert Marko <robimarko@gmail.com>
2023-01-16 12:42:23 +01:00
Dirk Buchwalder
bd17683261 ipq807x: add QNAP 301w
QNAP 301w is a AX WIFI router with 4 1G and 2 10G ports.

Specifications:

    •     CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
    •     RAM: 1024MB of DDR3
    •     Storage: 4GB eMMC (contains kernel and rootfs) / 8MB NOR
          (contains art and u-boot-env)
    •     Ethernet: 4x 1G RJ45 ports + 2 10G ports (Aquantia AQR113C)
    •     WLAN:
          2.4GHz: Qualcomm QCN5024 4x4 (40 MHz) 802.11b/g/n/ax 1174 Mbps PHY rate
          5GHz: Qualcomm QCN5054 4x4 (80 MHz) or 2x2 (160 MHz) 802.11a/b/g/n/ac/ax 2402 PHY rate

    •     LEDs:
          7 x GPIO-controlled dual color LEDs + 2 GPIO-controlled single color LEDs

            • Buttons: 1x soft reset / 1x WPS
            • Power: 12V DC jack

        A poulated serial header is onboard.
        RX/TX is working, bootwait is active, secure boot is not enabled.

        SSH can be activated in the stock firmware, hold WPS button til the second beep
	(yes the router has a buzzer)
        SSH is available on port 22200, login with user admin and
	password "mac address of the router".

        Installation Instructions:

            • obtain serial access (https://openwrt.org/inbox/toh/qnap/301w#serial)
            • stop auto boot
            • setenv serverip 192.168.10.1
            • setenv ipaddr 192.168.10.10
            • tftpboot the initramfs image
              (openwrt-ipq807x-generic-qnap_301w-initramfs-fit-uImage.itb)
            • bootm

            • make sure that current_entry is set to "0":
              "fw_printenv -n current_entry" should be print "0". If not,
	       do "fw_setenv current_entry 0"
            • copy openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin
	          to the device to /tmp folder
            • sysupgrade -n /tmp/openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin
              this flashes openwrt to the first kernel and rootfs partition (mmcblk0p1 / mmcblk0p4)
            • reboot

        Note: this leaves the second kernel / rootfs parition untouched. So if you want
              to go back to stock, stop u-boot autoboot, "setenv current_entry 1" ,
	       "saveenv", "bootipq".
              Stock firmware should start from the second partition.
	      Then do a firmwareupgrade in the stock gui, that should overwrite the openwrt
	      in the first partitions

        Make 10G Aquantia phy's work:
              The aquantia phy's need a firmware to work. This can either be loaded
	      in linux with a userspace tool or in u-boot.

              I was not successfull to load the firmware in linux (aq-fw-download) but luckily there is
	      aq_load_fw available in u-boot. But first the right firmware needs to write
	      to the 0:ETHPHYFW mtd partition (it is empty on my device)

              Grab the ethphy firmware image from:
	      https://github.com/kirdesde/nbg7815_gpl/blob/master/target/linux/ipq/ipq807x_64/prebuilt_images/AQR_ethphyfw.mbn
	      and scp that to openwrt.

              Check the 0:ETHPHYFW partition number:
              cat /proc/mtd|grep "0:ETHPHYFW", should be mtd10.

              Backup the 0:ETHPHYFW partition:
              dd if=/dev/mtd10 of=/tmp/ethphyfw.backup, scp ethphyfw.backup to a save place.

              Write the new firmware image to the 0:ETHPHYFW partition:
              "mtd erase /dev/mtd10", "mtd -n write AQR_ethphyfw.mbn /dev/mtd10".

              Reboot to u-boot.

              Check if aq_load_fw is working:

              "aq_load_fw 0", that checks the firmware and if successfull,
	      loads iram and dram to one of the aquantia phy's.

              If that worked, add the aq_load_fw to the bootcmd:
              setenv bootcmd "aq_load_fw 0 && aq_load_fw 8 && bootipq"

              "saveenv"

              "reset"

              Board reboots and the firmware load to both phy's should start and
	      then openwrt boots.

              Check if the 10G ports work.

              Note: lan port labeled "10G-2" is configured as WAN port as per default.
	      All other port are in the br-lan. This can be changed in the network config.

Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
2023-01-16 12:42:23 +01:00
Dirk Buchwalder
a36fc589fe ipq807x: add Edimax CAX1800
Edimax CAX1800 is a 802.11 ax dual-band AP
with PoE. AP can be ceiling or wall mount.

Specifications:

    •     CPU: Qualcomm IPQ8070A Quad core Cortex-A53 1.4GHz
    •     RAM: 512MB of DDR3
    •     Storage: 128MB NAND (contains rootfs) / 8MB NOR (contains art and uboot-env)
    •     Ethernet: 1x 1G RJ45 port (QCA8072) PoE
    •     WLAN:
          2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
          5GHz: Qualcomm QCN5054 2x2 802.11a/b/g/n/ac/ax 1201 PHY rate

    •     LEDs:
          3 x GPIO-controlled System-LEDs
          (form one virtual RGB System-LED)
            black_small_square  Buttons: 1x soft reset
            black_small_square  Power: 12V DC jack or PoE (802.3af )

        An unpopulated serial header is onboard.
        RX/TX is working, bootwait is active, secure boot is not enabled.

        SSH can be activated in the stock firmware, but it drops only
        to a limited shell .

        Installation Instructions:

            black_small_square obtain serial access
            black_small_square stop auto boot

            black_small_square tftpboot the initramfs image (serverip is set to 192.168.99.8 in uboot)
            black_small_square bootm

            black_small_square copy openwrt-ipq807x-generic-edimax_cax1800-squashfs-nand-factory.ubi
	      to the device
            black_small_square write the image to the NAND:
            black_small_square cat /proc/mtd and look for rootfs partition (should be mtd0)
            black_small_square ubiformat /dev/mtd0 -f -y  openwrt-ipq807x-generic-edimax_cax1800-squashfs-
              nand-factory.ubi
            black_small_square reboot

	Note: Device is not using dual partitioning (NAND contains other partitions
        with different manufacture data etc.)
	Draytek VigorAP 960C and Lancom LW-600 both look similar, but I haven't checked them.

Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
2023-01-16 12:42:23 +01:00
Zhijun You
8253cb2de5 ipq807x: add Redmi AX6
Redmi AX6 is a budget 802.11ax dual-band router/AP

Specifications:
* CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz
* RAM: 512MB of DDR3
* Storage: 128MB NAND
* Ethernet: 4x1G RJ45 ports (QCA8075)
* WLAN:
	* 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
	* 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* LEDs:
	* System (Blue/Yellow)
	* Network (Blue/Yellow)
*Buttons: 1x soft reset
*Power: 12V DC jack

Installation instructions:

Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/xiaomi_redmi_ax6_ax3000#ssh_access

Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs

4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd12 and mtd13 are the correct indexes from above!

5. Use the command ubiformat to flash the opposite mtd with UBI image:

If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit

otherwise:
ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit

6. Reboot the device by:
reboot

Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:

7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin

Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.

Signed-off-by: Zhijun You <hujy652@gmail.com>
2023-01-16 12:42:23 +01:00
Robert Marko
8364f08164 ipq807x: add Xiaomi AX3600
Xiaomi AX3600 is a budget 802.11ax dual-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz
* RAM: 512MB of DDR3
* Storage: 256MB of parallel NAND
* Ethernet: 4x1G RJ45 ports (QCA8075) with 1x status LED per port
* WLAN:
	* PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT
	* 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
	* 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* LED-s:
	* System (Blue and Yellow)
	* IoT (Blue)
	* Network (Blue and Yellow)
* Buttons: 1x Soft reset
* Power: 12V DC Jack

Installation instructions:

Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/xiaomi_ax3600#obtain_ssh_access

Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs

4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd12 and mtd13 are the correct indexes from above!

5. Use the command ubiformat to flash the opposite mtd with UBI image:

If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit

otherwise:
ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit

6. Reboot the device by:
reboot

Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:

7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin

Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.

Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Robert Marko <robimarko@gmail.com>
2023-01-16 12:42:23 +01:00
Harm Berntsen
09f313bfd7 ramips: mt7621: Add Arcadyan WE420223-99 support
The Arcadyan WE420223-99 is a WiFi AC simultaneous dual-band access
point distributed as Experia WiFi by KPN in the Netherlands. It features
two ethernet ports and 2 internal antennas.

Specifications
--------------
SOC   : Mediatek MT7621AT
ETH   : Two 1 gigabit ports, built into the SOC
WIFI  : MT7615DN
BUTTON: Reset
BUTTON: WPS
LED   : Power (green+red)
LED   : WiFi (green+blue)
LED   : WPS (green+red)
LED   : Followme (green+red)
Power : 12 VDC, 1A barrel plug

Winbond variant:
RAM   : Winbond W631GG6MB12J, 1GBIT DDR3 SDRAM
Flash : Winbond W25Q256JVFQ, 256Mb SPI
U-Boot: 1.1.3 (Nov 23 2017 - 16:40:17), Ralink 5.0.0.1

Macronix variant:
RAM   : Nanya NT5CC64M16GP-DI, 1GBIT DDR3 SDRAM
Flash : MX25l25635FMI-10G, 256Mb SPI
U-Boot: 1.1.3 (Dec  4 2017 - 11:37:57), Ralink 5.0.0.1

Serial
------
The serial port needs a TTL/RS-232 3V3 level converter! The Serial
setting is 57600-8-N-1. The board has an unpopulated 2.54mm straight pin
header.

The pinout is: VCC (the square), RX, TX, GND.

Installation
------------
See the Wiki page [1] for more details, it comes down to:

1. Open the device, take off the heat sink
2. Connect the SPI flash chip to a flasher, e.g. a Raspberry Pi. Also
   connect the RESET pin for stability (thanks @FPSUsername for reporting)
3. Make a backup in case you want to revert to stock later
4. Flash the squashfs-factory.trx file to offset 0x50000 of the flash
5. Ensure the bootpartition variable is set to 0 in the U-Boot
   environment located at 0x30000

Note that the U-Boot is password protected, this can optionally be
removed. See the forum [2] for more details.

MAC Addresses(stock)
--------------------
+----------+------------------+-------------------+
| use      | address          | example           |
+----------+------------------+-------------------+
| Device   | label            | 00:00:00:11:00:00 |
| Ethernet | + 3              | 00:00:00:11:00:03 |
| 2g       | + 0x020000f00001 | 02:00:00:01:00:01 |
| 5g       | + 1              | 00:00:00:11:00:01 |
+----------+------------------+-------------------+

The label address is stored in ASCII in the board_data partition

Notes
-----
- This device has a dual-boot partition scheme, but OpenWRT will claim
  both partitions for more storage space.

Known issues
------------
- 2g MAC address does not match stock due to missing support for that in
  macaddr_add
- Only the power LED is configured by default

References
----------
[1] https://openwrt.org/inbox/toh/arcadyan/astoria/we420223-99
[2] https://forum.openwrt.org/t/adding-openwrt-support-for-arcadyan-we420223-99-kpn-experia-wifi/132653

Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Signed-off-by: Harm Berntsen <git@harmberntsen.nl>
2023-01-15 13:41:02 +01:00
Vincent Tremblay
9e4ede8344 ipq40xx: add support for Linksys WHW03 V2
SOC:             Qualcomm IPQ4019
WiFi 1:          QCA4019 IEEE 802.11b/g/n
WiFi 2:          QCA4019 IEEE 802.11a/n/ac
WiFi 3:          QCA8888 IEEE 802.11a/n/ac
Bluetooth:       Qualcomm CSR8811 (A12U)
Zigbee:          Silicon Labs EM3581 NCP + Skyworks SE2432L
Ethernet:        Qualcomm Atheros QCA8072 (2-port)
Flash 1:         Mactronix MX30LF4G18AC-XKI
RAM (NAND):      SK hynix H5TC4G63CFR-PBA (512MB)
LED Controller:  NXP PCA9633 (I2C)
Buttons:         Single reset button (GPIO).

- The three WiFis were fully tested and are configured with the same settings as in the vendor firmware.
- The specific board files were submitted to the ATH10k mailing list but I'm still waiting for a reply. They can be removed once they are approved upstream.
- Two ethernet ports are accessible on the device. By default one is configured as WAN and the other one is LAN. They are fully working.

Bluetooth:
========
- Fully working with the following caveats:
  - RFKILL need to be enabled in the kernel.
  - An older version of bluez is needed as bccmd is needed to configure the chip.

Zigbee:
======
- The spidev device is available in the /dev directory.
- GPIOs are configured the same way as in the vendor firmware.
- Tests are on-going. I am working on getting access to the Silicon Labs stack to validate that it is fully working.

Installation:
=========
The squash-factory image can be installed via the Linksys Web UI:
1. Open "http://192.168.1.1/ca" (Change the IP with the IP of your device).
2. Login with your admin password.
3. To enter into the support mode, click on the "CA" link and the bottom of the page.
4. Open the "Connectivity" menu and upload the squash-factory image with the "Choose file" button.
5. Click start. Ignore all the prompts and warnings by click "yes" in all the popups.

The device uses a dual partition mechanism. The device automatically revert to the previous partition after 3 failed boot attempts.
If you want to force the previous firmware to load, you can turn off and then turn on the device for 2 seconds, 3 times in a row.

It can also be done via TFTP:
1. Setup a local TFTP server and configure its IP to 192.168.1.100.
2. Rename your image to "nodes_v2.img" and put it to the TFTP root of your server.
3. Connect to the device through the serial console.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash the partition of your choice by typing "run flashimg" or "run flashimg2".
6. Once flashed, enter "reset" to reboot the device.

Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Vincent Tremblay <vincent@vtremblay.dev>
2023-01-15 12:55:38 +01:00
Mikhail Zhilkin
1a35edfbdb ramips: add basic support for TP-Link EC330-G5u v1
This adds basic support for TP-Link EC330-G5u Ver:1.0 router (also known
as TP-Link Archer C9ERT).

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 128 MiB, Nanya NT5CC64M16GP-DI
Flash: 128 MiB NAND, ESMT F59L1G81MA-25T
Wireless 2.4 GHz (MediaTek MT7615N): b/g/n, 4x4
Wireless 5 GHz (MediaTek MT7615N): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
Button: 4 (Led, WiFi On/Off, Reset, WPS)
LEDs: 7 blue LEDs, 1 orange(amber) LED, 1 white(non-gpio) LED
Power: 12 VDC, 2 A
Connector type: Barrel
Bootloader: First U-Boot (1.1.3), Main U-Boot (1.1.3). Additionally,
original TP-Link firmware contains Image U-Boot (1.1.3).

Serial console (UART)
---------------------
                            V
+-------+-------+-------+-------+
| +3.3V |  GND  |  TX   |  RX   |
+---+---+-------+-------+-------+
    |              J2
    |
    +--- Don't connect

Installation
------------
1. Rename OpenWrt initramfs image to test.bin and place it on tftp server
   with IP 192.168.0.5
2. Attach UART, switch on the router and interrupt the boot process by
   pressing 't'
3. Load and run OpenWrt initramfs image:
      tftpboot
      bootm
4. Once inside OpenWrt, switch to the first boot image:
      fw_setenv BootImage 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image

Back to Stock
-------------
1. Run in the OpenWrt shell:
      fw_setenv BootImage 1
      reboot

Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.0.1/) and upload
   the OEM firmware

MAC addresses
-------------
+---------+-------------------+-------------------+-------------+
|         | MAC example 1     | MAC example 2     | Algorithm   |
+---------+-------------------+-------------------+-------------+
| label   | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label       |
| LAN     | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label       |
| WAN     | 72:ff:7b:xx:xx:f5 | 54:d4:f7:xx:xx:db | label+1 [1] |
| WLAN 2g | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label       |
| WLAN 5g | 68:ff:7b:xx:xx:f6 | 50:d4:f7:xx:xx:dc | label+2     |
+---------+-------------------+-------------------+-------------+
label MAC address was found in factory at 0x165 (text format
xx:xx:xx:xx:xx:xx).

Notes
-----
[1] WAN MAC address:
   a. First octet of WAN MAC is differ than others and OUI is not related
      to TP-Link company. This probably should be fixed.
   b. Flipping bits in first octet and hex delta are different for the
      different MAC examples:
      +-----------------+----------------+----------------+
      |                 | Example 1      | Example 2      |
      +-----------------+----------------+----------------+
      | LAN             | 68 = 0110 1000 | 50 = 0101 0000 |
      | MAC (1st octet) |         ^ ^ ^  |                |
      +-----------------+----------------+----------------+
      | WAN             | 72 = 0111 0010 | 54 = 0101 0100 |
      | MAC (1st octet) |         ^ ^ ^  |            ^   |
      +-----------------+----------------+----------------+
      | HEX delta       | 0xa            | 0x4            |
      +-----------------+----------------+----------------+
      | DEC delta       | 4              | 4              |
      +-----------------+----------------+----------------+
   c. DEC delta is a constant (4). This looks like a mistake in OEM
      firmware and probably should be fixed.
   Based on the above, I decided to keep correct OUI and make WAN MAC =
   label + 1.

[2] Bootloaders
   The device contains 3 bootloaders:
   - First U-Boot: U-Boot 1.1.3 (Mar 18 2019 - 12:50:24). The First U-Boot
     located on NAND Flash to load next full-feature Uboot.
   - Main U-Boot + its backup: U-Boot 1.1.3 (Mar 18 2019 - 12:50:29). This
     bootloader includes recovery webserver. Requires special uImages to
     continue the boot process:
        0x00 (os0, os1) - firmware uImage
        0x40 (os0, os1) - standalone uImage (OpenWrt kernel is here)
   - Additionally, both slots of the original TP-Link firmware contains
     Image U-Boot: U-Boot 1.1.3 (Oct 16 2019 - 08:14:45). It checks image
     magics and CRCs. We don't use this U-Boot with OpenWrt.

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2023-01-14 18:36:33 +01:00
Daniel Golle
3d5c5427e1 uboot-mediatek: update to U-Boot 2023.01
Support for MT7981 and MT7986 has been merged, remove patches.
Tested on a couple of MT7986, MT7622 and MT7623 boards.
MIPS builds are untested.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2023-01-13 14:49:52 +00:00
Linhui Liu
5b605f4b51 uboot-envtools: update to 2023.01
Update to latest version.

Signed-off-by: Linhui Liu <liulinhui36@gmail.com>
2023-01-13 14:49:52 +00:00
Hauke Mehrtens
55d176fd0b tfa-layerscape: Use trusted-firmware-a.mk
This converts the trusted firmware arm build Makefile to make use of
the common trusted-firmware-a.mk file. This also fixes the build with
binutils 2.39.

Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2022-12-31 20:02:09 +01:00
Hauke Mehrtens
c5bb7a99a6 arm-trusted-firmware-mvebu: Use host flags for cryptest compilation
Without these changes it used the system LDFLAGS for the compilation of
the cryptopp library. This does not always work when we add
"-no-warn-rwx-segments" which is done to support binutils 2.39 inside of
OpenWrt.

Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2022-12-31 19:55:42 +01:00
Hauke Mehrtens
dd9d1a8ccb arm-trusted-firmware-sunxi: Use common trusted-firmware-a.mk
Make use of the definitions from trusted-firmware-a.mk to build the
Trusted firmware arm. This fixes the build with binutils 2.39.

Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2022-12-31 19:03:00 +01:00
Tony Ambardar
2a9f3b7717 ipq40xx: fix up Linksys WHW01 board name, device definition
Update the board name defined in DTS to match online documentation and the
name encoded into factory firmware. This helps supports flashing firmware
factory images using 'sysupgrade'.

Original WHW01 device definition assumes the rootfs IMAGE_SIZE is 33 MB
instead of the correct 74 MB, and defines factory images which include
extra adjustments/padding that do not match OEM factory images and may
cause problems flashing. Update image size and build recipe to fix these.

Suggested-by: Wyatt Martin <wawowl@gmail.com>
Signed-off-by: Tony Ambardar <itugrok@yahoo.com>
2022-12-31 05:02:38 -08:00
Chuanhong Guo
d29dbf052a
mediatek: drop redmi-ax6000 variant with modified env
This variant uses xiaomi factory u-boot and modified u-boot-env &
bootcmd.
By modifying uboot-env, the xiaomi firmware recovery provided in
the vendor u-boot doesn't work anymore. It's possible to put
u-boot into a state where it refuese to take any serial input.
If the u-boot is in this state, users can't restore their
firmware without taking the flash off the board.
We now have a -stock variant where the vendor u-boot is used in
a way that xiaomi firmware recovery still works, and a -ubootmod
variant where we get rid of all xiaomi components, have more
usable space and no uart console lock. These two should cover all
use cases and we don't need this variant anymore.
Drop this redmi-ax6000 variant. Existing users of this variant
should perform a u-boot mod or restore to the -stock layout.

Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
2022-12-30 16:11:59 +08:00
Furong Xu
1613e3340b uboot-mediatek: add support for Xiaomi Redmi Router AX6000
U-Boot flash instructions:

0. OpenWrt U-Boot does not support stock layout, it comes with recovery
boot support, automatic tftp recovery and never blocks UART.

A new flash layout is introduced, we call it OpenWrt U-Boot layout,
stock flash layout and the old OpenWrt layout are not supported.

During the whole flash procedure, please do not reboot or power off
unless requested explicitly, or you will break your device.

1. Your device should already running OpenWrt.
If not, follow the instructions to flash OpenWrt:
https://github.com/openwrt/openwrt/pull/11115

2. Backup BL2 Nvram Bdata Factory and FIP in case you break something or
in case you want to go back to stock firmware one day.

cat /dev/mtdblock0 > /tmp/BL2.bin
cat /dev/mtdblock1 > /tmp/Nvram.bin
cat /dev/mtdblock2 > /tmp/Bdata.bin
cat /dev/mtdblock3 > /tmp/Factory.bin
cat /dev/mtdblock4 > /tmp/FIP.bin

And save all whose bin files to somewhere safe.

Then backup your configurations, since ubiformat for entire mtd device is
required to create new ubootenv volume for OpenWrt U-Boot.

3. Run the following cmd to boot into an initramfs with the new OpenWrt
U-Boot layout that expand ubi partion to the end of flash:

ubiformat /dev/mtd7 -y -f /tmp/ax6000-ubootmod-initramfs-factory.ubi

4. After boot into initramfs, check mtd partion info.
The ubi partion should be mtd5

root@OpenWrt:~# cat /proc/mtd
dev:    size   erasesize  name
mtd0: 00100000 00020000 BL2
mtd1: 00040000 00020000 Nvram
mtd2: 00040000 00020000 Bdata
mtd3: 00200000 00020000 Factory
mtd4: 00200000 00020000 FIP
mtd5: 07a80000 00020000 ubi

5. Load kmod-mtd-rw to temporarily make the bootloader partions writable.
The kmod-mtd-rw is from the feeds, it is not packed in initramfs-factory
by default.

To install kmod-mtd-rw via opkg:

opkg update && opkg install kmod-mtd-rw

Or, download kmod-mtd-rw.ipk from OpenWrt server and install it manually
e.g:
https://downloads.openwrt.org/snapshots/targets/mediatek/filogic/kmods/
Select your OpenWrt release version and kernel version accordingly.

