Compare commits

..

512 Commits

Author SHA1 Message Date
c10db6ea28 release : v1.6.1 2024-05-21 18:44:37 +03:00
1b51fdf170 examples : add support for decoding input with ffmpeg (Linux) (#2133)
- search for ffmpeg libs/headers at cmake time
- added ffmpeg-transcode.cpp into libcommon if ffmpeg on
- hooked ffmpeg trancoding in common read_wav(...)
- passed test:
./main -m ggml-base.en.bin -f samples/jfk.mp3
2024-05-21 18:31:41 +03:00
adee3f9c1f node : add flash_attn param (#2170) 2024-05-20 09:08:48 +03:00
4798be1f9a ci: Update build.yml to suppress warnings about node.js versions (#2166)
* Update actions to suppress warnings about old node.js

https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/

* Update actions/upload-artifact, specify android cmdline-tools-version

* Use java 20

gradle 8.1 complains against 21
https://docs.gradle.org/current/userguide/compatibility.html
2024-05-19 11:49:26 +03:00
08981d1bac release : v1.6.0 2024-05-15 09:59:48 +03:00
7094ea5e75 whisper : use flash attention (#2152)
* whisper : use flash attention in the encoder

* whisper : add kv_pad

* whisper : remove extra backend instance (huh?)

* whisper : use FA for cross-attention

* whisper : use FA for self-attention

* whisper : simplify encoder FA

* whisper : add flash_attn runtime parameter

* scripts : add bench log

* scripts : add M1 Pro bench log
2024-05-15 09:38:19 +03:00
9d5771ae43 talk-llama : reject runs without required arguments (#2153)
* Extended talk-llama example to reject runs without required arguments.

Print warning and exit if models are not specified on the command line.

* Update examples/talk-llama/talk-llama.cpp

* Update examples/talk-llama/talk-llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-14 21:32:41 +03:00
f56b8305c4 sync : ggml 2024-05-14 19:16:32 +03:00
1056ad762c metal : support FA without mask + add asserts (llama/7278)
* ggml : fa without mask + add asserts

ggml-ci

* metal : support non-contiguous KV

ggml-ci
2024-05-14 19:16:29 +03:00
c451080c8b ggml : add RPC backend (llama/6829)
* ggml : add RPC backend

The RPC backend proxies all operations to a remote server which runs a
regular backend (CPU, CUDA, Metal, etc).

* set TCP_NODELAY

* add CI workflows

* Address review comments

* fix warning

* implement llama_max_devices() for RPC

* Address review comments

* Address review comments

* wrap sockfd into a struct

* implement get_alignment and get_max_size

* add get_device_memory

* fix warning

* win32 support

* add README

* readme : trim trailing whitespace

* Address review comments

* win32 fix

* Address review comments

* fix compile warnings on macos
2024-05-14 19:16:29 +03:00
8e7c22fbdb rm wait() (llama/7233) 2024-05-14 19:16:29 +03:00
e57e95eb0d CUDA: add FP32 FlashAttention vector kernel (llama/7188)
* CUDA: add FP32 FlashAttention vector kernel

* fixup! CUDA: add FP32 FlashAttention vector kernel

* fixup! fixup! CUDA: add FP32 FlashAttention vector kernel

* fixup! fixup! fixup! CUDA: add FP32 FlashAttention vector kernel
2024-05-14 19:16:29 +03:00
130f43e4b8 scripts : sync ggml-rpc 2024-05-14 19:15:35 +03:00
d8356a1cc2 whisper : fix model path encoding in windows (#2086)
* fix: model path encoding in windows

* fix: convert model path to wide string only for MSVC compiler
2024-05-14 09:43:41 +03:00
4ef8d9f44e server : return utf-8 (#2138) 2024-05-13 15:33:46 +03:00
3928dbd206 node : add audio_ctx and audio buffer params (#2123)
* node : add audio_ctx param

* node : support passing audio buffer directly

* node : parse audio_ctx in index.js

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 15:22:23 +03:00
2ced6f0742 cmake : fix HIP/ROCm build (#2102) 2024-05-13 15:18:43 +03:00
30f73109b8 node : add additional params (#2000)
* Add additional params to addon.node

* Add comma_in_time as parameter

* Fix tests
2024-05-13 15:15:43 +03:00
17fa62d3d3 js : remove un-needed request header from fetchRemote (#2119) 2024-05-13 15:13:19 +03:00
1da5edcde0 cmake : fix metal embed sources path (#2110) 2024-05-13 15:09:59 +03:00
0bb05b113d main : dont print timings with --no-prints (#2108)
Signed-off-by: Daniel Ziegenberg <daniel@ziegenberg.at>
2024-05-13 15:00:19 +03:00
f141b2b938 main : add options for temperature control (#2088)
Add two options:

```
-tp,       --temperature N     [0.00   ] The sampling temperature, between 0 and 1
-tpi,      --temperature-inc N [0.20   ] The increment of temperature, between 0 and 1
```

The sampling temperature, between 0 and 1. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it
more focused and deterministic. If set to 0, the model will use log
probability to automatically increase the temperature until certain
thresholds are hit.

Signed-off-by: Daniel Ziegenberg <daniel@ziegenberg.at>
2024-05-13 14:59:44 +03:00
2b434c449e whisper : switch back to F32 mask (#0) 2024-05-13 14:43:43 +03:00
e93081f83f whisper.android : update example, add field to print timestamp (#2072) 2024-05-13 14:30:03 +03:00
b6bbce4ae9 cmake : fix json INTERFACE library (#2069) 2024-05-13 14:29:39 +03:00
7705dc52da main : fix double quote escaping in csv output (#2090) 2024-05-13 11:55:32 +03:00
e6acaf9d91 metal : tune soft_max number of threads (#0) 2024-05-13 11:02:26 +03:00
2c81e6fd51 whisper : remove old flash attn code (#0) 2024-05-13 11:02:26 +03:00
9506267ce5 ggml : try fix ppc64 (#0) 2024-05-13 11:02:26 +03:00
fbeb80b5f0 ggml : remove oboslete alibi code (skipme) (#0) 2024-05-13 11:02:26 +03:00
3fa7d29876 talk-llama : sync llama.cpp 2024-05-13 11:02:26 +03:00
fe179ae0cc sync : ggml 2024-05-13 11:02:26 +03:00
40aeeeecc4 ggml : optimize for ppc64le using VSX intrinsics (ggml/784)
* optimize for ppc64le using VSX intrinsics

* 1. code clean up by removing comments about overflow concern.

2. fix typo in suffix of scaling.

* Continue to fix typo in suffix of scaling for QK_K <> 256

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 11:02:26 +03:00
5a863fbe18 metal : fix indent (ggml/0) 2024-05-13 11:02:26 +03:00
91c646c61d ggml : restore sigmoid decl order (ggml/0) 2024-05-13 11:02:26 +03:00
accada542a ggml : resolve merge (ggml/0)
ggml-ci
2024-05-13 11:02:26 +03:00
e54329da7b ggml : full ALiBi support (llama/7192)
* ggml : full ALiBi support

* ggml : update ggml_soft_max_ext() CUDA, SYCL

* ggml : ggml_flash_attn_ext() support ALiBi (CPU)

* ggml : ggml_flash_attn_ext() support ALiBi (Metal)

* ggml : fix warning

* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)

ggml-ci

* ggml : fix assert message

* vulkan : add dev notes

* ggml : require mask when using ALiBi

ggml-ci

* convert : fix convert for refact models
2024-05-13 11:02:26 +03:00
284fac39fb metal : fix flash attention kernel requirements (llama/7169)
* metal : fix flash attention kernel requirements

ggml-ci

* metal : fix ggml_metal_supports_op

ggml-ci
2024-05-13 11:02:26 +03:00
fe454b8d9e Minor arithmetic improvement to mmvq wrapper kernel (llama/7172) 2024-05-13 11:02:26 +03:00
c114b75aee Vulkan Bugfixes and Improvements (llama/7084)
* Modify mat mat mul shader for mul_mat_id, modify mat vec mul shaders for single call batch operation

* Further work towards MoE, disabled for now

* Disable MoE code (not ready yet), fix a number of bugs in shaders and Vulkan code

* Add softmax with f16 mask and pos buffer support

* Disable mul_mat_id shaders for now

* Fix flake8

* Fix validation errors caused by empty buffers on larger batch sizes
2024-05-13 11:02:26 +03:00
4be936b88b CUDA: generalize FP16 fattn vec kernel (llama/7061)
* CUDA: generalize FP16 fattn vec kernel

* disable unsupported head sizes for AMD in test

* try AMD fix

* fix batch size 2-8

* partially revert changes
2024-05-13 11:02:26 +03:00
26c550f772 opencl : alignment size converted from bits to bytes (llama/7090)
* opencl alignment size should be converted from bits to bytes

Reference: https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html#CL_DEVICE_MEM_BASE_ADDR_ALIGN

> Alignment requirement (in bits) for sub-buffer offsets.

* Update ggml-opencl.cpp for readability using division instead of shift

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-05-13 11:02:26 +03:00
24f0aa460b Introduction of CUDA Graphs to LLama.cpp (llama/6766)
* DRAFT: Introduction of CUDA Graphs to LLama.cpp

* FIx issues raised in comments

* Tidied to now only use CUDA runtime (not mixed with driver calls)

* disable for multi-gpu and batch size > 1

* Disable CUDA graphs for old GPU arch and with env var

* added missing CUDA_CHECKs

* Addressed comments

* further addressed comments

* limit to GGML_ALLOW_CUDA_GRAPHS defined in llama.cpp cmake

* Added more comprehensive graph node checking

* With mechanism to fall back if graph capture fails

* Revert "With mechanism to fall back if graph capture fails"

This reverts commit eb9f15fb6fcb81384f732c4601a5b25c016a5143.

* Fall back if graph capture fails and address other comments

* - renamed GGML_ALLOW_CUDA_GRAPHS to GGML_CUDA_USE_GRAPHS

- rename env variable to disable CUDA graphs to GGML_CUDA_DISABLE_GRAPHS

- updated Makefile build to enable CUDA graphs

- removed graph capture failure checking in ggml_cuda_error
  using a global variable to track this is not thread safe, but I am also not safistied with checking an error by string
  if this is necessary to workaround some issues with graph capture with eg. cuBLAS, we can pass the ggml_backend_cuda_context to the error checking macro and store the result in the context

- fixed several resource leaks

- fixed issue with zero node graphs

- changed fixed size arrays to vectors

- removed the count of number of evaluations before start capturing, and instead changed the capture mode to relaxed

- removed the check for multiple devices so that it is still possible to use a single device, instead checks for split buffers to disable cuda graphs with -sm row

- changed the op for checking batch size to GGML_OP_ADD, should be more reliable than GGML_OP_SOFT_MAX

- code style fixes

- things to look into
  - VRAM usage of the cudaGraphExec_t, if it is significant we may need to make it optional
  - possibility of using cudaStreamBeginCaptureToGraph to keep track of which ggml graph nodes correspond to which cuda graph nodes

* fix build without cuda graphs

* remove outdated comment

* replace minimum cc value with a constant

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-13 11:02:26 +03:00
69efc39d5c metal : use vm_allocate instead of posix_memalign on macOS (llama/7078)
* fix: use `malloc` instead of `posix_memalign` in `ggml-metal.m` to make it not crash Electron proccesses

* fix: typo

* fix: use `vm_allocate` instead of `posix_memalign`

* fix: don't call `newBufferWithBytesNoCopy` with `NULL` when `ggml_metal_host_malloc` returns `NULL`

* fix: use `vm_allocate` only on macOS
2024-05-13 11:02:26 +03:00
a2ad810118 ggml : introduce bfloat16 support (llama/6412)
* Introduce bfloat16 support

Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───┐
    0b0000000000000000 brain16

This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───────────────────┐
    0b00000000000000000000000000000000 IEEE binary32

The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others

      ┌sign
      │
      │  ┌exponent
      │  │
      │  │    ┌mantissa
      │  │    │
      │┌─┴─┐┌─┴──────┐
    0b0000000000000000 IEEE binary16

This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16

* Remove GGML code that's not needed

* Minimize the GGML API surface area for BF16

* Remove bf16 luts

* Make the GGML header look nicer

* Fix documentation

* Apply ggerganov's fixes for test-backend-ops

* Add BF16 code for new ggml_validate_row_data() function
2024-05-13 11:02:26 +03:00
1ae1a9cd56 metal : fix unused warning 2024-05-13 11:02:26 +03:00
b5521fea19 Add an option to build without CUDA VMM (llama/7067)
Add an option to build ggml cuda without CUDA VMM
resolves
https://github.com/ggerganov/llama.cpp/issues/6889
https://forums.developer.nvidia.com/t/potential-nvshmem-allocated-memory-performance-issue/275416/4
2024-05-13 11:02:26 +03:00
9b84195225 gguf-split: add --no-tensor-first-split (llama/7072) 2024-05-13 11:02:26 +03:00
11c1df0436 CUDA: CUDART < 11.7 workaround for __hmax, __hmax2 (llama/7019) 2024-05-13 11:02:26 +03:00
c754494fdd switch to using localizedDescription (llama/7010) 2024-05-13 11:02:26 +03:00
1bce67999d metal : remove deprecated error code (llama/7008) 2024-05-13 11:02:26 +03:00
6c39ea46b6 metal : log more info on error (llama/6987) 2024-05-13 11:02:26 +03:00
156a33a990 ggml : add Flash Attention (llama/5021)
* ggml : add ggml_flash_attn_ext API

* ggml : fix GQA support in ggml_flash_attn_ext

* ggml : online attention (CPU)

* metal : initial implementation

* metal : f16 precision

* metal : reduce branches

* metal : specialize for head size

* wip : 8 rows per simd group

* wip : 4 rows per simd group

* wip : template for rows per warp

* metal : parallelize across KV size

* metal : parallel reduce across heads

* metal : efficient flash_attn_f16 implementation

* metal : avoid redundant loads of the attention

* metal : scale and mask in matrix form

* metal : fix comment

* llama : avoid ggml_cast, use F32 query

* metal : add parallel reduce version (disabled)

* metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments

* metal : add tests, fix scaling, support C > 32

* metal : improve precision

* ggml : fix f16 mad

* metal : minor

* metal : support Q > 8

* tests : add ATTN tests

* metal : disable buffer allocation logs

* tests : more

* metal : faster inner loop for C == 32

* metal : fix array initialization

* tests : ifdef

* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext

* ggml : fix ggml_soft_max mask requirement

* cuda : fix soft_max to use correct mask size

* cuda : add flash_attn kernel (wip)

* metal : optimize softmax for C > 32

* metal : optimize softmax

* tests : minor fix

* cuda : avoid zeroing fragments

* tests : update dims

* cuda : fix __hisinf() result check

* cuda : avoid warp_reduce for smax

* cuda : use int instead of int64_t

Noticeably improves performance (thanks to Johannes)

* cuda : make loops use the same loop values

Thanks Johannes again for the tip

* cuda : unroll some of the loops

* cuda : avoid __hisinf branches

* cuda : use half2 in softmax

* cuda : switch to 1 warp for bs > 16

* cuda : speed-up reduce part of the kernel

* cuda : unroll Q*K^T loop

* cuda : fix -INF block check

* cuda : simplify softmax

* cuda : fix matrix names

* cuda : minor

* llama : adapt to F16 KQ_pos

* llama : adapt new models to F16 KQ_mask

* ggml : fix F16 store (ARM NEON)

* llama : fix type of KQ_mask and KQ_pos

* ggml : fix CPU soft_max

* tests : add hs=256

* cuda : fix build

* metal : improve perf via smaller int registers

* cuda : adapt soft_max to F16 mask and pos

* CUDA: faster FlashAttention, kernel for bs == 1

* 16 cols for Phi-2

* no vec for hs, no hs==256 ncols==32 for Volta

* adjust kernel selection logic

* 4 warps, 256 stride for all D

* no ncols == 64

* Multiple parallel blocks for batch size 1

* fix compile warnings

* fix excessive KQ_b loads

* fix cmake build

* fix KV cache padding, NaN from INFINITY (llama/6438)

* llama : flash_attn cparam + fix defrag

* server: support flash_attn param

* server: bench: enable flash_attn param

* CUDA: refactor host code, dyn. par. blocks

* fix flash_attn_vec_f16 race condition

* flush softmax exp below threshold to 0

* store temp KQ in registers

* Calculate KQ as FP32 if KQV has GGML_PREC_F32

* Add __hgt2_mask implementation for CUDA 11

* fix KQ FP32 precision fpr parallel_blocks > 1

* llama-bench : add -fa,--flash-attn arg

* metal : add BS=1 kernel for flash attention (llama/6508)

* metal : add BS=1 kernel for flash attention (wip)

* metal : support more than 1 warps

* metal : opts

* metal : opt

* metal : switch to parallel reduce

* metal : reduce registers

* metal : simplify

* metal : initial FA vec kernel

* metal : use F32 attention accumulators

* batched-bench : add fattn arg

* llama : simplify llama_build_kv_store

ggml-ci

* llama : adapt build_olmo to changes

* ggml : fix arm fp16 store on windows

* metal : clean-up

* metal : clean-up kernel code

* metal : minor

* tests : remove benchmarks

ggml-ci

* ggml : fix avx512 const correctness

ggml-ci

* ggml : fix soft_max with bias on CPU

ggml-ci

* common : print --flash-attn in help

* ggml : fix num dimensions in ggml_flash_attn_ext

* llama : force disable flash attention for incompatible models

* ggml : ggml_soft_max support F16/F32 mask/pos

ggml-ci

* cuda : uint -> uint32_t

* cuda : "constexpr dim3" -> "const dim3"

ggml-ci

* cuda : try to fix __hgt2_mask

ggml-ci

* ggml : add TODO's for F16/F32 mask/pos support in other backends

* llama : replace bool need_kq_pos with use_alibi

* llama : prep ALiBi support for BERT models

ggml-ci

* llama : fix n_batch requirements

ggml-ci

* cont

* server : add help for --flash-attn arg

* llama : disable FA for AMD

* tests : remove TMP_ATTN_BENCH

ggml-ci

* llama : support save/load state with FA enabled

ggml-ci

* ci : add CUDA save-load-state tests

ggml-ci

* llama : llama_kv_cache_clear zeroes data + fix save-load seq

ggml-ci

* llama : fix copy-paste errors, add TODO

* llama : disallow incompatible states

* llama : update llama_state_get_size after v_trans field

* metal : remove tmp log

* llama : add static reminder for llama_state_get_size

* metal : fix max nsg

ggml-ci

* ci : fix arg order

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-05-13 11:02:26 +03:00
5167ebdfca ggml : fix __MSC_VER -> _MSC_VER (llama/6977)
ggml-ci
2024-05-13 11:02:26 +03:00
b574646d75 Fix more int overflow during quant (PPL/CUDA). (llama/6563)
* Fix more int overflow during quant.

* Fix some more int overflow in softmax.

* Revert back to int64_t.
2024-05-13 11:02:26 +03:00
388c3462a6 gguf : enforce that tensor names are unique (llama/6905)
* not allow adding duplicated tensor name

* no duplicated tensor while reading gguf

* typo

* throw exception inside llama_model_loader

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-13 11:02:26 +03:00
9ad202bee9 add device version in device list (llama/6959)
Co-authored-by: arthw <>
2024-05-13 11:02:26 +03:00
f0d3fb4a7e Reset schedule earlier to allow overlap with ggml graph computation on device (llama/6933)
* Reset schedule earlier to allow overlap with graph computation on device
2024-05-13 11:02:26 +03:00
9d4c8b8aa5 add basic tensor data validation function (llama/6884)
* add basic tensor data validation function

* add --check-tensors command line argument

tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.

quantize always validates tensors.
2024-05-13 11:02:26 +03:00
ecfac1e240 gguf : fix mismatch between alloc and free functions (llama/6929) 2024-05-13 11:02:26 +03:00
6f7140f568 Merge pull request from GHSA-p5mv-gjc5-mwqv
* always use calloc

clamp n_kv on failure to read a kv

* ggml : alternative ctx->header.n_kv update

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-13 11:02:26 +03:00
05b17112cf ggml : fix redefinition of vaddvq_f32 for 32-bit ARM (llama/6906) 2024-05-13 11:02:26 +03:00
a15fb5cd79 ggml : fix MIN / MAX macros (llama/6904)
ggml-ci
2024-05-13 11:02:26 +03:00
63fd148d8f ggml : move 32-bit arm compat in ggml-impl.h (llama/6865)
ggml-ci
2024-05-13 11:02:26 +03:00
6c3971b29b llamafile : improve sgemm.cpp (llama/6796)
* llamafile : improve sgemm.cpp

- Re-enable by default
- Fix issue described in #6716
- Make code more abstract, elegant, and maintainable
- Faster handling of weirdly shaped `m` an `n` edge cases

* Address review comments

* Help clang produce fma instructions

* Address review comments
2024-05-13 11:02:26 +03:00
a6d264f331 ggml : fix calloc argument ordering. (llama/6820)
Latest gcc complains here:
/home/airlied/devel/llama.cpp/ggml-alloc.c: In function ‘ggml_gallocr_new_n’:
/home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: warning: ‘calloc’ sizes specified with ‘sizeof’ in the earlier argument and not in the later argument [-Wcalloc-transposed-args]
  374 |     ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1);
      |                                                           ^~~~~~
/home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: note: earlier argument should specify number of elements, later size of each element

and a bunch more.

calloc is specified to take nmemb first then size, so realign the code.

In a couple of places there was a * x, 1 so I fixed those to use calloc properly.
2024-05-13 11:02:26 +03:00
2959686019 ggml : fix ggml_backend_cpu_supports_op() for CPY (llama/0) 2024-05-13 11:02:26 +03:00
c96b0a938e ggml : group all experts in a single ggml_mul_mat_id (llama/6505)
* ggml : group all experts in a single ggml_mul_mat_id
cuda : improve mmid row copy

* cuda : fix bin bcast with non-cont src0

* test-backend-ops : only run all mul mat tests for base types

* llama : disable moe offloading with SYCL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 11:02:26 +03:00
c97796aa0f ggml : fix llamafile sgemm wdata offsets (llama/6710)
ggml-ci
2024-05-13 11:02:26 +03:00
7a4f7d825e ggml : add llamafile sgemm (llama/6414)
This change upstreams llamafile's cpu matrix multiplication kernels
which improve image and prompt evaluation speed. For starters, Q4_0
and Q8_0 weights should go ~40% faster on CPU. The biggest benefits
are with data types like f16 / f32, which process prompts 2x faster
thus making them faster than quantized data types for prompt evals.

This change also introduces bona fide AVX512 support since tinyBLAS
is able to exploit the larger register file. For example, on my CPU
llama.cpp llava-cli processes an image prompt at 305 tokens/second,
using the Q4_K and Q4_0 types, which has always been faster than if
we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With
this change, f16 LLaVA performance leap frogs to 464 tokens/second.

On Intel Core i9-14900K this change improves F16 prompt perf by 5x.
For example, using llama.cpp at HEAD with Mistral 7b f16 to process
a 215 token prompt will go 13 tok/sec. This change has fixes making
it go 52 tok/sec. It's mostly thanks to my vectorized outer product
kernels but also because I added support for correctly counting the
number of cores on Alderlake, so the default thread count discounts
Intel's new efficiency cores. Only Linux right now can count cores.

This work was sponsored by Mozilla who's given permission to change
the license of this code from Apache 2.0 to MIT. To read more about
what's improved, and how it works, see: https://justine.lol/matmul/
2024-05-13 11:02:26 +03:00
fdb2c87350 llama : add qwen2moe (llama/6074)
* support qwen2moe

* fix-review

* metal : support unary ops for nelements % 4 != 0

* metal : require contiguousness for float4 unary kernels

* metal : require contiguousness for float4 unary kernels (cont)

* fix-review

* names : for brevity "SHARED_EXP" -> "SHEXP"

* llama : reuse build_moe_ffn()

* llama : add model type name

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-13 11:02:26 +03:00
98c0b77e0c fix mul_mat_id() for new input, make the ut pass (llama/6682) 2024-05-13 11:02:26 +03:00
9d6d50d933 Added support for GGML_OP_CLAMP in Metal (llama/6662)
* Added support for GGML_OP_CLAMP in Metal

* Corrected size

---------

Co-authored-by: dave-fl <dave@Davids-MacBook-Pro.local>
2024-05-13 11:02:26 +03:00
c1320c1f0c fix memcpy() crash, add missed cmd in guide, fix softmax (llama/6622)
* disable mmap to fix memcpy crash, add missed cmd in guide, fix softmax

* refactor to disable mmap for SYCL backend

* fix compile error in other os

* refactor the solution, use host buf to fix it, instead of disable mmap

* keep to support mmap()

* use host buff to reduce malloc times

* revert to malloc/free solution, for threaad safe
2024-05-13 11:02:26 +03:00
66aaf03a7a CUDA: fix matrix multiplication logic for tests (llama/6667) 2024-05-13 11:02:26 +03:00
00a0947c65 metal : unify mul_mv_id kernels (llama/6556) 2024-05-13 11:02:26 +03:00
60f3713026 llama : add gguf_remove_key + remove split meta during quantize (llama/6591)
* Remove split metadata when quantize model shards

* Find metadata key by enum

* Correct loop range for gguf_remove_key and code format

* Free kv memory

---------

Co-authored-by: z5269887 <z5269887@unsw.edu.au>
2024-05-13 11:02:26 +03:00
37e6757453 feat: implemented sigmoid function (ggml/806)
* added sigmoid function

* implemented metal kernel for sigmoid

* implemented cuda kernel for sigmoid

* added sigmoid unary op and incremented count
2024-05-13 11:02:26 +03:00
8dcefdf4a9 build: fix and ignore msvc warnings (ggml/805) 2024-05-13 11:02:26 +03:00
73d13ad19a ggml : expose SSE3 and SSSE3 for MSVC when AVX is available (#2128) 2024-05-08 18:33:43 +03:00
b6680fab50 build : improve disabling AVX-512 (#2129)
* cmake : make WHISPER_NO_AVX512=ON disable all subsets of AVX-512

Previously it happened only for MSVC, but it makes sense to have the
same behavior for other compilers too.

* make : reorder x86 ISA extensions in chronological order

And update compiler flags at the end to ease modifying conditions.

* make : support WHISPER_NO_AVX512=1 for disabling all AVX-512 subsets.

That way you do not have to override each AVX-512 subset setting
individually if it has been turned on during autodetection.
2024-05-08 18:32:43 +03:00
f760756078 minor: add CMakeSettings.json to gitignore (#2094) 2024-05-08 11:03:21 +03:00
58210d6a76 examples : fix node compilation (#2115)
* node : fix compilation and update examples

* node : fix readme

* Update addon.node test
2024-05-02 22:52:55 +01:00
8fac6455ff make : change GNU make default CXX from g++ to c++ (#2100) 2024-04-28 22:54:21 +01:00
22b6598cc9 Remove unnecessary memory reallocation in fft (#2080)
fft_out needs to be twice the frame_size, not the frame_step.  It is resized in fft() anyway, but this change prevents an unnecessary reallocation.

n_fft must match the mel filter size, so it is best not to calculate it from the framesize.

