The UBNT_REVISION was already added for the ubnt-xw target because:
U-boot bootloader on M-XW devices expects factory image revision
version in specific format. On airOS v6.1.7 with `U-Boot 1.1.4-s1039
(May 24 2017 - 15:58:18)` bootloader checks if the revision major(?)
number is actually a number, but in currently generated images there's
OpenWrt text and so the check fails
...
By placing arbitrary correct number first in major version, we make the
bootloader happy and we can flash factory images over TFTP again.
commit d42a7c4699 ("ath79: ubnt-m-xw: Fix factory image flashing using TFTP recovery method")
Fixes errors in the form of (tftp flashing):
sent DATA <block=8577, 412 bytes>
received ERROR <code=2, msg=Firmware check failed>
Error code 2: Firmware check failed
The missing UBNT_REVISION was not noticed before, since the
UBNT_REVISION field for the ubnt-xm target was also set to:
"42.OpenWrt-..."
Probably, UBNT_REVISION for the ubnt-xm target was set by the ubnt-xw
and was never overridden somewhere else. However, it is missing and
should be part of the ubnt-xm device.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Kernel 5.10 is used by many people since quite a while. With other
targets already moved to 5.10, let ath79 follow suit.
Tested-by: Stefan Lippers-Hollmann <s.l-h@gmx.de> [ath79/tl-wdr3600; ath79/tl-wdr4300]
Tested-by: Aleksander Jan Bajkowski <olek2@wp.pl> [ath79/tl-wdr4300]
Signed-off-by: Paul Spooren <mail@aparcar.org>
Signed-off-by: David Bauer <mail@david-bauer.net>
Both CLANG_VERSION and LLD_VERISON are autogenerated runtime
configuration options, so add them to the kernel configuration filter
and remove from generic and per-target configs to keep configs clean.
Signed-off-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
ar9344_openmesh_mr600-v1.dts:40.10-44.5: Warning (gpios_property):
/leds-ath9k/wifi2g: Missing property '#gpio-cells' in node
/ahb/pcie-controller@180c0000/wifi@0,0 or bad phandle
=> added gpio-controller + #gpio-cells
qca955x_zyxel_nbg6x16.dtsi:121.3-13: Warning (reg_format):
/ahb/usb@1b000000/port@1:reg: property has invalid length (4 bytes)
(#address-cells == 2, #size-cells == 1)
../dts/qca955x_zyxel_nbg6x16.dtsi:131.3-13: Warning (reg_format):
/ahb/usb@1b400000/port@1:reg: property has invalid length (4 bytes)
(#address-cells == 2, #size-cells == 1)
qca955x_zyxel_nbg6x16.dtsi:120.20-123.4: Warning (avoid_default_addr_size):
/ahb/usb@1b000000/port@1: Relying on default #address-cells value
=> ath79's usb-nodes are missing the address- and size-cells properties.
These are needed for usb led trigger support.
ar7242_ubnt_sw.dtsi:54.4-14: Warning (reg_format): /gpio_spi/gpio_spi@0:reg:
property has invalid length (4 bytes) (#address-cells == 1, #size-cells == 1)
=> the #address-cells and #size-cells had to be nudged.
qca9531_dlink_dch-g020-a1.dts:19.6-39.4: Warning (i2c_bus_bridge):
/i2c: incorrect #size-cells for I2C bus
=> #size-cells = <0>;
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
SoC: AR9344
RAM: 128MB
Flash: 16MiB SPI NOR
5GHz WiFi: AR9382 PCIe 2x2:2 802.11n
2.4GHz WiFi: AR9344 (SoC) AHB 2x2:2 802.11n
5x Fast ethernet via SoC switch (green LEDs)
1x USB 2.0
4x front LEDs from SoC GPIO
1x front WPS button from SoC GPIO
1x bottom reset button from SoC GPIO
UART header JP1, 115200 no parity 1 stop
TX
GND
VCC
(N/P)
RX
Flash factory image via "emergency room" recovery:
- Configure your computer with a static IP 192.168.1.123/24
- Connect to LAN port on the N600 switch
- Hold reset putton
- Power on, holding reset until the power LED blinks slowly
- Visit http://192.168.1.1/ and upload OpenWrt factory image
- Wait at least 5 minutes for flashing, reboot and key generation
- Visit http://192.168.1.1/ (OpenWrt LuCI) and upload OpenWrt sysupgrade image
Signed-off-by: Ryan Mounce <ryan@mounce.com.au>
[dt leds preparations]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The jjPlus JWAP230 is an access point board built around the QCA9558,
with built-in 2.4GHz 3x3 N WiFi (28dBm). It can be expanded with 2
mini-PCIe boards, and has an USB2 root port.
Specifications:
- SOC: Qualcomm Atheros QCA9558
- CPU: 720MHz
- H/W switch: QCA8327 rev 2
- Flash: 16 MiB SPI NOR (en25qh128)
- RAM: 128 MiB DDR2
- WLAN: AR9550 built-in SoC bgn 3T3R (ath9k)
- PCI: 2x mini-PCIe (optional 5V)
- LEDs: 6x LEDs (3 are currently available)
- Button: 1x Reset (not yet defined)
- USB2:
- 1x Type A root port
- 1x combined mini-PCIe
- Ethernet:
- 2x 10/100/1000 (1x PoE 802.3af (36-57 V))
Notes:
The device used to be supported in the ar71xx target.
For upgrades: Please use "sysupgrade --force -n <image>".
This will restore the device back to OpenWrt defaults!
MAC address assignment:
use source
LAN art 0x0
WAN art 0x6
WLAN art 0x1002 (as part of the calibration data)
Flash instructions:
- install from u-boot with tftp (requires serial access)
> setenv ipaddr a.b.c.d
> setenv serverip e.f.g.h
> tftp 0x80060000 \
openwrt-ath79-generic-jjplus_jwap230-squashfs-sysupgrade.bin
> erase 0x9f050000 +${filesize}
> cp.b $fileaddr 0x9f050000 $filesize
> setenv bootcmd bootm 0x9f050000
> saveenv
Signed-off-by: Olivier Valentin <valentio@free.fr>
[Added DT-Leds (based on ar71xx), Added more notes about sysupgrade,
fixed "qca9550" to match SoC in commit and dts file name]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
TP-Link EAP225 v1 is an AC1200 (802.11ac Wave-1) ceiling mount access point.
Device specifications:
* SoC: QCA9563 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n, 2x2
* Wireless 5Ghz (QCA9882): a/n/ac, 2x2
* Ethernet (AR8033): 1× 1GbE, 802.3at PoE
Flashing instructions:
* Ensure the device is upgraded to firmware v1.4.0
* Exploit the user management page in the web interface to start telnetd
by changing the username to `;/usr/sbin/telnetd -l/bin/sh&`.
* Immediately change the malformed username back to something valid
(e.g. 'admin') to make ssh work again.
* Use the root shell via telnet to make /tmp world writeable (chmod 777)
* Extract /usr/bin/uclited from the device via ssh and apply the binary
patch listed below. The patch is required to prevent `uclited -u` in
the last step from crashing.
* Copy the patched uclited binary back to the device at /tmp/uclited
(via ssh)
* Upload the factory image to /tmp/upgrade.bin (via ssh)
* Run `chmod +x /tmp/uclited && /tmp/uclited -u` to install OpenWrt.
uclited patching:
--- xxd uclited
+++ xxd uclited-patched
@@ -53811,7 +53811,7 @@
000d2330: 8c44 0000 0320 f809 0000 0000 8fbc 0010 .D... ..........
000d2340: 8fa6 0a4c 02c0 2821 8f82 87c4 0000 0000 ...L..(!........
-000d2350: 8c44 0000 0c13 461c 27a7 0018 8fbc 0010 .D....F.'.......
+000d2350: 8c44 0000 2402 0000 0000 0000 8fbc 0010 .D..$...........
000d2360: 1040 001d 0000 1821 8f99 8378 3c04 0058 .@.....!...x<..X
000d2370: 3c05 0056 2484 ad68 24a5 9f00 0320 f809 <..V$..h$.... ..
To make sure the correct file is patched, the following MD5 checksums
should match the unpatched and patched files:
4bd74183c23859c897ed77e8566b84de uclited
4107104024a2e0aeaf6395ed30adccae uclited-patched
Debricking:
* Serial port can be soldered on unpopulated 4-pin header
(1: TXD, 2: RXD, 3: GND, 4: VCC)
* Bridge unpopulated resistors running from pins 1 (TXD) and 2 (RXD).
Do NOT bridge the pull-down for pin 2, running parallel to the
header.
* Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via the LuCI web interface
setenv ipaddr 192.168.1.1 # default, change as required
setenv serverip 192.168.1.10 # default, change as required
tftp 0x80800000 initramfs.bin
bootelf $fileaddr
Tested by forum user KernelMaker.
Link: https://forum.openwrt.org/t/eap225-v1-firmware/87116
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the Embedded Wireless "Balin" platform, it is in ar71xx too
SoC: QCA AR9344 or AR9350
RAM: DDR2-RAM 64MBytes
Flash: SPI-NOR 16MBytes
WLAN: 2 x 2 MIMO 2.4 & 5 GHz IEEE802.11 a/b/g/n
Ethernet: 3 x 10/100 Mb/s
USB: 1 x USB2.0 Host/Device bootstrap-pin at power-up
PCIe: MiniPCIe - 1 x lane PCIe 1.2
Button: 1 x Reset-Button
UART: 1 x Normal, 1 x High-Speed
JTAG: 1 x EJTAG
LED: 1 x Green Power/Status LED
GPIO: 10 x Input/Output multiplexed
The module comes already with the current vanilla OpenWrt firmware.
To update, use "sysupgrade -n --force <image>" image directly in
vendor firmware. This resets the existing configurations back to
default!
Signed-off-by: Catrinel Catrinescu <cc@80211.de>
[indent, led function+color properties, fix partition unit-address,
re-enable pcie port, mention button+led in commit message]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
For v2, both ath9k (2.4GHz Wifi) and ath10k (5 GHz) driver now
pull the (pre-)calibration data from the nvmem subsystem. v1
is slightly different as only the ath9k Wifi is supported.
This allows us to move the userspace caldata extraction
and mac-address patching for the 5GHZ ath10k supported
wifi into the device-tree definition of the device.
ath9k's nodes are also changed over to use nvmem-cells
over OpenWrt's custom mtd-cal-data property.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Further devices from the series have been added in the meantime,
introducing `qca955x_dlink_dap-2xxx.dtsi`.
Thus, merge support for DAP-2695 with the existing dtsi.
This implies factory images can now be flashed via the regular
OEM Web UI, as well as the bootloader recovery.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
This device can be merged with the existing dtsi, which declares
the location of ath9k cal-data via devicetree, correcting the 2.4G
mac address in `10_fix_wifi_mac` rather than `10-ath9k-eeprom`.
To make these changes more visible, apply before merging with dtsi.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
This device can be merged with the existing dtsi,
which will increase spi-max-frequency to 50 MHz.
To make this change more visible, increase to 50 MHz before merging.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The MikroTik LHG 5 series (product codes RBLHG-5nD, RBLHG-5HPnD and
RBLHG-5HPnD-XL) devices are an outdoor 5GHz CPE with a 24.5dBi or 27dBi
integrated antenna built around the Atheros AR9344 SoC.
It is very similar to the SXT Lite5 series which this patch is based
upon.
Specifications:
- SoC: Atheros AR9344
- RAM: 64 MB
- Storage: 16 MB SPI NOR
- Wireless: Atheros AR9340 (SoC) 802.11a/n 2x2:2
- Ethernet: Atheros AR8229 switch (SoC), 1x 10/100 port,
8-32 Vdc PoE in
- 8 user-controllable LEDs:
- 1x power (blue)
- 1x user (white)
- 1x ethernet (green)
- 5x rssi (green)
See https://mikrotik.com/product/RBLHG-5nD for more details.
Notes:
The device was already supported in the ar71xx target.
Flashing:
TFTP boot initramfs image and then perform a sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Jakob (Jack/XDjackieXD) <jakob@chaosfield.at>
The MikroTik RouterBOARD wAPR-2nD (wAP R) router features a miniPCI-e
slot with USB lines connected, which are used by some USB cards with
miniPCI-e form factor, like the R11e-LR8. Enabling USB support is
required for such cards to work.
Tested on a MikroTik wAP LR8 kit (RB wAPR-2nD + R11e-LR8).