Load kmod-mtd-rw:
insmod /lib/modules/$(uname -r)/mtd-rw.ko i_want_a_brick=1

6. Run the following cmd to clean all pending crash dumps in pstore,
or OpenWrt U-Boot may boot into NAND recovery or tftp recovery.

rm -f /sys/fs/pstore/*

7. Format ubi and create new ubootenv volume:

ubidetach -p /dev/mtd5; ubiformat /dev/mtd5 -y; ubiattach -p /dev/mtd5
ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB

8. This is optional. Skip this if you do not want to have NAND recovery
boot feature offered by OpenWrt U-Boot. Don't worry, you always have
automatic tftp recovery feature enabled.

ubimkvol /dev/ubi0 -n 2 -N recovery -s 10MiB
ubiupdatevol /dev/ubi0_2 /tmp/ax6000-ubootmod-initramfs-recovery.itb

9. Now, flash new U-Boot. Bye-bye ugly stock U-Boot.

mtd write /tmp/ax6000-ubootmod-preloader.bin BL2
mtd write /tmp/ax6000-ubootmod-bl31-uboot.fip FIP

10. Flash the squashfs-sysupgrade.bin as usual:

sysupgrade -n /tmp/ax6000-ubootmod-squashfs-sysupgrade.itb

Enjoy!

Signed-off-by: Furong Xu <xfr@outlook.com>
2022-12-29 03:04:42 +00:00
Felix Baumann
75451681d0
uboot-envtools: add support for ramips Asus RX-AX53U
Adds uboot-envtools support for ramips Asus RX-AX53U now that partition
can be correctly read.

Signed-off-by: Felix Baumann <felix.bau@gmx.de>
[ improve commit title and description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-12-28 14:04:58 +01:00
Kuan-Yi Li
a5f16b4f4f
uboot-omap: build with omap generic subtarget
Fix image build fail by using the generic subtarget.

Fixes: b2bfea48 ("omap: add generic subtarget")
Ref: 40e3f660 ("uboot-fritz4040: build with ipq40xx generic subtarget")
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
[ add commit description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-12-25 11:55:54 +01:00
Kuan-Yi Li
808046b2ee
uboot-tegra: build with tegra generic subtarget
Fix image build fail by using the generic subtarget.

Fixes: c028e1b1 ("tegra: add generic subtarget")
Ref: 40e3f660 ("uboot-fritz4040: build with ipq40xx generic subtarget")
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
[ add commit description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-12-25 11:55:53 +01:00
Kuan-Yi Li
64bfb8b7d6
uboot-zynq: build with zynq generic subtarget
Fix image build fail by using the generic subtarget.

Fixes: 6d7129ef ("zynq: add generic subtarget")
Ref: 40e3f660 ("uboot-fritz4040: build with ipq40xx generic subtarget")
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
[ add commit description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-12-25 11:55:53 +01:00
Kuan-Yi Li
1c35dc26f1
uboot-mxs: build with mxs generic subtarget
Fix image build fail by using the generic subtarget.

Fixes: 64ef920b ("mxs: add generic subtarget")
Ref: 40e3f660 ("uboot-fritz4040: build with ipq40xx generic subtarget")
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
[ add commit description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-12-25 11:55:52 +01:00
Kuan-Yi Li
5c85c1f344
uboot-kirkwood: build with kirkwood generic subtarget
Fix image build fail by using the generic subtarget.

Fixes: cada395a ("kirkwood: add generic subtarget")
Ref: 40e3f660 ("uboot-fritz4040: build with ipq40xx generic subtarget")
Signed-off-by: Kuan-Yi Li <kyli@abysm.org>
[ add commit description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-12-25 11:55:52 +01:00
Jan-Niklas Burfeind
bf06a7c865 uboot-sunxi: use UUID of bootdev and bootpart
Several sunxi devices come with multiple mmc devices. On such devices,
the mmc device order is unpredictable, so using /dev/mmcblk0p2 as root
device doesn't always work, which results in unbootable devices.

For the Banana Pi BPI-R3 in the mediatek target, this has been solved by
defining aliases for the mmc devices in the DTS. Ideally we would do the
same here, but for sunxi-a64 we already use UUID probing, so let's start
with that (5f2ff607e2 ("uboot-sunxi: a64: allow booting directly from
eMMC")).

Since we're building and including u-boot in each supported device
image, and this method has been proven to work fine for a64, let's just
change the default u-boot env file to do the same.

Fixes: #10080
Fixes: e6d9f6fdff ("sunxi: add support for FriendlyARM NanoPi R1")
Co-authored-by: Karl Palsson <karlp@etactica.com>
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
[use UUID in default u-boot env, rewrite commit message]
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
2022-12-22 13:33:47 +02:00
Jan-Niklas Burfeind
5b82eeb320 sunxi: remove frequency for NanoPi R1
The frequency appears as unlisted initial frequency.
Removed it as Hauke suggested.

Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
2022-12-22 00:05:29 +01:00
Stijn Tintel
9ed1830bdc arm-trusted-firmware-sunxi: drop CPE ID
The CPE ID is already set in trusted-firmware-a.mk.

Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
2022-12-20 18:36:26 +00:00
Alexey Bartenev
3f201d1f8e ramips: add support for SNR-CPE-W4N-MT router
General specification:
- SoC Type: MediaTek MT7620N (580MHz)
- ROM: 8 MB SPI-NOR (W25Q64FV)
- RAM: 64 MB DDR (M13S5121632A)
- Switch: MediaTek MT7530
- Ethernet: 5 ports - 5×100MbE (WAN, LAN1-4)
- Wireless 2.4 GHz: b/g/n
- Buttons: 1 button (RESET)
- Bootloader: U-Boot 1.1.3, MediaTek U-Boot: 5.0.0.5
- Power: 12 VDC, 1.0 A

Flash by the native uploader in 2 stages:
1. Use the native uploader to flash an initramfs image. Choose
 openwrt-ramips-mt7620-snr_cpe-w4n-mt-initramfs-kernel.bin file by
 "Administration/Management/Firmware update/Choose File" in vendor's
 web interface (ip: 192.168.1.10, login: Admin, password: Admin).
 Wait ~160 seconds.
2. Flash a sysupgrade image via the initramfs image. Choose
 openwrt-ramips-mt7620-snr_cpe-w4n-mt-squashfs-sysupgrade.bin
 file by "System/Backup/Flash Firmware/Flash image..." in
 LuCI web interface (ip: 192.168.1.1, login: root, no password).
 Wait ~240 seconds.

Flash by U-Boot TFTP method:
1. Configure your PC with IP 192.168.1.131
2. Set up TFTP server and put the
 openwrt-ramips-mt7620-snr_cpe-w4n-mt-squashfs-sysupgrade.bin
 image on your PC
3. Connect serial port (57600 8N1) and turn on the router.
 Then interrupt "U-Boot Boot Menu" by hitting 2 key (select "2:
 Load system code then write to Flash via TFTP.").
Press Y key when show "Warning!! Erase Linux in Flash then burn
 new one. Are you sure? (Y/N)"
Input device IP (192.168.1.1) ==:192.168.1.1
Input server IP (192.168.1.131) ==:192.168.1.131
Input Linux Kernel filename () ==:
openwrt-ramips-mt7620-snr_cpe-w4n-mt-squashfs-sysupgrade.bin
3. Wait ~120 seconds to complete flashing

Signed-off-by: Alexey Bartenev <41exey@proton.me>
2022-12-17 22:34:44 +01:00
Chukun Pan
53123b93b0 sunxi: fix board_name for MarsBoard A10
The compatible in the device tree is "haoyu,a10-marsboard",
modify the board_name to keep it consistent.

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2022-12-17 20:55:47 +01:00
Chen Minqiang
18bea173a6 mediatek: add alternative stock layout for Xiaomi Redmi Router AX6000
In this implementation, the flash partition layout is adjusted to avoid
modifying the uboot environment of mtdparts. This ensures that the 30M
ubi_kernel partition remains aligned with the stock ubi partition, and
the kernel volume is placed in it. This allows the stock uboot to boot
from it without changing the mtdparts, which is useful for reverting back
to the stock firmware using Xiaomi Firmware Tools. In actual testing,
modifying mtdparts has been found to break Xiaomi Firmware Tools.

1. use ARTIFACTS to generate initramfs-factory.ubi for easy installation.
2. The NAND flash layout is changed to allow for reverting back to the
   stock firmware.
3. Before performing sysupgrade, do some cleanup in platform_pre_upgrade
   to ensure a clean installation of OpenWRT.
4. Setup the uboot env to ensure that the system always boot, which can
   be helpful for users who may forget to do this before sysupgrade in
   the initramfs.

New flash instructions:
1. Gain ssh access. Please refer to:
   https://openwrt.org/toh/xiaomi/redmi_ax6000#installation)

2. Check which system current u-boot is loading from:
   COMMAND: `cat /proc/cmdline`
   sample OUTPUT: `console=ttyS0,115200n1 loglevel=8 firmware=1 uart_en=1`
   if firmware=1, current system is ubi1
   if firmware=0, current system is ubi0

3. Setup nvram and write the firmware:
   If the current system is ubi1, please set it up so that the next time
   it will boot from ubi, and write the firmware to ubi:
```
nvram set boot_wait=on
nvram set uart_en=1
nvram set flag_boot_rootfs=0
nvram set flag_last_success=0
nvram set flag_boot_success=1
nvram set flag_try_sys1_failed=0
nvram set flag_try_sys2_failed=0
nvram commit
ubiformat /dev/mtd8 -y -f /tmp/initramfs-factory.ubi
```
   If the current system is ubi, please set it up so that the next time
   it will boot from ubi1, and write the firmware to ubi1:
```
nvram set boot_wait=on
nvram set uart_en=1
nvram set flag_boot_rootfs=1
nvram set flag_last_success=1
nvram set flag_boot_success=1
nvram set flag_try_sys1_failed=0
nvram set flag_try_sys2_failed=0
nvram commit
ubiformat /dev/mtd9 -y -f /tmp/initramfs-factory.ubi
```

4. After rebooting, the system should now boot into the openwrt initramfs.
   Flash the squashfs-sysupgrade.bin via using ssh or luci.
```
sysupgrade -n /tmp/squashfs-sysupgrade.bin
```
Done.

For existing users of the Redmi AX6000 running OpenWrt, here are the steps to
switch to this new layout:

1. Flash initramfs-factory.ubi
```
mtd -r -e ubi write /tmp/initramfs-factory.ubi ubi
```

2. After rebooting, the system will boot into the new openwrt-initramfs.
Log in and perform a sysupgrade to complete the process.
```
sysupgrade -n /tmp/squashfs-sysupgrade.bin
```

Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
2022-12-17 15:04:16 +08:00
Mikhail Zhilkin
0ec8d991c2 ramips: add support for Etisalat S3
Etisalat S3 is a wireless WiFi 5 router manufactured by Sercomm company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1x USB3.0
Button: 2 buttons (Reset & WPS)
LEDs:
   - 1x Status (RGB)
   - 1x 2.4G (blue, hardware, mt76-phy0)
   - 1x 5G (blue, hardware, mt76-phy1)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot

Installation
-----------------
1.  Login to the router web interface under admin account
2.  Navigate to Settings -> Configuration -> Save to Computer
3.  Decode the configuration. For example, using cfgtool.py tool (see
    related section):
       cfgtool.py -u configurationBackup.cfg
4.  Open configurationBackup.xml and find the following line:
    <PARAMETER name="Password" type="string" value="<your router serial \
       is here>" writable="1" encryption="1" password="1"/>
5.  Insert the following line after and save:
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
6.  Encode the configuration. For example, using cfgtool.py tool:
       cfgtool.py -p configurationBackup.xml
7.  Upload the changed configuration (configurationBackup_changed.cfg) to
    the router
8.  Login to the router web interface (SuperUser:ETxxxxxxxxxx, where
    ETxxxxxxxxxx is the serial number from the backplate label)
9.  Navigate to Settings -> WAN -> Add static IP interface (e.g.
    10.0.0.1/255.255.255.0)
10. Navigate to Settings -> Remote cotrol -> Add SSH, port 22,
    10.0.0.0/255.255.255.0 and interface created before
11. Change IP of your client to 10.0.0.2/255.255.255.0 and connect the
    ethernet cable to the WAN port of the router
12. Connect to the router using SSH shell under SuperUser account
13. Run in SSH shell:
       sh
14. Make a mtd backup (optional, see related section)
15. Change bootflag to Sercomm1 and reboot:
       printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
       reboot
16. Login to the router web interface under admin account
17. Remove dots from the OpenWrt factory image filename
18. Update firmware via web using OpenWrt factory image

Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
   printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3

mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
      cd /tmp
      for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
      tftp -l mtd$i -p 10.0.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
      tftp -l mtd.md5 -p 10.0.0.2

Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery

MAC Addresses
-------------
+-----+------------+---------+
| use | address    | example |
+-----+------------+---------+
| LAN | label      | *:50    |
| WAN | label + 11 | *:5b    |
| 2g  | label + 2  | *:52    |
| 5g  | label + 3  | *:53    |
+-----+------------+---------+
The label MAC address was found in Factory 0x21000

cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker

Co-authored-by: Karim Dehouche <karimdplay@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-12-13 23:06:20 +01:00
Christian Lamparter
19b3b14e54 sunxi: fix 253-sunxi-h5-add-support-for-nanopi-r1s-h5 patch offset
This showed up in the log:
|Hunk #1 succeeded at 555 (offset -83 lines).

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-12-12 09:06:17 +01:00
Rafał Miłecki
57a8ea6d74 uboot-bcm4908: update to the latest generic
4435700d18 Remove redundant YYLOC global declaration

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-12-08 12:10:21 +01:00
Daniel Golle
366bcffa0e
uboot-mediatek: bpi-r3: raise CONFIG_LMB_MAX_REGIONS to 64
Raise CONFIG_LMB_MAX_REGIONS to 64 as there are going to be more than
8 (the default value) reserved regions to allow supporting offloading
Wireless-to-Ethernet traffic on MT7986.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-11-29 19:44:43 +00:00
Pawel Dembicki
afcccaad82 layerscape: Switch LS1012A-FRDM initramfs to gzip
At this moment LS1012A-FRDM have uncompressed initramfs image.

Error was caused, because gzip extract area overlap image.

Let's change loadaddr and enable gzip initramfs images again.

Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
2022-11-27 13:18:29 +01:00
Michael Pratt
6de9287abd ath79: add support for Senao Engenius EAP1750H
FCC ID: A8J-EAP1750H

Engenius EAP1750H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

**Specification:**

  - QCA9558 SOC
  - QCA9880 WLAN	PCI card, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16FG
  - UART at J10		populated
  - 4 internal antenna plates (5 dbi, omni-directional)
  - 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)

**MAC addresses:**

  MAC addresses are labeled as ETH, 2.4G, and 5GHz
  Only one Vendor MAC address in flash

  eth0 ETH  *:fb art 0x0
  phy1 2.4G *:fc ---
  phy0 5GHz *:fd ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  2 ways to flash factory.bin from OEM:

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot
  execute tftpboot and bootm 0x81000000

  NOTE: TFTP is not reliable due to bugged bootloader
  set MTU to 600 and try many times
  if your TFTP server supports setting block size
  higher block size is better.

**Format of OEM firmware image:**

  The OEM software of EAP1750H is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-generic-eap1750h-uImage-lzma.bin
    openwrt-ar71xx-generic-eap1750h-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-11-27 13:18:29 +01:00
Daniel Golle
4c67d1e066 uboot-mediatek: optimize MMC erase
Fix mmc_write_vol hush script used by many boards to avoid timeouts on
slow SD cards:
Instead of erasing a complete partition, only erase blocks for the
to-be-written image when writing to MMC.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-11-17 01:55:55 +00:00
Lech Perczak
6fdeb48c1e ath79: support Ruckus ZoneFlex 7025
Ruckus ZoneFlex 7025 is a single 2.4GHz radio 802.11n 1x1 enterprise
access point with built-in Ethernet switch, in an electrical outlet form factor.

Hardware highligts:
- CPU: Atheros AR7240 SoC at 400 MHz
- RAM: 64MB DDR2
- Flash: 16MB SPI-NOR
- Wi-Fi: AR9285 built-in 2.4GHz 1x1 radio
- Ethernet: single Fast Ethernet port inside the electrical enclosure,
  coupled with internal LSA connector for direct wiring,
  four external Fast Ethernet ports on the lower side of the device.
- PoE: 802.3af PD input inside the electrical box.
  802.3af PSE output on the LAN4 port, capable of sourcing
  class 0 or class 2 devices, depending on power supply capacity.
- External 8P8C pass-through connectors on the back and right side of the device
- Standalone 48V power input on the side, through 2/1mm micro DC barrel jack

Serial console: 115200-8-N-1 on internal JP1 header.
Pinout:

---------- JP1
|5|4|3|2|1|
----------

Pin 1 is near the "H1" marking.
1 - RX
2 - n/c
3 - VCC (3.3V)
4 - GND
5 - TX

Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server,  and removing a single T10 screw,
  but with much less manual steps, and is generally recommended, being
  safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
  work on some rare versions of stock firmware. A more involved, and
  requires installing `mkenvimage` from u-boot-tools package if you
  choose to rebuild your own environment, but can be used without
  disassembly or removal from installation point, if you have the
  credentials.
  If for some reason, size of your sysupgrade image exceeds 13312kB,
  proceed with method [1]. For official images this is not likely to
  happen ever.

[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0x9f040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7025-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7025_fw1_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin

[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
   it boots, hold the reset button near Ethernet connectors for 5
   seconds.

1. Connect the device to the network. It will acquire address over DHCP,
   so either find its address using list of DHCP leases by looking for
   label MAC address, or try finding it by scanning for SSH port:

   $ nmap 10.42.0.0/24 -p22

   From now on, we assume your computer has address 10.42.0.1 and the device
   has address 10.42.0.254.

2. Set up a TFTP server on your computer. We assume that TFTP server
   root is at /srv/tftp.

3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
   frmware is pretty ancient and requires enabling HMAC-MD5.

   $ ssh 10.42.0.254 \
   -o UserKnownHostsFile=/dev/null \
   -o StrictHostKeyCheking=no \
   -o MACs=hmac-md5

   Login. User is "super", password is "sp-admin".
   Now execute a hidden command:

   Ruckus

   It is case-sensitive. Copy and paste the following string,
   including quotes. There will be no output on the console for that.

   ";/bin/sh;"

   Hit "enter". The AP will respond with:

   grrrr
   OK

   Now execute another hidden command:

   !v54!

   At "What's your chow?" prompt just hit "enter".
   Congratulations, you should now be dropped to Busybox shell with root
   permissions.

4. Optional, but highly recommended: backup the flash contents before
   installation. At your PC ensure the device can write the firmware
   over TFTP:

   $ sudo touch /srv/tftp/ruckus_zf7025_firmware{1,2}.bin
   $ sudo chmod 666 /srv/tftp/ruckus_zf7025_firmware{1,2}.bin

   Locate partitions for primary and secondary firmware image.
   NEVER blindly copy over MTD nodes, because MTD indices change
   depending on the currently active firmware, and all partitions are
   writable!

   # grep rcks_wlan /proc/mtd

   Copy over both images using TFTP, this will be useful in case you'd
   like to return to stock FW in future. Make sure to backup both, as
   OpenWrt uses bot firmwre partitions for storage!

   # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7025_firmware1.bin -p 10.42.0.1
   # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7025_firmware2.bin -p 10.42.0.1

   When the command finishes, copy over the dump to a safe place for
   storage.

   $ cp /srv/tftp/ruckus_zf7025_firmware{1,2}.bin ~/

5. Ensure the system is running from the BACKUP image, i.e. from
   rcks_wlan.bkup partition or "image 2". Otherwise the installation
   WILL fail, and you will need to access mtd0 device to write image
   which risks overwriting the bootloader, and so is not covered here
   and not supported.

   Switching to backup firmware can be achieved by executing a few
   consecutive reboots of the device, or by updating the stock firmware. The
   system will boot from the image it was not running from previously.
   Stock firmware available to update was conveniently dumped in point 4 :-)

6. Prepare U-boot environment image.
   Install u-boot-tools package. Alternatively, if you build your own
   images, OpenWrt provides mkenvimage in host staging directory as well.
   It is recommended to extract environment from the device, and modify
   it, rather then relying on defaults:

   $ sudo touch /srv/tftp/u-boot-env.bin
   $ sudo chmod 666 /srv/tftp/u-boot-env.bin

   On the device, find the MTD partition on which environment resides.
   Beware, it may change depending on currently active firmware image!

   # grep u-boot-env /proc/mtd

   Now, copy over the partition

   # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1

   Store the stock environment in a safe place:

   $ cp /srv/tftp/u-boot-env.bin ~/

   Extract the values from the dump:

   $ strings u-boot-env.bin | tee u-boot-env.txt

   Now clean up the debris at the end of output, you should end up with
   each variable defined once. After that, set the bootcmd variable like
   this:

   bootcmd=bootm 0x9f040000

   You should end up with something like this:

bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),7168k(rcks_wlan.main),7168k(rcks_wlan.bkup),1280k(datafs),256k(u-boot-env)
mtdids=nor0=ar7100-nor0
bootdelay=2
filesize=52e000
fileaddr=81000000
ethact=eth0
stdin=serial
stdout=serial
stderr=serial
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=192.168.0.1
serverip=192.168.0.2
stderr=serial
ethact=eth0

   These are the defaults, you can use most likely just this as input to
   mkenvimage.

   Now, create environment image and copy it over to TFTP root:

   $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
   $ sudo cp u-boot-env.bin /srv/tftp

   This is the same image, gzipped and base64-encoded:

H4sICOLMEGMAA3UtYm9vdC1lbnYtbmV3LmJpbgDt0E1u00AUAGDfgm2XDUrTsUV/pTkFSxZoEk+o
lcQJtlNaLsURwU4FikDiBN+3eDNvLL/3Zt5/+vFuud8Pq10dp3V3EV4e1uFDGBXTQeq+9HG1b/v9
NsdheP0Y5mV5U4Vw0Y1f1/3wesix/3pM/dO6v2jaZojX/bJpr6dtsUzHuktDjm//FHl4SnXdxfAS
wmN4SWkMy+UYVqsx1PUYci52Q31I3dDHP5vU3ZUhXLX7LjxWN7eby+PVNNxsflfe3m8uu9Wm//xt
m9rFLjXtv6fLzfEwm5fVfdhc1mlI6342Pytzldvn2dS1qfs49Tjvd3qFOm/Ta6yKdbPNffM9x5sq
Ty805acL3Zfh5HTD1RDHJRT9WLGNfe6atJ2S/XE4y3LX/c6mSzZDs29P3edhmqXOz+1xF//s0y7H
t3GL5nDqWT5Ui/Gii7Aoi7HQ81jrcHZY/dXkfLLiJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8
xy8jb4zOAAAEAA==

7. Perform actual installation. Copy over OpenWrt sysupgrade image to
   TFTP root:

   $ sudo cp openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin /srv/tftp

   Now load both to the device over TFTP:

   # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
   # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin -g 10.42.0.1

   Verify checksums of both images to ensure the transfer over TFTP
   was completed:

   # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin

   And compare it against source images:

   $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin

   Locate MTD partition of the primary image:

   # grep rcks_wlan.main /proc/mtd

   Now, write the images in place. Write U-boot environment last, so
   unit still can boot from backup image, should power failure occur during
   this. Replace MTD placeholders with real MTD nodes:

   # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
   # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>

   Finally, reboot the device. The device should directly boot into
   OpenWrt. Look for the characteristic power LED blinking pattern.

   # reboot -f

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Boot into OpenWrt initramfs as for initial installation. To do that
   without disassembly, you can write an initramfs image to the device
   using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Concatenate the firmware backups, if you took them during installation using method 2:

   $ cat ruckus_zf7025_fw1_backup.bin ruckus_zf7025_fw2_backup.bin > ruckus_zf7025_backup.bin

3. Write factory images downloaded from manufacturer website into
   fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
   before installation:

   # mtd write ruckus_zf7025_backup.bin /dev/mtd1

4. Reboot the system, it should load into factory firmware again.

Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
- The 2.4 GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid   the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-11-13 22:36:06 +01:00
Lech Perczak
a98fa04362 uboot-envtools: ath79: add support for Ubiquiti XM devices
Inspired by commit 9565c5726a, and by
facts that all Ubiquiti XM devices share flash layout, and images are
mostly compatible between all of them - enable uboot-envtools support for
whole XM line.