We only need to get the magnitudes for half the spectrum since the other half is a mirror and not used in the mel filter loop later.
2024-04-28 18:36:12 +01:00
858452d58d models : disable old script (#2079) 2024-04-24 14:56:30 +03:00
7f85e1d7fd whisper : more prominent log message for sub-1s audio (#2065) 2024-04-24 14:46:06 +03:00
b0c3cbf2e8 main : pass nullptr when regex is empty (#2070) 2024-04-17 12:23:47 +03:00
a750868428 readme : add up-to-date repository for Python bindings (#2063)
README
2024-04-16 14:15:52 +03:00
7395c70a74 release : v1.5.5 2024-04-16 14:08:31 +03:00
9fab28135c server : add dtw (#2044)
* server.cpp: add dtw

* Update examples/server/server.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-15 22:16:58 +03:00
08d3eef97d build : fix embedded Metal library generation (#2045) 2024-04-15 20:23:05 +03:00
1b5439a6c2 node : support no timestamps (#2048)
* fix: node: do not compute timestamps if you do not need them

* feat: add no_timestamps parameter to node addon
2024-04-15 20:03:34 +03:00
c7f95b7ca2 build : detect AVX512 in Makefile, add AVX512 option in CMake (#2043)
* make : add AVX512 detection to Makefile and CMakeLists.txt

* make : autodetect more AVX512 instruction subsets

* cmake : do not default to AVX512, must be enabled explicitly

* cmake : enable a set of AVX512 subsets, when AVX512 is turned on

* make : consolidate AVX512 subsets, add AVX512 VBMI

* cmake : revert to NO AVX512 setting, add settings for AVX512 VNNI and VBMI

* make : re-introduce AVX512VNNI back

* cmake : remove superfluous comment line
2024-04-15 20:02:09 +03:00
5c554c04ff whisper.nvim : fix missing reference to "model" variable (#2049) 2024-04-15 19:41:28 +03:00
c383f091a1 whisper : update grammar-parser.cpp (#2058)
preceeding -> preceding
2024-04-15 19:40:27 +03:00
8f253ef3af sync : ggml 2024-04-09 20:27:55 +03:00
c7dc37f97c license : update copyright notice + add AUTHORS 2024-04-09 20:27:44 +03:00
526332873b llama : add Command R Plus support (llama/6491)
* Add Command R Plus GGUF

* Add Command R Plus GGUF

* Loading works up to LayerNorm2D

* Export new tensors in 1D so they are not quantized.

* Fix embedding layer based on Noeda's example

* Whitespace

* Add line

* Fix unexpected tokens on MPS. Re-add F16 fix. ((Noeda)

* dranger003: Fix block index overflow in CUDA dequantizing.

* Reverted blocked multiplication code as it still has issues and could affect other Llama arches

* export norms as f32

* fix overflow issues during quant and other cleanup

* Type convention

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* dranger003: Fix more int overflow during quant.

---------

Co-authored-by: S <seast@Ss-Mac-Studio.local>
Co-authored-by: S <s@example.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-09 20:26:18 +03:00
1d2721ca72 remove row=1 cond (llama/6532) 2024-04-09 20:26:18 +03:00
219e601dab support/fix OPs GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M (llama/6521) 2024-04-09 20:26:18 +03:00
3b8aade3c2 scripts : update sync 2024-04-09 20:25:50 +03:00
52ccd4a3a8 files : rename ./extra to ./scripts 2024-04-09 20:13:41 +03:00
5275074d37 whisper : fix DTW memory access (#2012)
* Fix DTW memory access

* Memory fix - Apply changes from denersc
2024-04-09 18:38:19 +03:00
c15b4cda7d common : fix file-handle leak in read_wav() (#2026)
Now it cleans up in case of error.
2024-04-09 18:34:34 +03:00
d3cfb6ca2b main : set stdin to binary mode on Windows (#2025) 2024-04-09 18:33:32 +03:00
956ef860bc cmake : support for CPU BLAS build via Intel MKL (#2024) 2024-04-09 18:32:46 +03:00
671b4bde6c main : allow a response-file as the sole parameter (#2019)
* The "main" example now allows a response-file as the sole parameter.

A response-file is a text file with command-line parameters, one per line.
Prefix the name of the response-file with "@" to identify it as such.
It's used under MS Windows to work around command-line length limits.
It may be useful under other platforms to simplify character-escaping.

* minor : style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-09 18:31:16 +03:00
c8eeb93a6a whisper : suppress tokens with a regex (#1997)
* Allow a regular expression to describe tokens to suppress.

Example: --suppress-tokens-re "[,\.]|[ ]?[0-9]+" will suppress commas, periods, and numeric tokens.

Technique inspired by https://github.com/openai/whisper/discussions/1041

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Blind change to fix Java test.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-09 18:27:28 +03:00
319fe5146e cmake : create solution folders (#2004)
* Create solution folders in the CMake build.

* Fixed non-SDL2 build.

* Fixed emscripten build.
2024-04-09 18:23:33 +03:00
13c22321d1 sync : ggml 2024-04-07 17:04:56 +03:00
ccbe9d5676 extra : sync grammar-parser 2024-04-07 17:04:22 +03:00
81a3c41aa0 talk-llama : sync llama.cpp 2024-04-07 16:21:08 +03:00
a50207c65d sync : ggml 2024-04-07 16:18:11 +03:00
97878e53fd sync : llama.cpp (skip)
ggml-ci
2024-04-07 16:15:57 +03:00
61b05815e0 Fixed minor bug when enabling FP16 for non intel targets (llama/6464)
* moved INTEL_MKL guard from gemm_impl to gemm (wrapper)

* Update ggml-sycl.cpp

Co-authored-by: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>

---------

Co-authored-by: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
2024-04-07 16:15:57 +03:00
1dce94cf26 ggml : mul_mat_id use the same tensor for all the experts (llama/6387)
* ggml : update mul_mat_id to use the same tensor for all the experts

* update cuda

* minor

* update metal

* update test-backend-ops

* fix cuda

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update convert.py

* update convert-hf-to-gguf.py

* update convert.py for mixtral hf models

* Update convert-hf-to-gguf.py

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* cuda : support non-pow-2 number of experts

* allow quantize to work for split and merged experts models in the same way

* cleanup + disable mmap automatically with split tensors models

* update imatrix

* test-backend-ops : test qwen argsort

* update grok model loading

* llama : add merged experts tensors to the grok tensor map

* minor

* gguf : bump version

* fix quantizing of merged experts

* convert-hf-to-gguf.py : update grok (untested)

* make linter happy

* cuda/argsort : use shared memory instead of pool memory

* convert : fix grok tensor names

* metal : add support for non-pow-2 argsort

* llama : more loader cleanup, better error checking

* cuda : fix warning

* llama : still use mmap for loading old models, but copy the data to a host buffer

* add review note

* llama : remove ffn tensor counting + add sanity check

ggml-ci

* convert : fix handling of n_experts == None

ggml-ci

* imatrix : fix ncall counters

* llama : produce error if imatrix size does not match

* quantize : terminate on errors + trace logs

ggml-ci

* metal : pad shared memory to 16 bytes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-07 16:15:57 +03:00
f12e982c0b Disable iqx on windows as WA (llama/6435)
* disable iqx on windows as WA

* array instead of global_memory
2024-04-07 16:15:57 +03:00
fa966b9b40 Vulkan k-quant mmq and ggml-backend offload functionality (llama/6155)
* Fix Vulkan no kv offload incoherence

* Add k-quant mul mat mat shaders

* Rework working buffer allocation, reduces vram use noticeably

Clean up cpu assist code, replaced with ggml-backend offload function

* Default to all dedicated GPUs

* Add fallback for integrated GPUs if no dedicated GPUs are found

* Add debug info which device is allocating memory

* Fix Intel dequant issue

Fix validation issue

* Fix Vulkan GGML_OP_GET_ROWS implementation

* Clean up merge artifacts

* Remove Vulkan warning
2024-04-07 16:15:57 +03:00
b83a9fc9d3 fix set main gpu crash (llama/6339) 2024-04-07 16:15:56 +03:00
3adbf2fb03 ggml : fix bounds checking of zero size views (llama/6347) 2024-04-07 16:15:56 +03:00
700d146127 backend : fix typo in scheduler documentation (ggml/781)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-07 16:15:56 +03:00
a74fde9b4c extra : sync ggml-cuda folder 2024-04-07 16:10:44 +03:00
1d7657f409 ggml: bypass code incompatible with CUDA < 11.1 (#2020)
`cudaHostRegisterReadOnly` parameter was only introduced in CUDA 11.1

See this issue for more details:
https://github.com/ggerganov/whisper.cpp/issues/2007
2024-04-04 14:49:24 +02:00
ac283dbce7 ci : add building in MSYS2 environments (Windows) (#1994) 2024-03-30 09:20:20 +02:00
1e8f28c42a build : use pkg-config for OpenBLAS (#1778)
* make : use pkg-config for finding CFLAGS & LDFLAGS needed by OpenBLAS

That way building on *nix like environments (including MSYS2 on Windows)
with WHISPER_OPENBLAS=1 works out of the box.

Fix handling of WHISPER_OPENBLAS, so that empty value or 0 won't be
misinterpreted by make as enabled.  Mind that it's not intended to
detect CMake false constants (OFF NO FALSE N).  make is not CMake.

By default OpenBLAS with 64-bit interface is used, but that can be
changed with `WHISPER_OPENBLAS_INTERFACE64=0` if 32-bit one is desired.

If OpenBLAS headers and library are respectively in include/ and lib/
subdirectories of given path, then you can specify it, e.g.
`OPENBLAS_PATH=/usr/local/openblas`, and this will take precedence over
any pkg-config file.

If there is no pkg-config file (.pc) for OpenBLAS and OPENBLAS_PATH is
empty, then headers are assumed to be in /usr/include/openblas and
library as assumed to be called 'openblas64' (or 'openblas' if
`WHISPER_OPENBLAS_INTERFACE64=0`).  If different headers location should
be used, then it can be done, e.g.
`WHISPER_BLAS_CFLAGS=-I/usr/local/include/openblas`.
If different library should be used, it can be specified, e.g.
`WHISPER_BLAS_LIB=openblasp64` (pthreads version as seen on Fedora), or
you can provide LDFLAGS needed to link with OpenBLAS directly:
`WHISPER_BLAS_LDFLAGS="-L/usr/local/lib/openblas -lopenblas64"`.

Current solution is flexible enough to handle most cases out there
without needlessly hardcoding possible OpenBLAS installation details.

* cmake : fix how pkg-config is used for finding include dirs and libraries needed by OpenBLAS

That way building on *nix like environments (including MSYS2 on Windows)
with -DWHISPER_OPENBLAS=ON should work out of the box as long as you
have CMake 3.25 or newer.

Make OPENBLAS_PATH environment variable supported not only on Windows.
It sets OpenBLAS include dir to ${OPENBLAS_PATH}/include and library to
${WHISPER_BLAS_LIB} (name without prefixes and suffixes) in
${OPENBLAS_PATH}/lib and avoids further package finding.

By default OpenBLAS with 64-bit interface is used (equivalent to setting
`-DWHISPER_BLAS_LIB=openblas64`), but that can be changed with
`-DWHISPER_OPENBLAS_INTERFACE64=OFF` (equivalent to setting
`-DWHISPER_BLAS_LIB=openblas`) if 32-bit one is desired.

Turn on BLA_STATIC for FindBLAS only when WHISPER_STATIC is enabled.
BLA_STATIC may not work as expected for pkg-config based operation.

Get rid of supporting BLAS_HOME environment variable.  If OPENBLAS_PATH
is insufficient in your case, there is no pkg-config file to rely on,
then you can manually specify include dir, e.g.
`-DBLAS_INCLUDE_DIRS=/usr/local/include/openblas`, and library, e.g.
`-DBLAS_LIBRARIES=/usr/local/lib/libopenblas.so`.

* make / cmake : use OpenBLAS with 32-bit interface by default.

OpenBLAS w/o INTERFACE64=1 vel USE_64BITINT=1 seems to be more common.

* cmake : hardcode "lib" prefix for OpenBLAS lib filename (even on Windows)

* cmake : hardcode OpenBLAS library name when building in MSVC (Windows)

Most *nix like environments (including MSYS2 on Windows) have OpenBLAS
packages that allow coexistence of OpenBLAS builds with 32-bit and
64-bit interface (w/o and w/ OPENBLAS_USE64BITINT defined) and they
differ by not having or having "64" suffix in their library filenames.
That's not the case for OpenBLAS prebuilt libraries for Windows.
2024-03-29 15:53:26 +02:00
fc366b807a main : add command-style grammar (#1998)
* Implemented command-style grammar in the main example.

Mostly just copied the relevant parts from the command example.

* main : code style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-28 12:02:10 +02:00
9fb308d90f make : add grammar parser to common objects 2024-03-28 11:59:48 +02:00
2948c740a2 sync : ggml (#2001)
* sync : update scripts

* sync : ggml

* talk-llama : sync llama.cpp

* make : WHISPER_CUBLAS -> WHISPER_CUDA

* ci : try to fix sycl build

* talk-llama : fix make build
2024-03-27 18:55:10 +02:00
1558ec5a16 whisper : improve handling of prompts (#1981)
* whisper : improve handling of prompts

* whisper : add whisper_token_count helper
2024-03-25 14:48:19 +02:00
fff24a0148 whisper : improve support for distil-large-v3 (#1982) 2024-03-21 18:53:30 +02:00
48a145207e ruby : fix build (#1980) 2024-03-21 07:40:09 +02:00
79d5765e7e docker : libcuda.so.1 in PATH (#1966) 2024-03-20 18:45:15 +02:00
04e48094e4 readme : add Fedora dependencies (#1970)
* README.md

fix documentaion and added fedora liunx dependencies for stream build

* fix documentaion and added fedora liunx dependencies for command build

* fix documentaion and added fedora liunx dependencies for talk build

* fix documentaion and added fedora liunx dependencies for talk-llama build

* reverted back mistakenly removed MacOS documentaion
2024-03-20 18:42:11 +02:00
741abb162c whisper : token-level timestamps with DTW (#1485)
* whisper.cpp: impl dtw algo

* WIP: producing and placing DTW timestamps on tokens

* Fix compile and assertion errors. Attempt to DTW timestamp with single_segment=false.

* Fix mistake causing incorrect alignment of dtw timestamps

* implement N_TOP_MOST and CUSTOM alignment heads setting

* whisper: fix typo on alignment heads enum

* Fix issues related to changes in whisper.cpp

* Fixed excessive memory use when using DTW timestamps. Other minor fixes to DTW timestamping function

* decoder: save cross QKs only if requested

* Calling median filter with ggml_map_custom1

* Reimpl aheads n_top_most and custom. Sanity checks on chosen aheads

* Copying cross QKs from decoder backend correctly

* dtw: cleanup

* Fix incorrect n_frames passed to dtw when near end of audio

* Fix aheads_masks_init for backend != CPU

* whisper : minor style

* main : add dtw (wip)

* whisper: fix invalid memory access in aheads_masks_init

* main : add dtw (cont)

* whisper : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-20 18:25:26 +02:00
e7794a868f examples : rename --audio-context to --audio-ctx per help text (#1953) 2024-03-18 17:53:33 +02:00
725350d4ea whisper : set outputs from conv graph (#1959) 2024-03-16 17:30:55 +02:00
906c73b219 alloc : fix allocation data of pre-allocated leafs 2024-03-16 17:15:45 +02:00
00d80ff965 cmake : copy ggml-common.h to bin 2024-03-16 17:15:44 +02:00
1b553b9817 gitignore : .vimspector.json 2024-03-16 16:26:35 +02:00
de4d067f1e talk-llama : sync llama.cpp 2024-03-15 14:21:59 +02:00
e715f6a601 sync : ggml 2024-03-15 14:12:19 +02:00
f60ccfd83b update examples and tests 2024-03-15 14:01:14 +02:00
3753a2b2a8 ggml : add ggml-common.h 2024-03-15 14:01:14 +02:00
592dd25615 ggml : designate enum vals for integer types (llama/6050) 2024-03-15 14:01:14 +02:00
c8709d4604 metal : build metallib + fix embed path (llama/6015)
* metal : build metallib + fix embed path

ggml-ci

* metal : fix embed build + update library load logic

ggml-ci

* metal : fix embeded library build

ggml-ci

* ci : fix iOS builds to use embedded library
2024-03-15 14:01:14 +02:00
8932c2d6ce llama : add pipeline parallelism support (llama/6017)
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs

ggml-ci

* server : add -ub, --ubatch-size parameter

* fix server embedding test

* llama : fix Mamba inference for pipeline parallelism

Tested to work correctly with both `main` and `parallel` examples.

* llama : limit max batch size to n_batch

* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)

changing this value may improve performance for some systems, but increases memory usage

* fix hip build

* fix sycl build (disable cpy_tensor_async)

* fix hip build

* llama : limit n_batch and n_ubatch to n_ctx during context creation

* llama : fix norm backend

* batched-bench : sync after decode

* swiftui : sync after decode

* ggml : allow ggml_get_rows to use multiple threads if they are available

* check n_ubatch >= n_tokens with non-casual attention

* llama : do not limit n_batch to n_ctx with non-casual attn

* server : construct batch with size of llama_n_batch

* ggml_backend_cpu_graph_compute : fix return value when alloc fails

* llama : better n_batch and n_ubatch comment

* fix merge

* small fix

* reduce default n_batch to 2048

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-15 14:01:13 +02:00
2bddfdd7c8 Update get version (llama/6025) 2024-03-15 14:01:13 +02:00
46e3c3f112 ggml : reuse quantum structs across backends (llama/5943)
* ggml : reuse quant blocks across backends

ggml-ci

* ggml : define helper constants only for CUDA and SYCL

ggml-ci

* ggml : define helper quantum constants for SYCL

ggml-ci
2024-03-15 14:01:13 +02:00
ef24ae0c7d ggml : fix UB in IQ2_S and IQ3_S (llama/6012) 2024-03-15 14:01:13 +02:00
a753926f02 sycl : update IQ1_S kernels (WIP - not working!) (llama/5995)
* sycl : try to fix after IQ1_S changes

* sycl : iq1s_grid -> iq1s_grid_gpu

* sycl : fix grid type
2024-03-15 14:01:13 +02:00
9dc60fc02d 1.5 bit: we can do even better (llama/5999)
* iq1_s: we can do even better

Spent one of the 4 scale bits on a signs of a 0.125 shift.
I.e., quants are now -1 + delta, delta, 1 + delta, where delta
is +/- 0.125.

CUDA works, same performance as before.
PPL(LLaMA-v2-7B) is now 11.85!

* iq1_s: make scalar and AVX2 work with the new version

* iq1_s: make Neon work with new version.

~10% drop in performance, so will need some more work.

* iq1_s: make Metal work with new version

* iq1_s: very slightly faster dequantize on Metal

* iq1_s: fix dequantize on the CPU

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-15 14:01:13 +02:00
d73a63629e ggml, ci : Windows ARM runner and build fixes (llama/5979)
* windows arm ci

* fix `error C2078: too many initializers` with ggml_vld1q_u32 macro for MSVC ARM64

* fix `warning C4146: unary minus operator applied to unsigned type, result still unsigned`

* fix `error C2065: '__fp16': undeclared identifier`
2024-03-15 14:01:13 +02:00
f79d0d4f74 Better 1.5 bit quantization (llama/5971)
* Trying blocvks of 16 for IQ1_S - seems slightly better

* iq1s_blocks16: Adjust scale fudge factor to 1.125

* iq1s_blocks16: going to blocks of 32

with 2048 lattice points, so same bpw.
This is even better than blocks of 16.
Should I try blocks of 64? But to keep the same
bpw, when I go to 4096 lattice points, I need to
remove blocks alltogether and just have superblocks of
256 weights.

* iq1s_blocks16: Use 2*<x^2> as sigma2 in weight adjustment

* iq1s_blocks16: scalar and AVX2 dot products

* iq1s_blocks16: CUDA dot product

* iq1s_blocks16: Metal works, Neon does not

Metal works but TG is dog slow (35 t/s). PP is OKish (493 t/s).
Not seeing the bug in the Neon implementation for now.

* iq1s_blocks16: fixed Neon

* iq1s_blocks16: very slightly faster TG on Metal

Still pathetic at 37 t/s

* iq1s_blocks16: speedup Metal by packing codebook into uint32_t's

* Formatting

* iq1s_blocks16: uint32_t codebook is also better in CUDA

TG-128 is now 204 t/s up from 194 t/s.
PP-512 is 5890 t/s, so significantly better than other quants

* iq1s_blocks16: slightly faster Neon dot product

* iq1s_blocks16: faster AVX2 dot product

* iq1s_blocks16: adjust to ggml-common.h

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-15 14:01:12 +02:00
4f88940ff6 Add q3_s and q1_s (llama/5886)
* Add q3_s and q1_s

* fix compilation

* fix build

* fix build

* fix build

* enable ops

* rm macro

* increase grid space
2024-03-15 14:01:12 +02:00
7bdb1de9ec metal : move mm_id indices to shared mem (llama/5982) 2024-03-15 14:01:12 +02:00
653d2e8ff9 ggml : fix unnecessary f32 -> f16 -> f32 casts (mmla) (llama/5951) 2024-03-15 14:01:12 +02:00
2fef660d0a ggml : remove old quantization functions (llama/5942)
* ggml : remove old quantization functions

ggml-ci

* ggml : simplify ggml_quantize_chunk

ggml-ci

* ggml : restrict correctness

ggml-ci

* ggml : remove hist data from the quantization API

ggml-ci

* tests : remove hist usage in test-backend-ops

ggml-ci

* vulkan : remove hist and fix typo
2024-03-15 14:01:12 +02:00
24eba5a2ff ggml : add ggml-common.h to deduplicate shared code (llama/5940)
* ggml : add ggml-common.h to shared code

ggml-ci

* scripts : update sync scripts

* sycl : reuse quantum tables

ggml-ci

* ggml : minor

* ggml : minor

* sycl : try to fix build
2024-03-15 14:01:12 +02:00
6e9d3aa32d llama : support Mamba Selective State Space Models (llama/5328)
* mamba : begin working on support for Mamba SSM

* mamba : begin figuring out how to (ab)use the kv cache for Mamba

* mamba : recurrent inference almost works, but incoherent

* mamba : recurrent inference WORKS!!!

* convert : optionally use d_conv and d_state from config.json for Mamba

* mamba : refactor recurrent conv, resulting in 20% perf increase

It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.

I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.

* ggml : parallelize ggml_exp

This results in 8% faster token generation for Mamba-130M.

* mamba : simplify the conv step with a self-overlapping view

Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.

Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.

Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).

* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32

Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.

* mamba : fix self-overlapping view depth stride

* mamba : handle batches of more than 1 token

This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.

Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.

* ggml: add ggml_ssm_scan to help with parallel selective scan

If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.

* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation

This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.

* mamba : very basic quantization support

Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)

Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.

Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.

* convert : fix wrong name for layer norm weight of offical Mamba models

I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")

* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator

This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.

However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.

* convert : for Mamba, also consider the "MambaLMHeadModel" arch name

It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json

* mamba : fix vocab size problems with official models

The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.

Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.

* ggml : remove ggml_exp and ggml_soft_plus

They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.

* mamba : remove some useless comments

No code change.

* convert : fix flake8 linter errors

* mamba : apply suggestions from code review

* mamba : remove unecessary branch for row-wise ssm_state and C multiplication

It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.

* ggml : in ggml_ssm_scan, use more appropriate asserts

* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32

* mamba : multiple sequences, but one at a time

This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).

The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)

Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.

* mamba : support llama_kv_cache_seq_cp

This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.

Each KV cell is dedicated to the sequence ID corresponding to its own index.

* mamba : use a state mask

It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.

inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).

* llama : replace the usage of n_ctx with kv_self.size in many places

* mamba : use n_tokens directly instead of n_tok

* mamba : in comments, properly refer to KV cells instead of slots

* mamba : reduce memory usage of ggml_ssm_scan

From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.

The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.

* mamba : simultaneous sequence processing

A batch can now contain tokens from multiple sequences.

This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.

However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.

* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba

This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).

Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.

Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.

* llama : add inp_s_seq as a new input tensor

The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.

The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.

Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).

* mamba : support llama_kv_cache_seq_cp copy chains

* mamba : support shifting and dividing the kv cache pos

* mamba : make the server and parallel examples work with whole sequences

A seq_id is dedicated to the system prompt in both cases.

* llama : make llama_kv_cache_seq_rm return whether it succeeded or not

* mamba : dedicate an input tensor for state copy indices

This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.

* mamba : adapt perplexity, batched, and batched-bench examples

* perplexity : limit the max number of sequences

This adapts to what the loaded model can provide.

* llama : add llama_n_max_seq to get the upper limit for seq_ids

Used by the perplexity example.

* batched : pass n_parallel to the model's context params

This should have been there already, but it wasn't.

* batched-bench : reserve sequences to support Mamba

* batched-bench : fix tokens being put in wrong sequences

Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.

* mamba : stop abusing attention metadata

This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.

This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
 will not require breaking existing converted Mamba models again)

* gguf-py : add new KV metadata key-value pairs for Mamba

* llama : add new metadata key-value pairs for Mamba

* llama : guard against divisions by zero when n_head is 0

* mamba : rename "unlimited" KV cache property to "recurrent"

* mamba : more correctly update the "used" field of the KV cache

* ggml : in ggml_ssm_scan, use a threshold for soft_plus

This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.

* convert : for Mamba, fallback to internal NeoX tokenizer

The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.

* mamba : support state saving and restoring

* ggml : implicitly pass src tensors through dst for Mamba-related ops

* mamba : clarify some comments

* server : fix cache_tokens not getting correctly resized

Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.

For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.

* convert-hf : support new metadata keys for Mamba

For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406

* mamba : rename metadata to be more similar to transformers library

This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".

* mamba : support mamba-*-hf models

These models share their token_embd.weight with their output.weight

* mamba : add missing spaces

This is purely a formatting change.

* convert-hf : omit output.weight when identical with token_embd.weight

Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.

* readme : add Mamba to supported models, and add recent API changes

* mamba : move state_seq and state_mask views outside layer loop

A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-15 14:01:12 +02:00
9ae0d18856 extra : update sync scripts after ggml-common.h 2024-03-15 14:00:53 +02:00
a56f435fd4 whisper : document whisper_batch.n_seq_id (#1942)
To prevent other people from attempting to remove it, as I did.
2024-03-10 16:55:22 +02:00
ec166499d8 whisper : improve beam search candidate diversity (#1947)
As of #1486, whisper.cpp uses a unified KV cache with KQ masking.
As a result, depending on their location in the batch,
identical sequences in a batch can have slightly different outputs
due to floating point rounding errors during reduction.
See the discussion in #1941 for more details.

The beam search code used "has identical sum of log probabilities"
as a shorthand for "is an identical token sequence". However, per above,
identical tokens do not necessarily result in identical probabilities.

Instead, explicitly compare on sequences.
This is linear in cost when they are identical,
but the lengths are always small and the comparisons are cheap.

This increases diversity during beam search.

This improves output quality for some short samples I've been working
with, at no detectable performance cost.
I haven't checked against larger corpuses.

Fixes #1941
2024-03-10 16:54:43 +02:00
ccf022f970 bindings/go : add linker flags to make metal work (#1944)
The first two are required to build.
The last one is to make it actually detect the GPU.

Fixes #1899, at least for me
2024-03-09 18:50:44 +02:00
2852e1af55 whisper : make beam candidate sort more stable (#1943)
All else being otherwise equal, this encourages the beam candidate
selection to re-use the same decoder, which slightly
reduces the cache size.

I wouldn't expect it to make much of a performance difference,
but it helps when debug printing the cache and beam.

