Currently factory.bin image recipe of ASUS RP-AC51 is not specified
explicitly and is thus set to the leaked one from the device recipe
right above, i.e. ASUS PL-AC56. Fix it to avoid potential breakage.
Fixes: 416d4483e8 ("ath79: add support for ASUS RP-AC51")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This matches the scheme used by other target packages and will avoid
confusion with any future version.
Signed-off-by: Andre Heider <a.heider@gmail.com>
This patch will print the name of the modem in the bootlog
during probing.
This allows to verify that the exact model was loaded and not some
generic type.
The only other way to do this is by enabling dynamic debugging
which is disabled by default in OpenWRT
Signed-off-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
Instead of always including the XHCI driver in the kernel on all
MediaTek boards, selectively include the kernel module only on boards
which actually make use of USB functionality.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Due to an oversight we accidentally inverted the timeout check. This
patch corrects this.
Fixes: 9cec4a0ea4 ("realtek: Use built-in functionality for timeout loop")
Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>
[ wrap poll_timeout line to 80 char ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
- refresh config
- disable suspend as it's pointless in the sope of OpenWrt
- enable CPU frequency scaling
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
In commit 81e3017609 ("realtek: clean up rtl838x MDIO busy wait loop")
a hand-crafted loop was created, that nearly exactly replicate the
iopoll's `read_poll_timeout` functionality.
Use that instead.
Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>
When converting this device to use both GMACs, I mistakenly removed
state_default, which prevented GPIO LEDs and keys from being used.
Fixes: f4eef5f2a1 ("ramips: add support for Linksys E7350")
Signed-off-by: Rosen Penev <rosenp@gmail.com>
When converting this device to use both GMACs, I mistakenly removed
state_default, which prevented GPIO LEDs and keys from being used.
Add back and and extra LEDs that were missing.
Tested all LEDs by turning them on.
Fixes: 26a6a6a60b ("ramips: add support for Belkin RT1800")
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Add support for the TP-Link SG2210P switch. This is an RTL8380 based
switch with eight RJ-45 ports with 802.3af PoE, and two SFP ports.
This device shares the same board with the SG2008P and SG2008. To
model this, declare all the capabilities in the sg2xxx dtsi, and
disable unpopulated on the lower end models.
Specifications:
---------------
- SoC: Realtek RTL8380M
- Flash: 32 MiB SPI flash (Vendor varies)
- RAM: 256 MiB (Vendor varies)
- Ethernet: 8x 10/100/1000 Mbps with PoE (all ports)
2x SFP ports
- Buttons: 1x "Reset" button on front panel
- Power: 53.5V DC barrel jack
- UART: 1x serial header, unpopulated
- PoE: 2x TI TPS23861 I2C PoE controller
Works:
------
- (8) RJ-45 ethernet ports
- (2) SFP ports (with caveats)
- Switch functions
- System LED
Not yet enabled:
----------------
- Power-over-Ethernet (driver works, but doesn't enable "auto" mode)
- PoE LEDs
Enabling SFP ports:
-------------------
The SFP port control lines are hardwired, except for tx-disable. These
lines are controller by the RTL8231 in shift register mode. There is
no driver support for this yet.
However, to enable the lasers on SFP1 and SFP2 respectively:
echo 0x0510ff00 > /sys/kernel/debug/rtl838x/led/led_p_en_ctrl
echo 0x140 > /sys/kernel/debug/rtl838x/led/led_sw_p_ctrl.26
echo 0x140 > /sys/kernel/debug/rtl838x/led/led_sw_p_ctrl.24
Install via serial console/tftp:
--------------------------------
The footprints R27 (0201) and R28 (0402) are not populated. To enable
serial console, 50 ohm resistors should be soldered -- any value from
0 ohm to 50 ohm will work. R27 can be replaced by a solder bridge.
The u-boot firmware drops to a TP-Link specific "BOOTUTIL" shell at
38400 baud. There is no known way to exit out of this shell, and no
way to do anything useful.
Ideally, one would trick the bootloader into flashing the sysupgrade
image first. However, if the image exceeds 6MiB in size, it will not
work. The sysupgrade image can also be flashed. To install OpenWrt:
Prepare a tftp server with:
1. server address: 192.168.0.146
2. the image as: "uImage.img"
Power on device, and stop boot by pressing any key.
Once the shell is active:
1. Ground out the CLK (pin 16) of the ROM (U7)
2. Select option "3. Start"
3. Bootloader notes that "The kernel has been damaged!"
4. Release CLK as sson as bootloader thinks image is corrupted.
5. Bootloader enters automatic recovery -- details printed on console
6. Watch as the bootloader flashes and boots OpenWrt.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
[OpenWrt capitalisation in commit message]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The "firmware" partition was assembled from two contiguous partitions.
This complexity is unnecessary. Instead of using mtd-concat over
"sys" and "usrimg1", simply declare the "firmware" partition to cover
the flash space instead.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
The TP-Link RTL83xx based switches have their MAC address programmed
in the "para" partition. While in theory, the format of this partition
is dynamic, in practice, the MAC address appears to be located at a
consistent address. Thus, use nvmem-cells to read this MAC address.
The main MAC is required for deriving the MAC address of the switch
ports. Instead of reading it via mtd_get_mac_binary(), alias the
ethernet0 node as the label-mac-device, and use get_mac_label().
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Although PHY nodes are labeled, the port nodes were not. Labeling of
ports is useful for 'status = "disabled"' ports, which is supported
since commit 9a7f17e11f ("realtek: ignore disabled switch ports")
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
The TP-Link TL-SG2008, TL-SG2008P, and TL-SG2210P use the same board.
The main difference is that some footprints are not populated in the
lower-end models. To model this with minimal duplication, move the
devicetree to a common dtsi, leaving out just the board name.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
[remove port relabelling from commit message, already merged with commit
18a2b29aa1 ("realtek: tl-sg2008p: fix labeling of lan ports")]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Serge Vasilugin reports:
To improve mt7620 built-in wifi performance some changes:
1. Correct BW20/BW40 switching (see comments with mark (1))
2. Correct TX_SW_CFG1 MAC reg from v3 of vendor driver see
https://gitlab.com/dm38/padavan-ng/-/blob/master/trunk/proprietary/rt_wifi/rtpci/3.0.X.X/mt76x2/chips/rt6352.c#L531
3. Set bbp66 for all chains.
4. US_CYC_CNT init based on Programming guide, default value was 33 (pci),
set chipset bus clock with fallback to cpu clock/3.
5. Don't overwrite default values for mt7620.
6. Correct some typos.
7. Add support for external LNA:
a) RF and BBP regs never be corrected for this mode
b) eLNA is driven the same way as ePA with mt7620's pin PA
but vendor driver explicitly pin PA to gpio mode (for forrect calibration?)
so I'm not sure that request for pa_pin in dts-file will be enough
First 5 changes (really 2) improve performance for boards w/o eLNA/ePA.
Changes 7 add support for eLNA
Configuration w/o eLAN/ePA and with eLNA show results
tx/rx (from router point of view) for each stream:
35-40/30-35 Mbps for HT20
65-70/60-65 Mbps for HT40
Yes. Max results for 2T2R client is 140-145/135-140
with peaks 160/150, It correspond to mediatek driver results.
Boards with ePA untested.
Reported-by: Serge Vasilugin <vasilugin@yandex.ru>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Specification:
SoC: RT5350
CPU Frequency: 360 MHz
Flash Chip: Macronix MX25L6406E (8192 KiB)
RAM: Winbond W9825G6JH-6 (32768 KiB)
3x 10/100 Mbps Ethernet (2x LAN, 1x WAN)
1x external antenna
UART (J1) header on PCB (57800 8n1)
Wireless: SoC-intergated: 2.4GHz 802.11bgn
USB: Yes
8x LED, 2x button
Flash instruction:
Configure PC with static IP 192.168.99.8/24 and start TFTP server.
Rename "openwrt-ramips-rt305x-zyxel_keenetic-4g-b-squashfs-sysupgrade.bin"
to "rt305x_firmware.bin" and place it in TFTP server directory.
Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed until power LED start blinking.
Router will download file from TFTP server, write it to flash and reboot.
Signed-off-by: Sergei Burakov <senior.anonymous@mail.ru>
The newly introduced config symbol CONFIG_CMDLINE_OVERRIDE is only set
for mt7629 for now which breaks automated build on all other mediatek
subtargets. Make sure the symbol is configured as 'is not set' for all
remaining subtargets.
Fixes: c27279dc26 ("mediatek: add support for ipTIME A6004MX Add basic support for ipTIME A6004MX.")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware:
SoC: MediaTek MT7629 Cortex-A7 (ARMv7 1.25GHz, Dual-Core)
RAM: DDR3 128MB
Flash: Macronix MX35LF1GE4AB (SPI-NAND 128MB)
WiFi: MediaTek MT7761N (2.4GHz) / MediaTek MT7762N (5GHz) - no driver
Ethernet: SoC (WAN) / MediaTek MT7531 (LAN x4)
UART: [GND, RX, TX, 3.3V] (115200)
Installation:
- Flash recovery image with TFTP recovery
Revert to stock firmware:
- Flash stock firmware with TFTP recovery
TFTP Recovery method:
1. Unplug the router
2. Hold the reset button and plug in
3. Release when the power LED stops flashing and go off
4. Set your computer IP address manually to 192.168.0.x / 255.255.255.0
5. Flash image with TFTP client to 192.168.0.1
Signed-off-by: Yoonji Park <koreapyj@dcmys.kr>
Support devices that has vendor custom header before FIT image.
Some devices has vendor custom header before FIT image. In this case mtd-
split can not find FIT image and it results in rootfs mount failure.
Please refer iptime,a6004mx device for further examples.
Signed-off-by: Yoonji Park <koreapyj@dcmys.kr>
MT7915 requires an additional antenna for background radar scanning.
Disable this feature in the following devices that do not have a
separate DFS antenna:
linksys,e8450
ruijie,rg-ew3200gx-pro
xiaomi,redmi-router-ax6s
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Background radar detection is not supported on devices that
using MT7905, so disable this feature in the following devices:
asus,rt-ax53u
jcg,q20
tplink,eap615-wall-v1
xiaomi,mi-router-cr6606
xiaomi,mi-router-cr6608
xiaomi,mi-router-cr6609
yuncore,ax820
Devices with MT7915 lacking a DFS antenna also do not support
background DFS:
totolink,x5000r
cudy,x6
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
The patch adding support for LEDs connected to a reset controller did
not apply any more, refresh it on top of current master.
Fixes: 53fc987b25 ("generic: move ledbar driver from mediatek target")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specifications:
- SoC: ar9341
- RAM: 32M
- Flash: 4M
- Ethernet: 5x FE ports
- WiFi: ar9341-wmac
Flash instruction:
Upload generated factory firmware on vendor's web interface.
This device is very similar to the TL-WR841N v8, only two LED GPIOs are
different.
Buttons configuration is similar to TL-WR842ND v2 but both buttons are
active low.
Signed-off-by: Will Moss <willormos@gmail.com>
Add support for TP-Link Deco S4 wifi router
The label refers to the device as S4R and the TP-Link firmware
site calls it the Deco S4 v2. (There does not appear to be a v1)
Hardware (and FCC id) are identical to the Deco M4R v2 but the
flash layout is ordered differently and the OEM firmware encrypts
some config parameters (including the label mac address) in flash
In order to set the encrypted mac address, the wlan's caldata
node is removed from the DTS so the mac can be decrypted with
the help of the uencrypt tool and patched into the wlan fw
via hotplug
Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR
UART serial access (115200N1) on board via solder pads:
RX = TP1 pad
TX = TP2 pad
GND = C201 (pad nearest board edge)
The device's bootloader and web gui will only accept images that
were signed using TP-Link's RSA key, however a memory safety bug
in the bootloader can be leveraged to install openwrt without
accessing the serial console. See developer forum S4 support page
for link to a "firmware" file that starts a tftp client, or you
may generate one on your own like this:
```
python - > deco_s4_faux_fw_tftp.bin <<EOF
import sys
from struct import pack
b = pack('>I', 0x00008000) + b'X'*16 + b"fw-type:" \
+ b'x'*256 + b"S000S001S002" + pack('>I', 0x80060200) \
b += b"\x00"*(0x200-len(b)) \
+ pack(">33I", *[0x3c0887fc, 0x35083ddc, 0xad000000, 0x24050000,
0x3c048006, 0x348402a0, 0x3c1987f9, 0x373947f4,
0x0320f809, 0x00000000, 0x24050000, 0x3c048006,
0x348402d0, 0x3c1987f9, 0x373947f4, 0x0320f809,
0x00000000, 0x24050000, 0x3c048006, 0x34840300,
0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000,
0x24050000, 0x3c048006, 0x34840400, 0x3c1987f9,
0x373947f4, 0x0320f809, 0x00000000, 0x1000fff1,
0x00000000])
b += b"\xff"*(0x2A0-len(b)) + b"setenv serverip 192.168.0.2\x00"
b += b"\xff"*(0x2D0-len(b)) + b"setenv ipaddr 192.168.0.1\x00"
b += b"\xff"*(0x300-len(b)) + b"tftpboot 0x81000000 initramfs-kernel.bin\x00"
b += b"\xff"*(0x400-len(b)) + b"bootm 0x81000000\x00"
b += b"\xff"*(0x8000-len(b))
sys.stdout.buffer.write(b)
EOF
```
Installation:
1. Run tftp server on pc with static ip 192.168.0.2
2. Place openwrt "initramfs-kernel.bin" image in tftp root dir
3. Connect pc to router ethernet port1
4. While holding in reset button on bottom of router, power on router
5. From pc access router webgui at http://192.168.0.1
6. Upload deco_s4_faux_fw_tftp.bin
7. Router will load and execture in-memory openwrt
8. Switch pc back to dhcp or static 192.168.1.x
9. Flash openwrt sysupgrade image via luci/ssh at 192.168.1.1
Revert to stock:
Press and hold reset button while powering device to start the
bootloader's recovery mode, where stock firmware can be uploaded
via web gui at 192.168.0.1
Please note that one additional non-github commits is also needed:
firmware-utils: add tplink-safeloader support for Deco S4
Signed-off-by: Nick French <nickfrench@gmail.com>
FCC ID: U2M-CAP2100AG
WatchGuard AP100 is an indoor wireless access point with
1 Gb ethernet port, dual-band but single-radio wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP300 v2
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2
- AR8035-A EPHY RGMII GbE with PoE+ IN
- 25 MHz clock
- 16 MB FLASH mx25l12805d
- 2x 64 MB RAM
- UART console J11, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 2 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
Label has no MAC
Only one Vendor MAC address in flash at art 0x0
eth0 ---- *:e5 art 0x0 -2
phy0 ---- *:e5 art 0x0 -2
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell
It may be necessary to use a Watchguard router to flash the image to the AP
and / or to downgrade the software on the AP to access SSH
For some Watchguard devices, serial console over UART is disabled.
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
reset button has no function at boot time
only possible with modified uboot environment,
(see commit message for Watchguard AP300)
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM reliably
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For AR934x series, the PLL registers for eth0
can be see in the DTSI as 0x2c.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Steve Wheeler <stephenw10@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: U2M-CAP4200AG
WatchGuard AP200 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP600
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2
- AR9382 WLAN PCI card 168c:0030, 5 GHz, 2x2, 26dBm
- AR8035-A EPHY RGMII GbE with PoE+ IN
- 25 MHz clock
- 16 MB FLASH mx25l12805d
- 2x 64 MB RAM
- UART console J11, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 4 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
Label has no MAC
Only one Vendor MAC address in flash at art 0x0
eth0 ---- *:be art 0x0 -2
phy1 ---- *:bf art 0x0 -1
phy0 ---- *:be art 0x0 -2
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell
It may be necessary to use a Watchguard router to flash the image to the AP
and / or to downgrade the software on the AP to access SSH
For some Watchguard devices, serial console over UART is disabled.
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
reset button has no function at boot time
only possible with modified uboot environment,
(see commit message for Watchguard AP300)
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM reliably
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For AR934x series, the PLL registers for eth0
can be see in the DTSI as 0x2c.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Steve Wheeler <stephenw10@gmail.com>
Tested-by: John Delaney <johnd@ankco.net>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: Q6G-AP300
WatchGuard AP300 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3
- QCA9880 WLAN PCI card 168c:003c, 5 GHz, 3x3, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 32 MB FLASH S25FL512S
- 2x 64 MB RAM NT5TU32M16
- UART console J10, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 6 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:3c art 0x0
phy1 ---- *:3d ---
phy0 ---- *:3e ---
**Serial console access:**
For this board, its not certain whether UART is possible
it is likely that software is blocking console access
the RX line on the board for UART is shorted to ground by resistor R176
the resistors R175 and R176 are next to the UART RX pin at J10
however console output is garbage even after this fix
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell access
downgrade XTM firewall to v2.0.0.1
downgrade AP300 firmware: v1.0.1
remove / unpair AP from controller
perform factory reset with reset button
connect ethernet to a computer
login to OEM webpage with default address / pass: wgwap
enable SSHD in OEM webpage settings
access root shell with SSH as user 'root'
modify uboot environment to automatically try TFTP at boot time
(see command below)
rename initramfs-kernel.bin to test.bin
load test.bin over TFTP (see TFTP recovery)
(optionally backup all mtdblocks to have flash backup)
perform a sysupgrade with sysupgrade.bin
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
server ip: 192.168.1.101
reset button seems to do nothing at boot time...
only possible with modified uboot environment,
running this command in the root shell:
fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi'
and verify that it is correct with
fw_printenv
then, before boot, the device will attempt TFTP from 192.168.1.101
looking for file 'test.bin'
to return uboot environment to normal:
fw_setenv bootcmd 'bootm 0x9f0a0000'
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM
(see installation method 2)
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Alessandro Kornowski <ak@wski.org>
Tested-by: John Wagner <john@wagner.us.org>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
after some trial and error, it was discovered
that by setting TX only delay on the AR8035 PHY
that setting GMAC registers is no longer necessary.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Other vendors can use this DTSI, for example, WatchGuard
there are likely several brands that use the same board design
because of outsourcing hardware from Senao.
For example, Watchguard AP300
has the same hardware as Engenius EAP600
so we use ar9344_engenius_exx600.dtsi for that
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The RGB LED of the UniFi 6 LR v1 doesn't work when using the Openwrt-
built U-Boot. This is because the vendor loader resets the ledbar
controller while our U-Boot doesn't care.
Add reset-gpio so the ledbar driver in Linux will always reset the
ledbar controller.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware
--------
- SoC: MediaTek MT7621AT with 128 MiB RAM and 32 MiB Flash
- Wi-Fi: MediaTek MT7603 (b/g/n, 2x2) and MediaTek MT7615 (ac, 4x4)
- Bluetooth: CSR8811 (internal USB, install kmod-bluetooth)
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt".
2. Update the bootloader environment.
$ fw_setenv devmode TRUE
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
3. Transfer the OpenWrt sysupgrade image to the device using SCP.
4. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
5. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
7. Reboot the device. It should boot into OpenWrt.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
The LEDs connected to the MCU are so-called smart LEDs and their signal is
daisy-chained. Because of this, the MCU needs to be told how many LEDs are
connected. It also means the LEDs could be individually controlled, if the MCU
has a command for this.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
During GPIO initialization the pin state flips and triggers a reset of
the ledbar MCU. It needs to be moved through an initialization sequence
before working correctly.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
Some versions of the ledbar MCU have a reset pin. It needs to be
correctly initialized or we might keep the MCU in reset state.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
Or the comparison against a signed char is always true, because the
literal 0xaa is treated as an unsigned int, to which the signed char is
casted during comparison. 0xaa is above the positive values of a signed
char and negative signed char values result in values larger than 0xaa
when casted to unsigned int.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
The read response is in the i2c_response variable. Also use %hhx format,
because we're dealing with a single char.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
phy[01]radio leaves the leds always on, if they are set through sysfs the leds
get off.