Build tested on: Ubiquiti Airrouter, Bullet-M (7240,7241), Nanobridge-M,
Nanostation-M (+ Loco), Picostation-M, Powerbridge-M, Rocket-M.
Runtime tested on: Ubiquiti Nanobridge M5 (XM).

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-11-13 22:36:06 +01:00
Mikhail Zhilkin
0cfd15552e ramips: add support for Rostelecom RT-SF-1
Rostelecom RT-SF-1 is a wireless WiFi 5 router manufactured by Sercomm
company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 256 MiB, Micron MT29F2G08ABAGA3W
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
ZigBee: 3.0, EFR32 MG1B232GG
Button: 2 buttons (Reset & WPS)
LEDs:
   - 1x Status (RGB)
   - 1x 2.4G (blue, hardware, mt76-phy0)
   - 1x 5G (blue, hardware, mt76-phy1)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot

Installation
-----------------
1. Remove dots from the OpenWrt factory image filename
2. Login to the router web interface
3. Update firmware using web interface with the OpenWrt factory image
4. If OpenWrt is booted, then no further steps are required. Enjoy!
   Otherwise (Stock firmware has booted again) proceed to the next step.
5. Update firmware using web interface with any version of the Stock
   firmware
6. Update firmware using web interface with the OpenWrt factory image

Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
    printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3

Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery

MAC Addresses
-------------
+-----+------------+------------+
| use | address    | example    |
+-----+------------+------------+
| LAN | label      | *:72, *:d2 |
| WAN | label + 11 | *:7d, *:dd |
| 2g  | label + 2  | *:74, *:d4 |
| 5g  | label + 3  | *:75, *:d5 |
+-----+------------+------------+
The label MAC address was found in Factory 0x21000

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-11-13 21:51:22 +01:00
Weiping Yang
9945d05171 ipq40xx: add support for GL.iNet GL-A1300
Specifications:
SOC:		Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM:		256 MiB
FLASH1:		4 MiB NOR
FLASH2:		128 MiB NAND
ETH:		Qualcomm QCA8075
WLAN1:		Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2:		Qualcomm Atheros QCA4018 5G 802.11n/ac W2 2x2
USB:		1 x USB 3.0 port
Button:		1 x Reset button
Switch:		1 x Mode switch
LED:		1 x Blue LED + 1 x White LED

Install via uboot tftp or uboot web failsafe.

By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-a1300-squashfs-nand-factory.ubi
(IPQ40xx) # nand erase 0 0x8000000
(IPQ40xx) # nand write 0x84000000 0 $filesize

By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1

Afterwards upgrade can use sysupgrade image.

Signed-off-by: Weiping Yang <weiping.yang@gl-inet.com>
2022-11-09 23:34:37 +01:00
Shiji Yang
f7f9203854 ramips: add support for SIM SIMAX1800T and Haier HAR-20S2U1
SIM AX18T and Haier HAR-20S2U1 Wi-Fi6 AX1800 routers are designed based
on Tenbay WR1800K. They have the same hardware circuits and u-boot.
SIM AX18T has three carrier customized models: SIMAX1800M (China Mobile),
SIMAX1800T (China Telecom) and SIMAX1800U (China Unicom). All of these
models run the same firmware.

Specifications:
 SOC:      MT7621 + MT7905 + MT7975
 ROM:      128 MiB
 RAM:      256 MiB
 LED:      status *3 R/G/B
 Button:   reset *1 + wps/mesh *1
 Ethernet:      lan *3 + wan *1 (10/100/1000Mbps)
 TTL Baudrate:  115200
 TFTP Server:   192.168.1.254
 TFTP IP:       192.168.1.28 or 192.168.1.160 (when envs is broken)

MAC Address:
 use        address               source
 label      30:xx:xx:xx:xx:62     wan
 lan        30:xx:xx:xx:xx:65     factory.0x8004
 wan        30:xx:xx:xx:xx:62     factory.0x8004 -3
 wlan2g     30:xx:xx:xx:xx:64     factory.0x0004
 wlan5g     32:xx:xx:xx:xx:64     factory.0x0004 set 7th bit

TFTP Installation (initramfs image only & recommend):
1. Set local tftp server IP: 192.168.1.254 and NetMask: 255.255.255.0
2. Rename initramfs-kernel.bin to "factory.bin" and put it in the root
   directory of the tftp server. (tftpd64 is a good choice for Windows)
3. Start the TFTP server, plug in the power supply, and wait for the
   system to boot.
4. Backup "firmware" partition and rename it to "firmware.bin", we need
   it to back to stock firmware.
5. Use "fw_printenv" command to list envs.
   If "firmware_select=2" is observed then set u-boot enviroment:
   /# fw_setenv firmware_select 1
6. Apply sysupgrade.bin in OpenWrt LuCI.

Web UI Installation:
1. Apply update by uploading initramfs-factory.bin to the web UI.
2. Use "fw_printenv" command to list envs.
   If "firmware_select=2" is observed then set u-boot enviroment:
   /# fw_setenv firmware_select 1
3. Apply squashfs-sysupgrade.bin in OpenWrt LuCI.

Recovery to stock firmware:
a. Upload "firmware.bin" to OpenWrt /tmp, then execute:
   /# mtd -r write /tmp/firmware.bin firmware
b. We can also write factory image "UploadBrush-bin.img" to firmware
   partition to recovery. Upload image file to /tmp, then execute:
   /# mtd erase firmware
   /# mtd -r write /tmp/UploadBrush-bin.img firmware

How to extract stock firmware image:
  Download stock firmware, then use openssl:
  openssl aes-256-cbc -d -salt -in [Downloaded_Firmware] \
  -out "firmware.tar.tgz" -k QiLunSmartWL

Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2022-11-05 22:38:01 +01:00
Pawel Dembicki
d75ed3726d uboot-layerscape: adjust LS1012A-IOT config and env
In a254279a6c LS1012A-IOT kernel image was switched to FIT.

But u-boot config is lack of FIT and ext4 support.

This patch enables it.

It also fix envs, because for some reason this board need to use "loadaddr"
variable in brackets.

Fixes: #9894
Fixes: a254279a6c ("layerscape: Change to combined rootfs on sd images")
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
2022-11-05 21:12:03 +01:00
Sven Eckelmann
8d3e932b65 uboot-envtools: Fix format of autogenerated sectors
The sector number must be stored in hex. Otherwise, the number (like 16)
will be parsed as hex and any write to the partition will end up with an
error like:

  MTD erase error on /dev/mtd5: Invalid argument

Fixes: 9adfeccd84 ("uboot-envtools: Add support for IPQ806x AP148 and DB149")
Fixes: 54b275c8ed ("ipq40xx: add target")
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@fungible.com>
2022-11-01 18:04:38 +01:00
Edward Chow
50f727b773 ath79: add support for Linksys EA4500 v3
Add support for the Linksys EA4500 v3 wireless router

Hardware
--------
SoC:    Qualcomm Atheros QCA9558
RAM:    128M DDR2 (Winbond W971GG6KB-25)
FLASH:  128M SPI-NAND (Spansion S34ML01G100TFI00)
WLAN:   QCA9558 3T3R 802.11 bgn
        QCA9580 3T3R 802.11 an
ETH:    Qualcomm Atheros QCA8337
UART:   115200 8n1, same as ea4500 v2
USB:	1 single USB 2.0 host port
BUTTON: Reset - WPS
LED:    1x system-LED
        LEDs besides the ethernet ports are controlled
        by the ethernet switch

MAC Address:
 use        address(sample 1)    source
 label      94:10:3e:xx:xx:6f   caldata@cal_macaddr
 lan        94:10:3e:xx:xx:6f   $label
 wan        94:10:3e:xx:xx:6f   $label
 WiFi4_2G   94:10:3e:xx:xx:70   caldata@cal_ath9k_soc
 WiFi4_5G   94:10:3e:xx:xx:71   caldata@cal_ath9k_pci

Installation from Serial Console
------------

1. Connect to the serial console. Power up the device and interrupt
   autoboot when prompted

2. Connect a TFTP server reachable at 192.168.1.0/24
   (e.g. 192.168.1.66) to the ethernet port. Serve the OpenWrt
   initramfs image as "openwrt.bin"

3. To test OpenWrt only, go to step 4 and never execute step 5;
   To install, auto_recovery should be disabled first, and boot_part
   should be set to 1 if its current value is not.

   ath> setenv auto_recovery no
   ath> setenv boot_part 1
   ath> saveenv

4. Boot the initramfs image using U-Boot

   ath> setenv serverip 192.168.1.66
   ath> tftpboot 0x84000000 openwrt.bin
   ath> bootm

5. Copy the OpenWrt sysupgrade image to the device using scp and
   install it like a normal upgrade (with no need to keeping config
   since no config from "previous OpenWRT installation" could be kept
   at all)

   # sysupgrade -n /path/to/openwrt/sysupgrade.bin

Note: Like many other routers produced by Linksys, it has a dual
      firmware flash layout, but because I do not know how to handle
      it, I decide to disable it for more usable space. (That is why
      the "auto_recovery" above should be disabled before installing
      OpenWRT.) If someone is interested in generating factory
      firmware image capable to flash from stock firmware, as well as
      restoring the dual firmware layout, commented-out layout for the
      original secondary partitions left in the device tree may be a
      useful hint.

Installation from Web Interface
------------

1. Login to the router via its web interface (default password: admin)

2. Find the firmware update interface under "Connectivity/Basic"

3. Choose the OpenWrt factory image and click "Start"

4. If the router still boots into the stock firmware, it means that
   the OpenWrt factory image has been installed to the secondary
   partitions and failed to boot (since OpenWrt on EA4500 v3 does not
   support dual boot yet), and the router switched back to the stock
   firmware on the primary partitions. You have to install a stock
   firmware (e.g. 3.1.6.172023, downloadable from
   https://www.linksys.com/support-article?articleNum=148385 ) first
   (to the secondary partitions) , and after that, install OpenWrt
   factory image (to the primary partitions). After successful
   installation of OpenWrt, auto_recovery will be automatically
   disabled and router will only boot from the primary partitions.

Signed-off-by: Edward Chow <equu@openmail.cc>
2022-10-30 23:14:45 +01:00
Chukun Pan
641e4f2f04 mediatek: add Xiaomi Redmi Router AX6000 support
Hardware specification:
  SoC: MediaTek MT7986A 4x A53
  Flash: ESMT F50L1G41LB 128 MB
  RAM: K4A4G165WF-BCWE 512 MB
  Ethernet: 4x 10/100/1000 Mbps
  WiFi1: MT7976GN 2.4GHz ax 4x4
  WiFi2: MT7976AN 5GHz ax 4x4
  Button: Mesh, Reset

Flash instructions:
  1. Gain ssh and serial port access, see the link below:
     https://openwrt.org/toh/xiaomi/redmi_ax6000#installation
  2. Use ssh or serial port to log in to the router, and
     execute the following command:
     nvram set boot_wait=on
     nvram set flag_boot_rootfs=0
     nvram set flag_boot_success=1
     nvram set flag_last_success=1
     nvram set flag_try_sys1_failed=8
     nvram set flag_try_sys2_failed=8
     nvram commit
  3. Set a static ip on the ethernet interface of your computer
     (e.g. default: ip 192.168.31.100, gateway 192.168.31.1)
  4. Download the initramfs image, rename it to initramfs.bin,
     and host it with the tftp server.
  5. Interrupt U-Boot and run these commands:
     setenv mtdparts nmbm0:1024k(bl2),256k(Nvram),256k(Bdata),2048k(factory),2048k(fip),256k(crash),256k(crash_log),112640k(ubi)
     saveenv
     tftpboot initramfs.bin
     bootm
  6. After openwrt boots up, use scp or luci web
     to upload sysupgrade.bin to upgrade.

Revert to stock firmware:
  Restore mtdparts back to default, then use the
  vendor's recovery tool (Windows only).

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2022-10-30 14:30:22 +00:00
Nick Hainke
91fa5992bd uboot-envtools: update to 2022.10
Update to latest version.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-10-22 21:10:34 +02:00
Andre Heider
edbf9f156f
uboot-fritz4040: build FritzBox 7520 variant
Support was added as variant of 7530 (DEVICE_ALT0_*) in:
cb6f4be1 "ipq40xx: add support for FRITZ!Box 7520"

u-boot has a distinct config for it [0], built it.

[0] https://github.com/chunkeey/FritzBox-4040-UBOOT/pull/6

Signed-off-by: Andre Heider <a.heider@gmail.com>
Tested-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
2022-10-20 17:42:06 +02:00
Petr Štetiar
0671e78a65 arm-trusted-firmware-sunxi: add package CPE ID
Common Platform Enumeration (CPE) is a structured naming scheme for
information technology systems, software, and packages.

Suggested-by: Steffen Pfendtner <s.pfendtner@ads-tec.de>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2022-10-19 21:40:23 +02:00
Daniel Golle
84b5b0f88c
uboot-envtools: mediatek/mt7622: don't rely on mapped rootfs
Similar to the implementation for the BPi-R3 use the same logic also
for determining the device to look for the U-Boot environment of the
BPi-R64.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-10-19 20:05:21 +01:00
Daniel Golle
f46355b4d7
uboot-envtools: mediatek_filogic: fix BPi-R3 when no OS is installed
Fix accessing the environment in case no OS is installed on the flash
media selected for boot as this is possible when booting initramfs.
In case of relying on the device specified to be mounted as rootfs to
be present, rather just use the kernel cmdline 'root' variable as a
hint to decide where to read/write the U-Boot environment.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-10-18 20:08:53 +01:00
Daniel Golle
537b423d9f
uboot-mediatek: update to U-Boot 2022.10
Remove patches adding support for MT7621 which have been merged upsteam.
Patches for MT7981 and MT7986 have been merged too, but not in time to
be included in the 2022.10 release, so we have to keep carrying them
until the 2023.01 release.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-10-18 20:08:35 +01:00
Robert Marko
b58f3c573d
arm-trusted-firmware-mvebu: add Methode eDPU support
Provide ATF support for Methode eDPU as well, this makes it easy for
OpenWrt users to update the included U-boot+ATF combo.

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2022-10-17 15:42:50 +02:00
Robert Marko
1324fe468c
uboot-mvebu: add Methode eDPU support
Add support for building for Methode eDPU board, no patches are needed
as board has been upstreamed and is part of the 2022.10-rc releases.

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2022-10-17 15:42:50 +02:00
Robert Marko
4f348a200b
uboot-mvebu: update to 2022.10
Update mvebu U-boot to 2022.10 to avoid backporting patches in order
to support Methode eDPU.

It also allows dropping existing patches as they are all backports.

Tested-by: Andre Heider <a.heider@gmail.com> # espressobin-v3-v5-1gb-2cs
Tested-by: Russell Morris <github@rkmorris.us> # espressobin-v3-v5-1gb-1cs
Tested-by: Josef Schlehofer <pepe.schlehofer@gmail.com> [Turris Omnia]
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2022-10-17 15:42:30 +02:00
Chukun Pan
bb212092df
uboot-mediatek: fixes defconfig typo for UniFi 6 LR
CONFIG_CMD_MTDPART does not exist, fix it.

Fixes: e9ad412 ("uboot-mediatek: add build for Ubiquiti Networks UniFi 6 LR")
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2022-10-11 14:34:11 +02:00
Chukun Pan
b3c81c9f21
uboot-mediatek: fixes defconfig typo for Linksys E8450
CONFIG_CMD_MTDPART does not exist, fix it.

Fixes: ed50004 ("uboot-mediatek: add support for Linksys E8450")
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2022-10-11 14:34:07 +02:00
Josef Schlehofer
185541f50f uboot-mvebu: backport LibreSSL patches for older version of LibreSSL
If you would like to compile the newest version of U-boot together with the stable
OpenWrt version, which does not have LibreSSL >= 3.5, which was updated
in the master branch by commit 5451b03b7c
("tools/libressl: bump to v3.5.3"), then you need these two patches to
fix it. They are backported from U-boot repository.

This should be backported to stable OpenWrt versions.

Reported-by: Michal Vasilek <michal.vasilek@nic.cz>
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
2022-10-02 20:22:54 +02:00
Josef Schlehofer
9c7472950b uboot-mvebu: backport patch to fix compilation on non glibc system
This issue was reported by @paper42, who is using Void Linux with musl
to compile OpenWrt and its packages and found out it is not possible to
compile U-boot for Turris Omnia (neither any other).

It fixes following output:
```
  HOSTCC  tools/kwboot
tools/kwboot.c: In function 'kwboot_tty_change_baudrate':
tools/kwboot.c:662:6: error: 'struct termios' has no member named 'c_ospeed'
  662 |   tio.c_ospeed = tio.c_ispeed = baudrate;
      |      ^
tools/kwboot.c:662:21: error: 'struct termios' has no member named 'c_ispeed'
  662 |   tio.c_ospeed = tio.c_ispeed = baudrate;
      |                     ^
tools/kwboot.c:690:31: error: 'struct termios' has no member named 'c_ospeed'
  690 |  if (!_is_within_tolerance(tio.c_ospeed, baudrate, 3))
      |                               ^
tools/kwboot.c:693:31: error: 'struct termios' has no member named 'c_ispeed'
  693 |  if (!_is_within_tolerance(tio.c_ispeed, baudrate, 3))
      |
```

Tested-by: Michal Vasilek <michal.vasilek@nic.cz>
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
2022-10-02 20:22:54 +02:00
Tomasz Maciej Nowak
100536bd37 arm-trusted-firmware-mvebu: stop cluttering Image Builder
All contents of staging_dir/image are included in Image Builder (IB) in
case some binary needs to be included in final image. But in case of
this package, all sources are stored there and those clutter the final
tarball of IB for no reason. Those sources are not used during image
creation and are just dead weight. To put it in perspective, the IB for
21.02.0 is 158 MiB, 22.03.0-rc6 is 366 MiB and snapshot is over 620 MiB!
To fix it, put them in package build directory, so they won't end up
included in IB tarball.

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Reviewed-by: Andre Heider <a.heider@gmail.com>
2022-09-21 13:06:10 +02:00
Alexandru Gagniuc
01e2184c49 realtek: add support for TP-Link SG2210P
Add support for the TP-Link SG2210P switch. This is an RTL8380 based
switch with eight RJ-45 ports with 802.3af PoE, and two SFP ports.

This device shares the same board with the SG2008P and SG2008. To
model this, declare all the capabilities in the sg2xxx dtsi, and
disable unpopulated on the lower end models.

Specifications:
---------------
 - SoC:       Realtek RTL8380M
 - Flash:     32 MiB SPI flash (Vendor varies)
 - RAM:	      256 MiB (Vendor varies)
 - Ethernet:  8x 10/100/1000 Mbps with PoE (all ports)
              2x SFP ports
 - Buttons:   1x "Reset" button on front panel
 - Power:     53.5V DC barrel jack
 - UART:      1x serial header, unpopulated
 - PoE:       2x TI TPS23861 I2C PoE controller

Works:
------
  - (8) RJ-45 ethernet ports
  - (2) SFP ports (with caveats)
  - Switch functions
  - System LED

Not yet enabled:
----------------
  - Power-over-Ethernet (driver works, but doesn't enable "auto" mode)
  - PoE LEDs

Enabling SFP ports:
-------------------

The SFP port control lines are hardwired, except for tx-disable. These
lines are controller by the RTL8231 in shift register mode. There is
no driver support for this yet.

However, to enable the lasers on SFP1 and SFP2 respectively:

    echo 0x0510ff00 > /sys/kernel/debug/rtl838x/led/led_p_en_ctrl
    echo      0x140 > /sys/kernel/debug/rtl838x/led/led_sw_p_ctrl.26
    echo      0x140 > /sys/kernel/debug/rtl838x/led/led_sw_p_ctrl.24

Install via serial console/tftp:
--------------------------------

The footprints R27 (0201) and R28 (0402) are not populated. To enable
serial console, 50 ohm resistors should be soldered -- any value from
0 ohm to 50 ohm will work. R27 can be replaced by a solder bridge.

The u-boot firmware drops to a TP-Link specific "BOOTUTIL" shell at
38400 baud. There is no known way to exit out of this shell, and no
way to do anything useful.

Ideally, one would trick the bootloader into flashing the sysupgrade
image first. However, if the image exceeds 6MiB in size, it will not
work. The sysupgrade image can also be flashed. To install OpenWrt:

Prepare a tftp server with:
 1. server address: 192.168.0.146
 2. the image as: "uImage.img"

Power on device, and stop boot by pressing any key.
Once the shell is active:
 1. Ground out the CLK (pin 16) of the ROM (U7)
 2. Select option "3. Start"
 3. Bootloader notes that "The kernel has been damaged!"
 4. Release CLK as sson as bootloader thinks image is corrupted.
 5. Bootloader enters automatic recovery -- details printed on console
 6. Watch as the bootloader flashes and boots OpenWrt.

Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
[OpenWrt capitalisation in commit message]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-09-13 09:22:26 +02:00
Petr Štetiar
a575788b8f uboot-mediatek: fix extraneous right parens
Fixes following warning:

 Makefile:310: extraneous text after 'ifeq' directive

Signed-off-by: Petr Štetiar <ynezz@true.cz>
2022-09-13 09:14:09 +02:00
Yoonji Park
c27279dc26 mediatek: add support for ipTIME A6004MX Add basic support for ipTIME A6004MX.
Hardware:
SoC: MediaTek MT7629 Cortex-A7 (ARMv7 1.25GHz, Dual-Core)
RAM: DDR3 128MB
Flash: Macronix MX35LF1GE4AB (SPI-NAND 128MB)
WiFi: MediaTek MT7761N (2.4GHz) / MediaTek MT7762N (5GHz) - no driver
Ethernet: SoC (WAN) / MediaTek MT7531 (LAN x4)
UART: [GND, RX, TX, 3.3V] (115200)

Installation:
- Flash recovery image with TFTP recovery

Revert to stock firmware:
- Flash stock firmware with TFTP recovery

TFTP Recovery method:
1. Unplug the router
2. Hold the reset button and plug in
3. Release when the power LED stops flashing and go off
4. Set your computer IP address manually to 192.168.0.x / 255.255.255.0
5. Flash image with TFTP client to 192.168.0.1

Signed-off-by: Yoonji Park <koreapyj@dcmys.kr>
2022-09-12 01:43:49 +01:00
Michael Pratt
5df1b33298 ath79: add support for Senao Watchguard AP100
FCC ID: U2M-CAP2100AG

WatchGuard AP100 is an indoor wireless access point with
1 Gb ethernet port, dual-band but single-radio wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP300 v2
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC          MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2
  - AR8035-A EPHY       RGMII GbE with PoE+ IN
  - 25 MHz clock
  - 16 MB FLASH         mx25l12805d
  - 2x 64 MB RAM
  - UART console        J11, populated
  - GPIO watchdog       GPIO 16, 20 sec toggle
  - 2 antennas          5 dBi, internal omni-directional plates
  - 5 LEDs              power, eth0 link/data, 2G, 5G
  - 1 button            reset

**MAC addresses:**

  Label has no MAC
  Only one Vendor MAC address in flash at art 0x0

  eth0 ---- *:e5 art 0x0 -2
  phy0 ---- *:e5 art 0x0 -2

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell

    It may be necessary to use a Watchguard router to flash the image to the AP
    and / or to downgrade the software on the AP to access SSH
    For some Watchguard devices, serial console over UART is disabled.