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
converts the still popular WNDR3700 Series to fetch the
caldata through nvmem. As the "MAC with NVMEM" has shown,
there could pitfalls along the way.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Netgear R6100 is a dual-band Wi-Fi 5 (AC1200) router based on Qualcomm
Atheros (AR9344 + QCA9882) platform. Support for this device was first
introduced in 15f6f67d18 (ar71xx). FCC ID: PY312400225.
Specifications:
- Atheros AR9344 (560 MHz)
- 128 MB of RAM (DDR2)
- 128 MB of flash (parallel NAND)
- 2T2R 2.4 GHz Wi-Fi (AR9344)
- 2T2R 5 GHz Wi-Fi (QCA9882)
- 5x 10/100 Mbps Ethernet (AR9344)
- 4x internal antenna
- 1x USB 2.0 (GPIO-controlled power)
- 6x LED, 3x button (reset, Wi-Fi, WPS)
- UART (4-pin, 2.54 mm pitch) header on PCB
- 1x mechanical power switch
- DC jack for main power input (12 V)
WARNING: sysupgrade from older stable releases is not possible, fresh
installation (via vendor's GUI or TFTP based recovery) is required.
Reason for that is increased kernel partition size.
Installation:
Use the 'factory' image under vendor's GUI or via TFTP U-Boot recovery.
You can use the 'nmrpflash' tool at a boot time, before kernel is loaded
or start it manually by pressing the 'reset' button for ~20 seconds from
powering up the device (U-Boot will start TFTP server on 192.168.1.1,
use TFTP client to send the image).
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
GPIOs on the Aircube AC are wrong:
- Reset GPIO moved from 17 to 12
- PoE Pass Through GPIO for Aircube AC is 3
Fixes: 491ae3357e ("ath79: add support for Ubiquiti airCube AC")
Signed-off-by: Nicolò Veronese <nicveronese@gmail.com>
Specifications:
SOC: QCA9531 650 MHz
ROM: 16 MiB Flash (Winbond W25Q128FV)
RAM: 128 MiB DDR2 (Winbond W971GG6SB)
LAN: 10/100M *2
WAN: 10/100M *1
LED: BGR color *1
Mac address:
label C8:0E:77:xx:xx:68 art@0x0
lan C8:0E:77:xx:xx:62 art@0x6
wan C8:0E:77:xx:xx:68 art@0x0 (same as the label)
wlan C8:0E:77:xx:xx:B2 art@0x1002 (load automatically)
TFTP installation:
* Set local IP to 192.168.67.100 and open tftpd64, link lan
port to computer.
Rename "xxxx-factory.bin" to
"openwrt-ar71xx-generic-ap147-16M-rootfs-squashfs.bin".
* Make sure firmware file is in the tftpd's directory, push
reset button and plug in, hold it for 5 seconds, and then
it will download firmware from tftp server automatically.
More information:
* This device boot from flash@0xe80000 so we need a okli
loader to deal with small kernel partition issue. In order
to make full use of the storage space, connect a part of the
previous kernel partition to the firmware.
Stock Modify
0x000000-0x040000(u-boot) 0x000000-0x040000(u-boot)
0x040000-0x050000(u-boot-env) 0x000000-0x050000(u-boot-env)
0x050000-0xe80000(rootfs) 0x050000-0xe80000(firmware part1)
0xe80000-0xff0000(kernel) 0xe80000-0xe90000(okli-loader)
0xe90000-0xff0000(firmware part2)
0xff0000-0x1000000(art) 0xff0000-0x1000000(art)
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Dongwon T&I DW02-412H is a 2.4/5GHz band 11ac (WiFi-5) router, based on
Qualcomm Atheros QCA9557.
Specifications
--------------
- SoC: Qualcomm Atheros QCA9557-AT4A
- RAM: DDR2 128MB
- Flash: SPI NOR 2MB (Winbond W25Q16DVSSIG / ESMT F25L16PA(2S)) +
NAND 64/128MB
- WiFi:
- 2.4GHz: QCA9557 WMAC
- 5GHz: QCA9882-BR4A
- Ethernet: 5x 10/100/1000Mbps
- Switch: QCA8337N-AL3C
- USB: 1x USB 2.0
- UART:
- JP2: 3.3V, TX, RX, GND (3.3V is the square pad) / 115200 8N1
Installation
--------------
1. Connect a serial interface to UART header and
interrupt the autostart of kernel.
2. Transfer the factory image via TFTP and write it to the NAND flash.
3. Update U-Boot environment variable.
> tftpboot 0x81000000 <your image>-factory.img
> nand erase 0x1000000
> nand write 0x81000000 0x1000000 ${filesize}
> setenv bootpart 2
> saveenv
Revert to stock firmware
--------------
1. Revert to stock U-Boot environment variable.
> setenv bootpart 1
> saveenv
MAC addresses as verified by OEM firmware
--------------
WAN: *:XX (label)
LAN: *:XX + 1
2.4G: *:XX + 3
5G: *:XX + 4
The label MAC address was found in art 0x0.
Credits
--------------
Credit goes to the @manatails who first developed how to port OpenWRT
to this device and had a significant impact on this patch.
And thanks to @adschm and @mans0n for guiding me to revise the code
in many ways.
Signed-off-by: Jihoon Han <rapid_renard@renard.ga>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
Tested-by: Sungbo Eo <mans0n@gorani.run>
This changes the image generation to use a unique directory. With
parallel building it may occur that two concurrent jobs try
to create an image which leds to errors. It also removes a needless
subdirecory.
Signed-off-by: André Valentin <avalentin@marcant.net>
This patch enables the SFP cage on the MikroTik RouterBOARD 921GS-5HPacD
(mANTBox 15s).
The RB922UAGS-5HPacD had it already working, so the support code is
moved to the common DTSI file both devices share.
Tested on a RouterBOARD 921GS-5HPacD with a MikroTik S-53LC20D module.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Deleted (upstreamed):
bcm27xx/patches-5.10/950-0145-xhci-add-quirk-for-host-controllers-that-don-t-updat.patch [1]
Manually rebased:
bcm27xx/patches-5.10/950-0355-xhci-quirks-add-link-TRB-quirk-for-VL805.patch
bcm53xx/patches-5.10/180-usb-xhci-add-support-for-performing-fake-doorbell.patch
Note: although automatically rebaseable, the last patch has been edited to avoid
conflicting bit definitions.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=linux-5.10.y&id=b6f32897af190d4716412e156ee0abcc16e4f1e5
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
OpenWrt maintains two special out-of-tree DT properties:
"qca,disable-5ghz" and "qca,disable-2ghz". These are implemented
in a mac80211 ath9k patch "550-ath9k-disable-bands-via-dt.patch".
With the things being what they are, now might be a good
point to switch the devices to the generic and upstream
"ieee80211-freq-limit" property. This property is much
broader and works differently. Instead of disabling the
drivers logic which would add the affected band and
channels. It now disables all channels which are not
within the specified frequency range.
Reviewed-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Tested-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> # HH5A
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
ag71xx_probe is registering ag71xx_interrupt as handler for the gmac0/gmac1
interrupts. The handler is trying to use napi_schedule to handle the
processing of packets. But the netif_napi_add for this device is
called a lot later in ag71xx_probe.
It can therefore happen that a still running gmac0/gmac1 is triggering the
interrupt handler with a bit from AG71XX_INT_POLL set in
AG71XX_REG_INT_STATUS. The handler will then call napi_schedule and the
napi code will crash the system because the ag->napi is not yet
initialized:
libphy: Fixed MDIO Bus: probed
CPU 0 Unable to handle kernel paging request at virtual address 00000000, epc == 00000000, ra == 81373408
Oops[#1]:
CPU: 0 PID: 1 Comm: swapper Not tainted 5.4.152 #0
$ 0 : 00000000 00000001 00000000 8280bf28
$ 4 : 82a98cb0 00000000 81620000 00200140
$ 8 : 00000000 00000000 74657272 7570743a
$12 : 0000005b 8280bdb9 ffffffff ffffffff
$16 : 00000001 82a98cb0 00000000 8280bf27
$20 : 8280bf28 81620000 ffff8b00 8280bf30
$24 : 00000000 8125af9c
$28 : 82828000 8280bed8 81610000 81373408
Hi : 00005fff
Lo : 2e48f657
epc : 00000000 0x0
ra : 81373408 __napi_poll+0x3c/0x11c
Status: 1100dc03 KERNEL EXL IE
Cause : 00800008 (ExcCode 02)
BadVA : 00000000
PrId : 00019750 (MIPS 74Kc)
Modules linked in:
Process swapper (pid: 1, threadinfo=(ptrval), task=(ptrval), tls=00000000)
Stack : ffff8afb ffff8afa 81620000 00200140 00000000 82a98cb0 00000008 0000012c
81625620 81373684 ffffffff ffffffff ffffffef 00000008 816153d8 81620000
815b0d60 815bbd54 00000000 81753700 8280bf28 8280bf28 8280bf30 8280bf30
81753748 00000008 00000003 00000004 0000000c 00000100 3fffffff 8175373c
816059f0 814ddb48 00000001 8160ab30 81615488 810618bc 00000006 00000000
...
Call Trace:
[<81373684>] net_rx_action+0xfc/0x26c
[<814ddb48>] __do_softirq+0x118/0x2ec
[<810618bc>] handle_percpu_irq+0x50/0x80
[<8125ab8c>] plat_irq_dispatch+0x94/0xc8
[<81004e98>] handle_int+0x138/0x144
Code: (Bad address in epc)
---[ end trace a60d797432b656b2 ]---
The gmcc0/gmac1 must be brought in a state in which it doesn't signal a
AG71XX_INT_POLL related status bits as interrupt before registering the
interrupt handler. ag71xx_hw_start will take care of re-initializing the
AG71XX_REG_INT_ENABLE.
Fixes: f529a37420 ("surprise :p")
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Back in the AR71XX days, the lzma-loader code could be customized
based on the $BOARD variable. These would be passed as a
compile-time -DCONFIG_BOARD_$DEVICE_MODEL flag to the compiler.
Hence, the lzma-loader would be able to include device-specific
fixups.
Note: There's still a fixup for the TpLink TL-WR1043ND V1 found
in the lzma-loader's board.c code. But since the days of AR71XX
I couldn't find a forum post or bug reported. So, I left it
as is to not break anything by enabling it.
=> If you have a TL-WR1043ND V1 and you have problem with
the ethernet: let me know. Because otherwise, the fixup
might simply no longer needed with ath79 and it can be removed.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch removes CONFIG_MTD_SPI_NOR_USE_4K_SECTORS from the default
symbols for the ath79/mikrotik target.
MikroTik devices hold some of their user-configurable settings in the
soft_config partition, which is typically sized 4 KiB, of the SPI NOR
flash memory. Previously, in the ar71xx target, it was possible to use
64 KiB erase sectors but also smaller 4 KiB ones when needed. This is
no longer the case in ath79 with newer kernels so, to be able to write
to these 4 KiB small partitions without erasing 60 KiB around, the
CONFIG_MTD_SPI_NOR_USE_4K_SECTORS symbol was added to the defaults.
However, this ended up making sysupgrade images which were built with
64 KiB size blocks not to keep settings (e.g., the files under
/etc/config/) over the flashing process.
Using 4 KiB erase sector size on the sysupgrade images (by setting
BLOCKSIZE = 4k) allows keeping settings over a flashing process, but
renders the process terribly slow, possibly causing a user to
mistakenly force a manual device reboot while the process is still on-
going. Instead, ditching the 4 KiB erase sectors for the default
64 KiB erase size provides normal SPI write speed and sysupgrade times,
at the expense of not being able to modify the soft_config partition
(which is rarely a required thing).
An OpenWrt patch for MTD_SPI_NOR_USE_4K_SECTORS_LIMIT may once have
allowed to use different per-partition erase sector sizes. Due to
changes on recent kernels it now only works on a per-device basis.
Also, partial eraseblock write can be performed in ath79 with kernels
5.4 and lower, by copying the blocks from the 64 KiB, erasing the whole
sector and restoring those blocks not meant to be modified. A kernel
bump had that patch broken for a long time, but got fixed in bf2870c.
Note: the settings in the soft_config partition can be reset to their
defaults by holding the reset button for 5 seconds (and less than 10
seconds) at device boot.
Fixes: FS#3492 (sysupgrade […] loses settings...)
Fixes: a66eee6336 (ath79: add mikrotik subtarget)
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
AR9331 requires kmod-usb2-chipidea to use the USB ports. Include the
correct package so they can be used with the base image.