Set the triggers to phy[01]tpt to make them work.
Signed-off-by: David Santamaría Rogado <howl.nsp@gmail.com>
Add Kernel config for testing Linux 5.15 for the rt305x subtarget.
Tested on ZyXEL NBG-419N, works but bad wireless performance.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Backport a preliminary version of Yu Zhao's multi-generational LRU, for
improved memory management. Refresh the patches while at it.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
The image build process was modifying the generated IMAGE_KERNEL to
append rootfs information (crc). This caused:
- sysupgrade & factory images to contain 2 times the root.squashfs
information due to both modifying the same IMAGE_KERNEL.
- the generated imagebuilder to contain an erroneous IMAGE_KERNEL that
contained references to an unexisting root.squashfs (the one from
previous cause). The RTL30VW wasn't therefore able to boot the
generated images as they contained checksums from non existing rootfs.
This commit makes sure to use a temporary IMAGE_KERNEL to append the
rootfs information for both factory and sysupgrade images.
Fixes: #10511
Signed-off-by: Gregory Detal <gregory.detal@tessares.net>
Ruckus ZoneFlex 7321 is a dual-band, single radio 802.11n 2x2 MIMO enterprise
access point. It is very similar to its bigger brother, ZoneFlex 7372.
Hardware highligts:
- CPU: Atheros AR9342 SoC at 533 MHz
- RAM: 64MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi: AR9342 built-in dual-band 2x2 MIMO radio
- Ethernet: single Gigabit Ethernet port through AR8035 gigabit PHY
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7321-U variant.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1 ----------
|1|x3|4|5|
----------
Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H5, unpopulated, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H5
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7321-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7321_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7321_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7321_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7321_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7321_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
mtdids=nor0=ar7100-nor0
bootdelay=2
ethact=eth0
filesize=78a000
fileaddr=81000000
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=10.0.0.1
serverip=10.0.0.5
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QQW7TQBQAUF8EKRtQI6XtJDS0VJoN4gYcAE3iCbWS2MF2Sss1ORDYqVq6YMEB3rP0
Z/7Yf+aP3/56827VNP16X8Zx3E/Cw8dNuAqDYlxI7bcurpu6a3Y59v3jlzCbz5eLECbt8HbT9Y+HHLvv
x9TdbbpJVVd9vOxWVX05TotVOpZt6nN8qilyf5fKso3hIYTb8JDSEFarIazXQyjLIeRc7PvykNq+iy+T
1F7PQzivmzbcLpYftmfH87G56Wz+/v18sT1r19vu649dqi/2qaqns0W4utmelalPm27I/lac5/p+OluO
NZ+a1JaTz8M3/9hmtT0epmMjVdnF8djXLZx+TJl36TEuTlda93EYQrGpdrmrfuZ4fZPGHzjmp/vezMNJ
MV6n6qumPm06C+MRZb6vj/v4Mk/7HJ+6LarDqXweLsZnXnS5vc9tdXheWRbd0GIdh/Uq7cakOfavsty2
z1nxGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAD+1x9eTkHLAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin -g 10.42.0.1
Vverify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7321_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7321_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
- The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Ruckus ZoneFlex 7372 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.
Ruckus ZoneFlex 7352 is also supported, lacking the 5GHz radio part.
Hardware highligts:
- CPU: Atheros AR9344 SoC at 560 MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344 built-in 2x2 MIMO radio
- Wi-Fi 5Ghz: AR9582 2x2 MIMO radio (Only in ZF7372)
- Antennas:
- Separate internal active antennas with beamforming support on both
bands with 7 elements per band, each controlled by 74LV164 GPIO
expanders, attached to GPIOs of each radio.
- Two dual-band external RP-SMA antenna connections on "7372-E"
variant.
- Ethernet 1: single Gigabit Ethernet port through AR8035 gigabit PHY
- Ethernet 2: single Fast Ethernet port through AR9344 built-in switch
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on "-U" variants.
The same image should support:
- ZoneFlex 7372E (variant with external antennas, without beamforming
capability)
- ZoneFlex 7352 (single-band, 2.4GHz-only variant).
which are based on same baseboard (codename St. Bernard),
with different populated components.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1
---
|5|
---
|4|
---
|3|
---
|x|
---
|1|
---
Pin 5 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H2, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H2
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7372-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7372_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7372_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7372_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7372_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7372_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
bootdelay=2
mtdids=nor0=ar7100-nor0
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
ethact=eth0
filesize=1000000
fileaddr=81000000
ipaddr=192.168.0.7
serverip=192.168.0.51
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QTW7TQBQAYB+AQ2TZSGk6Tpv+SbNBrNhyADSJHWolsYPtlJaDcAWOCXaqQhdIXOD7
Fm/ee+MZ+/nHu58fV03Tr/dFHNf9JDzdbcJVGGRjI7Vfurhu6q7ZlbHvnz+FWZ4vFyFM2mF30/XPhzJ2
X4+pe9h0k6qu+njRrar6YkyzVToWberL+HImK/uHVBRtDE8h3IenlIawWg1hvR5CUQyhLE/vLcpdeo6L
bN8XVdHFumlDTO1NHsL5mI/9Q2r7Lv5J3uzeL5bX27Pj+XjRdJZfXuaL7Vm73nafv+1SPd+nqp7OFuHq
dntWpD5tuqH6e+K8rB+ns+V45n2T2mLyYXjmH9estsfD9DTSuo/DErJNtSu76vswbjg5NU4D3752qsOp
zu8W8/z6dh7mN1lXto9lWx3eNJd5Ng5V9VVTn2afnSYuysf6uI9/8rQv48s3Z93wn+o4XFWl3Vg0x/5N
Vbbta5X9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAID/+Q2Z/B7cAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin -g 10.42.0.1
Verify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7372_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7372_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- This is first device in ath79 target to support link state reporting
on FE port attached trough the built-in switch.
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
- Stock firmware has beamforming functionality, known as BeamFlex,
using active multi-segment antennas on both bands - controlled by
RF analog switches, driven by a pair of 74LV164 shift registers.
Shift registers used for each radio are connected to GPIO14 (clock)
and GPIO15 of the respective chip.
They are mapped as generic GPIOs in OpenWrt - in stock firmware,
they were most likely handled directly by radio firmware,
given the real-time nature of their control.
Lack of this support in OpenWrt causes the antennas to behave as
ordinary omnidirectional antennas, and does not affect throughput in
normal conditions, but GPIOs are available to tinker with nonetheless.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Return to using the OpenWrt kernel loader to decompress and load kernel
initram image.
Continue to use the vmlinuz kernel for squashfs.
Mikrotik's bootloader RouterBOOT on some ath79 devices is
failing to boot the current initram, due to the size of the initram image.
On the ath79 wAP-ac:
a 5.7MiB initram image would fail to boot
After this change:
a 6.6MiB initram image successfully loads
This partially reverts commit e91344776b.
An alternative of using RouterBOOT's capability of loading an initrd ELF
section was investigated, but the OpenWrt kernel loader allows larger image.
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
End-users may need to be able to rewrite u-boot configuration on the
WS-AP3825i, which has had repeated issues with the exact configuration
of u-boot, e.g. commit 1d06277407 ("mpc85xx: Fix output location of
padded dtb") (alongside other failures documented for example in this
post[^1] from the main AP3825i porting thread).
To assist with this, remove the `read-only` property from the u-boot
configuration partitions cfg1 and cfg2.
[^1]: https://forum.openwrt.org/t/adding-openwrt-support-for-ws-ap3825i/101168/107
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
Backports patch, which is currently on review [1] for kernel 5.10 and
kernel 5.15, where it applies cleanly. This was tested on CZ.NIC Turris
1.1 router running OpenWrt 21.02.03 with kernel 5.15.
Before:
- In /var/log/messages:
```
[ 16.392988] lm90 0-004c: cannot request IRQ 48
[ 16.398280] lm90: probe of 0-004c failed with error -22
```
- Sensors does not work:
```
root@turris:~# sensors
No sensors found!
Make sure you loaded all the kernel drivers you need.
Try sensors-detect to find out which these are.
```
After:
```
root@turris:/# sensors
sa56004-i2c-0-4c
Adapter: MPC adapter (i2c@3000)
temp1: +44.0°C (low = +0.0°C, high = +70.0°C)
(crit = +85.0°C, hyst = +75.0°C)
temp2: +73.8°C (low = +0.0°C, high = +70.0°C) ALARM (HIGH)
(crit = +85.0°C, hyst = +75.0°C)
```
[1] https://lore.kernel.org/linux-gpio/20220906105431.30911-1-pali@kernel.org/
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
RT-N600 is internally the same as RT-AC1200, as veryfied by @russinnes .
Adding alt_name so that people can find it in firmware selector.
Signed-off-by: Ray Wang <raywang777@foxmail.com>
Tested-by: Russ Innes <russ.innes@gmail.com>
Aka Kroks Rt-Cse5 UW DRSIM (KNdRt31R16), ID 1958:
https://kroks.ru/search/?text=1958
See Kroks OpenWrt fork for support of other models:
https://github.com/kroks-free/openwrt
Device specs:
- CPU: MediaTek MT7628AN
- Flash: 16MB SPI NOR
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 5x 10/100 Mbps
- 2.4 GHz: b/g/n SoC
- USB: 1x
- SIM-reader: 2x (driven by a dedicated chip with it's own firmware)
- Buttons: reset
- LEDs: 1x Power, 1x Wi-Fi, 12x others (SIM status, Internet, etc.)
Flashing:
- sysupgrade image via stock firmware WEB interface, IP: 192.168.1.254
- U-Boot launches a WEB server if Reset button is held during power up,
IP: 192.168.1.1
MAC addresses as verified by OEM firmware:
vendor OpenWrt source
LAN eth0 factory 0x4 (label)
2g wlan0 label
Signed-off-by: Andrey Butirsky <butirsky@gmail.com>
Aka "Kroks KNdRt31R19".
Ported from v19.07.8 of OpenWrt fork:
see https://github.com/kroks-free/openwrt
for support of other models.
Device specs:
- CPU: MediaTek MT7628AN
- Flash: 16MB SPI NOR
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 1x 10/100 Mbps
- 2.4 GHz: b/g/n SoC
- mPCIe: 1x (usually equipped with an LTE modem by vendor)
- Buttons: reset
- LEDs: 1x Modem, 1x Injector, 1x Wi-Fi, 1x Status
Flashing:
- sysupgrade image via stock firmware WEB interface.
- U-Boot launches a WEB server if Reset button is held during power up.
Server IP: 192.168.1.1
SIM card switching:
The device supports up to 4 SIM cards - 2 locally on board and 2 on
remote SIM-injector.
By default, 1-st local SIM is active.
To switch to e.g. 1-st remote SIM:
echo 0 > /sys/class/gpio/modem1power/value
echo 0 > /sys/class/gpio/modem1sim1/value
echo 1 > /sys/class/gpio/modem1rsim1/value
echo 1 > /sys/class/gpio/modem1power/value
MAC addresses as verified by OEM firmware:
vendor OpenWrt source
LAN eth0 factory 0x4 (label)
2g wlan0 label
Signed-off-by: Kroks <dev@kroks.ru>
[butirsky@gmail.com: port to master; drop dts-v1]
Signed-off-by: Andrey Butirsky <butirsky@gmail.com>
Add Kernel config for testing Linux 5.15 for the mt7620 subtarget.
Tested on Youku YK-L1 which boots fine.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This is an RTL8393-based switch with 802.3af on all 48 ports.
Specifications:
---------------
* SoC: Realtek RTL8393M
* Flash: 32 MiB SPI flash
* RAM: 256 MiB
* Ethernet: 48x 10/100/1000 Mbps with PoE+
* Buttons: 1x "Reset" button, 1x "Speed" button
* UART: 1x serial header, unpopulated
* PoE: 12x TI TPS23861 I2C PoE controller, 384W PoE budget
* SFP: 4 SFP ports
Works:
------
- (48) RJ-45 ethernet ports
- Switch functions
- Buttons
- All LEDs on front panel except port LEDs
- Fan monitoring and basic control
Not yet enabled:
----------------
- PoE - ICs are not in AUTO mode, so the kernel driver is not usable
- Port LEDs
- SFP cages
Install via web interface:
-------------------------
Not supported at this time.
Install via serial console/tftp:
--------------------------------
The U-Boot firmware drops to a TP-Link specific "BOOTUTIL" shell at
38400 baud. There is no known way to exit out of this shell, and no
way to do anything useful.
Ideally, one would trick the bootloader into flashing the sysupgrade
image first. However, if the image exceeds 6MiB in size, it will not
work. To install OpenWRT:
Prepare a tftp server with:
1. server address: 192.168.0.146
2. the image as: "uImage.img"
Power on device, and stop boot by pressing any key.
Once the shell is active:
1. Ground out the CLK (pin 16) of the ROM (U6)
2. Select option "3. Start"
3. Bootloader notes that "The kernel has been damaged!"
4. Release CLK as soon as bootloader thinks image is corrupted.
5. Bootloader enters automatic recovery -- details printed on console
6. Watch as the bootloader flashes and boots OpenWRT.
Blind install via tftp:
-----------------------
This method works when it's not feasible to install a serial header.
Prepare a tftp server with:
1. server address: 192.168.0.146
2. the image as: "uImage.img"
3. Watch network traffic (tcpdump or wireshark works)
4. Power on the device.
5. Wait 1-2 seconds then ground out the CLK (pin 16) of the ROM (U6)
6. When 192.168.0.30 makes tftp requests, release pin 16
7. Wait 2-3 minutes for device to auto-flash and boot OpenWRT
Signed-off-by: Andreas Böhler <dev@aboehler.at>
The Meraki MX100 has ten 1000BASE-T and 2 SFP ethernet ports through
3, 4-port PCIe devices. The default enumeration of these network
devices' names does not correspond to their labeling. Fix this by
explicitly naming the devices, mapping against their sysfs path.
Note that these default network names can only be up to 8 characters,
because we can have up to 8 characters of modifiers (e.g. ^br-,
.4096$), and because the maximum network interface name is 16
characters long.
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[lowercase subject]
Signed-off-by: Paul Spooren <mail@aparcar.org>
The GPIO used for the RST button is also used for PCIe-CLKREQ signal.
Hence it cannot be used as button signal if PCIe is also used.
Wire up WPS button to serve as KEY_RESTART in Linux and "reset" button
in U-Boot.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The package kmod-btmtkuart is specific for MT7622 and isn't available
for MT7986 (which doesn't have this built-in Bluetooth like MT7622).
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The bump to Linux 5.15.67 brought some changes in the VC4 display
driver which we had also patched downstream. Fix our local patches to
fix the build.
Fixes: fbe2f7db86 ("kernel: bump 5.15 to 5.15.67")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add the aliases sections required to detect LEDs specific to OpenWrt
boot / update indication for the NanoPi R4S.
Signed-off-by: David Bauer <mail@david-bauer.net>
Ensure the MAC address for all NanoPi R4S boards is assigned unique for
each board.
FriendlyElec ship two versions of the R4S: The standard as well as the
enterprise edition with only the enterprise edition including the EEPROM
chip that stores the unique MAC address.
In order to assign both board types unique MAC addresses, fall back on
the same method used for the NanoPi R2S in case the EEPROM chip is not
present by generating the board MAC from the SD card CID.
[0] https://wiki.friendlyelec.com/wiki/index.php/NanoPi_R4S#Differences_Between_R4S_Standard_Version_.26_R4S_Enterprise_Version
Signed-off-by: David Bauer <mail@david-bauer.net>
The previous fixup was incomplete, and the offsets for the
queue and crc_error cpu_tag bitfields were still wrong on
RTL839x.
Fixes: 545c6113c9 ("realtek: fix RTL838x receive tag decoding")
Suggested-by: Jan Hoffmann <jan@3e8.eu>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The 213 patch is missing filename suffix. Fix it.
Fixes: dabcaac ("mediatek: add mt7986 soc support to the target")
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
According to the device tree, the lan ports are
lan0 to lan3, and the wan port is eth1.
Fixes: cffc77a ("mediatek: add filogic subtarget")
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
The testing kernel received now multiple months of testing. Set 5.15 as
default to give it a test with a broader audience.
Tested on:
- MikroTik SXTsq 5 AC
- FritzBox 4040/7530
- ZyXEL NBG6617
Signed-off-by: Nick Hainke <vincent@systemli.org>
Add support for in-band managed link status to support SFP cage
connected to port 5 of the MT7531 switch on the Bananapi BPi-R3.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Commit dc9cc0d3e2 ("realtek: add QoS and rate control") replaced a
16 bit reserved field in the RTL83xx packet header with the initial
cpu_tag word, shifting the real cpu_tag fields by one. Adjusting for
this new shift was partially forgotten in the new RX tag decoders.
This caused the switch to block IGMP, effectively blocking IPv4
multicast.
The bug was partially fixed by commit 9d847244d9 ("realtek: fix
RTL839X receive tag decoding")
Fix on RTL838x too, including correct NIC_RX_REASON_SPECIAL_TRAP value.
Suggested-by: Jan Hoffmann <jan@3e8.eu>
Fixes: dc9cc0d3e2 ("realtek: add QoS and rate control")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Janusz Dziedzic reported a typo introduced by a recent commit. Fix it.
Fixes: 50c892d67b ("mediatek: bpi-r64: make initramfs/recovery optional")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add support for the ZTE MF281 battery-powered WiFi router.
Hardware
--------
SoC: Qualcomm Atheros QCA9563
RAM: 128M DDR2
FLASH: 2M SPI-NOR (GigaDevice GD25Q16)
128M SPI-NAND (GigaDevice)
WLAN: QCA9563 2T2R 802.11 abgn
QCA9886 2T2R 802.11 nac
WWAN: ASRMicro ASR1826
ETH: Qualcomm Atheros QCA8337
UART: 115200 8n1
Unpopulated connector next to SIM slot
(SIM) GND - RX - TX - 3V3
Don't connect 3V3
BUTTON: Reset - WPS
LED: 1x debug-LED (internal)
LEDs on front of the device are controlled
using the modem CPU and can not be controlled
by OpenWrt
Installation
------------
1. Connect to the serial console. Power up the device and interrupt
autoboot when prompted
2. Connect a TFTP server reachable at 192.168.1.66 to the ethernet port.
Serve the OpenWrt initramfs image as "speedbox-2.bin"
3. Boot the initramfs image using U-Boot
$ setenv serverip 192.168.1.66
$ setenv ipaddr 192.168.1.154
$ tftpboot 0x84000000 speedbox-2.bin
$ bootm
4. Copy the OpenWrt factory image to the device using scp and write to
the NAND flash
$ mtd write /path/to/openwrt/factory.bin firmware
WWAN
----
The WWAN card can be used with OpenWrt. Example configuration for
connection with a unauthenticated dual-stack APN:
network.lte=interface
network.lte.proto='ncm'
network.lte.device='/dev/ttyACM0'
network.lte.pdptype='IPV4V6'
network.lte.apn='internet.telekom'
network.lte.ipv6='auto'
network.lte.delay='10'
The WWAN card is running a modified version of OpenWrt and handles
power-management as well as the LED controller (AW9523). A root shell
can be acquired by installing adb using opkg and executing "adb shell".