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  reset button has no function at boot time
  only possible with modified uboot environment,
  (see commit message for Watchguard AP300)

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM reliably

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For AR934x series, the PLL registers for eth0
  can be see in the DTSI as 0x2c.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Steve Wheeler <stephenw10@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
9f6e247854 ath79: add support for Senao WatchGuard AP200
FCC ID: U2M-CAP4200AG

WatchGuard AP200 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP600
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - AR9382 WLAN		PCI card 168c:0030, 5 GHz, 2x2, 26dBm
  - AR8035-A EPHY	RGMII GbE with PoE+ IN
  - 25 MHz clock
  - 16 MB FLASH		mx25l12805d
  - 2x 64 MB RAM
  - UART console        J11, populated
  - GPIO watchdog       GPIO 16, 20 sec toggle
  - 4 antennas          5 dBi, internal omni-directional plates
  - 5 LEDs              power, eth0 link/data, 2G, 5G
  - 1 button            reset

**MAC addresses:**

  Label has no MAC
  Only one Vendor MAC address in flash at art 0x0

  eth0 ---- *:be art 0x0 -2
  phy1 ---- *:bf art 0x0 -1
  phy0 ---- *:be art 0x0 -2

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell

    It may be necessary to use a Watchguard router to flash the image to the AP
    and / or to downgrade the software on the AP to access SSH
    For some Watchguard devices, serial console over UART is disabled.

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  reset button has no function at boot time
  only possible with modified uboot environment,
  (see commit message for Watchguard AP300)

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM reliably

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For AR934x series, the PLL registers for eth0
  can be see in the DTSI as 0x2c.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Steve Wheeler <stephenw10@gmail.com>
Tested-by: John Delaney <johnd@ankco.net>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
146aaeafb7 ath79: add support for Senao WatchGuard AP300
FCC ID: Q6G-AP300

WatchGuard AP300 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9558 SOC		MIPS 74kc, 2.4 GHz WMAC, 3x3
  - QCA9880 WLAN	PCI card 168c:003c, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 32 MB FLASH		S25FL512S
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated
  - GPIO watchdog	GPIO 16, 20 sec toggle
  - 6 antennas		5 dBi, internal omni-directional plates
  - 5 LEDs		power, eth0 link/data, 2G, 5G
  - 1 button		reset

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:3c art 0x0
  phy1 ---- *:3d ---
  phy0 ---- *:3e ---

**Serial console access:**

  For this board, its not certain whether UART is possible
  it is likely that software is blocking console access

  the RX line on the board for UART is shorted to ground by resistor R176
  the resistors R175 and R176 are next to the UART RX pin at J10

  however console output is garbage even after this fix

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell access

    downgrade XTM firewall to v2.0.0.1
    downgrade AP300 firmware: v1.0.1
    remove / unpair AP from controller
    perform factory reset with reset button
    connect ethernet to a computer
    login to OEM webpage with default address / pass: wgwap
    enable SSHD in OEM webpage settings
    access root shell with SSH as user 'root'
    modify uboot environment to automatically try TFTP at boot time
    (see command below)

    rename initramfs-kernel.bin to test.bin
    load test.bin over TFTP (see TFTP recovery)
    (optionally backup all mtdblocks to have flash backup)
    perform a sysupgrade with sysupgrade.bin

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  server ip: 192.168.1.101

  reset button seems to do nothing at boot time...
  only possible with modified uboot environment,
  running this command in the root shell:

  fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi'

  and verify that it is correct with

  fw_printenv

  then, before boot, the device will attempt TFTP from 192.168.1.101
  looking for file 'test.bin'

  to return uboot environment to normal:

  fw_setenv bootcmd 'bootm 0x9f0a0000'

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM
  (see installation method 2)

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Alessandro Kornowski <ak@wski.org>
Tested-by: John Wagner <john@wagner.us.org>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Lech Perczak
f1d112ee5a ath79: support Ruckus ZoneFlex 7321
Ruckus ZoneFlex 7321 is a dual-band, single radio 802.11n 2x2 MIMO enterprise
access point. It is very similar to its bigger brother, ZoneFlex 7372.

Hardware highligts:
- CPU: Atheros AR9342 SoC at 533 MHz
- RAM: 64MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi: AR9342 built-in dual-band 2x2 MIMO radio
- Ethernet: single Gigabit Ethernet port through AR8035 gigabit PHY
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7321-U variant.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1 ----------
   |1|x3|4|5|
   ----------

Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

JTAG: Connector H5, unpopulated, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:

------- H5
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------

3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected

Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server,  and removing a single T10 screw,
  but with much less manual steps, and is generally recommended, being
  safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
  work on some rare versions of stock firmware. A more involved, and
  requires installing `mkenvimage` from u-boot-tools package if you
  choose to rebuild your own environment, but can be used without
  disassembly or removal from installation point, if you have the
  credentials.
  If for some reason, size of your sysupgrade image exceeds 13312kB,
  proceed with method [1]. For official images this is not likely to
  happen ever.

[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0x9f040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7321-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7321_fw1_backup.bin
   $ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7321_fw2_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin

[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
   it boots, hold the reset button near Ethernet connectors for 5
   seconds.

1. Connect the device to the network. It will acquire address over DHCP,
   so either find its address using list of DHCP leases by looking for
   label MAC address, or try finding it by scanning for SSH port:

   $ nmap 10.42.0.0/24 -p22

   From now on, we assume your computer has address 10.42.0.1 and the device
   has address 10.42.0.254.

2. Set up a TFTP server on your computer. We assume that TFTP server
   root is at /srv/tftp.

3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
   frmware is pretty ancient and requires enabling HMAC-MD5.

   $ ssh 10.42.0.254 \
   -o UserKnownHostsFile=/dev/null \
   -o StrictHostKeyCheking=no \
   -o MACs=hmac-md5

   Login. User is "super", password is "sp-admin".
   Now execute a hidden command:

   Ruckus

   It is case-sensitive. Copy and paste the following string,
   including quotes. There will be no output on the console for that.

   ";/bin/sh;"

   Hit "enter". The AP will respond with:

   grrrr
   OK

   Now execute another hidden command:

   !v54!

   At "What's your chow?" prompt just hit "enter".
   Congratulations, you should now be dropped to Busybox shell with root
   permissions.

4. Optional, but highly recommended: backup the flash contents before
   installation. At your PC ensure the device can write the firmware
   over TFTP:

   $ sudo touch /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
   $ sudo chmod 666 /srv/tftp/ruckus_zf7321_firmware{1,2}.bin

   Locate partitions for primary and secondary firmware image.
   NEVER blindly copy over MTD nodes, because MTD indices change
   depending on the currently active firmware, and all partitions are
   writable!

   # grep rcks_wlan /proc/mtd

   Copy over both images using TFTP, this will be useful in case you'd
   like to return to stock FW in future. Make sure to backup both, as
   OpenWrt uses bot firmwre partitions for storage!

   # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7321_firmware1.bin -p 10.42.0.1
   # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7321_firmware2.bin -p 10.42.0.1

   When the command finishes, copy over the dump to a safe place for
   storage.

   $ cp /srv/tftp/ruckus_zf7321_firmware{1,2}.bin ~/

5. Ensure the system is running from the BACKUP image, i.e. from
   rcks_wlan.bkup partition or "image 2". Otherwise the installation
   WILL fail, and you will need to access mtd0 device to write image
   which risks overwriting the bootloader, and so is not covered here
   and not supported.

   Switching to backup firmware can be achieved by executing a few
   consecutive reboots of the device, or by updating the stock firmware. The
   system will boot from the image it was not running from previously.
   Stock firmware available to update was conveniently dumped in point 4 :-)

6. Prepare U-boot environment image.
   Install u-boot-tools package. Alternatively, if you build your own
   images, OpenWrt provides mkenvimage in host staging directory as well.
   It is recommended to extract environment from the device, and modify
   it, rather then relying on defaults:

   $ sudo touch /srv/tftp/u-boot-env.bin
   $ sudo chmod 666 /srv/tftp/u-boot-env.bin

   On the device, find the MTD partition on which environment resides.
   Beware, it may change depending on currently active firmware image!

   # grep u-boot-env /proc/mtd

   Now, copy over the partition

   # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1

   Store the stock environment in a safe place:

   $ cp /srv/tftp/u-boot-env.bin ~/

   Extract the values from the dump:

   $ strings u-boot-env.bin | tee u-boot-env.txt

   Now clean up the debris at the end of output, you should end up with
   each variable defined once. After that, set the bootcmd variable like
   this:

   bootcmd=bootm 0x9f040000

   You should end up with something like this:

bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
mtdids=nor0=ar7100-nor0
bootdelay=2
ethact=eth0
filesize=78a000
fileaddr=81000000
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=10.0.0.1
serverip=10.0.0.5
stdin=serial
stdout=serial
stderr=serial

   These are the defaults, you can use most likely just this as input to
   mkenvimage.

   Now, create environment image and copy it over to TFTP root:

   $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
   $ sudo cp u-boot-env.bin /srv/tftp

   This is the same image, gzipped and base64-encoded:

H4sIAAAAAAAAA+3QQW7TQBQAUF8EKRtQI6XtJDS0VJoN4gYcAE3iCbWS2MF2Sss1ORDYqVq6YMEB3rP0
Z/7Yf+aP3/56827VNP16X8Zx3E/Cw8dNuAqDYlxI7bcurpu6a3Y59v3jlzCbz5eLECbt8HbT9Y+HHLvv
x9TdbbpJVVd9vOxWVX05TotVOpZt6nN8qilyf5fKso3hIYTb8JDSEFarIazXQyjLIeRc7PvykNq+iy+T
1F7PQzivmzbcLpYftmfH87G56Wz+/v18sT1r19vu649dqi/2qaqns0W4utmelalPm27I/lac5/p+OluO
NZ+a1JaTz8M3/9hmtT0epmMjVdnF8djXLZx+TJl36TEuTlda93EYQrGpdrmrfuZ4fZPGHzjmp/vezMNJ
MV6n6qumPm06C+MRZb6vj/v4Mk/7HJ+6LarDqXweLsZnXnS5vc9tdXheWRbd0GIdh/Uq7cakOfavsty2
z1nxGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAD+1x9eTkHLAAAEAA==

7. Perform actual installation. Copy over OpenWrt sysupgrade image to
   TFTP root:

   $ sudo cp openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin /srv/tftp

   Now load both to the device over TFTP:

   # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
   # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin -g 10.42.0.1

   Vverify checksums of both images to ensure the transfer over TFTP
   was completed:

   # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin

   And compare it against source images:

   $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin

   Locate MTD partition of the primary image:

   # grep rcks_wlan.main /proc/mtd

   Now, write the images in place. Write U-boot environment last, so
   unit still can boot from backup image, should power failure occur during
   this. Replace MTD placeholders with real MTD nodes:

   # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
   # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>

   Finally, reboot the device. The device should directly boot into
   OpenWrt. Look for the characteristic power LED blinking pattern.

   # reboot -f

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Boot into OpenWrt initramfs as for initial installation. To do that
   without disassembly, you can write an initramfs image to the device
   using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
   fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
   before installation:
   mtd write ruckus_zf7321_fw1_backup.bin /dev/mtd1
   mtd write ruckus_zf7321_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.

Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
- The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid   the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
  execute the following command before booting:
  mw.l 1804006c 40
  And also you need to disable the reset button in device tree if you
  intend to debug Linux, because reset button on GPIO0 shares the TCK
  pin.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-09-11 01:36:25 +02:00
Lech Perczak
59cb4dc91d ath79: support Ruckus ZoneFlex 7372
Ruckus ZoneFlex 7372 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.

Ruckus ZoneFlex 7352 is also supported, lacking the 5GHz radio part.

Hardware highligts:
- CPU: Atheros AR9344 SoC at 560 MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344 built-in 2x2 MIMO radio
- Wi-Fi 5Ghz: AR9582 2x2 MIMO radio (Only in ZF7372)
- Antennas:
  - Separate internal active antennas with beamforming support on both
    bands with 7 elements per band, each controlled by 74LV164 GPIO
    expanders, attached to GPIOs of each radio.
  - Two dual-band external RP-SMA antenna connections on "7372-E"
    variant.
- Ethernet 1: single Gigabit Ethernet port through AR8035 gigabit PHY
- Ethernet 2: single Fast Ethernet port through AR9344 built-in switch
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on "-U" variants.

The same image should support:
- ZoneFlex 7372E (variant with external antennas, without beamforming
  capability)
- ZoneFlex 7352 (single-band, 2.4GHz-only variant).

which are based on same baseboard (codename St. Bernard),
with different populated components.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1
---
|5|
---
|4|
---
|3|
---
|x|
---
|1|
---

Pin 5 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

JTAG: Connector H2, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:

------- H2
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------

3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected

Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server,  and removing a single T10 screw,
  but with much less manual steps, and is generally recommended, being
  safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
  work on some rare versions of stock firmware. A more involved, and
  requires installing `mkenvimage` from u-boot-tools package if you
  choose to rebuild your own environment, but can be used without
  disassembly or removal from installation point, if you have the
  credentials.
  If for some reason, size of your sysupgrade image exceeds 13312kB,
  proceed with method [1]. For official images this is not likely to
  happen ever.

[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0x9f040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7372-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7372_fw1_backup.bin
   $ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7372_fw2_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin

[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
   it boots, hold the reset button near Ethernet connectors for 5
   seconds.

1. Connect the device to the network. It will acquire address over DHCP,
   so either find its address using list of DHCP leases by looking for
   label MAC address, or try finding it by scanning for SSH port:

   $ nmap 10.42.0.0/24 -p22

   From now on, we assume your computer has address 10.42.0.1 and the device
   has address 10.42.0.254.

2. Set up a TFTP server on your computer. We assume that TFTP server
   root is at /srv/tftp.

3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
   frmware is pretty ancient and requires enabling HMAC-MD5.

   $ ssh 10.42.0.254 \
   -o UserKnownHostsFile=/dev/null \
   -o StrictHostKeyCheking=no \
   -o MACs=hmac-md5

   Login. User is "super", password is "sp-admin".
   Now execute a hidden command:

   Ruckus

   It is case-sensitive. Copy and paste the following string,
   including quotes. There will be no output on the console for that.

   ";/bin/sh;"

   Hit "enter". The AP will respond with:

   grrrr
   OK

   Now execute another hidden command:

   !v54!

   At "What's your chow?" prompt just hit "enter".
   Congratulations, you should now be dropped to Busybox shell with root
   permissions.

4. Optional, but highly recommended: backup the flash contents before
   installation. At your PC ensure the device can write the firmware
   over TFTP:

   $ sudo touch /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
   $ sudo chmod 666 /srv/tftp/ruckus_zf7372_firmware{1,2}.bin

   Locate partitions for primary and secondary firmware image.
   NEVER blindly copy over MTD nodes, because MTD indices change
   depending on the currently active firmware, and all partitions are
   writable!

   # grep rcks_wlan /proc/mtd

   Copy over both images using TFTP, this will be useful in case you'd
   like to return to stock FW in future. Make sure to backup both, as
   OpenWrt uses bot firmwre partitions for storage!

   # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7372_firmware1.bin -p 10.42.0.1
   # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7372_firmware2.bin -p 10.42.0.1

   When the command finishes, copy over the dump to a safe place for
   storage.

   $ cp /srv/tftp/ruckus_zf7372_firmware{1,2}.bin ~/

5. Ensure the system is running from the BACKUP image, i.e. from
   rcks_wlan.bkup partition or "image 2". Otherwise the installation
   WILL fail, and you will need to access mtd0 device to write image
   which risks overwriting the bootloader, and so is not covered here
   and not supported.

   Switching to backup firmware can be achieved by executing a few
   consecutive reboots of the device, or by updating the stock firmware. The
   system will boot from the image it was not running from previously.
   Stock firmware available to update was conveniently dumped in point 4 :-)

6. Prepare U-boot environment image.
   Install u-boot-tools package. Alternatively, if you build your own
   images, OpenWrt provides mkenvimage in host staging directory as well.
   It is recommended to extract environment from the device, and modify
   it, rather then relying on defaults:

   $ sudo touch /srv/tftp/u-boot-env.bin
   $ sudo chmod 666 /srv/tftp/u-boot-env.bin

   On the device, find the MTD partition on which environment resides.
   Beware, it may change depending on currently active firmware image!

   # grep u-boot-env /proc/mtd

   Now, copy over the partition

   # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1

   Store the stock environment in a safe place:

   $ cp /srv/tftp/u-boot-env.bin ~/

   Extract the values from the dump:

   $ strings u-boot-env.bin | tee u-boot-env.txt

   Now clean up the debris at the end of output, you should end up with
   each variable defined once. After that, set the bootcmd variable like
   this:

   bootcmd=bootm 0x9f040000

   You should end up with something like this:

bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
bootdelay=2
mtdids=nor0=ar7100-nor0
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
ethact=eth0
filesize=1000000
fileaddr=81000000
ipaddr=192.168.0.7
serverip=192.168.0.51
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
stdin=serial
stdout=serial
stderr=serial

   These are the defaults, you can use most likely just this as input to
   mkenvimage.

   Now, create environment image and copy it over to TFTP root:

   $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
   $ sudo cp u-boot-env.bin /srv/tftp

   This is the same image, gzipped and base64-encoded:

H4sIAAAAAAAAA+3QTW7TQBQAYB+AQ2TZSGk6Tpv+SbNBrNhyADSJHWolsYPtlJaDcAWOCXaqQhdIXOD7
Fm/ee+MZ+/nHu58fV03Tr/dFHNf9JDzdbcJVGGRjI7Vfurhu6q7ZlbHvnz+FWZ4vFyFM2mF30/XPhzJ2
X4+pe9h0k6qu+njRrar6YkyzVToWberL+HImK/uHVBRtDE8h3IenlIawWg1hvR5CUQyhLE/vLcpdeo6L
bN8XVdHFumlDTO1NHsL5mI/9Q2r7Lv5J3uzeL5bX27Pj+XjRdJZfXuaL7Vm73nafv+1SPd+nqp7OFuHq
dntWpD5tuqH6e+K8rB+ns+V45n2T2mLyYXjmH9estsfD9DTSuo/DErJNtSu76vswbjg5NU4D3752qsOp
zu8W8/z6dh7mN1lXto9lWx3eNJd5Ng5V9VVTn2afnSYuysf6uI9/8rQv48s3Z93wn+o4XFWl3Vg0x/5N
Vbbta5X9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAID/+Q2Z/B7cAAAEAA==

7. Perform actual installation. Copy over OpenWrt sysupgrade image to
   TFTP root:

   $ sudo cp openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin /srv/tftp

   Now load both to the device over TFTP:

   # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
   # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin -g 10.42.0.1

   Verify checksums of both images to ensure the transfer over TFTP
   was completed:

   # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin

   And compare it against source images:

   $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin

   Locate MTD partition of the primary image:

   # grep rcks_wlan.main /proc/mtd

   Now, write the images in place. Write U-boot environment last, so
   unit still can boot from backup image, should power failure occur during
   this. Replace MTD placeholders with real MTD nodes:

   # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
   # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>

   Finally, reboot the device. The device should directly boot into
   OpenWrt. Look for the characteristic power LED blinking pattern.

   # reboot -f

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Boot into OpenWrt initramfs as for initial installation. To do that
   without disassembly, you can write an initramfs image to the device
   using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
   fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
   before installation:
   mtd write ruckus_zf7372_fw1_backup.bin /dev/mtd1
   mtd write ruckus_zf7372_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.

Quirks and known issues:
- This is first device in ath79 target to support link state reporting
  on FE port attached trough the built-in switch.
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
  The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid   the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
  execute the following command before booting:
  mw.l 1804006c 40
  And also you need to disable the reset button in device tree if you
  intend to debug Linux, because reset button on GPIO0 shares the TCK
  pin.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014
- Stock firmware has beamforming functionality, known as BeamFlex,
  using active multi-segment antennas on both bands - controlled by
  RF analog switches, driven by a pair of 74LV164 shift registers.
  Shift registers used for each radio are connected to GPIO14 (clock)
  and GPIO15 of the respective chip.
  They are mapped as generic GPIOs in OpenWrt - in stock firmware,
  they were most likely handled directly by radio firmware,
  given the real-time nature of their control.
  Lack of this support in OpenWrt causes the antennas to behave as
  ordinary omnidirectional antennas, and does not affect throughput in
  normal conditions, but GPIOs are available to tinker with nonetheless.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-09-11 01:36:25 +02:00
Rosen Penev
f4eef5f2a1 ramips: add support for Linksys E7350
Linksys E7350 is an 802.11ax (Wi-Fi 6) router, based on MediaTek
MT7621A.

Specifications:
- SoC: MT7621 (880MHz, 2 Cores)
- RAM: 256 MB
- Flash: 128 MB NAND
- Wi-Fi:
  - MT7915D: 2.4/5 GHz (DBDC)
- Ethernet: 5x 1GiE MT7530
- USB: 1x USB 3.0
- UART: J4 (57600 baud)
  - Pinout: [3V3] (TXD) (RXD) (blank) (GND)

Notes:
* This device has a dual-boot partition scheme, but this firmware works
  only on boot partition 1.

Installation:

Upload the generated factory.bin image via the stock web firmware
updater.

Signed-off-by: Rosen Penev <rosenp@gmail.com>
2022-09-11 01:30:11 +02:00
Rosen Penev
26a6a6a60b ramips: add support for Belkin RT1800
Belkin RT1800 is an 802.11ax (Wi-Fi 6) router, based on MediaTek
MT7621A.

Specifications:
- SoC: MT7621 (880MHz, 2 Cores)
- RAM: 256 MB
- Flash: 128 MB NAND
- Wi-Fi:
  - MT7915D: 2.4/5 GHz (DBDC)
- Ethernet: 5x 1GiE MT7530
- USB: 1x USB 3.0
- UART: J4 (57600 baud)
  - Pinout: [3V3] (TXD) (RXD) (blank) (GND)

Notes:
* This device has a dual-boot partition scheme, but this firmware works
  only on boot partition 1.

Installation:

Upload the generated factory.bin image via the stock web firmware
updater.

Signed-off-by: Rosen Penev <rosenp@gmail.com>
2022-09-11 01:30:11 +02:00
Andrey Butirsky
5806914794 ramips: add support for Kroks Rt-Cse SIM Injector DS
Aka Kroks Rt-Cse5 UW DRSIM (KNdRt31R16), ID 1958:
https://kroks.ru/search/?text=1958
See Kroks OpenWrt fork for support of other models:
https://github.com/kroks-free/openwrt

Device specs:
- CPU: MediaTek MT7628AN
- Flash: 16MB SPI NOR
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 5x 10/100 Mbps
- 2.4 GHz: b/g/n SoC
- USB: 1x
- SIM-reader: 2x (driven by a dedicated chip with it's own firmware)
- Buttons: reset
- LEDs: 1x Power, 1x Wi-Fi, 12x others (SIM status, Internet, etc.)

Flashing:
- sysupgrade image via stock firmware WEB interface, IP: 192.168.1.254
- U-Boot launches a WEB server if Reset button is held during power up,
  IP: 192.168.1.1

MAC addresses as verified by OEM firmware:
vendor   OpenWrt   source
LAN      eth0      factory 0x4 (label)
2g       wlan0     label

Signed-off-by: Andrey Butirsky <butirsky@gmail.com>
2022-09-11 01:30:11 +02:00
Andrey Butirsky
0a79c77a4e ramips: add support for Kroks Rt-Pot mXw DS RSIM router
Aka "Kroks KNdRt31R19".
Ported from v19.07.8 of OpenWrt fork:
see https://github.com/kroks-free/openwrt
for support of other models.