Signed-off-by: David Bauer <mail@david-bauer.net>
These instructions are repeated for a few devices now, let's move
them to shared definition so we do not repeat ourselves too often.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link CPE710-v1 is an outdoor wireless CPE for 5 GHz with
one Ethernet port based on the AP152 reference board
Specifications:
- SoC: QCA9563-AL3A MIPS 74kc @ 775MHz, AHB @ 258MHz
- RAM: 128MiB DDR2 @ 650MHz
- Flash: 16MiB SPI NOR Based on the GD25Q128
- Wi-Fi 5Ghz: ath10k chip (802.11ac for up to 867Mbps on 5GHz wireless
data rate) Based on the QCA9896
- Ethernet: one 1GbE port
- 23dBi high-gain directional 2×2 MIMO antenna and a dedicated metal
reflector
- Power, LAN, WLAN5G Blue LEDs
- 3x Blue LEDs
Flashing instructions:
Flash factory image through stock firmware WEB UI or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 30-40 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP address:192.168.0.254
Signed-off-by: Andrew Cameron <apcameron@softhome.net>
[convert to nvmem, fix MAC assignment in 11-ath10k-caldata]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device is a wireless access point working on the 2.4 GHz and 5 GHz
band, based on Qualcomm/Atheros QCA9563 + QCA9886.
Specification
- 775 MHz CPU
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- QCA9563: 2.4 GHz 3x3
- QCA9886: 5 GHz
- AR8033: 1x 1 Gbs Ethernet
- 4x LED, WPS factory reset and power button
- bare UART on PCB (accessible through testpoints)
Methods for Flashing:
- Apply factory image in OEM firmware web-gui. Wait a minute after the
progress bar completes and restart the device.
- Sysupgrade on top of existing OpenWRT image
- Solder wires onto UART testpoints and attach a terminal.
Boot the device and press enter to enter u-boot's menu. Then issue the
following commands
1. setenv serverip your-server-ip
setenv ipaddr your-device-ip
2. tftp 0x80060000 openwrt-squashfs.bin (Rembember output of size in
hex, henceforth "sizeinhex")
3. erase 0x9f030000 +"sizeinhex"
4. cp.b 0x80060000 0x9f030000 0x"sizeinhex"
5. reboot
Recover:
- U-boot serial console
Signed-off-by: Robert Balas <balasr@iis.ee.ethz.ch>
[convert to nvmem]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Change `DAP-2965` to `DAP-2695` for device selection in menuconfig.
Fixes: cd09f26660 ("ath79: add support for D-Link DAP-2695-A1")
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[add Fixes]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This was old code from the AR71XXs target days that
doesn't get compiled and used anymore.
Bringing up AR92xx and earlier chips from their
OWL-Emulator state is currently done by the upstream
ath9k-pci-owl-loader module. (see the kmod-owl-loader
package).
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The Onion Omega is a hardware development platform with built-in WiFi.
https://onioniot.github.io/wiki/
Specifications:
- QCA9331 @ 400 MHz (MIPS 24Kc Big-Endian Processor)
- 64MB of DDR2 RAM running at 400 MHz
- 16MB of on-board flash storage
- Support for USB 2.0
- Support for Ethernet at 100 Mbps
- 802.11b/g/n WiFi at 150 Mbps
- 18 digital GPIOs
- A single Serial UART
- Support for SPI
- Support for I2S
Flash instructions:
The device is running OpenWrt upon release using the ar71xx target.
Both a sysupgrade
and uploading the factory image using u-boots web-UI do work fine.
Depending on the ssh client, it might be necessary to enable outdated
KeyExchange methods e.g. in the clients ssh-config:
Host 192.168.1.1
KexAlgorithms +diffie-hellman-group1-sha1
The stock credentials are: root onioneer
For u-boots web-UI manually configure `192.168.1.2/24` on your computer,
connect to `192.168.1.1`.
MAC addresses as verified by OEM firmware:
2G phy0 label
LAN eth0 label - 1
LAN is only available in combination with an optional expansion dock.
Based on vendor acked commit:
commit 5cd49bb067 ("ar71xx: add support for Onion Omega")
Partly reverts:
commit fc553c7e4c ("ath79: drop unused/incomplete dts")
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
Specifications:
- SoC: QCA9558
- DRAM: 128MB DDR2
- Flash: 16MB SPI-NOR
- Wireless: on-board abgn 2×2 2.4GHz radio
- Ethernet: 2x 10/100/1000 Mbps (1x 802.11af PoE)
- miniPCIe slot
Flash instruction:
- From u-boot
tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj558-16m-squashfs-sysupgrade.bin
erase 0x9f030000 +$filesize
cp.b $fileaddr 0x9f030000 $filesize
boot
- From cpximg loader
The cpximg loader can be started either by holding the reset button
during power up. Once it's running, a TFTP-server under 192.168.1.1 will accept
the image appropriate for the board revision that is etched on the board.
For example, if the board is labelled '6A07':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj558-16m-squashfs-cpximg-6a07.bin
Signed-off-by: Romain Mahoux <romain@mahoux.fr>
[convert to nvmem, remove redundant lan_mac in 02_network]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Atheros DB120 reference board.
Specifications:
SoC: QCA9344
DRAM: 128Mb DDR2
Flash: 8Mb SPI-NOR, 128Mb NAND flash
Switch: 5x 10/100Mbps via AR8229 switch (integrated into SoC),
5x 10/100/1000Mbps via QCA8237 via RGMII
WLAN: AR9300 (SoC, 2.4G+5G) + AR9340 (PCIe, 5G-only)
USB: 1x 2.0
UART: standard QCA UART header
JTAG: yes
Button: 1x reset
LEDs: a lot
Slots: 2x mPCIe + 1x mini-PCI, but using them requires
additional undocumented changes.
Misc: The board allows to boot off NAND, and there is
I2S audio support as well - also requiring
additional undocumented changes.
Installation:
1. Original bootloader
Connect the board to ethernet
Set up a server with an IP address of 192.168.1.10
Make the openwrt-ath79-generic-atheros_db120-squashfs-factory.bin
available via TFTP
tftpboot 0x80060000 openwrt-ath79-generic-atheros_db120-squashfs-factory.bin
erase 0x9f050000 +$filesize
cp.b $fileaddr 0x9f050000 $filesize
2. pepe2k's u-boot_mod
Connect the board to ethernet
Set up a server with an IP address of 192.168.1.10
Make the openwrt-ath79-generic-atheros_db120-squashfs-factory.bin
available via TFTP, as "firmware.bin"
run fw_upg
Reboot the board.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
[explicit factory recipe in generic.mk, sorting in 10-ath9k-eeprom,
convert to nvmem, use fwconcat* names in DTS, remove unneeded DT
labels, remove redundant uart node]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the Ubiquiti PowerBeam M2 (XW), e.g. PBE-M2-400,
a 802.11n wireless with a feed+dish form factor. This device was previously
supported by the ar71xx loco-m-xw firmware.
Specifications:
- Atheros AR9342 SoC
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet port, 24 Vdc PoE-in
- Power and LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1)
Flashing via stock GUI:
- Downgrade to AirOS v5.5.x (latest available is 5.5.10-u2) first (see
https://openwrt.org/toh/ubiquiti/powerbeam installation instructions)
- Upload the factory image via AirOS web GUI.
Flashing via TFTP:
- Use a pointy tool (e.g., unbent paperclip) to keep the
reset button pressed.
- Power on the device (keep reset button pressed).
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button.
- The device starts a TFTP server at 192.168.1.20.
- Set a static IP on the computer (e.g., 192.168.1.21/24).
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-ubnt_powerbeam-m2-xw-squashfs-factory.bin
WARNING: so far, no non-destructive method has been discovered for
opening the enclosure to reach the serial console. Internal photos
are available here: https://fcc.io/SWX-NBM2HP
Signed-off-by: Russell Senior <russell@personaltelco.net>
The commit [1] added support for Ubiquiti PowerBeam M (XW), tested
on the PBE-M5-400. But, it turns out the PBE-M2-400 has a different
ethernet configuration, so make the support specific to the m5 version
in anticipation of adding specific support for the m2 in a separate
commit.
[1] 12eb5b2384 ("ath79: add support for Ubiquiti PowerBeam M (XW)")
Signed-off-by: Russell Senior <russell@personaltelco.net>
[fix model name in DTS, format commit reference in commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Due to use of a script when migrating from mtd-mac-address, a few
of the definitions are redundant in DTSI and DTS files. Remove
those and consolidate the definitions in parent DTSI files in a
few cases.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Since the nvmem-based approach for retrieving MAC addresses
appears to depend on the addresses being set up after the
partitions, it is no longer possible to keep the MAC address
setup in shared DTSI files while the partitions itself are
set up in DTS files for the individual devices.
In ath79 the firmware partition is typically located somewhere
"in the middle" of the partition table. Thus, it's not trivial
to share the partitions containing MAC address information in
a common DTSI (like we did in some cases on ramips).
In this commit, MAC address setup is thus moved to the relevant
partitions, and in most cases needs to be duplicated. While
the duplication is not really nice, it eventually provides a
cleaner and more tidy setup, making the DTS(I) file
fragmentation a bit more logical. This should also help
with adding new devices, as information is distributed across
less locations.
For consistency, this commit also moves the mtd-cal-data property
"down" together with the MAC address setup, so it's not based
on a partition before the latter is defined either. (This is
only done for those files touched due to nvmem conversion.)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The GL-X300B is a industrial 4G LTE router based on the Qualcomm
QCA9531 SoC.
Specifications:
- Qualcomm QCA9531 @ 650 MHz
- 128 MB of RAM
- 16 MB of SPI NOR FLASH
- 2x 10/100 Mbps Ethernet
- 2.4GHz 802.11b/g/n
- 1x USB 2.0 (vbus driven by GPIO)
- 4x LED, driven by GPIO
- 1x button (reset)
- 1x mini pci-e slot (vcc driven by GPIO)
- RS-485 Serial Port (untested)
Flash instructions:
This firmware can be flashed using either sysupgrade from the GL.iNet
firmware or the recovery console as follows:
- Press and hold the reset button
- Connect power to the router, wait five seconds
- Manually configure 192.168.1.2/24 on your computer, connect to
192.168.1.1
- Upload the firmware image using the web interface
RS-485 serial port is untested and may depend on the following commit in
the GL.iNet repo:
202e83a32a
MAC addresses as verified by OEM firmware:
vendor OpenWrt address
WAN eth0 label
LAN eth1 label + 1
2g phy0 label + 2
The label MAC address was found in the art partition at 0x0
Based on vendor commit:
16c5708b20
Signed-off-by: John Marrett <johnf@zioncluster.ca>
In the current state, nvmem cells are only detected on platform device.
To quickly fix the problem, we register the affected problematic driver
with the of_platform but that is more an hack than a real solution.
Backport from net-next the required patch so that nvmem can work also
with non-platform devices and rework our current patch.
Drop the mediatek and dsa workaround and rework the ath10k patches.
Rework every driver that use the of_get_mac_address api.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
The LEDs for LAN1 and LAN3 were swapped. Link on port 1 would illuminate
the LED on port 3 and vice versa.
Signed-off-by: David Bauer <mail@david-bauer.net>
Without explicit configuration of these pins the ethernet as well as
status LED of the device do not work correctly.
Signed-off-by: David Bauer <mail@david-bauer.net>
Specifications:
* QCA9531, 16 MiB flash (Winbond W25Q128JVSQ), 128 MiB RAM
* 802.11n 2T2R (external antennas)
* QCA9887, 802.11ac 1T1R (connected with diplexer to one of the antennas)
* 3x 10/100 LAN, 1x 10/100 WAN
* UART header with pinout printed on PCB
Installation:
* The device comes with a bootloader installed only
* The bootloader offers DHCP and is reachable at http://10.123.123.1
* Accept the agreement and flash sysupgrade.bin
* Use Firefox if flashing does not work
TFTP recovery with static IP:
* Rename sysupgrade.bin to jt-or750i_firmware.bin
* Offer it via TFTP server at 192.168.0.66
* Keep the reset button pressed for 4 seconds after connecting power
TFTP recovery with dynamic IP:
* Rename sysupgrade.bin to jt-or750i_firmware.bin
* Offer it via TFTP server with a DHCP server running at the same address
* Keep the reset button pressed for 6 seconds after connecting power
Co-authored-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Vincent Wiemann <vincent.wiemann@ironai.com>
A missing quote in target/linux/ath79/patches-5.x/920-mikrotik-rb4xx.patch
produces:
...
scripts/kconfig/conf --syncconfig Kconfig
drivers/mfd/Kconfig:2016:warning: multi-line strings not supported
...
This patch adds missing closing quote, fixing the above warning.