Added as part of understanding #1941.
2024-03-09 18:50:03 +02:00
ce945b50c3 ggml : try fix 32-bit arm compat (#1938)
* ggml : try fix 32-bit arm compat

* ggml : fix cont
2024-03-08 23:45:07 +02:00
2f5a5a66dd talk-llama : use llama_decode instead of llama_eval 2024-03-08 12:04:43 +02:00
8e409d1113 talk-llama : sync llama.cpp 2024-03-08 11:55:50 +02:00
05d1b61af4 talk-llama : sync llama.cpp 2024-03-08 11:52:47 +02:00
647cae178a sync : ggml 2024-03-08 11:39:34 +02:00
bae7c23fbf Revert "[SYCL] fix error when set main gpu to non-zero (llama/5901)" (llama/5918)
This reverts commit ceca1aef0738b57951cd12c603c3477e75312dec.
2024-03-08 11:38:33 +02:00
18ea187d42 fix error when set main gpu to non-zero (llama/5901)
* fix error when set main gpu to non-zero

* fix delete condition
2024-03-08 11:38:33 +02:00
1daeffca54 ggml : use SYS_get_cpu if SYS_getcpu is not defined (llama/5906)
Fixes #5694
Fixes ggerganov/whisper.cpp#1894
2024-03-08 11:38:33 +02:00
2f6f1d4465 ggml : use uint8x16_t return type for ggml_vqtbl1q_u8 (llama/5894)
* use uint8x16_t

* Update ggml-quants.c
2024-03-08 11:38:33 +02:00
7ff1894c34 add wait() to make code stable (llama/5895) 2024-03-08 11:38:33 +02:00
8edfc54c2b quants : use MM256_SET_M128I consistently to fix gcc 7 build (llama/5889) 2024-03-08 11:38:33 +02:00
9c399689ec Vulkan Improvements (llama/5835)
* Improve dequant shaders, add fast q4_0 dequant

* Optimize dmmv non-kquants for GCN

Remove unnecessary SPIR-V shader duplication

* Fix q4_0 dequant dispatch sizes

Fix backend free bug

* Optimize dequant shaders for q4_1, q5_0, q5_1 and q8_0

* Add unary and binary op shader templates

* Fix Vulkan check results

* Enable non-contiguous support for simple ops

* Add argsort

Basic q4_0 mmq shader and unit test

* Speed up q4_0 dequant code, enable mmq for q4_0

* Rework matmul pipeline selection

* Add soft_max alibi support

* Add q4_1, q5_0, q5_1 and q8_0 dequant mat mat mul shaders

* Add environment variable GGML_VK_FORCE_MAX_ALLOCATION_SIZE to limit max buffer size

Rename GGML_VULKAN_DISABLE_F16 to GGML_VK_DISABLE_F16 for consistency
2024-03-08 11:38:33 +02:00
9d9a405cfd fix mul_mat fault in CI/unit-test (llama/5862)
* fix mul_mat fault in cpy_f32_f16

* rm unused function

* add wait() for memcpy

* restore ci/run.sh, rename struct defination, fix bug in ggml_sycl_op_mul_mat_sycl

* fix format issue

* llama : fix segfault from unknown model arch name (llama/5820)

* llama : fix segfault from unknown model arch name

* llama : make all LLM maps const

This also requires using `std::map::at` instead of its `operator[]`
which does not exist for const maps.

* llama : name LLM_ARCH_UNKNOWN to "(unknown)"

This avoids errors from `std::map::at` when
getting the general name of the model architecture.
Using "(unknown)" instead of an empty string as per suggestion
https://github.com/ggerganov/llama.cpp/pull/5820#issuecomment-1973735284

* llama : remove redundant inner const for LLM_TENSOR_NAMES

The extra const won't do anything here as const maps
return const references to values.

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* llama : remove redundant nullptr check in llm_arch_from_string

Since LLM_ARCH_NAMES is a const map, no spurious elements
with a NULL name are inserted anymore, so this check is dead code.

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* llama : refactor internal quantization functions (llama/5830)

* scripts : add pod-llama.sh

* ggml : IQ3_S improvements (llama/5829)

* iq3_s: somewhat faster AVX2 dot product

On Ryzen a 7950X TG-128 increases to 16 t/s from 15.5 t/s using
16 threads. For 8 threads it is 13.85 t/s vs 11.75 t/s.
PP-512 increases to 28.5 t/s from 23.8 t/s.

* iq3_s: somewhat faster ARM_NEON dot product

Still dog slow - 10.7 t/s up from 9.9 t/s.

* iq3_s: another small ARM_NEON improvement

10.7 -> 11.0 t/s. Using vmulq_s8 is faster than the xor - sub trick
that works best on AVX2.

* iq3_s: minor improvement on Metal

49.4 t/s -> 50.3 t/s

* iq3_s: PPL improvement

E.g., for a context of 4096 LLaMA-v2-7B goes to 5.1340 from 5.1653.

* iq3_s: use new grid everywhere

* Fix ARM_NEON

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>

* convert-hf : make model class definitions self-contained (llama/5825)

* convert : automatically fall back to HfVocab if tokenizer.model doesn't exist (llama/5821)

* ggml : fix IQ3_S AVX implementation (llama/5834)

ggml-ci

* llama : add abort_callback to interrupt computation (llama/5409)

* using abort_callback from ggml to stop llama computation

* format fix

* a brief explaining comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server: tests: passkey challenge /  self-extend with context shift demo (llama/5832)

* server: tests: add models endpoint scenario

* server: /v1/models add some metadata

* server: tests: add debug field in context before scenario

* server: tests: download model from HF, add batch size

* server: tests: add passkey test

* server: tests: add group attention params

* server: do not truncate prompt tokens if self-extend through group attention is enabled

* server: logs: do not truncate log values

* server: tests - passkey - first good working value of nga

* server: tests: fix server timeout

* server: tests: fix passkey, add doc, fix regex content matching, fix timeout

* server: tests: fix regex content matching

* server: tests: schedule slow tests on master

* server: metrics: fix when no prompt processed

* server: tests: self-extend add llama-2-7B and Mixtral-8x7B-v0.1

* server: tests: increase timeout for completion

* server: tests: keep only the PHI-2 test

* server: tests: passkey add a negative test

* flake.lock: Update (llama/5842)

Flake lock file updates:

• Updated input 'flake-parts':
    'github:hercules-ci/flake-parts/b253292d9c0a5ead9bc98c4e9a26c6312e27d69f' (2024-02-01)
  → 'github:hercules-ci/flake-parts/f7b3c975cf067e56e7cda6cb098ebe3fb4d74ca2' (2024-03-01)
• Updated input 'flake-parts/nixpkgs-lib':
    'github:NixOS/nixpkgs/97b17f32362e475016f942bbdfda4a4a72a8a652?dir=lib' (2024-01-29)
  → 'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8?dir=lib' (2024-02-29)
• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/cbc4211f0afffe6dfd2478a62615dd5175a13f9a' (2024-02-23)
  → 'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8' (2024-02-29)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* server : init http requests thread pool with --parallel if set (llama/5836)

* ci : schedule slow server tests only on Release or on demand (llama/5839)

* llama : fix llama_copy_state_data with fragmented KV cache (llama/5840)

The row size of the saved states was based on kv_self.head while
it should be based on llama_kv_cache_cell_max.

Existing session files should still work.

* llama : fix llama_kv_cache_cell_max inability to return 1

I've also changed its return type to uint32_t,
because this function is always used to set the value of uint32_t variables,
and because the index already has this type.

* llama : fix state size calculation

Some bytes in the state were unaccounted for in llama_get_state_size.
Since the logits reserve so much space, it did not cause problems.

* gguf-dump : support i-quants (llama/5841)

Co-authored-by: Black_Fox <radekliska@gmail.com>

* llama : allow for user specified embedding pooling type (llama/5849)

* allow for user specified pooling type

* llama : use enum types over int

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* readme : add API changes section

* cuda : fix data race in soft max (llama/5853)

* main : support special tokens as reverse/anti prompt (llama/5847)

* Support special tokens as reverse/anti prompt.

* Tokenize antiprompts only once.

* main : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* common : use LLAMA_DEFAULT_SEED (llama/5855)

* add some new ops, fix some operators and add batch operations to certain operators. (ggml/747)

* cuda: fix group_norm

* cuda: add batch inference support for ggml_pad/ggml_upscale

* add ggml_arrange

* add ggml_timestep_embedding

* update ggml_arange/ggml_timestep_embedding tests

* cuda: fix im2col

* add ggml_arange/ggml_timestep_embbeding support for metal backend

* fix some bugs

* fix some bugs

* Update ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* modify according to the review comments

* ggml : fix compile warnings + code style

* ggml : normalize compute_forward calls + fix seg fault in debug

* minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>

* sync : ggml

* add alias for chat template (llama/5858)

* speculative : implement stochastic speculative sampling (llama/5625)

* (WIP) Implement stochastic speculative decoding

* sample from residual distribution on draft accept failure

* fix #5657: force greedy sampling with probs when temp is 0

* remove p_accept parameter

* fix style

* remove unused variables

* add srand() in speculative.cpp

* replace use of rand() with mt19937 sampling

* fixes based on review (@JohannesGaessler)

* fix r random generation

* randomly select next sequence to verify + fix bug in memory freeing

* fix bug in active_seqs sync

* fix uniform int distribution initialization

* remove warnings from comparison between int and size_t

* check grammar in `llama_sample_probability_distribution_impl`

* remove malloc code by utilizing vectors

* add PR link to README

* cmake : handle cases where git index is not found in .git (llama/5844)

* Update CMakeLists.txt

* Update CMakeLists.txt

* ggml : introduce ggml_status (ggml/750)

* using enum as an exit code instead of macros

* update return type from enum to unsigned int

* indentation fix

* compound update
ggml_compute_exit_code -> ggml_status
changed ggml_status from a bit-field type to simple codes
ggml_status to string cast

* ggml_status to string cast

* GGML_CALL was removed

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* sync : ggml

ggml-ci

* ggml : fix unknown status (llama/0)

* flake : fix

* llama : fix embeddings (llama/5796)

* llama : fix embeddings

ggml-ci

* llama : do not use KV cache for non-causal models

ggml-ci

* embeddings : fix llama_batch_init arg

* llama : add pooling switch

* llama : distinguish token vs sequence embeddings

ggml-ci

* llama : assert pooling tensor

* llama : simplify causal mask condition

ggml-ci

* llama : assert input batch with pooling enabled

* readme : update API changes list

* nix: static build (llama/5814)

* fix speculative decoding build on windows (llama/5874)

* rebase and rm tailing space

---------

Co-authored-by: LiangtaoJin <liang-tao.jin@intel.com>
Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Michael Podvitskiy <podvitskiymichael@gmail.com>
Co-authored-by: Pierrick Hymbert <pierrick.hymbert@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Nindaleth <Nindaleth@users.noreply.github.com>
Co-authored-by: Black_Fox <radekliska@gmail.com>
Co-authored-by: Douglas Hanley <thesecretaryofwar@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: DAN™ <dranger003@gmail.com>
Co-authored-by: leejet <leejet714@gmail.com>
Co-authored-by: Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
Co-authored-by: Dane Madsen <dane_madsen@hotmail.com>
Co-authored-by: hutli <6594598+hutli@users.noreply.github.com>
Co-authored-by: Jeffrey Quesnelle <emozilla@nousresearch.com>
2024-03-08 11:38:32 +02:00
edd8b38a75 ggml : fix unknown status (llama/0) 2024-03-08 11:38:32 +02:00
ed76818700 whisper : fix compute helper return (ggml/750) 2024-03-08 11:38:32 +02:00
9a0b59d990 ggml : introduce ggml_status (ggml/750)
* using enum as an exit code instead of macros

* update return type from enum to unsigned int

* indentation fix

* compound update
ggml_compute_exit_code -> ggml_status
changed ggml_status from a bit-field type to simple codes
ggml_status to string cast

* ggml_status to string cast

* GGML_CALL was removed

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-08 11:38:32 +02:00
93a84a143b cuda : fix data race in soft max (llama/5853) 2024-03-08 11:38:32 +02:00
bd26876267 ggml : fix IQ3_S AVX implementation (llama/5834)
ggml-ci
2024-03-08 11:38:32 +02:00
21d295180d ggml : IQ3_S improvements (llama/5829)
* iq3_s: somewhat faster AVX2 dot product

On Ryzen a 7950X TG-128 increases to 16 t/s from 15.5 t/s using
16 threads. For 8 threads it is 13.85 t/s vs 11.75 t/s.
PP-512 increases to 28.5 t/s from 23.8 t/s.

* iq3_s: somewhat faster ARM_NEON dot product

Still dog slow - 10.7 t/s up from 9.9 t/s.

* iq3_s: another small ARM_NEON improvement

10.7 -> 11.0 t/s. Using vmulq_s8 is faster than the xor - sub trick
that works best on AVX2.

* iq3_s: minor improvement on Metal

49.4 t/s -> 50.3 t/s

* iq3_s: PPL improvement

E.g., for a context of 4096 LLaMA-v2-7B goes to 5.1340 from 5.1653.

* iq3_s: use new grid everywhere

* Fix ARM_NEON

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-08 11:38:32 +02:00
c3bfc9bfda Support multiple GPUs (split mode) on SYCL backend (llama/5806)
* suport multiple cards: split-mode - layer|row

* rm warning

* rebase with master, support tow new OPs, close feature for -sm=row, fix for unit test

* update news

* fix merge error

* update according to review comments
2024-03-08 11:38:32 +02:00
422a6b16fc ggml-vulkan: fix VULKAN_CHECK_RESULTS flag, which was previously broken (llama/5813) 2024-03-08 11:38:32 +02:00
11dd0d4482 Use batched mul_mat pathway (llama/5591)
* Use batched mul_mat pathway

* rm extra line

* Explicitly state scaled data type

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-03-08 11:38:31 +02:00
Eve
26dd2f06ac make portability_enumeration_ext apple only (llama/5757) 2024-03-08 11:38:31 +02:00
8cee7c08b6 add some new ops, fix some operators and add batch operations to certain operators. (ggml/747)
* cuda: fix group_norm

* cuda: add batch inference support for ggml_pad/ggml_upscale

* add ggml_arrange

* add ggml_timestep_embedding

* update ggml_arange/ggml_timestep_embedding tests

* cuda: fix im2col

* add ggml_arange/ggml_timestep_embbeding support for metal backend

* fix some bugs

* fix some bugs

* Update ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* modify according to the review comments

* ggml : fix compile warnings + code style

* ggml : normalize compute_forward calls + fix seg fault in debug

* minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-03-08 11:38:31 +02:00
2e2626b167 examples : Auto lowercase language parameter in main.cpp (#1928)
* Auto lowercase language parameter

* Update examples/main/main.cpp

Co-authored-by: bobqianic <129547291+bobqianic@users.noreply.github.com>

---------

Co-authored-by: bobqianic <129547291+bobqianic@users.noreply.github.com>
2024-03-06 22:25:10 +00:00
c0c0ae2dea examples : fix typo in bench.cpp (#1933) 2024-03-06 22:21:44 +00:00
897412b5b6 whisper : fix typo (#1925) 2024-03-05 17:06:31 +02:00
f22d27a385 whisper.android.java : fix returns in JNI (#1929) 2024-03-05 15:59:26 +02:00
ccd7c1d2da cmake : add library versioning (#1352)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-04 21:17:48 +02:00
c713eb5e2a readme : recommend MacOS Sonoma for Core ML (#1917) 2024-03-04 21:16:13 +02:00
25d313b38b talk-llama : sync llama.cpp 2024-02-28 13:04:05 +02:00
3168dbf23b sync : ggml 2024-02-28 13:01:33 +02:00
1711bb3881 sync : llama.cpp (ggml/0) 2024-02-28 13:00:30 +02:00
2533305596 ggml : make i-quants work with super-blocks of 64 (CPU,Metal) (llama/5760)
* WIP: make i-quants work for QK_K = 64

* iq2_xs: attempt to fix AVX dot product for QK_K = 64

Tests pass, but I get gibberish.

* QK_K = 64 tests pass on ARM_NEON and Metal

Sadly, that does not mean it actually works.

* Make CUDA compile with QK_K = 64

Tests don't pass, plus we get misaligned access

* Q2_K: fixed bug in imatrix quantization for QK_K = 64

* iq1_s: turn off SIMD implementation for QK_K = 64 (it does not work)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-28 13:00:30 +02:00
0eca512ac8 Attempt to fix android build (llama/5752)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-28 13:00:30 +02:00
013e394a4b IQ4_XS: a 4.25 bpw quantization (llama/5747)
* Try IQ4_NL with blocks of 64 - does not look good

* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32

* iq4_xs: CUDA works - 133.2 t/s

* iq4_xs: AVX2 dot product

* iq4_xs: ARM_NEON dot product

* iq4_nl: Metal implementation

As usual, Metal / Apple Silicon don't like my quants.

* iq3_xs: minor fix

* iq4_xs: shrink by using IQ3_S for attn_k and attn_q

* iq4_xs: revert using IQ3_S for attn_k and attn_v

PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.

* Fix CI

* iq4_xs: Added forgotten check for 256 divisibility

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-28 13:00:29 +02:00
d83f371b5f cuda : replace remaining shfl_xor with calls to warp_reduce functions (llama/5744) 2024-02-28 13:00:29 +02:00
1c71816eab ggml-quants : fix avx2 iq1_s vec_dot when compiled with gcc (llama/5742) 2024-02-28 13:00:29 +02:00
7b1d8ea7e0 Adding IQ2_S and IQ2_M to complete coverage of the 2-3 bit quantization range (llama/5721)
* Adding IQ2_S and IQ2_M as a single cumulative commit

* Update examples/quantize/quantize.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-28 13:00:29 +02:00
b1f7223a0a CUDA: fix DEBUG_CUDA_MALLOC (llama/5729) 2024-02-28 13:00:29 +02:00
8408a4be8e Add support for soft_max ALiBi (llama/5639)
* Add support for bias

* Update pre-processor

* rm commented code

* fix format

* fix CI

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-02-28 13:00:29 +02:00
72849c24ba ggml-quants : provide ggml_vqtbl1q_u8 for 64bit compatibility (llama/5711)
* [ggml-quants] Provide ggml_vqtbl1q_u8 for 64bit compatibility

vqtbl1q_u8 is not part of arm v7 neon library

* [android-example] Remove abi filter after arm v7a fix

* [github-workflows] Do not skip Android armeabi-v7a build
2024-02-28 13:00:28 +02:00
c19c28be71 add google magika inference example (ggml/748)
* add magika inference example

* ggml : fix unaligned accesses in custom ops

* ggml : fix FP32 GELU for values that exceed the FP16 range

* use ggml_pool_1d

* add README

* Update README.md

* pad inputs if the files are too small

* cleanup

ggml-ci
2024-02-28 13:00:28 +02:00
0d8fd8483a stream.wasm : fix invalid memory access when no segments (#1902)
No segments may be returned when a smaller sample buffer (EG 2048 samples) is sent to the worker.
2024-02-26 10:12:35 +02:00
3170841ed9 talk-llama : sync llama.cpp 2024-02-25 20:00:10 +02:00
7a6e385c1b sync : ggml 2024-02-25 19:59:34 +02:00
578e47e70c sync : llama.cpp (ggml/0) 2024-02-25 19:58:46 +02:00
fac5b43830 code : normalize enum names (llama/5697)
* coda : normalize enum names

ggml-ci

* code : cont

* code : cont
2024-02-25 19:58:46 +02:00
9e7c5212a1 IQ3_S: a much better alternative to Q3_K (llama/5676)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* Resurrecting iq3_xs

After all the experimentation, nothing was better than this.

* Minor PPL improvement via a block scale fudge factor

* Minor improvement via 3 neighbours

* iq3_xs: working scalar and AVX2 dot products

* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)

* iq3_xs: working Metal implementation

* Adding IQ3_M - IQ3_XS mix with mostly Q4_K

* iiq3_xs: a 3.4375 bpw variant

* iq3_xs: make CUDA work for new version

* iq3_xs: make scalar and AVX2 work for new version

* iq3_s: make ARM_NEON work with new version

* iq3_xs: make new version work on metal

Performance is very similar to Q3_K_S

* iq3_xs: tiny Metal speed improvement

* iq3_xs: tiny Metal speed improvement

* Fix stupid warning

* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS

* iq3_xs: rename to iq3_s

* iq3_s: make tests pass

* Move Q3_K_XS mix to 3.25 bpw

* Attempt to fix failing tests

* Another attempt to fix the Windows builds

* Attempt to fix ROCm

* ROCm again

* iq3_s: partial fix for QK_K = 64

* iq3_s: make it work on metal for QK_K = 64

Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.

* Will this fix ROCm?

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-25 19:58:46 +02:00
1cb64f7368 Introduce backend GUIDs (ggml/743)
* Introduce backend GUIDs

Initial proposed implementation of backend GUIDs
(Discussed in https://github.com/ggerganov/ggml/pull/741)

Hardcoded CPU backend GUID (for now)
Change ggml_backend_is_cpu logic to use GUID

* Remove redundant functions

Remove redundant functions `ggml_backend_i::get_name` and `ggml_backend_guid` which are not desired for future expansion

* Add spaces to match style

Co-authored-by: slaren <slarengh@gmail.com>

* Fix brace style to match

Co-authored-by: slaren <slarengh@gmail.com>

* Add void to () in function signature

Co-authored-by: slaren <slarengh@gmail.com>

* Add back ggml_backend_guid and make CPU_GUID a local static in ggml_backend_cpu_guid

* add guids to all backends

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-25 19:58:45 +02:00
f18738f247 talk, talk-llama : pass text_to_speak as a file (#1865)
* talk-llama: pass file instead of arg

it is too hard to quote text in a portable way

* talk-llama: pass heard_ok as a file

* talk-llama: let eleven-labs.py accept options

Options: -v voice, -s savefile, -p (--play)

* talk-llama: check installed commands in "speak"

Pass "-q" to eleven-labs.py to skip checking whether elevenlabs is installed

* talk-llama: pass voice_id again

in order to sync talk with talk-llama

* talk: sync with talk-llama

Passing text_to_speak as a file is safer and more portable
cf. https://stackoverflow.com/a/59036879/45375

* talk and talk-llama: get all installed voices in speak.ps1

* talk and talk-llama: get voices from api

* talk and talk-llama: add more options to eleven-labs.py

and remove DEFAULT_VOICE because it is deprecated (https://www.reddit.com/r/ElevenLabs/comments/1830abt/what_happened_to_bella/)

```
usage: eleven-labs.py [-q] [-l] [-h] [-n NAME | -v NUMBER] [-f KEY=VAL] [-s FILE | -p] [TEXTFILE]

options:
  -q, --quick           skip checking the required library

action:
  TEXTFILE              read the text file (default: stdin)
  -l, --list            show the list of voices and exit
  -h, --help            show this help and exit

voice selection:
  -n NAME, --name NAME  get a voice object by name (default: Arnold)
  -v NUMBER, --voice NUMBER
                        get a voice object by number (see --list)
  -f KEY=VAL, --filter KEY=VAL
                        filter voices by labels (default: "use case=narration")
                        this option can be used multiple times
                        filtering will be disabled if the first -f has no "=" (e.g. -f "any")

output:
  -s FILE, --save FILE  save the TTS to a file (default: audio.mp3)
  -p, --play            play the TTS with ffplay
```

* examples: add speak_with_file()

as suggested in the review

* talk and talk-llama: ignore to_speak.txt
2024-02-24 09:24:47 +02:00
a0ddd8392c whisper : add SYCL support (#1863)
* add changes from llama upstream

* add sycl abstraction

* add sycl build

* update cmake

* add sycl build config

* fix bug

* fix bug

* refactor build

* fix bug

* update build

* call build

* use sycl header

* add examples

* add target

* fix typecast in quant.c

* readd fp16 and readme

* fix quant typecast

* add sample

* add readme

* remove cxx file check
2024-02-23 09:22:24 +02:00
a2506909b1 talk-llama : sync llama.cpp 2024-02-22 23:30:53 +02:00
7b1ff212d9 sync : ggml 2024-02-22 23:25:38 +02:00
e5d06cfc0f ggml : always define ggml_fp16_t as uint16_t (llama/5666)
* ggml : always define ggml_fp16_t as uint16_t

ggml-ci

* ggml : cont

ggml-ci

* ggml : cont

* ggml : cont

ggml-ci

* ggml : cont

ggml-ci

* cuda : no longer ggml headers last

ggml-ci

* ggml : fix q6_K FP16 -> FP32 conversion

ggml-ci

* ggml : more FP16 -> FP32 conversion fixes

ggml-ci
2024-02-22 23:25:33 +02:00
31891db2e3 ci : fix whitespace 2024-02-22 20:20:34 +02:00
5fdb27ff80 ggml : 32-bit arm compat (#1891)
* ggml : 32-bit arm compat

* ggml : add ggml_vqtbl1q_s8 impl

* ggml : cont
2024-02-22 18:31:40 +02:00
6b16927d18 sync : ggml 2024-02-22 15:15:38 +02:00
ce411498f6 sync : llama.cpp (ggml/0)
ggml-ci
2024-02-22 15:12:36 +02:00
208de95ac7 conext add name (llama/5624)
* [SYCL] conext add name

* name should start with SYCL*
2024-02-22 15:12:36 +02:00
c2ce39c795 Update ggml_sycl_op_mul_mat_vec_q (llama/5502)
* Update ggml_sycl_op_mul_mat_vec_q

* Apply suggestions from code review

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>

* revert suggestion on macro

* fix bug

* Add quant type GGML_TYPE_IQ1_S to unsupported

* fix format

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-02-22 15:12:36 +02:00
8daa534818 Refactor validation and enumeration platform checks into functions to clean up ggml_vk_instance_init() 2024-02-22 15:12:36 +02:00
9fca69b410 Add check for VK_KHR_portability_enumeration for MoltenVK support 2024-02-22 15:12:36 +02:00
b26c645420 Add preprocessor checks for Apple devices.
Based on work by @rbourgeat in https://github.com/ggerganov/llama.cpp/pull/5322/files
2024-02-22 15:12:36 +02:00
1879ec556e Resolve ErrorIncompatibleDriver with Vulkan on MacOS.
Refs:
- https://chat.openai.com/share/7020ce72-65fc-45ec-b7be-9d9d798a5f3f
- https://github.com/SaschaWillems/Vulkan/issues/954
- https://github.com/haasn/libplacebo/issues/128
- https://github.com/KhronosGroup/Vulkan-Samples/issues/476
2024-02-22 15:12:35 +02:00
c6e53cfc46 Allow for Vulkan build with Accelerate.
Closes #5304
2024-02-22 15:12:35 +02:00
b19f2fb815 cuda : ignore peer access already enabled errors (llama/5597)
* cuda : ignore peer access already enabled errors

* fix hip
2024-02-22 15:12:35 +02:00
a6b0950916 ggml : compute forward no longer pass src tensors (ggml/729)
* refactored compute forward to not pass in the src tensors each time

* fix merge issues with flags

* missed one place in the last commit to fix the is_param / flags issue

* minor spacing fix

* fixed some variable assignments so all tests locally are passing

* new change after merge fix

---------

Co-authored-by: siddharthvader <siddharth@coinlist.co>
2024-02-22 15:12:35 +02:00
d352dbd163 ggml : fix conv_2d batch mode (ggml/737)
Co-authored-by: bssrdf <bssrdf@gmail.com>
2024-02-22 15:12:32 +02:00
eb23f4ef16 openvino : fix convert-whisper-to-openvino.py (#1890)
Fix issue: Conversion from Whisper to OpenVino failed #1870

convert-whisper-to-openvino.py stopped working with OpenVINO version 2023.0.0-10926-b4452d56304-releases/2023/0 .

Error was: TypeError: load(): incompatible function arguments. The following argument types are supported:
    1. (self: openvino._pyopenvino.FrontEnd, path: object) -> ov::frontend::InputModel

Tested successfully with a large-v3 conversion.

Co-authored-by: Stefan Grundmann <grundmanns@sandiego.gov>
2024-02-22 15:11:35 +02:00
c56344b509 main : fix file existence check in main.cpp (#1889)
In commit dda4b0e of PR #1872, I've introduced a check for the
existence of files before loading the model. However, I haven't
considered the case where whisper.cpp might read from stdin as well,
and in such cases, the checks should ignore the "-" argument as it
does not represent a regular file.

Additionally, this commit removes the usage of 'stat()' in favor of
the recently introduced function 'is_file_exist()' in common.cpp from
PR #1871.