Device specs:
- CPU: MediaTek MT7628AN
- Flash: 16MB SPI NOR
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 1x 10/100 Mbps
- 2.4 GHz: b/g/n SoC
- mPCIe: 1x (usually equipped with an LTE modem by vendor)
- Buttons: reset
- LEDs: 1x Modem, 1x Injector, 1x Wi-Fi, 1x Status

Flashing:
- sysupgrade image via stock firmware WEB interface.
- U-Boot launches a WEB server if Reset button is held during power up.
Server IP: 192.168.1.1

SIM card switching:
The device supports up to 4 SIM cards - 2 locally on board and 2 on
remote SIM-injector.
By default, 1-st local SIM is active.
To switch to e.g. 1-st remote SIM:
echo 0 > /sys/class/gpio/modem1power/value
echo 0 > /sys/class/gpio/modem1sim1/value
echo 1 > /sys/class/gpio/modem1rsim1/value
echo 1 > /sys/class/gpio/modem1power/value

MAC addresses as verified by OEM firmware:
vendor   OpenWrt   source
LAN      eth0      factory 0x4 (label)
2g       wlan0     label

Signed-off-by: Kroks <dev@kroks.ru>
[butirsky@gmail.com: port to master; drop dts-v1]
Signed-off-by: Andrey Butirsky <butirsky@gmail.com>
2022-09-11 01:30:11 +02:00
Andreas Böhler
5f8c86e654 realtek: add support for TP-Link SG2452P v4 aka T1600G-52PS v4
This is an RTL8393-based switch with 802.3af on all 48 ports.

Specifications:
---------------
 * SoC:       Realtek RTL8393M
 * Flash:     32 MiB SPI flash
 * RAM:       256 MiB
 * Ethernet:  48x 10/100/1000 Mbps with PoE+
 * Buttons:   1x "Reset" button, 1x "Speed" button
 * UART:      1x serial header, unpopulated
 * PoE:       12x TI TPS23861 I2C PoE controller, 384W PoE budget
 * SFP:       4 SFP ports

Works:
------
  - (48) RJ-45 ethernet ports
  - Switch functions
  - Buttons
  - All LEDs on front panel except port LEDs
  - Fan monitoring and basic control

Not yet enabled:
----------------
  - PoE - ICs are not in AUTO mode, so the kernel driver is not usable
  - Port LEDs
  - SFP cages

Install via web interface:
-------------------------

Not supported at this time.

Install via serial console/tftp:
--------------------------------

The U-Boot firmware drops to a TP-Link specific "BOOTUTIL" shell at
38400 baud. There is no known way to exit out of this shell, and no
way to do anything useful.

Ideally, one would trick the bootloader into flashing the sysupgrade
image first. However, if the image exceeds 6MiB in size, it will not
work. To install OpenWRT:

Prepare a tftp server with:
 1. server address: 192.168.0.146
 2. the image as: "uImage.img"

Power on device, and stop boot by pressing any key.
Once the shell is active:
 1. Ground out the CLK (pin 16) of the ROM (U6)
 2. Select option "3. Start"
 3. Bootloader notes that "The kernel has been damaged!"
 4. Release CLK as soon as bootloader thinks image is corrupted.
 5. Bootloader enters automatic recovery -- details printed on console
 6. Watch as the bootloader flashes and boots OpenWRT.

Blind install via tftp:
-----------------------

This method works when it's not feasible to install a serial header.

Prepare a tftp server with:
 1. server address: 192.168.0.146
 2. the image as: "uImage.img"
 3. Watch network traffic (tcpdump or wireshark works)
 4. Power on the device.
 5. Wait 1-2 seconds then ground out the CLK (pin 16) of the ROM (U6)
 6. When 192.168.0.30 makes tftp requests, release pin 16
 7. Wait 2-3 minutes for device to auto-flash and boot OpenWRT

Signed-off-by: Andreas Böhler <dev@aboehler.at>
2022-09-10 22:13:52 +02:00
Daniel Golle
f7dbdcfa54 mediatek: filogic: use WPS button instead of RST on BPi-R3
The GPIO used for the RST button is also used for PCIe-CLKREQ signal.
Hence it cannot be used as button signal if PCIe is also used.
Wire up WPS button to serve as KEY_RESTART in Linux and "reset" button
in U-Boot.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-09-10 19:20:26 +01:00
Tomasz Maciej Nowak
80baffd2aa ipq40xx: add support for Pakedge WR-1
Pakedge WR-1 is a dual-band wireless router.

Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 32 MB SPI NOR
WIFI: 2.4 GHz 2T2R integrated
      5 GHz 2T2R integrated
Ethernet: 5x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
LEDS: 8x (3 GPIO controlled, 5 connected to switch)
Buttons: 1x GPIO controlled
UART: pin header J5
      1. 3.3V, 2. GND, 3. TX, 4. RX
      baud: 115200, parity: none, flow control: none

Installation
1. Rename initramfs image to:
   openwrt-ipq806x-qcom-ipq40xx-ap.dk01.1-c1-fit-uImage-initramfs.itb
   and copy it to USB flash drive with FAT32 file system.
2. Connect USB flash drive to the router and apply power while pressing
   reset button. Hold the button, on the lates bootloader version, when
   Power and WiFi-5 LEDs will start blinking release it. For the older
   bootloader holding it for 15 seconds should suffice.
3. Now the router boots the initramfs image, at some point (close to one
   minute) the Power LED will start blinking, when stops, router is fully
   booted.
4. Connect to one of LAN ports and use SSH to open the shell at
   192.168.1.1.
5. ATTENTION! now backup the mtd8 and mtd9 partitions, it's necessary if,
   at some point, You want to go back to original firmware. The firmware
   provided by manufacturer on its site is encrypted and U-Boot accepts
   only decrypted factory images, so there's no way to restore original
   firmware.
6. If the backup is prepared, transfer the sysupgrade image to the router
   and use 'sysupgrade' command to flash it.
7. After successful flashing router will reboot. At some point the Power
   LED will start blinking, wait till it stops, then router is ready for
   configuration.

Additional information
U-Boot command line is password protected. Password is unknown.

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2022-09-07 21:21:38 +02:00
Daniel Golle
292146fda6 arm-trusted-firmware-tools: update to v2.7
Update host build of fiptool and use the new python sptool.py instead
of the previous sptool executable.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-09-07 04:22:40 +01:00
Nick Hainke
f1b5ed3143 uboot-envtools: update to 2022.07
Update to latest version.

Remove upstreamed patches:
- 100-fw_env-make-flash_io-take-buffer-as-an-argument.patch
- 101-fw_env-simplify-logic-code-paths-in-the-fw_env_open.patch
- 102-fw_env-add-fallback-to-Linux-s-NVMEM-based-access.patch

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-09-02 23:13:53 +02:00
Claudiu Beznea
e9f12931e6 at91bootstrap: use sdmmc0 as booting media for sama5d27_som1_ek
Commit 0b7c66c ("at91bootstrap: add sama5d27_som1_eksd1_uboot as
default defconfig") changed default booting media for sama5d27_som1_ek
board w/o any reason. Changed it back to sdmmc0 as it is for all the
other Microchip supported distributions for this board (Buildroot,
Yocto Project). The initial commit cannot be cleanly reverted.

Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
2022-09-02 20:43:51 +02:00
Claudiu Beznea
9a49788008 uboot-at91: use sdmmc0 as booting media for sama5d27_som1_ek
Commit adc69fe (""uboot-at91: changed som1 ek default defconfigs")
changed the booting media to sdmmc1 as default booting w/o any reason.
The Microchip releases for the rest of supported distributions (Buildroot,
Yocto Project) uses sdmmc0 as default booting media for this board.
Thus change it back to sdmmc0. With this remove references to sdmmc1
config. The initial commit cannot be cleanly reverted.

Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
2022-09-02 20:43:51 +02:00
Daniel Golle
11a6021866 arm-trusted-firmware-mediatek: update to sources of 2022-08-31
Drop downstream patches which have been replaced with equivalent
upstream changes.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-31 21:10:39 +01:00
Daniel Golle
0ea329fec4 uboot-mediatek: replace patches with updated versions
Weijie Gao has submitted an updated version of the patchset adding
support for MT7986 and MT7981 to U-Boot. Use that v2 patchset.

Changes of v2:
- Add cpu driver for print_cpuinfo()
- Fix NULL pointer dereference in mtk_image
  (was already fixed in OpenWrt)
- Fix coding style
- Minor changes

https://patchwork.ozlabs.org/project/uboot/list/?series=316148

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-31 14:02:45 +01:00
Daniel Golle
38f7e932a5 uboot-envtools: add support for Bananapi BPi-R3
Create new mediatek_filogic file and add entries for environment on
MMC, UBI and NOR for the Bananapi BPi-R3.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-30 13:36:28 +01:00
Daniel Golle
c2bc1bd99a uboot-mediatek: add support for Bananapi BPi-R3
The Bananapi BPi-R3 board can boot from eMMC, SD card, SPI-NAND and
SPI-NOR, depending on the position of switches controlling the BOOTSEL
bootstrap pins as we as hard-wired chip-select lines. The position of the
chip-select switch SW6 decides whether either SD card or eMMC can be
accessed, SW5 selects either SPI-NAND or SPI-NOR.

Generate U-Boot for all 4 boot options. The SD card version allows
installation to SPI-NAND and SPI-NOR (eMMC cannot be accessed
simultanously with the SD card), the SPI-NAND version allows installation
to eMMC.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-30 13:36:28 +01:00
Daniel Golle
0a18456ffc uboot-mediatek: no compression means IH_COMP_NONE
Treat missing compression node in FIT image as IH_COMP_NONE.
This is implicentely already happening in most places, but for now
was still triggering an annoying warning about initramfs compression
being obsolete despite compression note being absent.
Fix this.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 20:33:15 +01:00
Daniel Golle
20eee0d6cb uboot-mediatek: mt7986: add generic reset button support
Allow resetting environment to default values when defined button
exists in device tree.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 20:33:15 +01:00
Daniel Golle
85581cc89a uboot-mediatek: mt7986: support PSTORE/ramoops
Assign reserved memory for PSTORE/ramoops for the MT7986 SoC.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 20:33:15 +01:00
Daniel Golle
d3a337a592 uboot-mediatek: additions from MTK SDK
* updated SNAND/SNFI driver brings support for MT7981
 * add support for MediaTek NAND Memory bad Block Management (NMBM)
   (not used for any boards atm, but could be useful in future)
 * wire up NMBM support for MT7622, MT7629, MT7981 and MT7986
 * replace some local patches with updated version from SDK
 * bring some legacy precompiler symbols which haven't been converted
   into Kconfig symbols in U-Boot 2022.07, remove when bumbping to
   U-Boot 2022.10:
   100-28-include-configs-mt7986-h-from-SDK.patch

Source: https://github.com/mtk-openwrt/u-boot
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 20:33:15 +01:00
Daniel Golle
c09eb08dad uboot-mediatek: add support for MT798x platforms
Import pending patches to support the upcoming Filogic platforms.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 20:33:15 +01:00
Daniel Golle
a4933cdd12 uboot-mediatek: add support for compressed BL3/FIP image
MediaTek's ARM Trusted Firmware v2.7+ allows the images inside a FIP
structure to be compressed. Make use of that for boards with NOR flash.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 20:33:15 +01:00
Daniel Golle
d118cbdfec uboot-mediatek: fix factory reset on UBI
Truncating a UBI volume using `ubi write 0x0 volname 0x0` results in
segfault on newer U-Boot. Write 1MB of 0s instead.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 20:33:15 +01:00
Daniel Golle
a1b263698c arm-trusted-firmware-mediatek: update to v2.7+ from MediaTek
The updated sources bring support for the MT798x Filogic SoC family.

Add builds for MT7986 with most supported storage types, each for DDR3
and DDR4 configurations.

A better solution for skipping bad blocks on SPI-NAND connected via the
SNFI interface has been implemented upstream, so drop local patch.
Add pending patches [1] and [2] to fix boot on existing MT7622 boards.

Tested on BananaPi BPi-R64 (SDMMC, eMMC, SPI-NAND), Linksys E8450 and
Ubiquiti UniFi 6 LR as well as upcoming Bananapi BPi-R3 board for which
support will be added in future patches.

[1]: https://github.com/mtk-openwrt/arm-trusted-firmware/pulls/#3
[2]: https://github.com/mtk-openwrt/arm-trusted-firmware/pulls/#4

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 19:05:58 +01:00
Daniel Golle
14ce999924 trusted-firmware-a.mk: pass DTC path similar to u-boot.mk
Instead of relying on dtc being provided by the build host use the
dtc from $(LINUX_DIR) similar to how it's done also in u-boot.mk.
For this to work kernel.mk now needs to be included before
trusted-firmware-a.mk, add this include to all affected packages.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 19:01:55 +01:00
Daniel Golle
f0adf253fd uboot-envtools: mt7622: use 4k sectors for UniFi 6 LR (ubootmod)
Use 4k sectors when accessing the U-Boot environment on the 64MiB
SPI-NOR flash chip found in the UniFi 6 LR. The speeds up environment
write access as only 4kB instead of 64kB have to be written.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 16:11:09 +01:00
Daniel Golle
0bc8889e7b uboot-mediatek: fix Ubiquiti UniFi 6 LR U-Boot mod
Image names as well as the calculation of the padded image size did
not work as intended. Fix that.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-28 16:11:09 +01:00
Daniel Groth
8c04a5c456 realtek: d-link: add support for dgs-1210-10mp
General hardware info:
-------------------------------------------------------------------------------

D-Link DGS-1210-10MP is a switch with 8 ethernet ports and 2 SFP ports, all
ports Gbit capable. It is based on a RTL8380 SoC @ 500MHz, DRAM 128MB and
32MB flash. All ethernet ports are 802.3af/at PoE capable
with a total PoE power budget of 130W.

File info:
-------------------------------------------------------------------------------
The dgs-1210-10mp is very similar to dgs-1210-10p so I used that as a start.

rtl838x.mk:
 - Removed lua-rs232 package since it was a leftover from the old rtl83xx-poe
   package.
 - Updated the soc to 8380.
 - Specified device variant: F.
 - Installed the new realtek-poe package.

rtl8380_d-link_dgs-1210-10mp.dts:
 - Moved dgs-1210 family common parts and non PoE related ports on rtl8231
   to the new device tree dtsi files.

Serial connection:
-------------------------------------------------------------------------------
The UART for the SoC (115200 8N1) is available close to the front panel next
to the LED/key card connector via unpopulated standard 0.1" pin header
marked j4. Pin1 is marked with arrow and square.

Pin 1: Vcc 3,3V
Pin 2: Tx
Pin 3: Rx
Pin 4: Gnd

Installation with TFTP from u-boot
-------------------------------------------------------------------------------
I originally used the install procedure:
'OpenWrt installation using the TFTP method and serial console access' found
in the device wiki for the dgs-1210-16.
< https://openwrt.org/toh/d-link/dgs-1210-16_g1#openwrt_installation_using
_the_tftp_method_and_serial_console_access >

About the realtek-poe package
-------------------------------------------------------------------------------
The realtek-poe package is installed but there isn't any automatic PoE config
setting at this time so for now the PoE config must be edited manually.

Original OEM hardware/firmware data at first installation
-------------------------------------------------------------------------------
It has been installed, developed, and tested on a device with these OEM
hardware and firmware versions.

- U-boot: 2011.12.(2.1.5.67086)-Candidate1 (Jun 22 2020 - 15:03:58)
- Boot version: 1.01.001
- Firmware version: 6.20.007
- Hardware version: F1

Things to be done when support are developed
-------------------------------------------------------------------------------
 - realtek-poe has been included in OpenWrt but the automatic config handling
   has not been solved yet so in the future there will probably be some minor
   updates for this device to handle the poe config.
 - LED link_act and poe are per function supposed to be connected to the PoE
   system.
   But some software development is also needed to make this LED work and
   shift the LED array between act and poe indication and to shift the mode
   lights with mode key.
 - LED poe_max should probably be used as straight forward error output from
   the realtek-poe package error handling. But no code has been written for
   this.
 - SFP is currently not hot pluggable. Development is under progress to get
   working I2C communication with SFP and have them hot pluggable.
   When any device in the dgs-1210 family gets this working, I expect it
   should be possible to implement the same solution in this device.

Signed-off-by: Daniel Groth <flygarn12@gmail.com>
[Capitalisation of abbreviations, DEVICE_VARIANT and update filenames,
device compatibles on single line]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-08-20 09:02:44 +02:00
Mikhail Zhilkin
85b41cbd3b ramips: add support for Beeline SmartBox TURBO
Beeline SmartBox TURBO is a wireless WiFi 5 router manufactured by
Sercomm company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 256 MiB, Micron MT29F2G08ABAGA3W
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
Button: 2 buttons (Reset & WPS)
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot

Installation
-----------------
1.  Login to the router web interface (admin:admin)
2.  Navigate to Settings -> WAN -> Add static IP interface (e.g.
    10.0.0.1/255.255.255.0)
3.  Navigate to Settings -> Remote cotrol -> Add SSH, port 22,
    10.0.0.0/255.255.255.0 and interface created before
4.  Change IP of your client to 10.0.0.2/255.255.255.0 and connect the
    ethernet cable to the WAN port of the router
5.  Connect to the router using SSH shell (SuperUser:SNxxxxxxxxxx, where
    SNxxxxxxxxxx is the serial number from the backplate label)
6.  Run in SSH shell:
       sh
7.  Make a mtd backup (optional, see related section)
8.  Change bootflag to Sercomm1 and reboot:
       printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
       reboot
9.  Login to the router web interface (admin:admin)
10. Remove dots from the OpenWrt factory image filename
11. Update firmware via web using OpenWrt factory image

Revert to stock
---------------
1. Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
      printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
2. Optional: Update with any stock (Beeline) firmware if you want to
   overwrite OpenWrt in Slot 0 completely.

mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
      cd /tmp
      for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
      tftp -l mtd$i -p 10.0.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
      tftp -l mtd.md5 -p 10.0.0.2

MAC Addresses
-------------
+-----+-----------+---------+
| use | address   | example |
+-----+-----------+---------+
| LAN | label     | *:54    |
| WAN | label + 1 | *:55    |
| 2g  | label + 4 | *:58    |
| 5g  | label + 5 | *:59    |
+-----+-----------+---------+
The label MAC address was found in Factory 0x21000

Co-developed-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-08-13 20:52:37 +02:00
Alexandru Gagniuc
6d5873a162 realtek: add support for TP-Link SG2008P
Add support for the TP-Link SG2008P switch. This is an RTL8380 based
switch with 802.3af one the first four ports.

Specifications:
---------------
 * SoC:       Realtek RTL8380M
 * Flash:     32 MiB SPI flash (Vendor varies)
 * RAM:       256 MiB (Vendor varies)
 * Ethernet:  8x 10/100/1000 Mbps with PoE on 4 ports
 * Buttons:   1x "Reset" button on front panel
 * Power:     53.5V DC barrel jack
 * UART:      1x serial header, unpopulated
 * PoE:       1x TI TPS23861 I2C PoE controller

Works:
------
  - (8) RJ-45 ethernet ports
  - Switch functions
  - System LED

Not yet enabled:
----------------
  - Power-over-Ethernet (driver works, but doesn't enable "auto" mode)
  - PoE, Link/Act, PoE max and System LEDs

Install via web interface:
-------------------------

Not supported at this time.

Install via serial console/tftp:
--------------------------------

The footprints R27 (0201) and R28 (0402) are not populated. To enable
serial console, 50 ohm resistors should be soldered -- any value from
0 ohm to 50 ohm will work. R27 can be replaced by a solder bridge.

The u-boot firmware drops to a TP-Link specific "BOOTUTIL" shell at
38400 baud. There is no known way to exit out of this shell, and no
way to do anything useful.

Ideally, one would trick the bootloader into flashing the sysupgrade
image first. However, if the image exceeds 6MiB in size, it will not
work. The sysupgrade image can also be flashed. To install OpenWRT:

Prepare a tftp server with:
 1. server address: 192.168.0.146
 2. the image as: "uImage.img"

Power on device, and stop boot by pressing any key.
Once the shell is active:
 1. Ground out the CLK (pin 16) of the ROM (U7)
 2. Select option "3. Start"
 3. Bootloader notes that "The kernel has been damaged!"
 4. Release CLK as sson as bootloader thinks image is corrupted.
 5. Bootloader enters automatic recovery -- details printed on console
 6. Watch as the bootloader flashes and boots OpenWRT.

Blind install via tftp:
-----------------------

This method works when it's not feasible to install a serial header.

Prepare a tftp server with:
 1. server address: 192.168.0.146
 2. the image as: "uImage.img"
 3. Watch network traffic (tcpdump or wireshark works)
 4. Power on the device.
 5. Wait 1-2 seconds then ground out the CLK (pin 16) of the ROM (U7)
 6. When 192.168.0.30 makes tftp requests, release pin 16
 7. Wait 2-3 minutes for device to auto-flash and boot OpenWRT

Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
2022-08-13 19:59:47 +02:00
Daniel Golle
c0109537d1 arm-trusted-firmware-mediatek: skip bad blocks on SPI-NAND (SNFI)
Add patch to skip bad blocks when reading from SPI-NAND. This is needed
in case erase block(s) early in the flash inside the FIP area are bad
and hence need to be skipped in order to be able to boot on such damaged
chips.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-12 22:16:00 +02:00
Daniel Golle
87e09b692b uboot-mediatek: backport pinctrl fix to avoid error message
Import a3ba6adb70 arm: dts: mt7622: remove default pinctrl of uart0
and apply also to locally added boards.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-11 17:11:48 +02:00
Daniel Golle
7f5e70a534 uboot-mediatek: mt7621: use silent stage1 by default
Use faster and silent MT7621 stage1 blob by default unless
CONFIG_DEBUG is selected.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-08-11 17:11:36 +02:00
André Valentin
2cc5059240 ramips: add support for ZyXEL LTE3301-Plus
The ZyXEL LTE3301-PLUS is an 4G indoor CPE with 2 external LTE antennas.

Specifications:

 - SoC: MediaTek MT7621AT
 - RAM: 256 MB
 - Flash: 128 MB MB NAND (MX30LF1G18AC)
 - WiFi: MediaTek MT7615E
 - Switch: 4 LAN ports (Gigabit)
 - LTE: Quectel EG506 connected by USB3 to SoC
 - SIM: 1 micro-SIM slot
 - USB: USB3 port
 - Buttons: Reset, WPS
 - LEDs: Multicolour power, internet, LTE, signal, Wifi, USB
 - Power: 12V, 1.5A

The device is built as an indoor ethernet to LTE bridge or router with
Wifi.

UART Serial:

57600N1
Located on populated 5 pin header J5:

 [o] GND
 [ ] key - no pin
 [o] RX
 [o] TX
 [o] 3.3V Vcc

MAC assignment:
lan:  98:0d:67:ee:85:54 (base, on the device back)
wlan: 98:0d:67:ee:85:55

Installation from web GUI:

- Log in as "admin" on http://192.168.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
  Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- format ubi device: ubiformat /dev/mtd6
- attach ubi device: ubiattach -m6
- create rootfs volume: ubimkvol /dev/ubi0 -n0 -N rootfs -s 1MiB
- rootfs_data volume: ubimkvol /dev/ubi0 -n1 -N rootfs_data -s 1MiB
- run sysupgrade with sysupgrade image

For more details about flashing see
commit 2449a63208 ("ramips: mt7621: Add support for ZyXEL NR7101").