Signed-off-by: Paul Blazejowski <paulb@blazebox.homeip.net>
Define nvmem-cells and convert mtd-mac-address to nvmem implementation.
The conversion is done with an automated script.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Rework patch 681-NET-add-mtd-mac-address-support to implement
only the function to read the mac-address from mtd.
Generalize mtd-mac-address-increment function so it can be applied
to any source of of_get_mac_address.
Rename any mtd-mac-address-increment to mac-address-increment.
Rename any mtd-mac-address-increment-byte to mac-address-increment-byte.
This should make simplify the conversion of target to nvmem implementation.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
sysupgrade metadata is not flashed to the device, so check-size
should be called _before_ adding metadata to the image.
While at it, do some obvious wrapping improvements.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
Looks like the symbol was forgotten for 5.4
Fixes: 820e660cd7 ("ath79: add NAND driver for MikroTik RB91xG series")
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
The MX25L12805D used on all ath79 OCEDO boards supports clock
speeds up to 50 MHz.
Thus, we can increase the maximum SPI frequency the flash chip is
controlled at to 50 MHz, increasing transfer speed.
Signed-off-by: David Bauer <mail@david-bauer.net>
The M25P80 used on the Siemens WS-AP3610 supports clock speeds up to 54
MHz. Thus, we can safely increase the maximum SPI frequency the flash
chip is controlled at to 50 MHz, increasing transfer speed.
Signed-off-by: David Bauer <mail@david-bauer.net>
Device specifications
* SoC: QCA9563 @ 775MHz (MIPS 74Kc)
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR (EN25QH128)
* Wireless 2.4GHz (SoC): b/g/n, 3x3
* Wireless 5Ghz (QCA9988): a/n/ac, 4x4 MU-MIMO
* IoT Wireless 2.4GHz (QCA6006): currently unusable
* Ethernet (AR8327): 3 LAN × 1GbE, 1 WAN × 1GbE
* LEDs: Internet (blue/orange), System (blue/orange)
* Buttons: Reset
* UART: through-hole on PCB ([VCC 3.3v](RX)(GND)(TX) 115200, 8n1)
* Power: 12VDC, 1,5A
MAC addresses map (like in OEM firmware)
art@0x0 88:C3:97:*:57 wan/label
art@0x1002 88:C3:97:*:2D lan/wlan2g
art@0x5006 88:C3:97:*:2C wlan5g
Obtain SSH Access
1. Download and flash the firmware version 1.3.8 (China).
2. Login to the router web interface and get the value of `stok=` from the
URL
3. Open a new tab and go to the following URL (replace <STOK> with the stok
value gained above; line breaks are only for easier handling, please put
together all four lines into a single URL without any spaces):
http://192.168.31.1/cgi-bin/luci/;stok=<STOK>/api/misystem/set_config_iotdev
?bssid=any&user_id=any&ssid=-h%0Anvram%20set%20ssh_en%3D1%0Anvram%20commit
%0Ased%20-i%20%27s%2Fchannel%3D.%2A%2Fchannel%3D%5C%5C%22debug%5C%5C%22%2F
g%27%20%2Fetc%2Finit.d%2Fdropbear%0A%2Fetc%2Finit.d%2Fdropbear%20start%0A
4. Wait 30-60 seconds (this is the time required to generate keys for the
SSH server on the router).
Create Full Backup
1. Obtain SSH Access.
2. Create backup of all flash (on router):
dd if=/dev/mtd0 of=/tmp/ALL.backup
3. Copy backup to PC (on PC):
scp root@192.168.31.1:/tmp/ALL.backup ./
Tip: backup of the original firmware, taken three times, increases the
chances of recovery :)
Calculate The Password
* Locally using shell (replace "12345/E0QM98765" with your router's serial
number):
On Linux
printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \
md5sum - | head -c8 && echo
On macOS
printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \
md5 | head -c8
* Locally using python script (replace "12345/E0QM98765" with your
router's serial number):
wget https://raw.githubusercontent.com/eisaev/ax3600-files/master/scripts/calc_passwd.py
python3.7 -c 'from calc_passwd import calc_passwd; print(calc_passwd("12345/E0QM98765"))'
* Online
https://www.oxygen7.cn/miwifi/
Debricking (lite)
If you have a healthy bootloader, you can use recovery via TFTP using
programs like TinyPXE on Windows or dnsmasq on Linux. To switch the router
to TFTP recovery mode, hold down the reset button, connect the power
supply, and release the button after about 10 seconds. The router must be
connected directly to the PC via the LAN port.
Debricking
You will need a full dump of your flash, a CH341 programmer, and a clip
for in-circuit programming.
Install OpenWRT
1. Obtain SSH Access.
2. Create script (on router):
echo '#!/bin/sh' > /tmp/flash_fw.sh
echo >> /tmp/flash_fw.sh
echo '. /bin/boardupgrade.sh' >> /tmp/flash_fw.sh
echo >> /tmp/flash_fw.sh
echo 'board_prepare_upgrade' >> /tmp/flash_fw.sh
echo 'mtd erase rootfs_data' >> /tmp/flash_fw.sh
echo 'mtd write /tmp/openwrt.bin firmware' >> /tmp/flash_fw.sh
echo 'sleep 3' >> /tmp/flash_fw.sh
echo 'reboot' >> /tmp/flash_fw.sh
echo >> /tmp/flash_fw.sh
chmod +x /tmp/flash_fw.sh
3. Copy `openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin`
to the router (on PC):
scp openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin \
root@192.168.31.1:/tmp/openwrt.bin
4. Flash OpenWRT (on router):
/bin/ash /tmp/flash_fw.sh &
5. SSH connection will be interrupted - this is normal.
6. Wait for the indicator to turn blue.
Signed-off-by: Evgeniy Isaev <isaev.evgeniy@gmail.com>
[improve commit message formatting slightly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SOC: Qualcomm Atheros TP9343 (750 MHz)
Flash: 8 Mb (GigaDevice GD25Q64CSIG)
RAM: 64 Mb (Zentel A3R12E40DBF-8E)
Serial: yes, 4-pin header
Wlan: Qualcomm Atheros TP9343, antenna: MIM0 3x3:3 RP-SMA
3 x 2.4GHz power amp module Skyworks (SiGe) SE2576L
Ethernet: Qualcomm Atheros TP9343
Lan speed: 100M ports: 4
Lan speed: 100M ports: 1
Other info: same case, ram and flash that TP-Link TL-WR841HP,
different SOC
https://forum.openwrt.org/t/adding-device-support-tp-link-wr941hp/
Label MAC addresses based on vendor firmware:
LAN *:ee label
WAN *:ef label +1
WLAN *:ee label
The label MAC address found in "config" partition at 0x8
Flash instruction:
Upload the generated factory firmware on web interface.
Signed-off-by: Diogenes Rengo <rengocbx250@gmail.com>
[remove various whitespace issues, squash commits, use short 0x0]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the Ubiquiti PowerBeam M (XW), e.g. PBE-M5-400,
a 802.11n wireless with a feed+dish form factor. This device was previously
supported by the ar71xx loco-m-xw firmware.
Specifications:
- Atheros AR9342 SoC
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet port, 24 Vdc PoE-in
- Power and LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1)
Flashing via stock GUI:
- Downgrade to AirOS v5.5.x (latest available is 5.5.10-u2) first (see
https://openwrt.org/toh/ubiquiti/powerbeam installation instructions)
- Upload the factory image via AirOS web GUI.
Flashing via TFTP:
- Use a pointy tool (e.g., unbent paperclip) to keep the
reset button pressed.
- Power on the device (keep reset button pressed).
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button.
- The device starts a TFTP server at 192.168.1.20.
- Set a static IP on the computer (e.g., 192.168.1.21/24).
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_powerbeam-m-xw-squashfs-factory.bin
WARNING: so far, no non-destructive method has been discovered for
opening the enclosure to reach the serial console. Internal photos
are available here: https://fcc.io/SWX-NBM5HP
Signed-off-by: Russell Senior <russell@personaltelco.net>
The ar71xx GPIO driver only uses 0x24 registers, all following GPIO
registers are using to control pinmux functions, which are not handles
by the GPIO driver but the generic Linux pinctrl driver.
For some SoC conflicting address ranges were defined for these (AR7240 &
AR9330).
Resolve these cases and align the address space of the GPIO controller
between all SoCs, as the used address space of the driver is identical
for all these.
Signed-off-by: David Bauer <mail@david-bauer.net>
Analysis done by Denis Kalashnikov:
It seems that some ROS versions on some routerboard models have this bug:
after silence boot (no output to uart, no beeps) beeper clicks when wireless traffic is.
https://forum.mikrotik.com/viewtopic.php?f=3&t=92269https://forum.mikrotik.com/viewtopic.php?t=63399
From these links:
1)
Hello, I have RB951G-2HnD and I noticed strange thing
when I loaded the device with some wireless traffic it
produced strange sound - like hissing, fizzing etc.
2)
Same problem still on 6.33, with silent boot enabled
I hear buzzing noise on wireless load.
3)
The sound is fixed in v5.19, it was a bug that caused beeper to make clicks.
It also got fixed in RouterOS:
* What's new in 5.19 (2012-Jul-16 10:51):
fix ticking sound on RB411UAHL;
* What's new in 6.38.3 (2017-Feb-07 09:52):
rb3011 - fixed noise from buzzer after silent boot;
I've checked with an oscilloscope that:
* When on the ssr beeper pin is 0,
on the beeper itself is 1 (~5V),
and when on the ssr beeper pin is 1,
on the beeper is 0
The beeper doesn't consume power,
so 1 should be a default/idle value for the ssr beeper pin).
* When there is wireless traffic (ping packets)
in the background and the beeper clicks, I see
pulses on the beeper itself,
but no pulses on the ssr beeper pin (Q5 pin of 74hc595).
When I manually toggle the ssr beeper pin I see pulses on both.
So, it is likely that the phantom beeper clicks are caused by the EMI.
Suggested-by: Denis Kalashnikov <denis281089@gmail.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This commit adds support for the Teltonika RUT230 v1, a Atheros AR9331
based router with a Quectel UC20 UMTS modem.
Hardware
--------
Atheros AR9331
16 MB SPI-NOR XTX XT25F128B
64M DDR2 memory
Atheros AR9331 1T1R 802.11bgn Wireless
Boootloader: pepe2k U-Boot mod
Hardware-Revision
-----------------
There are two board revisions of the RUT230, a v0 and v1.
A HW version is silkscreened on the top of the PCBs front side as well
as shown in the Teltonika UI. However, this looks to be a different
identifier, as the GPl dump shows this silkscreened / UI shown version
are internally treated identically.
Th following mapping has been obtained from the latest GPl dump.
HW Ver 01 - 04 --> v0
HW Ver > 05 --> v1
My board was a HW Ver 09 and is treated as a v1.
Installation
------------
While attaching power, hold down the reset button and release it after
the signal LEDs flashed 3 times.
Attach your Computer with the devices LAN port and assign yourself the
IPv4 address 192.168.1.10/24. Open a web browser, navigate to
192.168.1.1. Upload the OpenWrt factory image.
The device will install OpenWrt and automatically reboots afterwards.
You can use the smae procedure with the stock firmware to return back to
the vendor firmware.
Signed-off-by: David Bauer <mail@david-bauer.net>
The beeper is currently not fully functional and has also
been removed from DTS.
Also remove the dependency for the gpio-beeper module.
Fixes: 695a1cd53c ("ath79: add support for MikroTik RouterBOARD 912UAG-2HPnD")
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
Without this patch we have to manually bring up the CPU interface in
failsafe mode.
This was backported from kernel 5.12.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Tested-by: Rafał Miłecki <rafal@milecki.pl>
Currently, the option to disable subpage writing is only set
when a HW ECC engine is used.
Some boards lack a HW ECC engine and use software for that.
In this case, this NAND option does not get set when the NAND chip
does not support it, resulting in mounting errors.
Move the setting of this option to a generic init location so it
gets set for all types where required.
While at it, also OR the option instead of just setting it
so we don't overwrite potential flags being set somewhere else.