Signed-off-by: David Bauer <mail@david-bauer.net>
Only include recovery image in SD card image generated for the
BananaPi BPi-R64 if building with CONFIG_TARGET_ROOTFS_INITRAMFS
This allows to build images larger than 32 MB (the limit for
initramfs/recovery image) by deselecting initramfs.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Only include recovery image in SD card image generated for the
BananaPi BPi-R3 if building with CONFIG_TARGET_ROOTFS_INITRAMFS.
This allows to build images larger than 32 MB (the limit for
initramfs/recovery image) by deselecting initramfs.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Pakedge WR-1 is a dual-band wireless router.
Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 32 MB SPI NOR
WIFI: 2.4 GHz 2T2R integrated
5 GHz 2T2R integrated
Ethernet: 5x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
LEDS: 8x (3 GPIO controlled, 5 connected to switch)
Buttons: 1x GPIO controlled
UART: pin header J5
1. 3.3V, 2. GND, 3. TX, 4. RX
baud: 115200, parity: none, flow control: none
Installation
1. Rename initramfs image to:
openwrt-ipq806x-qcom-ipq40xx-ap.dk01.1-c1-fit-uImage-initramfs.itb
and copy it to USB flash drive with FAT32 file system.
2. Connect USB flash drive to the router and apply power while pressing
reset button. Hold the button, on the lates bootloader version, when
Power and WiFi-5 LEDs will start blinking release it. For the older
bootloader holding it for 15 seconds should suffice.
3. Now the router boots the initramfs image, at some point (close to one
minute) the Power LED will start blinking, when stops, router is fully
booted.
4. Connect to one of LAN ports and use SSH to open the shell at
192.168.1.1.
5. ATTENTION! now backup the mtd8 and mtd9 partitions, it's necessary if,
at some point, You want to go back to original firmware. The firmware
provided by manufacturer on its site is encrypted and U-Boot accepts
only decrypted factory images, so there's no way to restore original
firmware.
6. If the backup is prepared, transfer the sysupgrade image to the router
and use 'sysupgrade' command to flash it.
7. After successful flashing router will reboot. At some point the Power
LED will start blinking, wait till it stops, then router is ready for
configuration.
Additional information
U-Boot command line is password protected. Password is unknown.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
The patch 921-mt7986-add-mmc-support.patch introduced by commit
dabcaac443 ("mediatek: add mt7986 soc support to the target") has never
been applied in a way that it would have any effect as it actually
created a file target/linux/generic/patches-5.15/... in the kernel tree
and was probably a patch intended to be applied to openwrt.git instead
of being put into kernel patches folder as a file.
As an upstream commit from vanilla Linux also adding support for MT7986
to the mtk-sd driver has already been included we can remove that old
patch.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The introduction of the new Airoha target has left the tree in an
unfresh state. Refresh patches to improve that situation.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This patch was added in 09b086eeca
("kernel: add quirk for Huawei-compatible OEM SFP GE-T"). Add patch
title, description and SoB to follow OpenWrt's developer guide for
working patches to prepare it for being sent upstream. This patch
should be discussed with Russell King and merged to Linux kernel.
Co-authored-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
It was reported on Turris forum [1] that HALNy HL-GSFP module does not
work as it should with kernel 5.15. Russell King prepared this patch
series, which fixes broken SFP module to work.
Compile and run tested with Turris Omnia.
[1] https://forum.turris.cz/t/hbl-turrisos-6-0-alpha2-halny-hl-gsfp-sfp-gpon-stick-problems/17547
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
A line in platform.sh was accidentally removed when adding support
for the Bananapi BPi-R3.
Re-add it to fix sysupgrade on the MTK7986 rfba AP.
Fixes: a96382c1bb ("mediatek: add support for Bananapi BPi-R3")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
All subtargets are using now 5.15 as testing kernel.
Move KERNEL_TESTING_PATCHVER:=5.15 to the common Makefile.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Devices with SMALL_FLASH enabled have "SQUASHFS_BLOCK_SIZE=1024" in
their config. This significantly increases the cache memory required by
squashfs [0]. This commit enables low_mem leading to a much better
performance because the SQUASHFS_BLOCK_SIZE is reduced to 256.
Example Nanostation M5 (XM):
The image size increases by 128 KiB. However, the memory statisitcs look
much better:
Default tiny build:
------
MemTotal: 26020 kB
MemFree: 5648 kB
MemAvailable: 6112 kB
Buffers: 0 kB
Cached: 3044 kB
low_mem enabled:
-----
MemTotal: 26976 kB
MemFree: 6748 kB
MemAvailable: 11504 kB
Buffers: 0 kB
Cached: 7204 kB
[0] - 7e8af99cf5
Signed-off-by: Nick Hainke <vincent@systemli.org>
Hardware
--------
Qualcomm IPQ4029 WiSoC
2T2R 802.11 abgn
2T2R 802.11 nac
Macronix MX25L25635E SPI-NOR (32M)
512M DDR3 RAM
1x Gigabit LAN
1x Cisco RJ-45 Console port
Settings: 115200 8N1
Installation
------------
1. Attach to the Console port. Power up the device and press the s key
to interrupt autoboot.
2. The default username / password to the bootloader is admin / new2day
3. Update the bootcommand to allow loading OpenWrt.
$ setenv ramboot_openwrt "setenv serverip 192.168.1.66;
setenv ipaddr 192.168.1.1; tftpboot 0x86000000 openwrt-3915.bin;
bootm"
$ setenv boot_openwrt "sf probe;
sf read 0x88000000 0x280000 0xc00000; bootm 0x88000000"
$ setenv bootcmd "run boot_openwrt"
$ saveenv
4. Download the OpenWrt initramfs image. Serve it using a TFTP server as
"openwrt-3915.bin" at 192.1681.66.
5. Download & boot the OpenWrt initramfs image on the access point.
$ run ramboot_openwrt
6. Wait for OpenWrt to start.
7. Download and transfer the sysupgrade image to the device using e.g.
SCP.
8. Install OpenWrt to the device using "sysupgrade"
$ sysupgrade -n /path/to/openwrt.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
Adjusting dts will cause a rebuild of whole kernel as the buildroot
considers this a part of kernel source. It's a royal PITA when trying to
prepare support for new device, since this takes a lot of time on slower
systems. As it stands, buildroot itself, with own rule, also compiles
dtbs and the results are $(KDIR)/image-$(DEVICE_DTS).dtb. With setting
DEVICE_DTS_DIR to directory holding the device dts (similarly to some
other targets), buildroot doesn't consider changed dts as part of kernel
source and rebuilds only dtb. This really speeds up development. And
since the kernel built dts are no longer used, drop the paches adding
dtses to its build.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Import patches from Linux v5.16 and v5.17 to get 2500Base-X SFP working
again with mvneta driver after the generic phylink validate backport.
Fixes: aab466f422 ("kernel: backport generic phylink validate")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Airoha is a new ARM platform based on Cortex-A53 which has recently been
merged into linux-next.
Due to BootROM limitations on this platform, the Cortex-A53 can't run in
Aarch64 mode and code must be compiled for 32-Bit ARM.
This support is based mostly on those linux-next commits backported
for kernel 5.15.
Patches:
1 - platform support = linux-next
2 - clock driver = linux-next
3 - gpio driver = linux-next
4 - linux,usable-memory-range dts support = linux-next
5 - mtd spinand driver
6 - spi driver
7 - pci driver (kconfig only, uses mediatek PCI) = linux-next
Still missing:
- Ethernet driver
- Sysupgrade support
A.t.m there exists one subtarget EN7523 with only one evaluation
board.
The initramfs can be run with the following commands from u-boot:
-
u-boot> setenv bootfile \
openwrt-airoha-airoha_en7523-evb-initramfs-kernel.bin
u-boot> tftpboot
u-boot> bootm 0x81800000
-
Signed-off-by: Daniel Danzberger <daniel@dd-wrt.com>
8 and 16 bit writes to the GPIO peripheral are apparently not supported,
and only worked most of the time. This resulted in garbabe writes to the
interrupt mask registers, causing spurious unhandled interrupts, which
could lead to CPU lock-ups as these kept retriggering.
Instead of clearing these spurious interrupt when they occur, the
upstream patch will just make sure all register writes have the intended
result, so these don't happen at all.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Make sure the compatible string in DTS matches the now v1/v2
differentiated board name in target/linux/mediatek/image/mt7622.mk.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
As of upstream Linux commit 0fe1e96fef0a ("powerpc/pci: Prefer PCI
domain assignment via DT 'linux,pci-domain' and alias"), the PCIe
domain address is no longer numbered by the lowest 16 bits of the PCI
register address after a fallthrough. Instead of the fallthrough, the
enumeration process accepts the alias ID (as determined by
`of_alias_scan()`). This causes e.g.:
9000:00:00.0 PCI bridge: Freescale Semiconductor Inc P1020E (rev 11)
9000:01:00.0 Network controller: Qualcomm Atheros AR958x 802.11abgn ...
to become
0000:00:00.0 PCI bridge: Freescale Semiconductor Inc P1020E (rev 11)
0000:01:00.0 Network controller: Qualcomm Atheros AR958x 802.11abgn ...
... which then causes the sysfs path of the netdev to change,
invalidating the `wifi_device.path`s enumerated in
`/etc/config/wireless`.
One other solution might be to migrate the uci configuration, as was
done for mvebu in commit 0bd5aa89fc ("mvebu: Migrate uci config to
new PCIe path"). However, there are concerns that the sysfs path will
change once again once some upstream patches[^2][^3] are merged and
backported (and `CONFIG_PPC_PCI_BUS_NUM_DOMAIN_DEPENDENT` is enabled).
Instead, remove the aliases and allow the fallthrough to continue for
now. We will provide a migration in a later release.
This was first reported as a Github issue[^1].
[^1]: https://github.com/openwrt/openwrt/issues/10530
[^2]: https://lore.kernel.org/linuxppc-dev/20220706104308.5390-1-pali@kernel.org/t/#u
[^3]: https://lore.kernel.org/linuxppc-dev/20220706101043.4867-1-pali@kernel.org/Fixes: #10530
Tested-by: Martin Kennedy <hurricos@gmail.com>
[Tested on the Aerohive HiveAP 330 and Extreme Networks WS-AP3825i]
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
Commit 0b7c66c ("at91bootstrap: add sama5d27_som1_eksd1_uboot as
default defconfig") changed default booting media for sama5d27_som1_ek
board w/o any reason. Changed it back to sdmmc0 as it is for all the
other Microchip supported distributions for this board (Buildroot,
Yocto Project). The initial commit cannot be cleanly reverted.
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Commit adc69fe (""uboot-at91: changed som1 ek default defconfigs")
changed the booting media to sdmmc1 as default booting w/o any reason.
The Microchip releases for the rest of supported distributions (Buildroot,
Yocto Project) uses sdmmc0 as default booting media for this board.
Thus change it back to sdmmc0. With this remove references to sdmmc1
config. The initial commit cannot be cleanly reverted.
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Backport commit from Linux 5.18 fixing phylink with DSA drivers which
do not provide mac_select_pcs yet.
Fixes: aab466f422 ("kernel: backport generic phylink validate")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Since introduction of clock driver we have a new kernel config
setting. Provide an initial value for the 930x targets.
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
Some devices have wrong/empty values in the PLL registers. Work
around that by reporting the default values.
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
The Bananapi BPi-R3 is a development router board built around the
MediaTek Filogic 830 (MT7986A) SoC.
The board can boot either from microSD, SPI-NAND, SPI-NOR or eMMC.
Only either SPI-NAND or SPI-NOR can be used at the same time, also only
either microSD or eMMC can be used. The various storage options can be
selected using small SMD switches on the board.
Specs:
* MediaTek MT7986A (Filogic 830) 4x ARM Cortex A53
* 4T4R 2.4G 802.11bgnax (MT7975N)
* 4T4R 5G 802.11anac/ax (MT7975P)
* 2 GB DDR4 RAM
* 8 GB eMMC
* 128 MB SPI-NAND flash
* 32 MB SPI-NOR flash
* on-board MT7531 GbE switch
* 2x SFP+ (1 GbE / 2.5 GbE)
* 5x GbE network port
* miniPCIe slot (only USB 2.0 connected)
* uSIM slot (connected to miniPCIe interface)
* M.2 KEY-E PCIe interface (PCIe x2)
* microSD card interface
* 26 PIN GPIO
Hardware details: https://wiki.banana-pi.org/Banana_Pi_BPI-R3
Working:
* all 4 boot methods incl. installation via U-Boot, sysupgrade, ...
* copper LAN and WAN ports
* SFP1 (connected to gmac1, eth1 in Linux)
* WiFi
* LEDs
* Buttons
* PSTORE/ramoops based dual-boot
Not Working (missing driver features):
* SFP2 (connected to MT7531 switch)
Untested:
* M.2/NGFF slot (PCIe x2)
* mPCIe slot (USB 2.0 + SIM)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Backport generic phylink validate series and make use of it for
mtk_eth_soc Ethernet driver as well as mt7530 DSA driver.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This patch defines the two switch LED to bring them under user control.
Fixes: a0e1d3ab7b ("ramips: improve YunCore AX820 LEDs")
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
[rmilecki: leave "label"s in place]
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
The SG2008P has its ethernet ports in the rear, and LEDs in the front.
The ports should be labeled lan8->lan1, not lan1->lan8. To resolve
this, fix the phy mapping in the "ports" node.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Address 0x30 is a "broadcast" address for the TPS23861. It should not
be used by drivers, as all TPS23861 devices on the bus are supposed to
respond. Change this to the correct address, 0x28.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
When marking a switch port as disabled in the device tree, by using
'status = "disabled";', the switch driver fails on boot, causing a
restart:
CPU 0 Unable to handle kernel paging request at virtual address
00000000, epc == 802c3064, ra == 8022b4b4
[ ... ]
Call Trace:
[<802c3064>] strlen+0x0/0x2c
[<8022b4b4>] start_creating.part.0+0x78/0x194
[<8022bd3c>] debugfs_create_dir+0x44/0x1c0
[<80396dfc>] rtl838x_dbgfs_port_init+0x54/0x258
[<80397508>] rtl838x_dbgfs_init+0xe0/0x56c
This is caused by the DSA subsystem (mostly) ignoring the port, while
rtl83xx_mdio_probe() still extracts some details on this disabled port
from the device tree, resulting in the usage of a NULL pointer where a
port name is expected.
By not probing ignoring disabled ports, no attempt is made to create a
debugfs directory later. The device then boots as expected without the
disabled port.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Specifications:
- SoC: Qualcomm Atheros QCA9557-AT4A
- RAM: 2x 128MB Nanya NT5TU64M16HG
- FLASH: 64MB - SPANSION FL512SAIFG1
- LAN: Atheros AR8035-A (RGMII GbE with PoE+ IN)
- WLAN2: Qualcomm Atheros QCA9557 2x2 2T2R
- WLAN5: Qualcomm Atheros QCA9882-BR4A 2x2 2T2R
- SERIAL: UART pins at J10 (115200 8n1)
Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
- LEDs: Power (Green/Amber)
WiFi 5 (Green)
WiFi 2 (Green)
- BTN: Reset
Installation:
1. Download the OpenWrt initramfs-image.
Place it into a TFTP server root directory and rename it to 1D01A8C0.img
Configure the TFTP server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point.
Attach power and interrupt the boot procedure when prompted.
Credentials are admin / new2day
4. Configure U-Boot for booting OpenWrt from ram and flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xa1280000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot 0x89000000 1D01A8C0.img; bootm'
$ setenv bootcmd 'run boot_openwrt'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
6. Transfer the OpenWrt sysupgrade image to the device.
Write the image to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysupgrade.bin
Signed-off-by: Albin Hellström <albin.hellstrom@gmail.com>
[rename vendor - minor style fixes - update commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
Older MT7623 ARMv7 SoC as well as new Filogic platforms come with
inside-secure,safexcel-eip97 units. Enable them in DTS and select the
driver kernel module by default on those platforms.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Initially this covers MT7986 only, but it will later be expanded to cover other
Filogic branded platforms by MediaTek
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
It will be supported by the new filogic subtarget
Signed-off-by: Sam Shih <sam.shih@mediatek.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Use upstream of_get_mtd_device_by_node() which should behave pretty much
the same. Implementation differences:
get_mtd_device_by_node() of_get_mtd_device_by_node()
---- ----
np->dev.of_node mtd_get_of_node(np)
-EPROBE_DEFER -ENODEV
Cc: Bernhard Frauendienst <openwrt@nospam.obeliks.de>
Cc: Bernhard Frauendienst <kernel@nospam.obeliks.de>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Use new DT clockdriver syntax for RTL838X/RTL839X targets. To make it work
we need to change some nodes:
- define the external oscillator speed (25MHz)
- define SRAM
- add clock controller
- Add second CPU for RTL839X
- map all devices to new clocks
- Remove dummy LXB clock
- add CPU OPP table
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
Make use the new clock driver for RTL838X and RTL839x target devices. Of course
we will enable their primary consumer (cpufreq-dt) too. To be careful just set
the default governor to userspace. As we rely on SRAM activate that module too.
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
A new clock driver makes more sense if it can be used from consumers
like cpufreq. Before we enable the driver we must tell the config that
the RTL838X and RTL839X targets allow CPU frequency changing.
Even though these targets currently rely on the CPU's internal R4K
timer, MIPS_EXTERNAL_TIMER is selected to allow for CPU frequency change
testing. The Realtek timers, which are clocked by the Lexra bus, still
need to be supported and used in order to provide correct wall times
when reclocking the CPU.
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
[add paragraph about MIPS_EXTERNAL_TIMER to commit message]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add a new self-contained combined clock & platform driver that allows to
access the PLL hardware clocks of RTL83XX devices. Currently it provides
info about CPU, MEM and LXB clocks on RTL838X and RTL839X devices and
additionally allows to change the CPU clocks. Changing the clocks
multiple times on a DGS-1210-20 and a DGS-1210-52 already works well and
is multithreading safe on the RTL839X. Even a cpufreq initiated change
of the CPU clock works fine. Loading the driver will add some meaningful
logging.
[0.000000] rtl83xx-clk: initialized, CPU 500 MHz, MEM 300 MHz (8 Bit DDR3), LXB 200 MHz
[0.279456] rtl83xx-clk soc:clock-controller: rate setting enabled, CPU 325-600 MHz,
MEM 300-300 MHz, LXB 200-200 MHz, OVERCLOCK AT OWN RISK
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
[remove trailing whitespaces, C-style SPDX comments for ASM and headers]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Fixes following build issue found during build testing with 5.15.63
kernel:
LED Support for Broadcom BCM63138 SoC (LEDS_BCM63138) [N/m/y/?] (NEW)
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Removed following upstreamed patch:
* bcm53xx: 081-next-ARM_dts_BCM53015-add-mr26.patch
All other patches automagically rebased.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Add missing scaling_available_frequencies sysfs entry for dedicated
cpufreq driver.
This sysfs entry is not standard and each cpufreq driver needs to
provide it and declare it in the cpufreq driver struct attr.
Fixes: 5dbbefcbcc ("ipq806x: introduce dedicated krait cpufreq")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Specifications:
* AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
* 1x Gigabit Ethernet (AR8035), 802.3af PoE
Installation:
* OEM Web UI is at 192.168.1.2
login as `admin` with password `1234`
* Flash factory-AASI.bin
The string `AASI` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.
TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
`run lk`
`run lf`
to flash the kernel / filesystem accordingly
MAC addresses as verified by OEM firmware:
use address source
LAN *:cc mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g *:cd mib0 0x4b ('wifi0mac')
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
* QCA9882 PCIe card, 802.11ac 2T2R
* 1x Gigabit Ethernet (AR8035), 802.3af PoE
Installation:
* OEM Web UI is at 192.168.1.2
login as `admin` with password `1234`
* Flash factory-AAOX.bin
The string `AAOX` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.
TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
`run lk`
`run lf`
to flash the kernel / filesystem accordingly
MAC addresses as verified by OEM firmware:
use address source
LAN *:1c mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g *:1c mib0 0x4b ('wifi0mac')
5g *:1e mib0 0x66 ('wifi1mac')
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
* AR9382 PCIe card, 802.11n 2T2R, 5 GHz
* 1x Gigabit Ethernet (AR8035), 802.3af PoE
Installation:
* OEM Web UI is at 192.168.1.2
login as `admin` with password `1234`
* Flash factory-AAEO.bin
The string `AAEO` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.
TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
`run lk`
`run lf`
to flash the kernel / filesystem accordingly
MAC addresses as verified by OEM firmware:
use address source
LAN *:fb mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g *:fc mib0 0x4b ('wifi0mac')
5g *:fd mib0 0x66 ('wifi1mac')
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
* 1x Gigabit Ethernet (AR8035), 802.3af PoE
Installation:
* OEM Web UI is at 192.168.1.2
login as `admin` with password `1234`
* Flash factory-AABJ.bin
The string `AABJ` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.
TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
`run lk`
`run lf`
to flash the kernel / filesystem accordingly
MAC addresses as verified by OEM firmware:
use address source
LAN *:cc mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g *:cd mib0 0x4b ('wifi0mac')
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Mux the MT7530 switch's phy0/4 to the SoC's gmac1 on devices where RGMII2
pins are available. This achieves 2 Gbps total bandwidth to the CPU using
the second RGMII.
The ports called "wan" are muxed where possible. On a minority of devices,
this is not possible. Those cases:
mt7621_ampedwireless_ally-r1900k.dts: lan3
mt7621_ubnt_edgerouter-x.dts: eth0
mt7621_gnubee_gb-pc1.dts: ethblue
mt7621_linksys_re6500.dts: lan1
mt7621_netgear_wac104.dts: lan4
mt7621_tplink_eap235-wall-v1.dts: lan0
mt7621_tplink_eap615-wall-v1.dts: lan0
mt7621_ubnt_usw-flex.dts: lan1
The "wan" port is just what the vendor designated on the board/plastic
chasis of the device. On a technical level, there is no difference between
a lan and wan port on MT7621AT, MT7621DAT and MT7621ST SoCs. Prefer
connecting to WAN via the port described above for these devices to benefit
the feature brought with this patch.
mt7621_d-team_newifi-d2.dts cannot benefit this feature, although it looks
like it should, because the rgmii2 pins are wired to unused components.
Tested on a range of devices documented on the GitHub PR.
Link: https://github.com/openwrt/openwrt/pull/10238
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Remove DTS_LEGACY put for claiming pin groups for the ethernet node from
the ethernet node. It's not an old kernel trait. These bindings need to be
there on the newer kernels as well.
Fixes: a3764ee29d ("ramips: add linux 5.15 support for mt7621")
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
These devices do not use rgmii2 as gpio, therefore remove rgmii2 pin group
from state-default. Remove overwriting the ethernet node for these devices.
Move claiming the rgmii2 group from mt7621_zyxel_nwa-ax.dtsi to
mt7621_zyxel_nwa50ax.dts as it's only the latter using rgmii2 pins as gpio.
Remove duplicate ethernet overwrite from mt7621_tplink_archer-x6-v3.dtsi.
Claim rgmii2 group as gpio on mt7621_bolt_arion.dts as it uses an rgmii2
pin, 26, as gpio.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Change switch port labels to ethblack & ethblue.
Change lan1 & lan2 LEDs to ethblack_act & ethblue_act and fix GPIO pins.
Add the external phy with ethyellow label on the GB-PC2 devicetree.
Do not claim rgmii2 as gpio, it's used for ethernet with rgmii2 function.
Enable ICPlus PHY driver for IP1001 which GB-PC2 has got.
Update interface name and change netdev function.
Enable lzma compression to make up for the increased size of the kernel.
Make spi flash bindings on par with mainline Linux to fix read errors.
Tested on GB-PC2 by Petr.
Tested-by: Petr Louda <petr.louda@outlook.cz>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Platform startup still "guesses" the CPU clock speed by DT fixed values.
If possible take clock rates from a to be developed driver and align to
MIPS generic platfom initialization code. Pack old behaviour into a
fallback function. We might get rid of that some day.
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
General hardware info:
-------------------------------------------------------------------------------
D-Link DGS-1210-10MP is a switch with 8 ethernet ports and 2 SFP ports, all
ports Gbit capable. It is based on a RTL8380 SoC @ 500MHz, DRAM 128MB and
32MB flash. All ethernet ports are 802.3af/at PoE capable
with a total PoE power budget of 130W.
File info:
-------------------------------------------------------------------------------
The dgs-1210-10mp is very similar to dgs-1210-10p so I used that as a start.
rtl838x.mk:
- Removed lua-rs232 package since it was a leftover from the old rtl83xx-poe
package.
- Updated the soc to 8380.
- Specified device variant: F.
- Installed the new realtek-poe package.
rtl8380_d-link_dgs-1210-10mp.dts:
- Moved dgs-1210 family common parts and non PoE related ports on rtl8231
to the new device tree dtsi files.
Serial connection:
-------------------------------------------------------------------------------
The UART for the SoC (115200 8N1) is available close to the front panel next
to the LED/key card connector via unpopulated standard 0.1" pin header
marked j4. Pin1 is marked with arrow and square.
Pin 1: Vcc 3,3V
Pin 2: Tx
Pin 3: Rx
Pin 4: Gnd
Installation with TFTP from u-boot
-------------------------------------------------------------------------------
I originally used the install procedure:
'OpenWrt installation using the TFTP method and serial console access' found
in the device wiki for the dgs-1210-16.
< https://openwrt.org/toh/d-link/dgs-1210-16_g1#openwrt_installation_using
_the_tftp_method_and_serial_console_access >
About the realtek-poe package
-------------------------------------------------------------------------------
The realtek-poe package is installed but there isn't any automatic PoE config
setting at this time so for now the PoE config must be edited manually.
Original OEM hardware/firmware data at first installation
-------------------------------------------------------------------------------
It has been installed, developed, and tested on a device with these OEM
hardware and firmware versions.
- U-boot: 2011.12.(2.1.5.67086)-Candidate1 (Jun 22 2020 - 15:03:58)
- Boot version: 1.01.001
- Firmware version: 6.20.007
- Hardware version: F1
Things to be done when support are developed
-------------------------------------------------------------------------------
- realtek-poe has been included in OpenWrt but the automatic config handling
has not been solved yet so in the future there will probably be some minor
updates for this device to handle the poe config.
- LED link_act and poe are per function supposed to be connected to the PoE
system.
But some software development is also needed to make this LED work and
shift the LED array between act and poe indication and to shift the mode
lights with mode key.
- LED poe_max should probably be used as straight forward error output from
the realtek-poe package error handling. But no code has been written for
this.
- SFP is currently not hot pluggable. Development is under progress to get
working I2C communication with SFP and have them hot pluggable.
When any device in the dgs-1210 family gets this working, I expect it
should be possible to implement the same solution in this device.
Signed-off-by: Daniel Groth <flygarn12@gmail.com>
[Capitalisation of abbreviations, DEVICE_VARIANT and update filenames,
device compatibles on single line]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
I have collected the known information from the dts files we have.
After that I made a new device tree that should work for this whole D-Link
switch family.
This device tree is based on modules where you first select which SoC group
the device belongs to. Then you include the GPIO dtsi file depending on what
hardware your device has, see examples below.
This tree is also expandable for more hardware,
see the part 'Future expansion possibilities' further down.
-------------------------------------------------------------------------------
The device tree now looks like this:
----------------
| rtl838x.dtsi | // Note 1.
----------------
|
|
---------------------------------------
| rtl838x_d-link_dgs-1210_common.dtsi | // Note 2.
---------------------------------------
|
| --------------
|-------| device.dts | // Note 3.
| --------------
|
-------------------------------------
| rtl83xx_d-link_dgs-1210_gpio.dtsi | // Note 4.
-------------------------------------
|
| --------------
|-------| device.dts | // Note 5.
--------------
Note 1; Included in rtl838x_d-link_dgs-1210_common.dtsi.
Note 2; SoC level information and memory mapping. Choose which one to include
in the device dts.
Note 3; At this point dgs-1210-16 will come out here.
Note 4; In this dtsi only common board hardware based on the rtl8231 is found.
No PoE based hardware in this dtsi.
In this dtsi there is no <#include> to above *_common.dtsi.
Note 5; Device dts with only rtl8231 based hardware without PoE will come out
here.
-------------------------------------------------------------------------------
How to set up in dts file:
The device dts will have one of these two <#include> alternatives.
This alternative includes only common features:
<#include "rtl838x_d-link_dgs-1210_common.dtsi">
This alternative includes common and the rtl8231 GPIO (no PoE) features:
<#include "rtl838x_d-link_dgs-1210_common.dtsi">
<#include "rtl83xx_d-link_dgs-1210_gpio.dtsi">
-------------------------------------------------------------------------------
Implementation:
Finally, I also implemented this new family device tree on the current
supported devices:
dgs-1210-10p
dgs-1210-16
dgs-1210-20
dgs-1210-28
The implementation for the dgs-1210-10p is different. I have removed the
information from the rtl8382_d-link_dgs-1210-10p.dts that is already present
in rtl838x_d-link_dgs-1210_common.dtsi.
Since the rest isn't officially probed in the device dts I do not want to
include the rtl83xx_d-link_dgs-1210_gpio.dtsi with dgs-1210-10p.dts.
Since I don't have these devices to test on I have built the original firmware
for each one of these devices before this change and saved the dtb file and
then compared the original dtb file with the dtb file built with this new
device tree.
-------------------------------------------------------------------------------
Future expansion possibilities:
In parallel with the rtl838x_d-link_dgs-1210_common.dtsi in the tree map
we can make a rtl839x_d-link_dgs-1210_common.dtsi to use the rtl839x.dtsi if
the need arises with more devices based on rtl839x soc.
When we have more PoE devices so the hardware map for these gets more clear
we can make a rtl83xx_d-link_dgs-1210_poe.dtsi below
the rtl83xx_d-link_dgs-1210_gpio.dtsi in the tree map.
I looked at the port and switch setup to see if it could be moved to the dtsi.
I decided not to touch this part now. The reason was that there isn't really
any meaningful way this could be shared between the devices.
The only thing in common over the family is the 8+2sfp ports on the
dgs-1210-10xx device.
And then there is the hot plug SFP and I2C ports that aren’t implemented
on any device. So maybe when we see the whole port map for the family
then maybe the ports can be moved to a *_common.dtsi but I don't think it is
the right moment for that now.
Signed-off-by: Daniel Groth <flygarn12@gmail.com>
[Capitalisation of abbreviations and 'D-Link']
Signed-off-by: Sander Vanheule <sander@svanheule.net>
This commit resolves#10062. Adds decryption of the Arcadyan WG4xx223
configuration partition (board_data)to get base MAC address from it.
As a result, after this change the hack with saving MAC addressees to
u-boot-env before installation of OpenWrt is no longer necessary.
This is necessary for the following devices:
- Beeline Smartbox Flash (Arcadyan WG443223)
- MTS WG430223 (Arcadyan WG430223)
Example:
+----------------+-------------------+------------------------+
| | MTS WG430223 | Beeline Smartbox Flash |
+----------------+-------------------+------------------------+
| base mac (mtd) | A4:xx:xx:51:xx:F4 | 30:xx:xx:51:xx:06 |
| label | A4:xx:xx:51:xx:F4 | 30:xx:xx:51:xx:09 |
| LAN | A4:xx:xx:51:xx:F6 | 30:xx:xx:51:xx:09 |
| WAN | A4:xx:xx:51:xx:F4 | 30:xx:xx:51:xx:06 |
| WLAN_2g | A4:xx:xx:51:xx:F5 | 30:xx:xx:51:xx:07 |
| WLAN_5g | A6:xx:xx:21:xx:F5 | 32:xx:xx:41:xx:07 |
+----------------+-------------------+------------------------+
Collected statistic shows that the 2-4th bits of the 7th byte of the
WLAN_5g MAC are the constant (see #10062 for more details):
- Beeline Smartbox Flash - 100
- MTS WG430223 - 010
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
It backports this patch series, which is currently on review:
https://lore.kernel.org/linux-leds/20220704105955.15474-1-kabel@kernel.org/T/#rb89a4ca5a836f17bdcc53d65549e0b1779bb6a18
It allows being able to configure LEDs in userspace.
This fixes issue described in Turris Build repository
https://gitlab.nic.cz/turris/os/build/-/issues/354
It happens in OpenWrt as well.
- Before
```
root@turris:/# ls /sys/class/leds/
ath10k-phy0 ath9k-phy1 mmc0::
```
-After
```
root@turris:/# ls /sys/class/leds/
ath10k-phy0 rgb:indicator-2 rgb:lan-3 rgb:wlan-1
ath9k-phy1 rgb:lan-0 rgb:lan-4 rgb:wlan-2
mmc0:: rgb:lan-1 rgb:power rgb:wlan-3
rgb:indicator-1 rgb:lan-2 rgb:wan
```
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Commit 21f460a5db ("ath25: fix duplicate LZMA compression") changed
the way kernel images are generated, affecting initramfs images instead.
Initramfs images were previously ELF images, and by mistake this change
caused the raw kernel image to be used as a source. This caused them to
be non-loadable by bootloaders.
Restore the previous KERNEL_INITRAMFS recipe and adjust
KERNEL_INITRAMFS_NAME to point at the correct source artifact.
While at that, adjust KERNEL_INITRAMFS_SUFFIX to -kernel.elf,
so it matches the suffix of non-initramfs kernel artifact.
Fixes: 21f460a5db ("ath25: fix duplicate LZMA compression")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Commit 21f460a5db ("ath25: fix duplicate LZMA compression"), when
attempting to restore ELF artifact generation, copiedover the raw
kernel image twice. Because of that, the .elf artifact was actually a
duplicate of raw image.
Fix that by copying over .elf suffixed kernel image instead.
Fixes: 21f460a5db ("ath25: fix duplicate LZMA compression")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Beeline SmartBox TURBO is a wireless WiFi 5 router manufactured by
Sercomm company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 256 MiB, Micron MT29F2G08ABAGA3W
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
Button: 2 buttons (Reset & WPS)
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface (admin:admin)
2. Navigate to Settings -> WAN -> Add static IP interface (e.g.
10.0.0.1/255.255.255.0)
3. Navigate to Settings -> Remote cotrol -> Add SSH, port 22,
10.0.0.0/255.255.255.0 and interface created before
4. Change IP of your client to 10.0.0.2/255.255.255.0 and connect the
ethernet cable to the WAN port of the router
5. Connect to the router using SSH shell (SuperUser:SNxxxxxxxxxx, where
SNxxxxxxxxxx is the serial number from the backplate label)
6. Run in SSH shell:
sh
7. Make a mtd backup (optional, see related section)
8. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
9. Login to the router web interface (admin:admin)
10. Remove dots from the OpenWrt factory image filename
11. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
1. Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
2. Optional: Update with any stock (Beeline) firmware if you want to
overwrite OpenWrt in Slot 0 completely.
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 10.0.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 10.0.0.2
MAC Addresses
-------------
+-----+-----------+---------+
| use | address | example |
+-----+-----------+---------+
| LAN | label | *:54 |
| WAN | label + 1 | *:55 |
| 2g | label + 4 | *:58 |
| 5g | label + 5 | *:59 |
+-----+-----------+---------+
The label MAC address was found in Factory 0x21000
Co-developed-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Add support for the TP-Link SG2008P switch. This is an RTL8380 based
switch with 802.3af one the first four ports.
Specifications:
---------------
* SoC: Realtek RTL8380M
* Flash: 32 MiB SPI flash (Vendor varies)
* RAM: 256 MiB (Vendor varies)
* Ethernet: 8x 10/100/1000 Mbps with PoE on 4 ports
* Buttons: 1x "Reset" button on front panel
* Power: 53.5V DC barrel jack
* UART: 1x serial header, unpopulated
* PoE: 1x TI TPS23861 I2C PoE controller
Works:
------
- (8) RJ-45 ethernet ports
- Switch functions
- System LED
Not yet enabled:
----------------
- Power-over-Ethernet (driver works, but doesn't enable "auto" mode)
- PoE, Link/Act, PoE max and System LEDs
Install via web interface:
-------------------------
Not supported at this time.
Install via serial console/tftp:
--------------------------------
The footprints R27 (0201) and R28 (0402) are not populated. To enable
serial console, 50 ohm resistors should be soldered -- any value from
0 ohm to 50 ohm will work. R27 can be replaced by a solder bridge.
The u-boot firmware drops to a TP-Link specific "BOOTUTIL" shell at
38400 baud. There is no known way to exit out of this shell, and no
way to do anything useful.
Ideally, one would trick the bootloader into flashing the sysupgrade
image first. However, if the image exceeds 6MiB in size, it will not
work. The sysupgrade image can also be flashed. To install OpenWRT:
Prepare a tftp server with:
1. server address: 192.168.0.146
2. the image as: "uImage.img"
Power on device, and stop boot by pressing any key.
Once the shell is active:
1. Ground out the CLK (pin 16) of the ROM (U7)
2. Select option "3. Start"
3. Bootloader notes that "The kernel has been damaged!"
4. Release CLK as sson as bootloader thinks image is corrupted.
5. Bootloader enters automatic recovery -- details printed on console
6. Watch as the bootloader flashes and boots OpenWRT.
Blind install via tftp:
-----------------------
This method works when it's not feasible to install a serial header.
Prepare a tftp server with:
1. server address: 192.168.0.146
2. the image as: "uImage.img"
3. Watch network traffic (tcpdump or wireshark works)
4. Power on the device.
5. Wait 1-2 seconds then ground out the CLK (pin 16) of the ROM (U7)
6. When 192.168.0.30 makes tftp requests, release pin 16
7. Wait 2-3 minutes for device to auto-flash and boot OpenWRT
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
These patches support the tps23861 PoE controller found on a number of
managed switches. The TPS23861 is an I2C-based quad IEEE 802.3at (PoE+)
Power-over-Ethernet PSE controller. It's also found on some Realtek
based switches, where we expect the bulk of the users to reside.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
[Disable driver in generic/config-5.10]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The root overlay is mounted on the "rootfs_data" partition. This comes
at the end of the firmware image, courtesy of mtdsplit. There is very
little space left (About 1MB), which can fill up rapidly.
The "firmware" and "firmware2" partitions are part of the bootloader
dual firmware logic. They should contain independent, valid uImages.
This leaves "jffs2-cfg" (mtd3) and "jffs2-log" (mtd4) as candidates.
mtd3 is about 13.7 MB and is used by the vendor firmware to store
configuration settings. It is only erased by vendor firmware during a
factory reset. By naming this partition "rootfs_data", it becomes the
root overlay, providing significantly more room. Even with mtdsplit
wanting to create a "rootfs_data" on the firmware partition, mtd3 is
used as the overlay.
Rename "jffs2-cfg" to "rootfs_data", and profit from the extra space.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
The original commit for the GS110TP was missing ports 9 and 10. These
are provided by an external RTL8214C phy, for which no support was
available at the time. Now that this phy is supported, add the missing
entries to enable all device ports.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The function `ucidef_set_poe` receives a list of ports to add to the PoE array.
Since switches have many ports the varibale `lan_list` is passed instead of
writing every single lan port. However, this list includes partly SFP ports
which are unrelated to PoE.
This commits adds the option to add a third parameter to manually exclide
interfaces, usually the last two.