Please note that this commit is needed:
firmware-utils: add marcant changes for ZyXEL NBG6716 and LTE3301-PLUS

Signed-off-by: André Valentin <avalentin@marcant.net>
2022-08-06 20:33:59 +02:00
Manuel Niekamp
0dc5821489 ath79: add support for Sophos AP15
The Sophos AP15 seems to be very close to Sophos AP55/AP100.

Based on:
commit 6f1efb2898 ("ath79: add support for Sophos AP100/AP55 family")
author    Andrew Powers-Holmes <andrew@omnom.net>
          Fri, 3 Sep 2021 15:53:57 +0200 (23:53 +1000)
committer Hauke Mehrtens <hauke@hauke-m.de>
          Sat, 16 Apr 2022 16:59:29 +0200 (16:59 +0200)

Unique to AP15:
 - Green and yellow LED
 - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
 - No buttons
 - No piezo beeper
 - No 5.8GHz

Flashing instructions:
 - Derived from UART method described in referenced commit, methods
   described there should work too.
 - Set up a TFTP server; IP address has to be 192.168.99.8/24
 - Copy the firmware (initramfs-kernel) to your TFTP server directory
   renaming it to e.g. boot.bin
 - Open AP's enclosure and locate UART header (there is a video online)
 - Terminal connection parameters are 115200 8/N/1
 - Connect TFTP server and AP via ethernet
 - Power up AP and cancel autoboot when prompted
 - Prompt shows 'ath> '
 - Commands used to boot:
    ath> tftpboot 0x81000000 boot.bin
    ath> bootm 0x81000000
 - Device should boot OpenWRT
 - IP address after boot is 192.168.1.1/24
 - Connect to device via browser
 - Permanently flash using the web ui (flashing sysupgrade image)
 - (BTW: the AP55 images seem to work too, only LEDs are not working)

Testing done:
 - To be honest: Currently not so much testing done.
 - Flashed onto two devices
 - Devices are booting
 - MAC addresses are correct
 - LEDs are working
 - Scanning for WLANs is working

Big thanks to all the people working on this great project!
(Sorry about my english, it is not my native language)

Signed-off-by: Manuel Niekamp <m.niekamp@richter-leiterplatten.de>
2022-08-06 20:33:59 +02:00
Wenli Looi
4cccea02a6 ramips: fix fw_setsys
This change was included in the original pull request but later omitted
for some reason:

https://github.com/openwrt/openwrt/pull/4936

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2022-08-05 14:10:42 +02:00
Wenli Looi
0bfe1cfbb1 ramips: support fw_printenv for Netgear WAX202
Config partition contains uboot env for the first 0x20000 bytes.
The rest of the partition contains other data including the device MAC
address and the password printed on the label.

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2022-08-05 14:10:42 +02:00
Shiji Yang
1330816178 ramips: add support for H3C TX1800 Plus / TX1801 Plus / TX1806
H3C TX180x series WiFi6 routers are customized by different carrier.
While these three devices look different, they use the same motherboard
inside. Another minor difference comes from the model name definition
in the u-boot environment variable.

Specifications:
 SOC:      MT7621 + MT7915
 ROM:      128 MiB
 RAM:      256 MiB
 LED:      status *2
 Button:   reset *1 + wps/mesh *1
 Ethernet:        lan *3 + wan *1 (10/100/1000Mbps)
 TTL Baudrate:    115200
 TFTP server IP:  192.168.124.99

MAC Address:
 use        address(sample 1)   address(sample 2)    source
 label      88:xx:xx:98:xx:12   88:xx:xx:a2:xx:a5   u-boot-env@ethaddr
 lan        88:xx:xx:98:xx:13   88:xx:xx:a2:xx:a6   $label +1
 wan        88:xx:xx:98:xx:12   88:xx:xx:a2:xx:a5   $label
 WiFi4_2G   8a:xx:xx:58:xx:14   8a:xx:xx:52:xx:a7   (Compatibility mode)
 WiFi5_5G   8a:xx:xx:b8:xx:14   8a:xx:xx:b2:xx:a7   (Compatibility mode)
 WiFi6_2G   8a:xx:xx:18:xx:14   8a:xx:xx:12:xx:a7
 WiFi6_5G   8a:xx:xx:78:xx:14   8a:xx:xx:72:xx:a7

Compatibility mode is used to guarantee the connection of old devices
that only support WiFi4 or WiFi5.

TFTP + TTL Installation:
Although a TTL connection is required for installation, we do not need
to tear down it. We can find the TTL port from the cooling hole at the
bottom. It is located below LAN3 and the pins are defined as follows:
|LAN1|LAN2|LAN3|----|WAN|
--------------------
    |GND|TX|RX|VCC|

1. Set tftp server IP to 192.168.124.99 and put initramfs firmware in
   server's root directory, rename it to a simple name "initramfs.bin".
2. Plug in the power supply and wait for power on, connect the TTL cable
   and open a TTL session, enter "reboot", then enter "Y" to confirm.
   Finally push "0" to interruput boot while booting.
3. Execute command to install a initramfs system:
   # tftp 0x80010000 192.168.124.99:initramfs.bin
   # bootm 0x80010000
4. Backup nand flash by OpenWrt LuCI or dd instruction. We need those
   partitions if we want to back to stock firmwre due to official
   website does not provide download link.
   # dd if=/dev/mtd1 of=/tmp/u-boot-env.bin
   # dd if=/dev/mtd4 of=/tmp/firmware.bin
5. Edit u-boot env to ensure use default bootargs and first image slot:
   # fw_setenv bootargs
   # fw_setenv bootflag 0
6. Upgrade sysupgrade firmware.
7. About restore stock firmware: flash the "firmware" and "u-boot-env"
   partitions that we backed up in step 4.
   # mtd write /tmp/u-boot-env.bin u-boot-env
   # mtd write /tmp/firmware.bin firmware

Additional Info:
The H3C stock firmware has a 160-byte firmware header that appears to
use a non-standard CRC32 verification algorithm. For this part of the
data, the u-boot does not check it so we can just directly replace it
with a placeholder.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2022-07-31 19:23:24 +02:00
Andre Heider
81bc733c33 arm-trusted-firmware-mvebu: update cm3 gcc to 11.2
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads

Signed-off-by: Andre Heider <a.heider@gmail.com>
2022-07-31 18:53:24 +02:00
Andre Heider
794cefd3e3 arm-trusted-firmware-mvebu: update to v2.7
Remove the backported patches and add another to allow building with the
OpenWrt build system.

Signed-off-by: Andre Heider <a.heider@gmail.com>
2022-07-31 18:53:24 +02:00
Andre Heider
0fbe36f945 arm-trusted-firmware-mvebu: bump mox-boot-builder to v2022.06.11
Remove the gold patch, since upstream doesn't hardcode it anymore.

406454d wtmi: Don't print another newline on standalone build
ec97868 Bump mox-imager commit
e4c4b9d wtmi: Call main from C code in startup
4c1d3ff wtmi: Move startup assmebly to C file as inline assmebly
ee570ea wtmi: Indent Makefiles
18a7c0b wtmi: Use -f{function,data}-sections and --gc-sections
47ad100 wtmi: Use bfd linker instead of gold
5e34aa1 wtmi: Keep .data* and .bss* sections in linker scripts
7a4e3d2 wtmi: compressed, reload_helper: Discard .ARM* section
d943726 wtmi: compressed: Keep main function in linker script
d4f0fc6 wtmi: Keep main function in linker script
092148c wtmi: Fix -Warray-bounds warning
469e1b6 wtmi: Add do_div() implementation from Linux
90f46a0 Bump mox-imager commit
8bc6254 wtmi: Always use gold and link with --rosegment and --gc-sections flags
0b68a33 wtmi: Implement Marvell's OTP write commands
53d2a1c Bump mox-imager commit
b4c34b4 Rename arm-trusted-firmware to trusted-firmware-a
5f79ace Sync mox-imager submodule URL
a1cdd32 Sync TF-A submodule URL
58ef1af Sync u-boot submodule URL
90d28e1 wtmi: Check argument validity in Marvell's CMD_OTP_READ_1B command more
3a48cf1 Bump mox-imager commit
807a3e1 wtmi: Implement Marvell's OTP read commands
77b1232 wtmi: Enable OTP read/write mailbox commands
9724d41 wtmi: Add is_secure_boot()
03de0c1 Bump mox-imager commit
2133601 wtmi: Fix efuse_write_row_with_ecc_lock() for masked ECC rows
545a89f wtmi: Don't allow masked rows in efuse_write_row_with_ecc_lock()
94ebc98 wtmi: Don't program already programmed bits in efuse_raw_write()
2369750 wtmi: Remove inline specifier from is_row_masked()
53e2636 wtmi: Use ARRAY_SIZE()
cc3e23b wtmi: Remove duplicate checks
89d24be Makefile: ignore clean target errors
9ee8b8d Bump mox-imager commit
489262b Bump mox-imager commit
79d2f32 deploy: Print board type in deploy output
78f15b0 deploy: Print board version without board type bits in deploy output
e69fdfa deploy: Always determine 512 MiB RAM when deploying RIPE Atlas Probe
d1f7d07 deploy: Write eMMC Boot Mode into OTP when deploying RIPE Atlas Probe
d43a089 Bump mox-imager commit
49ac21d deploy: Use get_ram_size() from ddr.c
1e7705d Print DDR type and size when initializing
6f85e72 Move get_ram_size() to ddr.c
edb1079 wtmi: Rename Atlas_RIPE to RIPE_Atlas
e6a3aee wtmi: Inform about board type in CMD_BOARD_INFO
50aeae5 wtmi: Read only bits 53:48 of row eFuse 42 as board version
b882398 wtmi: Add README.md (document OTP content)
c068431 wtmi: Add ARRAY_SIZE() macro
4af2317 wtmi: Use 50 MHz as SPI clock rate
226fc5c wtmi: Add fast spi_write() function
518c914 wtmi: clock: Check for zero loops, not argument, in ndelay() / udelay()
89a21c5 wtmi: Fix comment
7b3e11a wtmi: Add clk command to print xtal and TBG clock rates
5127638 wtmi: Use the signed keyword when defining signed types
fb31ed2 wtmi: Fix DDR training failure check
1b1b938 wtmi: clock: Check for zero in ndelay() / udelay()
c0ee09a wtmi: Print correct DDR version in debug message
edfb875 Bump mox-imager commit
85cb5e3 Bump mox-imager commit
c4e9334 wtmi: debug: interpret char 127 as backspace
a778fd9 Bump mox-imager commit

Signed-off-by: Andre Heider <a.heider@gmail.com>
2022-07-31 18:53:23 +02:00
Andre Heider
b0bbd273df arm-trusted-firmware-mvebu: bump mv-ddr-marvell to current version
6ff988f mv_ddr: a3700: Use the right size for memset to not overflow
0f3e893 mv_ddr: a38x: fix BYTE_HOMOGENEOUS_SPLIT_OUT decision
4bae770 mv_ddr: a38x: fix SPLIT_OUT_MIX state decision
cdefd8b mv_ddr: a38x: Fix Synchronous vs Asynchronous mode determination
8c42ad9 mv_ddr_4_training: cast uint64_t to unsigned long long

Signed-off-by: Andre Heider <a.heider@gmail.com>
2022-07-31 18:53:23 +02:00
Andre Heider
a547cb97c3 arm-trusted-firmware-mvebu: bump a3700-utils to current version
1d97715 wtmi: Discard ELF symbols from firmware binary
2d2a21c wtmi: Allow access to the 43th OTP row
e733e9f Fix boot from SATA build
4392eaf wtmi: Fix sending status code of cmd execution
14b3c61 Wtpdownloader: Remove out-of-dated x86-64 ELF binary WtpDownload_linux
e345b95 Wtpdownloader: Fix setting tty c_cflag options
0c502d5 Wtpdownloader: Call HandlePendingMessages() after Port->WtpCmd is freed
d91761a Wtpdownloader: Fix memory leaks
bc11d18 Wtpdownloader: Check for number of read bytes prior touching read buffer
58db335 Wtpdownloader: Add missing check in SendContinuousForceConsoleMode() if byte was really read
a4029c0 Wtpdownloader: Fix 32/64-bit host detection
3679034 Wtpdownloader: Print missing newline at the end of output

Signed-off-by: Andre Heider <a.heider@gmail.com>
2022-07-31 18:53:23 +02:00
Andre Heider
a2122b518e uboot-mvebu: update to v2022.07
Remove one merged patch.

Signed-off-by: Andre Heider <a.heider@gmail.com>
Tested-by: Josef Schlehofer <pepe.schlehofer@gmail.com> [Turris Omnia]
2022-07-31 18:53:23 +02:00
Daniel Golle
603aaceb42 uboot-mediatek: reorder patches
Rename/reorder patches to avoid duplicate usage of 300-* prefix.
No functional changes.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-07-30 19:03:54 +02:00
Rafał Miłecki
a8e1e30543 uboot-bcm4908: include SoC in output files
This fixes problem of overwriting BCM4908 U-Boot and DTB files by
BCM4912 ones. That bug didn't allow booting BCM4908 devices.

Fixes: f4c2dab544 ("uboot-bcm4908: add BCM4912 build")
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-07-25 18:13:12 +02:00
Christian Lamparter
d4391ef073 layerscape: update remaining PKG_HASH / PKG_MIRROR_HASH
The change of the PKG_VERSION caused the hash of the package to
change. This is because the PKG_VERSION is present in the
internal directory structure of the archive.

Fixes: e879cccaa2 ("uboot-layerscape: update PKG_HASH")
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-07-22 22:03:27 +02:00
Oleg S
6c7e337c80
ramips: Add support command fw_setsys for Xiaomi routers
The system parameters are contained in the Bdata partition.
To use the fw_setsys command, you need to create a file
fw_sys.config.
This file is created after calling the functions
ubootenv_add_uci_sys_config and ubootenv_add_app_config.

Signed-off-by: Oleg S <remittor@gmail.com>
[ wrapped commit description to 72 char ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-07-19 14:40:21 +02:00
Christian Lamparter
e879cccaa2 uboot-layerscape: update PKG_HASH
The change of the PKG_VERSION caused the hash of the package to
change. This is because the PKG_VERSION is present in the
internal directory structure of the uboot-layerscape-21.08.tar.xz
archive.

i.e:
 # tar tf uboot-layerscape-21.08.tar.xz:

uboot-layerscape-21.08/
uboot-layerscape-21.08/.azure-pipelines.yml
uboot-layerscape-21.08/.checkpatch.conf
uboot-layerscape-21.08/.gitattributes
uboot-layerscape-21.08/.github/
[...]

vs.

 # tar tf uboot-layerscape-LSDK-21.08.tar.xz
uboot-layerscape-LSDK-21.08/
uboot-layerscape-LSDK-21.08/.azure-pipelines.yml
uboot-layerscape-LSDK-21.08/.checkpatch.conf
uboot-layerscape-LSDK-21.08/.gitattributes
uboot-layerscape-LSDK-21.08/.github/
[...]

the (file) content of both archives are otherwise the same.

The PKG_HASH was taken from the builder log:
| Hash of the local file uboot-layerscape-21.08.tar.xz does not match
|(file: 54909a98bdcc26c7f9b35b35fcae09b977ecbf044be7bffa6dad9306c47cccf6,
|requested: 874e871755ef84ebbf3[...]) - deleting download.

without this update, the uboot-layerscape-21.08 package would
always try to download (from git), repacked the archive and
reupload to sources.openwrt.org (~14 MiB saved).

Fixes: 038d5bdab1 ("layerscape: use semantic versions for LSDK")
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-07-17 14:14:54 +02:00
Daniel Golle
e0e74d8a2c uboot-mediatek: unbreak build with binman
swig has been installed on the buildbots a while a ago and
Petr Štetiar got a fix for the pylibfdt error. Use that and re-enable
the builds for mt7620 and mt7621.
Refresh patches while at it.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-07-13 11:38:57 +01:00
Daniel Golle
7659ee1e27 uboot-mediatek: add support for UBI EOF marker
Let U-Boot handle free space in UBI partitions by recognizing the EOF
marker OpenWrt is using as well for that purpose.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-07-13 11:38:57 +01:00
Claudiu Beznea
95a24b5479 uboot-at91: fix build on buildbots
Buidbots are throwing the following compile error:

In file included from tools/aisimage.c:9:
include/image.h:1133:12: fatal error: openssl/evp.h: No such file or directory
            ^~~~~~~~~~~~~~~
compilation terminated.

Fix it by passing `UBOOT_MAKE_FLAGS` variable to make.

Suggested-by: Petr Štetiar <ynezz@true.cz>
Fixes: 6d5611af28 ("uboot-at91: update to linux4sam-2022.04")
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
2022-07-13 09:00:59 +02:00
Daniel Golle
a7a3a04a2c
uboot-mediatek: mark mt7620 build as @BROKEN
Turns out also mt7620 build has a more hidden dependency on binman.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-07-12 21:31:38 +01:00
Daniel Golle
e760f065c6
uboot-mediatek: mark MT7621 variants as @BROKEN
Building U-Boot for the MT7621 SoC requires binman, a Python-based
host tool to generate images. For now, binman cannot work inside the
OpenWrt build system because it requires swig, so mark the MT7621
boards as borken to fix the ramips/mt7621 build until someone with
knowledge about Python and swig fixes the underlaying issue.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-07-12 19:58:13 +01:00
Petr Štetiar
64fb5ae67a uboot-imx: pico-pi-imx7d: fix wrong make flags overriding
Buidbots are currently choking on the following compile error:

 In file included from tools/aisimage.c:9:
 include/image.h:1133:12: fatal error: openssl/evp.h: No such file or directory
  #  include <openssl/evp.h>
             ^~~~~~~~~~~~~~~
 compilation terminated.

This is caused by a complete overriding of make flags which are provided
correctly in `UBOOT_MAKE_FLAGS` variable, but currently overriden
instead of extended. This then leads to the usage of build host include
dirs, which are not available.

Fix it by extending `UBOOT_MAKE_FLAGS` variable like it was done in
commit 481339a042 ("uboot-imx: fix wrong make flags overriding").

Fixes: 7094e65503 ("uboot-imx: add support for TechNexion PICO-PI-IMX7D")
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2022-07-12 09:25:43 +02:00
Daniel Golle
2f7fb57c12
uboot-ramips: add support for MT7621, merge into uboot-mediatek
* Merge uboot-ramips into uboot-mediatek.
* Port support for the RAVPower RP WD009 to U-Boot 2022.07.
* Add support for MT7621 and add builds for the reference boards.
* Add builds for MT7620 and MT7628 reference boards.

This should help to make development of U-Boot-level board support for
all MediaTek targets much easier.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-07-11 21:27:24 +01:00
Daniel Golle
fa75a3a935
uboot-mediatek: update to 2022.07 release
Add patch to fix host-build of the mkimage tool without
CONFIG_TOOLS_LIBCRYPTO.
Update and refresh all patches.

Tested on BananaPi R64 (MT7622) successfully booting from SD card,
eMMC and SPI-NAND.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-07-11 17:13:22 +01:00
Lech Perczak
e62f1388c3 uboot-envtools: imx: cortexa7: add TechNexion PICO-PI-IMX7D
Add configuration for upstream U-Boot environment for booting from eMMC.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-07-11 14:28:03 +02:00
Lech Perczak
7094e65503 uboot-imx: add support for TechNexion PICO-PI-IMX7D
Add mainline U-Boot flavour for TechNexion PICO-PI-IMX7D board, using
DM and upstream default configuration, storing payload in sector 138
of eMMC.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[pepe2k@gmail.com: fixed BUILD_DEVICES value]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2022-07-11 14:18:40 +02:00
Rafał Miłecki
cb27179e62 uboot-envtools: support NVMEM based access
This will allow using fw_printenv without /etc/fw_env.config. Once there
is Linux NVMEM driver available for U-Boot env data.

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-07-11 11:14:41 +02:00
Claudiu Beznea
6d5611af28 uboot-at91: update to linux4sam-2022.04
Update uboot-at91 to linux4sam-2022.04. As linux4sam-2022.04 is based on
U-Boot v2022.01 which contains commit
93b196532254 ("Makefile: Only build dtc if needed") removed also the DTC
variable passed to MAKE to force the compilation of DTC.

Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
2022-07-11 00:50:18 +02:00
Claudiu Beznea
859f5f9aec at91bootstrap: update at91bootstrap v4 targets to v4.0.3
Update AT91Bootstrap v4 capable targets to v4.0.3.

Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
2022-07-11 00:50:18 +02:00
Mikhail Zhilkin
bd783fd60a ramips: add support for Beeline SmartBox GIGA
Beeline SmartBox GIGA is a wireless WiFi 5 router manufactured by
Sercomm company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB, Nanya NT5CC128M16JR-EK
Flash: 128 MiB, Macronix MX30LF1G18AC
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7613BE): a/n/ac, 2x2
Ethernet: 3 ports - 2xGbE (WAN, LAN1), 1xFE (LAN2)
USB ports: 1xUSB3.0
Button: 1 button (Reset/WPS)
PCB ID: DBE00B-1.6MM
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot

Installation
-----------------
1. Downgrade stock (Beeline) firmware to v.1.0.02;
2. Give factory OpenWrt image a shorter name, e.g. 1001.img;
3. Upload and update the firmware via the original web interface.

Remark: You might need make the 3rd step twice if your running firmware
is booted from the Slot 1 (Sercomm0 bootflag). The stock firmware
reverses the bootflag (Sercomm0 / Sercomm1) on each firmware update.

Revert to stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
      printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
2. Optional: Update with any stock (Beeline) firmware if you want to
   overwrite OpenWrt in Slot 0 completely.

MAC Addresses
-------------
+-----+-----------+---------+
| use | address   | example |
+-----+-----------+---------+
| LAN | label     | *:16    |
| WAN | label + 1 | *:17    |
| 2g  | label + 4 | *:1a    |
| 5g  | label + 5 | *:1b    |
+-----+-----------+---------+
The label MAC address was found in Factory 0x21000

Notes
-----
1. The following scripts are required for the build:
      sercomm-crypto.py - already exists in OpenWrt
      sercomm-partition-tag.py - already exists in OpenWrt
      sercomm-payload.py - already exists in OpenWrt
      sercomm-pid.py - new, the part of this pull request
      sercomm-kernel-header.py - new, the part of this pull request
2. This device (same as other Sercomm S2,S3-based devices) requires
   special LZMA and LOADADDR settings for successful boot:
      LZMA_TEXT_START=0x82800000
      KERNEL_LOADADDR=0x81001000
      LOADADDR=0x80001000
3. This device (same as several other Sercomm-based devices - Beeline,
   Netgear, Etisalat, Rostelecom) has partition map (mtd1) containing
   real partition offsets, which may differ from device to device
   depending on the number and location of bad blocks on NAND.
   "fixed-partitions" is used if the partition map is not found or
   corrupted. This behavour (it's the same as on stock firmware) is
   provided by MTD_SERCOMM_PARTS module.

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-07-03 20:25:38 +02:00
Robert Marko
57a38c8d3e mvebu: add Methode euroDPU support
Add support for Methode euroDPU which is based on uDPU but does not
have a second SFP cage, instead of which a Maxlinear G.hn IC is used.

PHY mode is set to 1000Base-X despite Maxlinear IC being capable of
2500Base-X since until 5.15 support for mvebu is available trying to use
2500Base-X will cause buffer overruns for which the fix is not easily
backportable.