Before:
[ 1.681273] UBI: auto-attach mtd2
[ 1.684669] ubi0: attaching mtd2
[ 1.688877] ubi0 error: validate_ec_hdr: bad VID header offset 2048, expected 512
[ 1.696469] ubi0 error: validate_ec_hdr: bad EC header
[ 1.701712] Erase counter header dump:
[ 1.705512] magic 0x55424923
[ 1.709322] version 1
[ 1.712330] ec 1
[ 1.715331] vid_hdr_offset 2048
[ 1.718610] data_offset 4096
[ 1.721880] image_seq 1462320675
[ 1.725680] hdr_crc 0x12255a15
After:
1.680917] UBI: auto-attach mtd2
[ 1.684308] ubi0: attaching mtd2
[ 2.954504] random: crng init done
[ 3.142813] ubi0: scanning is finished
[ 3.163455] ubi0: attached mtd2 (name "ubi", size 124 MiB)
[ 3.169069] ubi0: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
[ 3.176037] ubi0: min./max. I/O unit sizes: 2048/2048, sub-page size 2048
[ 3.182942] ubi0: VID header offset: 2048 (aligned 2048), data offset: 4096
[ 3.190013] ubi0: good PEBs: 992, bad PEBs: 0, corrupted PEBs: 0
[ 3.196102] ubi0: user volume: 3, internal volumes: 1, max. volumes count: 128
[ 3.203434] ubi0: max/mean erase counter: 2/0, WL threshold: 4096, image sequence number: 1462320675
[ 3.212700] ubi0: available PEBs: 0, total reserved PEBs: 992, PEBs reserved for bad PEB handling: 20
[ 3.222124] ubi0: background thread "ubi_bgt0d" started, PID 317
[ 3.230246] block ubiblock0_1: created from ubi0:1(rootfs)
[ 3.235819] ubiblock: device ubiblock0_1 (rootfs) set to be root filesystem
[ 3.256830] VFS: Mounted root (squashfs filesystem) readonly on device 254:0.
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This board has been supported in the ar71xx.
Links:
* https://mikrotik.com/product/RB912UAG-2HPnD
* https://openwrt.org/toh/hwdata/mikrotik/mikrotik_rb912uag-2hpnd
This also supports the 5GHz flavour of the board.
Hardware:
* SoC: Atheros AR9342,
* RAM: DDR 64MB,
* SPI NOR: 64KB,
* NAND: 128MB,
* Ethernet: x1 10/100/1000 port with passive POE in,
* Wi-Fi: 802.11 b/g/n,
* PCIe,
* USB: 2.0 EHCI controller, connected to mPCIe slot and a Type-A
port -- both can be used for LTE modem, but only one can be
used at any time.
* LEDs: 5 general purpose LEDs (led1..led5), power LED, user LED,
Ethernet phy LED,
* Button,
* Beeper.
Not working:
* Button: it shares gpio line 15 with NAND ALE and NAND IO7,
and current drivers doesn't easily support this configuration,
* Beeper: it is connected to bit 5 of a serial shift register
(tested with sysfs led trigger timer). But kmod-gpio-beeper
doesn't work -- we left this as is for now.
Flashing:
* Use the RouterBOARD Reset button to enable TFTP netboot,
boot kernel and initramfs and then perform sysupgrade.
* From ar71xx OpenWrt firmware run:
$ sysupgrade -F /tmp/<sysupgrade.bin>
For more info see: https://openwrt.org/toh/mikrotik/common.
Co-Developed-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Denis Kalashnikov <denis281089@gmail.com>
Main part is copied from ar71xx original driver rb91x_nand
written by Gabor Juhos <juhosg@openwrt.org>.
What is done:
* Support of kernel 5.4 and 5.10,
* DTS support,
* New gpio API (gpiod_*) support.
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Denis Kalashnikov <denis281089@gmail.com>
This is a slighty modified version of ar71xx gpio-latch driver
written by Gabor Juhos <juhosg@openwrt.org>.
Changes:
* DTS support,
* New gpio API (gpiod_*).
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Denis Kalashnikov <denis281089@gmail.com>
Specifications:
- QCA9533 SoC, 8 MB nor flash, 64 MB DDR2 RAM
- 2x2 9dBi antenna, wifi 2.4Ghz 300Mbps
- 4x Ethernet LAN 10/100, 1x Ethernet WAN 10/100
- 1x WAN, LAN, Wifi, PWR, WPS, RE Leds
- Reset, Wifi on/off, WPS, RE buttons
- Serial UART at J4 onboard: 3.3v GND RX TX, 1152008N1
Label MAC addresses based on vendor firmware:
LAN *:ea label
WAN *:eb label +1
2.4 GHz *:ea label
The label MAC address in found in u-boot 0x1fc00
Installation:
Upload openwrt-ath79-generic-tplink_tl-wr841hp-v3-squashfs-factory.bin
from stock firmware webgui.
Maybe we need rename to shorten file name due to stock webgui error.
Revert back to stock firmware instructions:
- set your PC to static IP address 192.168.0.66 netmask 255.255.255.0
- download stock firmware from Tp-link website
- put it in the root directory of tftp server software
- rename it to wr841hpv3_tp_recovery.bin
- power on while pressing Reset button until any Led is lighting up
- wait for the router to reboot. done
Forum support topic:
https://forum.openwrt.org/t/support-for-tp-link-tl-wr841hp-v3-router
Signed-off-by: Andy Lee <congquynh284@yahoo.com>
[rebase and squash]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This replaces the register bits for RGMII delay on the MAC side in favor
of having the RGMII delay on the PHY side by setting the phy-mode
property to rgmii-id (RGMII internal delay), which is supported by the
at803x driver. Speed 1000 is fixed as a result, so now all ethernet
speeds function.
Signed-off-by: Jonathan A. Kollasch <jakllsch@kollasch.net>
Reviewed-by: Michael Pratt <mcpratt@pm.me>
NEC Aterm WF1200CR is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
QCA9561.
Specification:
- SoC : Qualcomm Atheros QCA9561
- RAM : DDR2 128 MiB (W971GG6SB-25)
- Flash : SPI-NOR 8 MiB (MX25L6433FM2I-08G)
- WLAN : 2.4/5 GHz 2T2R
- 2.4 GHz : QCA9561 (SoC)
- 5 GHz : QCA9888
- Ethernet : 2x 10/100 Mbps
- Switch : QCA9561 (SoC)
- LEDs/Keys : 8x/3x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- JP1: Vcc, GND, NC, TX, RX from "JP1" marking
- 115200n8
- Power : 12 VDC, 0.9 A
Flash instruction using factory image (stock: < v1.3.2):
1. Boot WF1200CR normally with "Router" mode
2. Access to "http://192.168.10.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click update ("更新") button to
perform firmware update
4. Wait ~150 seconds to complete flashing
Alternate flash instruction using initramfs image (stock: >= v1.3.2):
1. Prepare the TFTP server with the IP address 192.168.1.10 and place
the OpenWrt initramfs image to the TFTP directory with the name
"0101A8C0.img"
2. Connect serial console to WF1200CR
3. Boot WF1200CR and interrupt with any key after the message
"Hit any key to stop autoboot: 2", the U-Boot starts telnetd after
the message "starting telnetd server from server 192.168.1.1"
4. login the telnet (address: 192.168.1.1)
5. Perform the following commands to modify "bootcmd" variable
temporary and check the value
(to ignore the limitation of available commands, "tp; " command at
the first is required as dummy, and the output of "printenv" is
printed on the serial console)
tp; set bootcmd 'set autostart yes; tftpboot'
tp; printenv
6. Save the modified variable with the following command and reset
device
tp; saveenv
tp; reset
7. The U-Boot downloads initramfs image from TFTP server and boots it
8. On initramfs image, download the sysupgrade image to the device and
perform the following commands to erase stock firmware and sysupgrade
mtd erase firmware
sysupgrade <sysupgrade image>
9. After the rebooting by completion of sysupgrade, start U-Boot telnetd
and login with the same way above (3, 4)
10. Perform the following commands to reset "bootcmd" variable to the
default and reset the device
tp; run seattle
tp; reset
(the contents of "seattle":
setenv bootcmd 'bootm 0x9f070040' && saveenv)
11. Wait booting-up the device
Known issues:
- the following 6x LEDs are connected to the gpio controller on QCA9888
chip and the implementation of control via the controller is missing in
ath10k/ath10k-ct
- "ACTIVE" (Red/Green)
- "2.4GHz" (Red/Green)
- "5GHz" (Red/Green)
Note:
- after the version v1.3.2 of stock firmware, "offline update" by
uploading image by user is deleted and the factory image cannot be
used
- the U-Boot on WF1200CR doesn't configure the port-side LEDs on WAN/LAN
and the configuration is required on OpenWrt
- gpio-hog: set the direction of GPIO 14(WAN)/19(LAN) to output
- pinmux: set GPIO 14/19 as switch-controlled LEDs
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
This patch adds support for the Devolo dLAN pro 1200+ WiFi ac.
This device is a plc wifi AC2400 router/extender with 2 Ethernet ports,
has a QCA7500 PLC and uses the HomePlug AV2 standard.
Other than the PLC the hardware is identical to the Devolo Magic 2 WIFI.
Therefore it uses the same dts, which was moved to a dtsi to be included
by both boards.
This is a board that was previously included in the ar71xx tree.
Hardware:
SoC: AR9344
CPU: 560 MHz
Flash: 16 MiB (W25Q128JVSIQ)
RAM: 128 MiB DDR2
Ethernet: 2xLAN 10/100/1000
PLC: QCA75000 (Qualcomm HPAV2)
PLC Uplink: 1Gbps MIMO
PLC Link: RGMII 1Gbps (WAN)
WiFi: Atheros AR9340 2.4GHz 802.11bgn
Atheros AR9882-BR4A 5GHz 802.11ac
Switch: QCA8337, Port0:CPU, Port2:PLC, Port3:LAN1, Port4:LAN2
Button: 3x Buttons (Reset, wifi and plc)
LED: 3x Leds (wifi, plc white, plc red)
GPIO Switch: 11-PLC Pairing (Active Low)
13-PLC Enable
21-WLAN power
MACs Details verified with the stock firmware:
Radio1: 2.4 GHz &wmac *:4c Art location: 0x1002
Radio0: 5.0 GHz &pcie *:4d Art location: 0x5006
Ethernet ðernet *:4e = 2.4 GHz + 2
PLC uplink --- *:4f = 2.4 GHz + 3
Label MAC address is from PLC uplink
The Powerline (PLC) interface of the dLAN pro 1200+ WiFi ac requires 3rd
party firmware which is not available from standard OpenWrt package
feeds. There is a package feed on github which you must add to
OpenWrt buildroot so you can build a firmware image which supports the
plc interface.
See: https://github.com/0xFelix/dlan-openwrt (forked from Devolo and
added compatibility for OpenWrt 21.02)
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.100
2. Download the sysupgrade image and rename it to uploadfile
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Allow 1-2 minutes for the first boot.
Signed-off-by: Felix Matouschek <felix@matouschek.org>
[add "plus" to compatible and device name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Many people appear to use an unneeded "+" prefix for the increment
when calculating a MAC address with macaddr_add. Since this is not
required and used inconsistently [*], just remove it.
[*] As a funny side-fact, copy-pasting has led to almost all
hotplug.d files using the "+", while nearly all of the
02_network files are not using it.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
CPExxx and WBSxxx boards with AR9344 SOC
use the OKLI lzma kernel loader
with the offset of 3 blocks of length 4k (0x3000)
in order to have a fake "kernel" that cannot grow larger
than how it is defined in the now static OEM partition table.
Before recent changes to the mtdsplit driver,
the uImage parser for OKLI only supported images
that started exactly on an eraseblock boundary.
The mtdsplit parser for uImage now supports identifying images
with any magic number value
and at any offset from the eraseblock boundary
using DTS properties to define those values.
So, it is no longer necessary to use fixed sizes
for kernel and rootfs
Tested-by: Andrew Cameron <apcameron@softhome.net> [CPE510 v2]
Tested-by: Bernhard Geier <freifunk@geierb.de> [WBS210 v2]
Tested-by: Petrov <d7c48mWsPKx67w2@gmail.com> [CPE210 v1]
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Specifications:
SoC: QCA9533
DRAM: 32Mb DDR1
Flash: 8/16Mb SPI-NOR
LAN: 4x 10/100Mbps via AR8229 switch (integrated into SoC)
on GMII
WAN: 1x 10/100Mbps via MII
WLAN: QCA9530
USB: 1x 2.0
UART: standard QCA UART header
JTAG: yes
Button: 1x WPS, 1x reset
LEDs: 8x LEDs
A version with 4Mb flash is also available, but due to lack of
enough space it's not supported.
As the original flash layout does not provide enough space for
the kernel (1472k), the firmware uses OKLI and concat flash to
overcome the limitation without changing the boot address of the
bootloaders.