Apologies for the bug introduced in the previous PR and any
inconvenience it may have caused.
2024-02-22 15:01:08 +02:00
59119f4f20 talk-llama : sync llama.cpp 2024-02-20 12:09:57 +02:00
276615d708 make : fix CUBLAS link with WSL (#1878) 2024-02-20 12:05:38 +02:00
b602819b6e sync : ggml 2024-02-19 15:54:25 +02:00
c2c606f05b ggml : resolve merge conflicts (ggml/0)
ggml-ci
2024-02-19 15:53:25 +02:00
83afebe872 common : add IQ1_S (ggml/0)
ggml-ci
2024-02-19 15:53:25 +02:00
a4d8f9d559 ci : enable -Werror for CUDA builds (llama/5579)
* cmake : pass -Werror through -Xcompiler

ggml-ci

* make, cmake : enable CUDA errors on warnings

ggml-ci
2024-02-19 15:53:24 +02:00
5ec1e0edfa cuda, metal : fix nans in soft_max (llama/5574)
* cuda : fix nans in soft_max

* metal : fix nans in soft_max

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-19 15:53:24 +02:00
30a11b1ab8 ggml : android and old glibc NUMA incompatibility bugfixes (llama/5557)
* #ifdef out some code NUMA blocks for Android due to lack of support

* added in some __ANDROID__ if def gates around numa code and forced GLIBC prior to 2.29 to use a syscall for getcpu instead of the wrapper

* Changed gates on numa platform specific stuff to __gnu_linux__ to skip any platforms without glibc

* harmonizing #if defined blocks for numa code to __gnu_linux__ since that's the only model that's being followed anyways

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
2024-02-19 15:53:24 +02:00
f04e6b87d7 ggml : restore vec dot stride arg names (llama/5453) 2024-02-19 15:53:24 +02:00
0c33928b55 ci : fix wikitext url + compile warnings (llama/5569)
ggml-ci
2024-02-19 15:53:24 +02:00
0775374750 metal : fix unused warnings (llama/0) 2024-02-19 15:53:24 +02:00
7d90bb035b ggml, common, examples, tests : fixed type arguments in printf (llama/5528) 2024-02-19 15:53:24 +02:00
2c1ad21ba8 1.5 bit quantization (llama/5453)
* iq1_s: WIP basics

* iq1_s: CUDA is working

* iq1_s: scalar CPU dot product

* iq1_s: WIP AVX2 dot product - something is not right

* Fix tests

* Fix shadow warnings

* Fix after merge with latest master

* iq1_s: AVX2 finally works

* iq1_s: ARM_NEON dot product. Works, but not very fast

* iq1_s: better grid

* iq1_s: use IQ2_XXS for attn_output

At a cost of 0.04 extra bpw this gives a big improvement in PPL.

* iq1_s: Metal basics

Dequantize works, but not dot product

* iq1_s: Metal works, but quite slow

As usual, Apple Silicon does not like the code I write.

* iq1_s: Tests

* iq1_s: slightly faster dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-19 15:53:23 +02:00
eca5ff9868 ggml : add ALiBi support for ggml_soft_max_ext (llama/5488) 2024-02-19 15:53:23 +02:00
1b25d2fa0a ci : add an option to fail on compile warning (llama/3952)
* feat(ci): add an option to fail on compile warning

* Update CMakeLists.txt

* minor : fix compile warnings

ggml-ci

* ggml : fix unreachable code warnings

ggml-ci

* ci : disable fatal warnings for windows, ios and tvos

* ggml : fix strncpy warning

* ci : disable fatal warnings for MPI build

* ci : add fatal warnings to ggml-ci

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-19 15:53:23 +02:00
74a6acc999 cmake : fix VULKAN and ROCm builds (llama/5525)
* cmake : fix VULKAN and ROCm builds

* cmake : fix (cont)

* vulkan : fix compile warnings

ggml-ci

* cmake : fix

ggml-ci

* cmake : minor

ggml-ci
2024-02-19 15:53:23 +02:00
a4ed8a0821 ggml : add numa options (llama/5377)
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverted Makefile

* Fixed include

* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables

* removed trailing whitespace

* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverting Makefile

* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet

* Removing MIRROR_MODE code for this PR

* Removing last bit of MIRROR_MODE code for this PR

* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static

* Fixed lingering init_llama_backend() bool calls in tests and examples

* Remote enum llama_numa_strategies

* Revert bad merge with dynatemp flags

* add missing enum ggml_numa_strategies declaration and revert sync problem with master

* add missing enum ggml_numa_strategies declaration

* fixed ggml_init_numa variable

* Update ggml.h

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges

* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples

* Fix up some boolean vs enum comparisons

* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype

* Update ggml.h

Align enum values

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

Remove whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

align paremeters

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/server.cpp

remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/common.cpp

Remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example

* Update ggml.c

simplified return for platforms without NUMA support

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* removed redundant else from cli argument processing of --numa

* whitespace

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-19 15:53:23 +02:00
9f675e021c cuda : print message when initialization fails (llama/5512)
* cuda : print message when initialization fails

* use CUDA_NAME both times
2024-02-19 15:53:23 +02:00
a38efcb9fd vulkan: Find optimal memory type but with fallback (llama/5381)
* @0cc4m feedback

* More feedback @0cc4m
2024-02-19 15:53:22 +02:00
AT
31591649a0 Early return for zero size calls to get_tensor. (llama/5482)
* Early return for zero size calls to get_tensor.

Signed-off-by: Adam Treat <treat.adam@gmail.com>

* Update ggml-kompute.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-kompute.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Add an early return to the get/set tensor when the size is null.

Signed-off-by: Adam Treat <treat.adam@gmail.com>

* Early return after the assertions.

Signed-off-by: Adam Treat <treat.adam@gmail.com>

* Since we do the early return in the generic backend now no reason to do so here as well.

Signed-off-by: Adam Treat <treat.adam@gmail.com>

---------

Signed-off-by: Adam Treat <treat.adam@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-19 15:53:22 +02:00
4f5c46a84f ggml-quants : fix compiler warnings (shadow variable) (llama/5472)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-19 15:53:22 +02:00
462ffc58db ggml-sycl: Replace 3d ops with macro (llama/5458)
* use macro

* use macro

* fix format
2024-02-19 15:53:21 +02:00
65faae0b6a build : update CBLAS flags + fix unused var warning (#0) 2024-02-19 14:44:46 +02:00
dda4b0ed06 main : check if input files exist before proceeding (#1872)
Until the most recent commit (3d42463), the main.cpp sample file does
not check whether the input files exist or not. Consequently, the
model is loaded first before reporting whether there was a failure or
not when processing a file. In environments with HDD, this can take
about 50 seconds or more, depending on the loaded model.

This commit addresses this issue by checking in advance whether the
input files exist or not.
2024-02-19 10:51:26 +02:00
07d04280be examples : clean up common code (#1871)
move some utility functions into common.h
2024-02-19 10:50:15 +02:00
917c56ded4 models : fix openvino setup info (#1874) 2024-02-19 02:19:47 +00:00
3d42463845 models : add update py requirements 2024-02-13 11:51:32 +02:00
3ffc83d90a swift : package no longer use ggml dependency (#1861)
* Revert "swift : update Package.swift to use ggml as package dependency (#1701)"

This reverts commit 993acb5d41.

* spm : add ggml.h
2024-02-12 19:54:11 +02:00
e3c5e2cba8 whisper : fix external encoder (#1860) 2024-02-12 19:53:51 +02:00
b742f13e70 sync : ggml 2024-02-12 19:07:56 +02:00
52c529eeb1 ggml-alloc : allocate all leafs as if they were inputs (ggml/731)
* ggml-alloc : allocate all leafs as if they were inputs

* ensure static leafs are allocated

* gpt-2-backend : remove unnecesary ggml_new_tensor

* update other gpt-2 examples to remove ggml_new_tensor calls in the graph
2024-02-12 19:07:38 +02:00
551529290d talk-llama : sync llama.cpp 2024-02-12 10:39:58 +02:00
25a90ffa38 sync : ggml 2024-02-12 09:32:15 +02:00
866b67ca93 ggml-backend : sync remnant 2024-02-12 09:31:12 +02:00
d7e9f58f7f CUDA: mul_mat_vec_q tiling, refactor mul mat logic (llama/5434)
* CUDA: mul_mat_vec_q tiling, refactor mul mat logic

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-12 09:31:12 +02:00
04839bae22 vulkan: only use M-sized matmul on Apple GPUs (llama/5412)
* vulkan: refactor guess_matmul_pipeline for vendor

Refactor ggml_vk_guess_matmul_pipeline to simplify adding per-vendor
conditionals.

Signed-off-by: Sergio Lopez <slp@redhat.com>

* vulkan: only use M-sized matmul on Apple GPUs

L-sized and S-sized matmuls are broken on Apple GPUs, force using
M-size with this vendor.

Signed-off-by: Sergio Lopez <slp@redhat.com>

---------

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-02-12 09:31:12 +02:00
3cc6e04a52 ggml : fix compile warnings (unused vars) (llama/4966) 2024-02-12 09:31:11 +02:00
b7ef178b9c ggml : add mmla kernels for quantized GEMM (llama/4966)
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: update unit tests for the new vec_dot interface

* llama.cpp: add MATMUL_INT8 capability to system_info
2024-02-12 09:31:11 +02:00
47dfe9d4db metal : use autoreleasepool to avoid memory leaks (llama/5437)
There appears to be a known memory leak when using the
`MLTCommandBuffer`. It is suggested to use `@autoreleasepool` in
[1,2]

[1] https://developer.apple.com/forums/thread/662721
[2] https://forums.developer.apple.com/forums/thread/120931

This change-set wraps the `ggml_metal_graph_compute` in a
`@autoreleasepool`.

This commit addresses https://github.com/ggerganov/llama.cpp/issues/5436
2024-02-12 09:31:11 +02:00
1d3270cc8f ggml-alloc : v3 (ggml/727)
* ggml-alloc v3

ggml-ci

* fix ci

ggml-ci

* whisper : check for backend buffer allocation failures

* whisper : avoid leaks when initialization fails

* cleanup

ggml-ci

* style fixes

ggml-ci
2024-02-12 09:31:11 +02:00
a6fb6ab597 examples : added audio_ctx argument to main and server (#1857)
* added audio_ctx argument to main and server examples

* Better default value

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* better default value (again)

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-12 09:19:07 +02:00
163e74b6c3 metal : option to embed MSL source into compiled binary (#1842)
* ggml : embed Metal library source (ggml-metal.metal) into binary

enable by setting WHISPER_EMBED_METAL_LIBRARY

* rename the build option

* rename the preprocessor directive

* generate Metal library embedding assembly on-fly during build process
2024-02-11 16:41:41 +02:00
f273e66dc6 examples : initialize context params properly (#1852) 2024-02-11 16:39:12 +02:00
02b4c52c12 talk-llama : sync llama.cpp 2024-02-10 10:10:59 +02:00
518199c09e sync : ggml 2024-02-10 09:56:47 +02:00
8b17a2f776 src : relocate new backend sources 2024-02-10 09:55:47 +02:00
b6d2827914 ggml : fix error C2078: too many initializers for MSVC ARM64 (llama/5404) 2024-02-10 09:55:47 +02:00
9711bae0b3 CUDA: more warps for mmvq on NVIDIA (llama/5394) 2024-02-10 09:55:47 +02:00
eec38f63bd CUDA: fixed mmvq kernel for bs 2,3,4 and -sm row (llama/5386) 2024-02-10 09:55:47 +02:00
ef5e6b746f Basic Vulkan Multi-GPU implementation (llama/5321)
* Initial Vulkan multi-gpu implementation

Move most global variables into backend context

* Add names to backend device functions

* Add further missing cleanup code

* Reduce code duplication in tensor split layer assignment

* generalize LLAMA_SPLIT_LAYER for all backends, do not expose device count and memory in llama.h

* Only do device info print in the beginning and initialize one backend for cpu assist

Add missing cleanup code

* Rework backend memory management to make sure devices and buffers get properly allocated and freed

* Rename cpu assist free function

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10 09:55:47 +02:00
77bf6b5f56 CUDA: mul_mat_vec_q max. batch size 8 -> 4 (llama/5370) 2024-02-10 09:55:47 +02:00
b562fff9d0 Slight quantization improvement for Q4_K and Q5_K (llama/5361)
* Q4_K: slightly better quantization

* Q5_K: slightly better quantization

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-10 09:55:47 +02:00
b5dec374f4 CUDA: mul_mat_vec_q for batch sizes > 1 (llama/5351) 2024-02-10 09:55:47 +02:00
fa0dc6167c ggml : make use of ggml-quants.h possible in C++ code (llama/5338)
* Make use of ggml-quants.h possible in C++ code

* One cannot possibly be defining static_assert in a C++ compilation

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-10 09:55:47 +02:00
55bcd62a4b ggml : avoid duplicating function calls using MIN/MAX macros (llama/5325)
* Avoid duplicating function calls when using MIN/MAX macros.

Since these copy "a" and "b" they ask the compiler to evaluate one of them twice. The compiler doesn't have a problem with removing the duplication in something like MAX(0, x + 2), but in some cases we're calling functions, and those calls just happen twice.
By explicitly evaluating at the expression we get smaller and faster code without duplicate calls. See ggml_rope_yarn_corr_dims in Compiler Explorer:

https://godbolt.org/z/Ee4KMrvKh

Code behaves exactly the same.

* Update ggml.c

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-10 09:55:46 +02:00
0ed762d691 iq2_xxs: tune quantization (llama/5320)
We get slightly better PPL, and we cut quantization time in
nearly half.

The trick is to 1st quantize without forcing points onto the E8-lattice.
We can then use a narrower search range around the block scale that we
got that way.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-10 09:55:46 +02:00
1b5bb7792e cuda : fix LLAMA_CUDA_F16 (llama/5262) 2024-02-10 09:55:46 +02:00
9b735cea77 metal : add im2col F32 dst support (llama/5132) 2024-02-10 09:55:46 +02:00
12c462d656 llava : add MobileVLM support (llama/5132)
* New Feature:
    1. Sum_Rows:
        fix cuda kernel overflow
        fix block shape error when nrows too big
    2. Im2Col:
        Support Batch in cuda
        Support f32 to f32 both in cpu && cuda
    3. DepthWiseConv:
        Support by Im2Col && MulMat
    4. Pool_2d:
        Supoort avg pooling in cuda
    5. HardSigmoid:
        Imp in cuda
    6. HardSwish:
        Imp in cuda

* fix tabs instead of spaces

* code clean

* CUDA POOL2D

* ADD POOL2D test case in test-backend-ops.cpp

* code clean

* fix pool2d_kernel

nits

* fix bug in pool2d kernel

* fix avg pooling, count_include_pad

nits

* test-backend-ops : add more pool_2d tests

* cuda : fix warnings and formatting

* ggml : check types in release builds too in pool_2d

* test-backend-ops : remove f16 pool_2d tests

* cuda : more style fixes

* Add assert in ggml_cuda_op_pool2d

* pool2d float padding fallback

* test-backend-ops : add dst_type to im2col

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10 09:55:46 +02:00
fc7b0e2c28 ggml : limit n_threads to the max n_tasks (llama/5238) 2024-02-10 09:55:46 +02:00
f850a067ed kompute : llama-bench support and ggml_cpu_has_kompute() (llama/5226) 2024-02-10 09:55:46 +02:00
f75e1197f1 ggml : add abort_callback for cpu backend (ggml/725)
* a way to use abort_callback with the cpu backend

* whisper update
2024-02-10 09:55:46 +02:00
aa8a75e287 extra : update sync scripts 2024-02-10 09:55:19 +02:00
80e8a2ea39 server : allow CORS request with authorization headers (#1850)
Whisper plugin in Obsidian requires an API key which is
then sent as an authorization header.
However, the presence of an authorization header requires
a CORS Preflight, so both the OPTIONS method and
the Access-Control-Allow-Headers: authorization must be
handled.
2024-02-09 17:42:41 +02:00
19f8048139 whisper.android : how to build with CLBlast (#1809)
* FetchContent

* OpenCL

* Documentation and make optional

* Specify GGML build options in build.gradle

* Use gradle properties

* @ggerganov

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* @gpokat

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-09 17:39:05 +02:00
0f80e5a80a whisper : expose CUDA device setting in public API (#1840)
* Makefile : allow to override CUDA_ARCH_FLAG

* whisper : allow to select GPU (CUDA) device from public API
2024-02-09 17:27:47 +02:00
b6559333ff make : add macOS deployment target option (#1839) 2024-02-09 17:26:29 +02:00
434b8f3b96 talk-llama : stream response (#1121) 2024-02-06 19:56:12 +02:00
7a74e929c8 sync : ggml (#0) 2024-01-30 21:30:26 +02:00
361ecebe90 ggml : fix IQ3_XXS on Metal (llama/5219)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 21:28:00 +02:00
807cbc672e sync : ggml (llama/0) 2024-01-30 21:27:59 +02:00
98ae5276b7 Faster AVX2 dot product for IQ2_XS (llama/5187)
* iq2xs: faster AVX2 dot product

* iq2xs: small AVX2 imrovement

* Speed up computing sign bits in AVX2 iq2_xs dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Peter Reid <peter@peterreid.net>
2024-01-30 21:27:59 +02:00
6adb969b09 SOTA 3-bit quants (llama/5196)
* iq3_xxs: quantize/dequantize

RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.

* iq3_xxs: CUDA dequantize works

* iq2_xxs: tuning quantization

* iq3_xxs: starting to look better

PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717

This is better than Q3_K_XS, with a 5% reduction in quantized model
size.

* iq3_xxs: CUDA dot product

We have
PP-512: 5891 t/s
TG-128: 143.9 t/s

* iq3_xxs: scalar and AVX2 dot products

* iq3_xxs: ARM_NEON and Metal

Metal performance is decent, ARM_NEON is pathetic

* iq3_xxs: slightly better grid points

* Faster iq3_xxs and iq2_xs dot products on CUDA

* iq3_xxs: add some quant mix

* iq3_xxs: fix failing quantization test

Dot product still fails. Is this real?

* iq3_xxs: hopefully fix ROCm

* iq3_xxs: failing tests

This time the dot product accuracy did find an actual bug
in the AVX2 implementation.

* Add IQ3_XXS to test-backend-ops

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 21:27:59 +02:00
8a7d6ff51a ggml alloc: Fix for null dereference on alloc failure (llama/5200)
* Fix for a null pointer dereference if a metal GGML buffer fails to be allocated

* Freeing the allocated buffers rather than the pointer in ggml-alloc.c

* Fixed the fix of the fix
2024-01-30 21:27:59 +02:00
25f650a8e8 Nomic Vulkan backend (llama/4456)
Signed-off-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: niansa <anton-sa@web.de>
Co-authored-by: Adam Treat <treat.adam@gmail.com>
Co-authored-by: Aaron Miller <apage43@ninjawhale.com>
Co-authored-by: ToKiNoBug <tokinobug@163.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-01-30 21:27:59 +02:00
44e517f074 ggml : add max buffer sizes to opencl and metal backends (llama/5181) 2024-01-30 21:27:59 +02:00
cb9de61659 metal : free metal objects (llama/5161)
* Releasing MTLFunction references after Metal pipeline construction

* Keeping the `ggml_metal_kernel` structure

* Spacing fix

* Whitespace fix
2024-01-30 21:27:59 +02:00
a2ef80d66f gguf : fix comparison (ggml/715)
ggml-ci
2024-01-30 21:27:59 +02:00
baa190446a ggml_cuda_cpy support for 4d tensors and float16->float32 upcasting (ggml/686)
* added cuda float16->float32 upcasting to ggml_cuda_cpy

* added ability to copy 4d tensors with the cuda backend

* added tests for float16_>float32 upcast and 4d tensor cuda copys

* added 4d copy test for float32->float16 copy

* applied patch suggested by @iamlemec

* simplify cpy tests

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-01-30 21:27:59 +02:00
8f5220d81f gguf : add input validation, prevent integer overflows (ggml/709)
* gguf : add input validation, prevent integer overflows

ggml-ci

* gguf : fix switch default case

* gguf : sanitize info->n_dims and info->type

ggml-ci

* gguf : assert GGUF_TYPE_SIZE access

ggml-ci

* ggml : assert mallocs are successful

ggml-ci

* gguf : prevent integer overflow

* gguf : sanitize tensor info

ggml-ci

* gguf : stricter limit on the number of items

ggml-ci
2024-01-30 21:27:58 +02:00
8e391fcf3a ci : fix yolo URLs + fix metal capture (ggml/712) 2024-01-30 21:27:58 +02:00
593657054e metal : add debug capture backend function (ggml/694)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-30 21:27:58 +02:00
ae5c4f7340 common : fix wav buffer detection (#1819) 2024-01-30 19:35:08 +02:00
baa30bacdb server : add fields to verbose_json response (#1802)
* server: include additional fields in the verbose_json response as OpenAI does

* server: show request examples on home page

* server: todo note for compression_ratio and no_speech_prob

* server: add simple demo form to the homepage
2024-01-30 14:15:55 +02:00
3e6fad07aa make : update MSYS_NT (#1813)
I just upgraded the R wrapper at https://github.com/bnosac/audio.whisper to use whisper.cpp 1.5.4
I'm working on Windows and noticed while doing that that it did not pick up the relevant CFLAGS/CXXFLAGS as my system showed

```
I whisper.cpp build info: 
I UNAME_S:  MSYS_NT-10.0-19045
I UNAME_P:  unknown
I UNAME_M:  x86_64
```

Many thanks for all the tremendous hard work on maintaining whisper.cpp!
2024-01-30 14:13:49 +02:00
e72e4158de talk-llama : sync llama.cpp 2024-01-28 19:44:10 +02:00
bd41733db2 sync : ggml 2024-01-28 19:30:32 +02:00
23c648e98d ggml : add Vulkan backend (llama/2059)
* Vulkan loader code

* Fix matmul kernel, continue implementation

* Continue implementation

* Vulkan memory management

* Vulkan development

* Matmul call

* Add aligned malloc and free for VMA

* Continue implementation

* First matmul success

* GEMM Kernel optimization

* 1D Blocktiling

* 2D Blocktiling

* Write coalescing

* Continue vulkan implementation and optimization

* First FP16 attempt, disabled for now

* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel

* Enable device extensions properly, restore fp16 matmul op

* Fix mulmat_f16

* Output FP32 in fp16 matmul shader

* Fix f16_to_f32 kernel

* dequant_q4_0 kernel

* Add VMA library

* Avoid requesting dedicated memory, VMA can decide that by itself

* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly

* add cmake commands

* Add 2d write operation, profiling code

* Fix 2d write

* Fix queue selection for AMD RADV

* Fix trailing whitespace in vk_mem_alloc.h

* Add WIP warp tile mat mul shaders

* Disable glslc optimization

* Disable glslc optimization for CMake

* Optimize warptile matmul shader, replace blocktile with it

* Add split-k optimization for small matrix multiplication

Use semaphores for synchronization instead of fences or waitidle

Rework async write/read for synchronization

* Fix validation errors, improve compatibility with AMD GPUs

* Rework command buffer handling

* Variable matmul kernel using specialization constants

* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints

* Reuse semaphores

* Handle stage flags during command buffer submission properly

* Increase matmul test runs for consistent results

* Fix F32 matmul

* Add vectorized loading and zeropadding for matrix multiplication

* Use pinned memory for f16 preprocessing

* Don't force aligned matmul

* Don't free before queue done

* Replace VMA library with native Vulkan buffer management

* Basic offloading support with mul_f32 and dmmv for q4_0

* Run glslc commands in parallel

* Unroll loops in dmmv shader

* Reduce usage of waitIdle

* Reuse pinned allocation for f16 conversion

* Handle devices with only a single queue

* Fix trailing whitespace in CMakeLists.txt

* Allow parallel execution of kernels, parallelize third and fourth dimension calls

* Add fallback for devices only supporting one DescriptorSet per DescriptorPool

* Move to graph function similar to CUDA implementation

* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function

* Add F32 dmmv shaders

* Batch submissions

* Add .spv to gitignore

* Split off matrix vector multiplication for separate optimization

* Use single command buffer for matrix vector multiplication ops

* Reduce overhead of mul_f32 calls by using a single command buffer

* Add submission batching to mul_f32

* Fix tests

* Add missing barrier

* Add further missing barrier

* Add further ops

* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions

* Remove unnecessary cblas link

* Fix descriptor set pre-allocation assert

* Add runtime shader compilation, start transferring shaders to this approach

* Transfer remaining shaders to header and compile on runtime

* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16

* Add support for q4_1, q5_0, q5_1 and q8_0

* Remove unnecessary scalar layout extension

* Parse graph early to pre-record command buffers

* Add q6_k support

* Add multi-submit for command buffers

* Fix q6_k dequant shader for AMD

* Fix q6_k for GPUs without fp16 support

* Simplify q6_k fp16 fix

* Minor fixes

* Fix wg_denom of m-mulmat shaders

* Add Python-based Vulkan shader generator

* Replace shaderc dependency with precompiled shaders

Fix python script to generate shaders

* Clean up code

* Fix shader generator script Windows compatibility

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>

* Close file before deletion

* Fix vulkan shader fp32 name

* Add q2_k and q3_k support

Add validation check to compare shader results to cpu results

* Add q4_k support

* Add q5_k support

* Bake SPIR-V bytecode into the library instead of loading shaders from file

* Switch to signal semaphores for flexibility

Prepare broadcasting support for mul mat

* Finish broadcasting mul mat support for GQA

* Clean up unused functions

Add repeat op

* Add further ops, not yet enabled. Improve semaphore code

* Reduce number of used semaphores by utilizing timelines more properly

* Remove queue information

* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations

* Add Vulkan to llama-bench

* Remove cblas dependency

* Fix matmul k-split bug

* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader

* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug

* Fix issues with float16 overflows in shaders

* Fix issues with older Vulkan headers on Ubuntu 22.04

* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers

* Implement further ops, rework op_f32 calls, fix bugs

* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code

* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders

* Merge upstream changes, fix conflicts, adapt soft_max op

* Fix Python and shader header format

* Free model gpu buffers on exit

* Use single queue per device to simplify code

* Add matmul shader support for running multiple calculations in parallel

* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible

* Fix missing event cast

* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity

* Fix warning about empty C function parameters

* Fix compiler warnings

* Properly implement Vulkan backend buffer handling

* Fix oversized host staging buffers

* Simplify barrier synchronization calls

* Fix gcc warnings

* Implement max_size for backend buffer types to limit the size of a single allocation

* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size

* refactor multi buf

* Disable unsupported ops to fix tests

* Check for maintenance4 support before using it

* Handle devices with only a single queue

* Fix single queue logic

* propagate buffer usage in multi buffers

* Implement rope_neox op

* Cleanup header and other files

* Simplify gpu_extras by removing events and putting staging memcpys into contexts

* Move queue into context

Add not-yet-enabled async backend ops

* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization

* Add get_max_size to SYCL backend.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix trailing whitespace

---------

Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:30:20 +02:00
75ab2d06f5 ggml : add unified SYCL backend for Intel GPUs (llama/2690)
* first update for migration

* update init_cublas

* add debug functio, commit all help code

* step 1

* step 2

* step3 add fp16, slower 31->28

* add GGML_LIST_DEVICE function

* step 5 format device and print

* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue

* support main device is non-zero

* step7 add debug for code path, rm log

* step 8, rename all macro & func from cuda by sycl

* fix error of select non-zero device, format device list

* ren ggml-sycl.hpp -> ggml-sycl.h

* clear CMAKE to rm unused lib and options

* correct queue: rm dtct:get_queue

* add print tensor function to debug

* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481

* summary dpct definition in one header file to replace folder:dpct

* refactor device log

* mv dpct definition from folder dpct to ggml-sycl.h

* update readme, refactor build script

* fix build with sycl

* set nthread=1 when sycl, increase performance

* add run script, comment debug code

* add ls-sycl-device tool

* add ls-sycl-device, rm unused files

* rm rear space

* dos2unix

* Update README_sycl.md

* fix return type

* remove sycl version from include path

* restore rm code to fix hang issue

* add syc and link for sycl readme

* rm original sycl code before refactor

* fix code err

* add know issue for pvc hang issue

* enable SYCL_F16 support

* align pr4766

* check for sycl blas, better performance

* cleanup 1

* remove extra endif

* add build&run script, clean CMakefile, update guide by review comments

* rename macro to intel hardware

* editor config format

* format fixes

* format fixes

* editor format fix

* Remove unused headers

* skip build sycl tool for other code path

* replace tab by space

* fix blas matmul function

* fix mac build

* restore hip dependency

* fix conflict

* ren as review comments

* mv internal function to .cpp file

* export funciton print_sycl_devices(), mv class dpct definition to source file

* update CI/action for sycl code, fix CI error of repeat/dup

* fix action ID format issue

* rm unused strategy

* enable llama_f16 in ci

* fix conflict

* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml

* fix ci cases for unsupported data type

* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL

* revert hip cmake changes

* fix indent

* add prefix in func name

* revert no mmq

* rm cpu blas duplicate

* fix no_new_line

* fix src1->type==F16 bug.