Signed-off-by: Paul Spooren <mail@aparcar.org>
[Replace glob by regex to be more specific about matching characters]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
This backports some patches from kernel 5.15 to fix issues with
flowtable offloading in kernel 5.10. OpenWrt backports most of the
patches related to flowtable offloading from kernel 5.15 already, but we
are missing some of the extra fixes.
This fixes some connection tracking problems when a flow gets removed
from the offload and added to the normal SW path again.
The patch 614-v5.18-netfilter-flowtable-fix-TCP-flow-teardown.patch was
extended manually with the nf_conntrack_tcp_established() function.
All changes are already included in kernel 5.15.
Fixes: #8776
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This adds the kmod-wwan package. This provides the generic wwan driver
core which is needed for some existing packages.
Currently the drivers/net/wwan/wwan.ko driver is compiled into the
kernel when one of the wwan module is activated, better build it as a
kernel module.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The nft NAT packages for IPv4 and IPv6 were merged into the common
packages with kernel 5.1. The kmod-nft-nat6 package was empty in our
build, remove it.
Multiple kernel configuration options were also removed, remove them
from our generic kernel configuration too.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
All targets expect the malta target already activate the CONFIG_GPIOLIB
option. Move it to generic kernel configuration and also activate it for
malta.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
CONFIG_INPUT_MISC does not do any changes to the kernel image, it only
shows some extra kernel configuration options.
Activate it on all targets.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Properly format and refresh patch
Fixes: d03977faf4 ("kernel: backport support for Sierra Wireless EM919x modems")
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
Musl libc does not support the non-POSIX "%F" format for strptime() so
replace all occurrences of it with an equivalent "%Y-%m-%d" format.
Fixes: #10419
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
The ZyXEL LTE3301-PLUS is an 4G indoor CPE with 2 external LTE antennas.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256 MB
- Flash: 128 MB MB NAND (MX30LF1G18AC)
- WiFi: MediaTek MT7615E
- Switch: 4 LAN ports (Gigabit)
- LTE: Quectel EG506 connected by USB3 to SoC
- SIM: 1 micro-SIM slot
- USB: USB3 port
- Buttons: Reset, WPS
- LEDs: Multicolour power, internet, LTE, signal, Wifi, USB
- Power: 12V, 1.5A
The device is built as an indoor ethernet to LTE bridge or router with
Wifi.
UART Serial:
57600N1
Located on populated 5 pin header J5:
[o] GND
[ ] key - no pin
[o] RX
[o] TX
[o] 3.3V Vcc
MAC assignment:
lan: 98:0d:67:ee:85:54 (base, on the device back)
wlan: 98:0d:67:ee:85:55
Installation from web GUI:
- Log in as "admin" on http://192.168.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- format ubi device: ubiformat /dev/mtd6
- attach ubi device: ubiattach -m6
- create rootfs volume: ubimkvol /dev/ubi0 -n0 -N rootfs -s 1MiB
- rootfs_data volume: ubimkvol /dev/ubi0 -n1 -N rootfs_data -s 1MiB
- run sysupgrade with sysupgrade image
For more details about flashing see
commit 2449a63208 ("ramips: mt7621: Add support for ZyXEL NR7101").
Please note that this commit is needed:
firmware-utils: add marcant changes for ZyXEL NBG6716 and LTE3301-PLUS
Signed-off-by: André Valentin <avalentin@marcant.net>
The Sophos AP15 seems to be very close to Sophos AP55/AP100.
Based on:
commit 6f1efb2898 ("ath79: add support for Sophos AP100/AP55 family")
author Andrew Powers-Holmes <andrew@omnom.net>
Fri, 3 Sep 2021 15:53:57 +0200 (23:53 +1000)
committer Hauke Mehrtens <hauke@hauke-m.de>
Sat, 16 Apr 2022 16:59:29 +0200 (16:59 +0200)
Unique to AP15:
- Green and yellow LED
- 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
- No buttons
- No piezo beeper
- No 5.8GHz
Flashing instructions:
- Derived from UART method described in referenced commit, methods
described there should work too.
- Set up a TFTP server; IP address has to be 192.168.99.8/24
- Copy the firmware (initramfs-kernel) to your TFTP server directory
renaming it to e.g. boot.bin
- Open AP's enclosure and locate UART header (there is a video online)
- Terminal connection parameters are 115200 8/N/1
- Connect TFTP server and AP via ethernet
- Power up AP and cancel autoboot when prompted
- Prompt shows 'ath> '
- Commands used to boot:
ath> tftpboot 0x81000000 boot.bin
ath> bootm 0x81000000
- Device should boot OpenWRT
- IP address after boot is 192.168.1.1/24
- Connect to device via browser
- Permanently flash using the web ui (flashing sysupgrade image)
- (BTW: the AP55 images seem to work too, only LEDs are not working)
Testing done:
- To be honest: Currently not so much testing done.
- Flashed onto two devices
- Devices are booting
- MAC addresses are correct
- LEDs are working
- Scanning for WLANs is working
Big thanks to all the people working on this great project!
(Sorry about my english, it is not my native language)
Signed-off-by: Manuel Niekamp <m.niekamp@richter-leiterplatten.de>
The hardware difference is the antenna which has a higher gain compared
to the original UniFi AP.
The variant was supported before in ar71xx.
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
extract the compatible and model to make room for other variants
follow-up of
commit dc23df8a8c ("ath79: change Ubiquiti UniFi AP model name to include "AP"")
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
According to MediaTek MT7688 Datasheet v1.4, as well as the MT7628
counterpart, the memory controller reset bit (MC_RST) is 10, not 20.
Reset bit 20 is used for for UART 2 (UART2_RST).
Please note: Due to the lack of hardware, I was not able to test this
change.
Signed-off-by: Reto Schneider <reto.schneider@husqvarnagroup.com>
This patch adds support for Netcore NW5212, provided by some carrier in
China.
Specifications:
--------------
* SoC: Mediatek MT7620A
* RAM: 128MB DDR2
* Flash: 16MB SPI NOR flash (Winbond W25Q128BV)
* WiFi 2.4GHz: builtin
* Ethernet: builtin
* LED: Power, WAN, LAN 1-4, WiFi
* Buttons: Reset (GPIO 13)
* UART: Serial console (57600 8n1)
* USB: 1 x USB2
Installation:
------------
The router comes with OpenWrt 14.07 built with MTK SDK. However, as the
modem is provided by carriers, so the web interface is highly minimized and
only contains a static page with no interaction options.
There are two possible ways to gain the access.
1) Open the shell and use a UART2USB convert to gain TTY access. Please
notice you have to remove resistance R54 at the back of the board
otherwise you won't be able to input anything.
2) Use built-in backdoor. Access http://192.168.1.1/cgi-bin/_/testxst to
start dropbear service at port 9122. Be warned the software is super
old and only diffie-hellman-group1-sha1, diffie-hellman-group14-sha1,
kexguess2@matt.ucc.asn.au is support, you may not be able to connect it
with an up-to-date ssh client.
After you can control the device, flash the firmware as usual. Here are
some hints for that.
Option 1 (via original firmware):
1) Setup HTTP server on your computer, for example:
python3 -m http.server
2) Connect to the route and flash:
cd /tmp
wget http://<your-computer-host>/<your-firmware-name>
mtd -r write <your-firmware-name> firmware
Option 2 (replacing u-boot via breed):
1) Download breed-mt7620-reset13.bin from https://breed.hackpascal.net/
2) Setup HTTP server on your computer, for example:
python3 -m http.server
You can skip this step if your breed is already accessible from HTTP,
since the original wget does not support HTTPS.
3) Connect to the route and flash breed:
cd /tmp
wget http://<your-computer-host>/breed-mt7620-reset13.bin
mtd write breed-mt7620-reset13.bin Bootloader
4) Reboot. Hold reset key or press any key in TTY to enter breed.
5) Access breed web interface (http://192.168.1.1/). Choose the flash
layout to be 0x50000 and flash new firmware.
MAC addresses:
-------------
There are three MACs stored in factory, as in MT7620A reference design:
source address usage
0x4 label WLAN
0x28 label MAC 1
0x2e label + 1 MAC 2
However, the OEM firmware only uses one single MAC (label) for all
interfaces, probably a misconfiguration.
Signed-off-by: David Yang <mmyangfl@gmail.com>
This patch adds support for Netgear PR2000, sold as "Travel Router and
Range Extender".
Specifications:
--------------
* SoC: Mediatek MT7620N
* RAM: 64MB DDR2
* Flash: 16MB SPI NOR flash (Macronix MX25L12805D)
* WiFi 2.4GHz: builtin
* Ethernet: builtin
* LED: Power, Internet, WiFi, USB
* Buttons: Reset (GPIO 1/2)
* UART: Serial console (57600 8n1)
* USB: 1 x USB2
SPECIAL NOTES:
-------------
Problem: WiFi is super weak, but SSID beacons seems to be right.
Solve: Change 36h in factory partition (namely 0xf60036) to be 0x0.
Explain: Clearly Netgear have different ideas on how EEPROM is used. Bit 2
of 36h indicates the presence of External LNA for 11g (2.4 GHz) band,
which seems to be incorrectly set by Netgear (originally 0x04). Lifting it
solves the problem of weak RX signal.
Installation:
------------
There are two possible ways to install the firmware. Flashing via web
interface of original firmware is not tested due to a broken firmware.
1) Open the shell and use a UART2USB convert to gain TTY access (TP7: RXD,
TP9: TXD, TP10: GND). Please notice you have to remove resistance R54
next to TP7 otherwise you won't be able to input anything.
2) Use well-known Netgear debug switch. Access
http://192.168.168.1/setup.cgi?todo=debug to start telnet service
(username: root, password: <none>).
Please back up firmware if you want to go back to the original.
After you can control the device, flash the firmware as usual. Here are
some hints for that.
Option 1 (via nmrpflash):
1) Download nmrpflash from https://github.com/jclehner/nmrpflash
2) Use *-factory.img and flash:
nmrpflash -L
nmrpflash -i net* -f <your-firmware-name>
3) Turn off then turn on the device, wait it finishing flash.
Option 2 (replacing u-boot via breed):
1) Download breed-mt7620-reset1.bin from https://breed.hackpascal.net/
2) Setup HTTP server on your computer, for example:
python3 -m http.server
You can skip this step if your breed is already accessible from HTTP,
since the original wget does not support HTTPS.
3) Connect to the route and flash breed:
cd /tmp
wget http://<your-computer-host>/breed-mt7620-reset1.bin
dd if=breed-mt7620-reset1.bin of=/dev/mtdblock0 bs=64k
4) Reboot. Hold reset key or press any key in TTY to enter breed.
5) Access breed web interface (http://192.168.1.1/). Choose memory layout
to be 0x40000 and flash new firmware.
Remark:
------
As a "Range Extender", it has a switch to switch between Wired mode (GPIO
21 low) and Wireless mode (GPIO 20 low), which is not implemented in this
patch. However, the router will be turned off when it switches to the
middle, which makes this switch much less useful.
MAC addresses:
-------------
The OEM firmware uses one single MAC for all interfaces, located at
0xf700b0.
Signed-off-by: David Yang <mmyangfl@gmail.com>
Specifications:
CPU: MT7621A dual-core 880MHz
RAM: 64MB DDR2
FLASH: 16MB MX25L12805D NOR SPI
WIFI: 2.4GHz 2x2 MT7603 b/g/n PCI
WIFI: 5GHz 2x2 MT7662 a/b/ac PCI
ETH: 1xLAN 1000base-T integrated
SWITCH: MT7530 Port 0: LAN, Port 6: CPU
LED: Power, 2.4GHz WiFi, 5GHz WiFi
BTN: WPS, Reset
UART: Near ETH port, from ETH: 3V3-TxD-GND-RxD 57600 8n1
MISC: Audio support
Installation:
1. Update using recovery mode
- while holdig "reset" button, power on the device
- keep holding "reset" until power led is flashing yellow
- set own IP to 192.168.1.75, subnet mask: 255.255.255.0
- push firmware image (can be factory.bin or sysupgrade.bin)
using tftp client in binary mode to 192.168.1.1
Notes:
This board has only two MAC addresses programmed in the "factory" partition:
- MAC for wlan0 (2.4GHz) at offset 0x0004
- MAC for wlan1 (5GHz) at offset 0x8004
- stock firmware re-uses wlan0 MAC for ethernet
- no valid addresses found in 0x28, 0x2e, 0xe000 and 0xe006
Signed-off-by: Lea Teuberth <lea.teuberth@outlook.com>
Panasonic Switch-M48eG PN28480K is a 48 + 4 port gigabit switch, based on
RTL8393M.
Specification:
- SoC : Realtek RTL8393M
- RAM : DDR3 128 MiB (Winbond W631GG8KB-15)
- Flash : SPI-NOR 32 MiB (Macronix MX25L25635FMI-10G)
- Ethernet : 10/100/1000 Mbps x48 + 2
- port 1-40 : TP, RTL8218B x5
- port 41-48 : RTL8218FB
- port 41-44: TP
- port 45-48: TP/SFP (Combo)
- LEDs/Keys : 7x / 1x
- UART : RS-232 port on the front panel (connector: RJ-45)
- 3:TX, 4:GND, 5:GND, 6:RX (pin number: RJ-45)
- 9600n8
- Power : 100-240 VAC, 50/60 Hz, 0.5 A
- Plug : IEC 60320-C13
- Stock OS : VxWorks based
Flash instruction using initramfs image:
1. Prepare the TFTP server with the IP address 192.168.1.111
2. Rename the OpenWrt initramfs image to "0101A8C0.img" and place it to
the TFTP directory
3. Download the official upgrading firmware (ex: pn28480k_v30000.rom)
and place it to the TFTP directory
4. Boot M48eG and interrupt the U-Boot with Ctrl + C keys
5. Execute the following commands and boot with the OpenWrt initramfs
image
rtk network on
tftpboot 0x81000000
bootm
6. Backup mtdblock files to the computer by scp or anything and reboot
7. Interrupt the U-Boot and execute the following commands to re-create
filesystem in the flash
ffsmount c:/
ffsfmt c:/
this step takes a long time, about ~ 4 mins
8. Execute the following commands to put the official images to the
filesystem
updatert <official image>
example:
updatert pn28480k_v30000.rom
this step takes about ~ 40 secs
9. Set the environment variables of the U-Boot by the following commands
setenv loadaddr 0xb4e00000
setenv bootcmd 'sleep 10; bootm;'
saveenv
'sleep 10;' is required as dummy to execute 'bootm' command correctly
10: Download the OpenWrt initramfs image and boot with it
tftpboot 0x81000000 0101A8C0.img
bootm
11: On the initramfs image, download the sysupgrade image and perform
sysupgrade with it
sysupgrade <imagename>
12: Wait ~ 120 seconds to complete flashing
Known Issues:
- 4x SFP ports are provided as combo ports by the RTL8218FB chip, but the
phy driver has no support for it. Currently, only TP ports work by the
RTL8218B support.
Note:
- "Switch-M48eG" is a model name, and "PN28480K" is a model number.
Switch-M48eG has an another (old) model number ("PN28480"), it's not a
Realtek based hardware.
- Switch-M48eG has a "POWER" LED (Green), but it's not connected to any
GPIO pin.
- U-Boot checks the runtime images in the flash when booting and fails
to execute "bootcmd" variable if the images are not existing.
- A filesystem is formed in the flash (0x100000-0x1DFFFFF) on the stock
firmware and it includes the stock images, configuration files and
checksum files. It's unknown format, can't be managed on the OpenWrt.
To get the enough space for OpenWrt, move the filesystem to the head
of "fs_reserved" partition by execution of "ffsfmt" and "updatert".
- A GPIO pin on PCA9539 is used for resetting external RTL8218B phys and
RTL8218FB phy.
This should be specified as "reset-gpios" property in MDIO node, but
the current configuration of RTL8218B phy in the driver seems to be
incomplete and RTL8218FB won't be configured on RTL8218D support.
So, ethernet ports on these phys will be broken after hard-resetting.
At the moment, configure this pin as gpio-hog to avoid breaking by
resetting.
- This model has 2x Microchip TCN75A thermal sensors. Linux Kernel
supports TCN75 chip on lm75 driver, but no support for TCN75'A'
variant.
At the moment, use TCN75 support for the chips instead.
Back to the stock firmware:
1. Delete "loadaddr" variable and set "bootcmd" to the original value
on U-Boot:
setenv loadaddr
setenv bootcmd 'ffsrdm c:/runtime.had 0x81000000;alphadec c:/runtime.had 0x81000240 0x80010000;'
on OpenWrt:
fw_setenv loadaddr
fw_setenv bootcmd 'ffsrdm c:/runtime.had 0x81000000;alphadec c:/runtime.had 0x81000240 0x80010000;'
2. Perform reset or reboot
on U-Boot:
reset
on OpenWrt:
reboot
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
The system status LED on Panasonic Switch-M48eG PN28480K is connected to
a PCA9539PW. To use the LED as a status LED of OpenWrt while booting,
enable the pca953x driver and built-in to the kernel.
Also enable CONFIG_GPIO_PCA953X_IRQ to use interrupt via RTL83xx GPIO.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Panasonic Switch-M24eG PN28240K is a 24 + 2 port gigabit switch, based on
RTL8382M.
Specification:
- SoC : Realtek RTL8382M
- RAM : DDR3 128 MiB (Winbond W631GG8KB-15)
- Flash : SPI-NOR 32 MiB (Macronix MX25L25635FMI-10G)
- Ethernet : 10/100/1000 Mbps x24 + 2
- port 1-8 : TP, RTL8218B
- port 9-16 : TP, RTL8218B (SoC)
- port 17-24 : RTL8218FB
- port 17-22: TP
- port 23-24: TP/SFP (Combo)
- LEDs/Keys : 7x / 1x
- UART : RS-232 port on the front panel (connector: RJ-45)
- 3:TX, 4:GND, 5:GND, 6:RX (pin number: RJ-45)
- 9600n8
- Power : 100-240 VAC, 50/60 Hz, 0.5 A
- Plug : IEC 60320-C13
- Stock OS : VxWorks based
Flash instruction using initramfs image:
1. Prepare the TFTP server with the IP address 192.168.1.111
2. Rename the OpenWrt initramfs image to "0101A8C0.img" and place it to
the TFTP directory
3. Download the official upgrading firmware (ex: pn28240k_v30000.rom)
and place it to the TFTP directory
4. Boot M24eG and interrupt the U-Boot with Ctrl + C keys
5. Execute the following commands and boot with the OpenWrt initramfs
image
rtk network on
tftpboot 0x81000000
bootm
6. Backup mtdblock files to the computer by scp or anything and reboot
7. Interrupt the U-Boot and execute the following commands to re-create
filesystem in the flash
ffsmount c:/
ffsfmt c:/
this step takes a long time, about ~ 4 mins
8. Execute the following commands to put the official images to the
filesystem
updatert <official image>
example:
updatert pn28240k_v30000.rom
this step takes about ~ 40 secs
9. Set the environment variables of the U-Boot by the following commands
setenv loadaddr 0xb4e00000
setenv bootcmd bootm
saveenv
10: Download the OpenWrt initramfs image and boot with it
tftpboot 0x81000000 0101A8C0.img
bootm
11: On the initramfs image, download the sysupgrade image and perform
sysupgrade with it
sysupgrade <imagename>
12: Wait ~ 120 seconds to complete flashing
Known Issues:
- 2x SFP ports are provided as combo ports by the RTL8218FB chip, but the
phy driver has no support for it. Currently, only TP ports work by the
RTL8218D support.
Note:
- "Switch-M24eG" is a model name, and "PN28240K" is a model number.