Installation:
1. Original bootloader
Connect the board to ethernet
Set up a server with an IP address of 192.168.1.10
Make the openwrt-ath79-generic-qca_ap143-8m-squashfs-factory.bin
available via TFTP
tftpboot 0x80060000 openwrt-ath79-generic-qca_ap143-8m-squashfs-factory.bin
erase 0x9f050000 +$filesize
cp.b $fileaddr 0x9f050000 $filesize
Reboot the board.
2. pepe2k's u-boot_mod
Connect the board to ethernet
Set up a server with an IP address of 192.168.1.10
Make the openwrt-ath79-generic-qca_ap143-8m-squashfs-factory.bin
available via TFTP, as "firmware.bin"
run fw_upg
Reboot the board.
For the 16M version of the board, please use
openwrt-ath79-generic-qca_ap143-16m-squashfs-factory.bin
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
[use fwconcatX names, drop redundant uart status, fix IMAGE_SIZE,
set up IMAGE/factory.bin without metadata]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
- eth0
+ Label: Ethernet 1
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ AR8035 ethernet PHY (SGMII)
+ 10/100/1000 Mbps Ethernet
+ used as LAN interface
* 1x USB
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
- eth0
+ Label: Ethernet 1
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ AR8031 ethernet PHY (SGMII)
+ 10/100/1000 Mbps Ethernet
+ used as LAN interface
* 1x USB
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The patch was not applied to the v5.4 target, thus breaking Kernel 5.4
on devices with multiple flash chips attache to the SPI bus.
Fixes commit bd54e73954 ("ath79: set number of chipselect lines")
Signed-off-by: David Bauer <mail@david-bauer.net>
ZiKing CPE46B is a POE outdoor 2.4ghz device with an integrated directional
antenna. It is low cost and mostly available via Aliexpress, references can
be found at:
- https://forum.openwrt.org/t/anddear-ziking-cpe46b-ar9331-ap121/60383
- https://git.lsd.cat/g/openwrt-cpe46b
Specifications:
- Atheros AR9330
- 32MB of RAM
- 8MB of flash (SPI NOR)
- 1 * 2.4ghz integrated antenna
- 2 * 10/100/1000 ethernet ports (1 POE)
- 3 * Green LEDs controlled by the SoC
- 3 * Green LEDs controlled via GPIO
- 1 * Reset Button controlled via GPIO
- 1 * 4 pin serial header on the PCB
- Outdoor packaging
Flashing instruction:
You can use sysupgrade image directly in vendor firmware which is based
on OpenWrt/LEDE. In case of issues with the vendor GUI, the vendor
Telnet console is vulnerable to command injection and can be used to gain
a shell directly on the OEM OpenWrt distribution.
Signed-off-by: Giulio Lorenzo <salveenee@mortemale.org>
[fix whitespaces, drop redundant uart status and serial0, drop
num-chipselects, drop 0x1002 MAC address for wmac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
COMFAST CF-E375AC is a ceiling mount AP with PoE support,
based on Qualcomm/Atheros QCA9563 + QCA9886 + QCA8337.
Short specification:
2x 10/100/1000 Mbps Ethernet, with PoE support
128MB of RAM (DDR2)
16 MB of FLASH
3T3R 2.4 GHz, 802.11b/g/n
2T2R 5 GHz, 802.11ac/n/a, wave 2
built-in 5x 3 dBi antennas
output power (max): 500 mW (27 dBm)
1x RGB LED, 1x button
built-in watchdog chipset
Flash instruction:
1) Original firmware is based on OpenWrt.
Use sysupgrade image directly in vendor GUI.
2) TFTP
2.1) Set a tftp server on your machine with a fixed IP address of
192.168.1.10. A place the sysupgrade as firmware_auto.bin.
2.2) boot the device with an ethernet connection on fixed ip route
2.3) wait a few seconds and try to login via ssh
3) TFTP trough Bootloader
3.1) open the device case and get a uart connection working
3.2) stop the autoboot process and test connection with serverip
3.3) name the sysupgrade image firmware.bin and run firmware_upg
MAC addresses:
Though the OEM firmware has four adresses in the usual locations,
it appears that the assigned addresses are just incremented in a
different way:
interface address location
LAN: *:DC 0x0
WAN *:DD 0x1002
WLAN 2.4g *:E6 n/a (0x0 + 10)
WLAN 5g *:DE 0x6
unused *:DF 0x5006
The MAC address pointed at the label is the one assign to the LAN
interface.
Signed-off-by: Joao Henrique Albuquerque <joaohccalbu@gmail.com>
[add label-mac-device, remove redundant uart status, fix whitespace
issues, fix commit message wrapping, remove x bit on DTS file]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This fixes a small regression where the lzma-loader variable values
are being shared between boards that require different configurations.
If not set to "" globally, a device without these settings will just take
the last values another device has set before in the queue.
Fixes: 1b8bd17c2d ("ath79: lzma-loader: allow setting custom kernel magic")
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[add detailed explanation to the commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Before this commit, it was assumed that mkhash is in the PATH. While
this was fine for the normal build workflow, this led to some issues if
make TOPDIR="$(pwd)" -C "$pkgdir" compile
was called manually. In most of the cases, I just saw warnings like this:
make: Entering directory '/home/.../package/gluon-status-page'
bash: line 1: mkhash: command not found
bash: line 1: mkhash: command not found
bash: line 1: mkhash: command not found
bash: line 1: mkhash: command not found
bash: line 1: mkhash: command not found
bash: line 1: mkhash: command not found
bash: line 1: mkhash: command not found
bash: line 1: mkhash: command not found
[...]
While these were only warnings and the package still compiled sucessfully,
I also observed that some package even fail to build because of this.
After applying this commit, the variable $(MKHASH) is introduced. This
variable points to $(STAGING_DIR_HOST)/bin/mkhash, which is always the
correct path.
Signed-off-by: Leonardo Mörlein <me@irrelefant.net>
ath79, lantiq, ipq40xx, ramips all use the OpenWrt-specific gpio-export
functionality. Consolidate the patch that adds it under hack-5.10 since
this logic is obviously not target-specific. For those who want to
disable it, unsetting CONFIG_GPIO_SYSFS symbol will disable this code.
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
The kernel image is too big now and the build fails.
WARNING: Image file zyxel_nbg6716-kernel.bin is too big: 4205404 > 4194304
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The spi-ath79 driver performs the chipselect by writing to dedicated
register in the SPI register block. So the GPIO numbers were not used.
Tested-on: Enterasys WS-AP3705i
Signed-off-by: David Bauer <mail@david-bauer.net>
All chipsets from AR7100 up to QCA9563 have three dedicated chipselect
lines for the integrated SPI controller. Remove the number of
chipselects from the platform data, as there is no need to manually set
this to a different value.
Signed-off-by: David Bauer <mail@david-bauer.net>
Add the SPI_MASTER_GPIO_SS flag for the spi-ath79 driver. Otherwise,
the custom chipselect function is never called. This breaks hardware,
where the three dedicated chipselect lines are used instead of generic
GPIO pins.
Signed-off-by: David Bauer <mail@david-bauer.net>
CONFIG_FORTIFY_SOURCE=y is already set in the generic kernel
configuration, but it is not working for MIPS on kernel 5.4, support for
MIPS was only added with kernel 5.5, other architectures like aarch64
support FORTIFY_SOURCE already since some time.
This patch adds support for FORTIFY_SOURCE to MIPS with kernel 5.4,
kernel 5.10 already supports this and needs no changes.
This backports one patch from kernel 5.5 and one fix from 5.8 to make
fortify source also work on our kernel 5.4.
The changes are not compatible with the
306-mips_mem_functions_performance.patch patch which was also removed
with kernel 5.10, probably because of the same problems. I think it is
not needed anyway as the compiler should automatically optimize the
calls to memset(), memcpy() and memmove() even when not explicitly
telling the compiler to use the build in variant.
This increases the size of an uncompressed kernel by less than 1 KB.
Acked-by: Rosen Penev <rosenp@gmail.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This CFI patch was accepted upstream for 5.13. Move it away from under
ath79 and place under backports to be removed in due time.
Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
Manually rebased*
generic/backport-5.4/700-v5.5-net-core-allow-fast-GRO-for-skbs-with-Ethernet-heade.patch
Added new backport*
generic/backport-5.4/050-gro-fix-napi_gro_frags-Fast-GRO-breakage-due-to-IP-a.patch
All others updated automatically.
The new backport was included based on this[1] upstream commit that will be
mainlined soon. This change is needed because Eric Dumazet's check for
NET_IP_ALIGN (landed in 5.4.114) causes huge slowdowns on drivers which use
napi_gro_frags().
Build system: x86_64
Build-tested: ipq806x/R7800
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
*Credit to Alexander Lobakin
1. https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=7ad18ff6449cbd6beb26b53128ddf56d2685aa93
Signed-off-by: John Audia <graysky@archlinux.us>
Since support for SFP on the MikroTik RouterBOARD 922UAGS-5HPacD was
added by 4387fe00cb, the MAC addresses for eth0 (Ethernet) and eth1
(SFP) were swapped. This patch fixes the 02_network script to assign MAC
addresses correctly, so they match the label and the vendor's OS.
Tested on a RouterBOARD 922UAGS-5HPacD board.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Commit f724a583dc updated the nand-rb4xx driver to the 5.10 testing
kernel, but forgot to add the new kernel config symbol it introduces to
the 5.10 config.
Fixes: f724a583dc ("ath79: mikrotik: update nand-rb4xx driver")
Reported-by: Russell Senior <russell@personaltelco.net>
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Some targets select HZ=100, others HZ=250. There's no reason to select a higher
timer frequency (and 100 Hz are available in every architecture), so change all
targets to 100 Hz.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
For the targets which enable ubifs, these symbols are already part of the
generic kconfigs. Drop them from the target kconfigs.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
This updates the NAND driver for MikroTik RB4XX series to work with
kernel 5.10, similarly to the ar934x-nand driver (fb64e2c3).
Support for kernel 5.10 was added to all ath79 subtargets except for the
mikrotik one by commit d6b785d, since patch 920-mikrotik-rb4xx.patch
needed to be reworked. Later, commit f8512661 enabled kernel 5.10 for
the mikrotik subtarget with the nand-rb4xx driver still pending, which
is updated and added back by this patch.
Compile-tested only.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
This patch ist not required, as it only has an effect in case the GPIO
descriptors supplied to num-cs are valid.
As this is not the case for ath79, this patch can safely be omitted. The
issue it tried to fix is actually fixed with
0054-spi-sync-up-initial-chipselect-state.
Signed-off-by: David Bauer <mail@david-bauer.net>
This patch enables the SFP cage on the MikroTik RouterBOARD 922UAGS-5HPacD.
GPIO16 (tx-disable-gpios) should be governed by the SFP driver to enable
or disable transmission, but no change is observed. Therefore, it is
left as output high to ensure the SFP module is forced to transmit.
Tested on a RouterBOARD 922UAGS-5HPacD board, with a CISCO GLC-LH-SMD
1310nm module and an unbranded GLC-T RJ45 Gigabit module. PC=>router
iperf3 tests deliver 440/300 Mbps up/down, both via regular eth0 port
or SFP port with RJ45 module. Bridge between eth0 and eth1 delivers
950 Mbps symmetric.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Fix the PLL register value for 10 Mbit/s link modes on TP-Link EAP
boards using a AR8033 SGMII PHY.
Otherwise, 10 Mbit/s links do not transfer data.
Reported-by: Tom Herbers <freifunk@tomherbers.de>
Tested-by: Tom Herbers <freifunk@tomherbers.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
Fix the PLL register value for 10 Mbit/s link modes on the UniFi AC Lite
/ Mesh / LR. Otherwise, 10 Mbit/s links do not transfer data.
Signed-off-by: David Bauer <mail@david-bauer.net>
When adding the patch for the missing register, the patch file for the
testing kernel 5.10 was not included.
Fixes commit fbbad9a9a6 ("ath79: force SGMII SerDes
mode to MAC operation")
Signed-off-by: David Bauer <mail@david-bauer.net>
The mode on the SGMII SerDes on the QCA9563 is 1000 Base-X by default.
This only allows for 1000 Mbit/s links, however when used with an SGMII
PHY in 100 Mbit/s link mode, the link remains dead.
This strictly has nothing to do with the SerDes calibration, however it
is done at the same point in the QCA reference U-Boot which is the
blueprint for everything happening here. As the current state is more or
less a hack, this should be fine.
This fixes the issues outlined above on a TP-Link EAP-225 Outdoor.
Reported-by: Tom Herbers <freifunk@tomherbers.de>
Tested-by: Tom Herbers <freifunk@tomherbers.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
Increase the spi-max frequency to 50 MHz, similar to the DIR-842.