* pass batch offset for F16 src1

* fix batch error

* fix wrong code

* revert sycl checking in test-sampling

* pass void as arguments of ggml_backend_sycl_print_sycl_devices

* remove extra blank line in test-sampling

* revert setting n_threads in sycl

* implement std::isinf for icpx with fast math.

* Update ci/run.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add copyright and MIT license declare

* update the cmd example

---------

Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:30:20 +02:00
adc099edee ggml : minor type fix (int64_t -> size_t) 2024-01-28 19:30:17 +02:00
52cce82493 common : fix input buffer check (#1812) 2024-01-27 17:33:09 +02:00
ef3c9ed9eb talk-llama : sync llama.cpp 2024-01-27 17:24:53 +02:00
7fe3ed5e00 sync : ggml 2024-01-27 17:23:25 +02:00
6061241292 Add OpenCL add kernel (llama/5151)
* Add OpenCL add kernel

* Put add kernel into different string to stay within MSVC string length limit, disable float16 support due to bad results
2024-01-27 17:19:52 +02:00
0878ab7c15 cuda : fix tensor size calculation for non-split buffer (llama/5145) 2024-01-27 17:19:52 +02:00
c65edd5b64 ggml-alloc : add 10% margin to the buffer sizes (llama/5149) 2024-01-27 17:19:52 +02:00
3c8d14e9c5 ggml : update softmax n_task calculation (llama/5126)
updated the n_task calculation to use max number of
threads possible. This has improved the prompt eval
performance by around 5% for DOT kernels and by
around 10% for MMLA kernels on AWS Graviton3.
2024-01-27 17:19:52 +02:00
c3977cb2ce metal : remove unused n_buffers and buffers (llama/5129) 2024-01-27 17:19:52 +02:00
6da1661bc2 metal : show compile log messages 2024-01-27 17:19:51 +02:00
cc56540661 cuda : fix 2-bit quants on amd hip (llama/5105)
* cuda : fix 2-bit quants on amd hip

* use __low2float intrinsic function for new quants
2024-01-27 17:19:51 +02:00
94c1ae8668 llama : pre-allocate input tensors in a separate buffer (llama/5100) 2024-01-27 17:19:51 +02:00
55d54359e0 metal : disable support for MUL_MAT F32 x F16 2024-01-27 17:19:51 +02:00
d33c2ad354 CUDA: more info when no device code (llama/5088) 2024-01-27 17:19:51 +02:00
9afa7ff624 minor : clean-up some warnings and style (llama/5094)
* minor : clean-up some warnings and style

ggml-ci

* ggml : add comment
2024-01-27 17:19:51 +02:00
0649289f02 ggml : parallelize FP32 conversion when using BLAS (llama/5045)
* make GGML_TASK_INIT phase can be run in multithread

* multithreaded dequantize in mul_mat when using blas library

* minor fixes

* update outdated comment
* fix coding style

* simplify code

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-27 17:19:51 +02:00
aaeaa43878 llava : MobileVLM support (llama/4954)
* MobileVLM native implementation

* delete depthwise_conv_2d and permute_cpy relative code, replace the two by the existed functions, and opt ldp definition, support LLAMA_PERF option for CMake

* move android script to example/llava directory

* Fix the editor config checks

---------

Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
2024-01-27 17:19:51 +02:00
078b8e23bf llama : run all KQV ops on the CPU with no KV offload (llama/5049)
ggml-ci
2024-01-27 17:19:51 +02:00
74da3e1757 cuda : fix compile error in jetson platform (llama/4975)
* cuda: fix compile error in jetson platform

* cuda: update comment in ggml-cuda.cu

* cuda: update ggml-cuda.cu comment
2024-01-27 17:19:50 +02:00
2d2c93a798 ggml : check ggml_add src1 type (ggml/708)
Co-authored-by: Judd <foldl@boxvest.com>
2024-01-27 17:19:50 +02:00
4bbb60efce docs : make model options / model install methods clearer (#1806)
* Make models more "discoverable"

* Clean up code block language identifiers

* make 3 options clearer

* undo Prettier formatter change

* docs: `$` shell prompt, consistently

* docs: minor changes
2024-01-26 17:39:54 +02:00
1cf679dec4 cmake : make libwhisper.so position independent (#1792)
This is similar to how libllama.so is built.

Signed-off-by: Tom Rix <trix@redhat.com>
2024-01-22 15:02:35 +02:00
41026c1e4b cmake : temporary remove VLA check (#1795) 2024-01-22 14:51:42 +02:00
d6b9be21d7 whisper.android : return output from benchmarks (#1785)
Benchmarks are failing because JNI expects a jstring and the benchmarks
are missing a return statement (i.e., returning null). The functions
actually build a jstring but don't return it, so this seems to have been
an oversight.

This patch returns the jstring and now the benchmarks run successfully.

Fixes #1783.
2024-01-19 16:17:38 +02:00
c0329acde8 server : implement "verbose_json" format with token details (#1781)
* examples/server: implement "verbose_json" format with token details.

This is intended to mirror the format of openai's Python
whisper.transcribe() return values.

* server: don't write WAV to a temporary file if not converting

* server: use std::lock_guard instead of manual lock/unlock
2024-01-18 22:58:42 +02:00
fb466b3417 ggml : sync ggml-metal.m 2024-01-18 11:03:13 +02:00
1f50a7d29f sync : llama.cpp 2024-01-17 21:23:33 +02:00
1de21b913d sync : ggml 2024-01-17 21:22:38 +02:00
4aea058e5a ggml : add IQ2 to test-backend-ops + refactoring (llama/4990)
* ggml : add IQ2 to test-backend-ops + refactoring

ggml-ci

* cuda : update supports_op for IQ2

ggml-ci

* ci : enable LLAMA_CUBLAS=1 for CUDA nodes

ggml-ci

* cuda : fix out-of-bounds-access in `mul_mat_vec_q`

ggml-ci

* tests : avoid creating RNGs for each Q tensor

ggml-ci

* tests : avoid creating RNGs for each tensor

ggml-ci
2024-01-17 21:21:10 +02:00
fd10234363 imatrix : offload to GPU support (llama/4957)
* backend : add eval callback

ggml-ci

* backend : group nodes in a single compute when user don't need them

* backend : clean-up the implementation

ggml-ci

* simple : do not perform tensor data copy if not needed

* simple : fix

* imatrix : offload to GPU support

* imatrix : fix ggml_mul_mat_id hanlding

ggml-ci

* ci : add imatrix test

ggml-ci

* ci : rearrange output

ggml-ci
2024-01-17 21:21:10 +02:00
8fb5c6a409 backend : add eval callback (llama/4935)
* backend : add eval callback

ggml-ci

* backend : group nodes in a single compute when user don't need them

* backend : clean-up the implementation

ggml-ci

* simple : do not perform tensor data copy if not needed

* simple : fix

* simple : no need for ggml_is_contiguous + fix bool parse

* llama : fix callback placement in llama_context_params

* backend : avoid double-ask callback calls

* simple : restore examples, imatrix will serve as a demo
2024-01-17 21:21:10 +02:00
2fe5fbfcc2 metal : create autorelease pool during library build (llama/4970)
* metal : create autorelease pool during library build

ggml-ci

* test : simplify

ggml-ci
2024-01-17 21:21:10 +02:00
01637e1a4c ggml : importance matrix support for legacy quants (llama/4969)
* imatrix: adding support for legacy quants

* imatrix: guard Q4_0/Q5_0 against ffn_down craziness

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-17 21:21:10 +02:00
1b349eb1f9 metal : log recommendedMaxWorkingSetSize on iOS 16+ (llama/4936)
* metal: Log `recommendedMaxWorkingSetSize` on iOS 16+

* Only log on iOS and macOS, ignoring tvOS and other platforms

* Check for Xcode version before using recommendedMaxWorkingSetSize

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-17 21:21:10 +02:00
138eaebead ggml : introduce GGML_CALL function annotation (llama/4850)
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.

This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
2024-01-17 21:21:09 +02:00
61b9192f27 cuda : fix dequantize kernel names (llama/4938) 2024-01-17 21:21:09 +02:00
161b51d91a CUDA: faster dequantize kernels for Q4_0 and Q4_1 (llama/4938)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-17 21:21:09 +02:00
f904b31a7d Add ability to use importance matrix for all k-quants (llama/4930)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-17 21:21:09 +02:00
f6614155e4 talk-llama : optional wake-up command and audio confirmation (#1765)
* talk-llama: add optional wake-word detection from command

* talk-llama: add optional audio confirmation before generating answer

* talk-llama: fix small formatting issue in output

* talk-llama.cpp: fix Windows build
2024-01-16 15:52:01 +02:00
f5f159c320 server : fix building and simplify lib deps on Windows (#1772)
* make : fix server example building on MSYS2 environments (Windows)

It was not working since commit eff3570f78
when server was introduced.

* cmake : simplify server example lib deps on Windows

server uses httplib::Server, not httplib::SSLServer, so there is no need
to mention cryptographic libraries in target_link_libraries.
Winsock (ws2_32) suffices here.

Also use plain library names like we use in other places.
2024-01-15 15:48:13 +02:00
6ebba525f1 talk-llama : sync llama.cpp 2024-01-14 18:08:20 +02:00
2a5874441d talk-llama : llama.cpp 2024-01-14 11:06:28 +02:00
d08445c9ad sync : ggml 2024-01-14 10:55:18 +02:00
4a945696cb metal : correctly set SIMD support flags on iOS (llama/4923)
* Correctly set support_simdgroup_reduction and support_simdgroup_mm on iPhone/iPad

* log a little bit more info on iOS
2024-01-14 10:54:09 +02:00
dabc964d83 2-bit quantizations (llama/4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 10:54:09 +02:00
654baf693d scripts : sync-ggml-am.sh add option to skip commits 2024-01-14 10:53:19 +02:00
f001a3b7b6 talk-llama : sync llama.cpp 2024-01-14 00:13:17 +02:00
c615f2c335 sync : ggml 2024-01-14 00:12:17 +02:00
d839dd0242 examples : adapt to metal API 2024-01-14 00:11:45 +02:00
435847891c ggml: cache sin/cos for RoPE (llama/4908) 2024-01-14 00:11:45 +02:00
182f290808 metal : remove old API (llama/4919)
ggml-ci
2024-01-14 00:11:45 +02:00
447dfc11fc metal : disable log for loaded kernels (llama/4794) 2024-01-14 00:11:45 +02:00
9aa9f3b84e gguf : fix potential infinite for-loop (llama/4600)
Co-authored-by: Bernhard Gstrein <gstrein@informatik.uni-freiburg.de>
2024-01-14 00:11:44 +02:00
396ebd1e80 metal : refactor kernel loading code (llama/4794)
* metal : detect more GPU families

* metal : refactor kernel loading

* metal : set kernel family requirements

* metal : fix kernel init + fix compile options

* metal : take into account simdgroup reduction support

* metal : print only skipped kernels

* metal : fix check for simdgroup reduction support

* metal : check for Metal 3

* metal : free allocations

* metal : normalize encoder:setComputePipelineStatus calls

ggml-ci

* metal : fix Metal3 family check

ggml-ci

* metal : check for simdgroup matrix mul. feature

ggml-ci
2024-01-14 00:11:44 +02:00
12490f4398 CUDA: faster q8_0 -> f16 dequantization (llama/4895) 2024-01-14 00:11:44 +02:00
db078a9ba8 talk-llama : add optional CLI arg to set the bot name (#1764) 2024-01-13 20:51:35 +02:00
a13a7da5ad examples : add python example for transcription (#1744)
* rebase and add simple python interface

* moved python files to examples/python
2024-01-13 19:37:18 +02:00
519f8e8684 whisper : load the model into multiple buffers of max size 1GB (#1763) 2024-01-13 17:47:40 +02:00
40ae0962f4 talk-llama : sync llama.cpp 2024-01-12 22:04:51 +02:00
1560288048 sync : ggml 2024-01-12 21:56:50 +02:00
1ad6fafd91 backend_sched : fix assignments
ggml-ci
2024-01-12 21:55:42 +02:00
70840aed5f llama : ggml-backend integration (llama/4766)
* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (llama/4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (llama/4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 21:55:42 +02:00
b24d18feb9 CUDA: fix softmax compile for old CUDA versions (llama/4862) 2024-01-12 21:55:41 +02:00
3fa98f4395 Importance Matrix calculation (llama/4861)
* imatrix: 1st version

* imatrix: WIP

* Cleanup

* Update examples/imatrix/imatrix.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-12 21:55:41 +02:00
d05b7ee90e models : make all scripts to be POSIX Compliant (#1725)
* download-coreml-model: make it POSIX-compliant

* download-ggml-model: posix compliant (2nd)

* minor edit

* forgot to add newline

* generate-coreml-interface: far more straightforward

* generate-coreml-model: done with the posix thingy

* typo

* Update download-ggml-model.sh

* fix

* fix typo

* another fix

* Update download-coreml-model.sh

* Update download-ggml-model.sh

* Update download-coreml-model.sh
2024-01-12 14:11:04 +02:00
6dcee35129 ggml : fix 32-bit ARM compat for IQ2_XS (#1758)
* ggml : fix 32-bit ARM compat

* ggml : fix fix

* ggml : fix fix fix
2024-01-12 14:02:30 +02:00
5cb345f5e9 go : add SetInitialPrompt method to bindings (#1753) 2024-01-12 13:44:50 +02:00
fbcb52d3cd server : add more parameters to server api (#1754)
* feat(server): add more parameters to server api

* fix(server): reset params to original parsed values for each request
2024-01-12 13:42:52 +02:00
6b01e3fedd whisper : fix segment length with params.no_timestamps == true 2024-01-12 13:37:38 +02:00
f7908f9bb8 params : don't compute timestamps when not printing them (#1755) 2024-01-12 13:24:38 +02:00
00b7a4be02 talk-llama : sync llama.cpp 2024-01-11 22:10:10 +02:00
04b0a768b8 swift : remove local ggml.h reference 2024-01-11 22:00:12 +02:00
87670425f2 swift : track ggml release branch 2024-01-11 21:57:40 +02:00
32e71a1861 sync : ggml 2024-01-11 21:54:17 +02:00
9c857cf280 sync : llama.cpp 2024-01-11 21:50:01 +02:00
97b12212dd ggml : SOTA 2-bit quants (add IQ2_XS) (llama/4856)
* iq2_xs: basics

* iq2_xs: this should have been in the basics

* iq2_xs: CUDA and scalar CPU works

* iq2_xs: WIP Metal

* iq2_xs: Metal now works

* iq2_xs: working, but dog slow, ARM_NEON dot product

* iq2_xs: better ARM_NEON dot product

We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.

* iq2_xs: AVX2 dot product - 19.5 t/s

* iq2_xs: faster AVX2 dit product

21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.

* iq2_xs: had forgotten to delete iq2-data.h

* Add llama enum for IQ2_XS

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:50:01 +02:00
9fa34d79ec metal : put encoder debug group behind a define (llama/4873) 2024-01-11 21:50:01 +02:00
a0a64a19dd metal : improve dequantize precision to match CPU (llama/4836)
ggml-ci
2024-01-11 21:50:01 +02:00
bbc23611fa ggml : fix vld1q_s8_x4 32-bit compat (llama/4828)
* ggml : fix vld1q_s8_x4 32-bit compat

ggml-ci

* ggml : fix 32-bit ARM compat (cont)

ggml-ci
2024-01-11 21:50:01 +02:00
e9783a1fb4 CUDA: faster softmax via shared memory + fp16 math (llama/4742) 2024-01-11 21:50:01 +02:00
9e0cc28792 metal : fix deprecation warning (ggml/690) 2024-01-11 21:50:00 +02:00
73072a7c73 ggml : remove ggml_cpy_inplace and ggml_cont_inplace (ggml/693) 2024-01-11 21:50:00 +02:00
a8ba1262ff metal : wrap each operation in debug group (ggml/690) 2024-01-11 21:50:00 +02:00
e66a9a7806 ggml : change GGML_MAX_NAME at compile time (ggml/682)
* change GGML_MAX_NAME to 128

* allow controlling the value of GGML_MAX_NAME through external macro definitions
2024-01-11 21:50:00 +02:00
338442d773 Fix execlp call (ggml/689)
NULL can be an integer constant expression with the value zero, in this case the behavior would be undefined because of an incorrect type being passed to the variable arguments.
2024-01-11 21:50:00 +02:00
10651bddf6 SOTA 2-bit quants (llama/4773)
* iq2_xxs: basics

* iq2_xxs: scalar and AVX2 dot products

Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.

* iq2_xxs: ARM_NEON dot product

Somehow strangely slow (112 ms/token).

* iq2_xxs: WIP Metal

Dequantize works, something is still wrong with the
dot product.

* iq2_xxs: Metal dot product now works

We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s

Not the greatest performance, but not complete garbage either.

* iq2_xxs: slighty faster dot product

TG-128 is now 48.4 t/s

* iq2_xxs: slighty faster dot product

TG-128 is now 50.9 t/s

* iq2_xxs: even faster Metal dot product

TG-128 is now 54.1 t/s.

Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.

* iq2_xxs: dequantize CUDA kernel - fix conflict with master

* iq2_xxs: quantized CUDA dot product (MMVQ)

We get TG-128 = 153.1 t/s

* iq2_xxs: slightly faster CUDA dot product

TG-128 is now at 155.1 t/s.

* iq2_xxs: add to llama ftype enum

* iq2_xxs: fix MoE on Metal

* Fix missing MMQ ops when on hipBLAS

I had put the ggml_supports_mmq call at the wrong place.

* Fix bug in qequantize_row_iq2_xxs

The 0.25f factor was missing.
Great detective work by @ggerganov!

* Fixing tests

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:50:00 +02:00
53d4d0b30d CUDA: fixed redundant value dequantization (llama/4809) 2024-01-11 21:50:00 +02:00
2865e4710b ggml : use __builtin_amdgcn_sudot4 in __dp4a for gfx11 (llama/4787) 2024-01-11 21:50:00 +02:00
c46a74a19d ggml : do not sched_yield when calling BLAS (llama/4761)
* ggml : do not sched_yield when calling BLAS

ggml-ci

* ggml : fix do_yield logic

ggml-ci

* ggml : simplify do_yield logic

ggml-ci
2024-01-11 21:50:00 +02:00
46dc49a6a1 ggml : include stdlib.h before intrin.h (llama/4736) 2024-01-11 21:49:59 +02:00
cc7f872131 swift : checkout ggml commit instead of branch (#1750) 2024-01-10 18:12:06 +02:00
bcc1658cd0 talk-llama : add optional Piper TTS support (#1749)
Add commented-out command to optionally use Piper (https://github.com/rhasspy/piper) as text-to-speech solution for the talk-llama example. Piper voices sound almost like real people which is a big improvement (e.g.) from something like espeak.
2024-01-10 16:15:28 +02:00
c46886f599 server : add request path option(#1741) 2024-01-08 22:39:51 +00:00
29f78392c1 main : add cli option to disable system prints (#1740) 2024-01-08 16:41:28 +02:00
022756a872 server : fix server temperature + add temperature_inc (#1729)
* server : fix server temperature + add temperature_inc

* server : change dashes to underscores in parameter names
2024-01-07 13:35:14 +02:00
3b8c2dff57 talk-llama : sync latest llama.cpp 2024-01-06 17:22:57 +02:00
0b9af32a8b release : v1.5.4 2024-01-05 17:11:27 +02:00
11b1b63b14 fix : cuda order of synchronization when setting a buffer (ggml/679)
* fix : cuda order of synchronization when setting a buffer

* also sync before memcpy

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-01-05 17:01:59 +02:00
0e26a6c92e metal : switch back to default.metallib (ggml/681)
ggml-ci
2024-01-05 16:31:30 +02:00
66d8f0b7f1 ggml : fix q2_k bpw in comments (ggml/680) 2024-01-05 16:31:20 +02:00
ba5bcde874 coreml : fix ANE optimized encoder (#1716) 2024-01-04 16:28:30 +02:00
ab0a8593c5 whisper.swiftui : add .gitignore 2024-01-04 15:00:27 +02:00
668ffc9b23 whispser : reset the "batched" timings (#1721) 2024-01-04 13:38:39 +02:00
9962371f71 release : v1.5.3 2024-01-03 19:36:33 +02:00
993acb5d41 swift : update Package.swift to use ggml as package dependency (#1701)
* updates Package.swift to use ggml as dependency

* cleans up the Package.swift file by removing redundant source files

* updates ggml url src to ggerganov
2024-01-03 19:30:26 +02:00
a3d0aa73d1 ggml : add error handling to graph_compute (#1714) 2024-01-03 15:39:43 +02:00
14c57952f7 cuda : simplify expression
Co-authored-by: slaren <slarengh@gmail.com>
2024-01-03 14:43:51 +02:00
6c369d6788 cuda : mark I16 and I32 ops as unsupported
ggml-ci
2024-01-03 14:43:51 +02:00
4cdd9aad9b metal : add kernel_get_rows_i32
ggml-ci
2024-01-03 14:43:51 +02:00
f38c057503 metal : optimize ggml_mul_mat_id (faster Mixtral PP) (llama/4725)
* ggml : disable fast-math for Metal (cmake build only)

ggml-ci

* metal : fix Metal API debug warnings

* cmake : add -fno-inline for Metal build (llama/4545)

* metal : fix API debug warnings

* metal : fix compile warnings

* metal : use uint64_t for strides

* cmake : rename option to LLAMA_METAL_SHADER_DEBUG

* metal : fix mat-vec Q8_0 kernel for BS > 1

* metal : normalize mat-vec kernel signatures

* cmake : respect LLAMA_QKK_64 option

* metal : fix mat-vec Q4_K kernel for QK_K == 64

* metal : optimizing ggml_mul_mat_id (wip)

* metal : minor fix

* metal : opt mul_mm_id
2024-01-03 14:43:51 +02:00
1e5544b39b metal : enable shader debugging (cmake option) (llama/4705)
* ggml : disable fast-math for Metal (cmake build only)

ggml-ci

* metal : fix Metal API debug warnings

* cmake : add -fno-inline for Metal build (llama/4545)

* metal : fix API debug warnings

* metal : fix compile warnings

* metal : use uint64_t for strides

* cmake : rename option to LLAMA_METAL_SHADER_DEBUG

* metal : fix mat-vec Q8_0 kernel for BS > 1

* metal : normalize mat-vec kernel signatures

* cmake : respect LLAMA_QKK_64 option

* metal : fix mat-vec Q4_K kernel for QK_K == 64

ggml-ci
2024-01-03 14:43:51 +02:00
d5673af79f ggml : add ggml_vdotq_s32 alias (llama/4715)
ggml-ci
2024-01-03 14:43:51 +02:00
a28dacec65 CUDA: fixed tensor cores not being used on RDNA3 (llama/4697) 2024-01-03 14:43:51 +02:00
dbe29d4e33 ggml : add ggml_cpu_has_avx_vnni() (llama/4589)
* feat: add avx_vnni based on intel documents

* ggml: add avx vnni based on intel document

* llama: add avx vnni information display

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* Update ggml.c

Fix indentation upgate

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-03 14:43:51 +02:00
fe3a67c546 CUDA: fix tensor core logic for Pascal and HIP (llama/4682) 2024-01-03 14:43:51 +02:00
b138ff2be3 cuda: fix vmm oom issue on NVIDIA AGX Orin (llama/4687)
Signed-off-by: hydai <hydai@secondstate.io>
2024-01-03 14:43:51 +02:00
cf6f1e4181 ggml : extend ggml_get_rows, ggml_repeat, ggml_concat (ggml/639)
* add more int ops

* ggml_compute_forward_dup_bytes

* add tests

* PR comments

* tests : minor indentations

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-03 14:43:51 +02:00
620a223814 scripts : fix sync order + metal sed 2024-01-03 14:43:51 +02:00
f39f9690ec examples : fix WASM Stack Overflow (#1713)
Fix for problem:

"""
RuntimeError: Aborted(Stack overflow! Stack cookie has been overwritten at 0x12be2b10, expected hex dwords 0x89BACDFE and 0x2135467, but received 0x00000000 0x00000000)
"""

That appears when executing the WASM example with the newer versions.
2024-01-02 16:50:04 +00:00
f9ca90256b docker : fix the publishing of the CUDA Docker image (#1704) 2023-12-30 23:12:31 +02:00
2623640cd6 scripts : do not sync commits from this repo 2023-12-29 15:03:08 +02:00
d87de61ae6 ci : build with CLBlast + ggml-opencl use GGML_API (#1576)
* Build with CLBlast

* Declare GGML_API

After rebasing, examples/talk-llama failed:

"D:\a\whisper.cpp\whisper.cpp\build\ALL_BUILD.vcxproj" (build target) (1) ->
"D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj" (default target) (14) ->
(Link target) ->
  llama.obj : error LNK2019: unresolved external symbol ggml_cl_free_data referenced in function "public: __cdecl llama_model::~llama_model(void)" (??1llama_model@@QEAA@XZ) [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
  llama.obj : error LNK2019: unresolved external symbol ggml_cl_transform_tensor referenced in function "public: void __cdecl llama_model_loader::load_all_data(struct ggml_context *,void (__cdecl*)(float,void *),void *,struct llama_mlock *)" (?load_all_data@llama_model_loader@@QEAAXPEAUggml_context@@P6AXMPEAX@Z1PEAUllama_mlock@@@Z) [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
  D:\a\whisper.cpp\whisper.cpp\build\bin\Release\talk-llama.exe : fatal error LNK1120: 2 unresolved externals [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
2023-12-29 12:23:27 +02:00
f5f485f899 whisper : replace tensor->n_dims with ggml_n_dims(tensor) (#1694) 2023-12-29 11:38:35 +02:00
e77b27c331 sync : ggml (VMM, sync-ggml-am, dotprod ARM fixes, CUDA fixes) (#1691)
* scripts : add sync-ggml-am.sh

* sync : ggml (VMM, ARM dot prod fix, etc.)