Switch-M24eG has an another (old) model number ("PN28240"), it's not a
Realtek based hardware.
- Switch-M24eG has a "POWER" LED (Green), but it's not connected to any
GPIO pin.
- U-Boot checks the runtime images in the flash when booting and fails
to execute "bootcmd" variable if the images are not existing.
- A filesystem is formed in the flash (0x100000-0x1DFFFFF) on the stock
firmware and it includes the stock images, configuration files and
checksum files. It's unknown format, can't be managed on the OpenWrt.
To get the enough space for OpenWrt, move the filesystem to the head
of "fs_reserved" partition by execution of "ffsfmt" and "updatert".
- A GPIO pin on PCA9539 is used for resetting external RTL8218B phy and
RTL8218FB phy.
This should be specified as "reset-gpios" property in MDIO node, but
the current configuration of RTL8218B phy in the phy driver seems to
be incomplete and RTL8218FB won't be configured on RTL8218D support.
So, ethernet ports on these phys will be broken after hard-resetting.
At the moment, configure this pin as gpio-hog to avoid breaking by
resetting.
Back to the stock firmware:
1. Delete "loadaddr" variable and set "bootcmd" to the original value
on U-Boot:
setenv loadaddr
setenv bootcmd 'bootm 0x81000000'
on OpenWrt:
fw_setenv loadaddr
fw_setenv bootcmd 'bootm 0x81000000'
2. Perform reset or reboot
on U-Boot:
reset
on OpenWrt:
reboot
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Panasonic Switch-M16eG PN28160K is a 16 + 2 port gigabit switch, based on
RTL8382M.
Specification:
- SoC : Realtek RTL8382M
- RAM : DDR3 128 MiB (Winbond W631GG8KB-15)
- Flash : SPI-NOR 32 MiB (Macronix MX25L25635FMI-10G)
- Ethernet : 10/100/1000 Mbps x16 + 2
- port 1-8 : TP, RTL8218B (SoC)
- port 9-16 : RTL8218FB
- port 9-14: TP
- port 15-16: TP/SFP (Combo)
- LEDs/Keys : 7x / 1x
- UART : RS-232 port on the front panel (connector: RJ-45)
- 3:TX, 4:GND, 5:GND, 6:RX (pin number: RJ-45)
- 9600n8
- Power : 100-240 VAC, 50/60 Hz, 0.5 A
- Plug : IEC 60320-C13
- Stock OS : VxWorks based
Flash instruction using initramfs image:
1. Prepare the TFTP server with the IP address 192.168.1.111
2. Rename the OpenWrt initramfs image to "0101A8C0.img" and place it to
the TFTP directory
3. Download the official upgrading firmware (ex: pn28160k_v30003.rom)
and place it to the TFTP directory
4. Boot M16eG and interrupt the U-Boot with Ctrl + C keys
5. Execute the following commands and boot with the OpenWrt initramfs
image
rtk network on
tftpboot 0x81000000
bootm
6. Backup mtdblock files to the computer by scp or anything and reboot
7. Interrupt the U-Boot and execute the following commands to re-create
filesystem in the flash
ffsmount c:/
ffsfmt c:/
this step takes a long time, about ~ 4 mins
8. Execute the following commands to put the official images to the
filesystem
updatert <official image>
example:
updatert pn28160k_v30003.rom
this step takes about ~ 40 secs
9. Set the environment variables of the U-Boot by the following commands
setenv loadaddr 0xb4e00000
setenv bootcmd bootm
saveenv
10: Download the OpenWrt initramfs image and boot with it
tftpboot 0x81000000 0101A8C0.img
bootm
11: On the initramfs image, download the sysupgrade image and perform
sysupgrade with it
sysupgrade <imagename>
12: Wait ~ 120 seconds to complete flashing
Known Issues:
- 2x SFP ports are provided as combo ports by the RTL8218FB chip, but the
phy driver has no support for it. Currently, only TP ports work by the
RTL8218D support.
Note:
- "Switch-M16eG" is a model name, and "PN28160K" is a model number.
Switch-M16eG has an another (old) model number ("PN28160"), it's not a
Realtek based hardware.
- Switch-M16eG has a "POWER" LED (Green), but it's not connected to any
GPIO pin.
- U-Boot checks the runtime images in the flash when booting and fails
to execute "bootcmd" variable if the images are not existing.
- A filesystem is formed in the flash (0x100000-0x1DFFFFF) on the stock
firmware and it includes the stock images, configuration files and
checksum files. It's unknown format, can't be managed on the OpenWrt.
To get the enough space for OpenWrt, move the filesystem to the head
of "fs_reserved" partition by execution of "ffsfmt" and "updatert".
- A GPIO pin on PCA9539 is used for resetting external RTL8218FB phy.
This should be specified as "reset-gpios" property in MDIO node, but
RTL8218FB won't be configured on RTL8218D support in the phy driver.
So, ethernet ports on the phy will be broken after hard-resetting.
At the moment, configure this pin as gpio-hog to avoid breaking by
resetting.
Back to the stock firmware:
1. Delete "loadaddr" variable and set "bootcmd" to the original value
on U-Boot:
setenv loadaddr
setenv bootcmd 'bootm 0x81000000'
on OpenWrt:
fw_setenv loadaddr
fw_setenv bootcmd 'bootm 0x81000000'
2. Perform reset or reboot
on U-Boot:
reset
on OpenWrt:
reboot
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
There are forum reports that 2 LAN ports are still not working,
the phy-mode settings are adjusted to fix the problem.
Fixes: #10371
Signed-off-by: Daniel Kestrel <kestrel1974@t-online.de>
As the symbol RTL930x shows, the bool enables the RTL930x platform, not
the RTL839x one.
Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>
(slightly changed commit subject)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The Lex 3I380NX industrial PC has 4 ethernet controllers on board
which need pmc_plt_clk0 - 3 to function, add it to the critclk_systems
DMI table, so that drivers/clk/x86/clk-pmc-atom.c will mark the clocks
as CLK_CRITICAL and they will not get turned off.
This commit is nearly redundant to 3d0818f5eba8 ("platform/x86:
pmc_atom: Add Lex 3I380D industrial PC to critclk_systems DMI table")
but for all Lex Baytrail devices.
The original vendor firmware is only available using the WaybackMachine:
http://www.lex.com.tw/products/3I380NX.html
Signed-off-by: Michael Schöne <michael.schoene@rhebo.com>
Signed-off-by: Paul Spooren <paul.spooren@rhebo.com>
(Hans broader version for more Lex Baytrail systems, v5.15)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
H3C TX180x series WiFi6 routers are customized by different carrier.
While these three devices look different, they use the same motherboard
inside. Another minor difference comes from the model name definition
in the u-boot environment variable.
Specifications:
SOC: MT7621 + MT7915
ROM: 128 MiB
RAM: 256 MiB
LED: status *2
Button: reset *1 + wps/mesh *1
Ethernet: lan *3 + wan *1 (10/100/1000Mbps)
TTL Baudrate: 115200
TFTP server IP: 192.168.124.99
MAC Address:
use address(sample 1) address(sample 2) source
label 88:xx:xx:98:xx:12 88:xx:xx:a2:xx:a5 u-boot-env@ethaddr
lan 88:xx:xx:98:xx:13 88:xx:xx:a2:xx:a6 $label +1
wan 88:xx:xx:98:xx:12 88:xx:xx:a2:xx:a5 $label
WiFi4_2G 8a:xx:xx:58:xx:14 8a:xx:xx:52:xx:a7 (Compatibility mode)
WiFi5_5G 8a:xx:xx:b8:xx:14 8a:xx:xx:b2:xx:a7 (Compatibility mode)
WiFi6_2G 8a:xx:xx:18:xx:14 8a:xx:xx:12:xx:a7
WiFi6_5G 8a:xx:xx:78:xx:14 8a:xx:xx:72:xx:a7
Compatibility mode is used to guarantee the connection of old devices
that only support WiFi4 or WiFi5.
TFTP + TTL Installation:
Although a TTL connection is required for installation, we do not need
to tear down it. We can find the TTL port from the cooling hole at the
bottom. It is located below LAN3 and the pins are defined as follows:
|LAN1|LAN2|LAN3|----|WAN|
--------------------
|GND|TX|RX|VCC|
1. Set tftp server IP to 192.168.124.99 and put initramfs firmware in
server's root directory, rename it to a simple name "initramfs.bin".
2. Plug in the power supply and wait for power on, connect the TTL cable
and open a TTL session, enter "reboot", then enter "Y" to confirm.
Finally push "0" to interruput boot while booting.
3. Execute command to install a initramfs system:
# tftp 0x80010000 192.168.124.99:initramfs.bin
# bootm 0x80010000
4. Backup nand flash by OpenWrt LuCI or dd instruction. We need those
partitions if we want to back to stock firmwre due to official
website does not provide download link.
# dd if=/dev/mtd1 of=/tmp/u-boot-env.bin
# dd if=/dev/mtd4 of=/tmp/firmware.bin
5. Edit u-boot env to ensure use default bootargs and first image slot:
# fw_setenv bootargs
# fw_setenv bootflag 0
6. Upgrade sysupgrade firmware.
7. About restore stock firmware: flash the "firmware" and "u-boot-env"
partitions that we backed up in step 4.
# mtd write /tmp/u-boot-env.bin u-boot-env
# mtd write /tmp/firmware.bin firmware
Additional Info:
The H3C stock firmware has a 160-byte firmware header that appears to
use a non-standard CRC32 verification algorithm. For this part of the
data, the u-boot does not check it so we can just directly replace it
with a placeholder.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Support for HPE 1920 images depends on two non-existent tools (mkh3cimg
and mkh3cvfs) from the in the firmware-utils package. Revert commit
f2f09bc002 ("realtek: add support for HPE 1920 series") until support
for these tools is merged and made available in OpenWrt.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Hardware information:
---------------------
- HPE 1920-8G:
- RTL8380 SoC
- 8 Gigabit RJ45 ports (built-in RTL8218B)
- 2 SFP ports (built-in SerDes)
- HPE 1920-16G / HPE 1920-24G (same board):
- RTL8382 SoC
- 16/24 Gigabit RJ45 ports (built-in RTL8218B, 1/2 external RTL8218D)
- 4 SFP ports (external RTL8214FC)
- Common:
- RJ45 RS232 port on front panel
- 32 MiB NOR Flash
- 128 MiB DDR3 DRAM
- PT7A7514 watchdog
Booting initramfs image:
------------------------
- Prepare a FTP or TFTP server serving the OpenWrt initramfs image and
connect the server to a switch port.
- Connect to the console port of the device and enter the extended
boot menu by typing Ctrl+B when prompted.
- Choose the menu option "<3> Enter Ethernet SubMenu".
- Set network parameters via the option "<5> Modify Ethernet Parameter".
Enter the FTP/TFTP filename as "Load File Name" ("Target File Name"
can be left blank, it is not required for booting from RAM). Note that
the configuration is saved on flash, so it only needs to be done once.
- Select "<1> Download Application Program To SDRAM And Run".
Initial installation:
---------------------
- Boot an initramfs image as described above, then use sysupgrade to
install OpenWrt permanently. After initial installation, the
bootloader needs to be configured to load the correct image file
- Enter the extended boot menu again and choose "<4> File Control",
then select "<2> Set Application File type".
- Enter the number of the file "openwrt-kernel.bin" (should be 1), and
use the option "<1> +Main" to select it as boot image.
- Choose "<0> Exit To Main Menu" and then "<1> Boot System".
NOTE: The bootloader on these devices can only boot from the VFS
filesystem which normally spans most of the flash. With OpenWrt, only
the first part of the firmware partition contains a valid filesystem,
the rest is used for rootfs. As the bootloader does not know about this,
you must not do any file operations in the bootloader, as this may
corrupt the OpenWrt installation (selecting the boot image is an
exception, as it only stores a flag in the bootloader data, but doesn't
write to the filesystem).
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
The bootloader on some H3C devices (for example HPE 1920 switches) only
supports booting from flash by reading an image from an "VFS" filesystem
which spans most of the available flash. The filesystem size is hard-
coded in the bootloader. However, as long as no write operations are
performed in the bootloader menu, it is sufficient if the start of the
partition contains a valid filesystem with the kernel image.
This mtdsplit parser reads the size and location of the kernel image and
finds the location of the rootfs stored after it. It assumes that the
filesystem image matches the layout of one generated by mkh3cvfs, with
a filename of "openwrt-kernel.bin" for the kernel image.
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Don't use udelay to allow other kernel tasks to execute if the kernel
has been built without preemption. Also determine the timeout based on
jiffies instead of loop iterations.
This is especially important on devices containing a watchdog with a
short timeout. Without this change, the watchdog is not serviced during
PHY patching which can take multiple seconds.
Tested-by: Birger Koblitz <mail@birger-koblitz.de>
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Probe the SFP module during PHY initialization and implement
insertion/removal handlers to automatically configure the media type
of the respective port.
Suggested-by: Birger Koblitz <git@birger-koblitz.de>
Tested-by: Birger Koblitz <mail@birger-koblitz.de>
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Move RTL8214FC power configuration to newly created suspend and resume
methods. A media change now only results in power configuration if the
PHY is not suspended, to avoid powering up a port when the interface is
currently not up.
While at it, remove the rtl8380 prefix from function names, as this is
actually not SoC-specific.
Tested-by: Birger Koblitz <mail@birger-koblitz.de>
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Toggle power on the individual PHY instead of the package. Otherwise
a media change always toggles power on the first port, and not the one
that is being configured.
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
We are close to provide enduser friendly OpenWrt images for DGS-1210
switches that do not need serial console. Nevertheless a small bit is
missing. We cannot switch back to the vendor partition or initiate a
download of a vendor firmware image. To issue this from inside OpenWrt
we need write access to U-Boot environment.
Case 1: Switch back to secondary (vendor) image
> fw_setenv bootcmd run addargs\; bootm 0xb4e80000
> fw_setenv image /dev/mtdblock7
> reboot
Case 2: Issue D-Link Network Assistant based download on next reboot.
This is a combination of some vendor specific protocol (DDP) and a
TFTP download afterwards.
> fw_setenv bootstop on
> reboot
Allow these commands by opening up u-boot-env for write access.
Tested on DGS-1210-20.
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
This fixes problem of overwriting BCM4908 U-Boot and DTB files by
BCM4912 ones. That bug didn't allow booting BCM4908 devices.
Fixes: f4c2dab544 ("uboot-bcm4908: add BCM4912 build")
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
In theory we could have just 1 bootfs image for all devices as each
device has its own entry in the "configurations" node. It doesn't work
well with default configuration though.
If something goes wrong U-Boot SPL can be interrupted (by pressing A) to
enter its minimalistic menu. It allows ignoring boardid. In such case
bootfs default configuration is used.
For above reason each SoC family (BCM4908, BCM4912) should have its own
bootfs built. It allows each of them to have working default
configuration.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
There are forum reports that 2 LAN ports are not working, the
GPIO settings are adjusted to fix the problem.
Signed-off-by: Daniel Kestrel <kestrel1974@t-online.de>
The order of LAN ports shown in Luci is reversed compared to what is
written on the case of the device. Fix the order so that they match.
Fixes: #10275
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The interrupt controller in the internal GPIO peripheral will sometimes
generate spurious interrupts. If these are not properly acknowledged, the
system will be held busy until reboot. These spurious interrupts are identified
by the fact that there is no system IRQ number associated, since the interrupt
line was never allocated. Although most prevalent on RTL839x, RTL838x SoCs have
also displayed this behaviour.
Reported-by: Luiz Angelo Daros de Luca <luizluca@gmail.com> # DGS-1210-52
Reported-by: Birger Koblitz <mail@birger-koblitz.de> # Netgear GS724TP v2
Reported-by: Jan Hoffmann <jan@3e8.eu> # HPE 1920-16G
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Hardware
--------
CPU: Mediatek MT7621
RAM: 256M DDR3
FLASH: 128M NAND
ETH: 1x Gigabit Ethernet
WiFi: Mediatek MT7915 (2.4/5GHz 802.11ax 2x2 DBDC)
BTN: 1x Reset (NWA50AX only)
LED: 1x Multi-Color (NWA50AX only)
UART Console
------------
NWA50AX:
Available below the rubber cover next to the ethernet port.
NWA55AXE:
Available on the board when disassembling the device.
Settings: 115200 8N1
Layout:
<12V> <LAN> GND-RX-TX-VCC
Logic-Level is 3V3. Don't connect VCC to your UART adapter!
Installation Web-UI
-------------------
Upload the Factory image using the devices Web-Interface.
As the device uses a dual-image partition layout, OpenWrt can only
installed on Slot A. This requires the current active image prior
flashing the device to be on Slot B.
If the currently installed image is started from Slot A, the device will
flash OpenWrt to Slot B. OpenWrt will panic upon first boot in this case
and the device will return to the ZyXEL firmware upon next boot.
If this happens, first install a ZyXEL firmware upgrade of any version
and install OpenWrt after that.
Installation TFTP
-----------------
This installation routine is especially useful in case
* unknown device password (NWA55AXE lacks reset button)
* bricked device
Attach to the UART console header of the device. Interrupt the boot
procedure by pressing Enter.
The bootloader has a reduced command-set available from CLI, but more
commands can be executed by abusing the atns command.
Boot a OpenWrt initramfs image available on a TFTP server at
192.168.1.66. Rename the image to owrt.bin
$ atnf owrt.bin
$ atna 192.168.1.88
$ atns "192.168.1.66; tftpboot; bootm"
Upon booting, set the booted image to the correct slot:
$ zyxel-bootconfig /dev/mtd10 get-status
$ zyxel-bootconfig /dev/mtd10 set-image-status 0 valid
$ zyxel-bootconfig /dev/mtd10 set-active-image 0
Copy the OpenWrt ramboot-factory image to the device using scp.
Write the factory image to NAND and reboot the device.
$ mtd write ramboot-factory.bin firmware
$ reboot
Signed-off-by: David Bauer <mail@david-bauer.net>
Netgear WAX202 is an 802.11ax (Wi-Fi 6) router.
Specifications:
* SoC: MT7621A
* RAM: 512 MiB NT5CC256M16ER-EK
* Flash: NAND 128 MiB F59L1G81MB-25T
* Wi-Fi:
* MT7915D: 2.4/5 GHz (DBDC)
* Ethernet: 4x 1GbE
* Switch: SoC built-in
* USB: None
* UART: 115200 baud (labeled on board)
Load addresses (same as ipTIME AX2004M):
* stock
* 0x80010000: FIT image
* 0x81001000: kernel image -> entry
* OpenWrt
* 0x80010000: FIT image
* 0x82000000: uncompressed kernel+relocate image
* 0x80001000: relocated kernel image -> entry
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
* Note that the bootloader accepts both encrypted and unencrypted
images, while the stock web interface only accepts encrypted ones.
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
References in WAX202 GPL source:
https://www.downloads.netgear.com/files/GPL/WAX202_V1.0.5.1_Source.rar
* openwrt/target/linux/ramips/dts/mt7621-ax-nand-wax202.dts
DTS file for this device.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
Kernel switching to fw_devlink=on as default broke probing some devices.
Revert it until we get a proper fix.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
The MikroTik wAP ac (RBwAPG-5HacD2HnD) is a dual-band dual-radio
802.11ac wireless access point with integrated antenna and two Ethernet
ports in a weatherproof enclosure. See
https://mikrotik.com/product/wap_ac for more information.
Important: this is the new ipq40xx-based wAP ac, not the older
ath79-based wAP ac (RBwAPG-5HacT2HnD), already supported in OpenWrt.