Signed-off-by: Jan Forman <forman.jan96@gmail.com>
[improve commit title, fix commit message alignment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
commit d6b785d477 ("ath79: add kernel 5.10 support") moved
KERNEL_TESTING_PATCHVER to a subtarget level,
but is looks like Mikrotik subtarget was forgotten.
Also add it for Mikrotik.
Signed-off-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
pcie0 is the same for this generation of Senao APs
while eth0, eth1, and wmac can differ
the qca,no-eeprom property has no effect
for the ath10k drivers
Signed-off-by: Michael Pratt <mcpratt@pm.me>
use qca955x_senao_loader.dtsi
because it is the same hardware / partitioning
and some cleanup
Effects:
nodes to match similar boards
- keys
- eth0
- pcie0
bumps SPI frequency to 40 MHz
removes &pll node:
the property is defined in qca955x.dtsi
removes qca,no-eeprom:
has no effect with mtd-cal-data property
(also spelling)
Tested-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This device is a Senao-based product
using hardware and software from Senao
with the tar-gz platform for factory.bin
and checksum verification at boot time
using variables stored in uboot environment
and a 'failsafe' image when it fails.
Extremely similar hardware/software to Engenius EAP1200H
and other Engenius APs with qca955x
Tested-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Use a similar upgrade method for sysupgrade.bin, like factory.bin,
for Senao boards with the tar.gz OEM upgrade platform,
and 'failsafe' image which is loaded on checksum failure.
This is inspired by the OEM upgrade script /etc/fwupgrade.sh
and the existing platforms for dual-boot Senao boards.
Previously, if the real kernel was damaged or missing
the only way to recover was with UART serial console,
because the OKLI lzma-loader is programmed to halt.
uboot did not detect cases where kernel or rootfs is damaged
and boots OKLI instead of the failsafe image,
because the checksums stored in uboot environment
did not include the real kernel and rootfs space.
Now, the stored checksums include the space for both
the lzma-loader, kernel, and rootfs.
Therefore, these boards are now practically unbrickable.
Also, the factory.bin and sysupgrade.bin are now the same,
except for image metadata.
This allows for flashing OEM image directly from openwrt
as well as flashing openwrt image directly from OEM.
Make 'loader' partition writable so that it can be updated
during a sysupgrade.
tested with
ENS202EXT v1
EAP1200H
EAP350 v1
EAP600
ECB350 v1
ECB600
ENH202 v1
Signed-off-by: Michael Pratt <mcpratt@pm.me>
ath79/tiny kernel config has
CONFIG_MTD_SPI_NOR_USE_4K_SECTORS=y
from commit
05d35403b2
Because of this, these changes are required for 2 reasons:
1.
Senao devices in ath79/tiny
with a 'failsafe' partition and the tar.gz sysupgrade platform
and a flash chip that supports 4k sectors
will fail to reboot to openwrt after a sysupgrade.
the stored checksum is made with the 64k blocksize length
of the image to be flashed,
and the actual checksum changes after flashing due to JFFS2 space
being formatted within the length of the rootfs from the image
example:
0x440000 length of kernel + rootfs (from sysupgrade.bin)
0x439000 offset of rootfs_data (from kernel log)
2.
for boards with flash chips that support 4k sectors:
saving configuration over sysupgrade is not possible
because sysupgrade.tgz is appended at a 64k boundary
and the mtd parser starts JFFS2 at a 4k boundary.
for boards with flash chips that do not support 4k sectors:
partitioning with 4k boundaries causes a boot loop
from the mtd parser not finding kernel and rootfs.
Also:
Some of the Senao boards that belong in ath79/tiny,
for example ENH202,
have a flash chip that does not support 4k sectors
(no SECT_4K symbol in upstream source).
Because of this, partitioning must be different for these devices
depending on the flash chip model detected by the kernel.
Therefore:
this creates 2 DTSI files
to replace the single one with 64k partitioning
for 4k and 64k partitioning respectively.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
By using the same custom kernel header magic
in both OKLI lzma-loader, DTS, and makefile
this hack is not necessary anymore
However, "rootfs" size and checksum
must now be supplied by the factory.bin image
through a script that is accepted by the OEM upgrade script.
This is because Senao OEM scripts assume a squashfs header exists
at the offset for the original "rootfs" partition
which is actually the kernel + rootfs in this implementation,
and takes size value from the header that would be there with hexdump,
but this offset is now the uImage header instead.
This frees up 1 eraseblock
previously used by the "fakeroot" partition
for bypassing the OEM image verification.
Also, these Senao devices with a 'failsafe' partition
and the tar-gz factory.bin platform would otherwise require
flashing the new tar-gz sysupgrade.bin afterward.
So this also prevents having to flash both images
when starting from OEM or 'failsafe'
the OEM upgrade script verifies the header magic numbers,
but only the first two bytes.
Example:
[ "${magic_word_kernel}" = "2705" ] &&
[ "${magic_word_rootfs}" = "7371" -o "${magic_word_rootfs}" = "6873" ] &&
errcode="0"
therefore picked the magic number
0x73714f4b
which is
'sqOK'
Signed-off-by: Michael Pratt <mcpratt@pm.me>
...and max flash offset
The mtdsplit parser was recently refactored
to allow the kernel to have custom image header magic.
Let's also do this for the lzma-loader
For example:
When implemented together,
this allows the kernel to "appear" to be a rootfs
by OEM software in order to write an image
that is actually kernel + rootfs.
At the same time,
it would boot to openwrt normally
by setting the same magic in DTS.
Both of the variables
have a default value that is unchanged
when not defined in the makefiles
This has no effect on the size of the loader
when lzma compressed.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
1. Use upstream accepted NVMEM patches
2. Minor fix for BCM4908 partitioning
3. Support for Linksys firmware partitions on Northstar
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
On NEC Aterm WG1200CR, the MAC address for WAN is printed in the label
on the case, not LAN.
This patch fixes this issue.
Fixes: 50fdc0374b ("ath79: provide label MAC address")
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Straightforward refresh of patches using update_kernel.
Run tested: x86_64 (apu2)
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
Add the same patch to 5.10 too. The patch is in process of being
upstreamed.
Fixes: 8cc0fa8fac ("ath79: cfi: cmdset_0002: amd chip
0x2201 - write words")
Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
[add Fixes:]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device is a wireless router working on 2.4GHz band based on
Qualcom/Atheros AR9132 rev 2 SoC and is accompanied by Atheros AR9103
wireless chip and Realtek RTL8366RB/S switches. Due to two different
switches being used also two different devices are provided.
Specification:
- 400 MHz CPU
- 64 MB of RAM
- 32 MB of FLASH (NOR)
- 3x3:2 2.4 GHz 802.11bgn
- 5x 10/100/1000 Mbps Ethernet
- 4x LED, 3x button, On/Off slider, Auto/On/Off slider
- 1x USB 2.0
- bare UART header place on PCB
Flash instruction:
- NOTE: Pay attention to the switch variant and choose the image to
flash accordingly. (dmesg / kernel logs can tell it)
- Methods for flashing
- Apply factory image in OEM firmware web-gui.
- Sysupgrade on top of existing OpenWRT image
- U-Boot TFPT recovery for both stock or OpenWRT images:
The device U-boot contains a TFTP server that by default has
an address 192.168.11.1 (MAC 02:AA:BB:CC:DD:1A). During the boot
there is a time window, during which the device allows an image to
be uploaded from a client with address 192.168.11.2. The image will
be written on flash automatically.
1) Have a computer with static IP address 192.168.11.2 and the
router device switched off.
2) Connect the LAN port next to the WAN port in the device and the
computer using a network switch.
3) Assign IP 192.168.11.1 the MAC address 02:AA:BB:CC:DD:1A
arp -s 192.168.11.1 02:AA:BB:CC:DD:1A
4) Initiate an upload using TFTP image variant
curl -T <imagename> tftp://192.168.11.1
5) Switch on the device. The image will be uploaded subsequently.
You can keep an eye on the diag light on the device, it should
keep on blinking for a while indicating the writing of the image.
General notes:
- In the stock firmware the MAC address is the same among all
interfaces so it is left here that way too.
Recovery:
- TFTP method
- U-boot serial console
Differences to ar71xx platform
- This device is split in two different targets now due to hardware
being a bit different under the hood. Dynamic solution within the same
image is left for later time.
- GPIOs for a sliding On/Off switch, marked 'Movie engine' on the device
cover, were the wrong way around and were renamed qos_on -> movie_off,
qos_off -> movie_on. Associated key codes remained the same they were.
The device tree source code is mostly based on musashino's work
Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
Generally, in upstream CFI flash memory driver uses buffers for write
operations. That does not work with AMD chip with id 0x2201 and we must
resort to writing word sized chunks only. That is, to not apply general
buffer write functionality for this given chip.
Without the patch kernel logs will be flooded with entries like below:
MTD do_erase_oneblock(): ERASE 0x01fa0000
MTD do_write_buffer(): WRITE 0x01fa0000(0x00001985)
MTD do_erase_oneblock(): ERASE 0x01f80000
MTD do_write_buffer(): WRITE 0x01f80000(0x00001985)
MTD do_write_buffer_wait(): software timeout, address:0x01f8000a.
jffs2: Write clean marker to block at 0x01a60000 failed: -5
MTD do_erase_oneblock(): ERASE 0x01f60000
MTD do_write_buffer(): WRITE 0x01f60000(0x00001985)
MTD do_write_buffer_wait(): software timeout, address:0x01f6000a.
jffs2: Write clean marker to block at 0x01a40000 failed: -5
References: http://patchwork.ozlabs.org/project/linux-mtd/patch/20210309174859.362060-1-sandberg@mailfence.com/
Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
[added link to usptream fix submission]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Physical port order watched from the back of the device is:
4 / 3 / 2 / 1 / WAN which also matches corresponding leds.
This patch corrects LuCI switch webpage LAN port order.
Signed-off-by: Walter Sonius <walterav1984@gmail.com>
[improve commit title, fix sorting in 02_network]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
DTR GPIO isn't actually needed and triggers boot warning.
TX pin was off by one (GPIO 19 instead of GPIO 18).
Reported-by: @tophirsch
Fixes: d1130ad265 ("ath79: add support for Teltonika RUT955")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Make packages depending on usb-serial selective, so we do not have
to add kmod-usb-serial manually for every device.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
So far, board.d files were having execute bit set and contained a
shebang. However, they are just sourced in board_detect, with an
apparantly unnecessary check for execute permission beforehand.
Replace this check by one for existance and make the board.d files
"normal" files, as would be expected in /etc anyway.
Note:
This removes an apparantly unused '#!/bin/sh /etc/rc.common' in
target/linux/bcm47xx/base-files/etc/board.d/01_network
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Debugging the SPI CS issue with kernel 5.10 resulted in a better
understanding for the root cause and a proper patch with a better
explanation.
Exchange the old hack patch with a more efficient (and upstreamable)
solution.
Signed-off-by: David Bauer <mail@david-bauer.net>
5.4.102 backported a lot of stuff that our WireGuard backport already
did, in addition to other patches we had, so those patches were
removed from that part of the series. In the process other patches were
refreshed or reworked to account for upstream changes.
This commit involved `update_kernel.sh -v -u 5.4`.
Cc: John Audia <graysky@archlinux.us>
Cc: David Bauer <mail@david-bauer.net>
Cc: Petr Štetiar <ynezz@true.cz>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This adds the latest version of ofpart commit. It hopefully
1. Doesn't break compilation
2. Doesn't break partitioning
(this time).
It's required to implement fixed partitioning with some quirks. It's
required by bcm53xx, bcm4908, kirkwood, lantiq and mvebu.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Before: Kernel reported "usb_vbus: disabling" and the USB was not
providing power
After: USB power is switched on, peripheral is powered from the
device
Signed-off-by: Tom Stöveken <tom@naaa.de>
[squash and tidy up]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This was overlooked when adding support for this device.
(It has recently been discovered that this was the only device in
ath79 having &uart disabled.)
Fixes: acc6263013 ("ath79: add support for GL.iNet GL-USB150")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a shared DTSI for qca955x Senao/Engenius APs with
concatenated firmware partition/okli loader:
- EAP1200H
- EnstationAC v1
To make this usable for future boards with 32 MB flash as well,
split the partitions node already.