* build : fix CUDA build

* ggml : fix some mul mat cases + add tests for src1 F16

dbd02958fa
2023-12-29 11:30:47 +02:00
a5cc3dc8a2 download : fix large q5 model name (#1695)
fixed typo in large-v3-q5-0 model name to match HF link
2023-12-29 11:14:32 +02:00
37a709f655 whisper : Replace WHISPER_PRINT_DEBUG with WHISPER_LOG_DEBUG (#1681) 2023-12-23 12:02:58 +00:00
3a5302108d sync : ggml (ggml_scale, ggml_row_size, etc.) (#1677)
* sync : ggml

* sync : llama.cpp

* talk-llama : fix obsolete param

* ggml-alloc : fix ggml_tallocr_is_own

* talk.wasm : update to new ggml

* ggml : fix type punning in ggml_scale

* ggml : cuda jetson + arm quants warnings
2023-12-22 17:53:39 +02:00
d2ee117a0a docker : Dockerize whisper.cpp (#1674)
* build: add dockerfile for ci

* ci: add action to build/push docker image

* fix: lowercase repository to fix ci

* ci: update cuBLAS flag

* build: install curl and ffmped in image

* docs: add docker section

* fix: improve args check when download model
2023-12-22 11:16:02 +00:00
db8ccdb850 CI : Add coverage for talk-llama when WHISPER_CUBLAS=1 (#1672) 2023-12-21 22:39:46 +00:00
d2419030b0 examples : Revert CMakeLists.txt for talk-llama (#1669) 2023-12-21 22:48:52 +02:00
8986690c2a cmake : set default CUDA architectures (#1667) 2023-12-21 15:44:04 +02:00
9286d3f584 bench.py : add different large models (#1655)
Amend different large v1,v2,v3 models to benchmark.
2023-12-19 12:40:14 +02:00
940de9dbe9 wchess : update README.md 2023-12-14 22:00:47 +02:00
88112c8afb release : v1.5.2 2023-12-14 17:56:39 +02:00
375585c07c wchess : update readme 2023-12-14 17:51:14 +02:00
fd99ece8e3 wchess : whisper assisted chess (#1595)
* wchess: whisper assisted chess

* wchess: fix allowed moves in check

* wchess: touchstart, touchend events

* wchess: css, disabled button

* wchess : html touches

* wchess : minor fixes and code style

* wchess : bump encoder context to 1280

* wchess : index.html

* wchess : fix CI warnings

* wchess : add array header

* wchess : build static library

* wchess : display grammar

* wchess : update UX

* wchess : add comment

* wchess : add README

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-14 15:58:26 +02:00
8171e621fc sync : ggml (Metal fixes, new ops, tests) (#1633)
* sync : ggml (Metal fixes, new ops, tests)

* cuda : fix bin bcast when src1 and dst have different types
2023-12-13 21:55:03 +02:00
ec03661b20 cmake : target windows 8 or above for prefetchVirtualMemory in llama-talk (#1617)
Since we use prefetchVirtualMemory we specify we target win 8 or above, otherwise other compilers will refuse to use the prefetchVirtualMemory api, (I understand you are loading it dynamically but the header definition has this limitation)
2023-12-12 11:35:00 +00:00
6335933a5b cmake : Fix bug in httplib.h for mingw (#1615)
Fix bug in httlib.h for mingw, please see https://github.com/yhirose/cpp-httplib/issues/1669
2023-12-10 17:47:52 +00:00
885b5563d0 metal : fix ggml_metal_log vargs (#1606) 2023-12-08 13:50:50 +02:00
9521ba6801 whisper.objc : disable timestamps for real-time transcription 2023-12-08 13:43:37 +02:00
29511d33c7 whisper : more debug messages + fix fallback logic 2023-12-08 13:43:12 +02:00
7bc4d22337 metal : fix soft_max kernel src1 argument (#1602) 2023-12-08 13:39:32 +02:00
afce6fa113 sync : ggml (new ops, new backend, etc) (#1602)
* sync : ggml (new ops, new backend, etc)

* whisper : remove obsolete broadcasting code

* ggml : remove backend self-registers + fix ggml_concat + n_task logic

* metal : fix assert

* metal : print resource path

* whisper : fix bug if metal init fails
2023-12-07 22:27:19 +02:00
3163090d89 server : pass max-len argument to the server (#1574)
This commit fixes the missing parameter binding for max-len between the input
arguments and wparams.
2023-12-05 23:01:45 +02:00
f0efd0202d ios : Remove #if arch(arm) check for using Metal (#1561) 2023-12-05 01:14:26 +00:00
3c28d1a571 ggml : Fix 32-bit compiler warning (#1575)
Warning about %lu on 32-bit targets. Updated to %zu.
2023-12-03 14:15:28 +00:00
e369243ebd ggml : re-enable blas for src0 != F32 (#1583) 2023-12-01 23:57:52 +02:00
a0ec3fac54 Server : Add support for .vtt format to Whisper server (#1578)
- The code comes from examples/main
- The output mimetype is set to text/vtt

Example usage:
```shell
curl 127.0.0.1:8080/inference \
-H "Content-Type: multipart/form-data" \
-F file="@samples/jfk.wav" \
-F temperature="0.2" \
-F response-format="vtt"
```
2023-11-30 23:44:26 +00:00
6559b538e5 server : backport .srt output format (#1565)
This commit adds a support of .srt format to Whisper server. The code is
effectively backported from examples/main. The output mimetype is set to
application/x-subrip as per https://en.wikipedia.org/wiki/SubRip.

Example usage:

  curl 127.0.0.1:8080/inference \
    -H "Content-Type: multipart/form-data" \
    -F file="@<file-path>" \
    -F temperature="0.2" \
    -F response-format="srt"
2023-11-28 15:42:58 +02:00
73d5005880 cmake : install required ggml.h header (#1568) 2023-11-28 15:41:49 +02:00
6b094b6dfe server : set default CORS headers to allow all (#1567) 2023-11-28 11:55:20 +02:00
641f2f4282 readme : update help (#1560) 2023-11-27 12:04:08 +02:00
bfacd9f8ce CI : Add CUDA 11.8.0 support (#1554)
* try to fix cublas build in CI

* add multiple cuda-toolkit version

* Update build.yml

* Disable CUDA-toolkit 10.2.89
2023-11-27 12:03:16 +02:00
f52e74d4dc CI : Rectify the Clang-Related workflow issues (#1551)
* fix bugs in workflow

* fix missing clang in workflow

* Update build.yml
2023-11-27 11:35:37 +02:00
23c21e92eb server : automatically convert audio on the server (#1539)
* server : automatically convert audio on the server

* server : remove rebundant comments

* server : automatic conversion refactor

* server : update server readme

* server : remove unnecessary comments and tabs

* server : put back remove calling

* server : apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server : check ffmpeg before the server lunch

* server : fix indentation

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server : fix function typo calling

* server : fix function typo calling

* server : add warning in readme

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-27 11:28:34 +02:00
447d49530c whisper : remove trailing whitespaces 2023-11-24 13:13:21 +02:00
9d6ebd877c release : v1.5.1 2023-11-24 12:41:55 +02:00
0ba365f958 metal : add backend function to check device family support (#1547) 2023-11-24 12:37:08 +02:00
010c8ec3ab cuda : sync some minor stuff from llama.cpp (#1548) 2023-11-24 12:36:21 +02:00
ffdb5c4735 whisper : fix typo 2023-11-24 09:45:10 +02:00
a5881d619c server : add --print-realtime param (#1541)
* server : add --print-realtime param

* Fix duplicate realtime output
2023-11-24 09:35:02 +02:00
34f70b3a56 whisper : add whisper_lang_str_full (#1546)
* Update whisper.h

add whisper_lang_fullstr to retrieve the full language name

* Update whisper.cpp

add whisper_lang_fullstr to return the full language name

* fullstr -> str_full

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-24 09:33:13 +02:00
8328d1900f fix(server): typo in temperature parameter (#1545)
Also fixed another typo in comments.
2023-11-23 20:59:36 +02:00
d2bd5f0bdc metal : fix build (#1544) 2023-11-23 20:20:53 +02:00
34209a37a2 readme : add server example 2023-11-23 17:20:33 +02:00
180e062eda go : fixed Makefile for MacOS ARM 64 (#1530)
* Fixed Makefile for MacOS ARM 64 based on https://github.com/ggerganov/whisper.cpp/issues/1344 + proper ggml-metal env var setting

* conditional to fix broken non-macos compilation

* spaces -> tab

* make : fix whitespaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-22 18:08:11 +02:00
5c7be85fdc Change temp file name for server application (#1535)
Avoid issue of removing file if it exists in the current working
directory
2023-11-22 09:23:36 +01:00
146169ec38 bench : pass memcpy threads from cli 2023-11-21 22:27:22 +02:00
9befab5ab9 bench : multi-thread memcpy (#1534) 2023-11-21 22:07:30 +02:00
9ac88f2b57 Close file after writing in server application (#1533)
Fix of mistake leaving file open while reading it again as wav
2023-11-21 20:36:10 +01:00
46f5b6cb08 server : add video to readme 2023-11-21 17:30:43 +02:00
eff3570f78 server : add a REST Whisper server example with OAI-like API (#1380)
* Add first draft of server

* Added json support and base funcs for server.cpp

* Add more user input via api-request

also some clean up

* Add reqest params and load post function

Also some general clean up

* Remove unused function

* Add readme

* Add exception handlers

* Update examples/server/server.cpp

* make : add server target

* Add magic curl syntax

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-20 21:40:24 +02:00
fa19bc4195 whisper : update example in whisper.h (#1529)
update the example in the header, previous examples deprecated.
2023-11-20 20:52:27 +02:00
a01b2e0971 sdl : fix audio callback (#1523) 2023-11-20 13:16:38 +02:00
8159a9ab99 whisper : reuse whisper_decode_with_state (#1521) 2023-11-20 13:16:11 +02:00
7516d9c16d ci : redistribute CUDA DLLs (#1522)
see https://docs.nvidia.com/cuda/eula/index.html#attachment-a
2023-11-19 12:43:22 +02:00
46cc26d1b9 whisper : fix with_state methods to use the correct state (#1519)
Co-authored-by: Sandro Hanea <sandrohanea@microsoft.com>
2023-11-19 11:25:30 +02:00
f784f9fa12 whisper : fix overriding the audio context 2023-11-19 10:32:32 +02:00
ca23f8ee6d cuda : assert ggml_add sources to be contiguous 2023-11-19 10:32:08 +02:00
e2f0eba2d4 ios : sync submodule 2023-11-17 10:42:04 +02:00
d4353e48f7 sync : ggml (ggml-alloc + linker + gguf fixes) (#1501) 2023-11-17 10:00:07 +02:00
bebf0da983 quantize : add support for K-quant types 2023-11-16 16:18:24 +02:00
848e54f3ad bench : fix memcpy bench size 2023-11-16 10:59:32 +02:00
7883d1cae4 talk-llama : improve quote and backtick handling (#1364)
* ISSUE-1329: replace " with ' so it doesn't try to execute code in backticks.

* Typo

* Update to keep possessives in the output

Closes the ' then puts a ' in quotes then reopens the ' to escape the ' characters.
2023-11-16 10:34:05 +02:00
ccc85b4ff8 talk-llama : enable GPU by default 2023-11-15 21:33:00 +02:00
c7606b47df models : add info about distilled models 2023-11-15 21:10:13 +02:00
250 changed files with 104338 additions and 19265 deletions

View File

@ -0,0 +1,40 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=12.3.1
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
WORKDIR /app
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV WHISPER_CUBLAS=1
RUN apt-get update && \
apt-get install -y build-essential \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
# Ref: https://stackoverflow.com/a/53464012
ENV CUDA_MAIN_VERSION=12.3
ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
COPY .. .
RUN make
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
ENV CUDA_MAIN_VERSION=12.3
ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
ENTRYPOINT [ "bash", "-c" ]

19
.devops/main.Dockerfile Normal file
View File

@ -0,0 +1,19 @@
FROM ubuntu:22.04 AS build
WORKDIR /app
RUN apt-get update && \
apt-get install -y build-essential \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY .. .
RUN make
FROM ubuntu:22.04 AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app
ENTRYPOINT [ "bash", "-c" ]

View File

@ -15,16 +15,17 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential libsdl2-dev
make
@ -35,7 +36,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Dependencies
run: |
@ -52,10 +53,10 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Build
uses: cross-platform-actions/action@v0.15.0
uses: cross-platform-actions/action@v0.24.0
with:
operating_system: freebsd
version: '13.2'
@ -76,16 +77,17 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
@ -103,18 +105,19 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev
apt install -y clang build-essential cmake libsdl2-dev
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
make
ctest -L gh --output-on-failure'
@ -130,22 +133,181 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake
cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
make
ctest -L gh --output-on-failure'
ubuntu-22-cmake-sycl:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
dwhisper_sycl: [ON]
dcmake_c_compiler: [icx]
dcmake_cxx_compiler: [icpx]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
continue-on-error: true
steps:
- name: Clone
uses: actions/checkout@v4
- name: add oneAPI to apt
shell: bash
run: |
cd /tmp
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
- name: install oneAPI dpcpp compiler
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
run: |
sudo apt install intel-oneapi-mkl-devel
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl-fp16:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
dwhisper_sycl: [ON]
dcmake_c_compiler: [icx]
dcmake_cxx_compiler: [icpx]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
continue-on-error: true
steps:
- name: Clone
uses: actions/checkout@v4
- name: add oneAPI to apt
shell: bash
run: |
cd /tmp
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
- name: install oneAPI dpcpp compiler
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
run: |
sudo apt install intel-oneapi-mkl-devel
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
windows-msys2:
runs-on: windows-latest
strategy:
fail-fast: false
matrix:
include:
- { sys: UCRT64, env: ucrt-x86_64, build: Release }
- { sys: CLANG64, env: clang-x86_64, build: Release }
steps:
- name: Clone
uses: actions/checkout@v4
- name: Setup ${{ matrix.sys }}
uses: msys2/setup-msys2@v2
with:
update: true
msystem: ${{matrix.sys}}
install: >-
base-devel
mingw-w64-${{matrix.env}}-toolchain
mingw-w64-${{matrix.env}}-cmake
mingw-w64-${{matrix.env}}-SDL2
mingw-w64-${{matrix.env}}-openblas
- name: Build using make
shell: msys2 {0}
run: |
make -j $(nproc)
- name: Clean after building using make
shell: msys2 {0}
run: |
make clean
- name: Build using make w/ OpenBLAS
shell: msys2 {0}
run: |
make WHISPER_OPENBLAS=1 -j $(nproc)
- name: Build using CMake
shell: msys2 {0}
run: |
cmake -B build
cmake --build build --config ${{ matrix.build }} -j $(nproc)
- name: Clean after building using CMake
shell: msys2 {0}
run: |
rm -rf build
- name: Build using CMake w/ OpenBLAS
shell: msys2 {0}
run: |
cmake -B build -DWHISPER_OPENBLAS=ON
cmake --build build --config ${{ matrix.build }} -j $(nproc)
windows:
runs-on: windows-latest
@ -162,14 +324,14 @@ jobs:
s2arc: x64
jnaPath: win32-x86-64
- sdl2: ON
s2ver: 2.26.0
s2ver: 2.28.5
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
uses: microsoft/setup-msbuild@v2
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
@ -194,14 +356,14 @@ jobs:
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload dll
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.jnaPath }}_whisper.dll
path: build/bin/${{ matrix.build }}/whisper.dll
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
uses: actions/upload-artifact@v4
with:
name: whisper-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
@ -217,20 +379,23 @@ jobs:
sdl2: [ON]
include:
- arch: Win32
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.24/OpenBLAS-0.3.24-x86.zip
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x86.zip
s2arc: x86
clblast: OFF
- arch: x64
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.24/OpenBLAS-0.3.24-x64.zip
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x64.zip
s2arc: x64
clblast: ON
clver: 1.6.1
- sdl2: ON
s2ver: 2.26.0
s2ver: 2.28.5
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
uses: microsoft/setup-msbuild@v2
- name: Fetch OpenBLAS
if: matrix.blas == 'ON'
@ -248,6 +413,18 @@ jobs:
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Install OpenCL
if: matrix.clblast == 'ON'
run: vcpkg.exe --triplet=${{ matrix.arch }}-windows install opencl
- name: Fetch CLBlast and set CLBlast_DIR
if: matrix.clblast == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO clblast.zip https://github.com/CNugteren/CLBlast/releases/download/${{ matrix.clver }}/CLBlast-${{ matrix.clver }}-windows-x64.zip
7z x clblast.zip
7z x CLBlast-${{ matrix.clver }}-windows-x64.7z
echo "CLBlast_DIR=$env:GITHUB_WORKSPACE/CLBlast-${{ matrix.clver }}-windows-x64/lib/cmake/CLBlast" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
@ -255,6 +432,7 @@ jobs:
-DWHISPER_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:OPENBLAS_PATH/lib"
-DWHISPER_SDL2=${{ matrix.sdl2 }}
-DWHISPER_CLBLAST=${{ matrix.clblast }}
- name: Build
run: |
@ -269,11 +447,15 @@ jobs:
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Copy clblast.dll
if: matrix.clblast == 'ON'
run: copy "$env:CLBlast_DIR/../../clblast.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
uses: actions/upload-artifact@v4
with:
name: whisper-blas-bin-${{ matrix.arch }}
name: whisper-blas${{ matrix.clblast == 'ON' && '-clblast' || ''}}-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
windows-cublas:
@ -285,22 +467,25 @@ jobs:
arch: [x64]
cublas: [ON]
sdl2: [ON]
cuda-toolkit: [12.2.0, 11.8.0]
include:
- arch: x64
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
s2ver: 2.28.5
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
uses: microsoft/setup-msbuild@v2
- name: Install CUDA Toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.10
uses: Jimver/cuda-toolkit@v0.2.15
with:
cuda: '${{ matrix.cuda-toolkit }}'
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
@ -313,12 +498,20 @@ jobs:
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_CUBLAS=1
-DWHISPER_CUBLAS=${{ matrix.cublas }}
-DWHISPER_SDL2=${{ matrix.sdl2 }}
- name: Build
- name: Build ${{ matrix.cuda-toolkit }}
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
cmake --build . --config ${{ matrix.build }}
- name: Copy CUDA DLLs
run: >
Copy-Item -PassThru
-Path "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/*.dll"
-Include cudart64_*,cublas64_*,cublasLt64_*
-Destination build/bin/${{ matrix.build }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
@ -326,9 +519,9 @@ jobs:
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
uses: actions/upload-artifact@v4
with:
name: whisper-cublas-bin-${{ matrix.arch }}
name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
emscripten:
@ -340,10 +533,10 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Setup emsdk
uses: mymindstorm/setup-emsdk@v12
uses: mymindstorm/setup-emsdk@v14
- name: Verify
run: emcc -v
@ -362,7 +555,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Configure
run: |
@ -380,61 +573,75 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
path: whisper
- name: Clone
uses: actions/checkout@v4
with:
repository: ggerganov/ggml
path: ggml
- name: Install Java
uses: actions/setup-java@v3
uses: actions/setup-java@v4
with:
distribution: zulu
java-version: 17
java-version: 21
- name: Setup Android SDK
uses: android-actions/setup-android@v2
uses: android-actions/setup-android@v3
- name: Build
run: |
cd examples/whisper.android
cd whisper/examples/whisper.android
./gradlew assembleRelease --no-daemon
- name: Build with external ggml
run: |
export PATH_TO_GGML=$PWD/ggml
cd whisper/examples/whisper.android
./gradlew assembleRelease --no-daemon -PGGML_HOME=$PATH_TO_GGML
android_java:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: set up JDK 11
uses: actions/setup-java@v3
uses: actions/setup-java@v4
with:
java-version: '11'
distribution: 'temurin'
cache: gradle
- name: Setup Android SDK
uses: android-actions/setup-android@v2
uses: android-actions/setup-android@v3
with:
api-level: 30
build-tools-version: 30.0.3
cmdline-tools-version: 9.0
- name: Build
run: |
cd examples/whisper.android.java
chmod +x ./gradlew
chmod +x ./gradlew
./gradlew assembleRelease
java:
needs: [ 'windows' ]
runs-on: windows-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Install Java
uses: actions/setup-java@v1
uses: actions/setup-java@v4
with:
java-version: 17
distribution: zulu
java-version: 20
- name: Download Windows lib
uses: actions/download-artifact@v3
uses: actions/download-artifact@v4
with:
name: win32-x86-64_whisper.dll
path: bindings/java/build/generated/resources/main/win32-x86-64
@ -447,7 +654,7 @@ jobs:
./gradlew build
- name: Upload jar
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: whispercpp.jar
path: bindings/java/build/libs/whispercpp-*.jar
@ -469,7 +676,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Test quantize
run: |

57
.github/workflows/docker.yml vendored Normal file
View File

@ -0,0 +1,57 @@
name: Publish Docker image
on:
pull_request:
push:
branches:
- master
jobs:
push_to_registry:
name: Push Docker image to Docker Hub
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
matrix:
config:
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64,linux/arm64" }
- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }
steps:
- name: Check out the repo
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push Docker image (versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v5
with:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
- name: Build and push Docker image (tagged)
uses: docker/build-push-action@v4
with:
context: .
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}"
file: ${{ matrix.config.dockerfile }}

View File

@ -37,7 +37,7 @@ jobs:
run: npm install
- name: Compile addon.node
run: npx cmake-js compile -T whisper-addon -B Release
run: npx cmake-js compile -T addon.node -B Release
- name: Download test model
run: |

5
.gitignore vendored
View File

@ -6,6 +6,8 @@
.vs/
.vscode/
.DS_Store
.vimspector.json
/CMakeSettings.json
build/
build-coreml/
@ -31,6 +33,7 @@ build-sanitize-thread/
/talk-llama
/bench
/quantize
/server
/lsp
arm_neon.h
@ -57,4 +60,4 @@ benchmark_results.csv
cmake-build-debug/
.cxx/
.gradle/
local.properties
local.properties

301
AUTHORS Normal file
View File

@ -0,0 +1,301 @@
# date: Tue Apr 9 20:27:03 EEST 2024
# this file is auto-generated by scripts/gen-authors.sh
0/0 <zero@imaskeleton.me>
0cc4m <picard12@live.de>
0xsourcecode <134374803+0xsourcecode@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Pham <29749331+aarnphm@users.noreply.github.com>
Aaron Taylor <aaron@exphat.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Abitofevrything <54505189+abitofevrything@users.noreply.github.com>
AfryMask <AfryMask@163.com>
Ahmad Bilal <ahmad.bilal@empglabs.com>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
Akash Mahajan <akash7190@gmail.com>
Akash Mahajan <akashmjn@stanford.edu>
Al Hoang <3811822-hoanga@users.noreply.gitlab.com>
Alan <unknown>
Aleksander Andrzejewski <18704749+aleksanderandrzejewski@users.noreply.github.com>
Alex Azarov <alex@azarov.by>
Alex Bacart <13940752+alex-bacart@users.noreply.github.com>
Alex Evgrashin <aevgrashin@yandex.ru>
Alexandr Graschenkov <alexandr.graschenkov91@gmail.com>
Alexandru Mariuti <alex@mariuti.com>
Alexey Kharlamov <alexey@kharlamov.biz>
Alfredo Montesinos <alfredo.montesinos@g.austincc.edu>
Ali Alameh <ali.alameh@isae.edu.lb>
Ananta Bastola <anantarajbastola@gmail.com>
Andreu Huguet <andreuhuguet@gmail.com>
Andrew Huynh <a5thuynh@gmail.com>
Andrew S <andrews54757@gmail.com>
Andy Maloney <asmaloney@gmail.com>
Anton Kostin <masguit42@users.noreply.github.com>
Artyom Mezin <psycho.fading@gmail.com>
Asad Memon <asad.lionpk@gmail.com>
Ashraful Islam <ashraful.meche@gmail.com>
AsukaMinato <asukaminato@nyan.eu.org>
AustinMroz <austinmroz@utexas.edu>
Avik Sengupta <avik@sengupta.net>
Bader-eddine Ouaich <49657842+baderouaich@users.noreply.github.com>
Baffin Lee <baffinlee@gmail.com>
Ben Nortier <bjnortier@gmail.com>
Benjamin Heiniger <benjamin.heiniger@bluewin.ch>
Bo-Yi Wu <appleboy.tw@gmail.com>
Boris Bliznioukov <blib@mail.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Brad Murray <59848399+bradmurray-dt@users.noreply.github.com>
Brian Murray <brian@bmurray.ca>
CRD716 <crd716@gmail.com>
Canis Lupus <Canis-UK@users.noreply.github.com>
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
ChangSeok Oh <shivamidow@users.noreply.github.com>
Chaoqun <27287694+OpenWaygate@users.noreply.github.com>
Chia-Hsiang Cheng <88014292+garychia@users.noreply.github.com>
Chidi Williams <williamschidi1@gmail.com>
Christian <12550267+iceychris@users.noreply.github.com>
Clifford Heath <clifford.heath@gmail.com>
Colin <github@whoisc.cc>
DGdev91 <DGdev91@users.noreply.github.com>
Damian Czaja <trojan295@protonmail.com>
Daniel Bevenius <daniel.bevenius@gmail.com>
David <dnhkng@gmail.com>
David Thorpe <djt@mutablelogic.com>
Davidson Francis <davidsondfgl@gmail.com>
Dener Stassun <denerstassun@gmail.com>
Didzis Gosko <didzis@users.noreply.github.com>
Digipom <admin@digipom.com>
Dimo <dimo@ieee.org>
Dody Suria Wijaya <dodysw@gmail.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Duncan McConnell <ddmcconnell4@gmail.com>
Egor Egorov <me@egorfine.com>
Elkana Bardugo <ttv200@gmail.com>
Emmanuel Schmidbauer <eschmidbauer@gmail.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Eric Swanson <eswanson@alloscomp.com>
Eric Tendian <erictendian@gmail.com>
Erik Scholz <Green-Sky@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com>
Evan Martin <evan.martin@gmail.com>
Eve <139727413+netrunnereve@users.noreply.github.com>
Evgeny Kuznetsov <evgeny@kuznetsov.md>
F1L1P <78918286+F1L1Pv2@users.noreply.github.com>
Fangjun Kuang <csukuangfj@gmail.com>
Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
FlippFuzz <41221030+FlippFuzz@users.noreply.github.com>
Gang Chen <goncha@gmail.com>
Gavin Cai <gavin1818@hotmail.com>
George Hindle <george@georgehindle.com>
Georgi Gerganov <ggerganov@gmail.com>
GitAritron <103900385+GitAritron@users.noreply.github.com>
GiviMAD <GiviMAD@users.noreply.github.com>
Gleicon Moraes <gleicon@gmail.com>
Gregor Jasny <gjasny@googlemail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
HY. Kelvin Lee <34256578+hykelvinlee42@users.noreply.github.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hang <bebound@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hrishikesh Barman <geekodour@users.noreply.github.com>
Ian Bicking <ian@ianbicking.org>
Ian Bull <irbull@eclipsesource.com>
Ikko Ashimine <eltociear@gmail.com>
InconsolableCellist <23345188+InconsolableCellist@users.noreply.github.com>
Ismatulla Mansurov <47342870+sapoepsilon@users.noreply.github.com>
Ivan Gorin <ivangorin21@gmail.com>
JJ <103335846+computerscienceiscool@users.noreply.github.com>
Jack Mousseau <jmousseau@users.noreply.github.com>
JacobLinCool <jacoblincool@gmail.com>
Jakub Ráček <blizzcz@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jay Binks <jaybinks@gmail.com>
Jhen-Jie Hong <developer@jhen.me>
Jhen-Jie Hong <iainst0409@gmail.com>
JidongZhang-THU <1119708529@qq.com>
Jo Liss <joliss42@gmail.com>
Johan <jr.raffin@gmail.com>
Johannes Gäßler <johannesg@5d6.de>
John Balis <phobossystems@gmail.com>
Jonathan Soo <jcsoo@agora.com>
Jonno <1160532+razodactyl@users.noreply.github.com>
Joonas Pihlajamaa <joonas.pihlajamaa@iki.fi>
Jose <34888496+Jerry-Master@users.noreply.github.com>
Josh Bleecher Snyder <josharian@gmail.com>
Judd <foldl@users.noreply.github.com>
Jumper775 <78500318+jumpers775@users.noreply.github.com>
Justine Tunney <jtunney@gmail.com>
KP Kaiser <kirk@zothcorp.com>
Kamilake <exjang0@gmail.com>
Kartik Saranathan <278928+Kartiku@users.noreply.github.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Kevin Brothaler <admin@digipom.com>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kreijstal <rainb@tfwno.gf>
Kylin <56434533+KyL0N@users.noreply.github.com>
LBlue <153975653+lbluep@users.noreply.github.com>
Larry Battle <larry.battle.tech@gmail.com>
Laytan Laats <laytanlaats@hotmail.com>
Leo Moll <leo.moll@yeasoft.com>
Lexevolution <31176843+Lexevolution@users.noreply.github.com>
LittleLoli <26589867+WhichWho@users.noreply.github.com>
Lucas Zanek <57494138+LucasZNK@users.noreply.github.com>
Luis Herrera <herrera-luis@users.noreply.github.com>
Lukas Rist <glaslos@gmail.com>
M. A. Ali <73258591+MightyStud@users.noreply.github.com>
M. Eren Akbiyik <erenakbiyik@gmail.com>
Maciek <maciek.mab122@gmail.com>
Marcin Mielniczuk <marmistrz.dev@zoho.eu>
Martin Warnaar <martinwarnaar@gmail.com>
Matheus de Sousa <23645013+keyehzy@users.noreply.github.com>
Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matija Pevec <mightymatth@users.noreply.github.com>
Maximiliano Levi <8160966+maxilevi@users.noreply.github.com>
Meng, Hengyu <hengyu.meng@intel.com>
Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Rienstra <mrienstra@gmail.com>
Mikhail Grigorev <sleuthhound@gmail.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohit Agarwal <mohit@sdf.org>
Murilo Santana <mvrilo@gmail.com>
Neil Chudleigh <nchudleigh@users.noreply.github.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
Nicholas Albion <nalbion@yahoo.com>
Niels Mayer <Niels.Mayer@gmail.com>
Okabintaro <103938900+Okabintaro@users.noreply.github.com>
Oleg Sidorov <me@whitebox.io>
Oleg Sidorov <oleg@sidorov.nl>
Ondrej Kokes <ondrej.kokes@gmail.com>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Philipp Zabel <philipp.zabel@gmail.com>
Philippe Normand <phil@base-art.net>
Przemysław Pawełczyk <przemoc@gmail.com>
Qianhe Chen <54462604+chenqianhe@users.noreply.github.com>
Radosław Gryta <radek.gryta@gmail.com>
Reinforce-II <fate@eastal.com>
Reinis Muiznieks <muiznieks.reinis@gmail.com>
RelatedTitle <r3latedtitle@gmail.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Rich Jones <miserlou@gmail.com>
Robin <robin.xw@hotmail.com>
Roddur Dasgupta <roddurd@gmail.com>
Roland Rabien <figbug@gmail.com>
Rotem Dan <rotemdan@gmail.com>
Ryan Hitchman <hitchmanr@gmail.com>
Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com>
RyanChang <ftes90015@gmail.com>
Sam <49637763+Onlyartist9@users.noreply.github.com>
Sam Pullara <spullara@gmail.com>
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Sergio López <slp@sinrega.org>
Siddharth Ramakrishnan <srr2141@columbia.edu>
Simon Moisselin <simon.moisstoll@gmail.com>
Sindre Sorhus <sindresorhus@gmail.com>
Slava Primenko <primenko.s@gmail.com>
Syahmi Azhar <prsyahmi@gmail.com>
Syed Jafri <syedjafri97@gmail.com>
Sơn Phan Trung <phantrungson17@gmail.com>
Taisei Mima <bhbstar.me@gmail.com>
Takeshi Inoue <inoue.takeshi@gmail.com>
Tamotsu Takahashi <ttakah+github@gmail.com>
Taras Glek <taras@thegp.com>
Tauseef Mohiuddin <35351464+tauseefmohammed2@users.noreply.github.com>
Thijs Raymakers <thijs@raymakers.nl>
Thomas Fitzsimmons <fitzsim@fitzsim.org>
Tiago Fassoni <tiagofassoni@users.noreply.github.com>
Tienshiao Ma <tienshiao@tienshiao.org>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Tobrun <tobrun.van.nuland@gmail.com>
Todd <taf2@users.noreply.github.com>
Tong Li <31761981+litongjava@users.noreply.github.com>
Topping1 <78745143+Topping1@users.noreply.github.com>
Travis Cline <travis.cline@gmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
Vadim Peretokin <vperetokin@hey.com>
Valentin Gosu <1454649+valenting@users.noreply.github.com>
Vulcan <93451215+trholding@users.noreply.github.com>
WhiteOlivierus <36532695+WhiteOlivierus@users.noreply.github.com>
Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com>
Yajing Tang <phillis@google.com>
Yang Shen <aplshenyang@gmail.com>
Yunès <jean.baptiste.yunes@free.fr>
ZaBlazzingZephyrus <119159668+blazingzephyr@users.noreply.github.com>
Zigfrid Zvezdin <ziggerZZ@gmail.com>
Zollner <24618122+Zolliner@users.noreply.github.com>
ai-at-home <149282006+ai-at-home@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
andypayne <apayne@gmail.com>
ardfork <134447697+ardfork@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
be-next <jerome.ramette@gmail.com>
bert hubert <bert@hubertnet.nl>
bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com>
bocytko <bocytko+github@gmail.com>
boolemancer <48014766+boolemancer@users.noreply.github.com>
boolemancer <boolemancer@gmail.com>
bradmit <151883577+bradmit@users.noreply.github.com>
brunofaustino <b.fa.amorim@gmail.com>
bssrdf <merlintiger@hotmail.com>
byte-6174 <88070277+byte-6174@users.noreply.github.com>
cdosoftei <ciprian.dosoftei@gmail.com>
clach04 <Chris.Clark@actian.com>
compilade <113953597+compilade@users.noreply.github.com>
conradg <conradjgodfrey@gmail.com>
ddpasa <112642920+ddpasa@users.noreply.github.com>
denersc <denerstassun@gmail.com>
dscripka <dscripka@users.noreply.github.com>
duthils <duthils@duthils.net>
ecneladis <ecneladis@users.noreply.github.com>
faker <nspyia2002@gmail.com>
fitzsim <fitzsim@fitzsim.org>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
genevera (she/her) <genevera@users.noreply.github.com>
geniusnut <geniusnut@gmail.com>
greeshmay <greeshmay@gmail.com>
hydai <z54981220@gmail.com>
iamthad <thadeus.j.fleming@gmail.com>
james wolf <contractorwolf@hotmail.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
jorismertz <35079666+jorismertz@users.noreply.github.com>
junkfood <69683722+JunkFood02@users.noreply.github.com>
jwijffels <jwijffels@bnosac.be>
kamranjon <kamranjon@gmail.com>
katsu560 <katsu560oo-@docomo.ne.jp>
kennethge <57784063+kenneth-ge@users.noreply.github.com>
keyehzy <msamuel@aluno.puc-rio.br>
leejet <leejet714@gmail.com>
litong <31761981+litongjava@users.noreply.github.com>
lnyan <lkwq007@gmail.com>
m.bell <m.bell@techsmith.com>
mkiol <mkiol@users.noreply.github.com>
novag <7754358+novag@users.noreply.github.com>
pajowu <pajowu@pajowu.de>
polarmoon <90010972+polarmoon@users.noreply.github.com>
rlapray <lapray.romain@gmail.com>
sandrohanea <40202887+sandrohanea@users.noreply.github.com>
semiformal-net <84111142+semiformal-net@users.noreply.github.com>
shibukazu <61775791+shibukazu@users.noreply.github.com>
shikokuchuo <53399081+shikokuchuo@users.noreply.github.com>
slaren <slarengh@gmail.com>
slashlib <slashlib@users.noreply.github.com>
snadampal <87143774+snadampal@users.noreply.github.com>
st-gr <38470677+st-gr@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thefinaldegree <thefinaldegree@gmail.com>
trixirt <trix@redhat.com>
ulatekh <ulatekh@yahoo.com>
undef <undefdev@gmail.com>
venkr <venkateshrameshkumar+1@gmail.com>
vicalloy <zbirder@gmail.com>
xdrudis <xavierdrudis@yahoo.es>
zhouwg <6889919+zhouwg@users.noreply.github.com>
布客飞龙 <562826179@qq.com>
Артём Земляк <azemlyak@smart-consulting.ru>