Specifications:
- SoC: Qualcomm Atheros IPQ4018
- CPU: 4x ARM Cortex A7
- RAM: 128MB
- Storage: 16MB NOR flash
- Wireless
- 2.4GHz: Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae
- 5GHz: Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae
- Ethernet: Built-in IPQ4018 (SoC, QCA8075), 2x 1000/100/10Mb/s ports,
one with 802.3af/at PoE in
Installation:
Boot the initramfs image via TFTP, then flash the sysupgrade image using
sysupgrade. Details at https://openwrt.org/toh/mikrotik/common.
Notes:
This preserves the MAC addresses of the physical Ethernet ports:
- eth0 corresponds to the physical port labeled ETH1 and has the base
MAC address. This port can be used to power the device.
- eth1 corresponds to the physical port labeled ETH2 and has a MAC
address one greater than the base.
MAC addresses are set from /lib/preinit/05_set_iface_mac_ipq40xx.sh
rather than /etc/board.d/02_network so that they are in effect for
preinit. This should likely be done for other MikroTik devices and
possibly other non-MikroTik devices as well.
As this device has 2 physical ports, they are each connected to their
respective PHYs, allowing the link status to be visible to software.
Since they are not marked on the case with any role (such as LAN or
WAN), both are bridged to the lan network by default, although this can
easily be changed if needed.
Signed-off-by: Mark Mentovai <mark@mentovai.com>
Destination switch ports for outgoing frame can range from 0 to
CPU_PORT-1.
Refactor the code to only generate egress frame CPU headers when a valid
destination port number is available, and make the code a bit more
consistent between different switch generations. Change the dest_port
argument's type to 'unsigned int', since only positive values are valid.
This fixes the issue where egress frames on switch port 0 did not
receive a VLAN tag, because they are sent out without a CPU header.
Also fixes a potential issue with invalid (negative) egress port numbers
on RTL93xx switches.
Reported-by: Arınç ÜNAL <arinc.unal@xeront.com>
Suggested-by: Birger Koblitz <mail@birger-koblitz.de>
Tested-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Priority values passed to the egress (TX) frame header initialiser are
invalid when smaller than 0, and should not be assigned to the frame.
Queue assignment is then left to the switch core logic.
Current code for RTL83xx forces the passed priority value to be
positive, by always masking it to the lower bits, resulting in the
priority always being set and enabled. RTL93xx code doesn't even check
the value and unconditionally assigns the (32 bit) value to the (5 bit)
QID field without masking.
Fix priority assignment by only setting the AS_QID/AS_PRI flag when a
valid value is passed, and properly mask the value to not overflow the
QID/PRI field.
For RTL839x, also assign the priority to the right part of the frame
header. Counting from the leftmost bit, AS_PRI and PRI are in bits 36
and 37-39. The means they should be assigned to the third 16 bit value,
containing bits 32-47.
Tested-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The flag to enable L2 address learning on egress frames is in CPU header
bit 40, with bit 0 being the leftmost bit of the header. This
corresponds to BIT(7) in the third 16-bit value of the header.
Correctly set L2LEARNING by fixing the off-by-one error.
Fixes: 9eab76c84e ("realtek: Improve TX CPU-Tag usage")
Tested-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The flag to enable the outgoing port mask is in CPU header bit 43, with
bit 0 being the leftmost bit of the header. This corresponds to BIT(4)
in the third 16-bit value of the header.
Correctly set AS_DPM by fixing the off-by-one error.
Fixes: 9eab76c84e ("realtek: Improve TX CPU-Tag usage")
Tested-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Meraki MR26 is an EOL wireless access point featuring a
PoE ethernet port and two dual-band 3x3 MIMO 802.11n
radios and 1x1 dual-band WIFI dedicated to scanning.
Thank you Amir for the unit and PSU.
Hardware info:
SOC : Broadcom BCM53015A1KFEBG (dual-core Cortex-A9 CPU at 800 MHz)
RAM : SK hynix Inc. H5TQ1G63EFR, 1 Gbit DDR3 SDRAM = 128 MiB
NAND : Spansion S34ML01G100TF100, 1 Gbit SLC NAND Flash = 128 MiB
ETH : 1 GBit Ethernet Port - PoE
WIFI1 : Broadcom BCM43431KMLG, BCM43431 802.11 abgn
WIFI1 : Broadcom BCM43431KMLG, BCM43431 802.11 abgn
WIFI3 : Broadcom BCM43428 abgn (1x1:1 - id: 43428)
BUTTON: one reset button
LEDS : RGB-LED
MISC : Atmel AT24C64 8KiB EEPROM (i2c - seems empty)
: Ti INA219 26V, 12-bit, i2c output current/voltage/power monitor
: TPS23754, High Power/High Efficiency PoE Interface+DC/DC Controller
SERIAL:
WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
The Serial setting is 115200-8-N-1. The board has a populated
right angle 1x4 0.1" pinheader.
The pinout is: VCC (next to J3, has little white arrow), RX, TX, GND.
This flashing procedure for the MR26 was tested with firmware:
"22-143410M-gf25cbf5a-asa".
U-Boot 2012.10-00063-g83f9fe4 (Jun 04 2014 - 21:22:39)
A guide how to open up the device is available on the wiki:
<https://openwrt.org/toh/meraki/mr26>
Notes:
- The WIFI do work to a degree. Limited to 802.11bg in the 2.4GHz band.
- the WIFI macs are made up.
0. Create a separate Ethernet LAN which can't have access to the internet.
Ideally use 192.168.1.2 for your PC. The new OpenWrt firmware will setup
the network via DHCP Discovery, so make sure your PC is running
a DHCP-Server (i.e.: dnsmasq)
'# dnsmasq -i eth# -F 192.168.1.5,192.168.1.50
Download the openwrt-meraki-mr26 initramfs file from openwrt.org and
rename it to something simple like mr26.bin. Then put it into the tftp's
server directory.
1. Disassemble the MR26 device by removing all screws (4 screws are located
under the 4 rubber feets!) and prying open the plastic covers without
breaking the plastic retention clips. Once inside, remove the plastic
back casing. Be careful, there some "hidden" retention clips on both
sides of the LAN port, you need a light to see those. Next, you want to
remove all the screws on the outer metal shielding to get to the PCB.
It's not necessary to remove the antennas!
2. Connect the serial cable to the serial header and Ethernet patch cable
to the device.
4. Before connecting the power, get ready flood the serial console program
with the magic: xyzzy . This is necessary in order to get into the
u-boot prompt. Once Ready: connect power cable.
5. If you don't get the "u-boot>" prompt within the first few seconds,
you have to disconnect and reconnect the power cable and try again.
6. In the u-boot prompt enter:
setenv ipaddr 192.168.1.4
setenv serverip 192.168.1.2
tftpboot ${meraki_loadaddr} mr26.bin; bootm
this will boot a in-ram-only OpenWrt image.
7. Once it booted use sysupgrade to permanently install OpenWrt.
To do this: Download the latest sysupgrade.bin file and move
it to the device. Then use sysupgrade *sysupgrade.bin to install it.
WARNING: DO NOT DELETE the "storage" ubi volume!
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The BDFs for the:
GL.iNet GL-B2200
were upstreamed to the ath10k-firmware repository
and landed in linux-firmware.git
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Kalle:
"I see that variant has a space in it, does that work it correctly? My
original idea was that spaces would not be allowed, but didn't realise
to add a check for that."
Is this an easy change? Because the original author (Tim Davis) noted:
"You may substitute the & and space with something else saner if they
prove to be problematic."
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
kernel linux now have 2 different export.h include, one from
linux/export.h and one from asm-generic/export.h
While most of our target user linux/export.h, aarch64 based target use
asm-generic/export.h that is not patched with the changes of
221-module_exports.
Patch also this additional header to fix multiple
aarch64-openwrt-linux-musl-ld: warning: orphan section `__ksymtab_strings' from `arch/arm64/kernel/head.o' being placed in section `__ksymtab_strings'
warning during kernel compilation.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
This patches does not have a valid patch headers and does not apply on
an external git tree with 'git am'. To fix this add the missing headers.
Signed-off-by: Florian Eckert <fe@dev.tdt.de>
This patches does not have a valid patch headers and does not apply on
an external git tree with 'git am'. To fix this add the missing headers.
Signed-off-by: Florian Eckert <fe@dev.tdt.de>
The amber and green wan led color was inverted in dts file, which ends
up leaving the wan led amber when the connection is established, so,
switch gpio led number (7 and 8) in qca9563_tplink_archer-c6-v2-us.dts.
Tip: the /etc/config/system file needs to be regenerated.
Signed-off-by: Rodrigo B. de Sousa Martins <rodrigo.sousa.577@gmail.com>
Signed-off-by: Petr Štetiar <ynezz@true.cz> [commit subject]
Linux stable v5.15.51 brought commit 7a3a4683562e
("ARM: dts: bcm2711-rpi-400: Fix GPIO line names") which was already
part of a local patch which then failed to apply. Remove the already
applied and now failing hunk from the patch to fix the build.
Fixes: 552d76f2be ("kernel: bump 5.15 to 5.15.51")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
TechNexion PICO-PI-IMX7D is a NXP i.MX 7Dual based development board in
the well-known "Raspberry Pi" form factor, comprising of PICO-IMX7 SoM
and the PICO-PI-IMX7D carrier board.
Usually bundled with a 5" 800x480 LVDS display with I2C touchscreen and
an Omnivision OV5645 camera on a MIPI CSI bus, on a daughterboard. The
board was previously used primarily with "Android Things" ecosystem, but
the project was killed by Google.
This would not be possible, if not for the great tutorial of setting up
Debian on this board, by Robert C. Nelson [1].
Hardware highlights:
CPU: NXP i.MX 7Dual SoC, dual-core Cortex-A7 at 1000 MHz
RAM: 512 MiB DDR3 SDRAM
Storage: 4 GB eMMC
Networking:
- built-in Gigabit Ethernet with Atheros AR8035 PHY,
- Broadcom BCM4339 1x1 802.11ac Wi-Fi (over SDIO) + Bluetooth 4.1
(over SDIO + UART + IS2) combo, with Hirose u.FL connector on the
board,
- dual CAN interfaces on the 40-pin connector,
Interfaces:
- USB-C power input plus USB 2.0 OTG host/device port,
- single USB-A host port,
- serial console over built-in FT232BL USB-UART converter with
micro-USB connector (configuration: 115200-8-N-1),
- analog audio interface with TRRS connector in CTIA standard,
- SPI, I2C and UART interfaces available on the 40-pin,
- mikroBUS connector,
- I2C connector for the optional touch panel,
- parallel LCD output for the optional display,
- MIPI CSI connector for the optional camera
Installation:
1. Connect the serial console to debug USB connector and the terminal of
choice in another window, at 115200-8-N-1. Ensure you can switch to
it quickly after next step.
2. Power-on the board from your PC. Ensure your PC can supply required
current, the board can take more than 1 A in the peak load during
booting and brownout will result in power-on reset loop. Preferably,
use charging-capable USB port or connect through self-powered USB
hub. If U-Boot is present already on the eMMC, interrupt the booting
sequence by pressing any key and skip to point 7.
3. Ensure the boot mode jumpers J1 and J2 are in correct position for
USB recovery:
2 6 2 6
--------------
|o o-o||o-o o|
|o o-o||o-o o|
J1 -------------- J2
1 5 1 5
The jumpers are located just underneath the 40-pin expansion header
and are of the smaller 2 mm pitch.
4. Download and build 'imx_usb_loader' from:
https://github.com/boundarydevices/imx_usb_loader.
5. Power-on the board again from your PC through USB OTG connector.
6. Use 'imx_usb_loader' to load 'SPL' and 'u-boot-dtb.img' to the board:
$ sudo imx_usb u-boot-pico-pi-imx7d/SPL
$ sudo imx_usb u-boot-pico-pi-imx7d/u-boot-dtb.img
7. Switch to the terminal from step 2 and interrupt boot sequence by
pressing any key within 2 seconds.
8. Configure mmc 0 to boot from the data partition and disable access to
boot partitions:
=> mmc partconf 0 0 7 0
This only needs to be set once. If you were running Debian previously,
this is probably already set.
9. Enable USB mass storage passthrough for eMMC from U-boot
=> ums 0 mmc 0
10. Optionally, backup previous eMMC contents by reading out its image.
11. Copy over the factory image to the USB device, for example:
$ sudo dd if=openwrt-imx-cortexa7-pico-pi-imx7d-squashfs.combined.bin \
of=/dev/disk/by-id/usb-Linux_UMS_disk_0-0:0 \
bs=8M status=progress oflag=direct
12. Detach USB MSC interface from your PC and U-Boot by pressing Ctrl+C.
13. Ensure that boot mode jumpers are at the default settings for eMMC
boot:
2 6 2 6
--------------
|o-o o||o o-o|
|o-o o||o-o o|
J1 -------------- J2
1 5 1 5
If they are not, power-off the board, restore them and power-on the
board again. Otherwise, if jumpers are set, just reset the board from
U-Boot CLI:
=> reset
14. The installation is now complete and board should boot successfully.
Upgrading: just use sysupgrade image, as usual in OpenWrt.
Known issues/current limitations:
- OV5645 camera - not described in upstream device tree as of kernel
5.15. There are staging drivers present in upstream Linux tree for
i.MX 7 CSI, MIPI-CSI and video mux, and the configuration is there in
imx7s.dtsi - so this is expected to get supported eventually,
- on-chip ADCs are disabled in upstream device tree, so the kernel
driver remains disabled as well.
[1] https://forum.digikey.com/t/debian-getting-started-with-the-pico-pi-imx7/12429
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[pepe2k@gmail.com: commit description reworded]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Add OpenWrt specific aliases for system LED and label MAC device,
also set default serial console.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Ensure, that kernel update is performed atomically on filesystem, to
reduce likelihood of failure if power-cut occurs during sysupgrade. If
kernel update fails for whatever reason, skip updating rootfs as well.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Sysupgrade procedure for i.MX 6 Apalis boards is suitable for most other
i.MX boards booting from eMMC or SD card. Extract the common parts and
decouple the procedure from "apalis" board name in sysupgrade TAR
contents, so the procedure is reusable for i.MX 7 boards.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Most i.MX boards booting off eMMC or SD cards use raw U-Boot located at
69 kB offset from beginning of the device - create a recipe for such
image.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The same combined image format can be used to boot both i.MX 6 and
i.MX 7 platforms - extract the common part.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The PICO-PI-IMX7D board is equipped with external LCD display with
touchscreen. To allow displaying console on it, enable framebuffer,
fbcon and DRM support at early boot.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[pepe2k@gmail.com: refreshed subtarget kernel config]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Import sdma-imx7d.bin from linux-firmware repository at commit:
55edf5202154: ("imx: sdma: update firmware to v3.5/v4.5")
Cortex-A7 boards (i.MX 7 based) use different SDMA firmware than i.MX 6
boards - bundle the correct files in per-subtarget kernel options.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Add initial symbols required for i.MX 7 boards, based on devices
available on TechNexion PICO-PI-IMX7D board.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[pepe2k@gmail.com: refreshed subtarget kernel config]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Manual rebase by Marty Jones:
bcm27xx/patches-5.15/950-0078-BCM2708-Add-core-Device-Tree-support.patch
All other patches automatically rebased.
Signed-off-by: John Audia <therealgraysky@proton.me>
Signed-off-by: Marty Jones <mj8263788@gmail.com>
[Apply same changes to new dts entry in modified file]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
setup.c unconditionally sets the sys-led mode (blinking rate) to a
permanent high output. This may cause issues when a board expects this
pin to toggle periodically, e.g. when hooked up to an external watchdog.
If the sys-led peripheral is used to control an LED, the mux should be
configured to use the pin as GPIO0, allowing for better control as a
GPIO LED.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The devicetree for the ZyXEL XGS1250-12 was missing the description of
the front panel LED labeled "PWR SYS". Let's add it so it can be
controlled by the user.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Like for RTL838x devices, add a pinctrl-single node to manage the
sys-led/gpio0 mux, and allow using the pin as GPIO.
Co-developed-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Not all devices using the gpio0/sys-led pin as a GPIO, configure the
pinmux. Add the necessary pinctrl properties to these devices to ensure
the pin is set up for use as GPIO.
Co-developed-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Tested-by: Bjørn Mork <bjorn@mork.no>
During upload of firmware images the WebUI and CLI patch process
extracts a version information from the uploaded file and stores it
onto the jffs2 partition. To be precise it is written into the
flash.txt or flash2.txt files depending on the selected target image.
This data is not used anywhere else. The current OpenWrt factory
image misses this label. Therefore version information shows only
garbage. Fix this.
Before:
DGS-1210-20> show firmware information
IMAGE ONE:
Version : xfo/QE~WQD"A\Scxq...
Size : 5505185 Bytes
After:
DGS-1210-20> show firmware information
IMAGE ONE:
Version : OpenWrt
Size : 5505200 Bytes
Tested-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
Currently we build factory images only for DGS-1210-28 model. Relax
that constraint and take care about all models. Tested on DGS-1210-20
and should work on other models too because of common flash layout.
Tested-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
Backport upstream solution that permits to declare nvmem cells with
dynamic partition defined by special parser.
This provide an OF node for NVMEM and connect it to the defined dynamic
partition.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
On the NanoPI R4S it takes an average of 3..5 seconds for the network devices
to appear in '/proc/interrupts'.
Wait up to 10 seconds to ensure that the distribution of the interrupts
really happens.
Signed-off-by: Ronny Kotzschmar <ro.ok@me.com>
On boot, kernel log complains no vbus supply is found:
`xhci-mtk 1a0c0000.usb: supply vbus not found, using dummy regulator`
so add the dts node entries to solve the issue
Signed-off-by: Andrew Sim <andrewsimz@gmail.com>
When building the mediatek/mt7629 target in OpenWrt 22.03 the kernel
does not have a configuration option for CONFIG_CRYPTO_DEV_MEDIATEK. Add
this option to the generic kernel configuration and also add two other
configuration options which are removed when we refresh the mt7629
kernel configuration.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
From now on we will insert CAMEO tags into sysupgrade images for
DGS-1210 devices. This will make the "OS:...FAILED" and "FS:...FAILED"
messages go away.
Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
The recent differentiation between v1 and v2 of the UniFi 6 LR added
support for the v2 version which has GPIO-controlled LEDs instead of
using an additional microcontroller to drive an RGB led.
The polarity of the white LED, however, was inverted and the default
states didn't make a lot of sense after all. Fix that.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The line trying to generate the standard sdcard.img.gz fails due to
boot.scr not being generated.
Remove the line in order to use the default sdcard.img.gz which is
exactly the same but includes generating the boot.scr file.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
napi_build_skb() reuses NAPI skbuff_head cache in order to save some
cycles on freeing/allocating skbuff_heads on every new Rx or completed
Tx.
Use napi_consume_skb() to feed the cache with skbuff_heads of completed
Tx so it's never empty.
Signed-off-by: Sieng Piaw Liew <liew.s.piaw@gmail.com>
[ fixed commit title ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
The international version of Mi Router 4A 100M is physically
identical to the non-international one, but appears to be
using a different partitioning scheme with the "overlay"
partition being 2MiB in size instead of 1MiB. This means
the following "firmware" partition starts at a different
address and the DTS needs to be adjusted for the firmware
to work.
Signed-off-by: Nita Vesa <werecatf@outlook.com>
Specifications:
Chipset:MT7628DA+MT7612E
Antenna : 2.4Ghz:2x5dbi Antenna + 5.8Ghz:2x5dbi Antenna
Wireless Rate:2.4Ghz 300Mbps , 5.8Ghz 867Mbps
Output Power :100mW(20dbm)
Physical port:110/100Mbps RJ45 WAN Port , 310/100Mbps RJ45 LAN Port
Flash: 8Mb
DRam: 64Mb
Flashing: default bootloader attempts to boot from tftp://192.168.1.10/firmware_auto.bin using 192.168.1.1
Known issues:
mac-address-increment for 5GHZ doesnt work, i failed to figure out why. Original firmware using +1 from original value in factory partition.