Suggested-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
These recipes and definitions can apply
to devices from other vendors
with PCB boards or SDK produced by Senao
not only the brand Engenius
possible examples:
Extreme Networks, WatchGuard, OpenMesh,
Fortinet, ALLNET, OCEDO, Plasma Cloud, devolo, etc.
so rename all of these items
and move DEVICE_VENDOR from common to generic/tiny.mk
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This creates a shared DTSI for ar934x Senao/Engenius APs:
- EAP300 v2
- ENS202EXT v1
- EAP600
- ECB600
Since ar9341/ar9344 have different configuration, this new file
mostly contains the partitioning.
Suggested-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a shared DTSI for ar724x Senao/Engenius APs:
- ENH202 v1
- EAP350 v1
- ECB350 v1
Since ar7240/ar7242 have different configuration, this new file
mostly contains the partitioning.
Suggested-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The uart node is enabled on all devices except one (GL-USB150 *).
Thus, let's not have a few hundred nodes to enable it, but do not
disable it in the first place.
Where the majority of devices is using it, also move the serial0
alias to the DTSI.
*) Since GL-USB150 even defines serial0 alias, the missing uart
is probably just a mistake. Anyway, disable it for now so this
patch stays cosmetic.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Regulator support was enabled on all subtargets except for ath79-nand.
With Kernel 5.10, AT803x requires Regulator support, thus enabling on
the complete target, as ath79-nand requires AT803x.
While this is only required on Kernel 5.10, enable it also on 5.4. We
have no major size-constraint, so enabling it on 5.4 allows us to clean
up the occurences in the subtarget configuration.
Signed-off-by: David Bauer <mail@david-bauer.net>
As mangix pointed out on IRC, ioremap and ioremap_nocache are
functionally equivalent on kenrel 5.4 and 5.10.
Therefore we can use ioremap regardless of the kernel the driver
gets compiled for.
Signed-off-by: David Bauer <mail@david-bauer.net>
This adds Kernel 5.10 support for the generic, nand and tiny subtargets.
The following patch is not contained, as it needs to be reworked:
platform/920-mikrotik-rb4xx.patch
Tested-on:
- Siemens WS-AP3610
- Enterasys WS-AP3710
- Aerohive HiveAP 121
- TP-Link TL-WA901 v2
- TP-Link TL-WR741 v1
Signed-off-by: David Bauer <mail@david-bauer.net>
Adapt the driver to make it work with the NAND subsystem changes between
kernel 5.4 and 5.10.
Tested-on: Aerohive HiveAP121
Signed-off-by: David Bauer <mail@david-bauer.net>
Specify the device_type property for PCI as well as PCIe controllers.
Otherwise, the PCI range parser will not be selected when using kernel
5.10.
Signed-off-by: David Bauer <mail@david-bauer.net>
The factory images need to embed specific IDs to pass verification with
the OEM firmware (including TFTP recovery), so they need to be
per-device variables.
Fixes: ab1584a797 ("ath79: netgear: trim down uImage customisations")
Fixes: 459c8c9ef8 ("ath79: add support for ZyXEL NBG6616")
Reported-by: Marcin Juszkiewicz <marcin-openwrt@juszkiewicz.com.pl>
Signed-off-by: Paul Fertser <fercerpav@gmail.com>
[minor commit message adjustments, sort DEVICE_VARS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The original setup fails to trigger ART calibration data
extraction for the AR9287. Instead, it would only have extracted
calibration data for an internal WMAC chip which is not present on
this board.
Fixes: 55d2db0e8c ("ath79: add support for Meraki MR12")
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The TP-Link TL-WR810N v1 is known to cause soft-brick on ath79 and
work fine for ar71xx [1]. On closer inspection, the only apparent
difference is the GPIO used for the USB regulator, which deviates
between the two targets.
This applies the value from ar71xx to ath79.
Tested successfully by a forum user.
[1] https://forum.openwrt.org/t/tp-link-tl-wr810n-v1-ath79/48267
Fixes: cdbf2de777 ("ath79: Add support for TP-Link WR810N")
Fixes: FS#3522
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
* QCA9882, 802.11ac 2T2R
* 2x Gigabit LAN (1x 802.11af PoE)
* IP68 pole-mountable outdoor case
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Both ethernet ports are set to LAN by default, matching the labelling on
the case. However, since both GMAC Interfaces eth0 and eth1 are connected
to the switch (QCA8337), the user may create an additional 'wan' interface
as desired and override the vlan id settings to map br-lan / wan to either
the PoE or non-PoE port, depending on the individual scenario of use.
So, the LAN and WAN ports would then be connected to different GMACs, e.g.
config interface 'lan'
option ifname 'eth0.1'
...
config interface 'wan'
option ifname 'eth1.2'
...
config switch_vlan
option device 'switch0'
option vlan '1'
option ports '1 0t'
config switch_vlan
option device 'switch0'
option vlan '2'
option ports '2 6t'
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[add configuration example]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Have the port use GMAC1 with internal switch
which fixes the issue of the ethernet LED not functioning
The LED is triggered by the internal switch, not a GPIO.
The GPIO for the ethernet LED was added in ath79
as it was defined in the ar71xx target
but it was not functioning in ath79 for a previously unknown reason.
It is unknown why that GPIO was defined as an LED in ar71xx.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[drop unrelated changes: model property and SPI max frequency]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
for:
- ENH202 v1
- ENS202EXT v1
- EnstationAC v1
- EWS511AP
For EWS511AP, have default behavior as static ip
to match the behavior of all other APs in ath79
These boards are sold as
Client Bridge or Point to Point or Access Point
so there is probably no benefit to have WAN by default
for one of the ports, to prevent user confusion.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Port device support for Meraki MR12 from the ar71xx target to ath79.
Specifications:
- SoC: AR7242-AH1A CPU
- RAM: 64MiB (NANYA NT5DS32M16DS-5T)
- NOR Flash: 16MiB (MXIC MX25L12845EMI-10G)
- Ethernet: 1 x PoE Gigabit Ethernet Port (SoC MAC + AR8021-BL1E PHY)
- Ethernet: 1 x 100Mbit port (SoC MAC+PHY)
- Wi-Fi: Atheros AR9283-AL1A (2T2R, 11n)
Installation:
1. Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins
2. Open shell case
3. Connect a USB->TTL cable to headers furthest from the RF shield
4. Power on the router; connect to U-boot over 115200-baud connection
5. Interrupt U-boot process to boot Openwrt by running:
setenv bootcmd bootm 0xbf0a0000; saveenv;
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin;
bootm 0c00000;
6. Copy sysupgrade image to /tmp on MR12
7. sysupgrade /tmp/<filename-of-sysupgrade>.bin
Notes:
- kmod-owl-loader is still required to load the ART partition into the
driver.
- The manner of storing MAC addresses is updated from ar71xx; it is
at 0x66 of the 'config' partition, where it was discovered that the
OEM firmware stores it. This is set as read-only. If you are
migrating from ar71xx and used the method mentioned above to
upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more
method for doing this is described below.
- Migrating directly from ar71xx has not been thoroughly tested, but
one method has been used a couple of times with good success,
migrating 18.06.2 to a full image produced as of this commit. Please
note that these instructions are only for experienced users, and/or
those still able to open their device up to flash it via the serial
headers should anything go wrong.
1) Install kmod-mtd-rw and uboot-envtools
2) Run `insmod mtd-rw.ko i_want_a_brick=1`
3) Modify /etc/fw_env.config to point to the u-boot-env partition.
The file /etc/fw_env.config should contain:
# MTD device env offset env size sector size
/dev/mtd1 0x00000 0x10000 0x10000
See https://openwrt.org/docs/techref/bootloader/uboot.config
for more details.
4) Run `fw_printenv` to verify everything is correct, as per the
link above.
5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address.
6) Manually modify /lib/upgrade/common.sh's get_image function:
Change ...
cat "$from" 2>/dev/null | $cmd
... into ...
(
dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes
echo -ne '\x00\x18\x0a\x12\x34\x56' ; # Add in MAC address
dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest
cat "$from" 2>/dev/null
) | $cmd
... which, during the upgrade process, will pad the image by
128K of zeroes-plus-MAC-address, in order for the ar71xx's
firmware partition -- which starts at 0xbf080000 -- to be
instead aligned with the ath79 firmware partition, which
starts 128K later at 0xbf0a0000.
7) Copy the sysupgrade image into /tmp, as above
8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait
Again, this may BRICK YOUR DEVICE, so make *sure* to have your
serial cable handy.
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[add LED migration and extend compat message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Ran update_kernel.sh in a fresh clone without any existing toolchains.
Removed upstreamed patches:
imx6: 303-ARM-dts-imx6qdl-gw52xx-fix-duplicate-regulator-namin.patch
Build system: x86_64
Build-tested: ipq806x/R7800, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Add statistics to ethtool. The statistics can be useful to
debug network issues.
The code is backported from mainline ag71xx.c driver.
Signed-off-by: Leon Leijssen <leon.git@leijssen.info>
Hardware
--------
Atheros AR7241
16M SPI-NOR
64M DDR2
Atheros AR9283 2T2R b/g/n
2x Fast Ethernet (built-in)
Installation
------------
Transfer the Firmware update to the device using SCP.
Install using fwupdate.real -m <openwrt.bin> -d
Signed-off-by: David Bauer <mail@david-bauer.net>
A header used in ELECOM WRC-300GHBK2-I and WRC-1750GHBK2-I/C is also
used in ELECOM WRC-2533GHBK-I, so split the code to generate the header
and move it to image-commands.mk to use from ramips target.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
On a platform with many very different devices, like found on ath79,
the generic profiles seem like remnants of the past that do not
have a real use anymore.
Remove them to have one thing less to maintain.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
FCC ID: A8J-EAP1200H
Engenius EAP1200H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
**Specification:**
- QCA9557 SOC
- QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 populated
- 4 internal antenna plates (5 dbi, omni-directional)
- 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)
**MAC addresses:**
MAC addresses are labeled as ETH, 2.4G, and 5GHz
Only one Vendor MAC address in flash
eth0 ETH *:a2 art 0x0
phy1 2.4G *:a3 ---
phy0 5GHz *:a4 ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
2 ways to flash factory.bin from OEM:
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will brick the device
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board, interrupt boot
execute tftpboot and bootm 0x81000000
NOTE: TFTP is not reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of EAP1200H is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin
openwrt-ar71xx-generic-eap1200h-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The majority of our targets provide a default value for the variable
SUPPORTED_DEVICES, which is used in images to check against the
compatible on a running device:
SUPPORTED_DEVICES := $(subst _,$(comma),$(1))
At the moment, this is implemented in the Device/Default block of
the individual targets or even subtargets. However, since we
standardized device names and compatible in the recent past, almost
all targets are following the same scheme now:
device/image name: vendor_model
compatible: vendor,model
The equal redundant definitions are a symptom of this process.
Consequently, this patch moves the definition to image.mk making it
a global default. For the few targets not using the scheme above,
SUPPORTED_DEVICES will be defined to a different value in
Device/Default anyway, overwriting the default. In other words:
This change is supposed to be cosmetic.
This can be used as a global measure to get the current compatible
with: $(firstword $(SUPPORTED_DEVICES))
(Though this is not precisely an achievement of this commit.)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "netgear,uimage" parser can be replaced by the generic
parser using device specific openwrt,ih-magic and
openwrt,ih-type properties.
Device tree properties for the following devices have not
been set, as they have been dropped from OpenWrt with the
removal of the ar71xx target:
FW_MAGIC_WNR2000V1 0x32303031
FW_MAGIC_WNR2000V4 0x32303034
FW_MAGIC_WNR1000V2_VC 0x31303030
FW_MAGIC_WPN824N 0x31313030
Tested-by: Sander Vanheule <sander@svanheule.net> # WNDR3700v2
Tested-by: Stijn Segers <foss@volatilesystems.org> # WNDR3700v1
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The only difference between the "openwrt,okli" and the generic
parser is the magic. Set this in device tree for all affected
devices and remove the "openwrt,okli" parser.
Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, apply shared DTSI/device node, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 and to-be-added MR1750 family are very similar.
Make the existing MR900 DTSI more general so it can be used for
the MR1750 devices as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The shared image definitions for OpenMesh devices are currently
organized based on device families. This introduces some duplicate
code, as the image creation code is mostly the same for those.
This patch thus derives two basic shared definitions that work for
all devices and only requires a few variables to be moved back to
the device definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 is a modified version of the Exx900/Exx1750 family.
These devices are shipped with an AR803x PHY and had various problems with
the delay configuration in ar71xx. These problems are now in the past [1]
and parts of the delay configuration should now be done in the PHY only.
Just switch to the configuration of the ECB1750 to have an already well
tested configuration for ath79 with the newer kernel versions.
[1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292
Reported-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>