View File

@ -1,6 +1,10 @@
cmake_minimum_required (VERSION 3.5)
project(whisper.cpp VERSION 1.5.0)
# Allow for the creation of solution folders.
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
project(whisper.cpp VERSION 1.6.1)
set(SOVERSION 1)
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
@ -55,10 +59,17 @@ option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDA
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
option(WHISPER_FFMPEG "whisper: support building and linking with ffmpeg libs (avcodec, swresample, ...)" OFF)
endif()
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_AVX512 "whisper: disable AVX512" ON)
option(WHISPER_NO_AVX512_VBMI "whisper: disable AVX512-VBMI" ON)
option(WHISPER_NO_AVX512_VNNI "whisper: disable AVX512-VNNI" ON)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
@ -68,13 +79,19 @@ if (APPLE)
option(WHISPER_METAL_NDEBUG "whisper: disable Metal debugging" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
option(WHISPER_METAL_EMBED_LIBRARY "whisper: embed Metal library" OFF)
else()
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
option(WHISPER_OPENBLAS_INTERFACE64 "whisper: use OpenBLAS w/ 64-bit interface" OFF)
option(WHISPER_CUDA "whisper: support for CUDA" OFF)
option(WHISPER_CUBLAS "whisper: support for CUDA (deprecated)" OFF)
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
option(WHISPER_MKL "whisper: use Intel Math Kernel Library (MKL)" OFF)
option(WHISPER_SYCL "whisper: use SYCL" OFF)
option(WHISPER_SYCL_F16 "whisper: use 16 bit floats for sycl calculations" OFF)
endif()
option(WHISPER_PERF "whisper: enable perf timings" OFF)
@ -105,6 +122,33 @@ endif()
find_package(Threads REQUIRED)
#compile flag sycl
if (WHISPER_SYCL)
set(CMAKE_CXX_STANDARD 17)
else()
set(CMAKE_CXX_STANDARD 11)
endif()
if (WHISPER_FFMPEG)
# As of cmake 3.27, there is no official cmake support for FindFFmpeg.
# Consequnelty we added a FindFFmpeg.cmake script the cmake subfolder:
# whisper.cpp does not need the full ffmpeg libs, just AVFORMAT AVCODEC AVUTIL SWRESAMPLE
# libswresample performs highly optimized audio resampling, rematrixing and sample format conversion operations
# libavcodec provides a generic encoding/decoding framework and contains multiple decoders and encoders for audio, video and subtitle streams, and several bitstream filters.
# libavformat provides a generic framework for multiplexing and demultiplexing (muxing and demuxing) audio, video and subtitle streams.
find_package(FFmpeg REQUIRED)
if (NOT ${FFMPEG_FOUND})
message(FATAL_ERROR "Cannot find ffmpeg libs/headers")
endif()
message(STATUS "Found ffmpeg libs: ${FFMPEG_LIBRARIES}")
message(STATUS "Found ffmpeg headers in: ${FFMPEG_INCLUDE_DIRS}")
message(STATUS "ffmpeg definitions: ${FFMPEG_DEFINITIONS}")
message(STATUS "Found avformat ${AVFORMAT_VERSION}")
include_directories(${FFMPEG_INCLUDE_DIRS})
add_compile_definitions(WHISPER_FFMPEG)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${FFMPEG_LIBRARIES})
endif()
# on APPLE
if (APPLE)
# include Accelerate framework
@ -115,7 +159,7 @@ if (APPLE)
message(STATUS "Accelerate framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64)
else()
message(FATAL_ERROR "Accelerate framework not found")
endif()
@ -145,8 +189,42 @@ if (APPLE)
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
# copy ggml-metal.metal to bin directory
# copy ggml-common.h and ggml-metal.metal to bin directory
configure_file(ggml-common.h bin/ggml-common.h COPYONLY)
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
if (WHISPER_METAL_EMBED_LIBRARY)
enable_language(ASM)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_EMBED_LIBRARY)
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
set(COMMON_HEADER "${CMAKE_CURRENT_SOURCE_DIR}/ggml-common.h")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
set(EMBED_METALLIB_SOURCE "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-combined.metal")
add_custom_command(
OUTPUT ${EMBED_METALLIB_SOURCE}
COMMAND sed -e "/^#include \\\"ggml-common.h\\\"/r ${COMMON_HEADER}" -e "/^#include \\\"ggml-common.h\\\"/d" ${METALLIB_SOURCE} > ${EMBED_METALLIB_SOURCE}
DEPENDS ${METALLIB_SOURCE} ${COMMON_HEADER}
COMMENT "Generating combined Metal library for embedding"
)
add_custom_command(
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".incbin \\\"${EMBED_METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
DEPENDS ${EMBED_METALLIB_SOURCE}
COMMENT "Generate assembly for embedded Metal library"
)
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY})
endif()
endif()
if (WHISPER_COREML)
@ -170,30 +248,82 @@ endif()
if (WHISPER_OPENBLAS)
set(WHISPER_BLAS_VENDOR "OpenBLAS")
set(WHISPER_BLAS ON)
# BLA_PKGCONFIG_BLAS is supported since CMake 3.25.
# FindBLAS.cmake pkg-config logic seems incomplete, because when
# BLA_SIZEOF_INTEGER is 8, then it should search for blas64 instead of blas.
# blas.pc/blas64.pc are not always provided, so let's be more specific
# and go with openblas.pc/openblas64.pc if WHISPER_OPENBLAS is on.
if (WHISPER_OPENBLAS_INTERFACE64)
set(WHISPER_BLAS_LIB "openblas64")
else ()
set(WHISPER_BLAS_LIB "openblas")
endif ()
set(BLA_PKGCONFIG_BLAS ${WHISPER_BLAS_LIB})
# OpenBLAS prebuilt libraries for Windows do not have "64" suffix in filename.
# (But .pc file has "64" suffix in filename for USE_64BITINT=1 Windows build.)
if (MSVC)
set(WHISPER_BLAS_LIB "openblas")
endif ()
endif()
if (WHISPER_BLAS)
if (WIN32)
if(DEFINED ENV{OPENBLAS_PATH})
set(BLAS_LIBRARIES $ENV{OPENBLAS_PATH}/lib/libopenblas.dll.a)
message(STATUS "Libraries ${BLAS_LIBRARIES}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories($ENV{OPENBLAS_PATH}/include)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
if (NOT "$ENV{OPENBLAS_PATH}" STREQUAL "")
if (WHISPER_STATIC)
set(WHISPER_BLAS_LIB_PREFIX ${CMAKE_STATIC_LIBRARY_PREFIX})
set(WHISPER_BLAS_LIB_SUFFIX ${CMAKE_STATIC_LIBRARY_SUFFIX})
else ()
message(FATAL_ERROR "BLAS library was not found. Environment variable OPENBLAS_PATH not defined.")
if (CMAKE_IMPORT_LIBRARY_SUFFIX)
set(WHISPER_BLAS_LIB_PREFIX ${CMAKE_IMPORT_LIBRARY_PREFIX})
set(WHISPER_BLAS_LIB_SUFFIX ${CMAKE_IMPORT_LIBRARY_SUFFIX})
else ()
set(WHISPER_BLAS_LIB_PREFIX ${CMAKE_SHARED_LIBRARY_PREFIX})
set(WHISPER_BLAS_LIB_SUFFIX ${CMAKE_SHARED_LIBRARY_SUFFIX})
endif ()
endif ()
# OpenBLAS prebuilt libraries hardcode "lib" prefix in filename even on Windows
if (WHISPER_OPENBLAS)
set(WHISPER_BLAS_LIB_PREFIX "lib")
endif ()
message(STATUS "BLAS compatible library path provided")
set(BLAS_LIBRARIES "$ENV{OPENBLAS_PATH}/lib/${WHISPER_BLAS_LIB_PREFIX}${WHISPER_BLAS_LIB}${WHISPER_BLAS_LIB_SUFFIX}")
message(STATUS "Libraries ${BLAS_LIBRARIES}")
set(BLAS_INCLUDE_DIRS "$ENV{OPENBLAS_PATH}/include")
message(STATUS "Include dirs ${BLAS_INCLUDE_DIRS}")
if (NOT EXISTS "${BLAS_LIBRARIES}")
message(FATAL_ERROR "BLAS library was not found. Environment variable OPENBLAS_PATH misdefined.")
endif ()
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories(${BLAS_INCLUDE_DIRS})
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else ()
set(BLA_STATIC 1)
if (WHISPER_STATIC)
# FindBLAS.cmake pkg-config logic seems incomplete, because when
# BLA_STATIC is on, then it should use pkg_check_modules_static
# instead of pkg_check_modules.
# Some manual variable overriding may be necessary if you don't
# achieve desired results.
set(BLA_STATIC 1)
endif ()
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
set(BLA_SIZEOF_INTEGER 8)
if (WHISPER_OPENBLAS_INTERFACE64)
set(BLA_SIZEOF_INTEGER 8)
else ()
set(BLA_SIZEOF_INTEGER 4)
endif()
set(BLA_PREFER_PKGCONFIG 1)
find_package(BLAS)
if(BLAS_FOUND)
message(STATUS "BLAS compatible library found")
message(STATUS "Libraries ${BLAS_LIBRARIES}")
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas /usr/local/include/openblas $ENV{BLAS_HOME}/include)
if (NOT DEFINED BLAS_INCLUDE_DIRS)
if (PKGC_BLAS_FOUND)
set(BLAS_INCLUDE_DIRS "${PKGC_BLAS_INCLUDE_DIRS}")
else ()
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas)
endif()
endif()
message(STATUS "Include dirs ${BLAS_INCLUDE_DIRS}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories(${BLAS_INCLUDE_DIRS})
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
@ -203,7 +333,19 @@ if (WHISPER_BLAS)
endif ()
endif ()
if (WHISPER_MKL)
find_package(MKL CONFIG REQUIRED PATHS $ENV{MKLROOT})
message(STATUS "Imported oneMKL targets: ${MKL_IMPORTED_TARGETS}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_BLAS_USE_MKL)
endif()
if (WHISPER_CUBLAS)
message(WARNING "WHISPER_CUBLAS is deprecated and will be removed in the future.\nUse WHISPER_CUDA instead")
set(WHISPER_CUDA ON)
endif()
if (WHISPER_CUDA)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
@ -213,16 +355,24 @@ if (WHISPER_CUBLAS)
enable_language(CUDA)
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_CUDA ggml-cuda.h)
list(APPEND GGML_SOURCES_CUDA ggml-cuda.cu)
add_compile_definitions(GGML_USE_CUBLAS)
add_compile_definitions(GGML_USE_CUDA)
if (WHISPER_STATIC)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
if (WIN32)
# As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
else ()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
endif()
else()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cuda_driver)
else()
message(FATAL_ERROR "cuBLAS not found")
endif()
@ -244,16 +394,18 @@ if (WHISPER_HIPBLAS)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
set(GGML_HEADERS_ROCM "ggml-cuda.h")
file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
if (WHISPER_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ggml-rocm)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
else()
message(FATAL_ERROR "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
endif()
@ -278,6 +430,30 @@ if( WHISPER_OPENVINO )
find_package(OpenVINO REQUIRED COMPONENTS Runtime)
endif()
if (WHISPER_SYCL)
if ( NOT DEFINED ENV{ONEAPI_ROOT})
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
endif()
#todo: AOT
find_package(IntelSYCL REQUIRED)
if (WHISPER_SYCL_F16)
add_compile_definitions(GGML_SYCL_F16)
endif()
add_compile_definitions(GGML_USE_SYCL)
add_compile_options(-I./) #include DPCT
add_compile_options(-I/${SYCL_INCLUDE_DIR})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
set(GGML_HEADERS_SYCL ggml-sycl.h)
set(GGML_SOURCES_SYCL ggml-sycl.cpp)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
endif()
# compiler flags
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
@ -309,7 +485,8 @@ if (WHISPER_ALL_WARNINGS)
endif()
if (NOT MSVC)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
# TODO: temporary disabled until we figure out ggml-metal.m
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-math-errno -ffinite-math-only -funsafe-math-optimizations")
endif()
@ -325,21 +502,35 @@ else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /utf-8")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /utf-8")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /utf-8")
if(NOT WHISPER_NO_AVX2)
if(NOT WHISPER_NO_AVX512)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX512")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX512")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX512")
# MSVC has no compile-time flags enabling specific
# AVX512 extensions, neither it defines the
# macros corresponding to the extensions.
# Do it manually.
if (NOT WHISPER_NO_AVX512_VBMI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
endif()
if (NOT WHISPER_NO_AVX512_VNNI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
endif()
elseif(NOT WHISPER_NO_AVX2)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
elseif(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
else()
if (EMSCRIPTEN)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread -s TOTAL_STACK=5242880")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx")
@ -347,6 +538,15 @@ else()
if(NOT WHISPER_NO_AVX2)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
endif()
if(NOT WHISPER_NO_AVX512)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw")
if(NOT WHISPER_NO_AVX512_VBMI)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx512vbmi")
endif()
if(NOT WHISPER_NO_AVX512_VNNI)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx512vnni")
endif()
endif()
if(NOT WHISPER_NO_FMA)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
endif()
@ -433,6 +633,7 @@ if (WHISPER_COREML)
set_target_properties(${TARGET} PROPERTIES
COMPILE_FLAGS "-fobjc-arc"
)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
endif()
if (WHISPER_OPENVINO)
@ -451,6 +652,7 @@ if (WHISPER_OPENVINO)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
endif()
#
@ -471,10 +673,21 @@ add_library(${TARGET}
${GGML_SOURCES_METAL}
${GGML_SOURCES_CUDA}
${GGML_SOURCES_OPENCL}
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
whisper.h
whisper.cpp
)
include_directories (
.
)
# Set the version numbers
set_target_properties(whisper PROPERTIES
VERSION ${PROJECT_VERSION}
SOVERSION ${SOVERSION}
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
@ -489,6 +702,10 @@ if (WHISPER_OPENVINO)
target_link_libraries(${TARGET} PRIVATE whisper.openvino)
endif()
if (WHISPER_MKL)
target_link_libraries(${TARGET} PUBLIC MKL::MKL)
endif()
if (MSVC)
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
@ -498,6 +715,7 @@ else()
endif()
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${TARGET} PUBLIC
${CMAKE_DL_LIBS}
)
@ -521,7 +739,13 @@ endif()
if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
# Only configure gmml CUDA architectures is not globally set
if (NOT DEFINED GGML_CUDA_ARCHITECTURES)
# Not overriden by user, so set defaults
set(GGML_CUDA_ARCHITECTURES 52 61 70)
endif()
message(STATUS "GGML Configuring CUDA architectures ${GGML_CUDA_ARCHITECTURES}")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES ${GGML_CUDA_ARCHITECTURES})
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
endif()
@ -533,7 +757,8 @@ target_compile_definitions(${TARGET} PUBLIC
${WHISPER_EXTRA_FLAGS}
)
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h")
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "ggml.h;whisper.h")
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
include(GNUInstallDirs)

View File

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023 Georgi Gerganov
Copyright (c) 2023-2024 The ggml authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

208
Makefile
View File

@ -1,4 +1,4 @@
default: main bench quantize
default: main bench quantize server
ifndef UNAME_S
UNAME_S := $(shell uname -s)
@ -18,6 +18,17 @@ ifndef NVCC_VERSION
endif
endif
# In GNU make default CXX is g++ instead of c++. Let's fix that so that users
# of non-gcc compilers don't have to provide g++ alias or wrapper.
DEFCC := cc
DEFCXX := c++
ifeq ($(origin CC),default)
CC := $(DEFCC)
endif
ifeq ($(origin CXX),default)
CXX := $(DEFCXX)
endif
CCV := $(shell $(CC) --version | head -n 1)
CXXV := $(shell $(CXX) --version | head -n 1)
@ -42,6 +53,12 @@ CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
LDFLAGS =
ifdef MACOSX_DEPLOYMENT_TARGET
CFLAGS += -mmacosx-version-min=$(MACOSX_DEPLOYMENT_TARGET)
CXXFLAGS += -mmacosx-version-min=$(MACOSX_DEPLOYMENT_TARGET)
LDFLAGS += -mmacosx-version-min=$(MACOSX_DEPLOYMENT_TARGET)
endif
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
@ -99,6 +116,16 @@ ifeq ($(filter $(UNAME_S),Linux Darwin DragonFly FreeBSD NetBSD OpenBSD Haiku),$
CXXFLAGS += -pthread
endif
# detect Windows
ifneq ($(findstring _NT,$(UNAME_S)),)
_WIN32 := 1
endif
# Windows Sockets 2 (Winsock) for network-capable apps
ifeq ($(_WIN32),1)
LWINSOCK2 := -lws2_32
endif
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
@ -107,7 +134,7 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
CPUINFO_CMD := sysctl machdep.cpu.features machdep.cpu.leaf7_features
else ifeq ($(UNAME_S),Linux)
CPUINFO_CMD := cat /proc/cpuinfo
else ifneq (,$(filter MINGW32_NT% MINGW64_NT%,$(UNAME_S)))
else ifneq (,$(filter MINGW32_NT% MINGW64_NT% MSYS_NT%,$(UNAME_S)))
CPUINFO_CMD := cat /proc/cpuinfo
else ifneq (,$(filter DragonFly FreeBSD,$(UNAME_S)))
CPUINFO_CMD := grep Features /var/run/dmesg.boot
@ -115,42 +142,69 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
CPUINFO_CMD := sysinfo -cpu
endif
# x86 ISA extensions (chronological order)
ifdef CPUINFO_CMD
AVX_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX|AVX1.0')
ifneq (,$(AVX_M))
CFLAGS += -mavx
CXXFLAGS += -mavx
endif
AVX2_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX2')
ifneq (,$(AVX2_M))
CFLAGS += -mavx2
CXXFLAGS += -mavx2
endif
FMA_M := $(shell $(CPUINFO_CMD) | grep -iw 'FMA')
ifneq (,$(FMA_M))
CFLAGS += -mfma
CXXFLAGS += -mfma
endif
F16C_M := $(shell $(CPUINFO_CMD) | grep -iw 'F16C')
ifneq (,$(F16C_M))
CFLAGS += -mf16c
CXXFLAGS += -mf16c
endif
SSE3_M := $(shell $(CPUINFO_CMD) | grep -iwE 'PNI|SSE3')
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -iw 'SSSE3')
AVX_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX|AVX1.0')
F16C_M := $(shell $(CPUINFO_CMD) | grep -iw 'F16C')
FMA_M := $(shell $(CPUINFO_CMD) | grep -iw 'FMA')
AVX2_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX2')
AVX512F_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX512F')
AVX512VBMI_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX512VBMI')
AVX512VNNI_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX512_VNNI|AVX512VNNI')
# AVX-512 has many subsets, so let's make it easy to disable them all
ifneq ($(filter-out 0,$(WHISPER_NO_AVX512)),)
AVX512F_M :=
AVX512VBMI_M :=
AVX512VNNI_M :=
endif
ifneq (,$(SSE3_M))
CFLAGS += -msse3
CXXFLAGS += -msse3
endif
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -iw 'SSSE3')
ifneq (,$(SSSE3_M))
CFLAGS += -mssse3
CXXFLAGS += -mssse3
endif
ifneq (,$(AVX_M))
CFLAGS += -mavx
CXXFLAGS += -mavx
endif
ifneq (,$(F16C_M))
CFLAGS += -mf16c
CXXFLAGS += -mf16c
endif
ifneq (,$(FMA_M))
CFLAGS += -mfma
CXXFLAGS += -mfma
endif
ifneq (,$(AVX2_M))
CFLAGS += -mavx2
CXXFLAGS += -mavx2
endif
ifneq (,$(AVX512F_M))
CFLAGS += -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw
CXXFLAGS += -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw
endif
ifneq (,$(AVX512VBMI_M))
CFLAGS += -mavx512vbmi
CXXFLAGS += -mavx512vbmi
endif
ifneq (,$(AVX512VNNI_M))
CFLAGS += -mavx512vnni
CXXFLAGS += -mavx512vnni
endif
endif
endif
@ -169,6 +223,8 @@ ifndef WHISPER_NO_ACCELERATE
# Mac M1 - include Accelerate framework
ifeq ($(UNAME_S),Darwin)
CFLAGS += -DGGML_USE_ACCELERATE
CFLAGS += -DACCELERATE_NEW_LAPACK
CFLAGS += -DACCELERATE_LAPACK_ILP64
LDFLAGS += -framework Accelerate
endif
endif
@ -192,26 +248,54 @@ ifndef WHISPER_NO_METAL
endif
endif
ifdef WHISPER_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
LDFLAGS += -lopenblas
ifneq ($(filter-out 0,$(WHISPER_OPENBLAS)),) # OpenBLAS
WHISPER_OPENBLAS_INTERFACE64 ?= 0 # use 32-bit interface by default
ifneq ($(filter-out 0,$(WHISPER_OPENBLAS_INTERFACE64)),)
WHISPER_BLAS_LIB := openblas64
else
WHISPER_BLAS_LIB := openblas
endif
ifneq ($(OPENBLAS_PATH),)
WHISPER_BLAS_CFLAGS := -I$(OPENBLAS_PATH)/include
WHISPER_BLAS_LDFLAGS := -L$(OPENBLAS_PATH)/lib -l$(WHISPER_BLAS_LIB)
else
WHISPER_BLAS_LIB_PC_EXISTS := $(shell pkg-config --exists $(WHISPER_BLAS_LIB) && echo 1)
ifneq ($(filter-out 0,$(WHISPER_BLAS_LIB_PC_EXISTS)),)
WHISPER_BLAS_CFLAGS := $(shell pkg-config --cflags $(WHISPER_BLAS_LIB))
WHISPER_BLAS_LDFLAGS := $(shell pkg-config --libs $(WHISPER_BLAS_LIB))
else
WHISPER_BLAS_CFLAGS := -I/usr/include/openblas
WHISPER_BLAS_LDFLAGS := -l$(WHISPER_BLAS_LIB)
endif
endif
CFLAGS += $(WHISPER_BLAS_CFLAGS) -DGGML_USE_OPENBLAS
LDFLAGS += $(WHISPER_BLAS_LDFLAGS)
endif
ifdef WHISPER_CUBLAS
# WHISPER_CUBLAS is deprecated and will be removed in the future
WHISPER_CUDA := 1
endif
ifdef WHISPER_CUDA
ifeq ($(shell expr $(NVCC_VERSION) \>= 11.6), 1)
CUDA_ARCH_FLAG=native
CUDA_ARCH_FLAG ?= native
else
CUDA_ARCH_FLAG=all
CUDA_ARCH_FLAG ?= all
endif
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib
CFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
CXXFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
WHISPER_OBJ += ggml-cuda.o
WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
NVCC = nvcc
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -c $< -o $@
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
endif
@ -219,14 +303,18 @@ ifdef WHISPER_HIPBLAS
ROCM_PATH ?= /opt/rocm
HIPCC ?= $(ROCM_PATH)/bin/hipcc
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
WHISPER_OBJ += ggml-cuda.o
WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif
@ -291,6 +379,13 @@ $(info I CC: $(CCV))
$(info I CXX: $(CXXV))
$(info )
ifdef WHISPER_CUBLAS
$(info !!!!)
$(info WHISPER_CUBLAS is deprecated and will be removed in the future. Use WHISPER_CUDA instead.)
$(info !!!!)
$(info )
endif
#
# Build library
#
@ -329,6 +424,26 @@ ggml-metal.o: ggml-metal.m ggml-metal.h
$(CC) $(CFLAGS) -c $< -o $@
WHISPER_OBJ += ggml-metal.o
ifdef WHISPER_METAL_EMBED_LIBRARY
CFLAGS += -DGGML_METAL_EMBED_LIBRARY
ggml-metal-embed.o: ggml-metal.metal ggml-common.h
@echo "Embedding Metal library"
$(eval TEMP_ASSEMBLY=$(shell mktemp))
$(eval TEMP_METALLIB=$(shell mktemp))
@sed "/^#include \"ggml-common.h\"/{r ggml-common.h"$$'\n'"d;}" ggml-metal.metal > $(TEMP_METALLIB)
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
@echo ".incbin \"$(TEMP_METALLIB)\"" >> $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
@$(AS) $(TEMP_ASSEMBLY) -o $@
@rm -f $(TEMP_ASSEMBLY) $(TEMP_METALLIB)
WHISPER_OBJ += ggml-metal-embed.o
endif
endif
libwhisper.a: $(WHISPER_OBJ)
@ -338,7 +453,7 @@ libwhisper.so: $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so $(WHISPER_OBJ) $(LDFLAGS)
clean:
rm -f *.o main stream command talk talk-llama bench quantize lsp libwhisper.a libwhisper.so
rm -f *.o main stream command talk talk-llama bench quantize server lsp libwhisper.a libwhisper.so
#
# Examples
@ -346,7 +461,7 @@ clean:
CC_SDL=`sdl2-config --cflags --libs`
SRC_COMMON = examples/common.cpp examples/common-ggml.cpp
SRC_COMMON = examples/common.cpp examples/common-ggml.cpp examples/grammar-parser.cpp
SRC_COMMON_SDL = examples/common-sdl.cpp
main: examples/main/main.cpp $(SRC_COMMON) $(WHISPER_OBJ)
@ -359,11 +474,14 @@ bench: examples/bench/bench.cpp $(WHISPER_OBJ)
quantize: examples/quantize/quantize.cpp $(WHISPER_OBJ) $(SRC_COMMON)
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp $(SRC_COMMON) $(WHISPER_OBJ) -o quantize $(LDFLAGS)
server: examples/server/server.cpp $(SRC_COMMON) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/server/server.cpp $(SRC_COMMON) $(WHISPER_OBJ) -o server $(LDFLAGS) $(LWINSOCK2)
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
command: examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o lsp $(CC_SDL) $(LDFLAGS)
@ -371,8 +489,8 @@ lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
#
# Audio samples