Signed-off-by: Sergei Iudin <tsipa740@gmail.com>
Beeline SmartBox GIGA is a wireless WiFi 5 router manufactured by
Sercomm company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB, Nanya NT5CC128M16JR-EK
Flash: 128 MiB, Macronix MX30LF1G18AC
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7613BE): a/n/ac, 2x2
Ethernet: 3 ports - 2xGbE (WAN, LAN1), 1xFE (LAN2)
USB ports: 1xUSB3.0
Button: 1 button (Reset/WPS)
PCB ID: DBE00B-1.6MM
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Downgrade stock (Beeline) firmware to v.1.0.02;
2. Give factory OpenWrt image a shorter name, e.g. 1001.img;
3. Upload and update the firmware via the original web interface.
Remark: You might need make the 3rd step twice if your running firmware
is booted from the Slot 1 (Sercomm0 bootflag). The stock firmware
reverses the bootflag (Sercomm0 / Sercomm1) on each firmware update.
Revert to stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
2. Optional: Update with any stock (Beeline) firmware if you want to
overwrite OpenWrt in Slot 0 completely.
MAC Addresses
-------------
+-----+-----------+---------+
| use | address | example |
+-----+-----------+---------+
| LAN | label | *:16 |
| WAN | label + 1 | *:17 |
| 2g | label + 4 | *:1a |
| 5g | label + 5 | *:1b |
+-----+-----------+---------+
The label MAC address was found in Factory 0x21000
Notes
-----
1. The following scripts are required for the build:
sercomm-crypto.py - already exists in OpenWrt
sercomm-partition-tag.py - already exists in OpenWrt
sercomm-payload.py - already exists in OpenWrt
sercomm-pid.py - new, the part of this pull request
sercomm-kernel-header.py - new, the part of this pull request
2. This device (same as other Sercomm S2,S3-based devices) requires
special LZMA and LOADADDR settings for successful boot:
LZMA_TEXT_START=0x82800000
KERNEL_LOADADDR=0x81001000
LOADADDR=0x80001000
3. This device (same as several other Sercomm-based devices - Beeline,
Netgear, Etisalat, Rostelecom) has partition map (mtd1) containing
real partition offsets, which may differ from device to device
depending on the number and location of bad blocks on NAND.
"fixed-partitions" is used if the partition map is not found or
corrupted. This behavour (it's the same as on stock firmware) is
provided by MTD_SERCOMM_PARTS module.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
GPIO 1 on the RTL8231 is used to force the PoE MCU to disable power
outputs. It is not used by any driver, but if accidentally set low,
PoE outputs are disabled. This situation is hard to debug, and
requires knowledge of the Broadcom PoE protocol used by the MCU.
To prevent this situation, hog it as an output high. This is
consistent with the ZyXel GS1900 series handles it.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Fix the wps button to prevent wrongly detected recovery procedures.
In the official banana pi r64 git the wps button is set to
GPIO_ACTIVE_LOW and not GPIO_ACTIVE_HIGH.
Import patch to fix on boot unwanted recovery entering:
Press the [f] key and hit [enter] to enter failsafe mode
Press the [1], [2], [3] or [4] key and hit [enter] to select the debug level
- failsafe button wps was pressed -
- failsafe -
Signed-off-by: Nick Hainke <vincent@systemli.org>
rtl8366s is used only by dlink_dir-825-b1 and the netgear_wndr family
(wndr3700, wndr3700-v2, wndr3800ch, wndr3800.dts, wndrmac-v1,
wndrmac-v2).
Not tested in real hardware.
With rtl8366rb, rtl8366s, rtl8367 as modules, rtl8366_smi can also be a
loadable module. This change was tested with tl-wr2543-v1.
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
It looks like rtl8366rb is used only by tplink_tl-wr1043nd-v1 and
buffalo_wzr-hp-g300nh-rb. There is no need to have it built-in as it
works as a loadable module.
Tested both failsafe and normal boot on tl-wr1043nd-v1.
buffalo_wzr-hp-g300nh-rb was not tested.
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
At least two AX820 hardware variants are known to exist, but they cannot
be distinguished (same hardware revision, no specific markings).
They appear to have the same LED hardware, but wired differently:
- One has a red system LED at GPIO 15, a green wlan2g LED at GPIO 14 and
a blue wlan5g LED at GPIO 16;
- The other only offers a green system LED at GPIO 15, with GPIO 14 and
16 being apparently not connected
Finally, a Yuncore datasheet says the canonical wiring should be:
- Blue wlan2g GPIO 14, green system GPIO 15, red wlan5g GPIO 16
All GPIOs are tied to a single RGB LED which is exposed via lightpipe on
the device front casing.
Considering the above, this patch exposes all three LEDs, preserves the
common system LED (GPIO 15) as the openwrt status LED, and removes the
color information from the LEDs names since it is not consistent across
hardware. The LED naming is made consistent with other YunCore devices.
A note is added in DTS to ensure this information is always available
and prevent unwanted changes in the future.
Fixes: #10131 "YunCore AX820: GPIO LED not correct"
Reviewed-by: Sander Vanheule <sander@svanheule.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Enable PowerPC Book-E Watchdog Timer support. Having this enabled
in-kernel will result in procd starting it during boot.
This effectively solves the problem of the WDT in the Winbond W83793 chip
potentially resetting the system during sysupgrade, which could result
in an unbootable device. While the driver is modular, resulting in procd
not starting the WDT during boot (because that happens before kmod
load), the WDT handover during sysupgrade results in the WDT being
started. This normally shouldn't be a problem, but the W83793 WDT does
not like procd's defaults, nor the handover happening during sysupgrade.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Due to licensing uncertainty, we do not include the firmwares for the
wireless chips used in the Raspberry Pi Zero 2 W. To have working
wireless, follow the instructions below.
For people building their own images:
mkdir -p files/lib/firmware/brcm
wget -P files/lib/firmware/brcm/ https://github.com/RPi-Distro/firmware-nonfree/raw/bullseye/debian/config/brcm80211/brcm/brcmfmac43436-sdio.bin
wget -P files/lib/firmware/brcm/ https://github.com/RPi-Distro/firmware-nonfree/raw/bullseye/debian/config/brcm80211/brcm/brcmfmac43436-sdio.txt
wget -P files/lib/firmware/brcm/ https://github.com/RPi-Distro/firmware-nonfree/raw/bullseye/debian/config/brcm80211/brcm/brcmfmac43436s-sdio.bin
wget -P files/lib/firmware/brcm/ https://github.com/RPi-Distro/firmware-nonfree/raw/bullseye/debian/config/brcm80211/brcm/brcmfmac43436s-sdio.txt
Now build the OpenWrt image as usual, and it will include the firmware
files in the correct location.
For people using ext4 images:
Write the ext4 image to the sdcard, then mount the 2nd partition and put
the firmware files from the links above in /lib/firmware/brcm relative
from the mount point where the partition is mounted.
For people using squashfs images:
Write the squashfs image to the sdcard, place it in the Raspberry Pi
Zero 2 W, boot it and wait for the overlay filesystem to be created.
Find the offset of the overlay filesystem in sysfs:
# cat /sys/devices/virtual/block/loop0/loop/offset
25755648
Shut down the device, unplug the power and move the SD card to a Linux
computer. Mount the 2nd partition of the sdcard as a loop device with
the offset found earlier.
sudo mount /dev/sdh2 -o loop,offset=25755648 /mnt/temp
Put the firmware files from the links above in /upper/lib/firmware/brcm
relative to the mount point where the loop device is mounted.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Tested-by: Peter van Dijk <peter@7bits.nl>
Asus RP-AC51 Repeater
Category:
AC750 300+433 (OEM w. unstable driver)
AC1200 300+866 (OpenWrt w. stable driver)
Hardware specifications:
Board: AP147
SoC: QCA9531 2.4G b/g/n
WiFi: QCA9886 5G n/ac
DRAM: 128MB DDR2
Flash: gd25q128 16MB SPI-NOR
LAN/WAN: AR8229 1x100M
Clocks: CPU:650MHz, DDR:600MHz, AHB:200MHz
MAC addresses as verified by OEM firmware:
use address source
Lan/W2G *:C8 art 0x1002 (label)
5G *:CC art 0x5006
Installation:
Asus windows recovery tool:
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
Start the Asus firmware restoration utility, specify the factory image
and press upload
Do not power off the device after OpenWrt has booted until the LED flashing.
TFTP Recovery method:
set computer to a static ip, 192.168.1.10
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
Asus PL-AC56 Powerline Range Extender Rev.A1
(in kit with Asus PL-E56P Powerline-slave)
Hardware specifications:
Board: AP152
SoC: QCA9563 2.4G n 3x3
PLC: QCA7500
WiFi: QCA9882 5G ac 2x2
Switch: QCA8337 3x1000M
Flash: 16MB 25L12835F SPI-NOR
DRAM SoC: 64MB w9751g6kb-25
DRAM PLC: 128MB w631gg6kb-15
Clocks: CPU:775.000MHz, DDR:650.000MHz, AHB:258.333MHz, Ref:25.000MHz
MAC addresses as verified by OEM firmware:
use address source
Lan/Wan/PLC *:10 art 0x1002 (label)
2G *:10 art 0x1000
5G *:14 art 0x5000
Important notes:
the PLC firmware has to be provided and copied manually onto the
device! The PLC here has no dedicated flash, thus the firmware file
has to be uploaded to the PLC controller at every system start
the PLC functionality is managed by the script /etc/init.d/plc_basic,
a very basic script based on the the one from Netadair (netadair dot de)
Installation:
Asus windows recovery tool:
have to have the latest Asus firmware flashed before continuing!
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
start the Asus firmware restoration utility, specify the factory image
and press upload
do NOT power off the device after OpenWrt has booted until the LED flashing
TFTP Recovery method:
have to have the latest Asus firmware flashed before continuing!
set computer to a static ip, 192.168.1.75
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
do NOT power off the device after OpenWrt has booted until the LED flashing
Additional notes:
the pairing buttons have to have pressed for at least half a second,
it doesn't matter on which plc device (master or slave) first
it is possible to pair the devices without the button-pairing requirement
simply by pressing reset on the slave device. This will default to the
firmware settings, which is also how the plc_basic script is setting up
the master device, i.e. configuring it to firmware defaults
the PL-E56P slave PLC has its dedicated 4MByte SPI, thus it is capable
to store all firmware currently available. Note that some other
slave devices are not guarantied to have the capacity for the newer
~1MByte firmware blobs!
To have a good overlook about the slave device, here are its specs:
same QCA7500 PLC controller, same w631gg6kb-15 128MB RAM,
25L3233F 4MB SPI-NOR and an AR8035-A 1000M-Transceiver
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
Add support for Methode euroDPU which is based on uDPU but does not
have a second SFP cage, instead of which a Maxlinear G.hn IC is used.
PHY mode is set to 1000Base-X despite Maxlinear IC being capable of
2500Base-X since until 5.15 support for mvebu is available trying to use
2500Base-X will cause buffer overruns for which the fix is not easily
backportable.
Installation instructions:
1. Boot the FIT initramfs image (openwrt-mvebu-cortexa53-methode_edpu-initramfs.itb)
2. sysupgrade using the openwrt-mvebu-cortexa53-methode_edpu-firmware.tgz
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
uDPU DTS has pending upstream fixups, so backport those as well as split
the DTS into a DTSI and DTS in preparation for euroDPU support which
uses uDPU as the base.
Ethernet aliases have not yet been sent upstream but will be soon in order
for U-boot to set the correct MAC on both ethernet interfaces instead of
just one.
Since U-boot environment now has its own partition, update the envtools
config script to search for it instead.
Patch hardcoding PHY mode is also not applicable anymore, so drop it and
set in the uDPU DTS directly.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
The MikroTik mAP-2nd (sold as mAP) is an indoor 2.4Ghz AP with
802.3af/at PoE input and passive PoE passthrough.
See https://mikrotik.com/product/RBmAP2nD for more details.
Specifications:
- SoC: QCA9533
- RAM: 64MB
- Storage: 16MB NOR
- Wireless: QCA9533 802.11b/g/n 2x2
- Ethernet: 2x 10/100 ports,
802.3af/at PoE in port 1, 500 mA passive PoE out on port 2
- 7 user-controllable LEDs
Note: the device is a tiny AP and does not distinguish between both
ethernet ports roles, so they are both assigned to lan.
With the current setup, ETH1 is connected to eth1 and ETH2 is connected
to eth0 via the embedded switch port 2.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. The "ETH1" port
must be used to upload the TFTP image. Follow common MikroTik procedure
as in https://openwrt.org/toh/mikrotik/common.
Tested-By: Andrew Powers-Holmes <aholmes@omnom.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Linux MTD requires the parent partition be writable for a child
partition to be allowed write permission.
In order for soft_config to be writeable (and modifiable via sysfs),
the parent RouterBoot partition must be writeable
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Linux MTD requires the parent partition be writable for a child
partition to be allowed write permission.
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
Update this pending patch to remove the untested (variable eraseregions)
section, alongside simplifying the patch.
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
[refresh and split out unrelated refreshes]
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Since 4e0c54bc5b ("kernel: add support for kernel 5.4"),
the spi-nor limit 4k erasesize to spi-nor chips below a configured size
patch has not functioned as intended.
For uniform erasesize SPI-NOR devices, both
nor->erase_opcode & mtd->erasesize are used in erase operations.
These are set before, and not modified by, this
CONFIG_MTD_SPI_NOR_USE_4K_SECTORS_LIMIT patch.
Thus, an SPI-NOR device with CONFIG_MTD_SPI_NOR_USE_4K_SECTORS will
always use 4k erasesize (where the device supports it).
If this patch was fixed to function as intended, there would be
cases where devices change from a 4K to a 64K erasesize.
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
Asus RP-AC87 ac2600 Repeater
2.4GHz 800Mbps
5GHz 1733Mbps
Hardware specifications:
SoC: MT7621A 2 cores 4 threads @880MHz
WiFi2G: MT7615E 2G 4x4 b/g/n
Wifi5G: MT7615E 5G 4x4 n/ac
DRAM: 128MB DDR3 @1200mhz
Flash: 16MB MX25L12805D SPI-NOR
LAN/WAN: MT7530 1x1000M
MAC addresses as verified by OEM firmware:
use address source
Lan/W5G *:B0 factory 0x8004 (label)
W2G *:B4 factory 0x0
Installation:
Asus windows recovery tool:
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
Start the Asus firmware restoration utility, specify the factory image
and press upload
Do not power off the device after OpenWrt has booted until the LED flashing.
TFTP Recovery method:
set computer to a static ip, 192.168.1.2
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
The random crashes observed with HARDENED_USERCOPY enabled no longer
seem to occur. Enable HARDENED_USERCOPY to improve security.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
This patch provides support for the Firebox M300 only user-controllable
bi-color LED, and makes the green "shield" LED act as the typical
OpenWrt status led.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Kernel 5.15.49 introduced a new symbol 'LIB_MEMNEQ'. Add it to the
generic 5.15 config.
Fixes: f1cd144482 ("kernel: bump 5.15 to 5.15.49")
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Kernel 5.10.124 introduced a new symbol 'LIB_MEMNEQ'. Add it to the
generic 5.10 config.
Fixes: 9e5d743422 ("kernel: bump 5.10 to 5.10.124")
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
DGS-1210 switches support dual image, with each image composed of a
kernel and a rootfs partition. For image1, kernel and rootfs are in
sequence. The current OpenWrt image (written using a serial console),
uses those partitions together as the firmware partition, ignoring the
partition division. The current OEM u-boot fails to validate image1 but
it will only trigger firmware recovery if both image1 and image2 fail,
and it does not switch the boot image in case one of them fails the
check.
The OEM factory image is composed of concatenated blocks of data, each
one prefixed with a 0x40-byte cameo header. A normal OEM firmware will
have two of these blocks (kernel, rootfs). The OEM firmware only checks
the header before writing unconditionally the data (except the header)
to the correspoding partition.
The OpenWrt factory image mimics the OEM image by cutting the
kernel+rootfs firmware at the exact size of the OEM kernel partition
and packing it as "the kernel partition" and the rest of the kernel and
the rootfs as "the rootfs partition". It will only work if written to
image1 because image2 has a sysinfo partition between kernel2 and
rootfs2, cutting the kernel code in the middle.
Steps to install:
1) switch to image2 (containing an OEM image), using web or these CLI
commands:
- config firmware image_id 2 boot_up
- reboot
2) flash the factory_image1.bin to image1. OEM web (v6.30.016)
is crashing for any upload (ssh keys, firmware), even applying OEM
firmwares. These CLI commands can upload a new firmware to the other
image location (not used to boot):
- download firmware_fromTFTP <tftpserver> factory_image1.bin
- config firmware image_id 1 boot_up
- reboot
To debrick the device, you'll need serial access. If you want to
recover to an OpenWrt, you can replay the serial installation
instructions. For returning to the original firmware, press ESC during
the boot to trigger the emergency firmware recovery procedure. After
that, use D-Link Network Assistant v2.0.2.4 to flash a new firmware.
The device documentation does describe that holding RESET for 12s
trigger the firmware recovery. However, the latest shipped U-Boot
"2011.12.(2.1.5.67086)-Candidate1" from "Aug 24 2021 - 17:33:09" cannot
trigger that from a cold boot. In fact, any U-Boot procedure that relies
on the RESET button, like reset settings, will only work if started from
a running original firmware. That, in practice, cancels the benefit of
having two images and a firmware recovery procedure (if you are not
consider dual-booting OpenWrt).
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
This model is almost identical to the EAP225 v3.
Major difference is the RTL8211FS PHY Chipset.
Device specifications:
* SoC: QCA9563 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n, 3x3
* Wireless 5Ghz (QCA9886): a/n/ac, 2x2 MU-MIMO
* Ethernet (RTL8211FS): 1× 1GbE, 802.3at PoE
Flashing instructions:
* ssh into target device and run `cliclientd stopcs`
* Upgrade with factory image via web interface
Debricking:
* Serial port can be soldered on PCB J4 (1: TXD, 2: RXD, 3: GND, 4: VCC)
* Bridge unpopulated resistors R225 (TXD) and R237 (RXD).
Do NOT bridge R230.
* Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via LuCI web interface
setenv ipaddr 192.168.1.1 # default, change as required
setenv serverip 192.168.1.10 # default, change as required
tftp 0x80800000 initramfs.bin
bootelf $fileaddr
MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.
Signed-off-by: Sven Hauer <sven.hauer+github@uniku.de>
In Linux v5.14 an extra feature was introduced for the RTL8211F phy,
allowing to disable a clock output from the phy. Part of that patch is to
always (soft) reset the phy upon initialisation.
This phy reset is required to have a working ethernet on the TP-Link
EAP225-Outdoor v3 and EAP225 v4 after a reboot. Otherwise the ethernet
port will only function properly on cold boots.
Tested-by: Andre Klärner <kandre@ak-online.be> # EAP225-Outdoor v3
Tested-by: Sven Hauer <sven.hauer+github@uniku.de> # EAP225 v4
Signed-off-by: Sander Vanheule <sander@svanheule.net>
lantiq,bus-clock, interrupt-map-mask and interrupt-map are already
defined with these exact values in vr9.dtsi. Drop them from
vr9_tplink_tdw8980.dts to just have one place where these are
maintained.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>