Installation instructions:
1. Boot the FIT initramfs image (openwrt-mvebu-cortexa53-methode_edpu-initramfs.itb)
2. sysupgrade using the openwrt-mvebu-cortexa53-methode_edpu-firmware.tgz

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2022-06-29 13:08:59 +02:00
Robert Marko
7f73acade0 mvebu: update and refactor uDPU DTS
uDPU DTS has pending upstream fixups, so backport those as well as split
the DTS into a DTSI and DTS in preparation for euroDPU support which
uses uDPU as the base.

Ethernet aliases have not yet been sent upstream but will be soon in order
for U-boot to set the correct MAC on both ethernet interfaces instead of
just one.

Since U-boot environment now has its own partition, update the envtools
config script to search for it instead.

Patch hardcoding PHY mode is also not applicable anymore, so drop it and
set in the uDPU DTS directly.

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2022-06-29 13:08:59 +02:00
Chen Minqiang
e0d8f7ef1f kexec-tools: add kdump scripts util
This add back kdump scripts to save crashlog or vmcore to disk

Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
2022-06-25 10:14:18 +02:00
Chris Blake
949e8ba521 ath79: add support for Netgear PGZNG1
This adds support for the Netgear PGZNG1, also known as the ADT Pulse
Gateway.

Hardware:
CPU: Atheros AR9344
Memory: 256MB
Storage: 256MB NAND Hynix H27U2G8F2CTR-BC
USB: 1x USB 2.0
Ethernet: 2x 100Mb/s
WiFi: Atheros AR9340 2.4GHz 2T2R
Leds: 8 LEDs
Button: 1x Reset Button
UART:
Header marked JPE1. Pinout is VCC, TX, RX, GND. The marked pin, closest
to the JPE1 marking, is VCC. Note VCC isn't required to be connected
for UART to work.

Enable Stock Firmware Shell Access:
1. Interrupt u-boot and run the following commands
setenv console_mode 1
saveenv
reset

This will enable a UART shell in the firmware. You can then login using
the root password of `icontrol`. If that doesn't work, the device is
running a firmware based on OpenWRT where you can drop into failsafe to
mount the FS and then modify /etc/passwd.

Installation Instructions:
1. Interupt u-boot and run the following commands
setenv active_image 0
setenv stock_bootcmd nboot 0x81000000 0 \${kernel_offset}
setenv openwrt_bootcmd nboot 0x82000000 0 \${kernel_offset}
setenv bootcmd run openwrt_bootcmd
saveenv

2. boot initramfs image via TFTP u-boot
tftpboot 0x82000000 openwrt-ath79-nand-netgear_pgzng1-initramfs-kernel.bin; bootm 0x82000000

3. Once booted, use LuCI sysupgrade to
flash openwrt-ath79-nand-netgear_pgzng1-squashfs-sysupgrade.bin

MAC Table:
WAN (eth0): xx:xa - caldata 0x0
LAN (eth1): xx:xb - caldata 0x6
WLAN (phy0): xx:xc - burned into ath9k caldata

Not Working:
Z-Wave
RS422

Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
(added more hw-info, fixed file permissions)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-19 12:31:02 +02:00
Josef Schlehofer
2e0afef246 uboot-rockchip: drop CONFIG_IDENT_STRING
This row is no longer necessary as it was replaced by LOCALVERSION in
uboot.mk, which explicitly sets OpenWrt version to all U-boot packages accross
OpenWrt. [1]

[1] d6aa9d9e07

Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
2022-06-19 12:31:02 +02:00
Christian Lamparter
5f7828fcc2 apm821xx: MBL: make mtd chip work
The MBL has a 512KiB Microchip SST39VF040 chip for uboot and
not much else.

Thanks to Ewald who figured out that the "jedec-probe" vs.
"jedec-flash" was the wrong binding. With this information
and the jedec-probe support enabled => the chip works.

| physmap-flash 4fff80000.nor_flash: physmap platform flash device: [mem 0x4fff80000-0x4ffffffff]
| Found: SST 39LF040
| 4fff80000.nor_flash: Found 1 x8 devices at 0x0 in 8-bit bank

Suggested-by: Ewald Comhaire <e.comhaire@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-19 12:31:02 +02:00
Markus Stockhausen
6153c530cc realtek: add support for D-Link DGS-1210-20
Hardware specification
 ----------------------

 * RTL8382M SoC, 1 MIPS 4KEc core @ 500MHz
 * 128MB DRAM
 * 32MB NOR Flash
 * 16 x 10/100/1000BASE-T ports
    - Internal PHY with 8 ports (RTL8218B)
    - External PHY with 8 ports (RTL8218B)
 * 4 x Gigabit RJ45/SFP Combo ports
    - External PHY with 4 SFP ports (RTL8214FC)
 * Power LED
 * Reset button on front panel
 * UART (115200 8N1) via unpopulated standard 0.1" pin header marked J6

 UART pinout
 -----------

  [o]ooo|J6
   | ||`------ GND
   | |`------- RX
   | `-------- TX
   `---------- Vcc (3V3)

 Boot initramfs image from U-Boot
 --------------------------------

  1. Press Escape key during `Hit Esc key to stop autoboot` prompt
  2. Press CTRL+C keys to get into real U-Boot prompt
  3. Init network with `rtk network on` command
  4. Load image with `tftpboot 0x8f000000 openwrt-realtek-rtl838x-d-link_dgs-1210-20-initramfs-kernel.bin` command
  5. Boot the image with `bootm` command

To install, upload the sysupgrade image to the OEM webpage or sysupgrade
from the system running from initramfs image.

It has been developed and tested on device with F1 revision.

Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
[correct initramfs image name]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-19 08:36:21 +02:00
Daniel Golle
2caa03ec86
uboot-mediatek: update UniFi 6 LR board name
Select matching U-Boot for both v1 and v2 variants.

Fixes: 15a02471bb ("mediatek: new target mt7622-ubnt-unifi-6-lr-v1")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-06-16 19:56:12 +01:00
Mikhail Zhilkin
498c15376b ramips: add support for MTS WG430223
MTS WG430223 is a wireless AC1300 (WiFi 5) router manufactured by
Arcadyan company. It's very similar to Beeline Smartbox Flash (Arcadyan
WG443223).

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 128 MiB
Flash: 128 MiB (Winbond W29N01HV)
Wireless 2.4 GHz (MT7615DN): b/g/n, 2x2
Wireless 5 GHz (MT7615DN): a/n/ac, 2x2
Ethernet: 3xGbE (WAN, LAN1, LAN2)
USB ports: No
Button: 1 (Reset/WPS)
LEDs: 2 (Red, Green)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot (Ralink UBoot Version: 5.0.0.2)
OEM: Arcadyan WG430223

Installation
------------
1. Login to the router web interface (superadmin:serial number)
2. Navigate to Administration -> Miscellaneous -> Access control lists &
   enable telnet & enable "Remote control from any IP address"
3. Connect to the router using telnet (default admin:admin)
4. Place *factory.trx on any web server (192.168.1.2 in this example)
5. Connect to the router using telnet shell (no password required)
6. Save MAC adresses to U-Boot environment:
   uboot_env --set --name eth2macaddr --value $(ifconfig | grep eth2 | \
    awk '{print $5}')
   uboot_env --set --name eth3macaddr --value $(ifconfig | grep eth3 | \
    awk '{print $5}')
   uboot_env --set --name ra0macaddr --value $(ifconfig | grep ra0 | \
    awk '{print $5}')
   uboot_env --set --name rax0macaddr --value $(ifconfig | grep rax0 | \
    awk '{print $5}')
7. Ensure that MACs were saved correctly:
   uboot_env --get --name eth2macaddr
   uboot_env --get --name eth3macaddr
   uboot_env --get --name ra0macaddr
   uboot_env --get --name rax0macaddr
8. Download and write the OpenWrt images:
   cd /tmp
   wget http://192.168.1.2/factory.trx
   mtd_write erase /dev/mtd4
   mtd_write write factory.trx /dev/mtd4
9. Set 1st boot partition and reboot:
   uboot_env --set --name bootpartition --value 0

Back to Stock
-------------
1. Run in the OpenWrt shell:
   fw_setenv bootpartition 1
   reboot
2. Optional step. Upgrade the stock firmware with any version to
   overwrite the OpenWrt in Slot 1.

MAC addresses
-------------
+-----------+-------------------+----------------+
| Interface | MAC               | Source         |
+-----------+-------------------+----------------+
| label     | A4:xx:xx:51:xx:F4 | No MACs was    |
| LAN       | A4:xx:xx:51:xx:F6 | found on Flash |
| WAN       | A4:xx:xx:51:xx:F4 | [1]            |
| WLAN_2g   | A4:xx:xx:51:xx:F5 |                |
| WLAN_5g   | A6:xx:xx:21:xx:F5 |                |
+-----------+-------------------+----------------+
[1]:
a. Label wasb't found neither in factory nor in other places.
b. MAC addresses are stored in encrypted partition "glbcfg". Encryption
   key hasn't known yet. To ensure the correct MACs in OpenWrt, a hack
   with saving of the MACs to u-boot-env during the installation was
   applied.
c. Default Ralink ethernet MAC address (00:0C:43:28:80:A0) was found in
   "Factory" 0xfff0. It's the same for all MTS WG430223 devices. OEM
   firmware also uses this MAC when initialazes ethernet driver. In
   OpenWrt we use it only as internal GMAC (eth0), all other MACs are
   unique. Therefore, there is no any barriers to the operation of several
   MTS WG430223 devices even within the same broadcast domain.

Stock firmware image format
---------------------------
The same as Beeline Smartbox Flash but with another trx magic
+--------------+---------------+----------------------------------------+
| Offset       |               | Description                            |
+==============+===============+========================================+
| 0x0          | 31 52 48 53   | TRX magic "1RHS"                       |
+--------------+---------------+----------------------------------------+

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-06-13 15:26:23 +08:00
Raylynn Knight
b515ad10a6 realtek: add support for ZyXEL GS1900-24E
The ZyXEL GS1900-24E is a 24 port gigabit switch similar to other GS1900
switches.

Specifications
--------------
* Device:    ZyXEL GS1900-24E
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB Macronix MX25L12835F
* RAM:       128 MiB DDR2 SDRAM Nanya NT5TU128M8GE
* Ethernet:  24x 10/100/1000 Mbps
* LEDs:      1 PWR LED (green, not configurable)
             1 SYS LED (green, configurable)
             24 ethernet port link/activity LEDs (green, SoC controlled)
* Buttons:   1 "RESET" button on front panel
* Switch:    1 Power switch on rear of device
* Power      120-240V AC C13
* UART:      1 serial header (JP2) with populated standard pin connector on
             the left side of the PCB.
             Pinout (front to back):
             + Pin 1 - VCC marked with white dot
             + Pin 2 - RX
             + Pin 3 - TX
             + PIn 4 - GND

Serial connection parameters:  115200 8N1.

Installation
------------

OEM upgrade method:

* Log in to OEM management web interface
* Navigate to Maintenance > Firmware
* Select the HTTP radio button
* Select the Active radio button
* Use the browse button to locate the
realtek-rtl838x-zyxel_gs1900-24e-initramfs-kernel.bin
file and select open so File Path is updated with filename.
* Select the Apply button. Screen will display "Prepare
for firmware upgrade ...".
*Wait until screen shows "Do you really want to reboot?"
then select the OK button
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/realtek-rtl838x-zyxel_gs1900-24e-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:
   > rtk network on
* Since the GS1900-24E is a dual-partition device, you want to keep the OEM
  firmware on the backup partition for the time being. OpenWrt can only boot
  from the first partition anyway (hardcoded in the DTS). To make sure we are
  manipulating the first partition, issue the following commands:
  > setsys bootpartition 0
  > savesys
* Download the image onto the device and boot from it:
   > tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24e-initramfs-kernel.bin
   > bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24e-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

Signed-off-by: Raylynn Knight <rayknight@me.com>
2022-06-06 10:30:50 +02:00
Peter Adkins
b4184c666c ipq40xx: add support for Linksys WHW01 v1
This patch adds support for Linksys WHW01 v1 ("Velop") [FCC ID Q87-03331].

Specification
-------------

SOC:             Qualcomm IPQ4018
WiFi 1:          Qualcomm QCA4019 IEEE 802.11b/g/n
WiFi 2:          Qualcomm QCA4019 IEEE 802.11a/n/ac
Bluetooth:       Qualcomm CSR8811 (A12U)
Ethernet:        Qualcomm QCA8072 (2-port)
SPI Flash 1:     Mactronix MX25L1605D (2MB)
SPI Flash 2:     Winbond W25M02GV (256MB)
DRAM:            Nanya NT5CC128M16IP-DI (256MB)
LED Controller:  NXP PCA963x (I2C)
Buttons:         Single reset button (GPIO).

Notes
-----

There does not appear to be a way to trigger TFTP recovery without entering
U-Boot. The device must be opened to access the serial console in order to
first flash OpenWrt onto a device from factory.

The device has automatic recovery backed by a second set of partitions on
the larger of the two SPI flash ICs. Both the primary and secondary must
be flashed to prevent accidental rollback to "factory" after 3 failed boot
attempts.

Serial console
--------------

A serial console is available on the following pins of the populated J2
connector on the device mainboard (115200 8n1).

(<-- Top of PCB / Device)

  J2
  [o o o o o o]
       |   | |
       |   |  `-- GND
       |    `---- TX
       `--------- RX

Installation instructions
-------------------------

1. Setup TFTP server with server IP set to 192.168.1.236.
2. Copy compiled `...squashfs-factory.bin` to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.

Revert to "factory"
-------------------

1. Download latest firmware update from vendor support site.
2. Copy extracted `.img` file to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.

Link: https://github.com/openwrt/openwrt/pull/3682
Signed-off-by: Peter Adkins <peter@sunkenlab.com>
(calibration from nvmem, updated to 5.10+5.15)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-05 21:19:32 +02:00
Petr Štetiar
481339a042 uboot-imx: fix wrong make flags overriding
Buidbots are currently choking on the following compile error:

 In file included from tools/aisimage.c:9:
 include/image.h:1133:12: fatal error: openssl/evp.h: No such file or directory
  #  include <openssl/evp.h>
             ^~~~~~~~~~~~~~~
 compilation terminated.

This is caused by a complete overriding of make flags which are provided
correctly in `UBOOT_MAKE_FLAGS` variable, but currently overriden
instead of extended. This then leads to the usage of build host include
dirs, which are not available.

Fix it by extending `UBOOT_MAKE_FLAGS` variable in all device recipes.

Signed-off-by: Petr Štetiar <ynezz@true.cz>
2022-05-28 14:32:40 +02:00
Christian Lamparter
057bac2e1f uboot-fritz4040: Add support for Toshiba NAND
From Andreas Böhler:

"Some revisions of the FRITZ!7530 use a Toshiba NAND with 8 bit ECC
in contrast to the Macronix NAND with 4 bit ECC.".

Uboot needs to know this in order to have a chance to load from
the NAND.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-05-14 11:08:45 +02:00
Raylynn Knight
580723e86a realtek: add support for ZyXEL GS1900-16
The ZyXEL GS1900-16 is a 16 port gigabit switch similar to other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-16
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB Macronix MX25L12835F
* RAM:       128 MiB DDR2 SDRAM Nanya NT5TU128M8HE
* Ethernet:  16x 10/100/1000 Mbps
* LEDs:      1 PWR LED (green, not configurable)
             1 SYS LED (green, configurable)
             16 ethernet port link/activity LEDs (green, SoC controlled)
* Buttons:   1 "RESET" button on front panel
* Power      120-240V AC C13
* UART:      1 serial header (J12) with populated standard pin connector on
             the right back of the PCB.
             Pinout (front to back):
             + Pin 1 - VCC marked with white dot
             + Pin 2 - RX
             + Pin 3 - TX
             + PIn 4 - GND

Serial connection parameters:  115200 8N1.

Installation
------------

OEM upgrade method:

* Log in to OEM management web interface
* Navigate to Maintenance > Firmware
* Select the HTTP radio button
* Select the Active radio button
* Use the browse button to locate the
realtek-generic-zyxel_gs1900-16-initramfs-kernel.bin
file amd select open so File Path is update with filename.
* Select the Apply button. Screen will display "Prepare
for firmware upgrade ...".
*Wait until screen shows "Do you really want to reboot?"
then select the OK button
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/realtek-generic-zyxel_gs1900-16-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:
   > rtk network on
* Since the GS1900-16 is a dual-partition device, you want to keep the OEM
  firmware on the backup partition for the time being. OpenWrt can only boot
  from the first partition anyway (hardcoded in the DTS). To make sure we are
  manipulating the first partition, issue the following commands:
  > setsys bootpartition 0
  > savesys
* Download the image onto the device and boot from it:
   > tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-16-initramfs-kernel.bin
   > bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/openwrt-realtek-generic-zyxel_gs1900-16-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

Signed-off-by: Raylynn Knight <rayknight@me.com>
[removed duplicate patch title, align RAM specification]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-05-07 17:23:45 +02:00
Rodrigo Balerdi
f8b0010dfb ipq806x: add support for Arris TR4400 v2 / RAC2V1A
Hardware specs:
  SoC: Qualcomm IPQ8065 (dual core Cortex-A15)
  RAM: 512 MB DDR3
  Flash: 256 MB NAND, 32 MB NOR
  WiFi: QCA9983 2.4 GHz, QCA9984 5 GHz
  Switch: QCA8337
  Ethernet: 5x 10/100/1000 Mbit/s
  USB: 1x USB 3.0 Type-A
  Buttons: WPS, Reset
  Power: 12 VDC, 2.5 A

Ethernet ports:
  1x WAN: connected to eth2
  4x LAN: connected via the switch to eth0 and eth1
          (eth0 is disabled in OEM firmware)

MAC addresses (OEM and OpenWrt):
  fw_env @ 0x00  d4🆎82:??:??:?a  LAN (eth1)
  fw_env @ 0x06  d4🆎82:??:??:?b  WAN (eth2)
  fw_env @ 0x0c  d4🆎82:??:??:?c  WLAN 2.4 GHz (ath1)
  fw_env @ 0x12  d4🆎82:??:??:?d  WLAN 5 GHz (ath0)
  fw_env @ 0x18  d4🆎82:??:??:?e  OEM usage unknown (eth0 in OpenWrt)

  OID d4🆎82 is registered to:
  ARRIS Group, Inc., 6450 Sequence Drive, San Diego CA 92121, US

More info:
  https://openwrt.org/inbox/toh/arris/tr4400_v2

IMPORTANT:

This port requires moving the 'fw_env' partition prior to first boot to
consolidate 70% of the usable space in flash into a contiguous partition.
'fw_env' contains factory-programmed MAC addresses, SSIDs, and passwords.
Its contents must be copied to 'rootfs_1' prior to booting via initramfs.
Note that the stock 'fw_env' partition  will be wiped during sysupgrade.

A writable 'stock_fw_env' partition pointing to the old, stock location
is included in the port to help rolling back this change if desired.

Installation:

- Requires serial access and a TFTP server.
- Fully boot stock, press ENTER, type in:
mtd erase /dev/mtd21
dd if=/dev/mtd22 bs=128K count=1 | mtd write - /dev/mtd21
umount /config && ubidetach -m 23 && mtd erase /dev/mtd23
- Reboot and interrupt U-Boot by pressing a key, type in:
set mtdids 'nand0=nand0'
set mtdparts 'mtdparts=nand0:155M@0x6500000(mtd_ubi)'
set bootcmd 'ubi part mtd_ubi && ubi read 0x44000000 kernel && bootm'
env save
- Setup TFTP server serving initramfs image as 'recovery.bin', type in:
set ipaddr 192.168.1.1
set serverip 192.168.1.2
tftpboot recovery.bin && bootm
- Use sysupgrade to install squashfs image.

This port is based on work done by AmadeusGhost <amadeus@jmu.edu.cn>.

Signed-off-by: Rodrigo Balerdi <lanchon@gmail.com>
[add 5.15 changes for 0069-arm-boot-add-dts-files.patch]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2022-05-05 09:19:00 +09:00
Josef Schlehofer
4f51f1fc9b uboot-mvebu: update to version v2022.04
Release announcement:
https://lore.kernel.org/u-boot/20220404143253.GQ14476@bill-the-cat/

Release notes between tags:
https://source.denx.de/u-boot/u-boot/-/compare/v2022.01...v2022.04?from_project_id=531

All patches were removed, since they are included in this release.

Run tested: Turris Omnia, mvebu/cortex-a9, OpenWrt daily snapshots

Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
2022-05-01 00:42:30 +02:00
Josef Schlehofer
69cef74c67 uboot-mvebu: remove enabled CONFIG_CMD_SETEXPR
We don't need to make sure that we want to have enabled
CONFIG_CMD_SETEXPR by default, since this is already done in U-boot [1].
This was actually needed only for clearfog board [2], which was added in
commit: da0005a6d08ae33d958a6d8a6c0c12dc07b5b2b8 ("uboot-mvebu: add
patch to enable setexpr for clearfog boards) and send to U-boot to fix
it properly. After a while, there was added support for Turris Omnia,
which uses setexpr as well [3], but for this board, there are no fixes
needed in U-boot and that's why we can remove this option here.

It is helpful with shell scripting. If some downstream distributions are
using it, they should correct it in defconfig for related boards.

[1] e95afa5675/cmd/Kconfig (L1504)

[2] 852126680e/target/linux/mvebu/image/clearfog.bootscript (L7)

[3] 852126680e/target/linux/mvebu/image/turris-omnia.bootscript (L2)

Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
2022-05-01 00:42:30 +02:00
Josef Schlehofer
b3c2072504 uboot-mvebu: add patch to enable setexpr for clearfog boards
Option CMD_SETEXPR is already default in U-boot [1], since this was
disabled since initial version for this board, there is send this
	patch to U-boot mailing list to enable it.

It is required to use in OpenWrt bootscript for these boards [2].

[1] e95afa5675/cmd/Kconfig (L1504)

[2] 852126680e/target/linux/mvebu/image/clearfog.bootscript (L7)

Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
2022-05-01 00:42:30 +02:00
David Bauer
fb7ff6b027 uboot-envtools: add WS-AP3825i config
Add configuration to use uboot-envtools with the Extreme Networks
WS-AP3825i.

Signed-off-by: David Bauer <mail@david-bauer.net>
2022-04-26 00:57:22 +02:00
Clemens Hopfer
4891b86538 ramips: add support for YunCore AX820/HWAP-AX820
There are two versions which are identical apart from the enclosure:
  YunCore AX820: indoor ceiling mount AP with integrated antennas
  YunCore HWAP-AX820: outdoor enclosure with external (N) connectors

Hardware specs:
  SoC: MediaTek MT7621DAT
  Flash: 16 MiB SPI NOR
  RAM: 128MiB (DDR3, integrated)
  WiFi: MT7905DAN+MT7975DN 2.4/5GHz 2T2R 802.11ax
  Ethernet: 10/100/1000 Mbps x2 (WAN/PoE+LAN)
  LED: Status (green)
  Button: Reset
  Power: 802.11af/at PoE; DC 12V,1A
  Antennas: AX820(indoor): 4dBi internal; HWAP-AX820(outdoor): external

Flash instructions:
  The "OpenWRT support" version of the AX820 comes with a LEDE-based
  firmware with proprietary MTK drivers and a luci webinterface and
  ssh accessible under 192.168.1.1 on LAN; user root, no password.
  The sysupgrade.bin can be flashed using luci or sysupgrade via ssh,
  you will have to force the upgrade due to a different factory name.
  Remember: Do *not* preserve factory configuration!

MAC addresses as used by OEM firmware:
  use   address            source
  2g    44:D1:FA:*:0b      Factory 0x0004 (label)
  5g    46:D1:FA:*:0b      LAA of 2g
  lan   44:D1:FA:*:0c      Factory 0xe000
  wan   44:D1:FA:*:0d      Factory 0xe000 + 1
The wan MAC can also be found in 0xe006 but is not used by OEM dtb.

