Either enable strict-alignment or disable FPU code generation by gcc
regarding bootstrap code, which cannot handle alignment faults during
initialization properly.
Ref genodelabs/genode#4827
When running on x86, and riscv never enter the kernel for cache maintainance,
but use the dummy implementation of the generic base library instead.
On ARMv8 it is not necessary to enter privileged mode for cache cleaning, and
unification of instruction/data cache, but only for invalidating cache lines
at all levels, which is necessary for the use cases, where this function it
needed (coherency of DMA memory).
Fixgenodelabs/genode#4339
Instead of having a generic "virt_qemu" board use "virt_qemu_<arch>" in
order to have a clean distinction between boards. Current supported
boards are "virt_qemu_arm_v7a", "virt_qemu_arm_v8a", and
"virt_qemu_riscv".
issue #4034
The soft ABI implies purely software floating point implementation.
This is not the case for Genode however. For example core's
exception_vector.S uses vmsr instruction. This builds fine with with
GCC based toolchain, but clang with integrated-as complains:
src/core/spec/arm/exception_vector.S:122:2: error: instruction requires: VFP2
vmsr fpexc, r1
^
Fix this by passing softfp to mfloat-abi command on ARMv7. This allows
usage of FP HW, but implies soft-floating point ABI.
Issue #4421
* renamed rpi pic to Bcm2835_pic
* renamed rpi3 pic to Bcm2837_pic
* added bcm2837 control for setting prescaler value (to fix timer_accuracy)
* changed handling of all interrupts for rpi3 by cascading to bcm2835 pic
* rpi3 irq controller base address made consistent with rpi
* added usb controller memory region for pic on rpi3 (for SOF interrupts)
Ref #3415
For base-hw Core, we used to add quite some hardware-specific include paths
to 'INC_DIR'. Generic code used to include, for instance, '<cpu.h>' and
'<translation_table.h>' using these implicit path resolutions. This commit
removes hardware-specific include paths except for
1) the '<board.h>' include paths (e.g., 'src/core/board/pbxa9'),
2) most architecture-specific include paths (e.g., 'src/core/spec/arm_v7'),
3) include paths that reflect usage of virtualization or ARM Trustzone
(e.g., 'src/core/spec/arm/virtualization').
The first category is kept because, in contrast to the former "spec"-mechanism,
the board variable used for this type of resolution is not deprecated and the
board headers are meant to be the front end of hardware-specific headers
towards generic code which is why they must be available generically via
'<board.h>'.
The second category is kept because it was suggested by other maintainers that
simple arch-dependent headers (like for the declaration of a CPU state) should
not imply the inclusion of the whole '<board.h>' and because the architecture
is given also without the former "spec"-mechanism through the type of the build
directory. I think this is questionable but am fine with it.
The third category is kept because the whole way of saying whether
virtualization resp. ARM Trustzone is used is done in an out-dated manner and
changing it now would blow up this commit a lot and exceed the time that I'm
willing to spend. This category should be subject to a future issue.
Ref #4217
The 'src/core/board/<board>/board.h' header is thought as front end of
hardware-specific headers of a given board towards the generic base-hw Core
code. Therefore it leads to problems (circular includes) if the board.h header
is included from within another hardware-specific header.
If hardware-specific headers access declarations from namespace Board in a
definition, the definition should be moved to a compilation unit that may
include board.h. If hardware-specific headers access declarations from board.h
in a declaration, they should either use the primary declaration from the
original header or, if the declaration must be selected according to the board,
another board-specific header should be introduced to reflect this abstraction.
This is applied by this commit for the current state of base-hw.
Ref #4217
Normally, the board header can be found for each supported board under
'src/core/board/<BOARD>/board.h'. This was not the case for the board 'pc'
that was located under 'src/core/spec/x86_64/board.h'. The commit fixes this.
Ref #4217
Introduce two new cache maintainance functions:
* cache_clean_invalidate_data
* cache_invalidate_data
used to flush or invalidate data-cache lines.
Both functions are typically empty, accept for the ARM architecture.
The commit provides implementations for the base-hw kernel, and Fiasco.OC.
Fixes#4207
- Enable the "platform-level interrupt controller" PLIC on base-hw
- The RISC-V specification offers only a register description, but no
layout for the register set. This implies the layout is platform
dependent, and therefore, implemented separately for Qemu
issue #4042
- remove Spike/BBL support in favour of Qemu (>=4.2.1)
- add 'riscv_qemu' board, remove 'spike' board'
- update to privileged ISA v1.10 (from v1.9.1)
- use direct system calls for privileged core threads (they call into
the kernel and don't use mode changing system calls, i.e. 'ecall',
semantics)
- use 'OpenSBI' semtantics for SBI calls (to machine mode) instead of
BBL
issue #4012
Avoid use of REP_DIR in *.mk files to simplify the use of these files as
templates for a board hosted in a separate repository.
Use REP_INC_DIR for searching headers, thereby considering headers
hosted in an external repository.
Issue #3168
* Remove SPEC declarations from mk/spec
* Remove all board-specific REQUIRE declaratiions left
* Replace [have_spec <board>] run-script declarations with have_board where necessary
* Remove addition of BOARD variable to SPECS in toplevel Makefile
* Move board-specific directories in base-hw out of specs
To access the ARM Trusted Firmware from the platform driver
fill the new `managing_system` call of the PD session with life resp.
do a SMC call on behalf of the client.
Fix#3816
This patch adds support for booting base-hw kernel on qemu-arm virt
machines. The arm_virt machine has 2GB of RAM, 2 Cortex A15 cores and
uses GICv2 interrupt controller. The arm_64_virt machine also has 2GB of
RAM, but has 4 Cortex A53 cores and uses GICv3. Both machines use PSCI
to boot additional CPU cores.
Fixes#3673
This commit fixes the following issues regarding cache maintainance
under ARM:
* read out I-, and D-cache line size at runtime and use the correct one
* remove 'update_data_region' call from unprivileged syscalls
* rename 'update_instr_region' syscall to 'cache_coherent_region' to
reflect what it doing, namely make I-, and D-cache coherent
* restrict 'cache_coherent_region' syscall to one page at a time
* lookup the region given in a 'cache_coherent_region' syscall in the
page-table of the PD to prevent machine exceptions in the kernel
* only clean D-cache lines, do not invalidate them when pages where
added on Cortex-A8 and ARMv6 (MMU sees phys. memory here)
* remove unused code relicts of cache maintainance
In addition it introduces per architecture memory clearance functions
used by core, when preparing new dataspaces. Thereby, it optimizes:
* on ARMv7 using per-word assignments
* on ARMv8 using cacheline zeroing
* on x86_64 using 'rept stosq' assembler instruction
Fix#3685
Since gcc 8.3.0 generates SSE instructions into kernel code, the
kernel itself may raise FPU exceptions and/or corrupt user level FPU
contexts thereby. Both things are not feasible, and therefore, lazy FPU
switching becomes a no go for base-hw because we cannot avoid FPU
instructions because of the entanglement of base-hw, base, and the tool
chain (libgcc_eh.a).
issue #3365