Due to different MAC handling in mt76 the LAA derived from lan is used
for 2g to prevent duplicate MACs when creating multiple interfaces.

Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
2022-04-23 20:46:25 +02:00
Daniel Golle
079828fa54
uboot-mediatek: replace patch with accepted commit
Replace pending patch with version accepted upstream.
Other than in the first suggested version, the new property is now
called 'u-boot,bootconf' instead of 'bootconf'.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-04-20 15:22:45 +01:00
Daniel Golle
810b48e793
uboot-mediatek: remove '0x' prefix from pstore node
Remove '0x' prefix from pstore node in dts, just like it was done
for the device tree used by Linux on MT7622.
This change is done in preparation to update U-Boot to 2022.04.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-04-19 17:07:38 +01:00
Martin Kennedy
a5ac8ad0ba realtek: add ZyXEL GS1900-24HP v1 support
The ZyXEL GS1900-24HP v1 is a 24 port PoE switch with two SFP ports,
similar to the other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-24HP v1
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB
* RAM:       Winbond W9751G8KB-25 64 MiB DDR2 SDRAM
* Ethernet:  24x 10/100/1000 Mbps, 2x SFP 100/1000 Mbps
* LEDs:
  * 1 PWR LED (green, not configurable)
  * 1 SYS LED (green, configurable)
  * 24 ethernet port link/activity LEDs (green, SoC controlled)
  * 24 ethernet port PoE status LEDs
  * 2 SFP status/activity LEDs (green, SoC controlled)
* Buttons:
  * 1 "RESET" button on front panel (soft reset)
  * 1 button ('SW1') behind right hex grate (hardwired power-off)
* PoE:
  * Management MCU: ST Micro ST32F100 Microcontroller
  * 6 BCM59111 PSE chips
  * 170W power budget
* Power:     120-240V AC C13
* UART:      Internal populated 10-pin header ('J5') providing RS232;
             connected to SoC UART through a TI or SIPEX 3232C for voltage
             level shifting.

* 'J5' RS232 Pinout (dot as pin 1):
  2) SoC RXD
  3) GND
  10) SoC TXD

Serial connection parameters: 115200 8N1.

Installation
------------

OEM upgrade method:

* Log in to OEM management web interface

* Navigate to Maintenance > Firmware > Management

* If "Active Image" has the first option selected, OpenWrt will need to be
  flashed to the "Active" partition. If the second option is selected,
  OpenWrt will need to be flashed to the "Backup" partition.

* Navigate to Maintenance > Firmware > Upload

* Upload the openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-initramfs-kernel.bin
  file by your preferred method to the previously determined partition.
  When prompted, select to boot from the newly flashed image, and reboot
  the switch.

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-squashfs-sysupgrade.bin

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).

* Set up a TFTP server on your client and make it serve the initramfs
  image.

* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:

  > rtk network on

* Since the GS1900-24HP v1 is a dual-partition device, you want to keep the
  OEM firmware on the backup partition for the time being. OpenWrt can
  only be installed in the first partition anyway (hardcoded in the
  DTS). To ensure we are set to boot from the first partition, issue the
  following commands:

  > setsys bootpartition 0
  > savesys

* Download the image onto the device and boot from it:

  > tftpboot 0x81f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-initramfs-kernel.bin
  > bootm

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-squashfs-sysupgrade.bin

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[Add info on PoE hardware to commit message]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-04-16 17:26:56 +02:00
Andrew Powers-Holmes
6f1efb2898 ath79: add support for Sophos AP100/AP55 family
The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access
points based on the Qualcomm QCA9558 SoC. They share PCB designs with
several devices that already have partial or full support, most notably the
Devolo DVL1750i/e.

The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however
the 55 models' ART does not contain calibration data for their third chain
despite it being present on the PCB.

Specifications common to all models:
 - Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor)
 - 128 MB RAM
 - 16 MB SPI flash
 - 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in
 - Green and Red status LEDs sharing a single external light-pipe
 - Reset button on PCB[1]
 - Piezo beeper on PCB[2]
 - Serial UART header on PCB
 - Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC

Unique to AP100 and AP100C:
 - 3T3R 2.4GHz 802.11b/g/n via SoC WMAC
 - 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP55 and AP55C:
 - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
 - 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP100 and AP55:
 - External RJ45 serial console port[3]
 - USB 2.0 Type A port, power controlled via GPIO 11

Flashing instructions:

This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.

To flash via XG appliance:
 - Register on Sophos' website for a no-cost Home Use XG firewall license
 - Download and install the XG software on a compatible PC or virtual
   machine, complete initial appliance setup, and enable SSH console access
 - Connect the target AP device to the XG appliance's LAN interface
 - Approve the AP from the XG Web UI and wait until it shows as Active
   (this can take 3-5 minutes)
 - Connect to the XG appliance over SSH and access the Advanced Console
   (Menu option 5, then menu option 3)
 - Run `sudo awetool` and select the menu option to connect to an AP via
   SSH. When prompted to enable SSH on the target AP, select Yes.
 - Wait 2-3 minutes, then select the AP from the awetool menu again. This
   will connect you to a root shell on the target AP.
 - Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
 - Run `mtd -r write /tmp/openwrt.bin astaro_image`
 - When complete, the access point will reboot to OpenWRT.

To flash via U-Boot serial console:
 - Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
   netmask 255.255.255.0
 - Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C'
 - Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
 - Connect the AP ethernet to your PC's ethernet port
 - Connect a terminal to the UART at 115200 8/N/1 as usual
 - Power on the AP and press a key to cancel autoboot when prompted
 - Run the following commands at the U-Boot console:
    - `tftpboot`
    - `cp.b $fileaddr 0x9f070000 $filesize`
    - `boot`
 - The access point will boot to OpenWRT.

MAC addresses as verified by OEM firmware:

use   address     source
LAN   label       config 0x201a (label)
2g    label + 1   art 0x1002    (also found at config 0x2004)
5g    label + 9   art 0x5006

Increments confirmed across three AP55C, two AP55, and one AP100C.

These changes have been tested to function on both current master and
21.02.0 without any obvious issues.

[1] Button is present but does not alter state of any GPIO on SoC
[2] Buzzer and driver circuitry is present on PCB but is not connected to
    any GPIO. Shorting an unpopulated resistor next to the driver circuitry
    should connect the buzzer to GPIO 4, but this is unconfirmed.
[3] This external RJ45 serial port is disabled in the OEM firmware, but
    works in OpenWRT without additional configuration, at least on my
    three test units.
[4] On AP100/AP55 models the UART header is accessible after removing
    the device's top cover. On AP100C/AP55C models, the PCB must be removed
    for access; three screws secure it to the case.
    Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX

Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net>
2022-04-16 16:59:29 +02:00
Abdul Aziz Amar
78c3534645 ramips: add support for BOLT! Arion
This device is from now-defunct BOLT! ISP in Indonesia.
The original firmware is based on mediatek SDK running linux 2.6 or 3.x in later revision.

Specifications:

- SoC:      MediaTek MT7621
- Flash:    32 MiB NOR SPI
- RAM:      128 MiB DDR3
- Ethernet: 2x 10/100/1000 Mbps (switched, LAN + WAN)
- WIFI0:    MT7603E 2.4GHz 802.11b/g/n
- WIFI1:    MT7612E 5GHz 802.11ac
- Antennas: 2x internal, non-detachable
- LEDs:     Programmable LEDs: 5 blue LEDs (wlan, tel, sig1-3) and 2 red LEDs (wlan and sig1)
            Non-programmable "Power"  LED
- Buttons:  Reset and WPS

Instalation:
Install from TFTP

Set your PC IP to 10.10.10.3 and gateway to 10.10.10.123
Press "1" when turning on the router, and type the initramfs file name

You also need to solder pin header or cable to J4 or neighboring test points (T19-T21)
Pinouts from top to bottom: GND, TX, RX, VCC (3.3v)
Baudrate: 57600n8

There's also an additional gigabit transformer and RTL8211FD managed by the LTE module on the backside of the PCB.

Signed-off-by: Abdul Aziz Amar <abdulaziz.amar@gmail.com>
2022-04-16 14:02:11 +02:00
Thibaut VARÈNE
a05dcb0724 ath79: add support for Yuncore A930
Specification:

- QCA9533 (650 MHz), 64 or 128MB RAM, 16MB SPI NOR
- 2x 10/100 Mbps Ethernet, with 802.3at PoE support (WAN)
- 2T2R 802.11b/g/n 2.4GHz

Flash instructions:

If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):

  fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
  sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin

In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:

1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
   'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
   seconds, recovery mode should start downloading image from server
   (unfortunately, there is no visible indication that recovery got
   enabled - in case of problems check TFTP server logs)

Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Thibaut VARÈNE
c91df224f5 ath79: add support for Yuncore XD3200
Specification:

- QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR
- 2T2R 802.11b/g/n 2.4GHz
- 2T2R 802.11n/ac 5GHz
- 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port)

LED for 5 GHz WLAN is currently not supported as it is connected directly
to the QCA9882 radio chip.

Flash instructions:

If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):

  fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
  sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin

In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:

1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
   'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
   seconds, recovery mode should start downloading image from server
   (unfortunately, there is no visible indication that recovery got
   enabled - in case of problems check TFTP server logs)

Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Daniel Golle
dffad93d3e
arm-trusted-firmware-mediatek: remove no longer needed Configure step
As anyway only the default is called now we can as well also just remove
the override for Build/Configure.

Fixes: e2cffbb805 ("arm-trusted-firmware-mediatek: update to 2021-03-10")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-04-09 22:24:42 +01:00
Piotr Dymacz
0892fd9920 uboot-imx: build 'u-boot-dtb.img' for SolidRun CuBox-i
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2022-04-07 09:58:44 +02:00
Piotr Dymacz
e213375894 uboot-imx: bump to 2022.01 release
Two patches were removed because of the changes introduced in upstream:

1. 110-mx6cuboxi-mmc-fallback.patch
Looks like similar changes were introduced in 6c3fbf3e456c ("mx6cuboxi:
customize board_boot_order to access eMMC").

2. 111-mx6cuboxi_defconfig-force-mmc-boot.patch
The 'CONFIG_SPL_FORCE_MMC_BOOT' was removed in 15aec318ef03 ("Revert
"imx: Introduce CONFIG_SPL_FORCE_MMC_BOOT to force MMC boot on falcon
mode").

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2022-04-07 09:58:44 +02:00
Paul Spooren
839b1ff1fc grub2: add missing license
The PKG_LICENSE field was missing.
While at it, normalize the Makefile a bit.

Signed-off-by: Paul Spooren <mail@aparcar.org>
2022-04-04 18:15:02 +02:00
Daniel Golle
dfc3ea6810
uboot-mediatek: add patch to allow accessing bootconf from Linux
Store selected boot configuration in '/chosen' node in device tree, so
it can be accessed by Linux (and used for fine-tuning the FIT partition
parser).

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-03-21 23:48:04 +00:00
Daniel Golle
fa67639513 uboot-envtools: oxnas: fix wrong eraseblock size for shuttle,kd20
Shuttle KD20 has NAND flash with 0x20000 (128KiB) erase blocks.
Correctly set that in uboot-envtools as well to allow writing to the
bootloader environment using fw_setenv.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-03-21 20:16:16 +00:00
Robert Marko
a703830806 uboot-mvebu: backport patch to fix eMMC
v2022.01 has a regression that broke eMMC usage on most if not all Armada
SoC-s, thus breaking boards like uDPU which use eMMC for storage.

Fix it by backporting a recent upstream patch.

Fixes: 782d4c8306 ("uboot-mvebu: update to version 2022.01")
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2022-03-21 14:00:34 +01:00
Richard Huynh
9f9477b275 mediatek: Add support for Xiaomi Redmi Router AX6S
Also known as the "Xiaomi Router AX3200" in western markets,
but only the AX6S is widely installation-capable at this time.

SoC: MediaTek MT7622B
RAM: DDR3 256 MiB (ESMT M15T2G16128A)
Flash: SPI-NAND 128 MiB (ESMT F50L1G41LB or Gigadevice GD5F1GQ5xExxG)
WLAN: 2.4/5 GHz 4T4R
2.4 GHz: MediaTek MT7622B
5 GHz: MediaTek MT7915E
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531B
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: Marked J1 on board VCC RX GND TX, beginning from "1". 3.3v, 115200n8
Power: 12 VDC, 1.5 A

Notes:
U-Boot passes through the ethaddr from uboot-env partition,
but also has been known to reset it to a generic mac address
hardcoded in the bootloader.

However, bdata is also populated with the ethernet mac addresses,
but is also typically never written to. Thus this is used instead.

Installation:
1. Flash stock Xiaomi "closed beta" image labelled
'miwifi_rb03_firmware_stable_1.2.7_closedbeta.bin'.
(MD5: 5eedf1632ac97bb5a6bb072c08603ed7)

2. Calculate telnet password from serial number and login

3. Execute commands to prepare device
nvram set ssh_en=1
nvram set uart_en=1
nvram set boot_wait=on
nvram set flag_boot_success=1
nvram set flag_try_sys1_failed=0
nvram set flag_try_sys2_failed=0
nvram commit

4. Download and flash image
On computer:
python -m http.server
On router:
cd /tmp
wget http://<IP>:8000/factory.bin
mtd -r write factory.bin firmware

Device should reboot at this point.

Reverting to stock:
Stock Xiaomi recovery tftp that accepts their signed images,
with default ips of 192.168.31.1 + 192.168.31.100.
Stock image should be renamed to tftp server ip in hex (Eg. C0A81F64.img)
Triggered by holding reset pin on powerup.

A simple implementation of this would be via dnsmasq's
dhcp-boot option or using the vendor's (Windows only)
recovery tool available on their website.

Signed-off-by: Richard Huynh <voxlympha@gmail.com>
2022-03-20 18:33:39 +00:00
Mikhail Zhilkin
f8b02130d2 ramips: add support for Beeline SmartBox Flash
Beeline SmartBox Flash is a wireless AC1300 (WiFi 5) router manufactured
by Arcadyan company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB, Winbond W632GU6NB
Flash: 128 MiB (NAND), Winbond W29N01HVSINF
Wireless 2.4 GHz (MT7615DN): b/g/n, 2x2
Wireless 5 GHz (MT7615DN): a/n/ac, 2x2
Ethernet: 3xGbE (WAN, LAN1, LAN2)
USB ports: 1xUSB3.0
Button: 1 (Reset/WPS)
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: Barrel
Bootloader: U-Boot (Ralink UBoot Version: 5.0.0.2)
OEM: Arcadyan WE42022

Installation
------------
1. Place *factory.trx on any web server (192.168.1.2 in this example)
2. Connect to the router using telnet shell (no password required)
3. Save MAC adresses to U-Boot environment:
   uboot_env --set --name eth2macaddr --value $(ifconfig | grep eth2 | \
    awk '{print $5}')
   uboot_env --set --name eth3macaddr --value $(ifconfig | grep eth3 | \
    awk '{print $5}')
   uboot_env --set --name ra0macaddr --value $(ifconfig | grep ra0 | \
    awk '{print $5}')
   uboot_env --set --name rax0macaddr --value $(ifconfig | grep rax0 | \
    awk '{print $5}')
4. Ensure that MACs were saved correctly:
   uboot_env --get --name eth2macaddr
   uboot_env --get --name eth3macaddr
   uboot_env --get --name ra0macaddr
   uboot_env --get --name rax0macaddr
5. Download and write the OpenWrt images:
   cd /tmp
   wget http://192.168.1.2/factory.trx
   mtd_write erase /dev/mtd4
   mtd_write write factory.trx /dev/mtd4
6. Set 1st boot partition and reboot:
   uboot_env --set --name bootpartition --value 0
   reboot

Back to Stock
-------------
1. Run in the OpenWrt shell:
   fw_setenv bootpartition 1
   reboot
2. Optional step. Upgrade the stock firmware with any version to
   overwrite the OpenWrt in Slot 1.

MAC addresses
-------------
+-----------+-------------------+----------------+
| Interface | MAC               | Source         |
+-----------+-------------------+----------------+
| label     | 30:xx:xx:51:xx:09 | No MACs was    |
| LAN       | 30:xx:xx:51:xx:09 | found on Flash |
| WAN       | 30:xx:xx:51:xx:06 | [1]            |
| WLAN_2g   | 30:xx:xx:51:xx:07 |                |
| WLAN_5g   | 32:xx:xx:41:xx:07 |                |
+-----------+-------------------+----------------+
[1]:
a. Label wasb't found neither in factory nor in other places.
b. MAC addresses are stored in encrypted partition "glbcfg". Encryption
   key hasn't known yet. To ensure the correct MACs in OpenWrt, a hack
   with saving of the MACs to u-boot-env during the installation was
   applied.
c. Default Ralink ethernet MAC address (00:0C:43:28:80:36) was found in
   "Factory" 0xfff0. It's the same for all Smartbox Flash devices. OEM
   firmware also uses this MAC when initialazes ethernet driver. In
   OpenWrt we use it only as internal GMAC (eth0), all other MACs are
   unique. Therefore, there is no any barriers to the operation of several
   Smartbox Flash devices even within the same broadcast domain.

Stock firmware image format
---------------------------
+--------------+---------------+----------------------------------------+
| Offset       | 1.0.15        | Description                            |
+==============+===============+========================================+
| 0x0          | 5d 43 6f 74   | TRX magic "]Cot"                       |
+--------------+---------------+----------------------------------------+
| 0x4          | 00 70 ff 00   | Length (reverse)                       |
+--------------+---------------+----------------------------------------+
|              |               | htonl(~crc) from 0xc ("flag_version")  |
| 0x8          | 72 b3 93 16   | to "Length"                            |
+--------------+---------------+----------------------------------------+
| 0xc          | 00 00 01 00   | Flags                                  |
+--------------+---------------+----------------------------------------+
|              |               | Offset (reverse) of Kernel partition   |
| 0x10         | 1c 00 00 00   | from the start of the header           |
+--------------+---------------+----------------------------------------+
|              |               | Offset (reverse) of RootFS partition   |
| 0x14         | 00 00 42 00   | from the start of the header           |
+--------------+---------------+----------------------------------------+
| 0x18         | 00 00 00 00   | Zeroes                                 |
+--------------+---------------+----------------------------------------+
| 0x1c         | 27 05 19 56 … | Kernel data + zero padding             |
+--------------+---------------+----------------------------------------+
|              |               | RootFS data (starting with "hsqs") +   |
| 0x420000     | 68 73 71 73 … | zero padding to "Length"               |
+--------------+---------------+----------------------------------------+
|              |               | Some signature data (format is         |
|              |               | unknown). Necessary for the fw         |
| "Lenght"     | 00 00 00 00 … | update via oem fw web interface.       |
+--------------+---------------+----------------------------------------+
| "Lenght" +   |               | TRX magic "HDR0". U-Boot is            |
| 0x10c        | 48 44 52 30   | checking it at every boot.             |
+--------------+---------------+----------------------------------------+
|              |               | 1.00:                                  |
|              |               |   Zero padding to ("Lenght" + 0x23000) |
|              |               | 1.0.12:                                |
|              |               |   Zero padding to ("Lenght" + 0x2a000) |
| "Lenght" +   |               | 1.0.13, 1.0.15, 1.0.16:                |
| 0x110        | 00 00 00 00   |   Zero padding to ("Lenght" + 0x10000) |
+--------------+---------------+----------------------------------------+

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-03-19 16:14:01 +01:00
Rafał Miłecki
f4c2dab544 uboot-bcm4908: add BCM4912 build
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-03-15 18:43:41 +01:00
Rafał Miłecki
3592aa8566 uboot-bcm4908: update to the latest generic
0625aad74d arm: dts: add ASUS GT-AX6000
6fb1cb624d arm: dts: add Netgear RAXE450 / RAXE550

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-03-15 14:31:02 +01:00
Rafał Miłecki
9dbca6bf6e uboot-bcm4908: use "xxd" from staging_dir
This fixes:
bash: xxd: command not found
on hosts without xxd installed.

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-03-15 12:43:04 +01:00
Michael Pratt
41be1a2de2 ath79: add support for Araknis AN-700-AP-I-AC
FCC ID: 2AG6R-AN700APIAC

Araknis AN-700-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9558 SOC		MIPS 74kc, 2.4 GHz WMAC, 3x3
  - QCA9880 WLAN	PCI card, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:xb art 0x0
  phy1 2.4G *:xc ---
  phy0 5GHz *:xd ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:58 +01:00
Michael Pratt
56716b578e ath79: add support for Araknis AN-500-AP-I-AC
FCC ID: 2AG6R-AN500APIAC

Araknis AN-500-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1200
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9557 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - QCA9882 WLAN	PCI card 168c:003c, 5 GHz, 2x2, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:e1 art 0x0
  phy1 2.4G *:e2 ---
  phy0 5GHz *:e3 ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Michael Pratt
561f46bd02 ath79: add support for Araknis AN-300-AP-I-N
FCC ID: U2M-AN300APIN

Araknis AN-300-AP-I-N is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EWS310AP
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - AR9382 WLAN		PCI on-board 168c:0030, 5 GHz, 2x2
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	1839ZFG V59C1512164QFJ25
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:7d art 0x0
  phy1 2.4G *:7e ---
  phy0 5GHz *:7f ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Martin Kennedy
d1a8690742 realtek: add ZyXEL GS1900-24 v1 support
The ZyXEL GS1900-24 v1 is a 24 port switch with two SFP ports, similar to
the other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-24 v1
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB
* RAM:       Winbond W9751G8KB-25 64 MiB DDR2 SDRAM
* Ethernet:  24x 10/100/1000 Mbps, 2x SFP 100/1000 Mbps
* LEDs:
  * 1 PWR LED (green, not configurable)
  * 1 SYS LED (green, configurable)
  * 24 ethernet port link/activity LEDs (green, SoC controlled)
  * 2 SFP status/activity LEDs (green, SoC controlled)
* Buttons:
  * 1 "RESET" button on front panel (soft reset)
  * 1 button ('SW1') behind right hex grate (hardwired power-off)
* Power:     120-240V AC C13
* UART:      Internal populated 10-pin header ('J5') providing RS232;
             connected to SoC UART through a SIPEX 3232EC for voltage
             level shifting.

* 'J5' RS232 Pinout (dot as pin 1):
  2) SoC RXD
  3) GND
  10) SoC TXD

Serial connection parameters: 115200 8N1.

Installation
------------

OEM upgrade method:

* Log in to OEM management web interface

* Navigate to Maintenance > Firmware > Management

* If "Active Image" has the first option selected, OpenWrt will need to be
  flashed to the "Active" partition. If the second option is selected,
  OpenWrt will need to be flashed to the "Backup" partition.

* Navigate to Maintenance > Firmware > Upload

* Upload the openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-initramfs-kernel.bin
  file by your preferred method to the previously determined partition.
  When prompted, select to boot from the newly flashed image, and reboot
  the switch.

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-squashfs-sysupgrade.bin

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).

* Set up a TFTP server on your client and make it serve the initramfs
  image.

* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:

  > rtk network on

> Since the GS1900-24 v1 is a dual-partition device, you want to keep the
  OEM firmware on the backup partition for the time being. OpenWrt can
  only be installed in the first partition anyway (hardcoded in the
  DTS). To ensure we are set to boot from the first partition, issue the
  following commands:

  > setsys bootpartition 0
  > savesys

* Download the image onto the device and boot from it:

  > tftpboot 0x81f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-initramfs-kernel.bin
  > bootm

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-squashfs-sysupgrade.bin

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
2022-03-13 19:24:13 +01:00