View File

@ -2,33 +2,14 @@
import PackageDescription
#if arch(arm) || arch(arm64)
let platforms: [SupportedPlatform]? = [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
]
let exclude: [String] = []
let resources: [Resource] = [
.process("ggml-metal.metal")
]
let additionalSources: [String] = ["ggml-metal.m"]
let additionalSettings: [CSetting] = [
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL")
]
#else
let platforms: [SupportedPlatform]? = nil
let exclude: [String] = ["ggml-metal.metal"]
let resources: [Resource] = []
let additionalSources: [String] = []
let additionalSettings: [CSetting] = []
#endif
let package = Package(
name: "whisper",
platforms: platforms,
platforms: [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
],
products: [
.library(name: "whisper", targets: ["whisper"]),
],
@ -36,7 +17,7 @@ let package = Package(
.target(
name: "whisper",
path: ".",
exclude: exclude + [
exclude: [
"bindings",
"cmake",
"coreml",
@ -55,19 +36,22 @@ let package = Package(
"whisper.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c"
] + additionalSources,
resources: resources,
"ggml-quants.c",
"ggml-metal.m"
],
resources: [.process("ggml-metal.metal")],
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_ACCELERATE")
.define("GGML_USE_ACCELERATE"),
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
] + additionalSettings,
],
linkerSettings: [
.linkedFramework("Accelerate")
]

206
README.md
View File

@ -6,7 +6,7 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.5.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.5.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.6.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.6.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -33,9 +33,10 @@ Supported platforms:
- [x] [WebAssembly](examples/whisper.wasm)
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
- [x] [Raspberry Pi](https://github.com/ggerganov/whisper.cpp/discussions/166)
- [x] [docker](https://github.com/ggerganov/whisper.cpp/pkgs/container/whisper.cpp)
The entire high-level implementation of the model is contained in [whisper.h](whisper.h) and [whisper.cpp](whisper.cpp).
The rest of the code is part of the [ggml](https://github.com/ggerganov/ggml) machine learning library.
The rest of the code is part of the [`ggml`](https://github.com/ggerganov/ggml) machine learning library.
Having such a lightweight implementation of the model allows to easily integrate it in different platforms and applications.
As an example, here is a video of running the model on an iPhone 13 device - fully offline, on-device: [whisper.objc](examples/whisper.objc)
@ -60,22 +61,22 @@ Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
- Various other examples are available in the [examples](examples) folder
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
intrinsics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD intrinsics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
## Quick start
First clone the repository.
First clone the repository:
Then, download one of the Whisper models converted in [ggml format](models). For example:
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
```
Then, download one of the Whisper [models](models/README.md) converted in [`ggml` format](#ggml-format). For example:
```bash
bash ./models/download-ggml-model.sh base.en
```
If you wish to convert the Whisper models to ggml format yourself, instructions are in [models/README.md](models/README.md).
Now build the [main](examples/main) example and transcribe an audio file like this:
```bash
@ -90,7 +91,7 @@ make
For a quick demo, simply run `make base.en`:
```java
```text
$ make base.en
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
@ -110,8 +111,8 @@ options:
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-sow, --split-on-word [false ] split on word rather than on token
-bo N, --best-of N [2 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [5 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
@ -128,6 +129,7 @@ options:
-fp, --font-path [/System/Library/Fonts/Supplemental/Courier New Bold.ttf] path to a monospace font for karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-oj, --output-json [false ] output result in a JSON file
-ojf, --output-json-full [false ] include more information in the JSON file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
@ -139,7 +141,8 @@ options:
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
-ls, --log-score [false ] log best decoder scores of token
-ls, --log-score [false ] log best decoder scores of tokens
-ng, --no-gpu [false ] disable GPU
bash ./models/download-ggml-model.sh base.en
@ -204,7 +207,7 @@ For detailed usage instructions, run: `./main -h`
Note that the [main](examples/main) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
For example, you can use `ffmpeg` like this:
```java
```bash
ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
```
@ -236,9 +239,9 @@ make large-v3
## Memory usage
| Model | Disk | Mem |
| --- | --- | --- |
| tiny | 75 MiB | ~273 MB |
| Model | Disk | Mem |
| ------ | ------- | ------- |
| tiny | 75 MiB | ~273 MB |
| base | 142 MiB | ~388 MB |
| small | 466 MiB | ~852 MB |
| medium | 1.5 GiB | ~2.1 GB |
@ -275,7 +278,8 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
- To ensure `coremltools` operates correctly, please confirm that [Xcode](https://developer.apple.com/xcode/) is installed and execute `xcode-select --install` to install the command-line tools.
- Python 3.10 is recommended.
- [OPTIONAL] It is recommended to utilize a Python version management system, such as [Miniconda](https://docs.conda.io/en/latest/miniconda.html) for this step:
- MacOS Sonoma (version 14) or newer is recommended, as older versions of MacOS might experience issues with transcription hallucination.
- [OPTIONAL] It is recommended to utilize a Python version management system, such as [Miniconda](https://docs.conda.io/en/latest/miniconda.html) for this step:
- To create an environment, use: `conda create -n py310-whisper python=3.10 -y`
- To activate the environment, use: `conda activate py310-whisper`
@ -301,8 +305,8 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
- Run the examples as usual. For example:
```bash
./main -m models/ggml-base.en.bin -f samples/jfk.wav
```text
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
...
@ -330,21 +334,23 @@ This can result in significant speedup in encoder performance. Here are the inst
- First, setup python virtual env. and install python dependencies. Python 3.10 is recommended.
Windows:
```
```powershell
cd models
python -m venv openvino_conv_env
openvino_conv_env\Scripts\activate
python -m pip install --upgrade pip
pip install -r openvino-conversion-requirements.txt
pip install -r requirements-openvino.txt
```
Linux and macOS:
```
```bash
cd models
python3 -m venv openvino_conv_env
source openvino_conv_env/bin/activate
python -m pip install --upgrade pip
pip install -r openvino-conversion-requirements.txt
pip install -r requirements-openvino.txt
```
- Generate an OpenVINO encoder model. For example, to generate a `base.en` model, use:
@ -353,7 +359,7 @@ This can result in significant speedup in encoder performance. Here are the inst
python convert-whisper-to-openvino.py --model base.en
```
This will produce ggml-base.en-encoder-openvino.xml/.bin IR model files. It's recommended to relocate these to the same folder as ggml models, as that
This will produce ggml-base.en-encoder-openvino.xml/.bin IR model files. It's recommended to relocate these to the same folder as `ggml` models, as that
is the default location that the OpenVINO extension will search at runtime.
- Build `whisper.cpp` with OpenVINO support:
@ -363,24 +369,28 @@ This can result in significant speedup in encoder performance. Here are the inst
After downloading & extracting package onto your development system, set up required environment by sourcing setupvars script. For example:
Linux:
```bash
source /path/to/l_openvino_toolkit_ubuntu22_2023.0.0.10926.b4452d56304_x86_64/setupvars.sh
```
Windows (cmd):
```
```powershell
C:\Path\To\w_openvino_toolkit_windows_2023.0.0.10926.b4452d56304_x86_64\setupvars.bat
```
And then build the project using cmake:
```bash
cmake -B build -DWHISPER_OPENVINO=1
cmake --build build -j --config Release
```
- Run the examples as usual. For example:
```bash
./main -m models/ggml-base.en.bin -f samples/jfk.wav
```text
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
...
@ -404,11 +414,11 @@ For more information about the Core ML implementation please refer to PR [#1037]
With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
Now build `whisper.cpp` with cuBLAS support:
Now build `whisper.cpp` with CUDA support:
```
make clean
WHISPER_CUBLAS=1 make -j
WHISPER_CUDA=1 make -j
```
## OpenCL GPU support via CLBlast
@ -431,7 +441,6 @@ cmake -B build -DWHISPER_CLBLAST=ON
cmake --build build -j --config Release
```
Run all the examples as usual.
## BLAS CPU support via OpenBLAS
@ -446,6 +455,53 @@ make clean
WHISPER_OPENBLAS=1 make -j
```
## BLAS CPU support via Intel MKL
Encoder processing can be accelerated on the CPU via the BLAS compatible interface of Intel's Math Kernel Library.
First, make sure you have installed Intel's MKL runtime and development packages: https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
Now build `whisper.cpp` with Intel MKL BLAS support:
```
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_MKL=ON ..
WHISPER_MKL=1 make -j
```
## Docker
### Prerequisites
- Docker must be installed and running on your system.
- Create a folder to store big models & intermediate files (ex. /whisper/models)
### Images
We have two Docker images available for this project:
1. `ghcr.io/ggerganov/whisper.cpp:main`: This image includes the main executable file as well as `curl` and `ffmpeg`. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/whisper.cpp:main-cuda`: Same as `main` but compiled with CUDA support. (platforms: `linux/amd64`)
### Usage
```shell
# download model and persist it in a local folder
docker run -it --rm \
-v path/to/models:/models \
whisper.cpp:main "./models/download-ggml-model.sh base /models"
# transcribe an audio file
docker run -it --rm \
-v path/to/models:/models \
-v path/to/audios:/audios \
whisper.cpp:main "./main -m /models/ggml-base.bin -f /audios/jfk.wav"
# transcribe an audio file in samples folder
docker run -it --rm \
-v path/to/models:/models \
whisper.cpp:main "./main -m /models/ggml-base.bin -f ./samples/jfk.wav"
```
## Limitations
- Inference only
@ -458,7 +514,7 @@ in about half a minute on a MacBook M1 Pro, using `medium.en` model:
<details>
<summary>Expand to see the result</summary>
```java
```text
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
@ -530,6 +586,7 @@ whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
whisper_print_timings: total time = 32733.52 ms
```
</details>
## Real-time audio input example
@ -538,7 +595,7 @@ This is a naive example of performing real-time inference on audio from your mic
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continuously.
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
```java
```bash
make stream
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
```
@ -550,7 +607,7 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
Adding the `--print-colors` argument will print the transcribed text using an experimental color coding strategy
to highlight words with high or low confidence:
```java
```bash
./main -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
```
@ -560,8 +617,8 @@ to highlight words with high or low confidence:
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
```java
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
```text
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
@ -584,8 +641,8 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
```java
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
```text
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
whisper_model_load: loading model from './models/ggml-base.en.bin'
...
@ -655,7 +712,7 @@ This requires to have `ffmpeg` installed.
Here are a few *"typical"* examples:
```java
```bash
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
source ./samples/jfk.wav.wts
ffplay ./samples/jfk.wav.mp4
@ -665,7 +722,7 @@ https://user-images.githubusercontent.com/1991296/199337465-dbee4b5e-9aeb-48a3-b
---
```java
```bash
./main -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
source ./samples/mm0.wav.wts
ffplay ./samples/mm0.wav.mp4
@ -675,7 +732,7 @@ https://user-images.githubusercontent.com/1991296/199337504-cc8fd233-0cb7-4920-9
---
```java
```bash
./main -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
source ./samples/gb0.wav.wts
ffplay ./samples/gb0.wav.mp4
@ -687,10 +744,10 @@ https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a
## Video comparison of different models
Use the [extra/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/extra/bench-wts.sh) script to generate a video in the following format:
Use the [scripts/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/scripts/bench-wts.sh) script to generate a video in the following format:
```java
./extra/bench-wts.sh samples/jfk.wav
```bash
./scripts/bench-wts.sh samples/jfk.wav
ffplay ./samples/jfk.wav.all.mp4
```
@ -711,15 +768,14 @@ Additionally a script to run whisper.cpp with different models and audio files i
You can run it with the following command, by default it will run against any standard model in the models folder.
```bash
python3 extra/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
python3 scripts/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
```
It is written in python with the intention of being easy to modify and extend for your benchmarking use case.
It outputs a csv file with the results of the benchmarking.
## ggml format
## `ggml` format
The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
@ -734,49 +790,51 @@ or manually from here:
- https://huggingface.co/ggerganov/whisper.cpp
- https://ggml.ggerganov.com
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or the README
in [models](models).
For more details, see the conversion script [models/convert-pt-to-ggml.py](models/convert-pt-to-ggml.py) or [models/README.md](models/README.md).
## [Bindings](https://github.com/ggerganov/whisper.cpp/discussions/categories/bindings)
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
- [X] JavaScript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
- [x] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
- [x] JavaScript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
- [X] Java:
- [x] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
- [x] Java:
- [GiviMAD/whisper-jni](https://github.com/GiviMAD/whisper-jni)
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
- [x] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
- [x] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)
- [X] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [x] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
- [X] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [x] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [AIWintermuteAI/whispercpp](https://github.com/AIWintermuteAI/whispercpp) (Updated fork of aarnphm/whispercpp)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
- [X] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [X] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
- [x] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [x] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
## Examples
There are various examples of using the library for different projects in the [examples](examples) folder.
Some of the examples are even ported to run in the browser using WebAssembly. Check them out!
| Example | Web | Description |
| --- | --- | --- |
| [main](examples/main) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
| [bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
| Example | Web | Description |
| --------------------------------------------------- | ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- |
| [main](examples/main) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
| [bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
| [wchess](examples/wchess) | [wchess.wasm](examples/wchess) | Voice-controlled chess |
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
| [server](examples/server) | | HTTP transcription server with OAI-like API |
## [Discussions](https://github.com/ggerganov/whisper.cpp/discussions)

249
README_sycl.md Normal file
View File

@ -0,0 +1,249 @@
# whisper.cpp for SYCL
[Background](#background)
[OS](#os)
[Intel GPU](#intel-gpu)
[Linux](#linux)
[Environment Variable](#environment-variable)
[Known Issue](#known-issue)
[Todo](#todo)
## Background
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators<72>such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
To avoid re-inventing the wheel, this code refers other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel<EFBFBD> DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
The whisper.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use whisper.cpp for X86 (Intel MKL build).
## OS
|OS|Status|Verified|
|-|-|-|
|Linux|Support|Ubuntu 22.04|
|Windows|Ongoing| |
## Intel GPU
|Intel GPU| Status | Verified Model|
|-|-|-|
|Intel Data Center Max Series| Support| Max 1550|
|Intel Data Center Flex Series| Support| Flex 170|
|Intel Arc Series| Support| Arc 770|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
## Linux
### Setup Environment
1. Install Intel GPU driver.
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
Note: for iGPU, please install the client GPU driver.
b. Add user to group: video, render.
```
sudo usermod -aG render username
sudo usermod -aG video username
```
Note: re-login to enable it.
c. Check
```
sudo apt install clinfo
sudo clinfo -l
```
Output (example):
```
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
2. Install Intel<65> oneAPI Base toolkit.
a. Please follow the procedure in [Get the Intel<65> oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
b. Check
```
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**.
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
2. Build locally:
```
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
#for FP16
#cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON
#for FP32
cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only
#cmake --build . --config Release --target main
#build all binary
cmake --build . --config Release -v
```
or
```
./examples/sycl/build.sh
```
Note:
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
### Run
1. Put model file to folder **models**
2. Enable oneAPI running environment
```
source /opt/intel/oneapi/setvars.sh
```
3. List device ID
Run without parameter:
```
./build/bin/ls-sycl-device
or
./build/bin/main
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute whisper.cpp
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
```
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/ggml-base.en.bin -f samples/jfk.wav
```
or run by script:
```
./examples/sycl/run_whisper.sh
```
5. Check the device ID in output
Like:
```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
```
## Environment Variable
#### Build
|Name|Value|Function|
|-|-|-|
|WHISPER_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, WHISPER_SYCL=ON is mandatory.|
|WHISPER_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path.For FP32, do not set it.|
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|CMAKE_CXX_COMPILER|icpx|use icpx for SYCL code path|
#### Running
|Name|Value|Function|
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
## Known Issue
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
Miss to enable oneAPI running environment.
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
- Hang during startup
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
Solution: add **--no-mmap**.
## Todo
- Support to build in Windows.
- Support multiple cards.

View File

@ -1,9 +1,26 @@
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
ifndef UNAME_P
UNAME_P := $(shell uname -p)
endif
ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
GGML_METAL_PATH_RESOURCES := $(abspath ../..)
BUILD_DIR := build
MODELS_DIR := models
EXAMPLES_DIR := $(wildcard examples/*)
INCLUDE_PATH := $(abspath ../..)
LIBRARY_PATH := $(abspath ../..)
ifeq ($(UNAME_S),Darwin)
EXT_LDFLAGS := -framework Foundation -framework Metal -framework MetalKit
endif
all: clean whisper examples
whisper: mkdir
@ -11,8 +28,13 @@ whisper: mkdir
@${MAKE} -C ../.. libwhisper.a
test: model-small whisper modtidy
ifeq ($(UNAME_S),Darwin)
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} GGML_METAL_PATH_RESOURCES=${GGML_METAL_PATH_RESOURCES} go test -ldflags "-extldflags '$(EXT_LDFLAGS)'" -v .
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} GGML_METAL_PATH_RESOURCES=${GGML_METAL_PATH_RESOURCES} go test -ldflags "-extldflags '$(EXT_LDFLAGS)'" -v ./pkg/whisper/...
else
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go test -v .
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go test -v ./pkg/whisper/...
endif
examples: $(EXAMPLES_DIR)
@ -21,7 +43,11 @@ model-small: mkdir examples/go-model-download
$(EXAMPLES_DIR): mkdir whisper modtidy
@echo Build example $(notdir $@)
ifeq ($(UNAME_S),Darwin)
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} GGML_METAL_PATH_RESOURCES=${GGML_METAL_PATH_RESOURCES} go build ${BUILD_FLAGS} -ldflags "-extldflags '$(EXT_LDFLAGS)'" -o ${BUILD_DIR}/$(notdir $@) ./$@
else
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go build ${BUILD_FLAGS} -o ${BUILD_DIR}/$(notdir $@) ./$@
endif
mkdir:
@echo Mkdir ${BUILD_DIR}

View File

@ -123,6 +123,11 @@ func (p *Params) SetAudioCtx(n int) {
p.audio_ctx = C.int(n)
}
// Set initial prompt
func (p *Params) SetInitialPrompt(prompt string) {
p.initial_prompt = C.CString(prompt)
}
///////////////////////////////////////////////////////////////////////////////
// PRIVATE METHODS
@ -147,6 +152,7 @@ func (p *Params) String() string {
str += fmt.Sprintf(" offset_ms=%d", p.offset_ms)
str += fmt.Sprintf(" duration_ms=%d", p.duration_ms)
str += fmt.Sprintf(" audio_ctx=%d", p.audio_ctx)
str += fmt.Sprintf(" initial_prompt=%s", C.GoString(p.initial_prompt))
if p.translate {
str += " translate"
}

View File

@ -130,6 +130,11 @@ func (context *context) SetAudioCtx(n uint) {
context.params.SetAudioCtx(int(n))
}
// Set initial prompt
func (context *context) SetInitialPrompt(prompt string) {
context.params.SetInitialPrompt(prompt)
}
// ResetTimings resets the mode timings. Should be called before processing
func (context *context) ResetTimings() {
context.model.ctx.Whisper_reset_timings()

View File

@ -38,17 +38,18 @@ type Context interface {
IsMultilingual() bool // Return true if the model is multilingual.
Language() string // Get language
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSpeedup(bool) // Set speedup flag
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
SetAudioCtx(uint) // Set audio encoder context
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSpeedup(bool) // Set speedup flag
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
SetAudioCtx(uint) // Set audio encoder context
SetInitialPrompt(prompt string) // Set initial prompt
// Process mono audio data and return any errors.
// If defined, newly generated segments are passed to the

View File

@ -10,7 +10,7 @@ import (
/*
#cgo LDFLAGS: -lwhisper -lm -lstdc++
#cgo darwin LDFLAGS: -framework Accelerate
#cgo darwin LDFLAGS: -framework Accelerate -framework Metal -framework Foundation -framework CoreGraphics
#include <whisper.h>
#include <stdlib.h>

View File

@ -148,6 +148,9 @@ public class WhisperFullParams extends Structure {
tdrz_enable = enable ? CBool.TRUE : CBool.FALSE;
}
/** Regular expression matching tokens to suppress. */
public String suppress_regex;
/** Tokens to provide to the whisper decoder as an initial prompt.
* These are prepended to any existing text context from a previous call. */
public String initial_prompt;
@ -319,7 +322,7 @@ public class WhisperFullParams extends Structure {
"no_context", "single_segment", "no_timestamps",
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "speed_up", "audio_ctx",
"tdrz_enable", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"tdrz_enable", "suppress_regex", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty",
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
"new_segment_callback", "new_segment_callback_user_data",

View File

@ -41,7 +41,7 @@ make publish-npm
## Sample run
```java
```text
$ node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js
whisper_model_load: loading model from 'whisper.bin'
@ -63,7 +63,7 @@ whisper_model_load: ggml ctx size = 140.60 MB
whisper_model_load: memory size = 22.83 MB
whisper_model_load: model size = 140.54 MB
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 1 | BLAS = 0 |
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 1 | BLAS = 0 |
operator(): processing 176000 samples, 11.0 sec, 8 threads, 1 processors, lang = en, task = transcribe ...

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.5.0",
"version": "1.6.1",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

File diff suppressed because one or more lines are too long

View File

@ -9,6 +9,7 @@ system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.c')} ."
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend-impl.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-common.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','examples','dr_wav.h')} .")

View File

@ -70,7 +70,7 @@ extern "C" {
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);

View File

@ -156,8 +156,8 @@ void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_
backend->iface.graph_plan_compute(backend, plan);
}
void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
backend->iface.graph_compute(backend, cgraph);
bool ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return backend->iface.graph_compute(backend, cgraph);
}
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {

View File

@ -52,7 +52,7 @@ extern "C" {
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends

163
cmake/FindFFmpeg.cmake Normal file
View File

@ -0,0 +1,163 @@
# From
# https://github.com/snikulov/cmake-modules/blob/master/FindFFmpeg.cmake
#
# vim: ts=2 sw=2
# - Try to find the required ffmpeg components(default: AVFORMAT, AVUTIL, AVCODEC)
#
# Once done this will define
# FFMPEG_FOUND - System has the all required components.
# FFMPEG_INCLUDE_DIRS - Include directory necessary for using the required components headers.
# FFMPEG_LIBRARIES - Link these to use the required ffmpeg components.
# FFMPEG_DEFINITIONS - Compiler switches required for using the required ffmpeg components.
#
# For each of the components it will additionally set.
# - AVCODEC
# - AVDEVICE
# - AVFORMAT
# - AVFILTER
# - AVUTIL
# - POSTPROC
# - SWSCALE
# the following variables will be defined
# <component>_FOUND - System has <component>
# <component>_INCLUDE_DIRS - Include directory necessary for using the <component> headers
# <component>_LIBRARIES - Link these to use <component>
# <component>_DEFINITIONS - Compiler switches required for using <component>
# <component>_VERSION - The components version
#
# Copyright (c) 2006, Matthias Kretz, <kretz@kde.org>
# Copyright (c) 2008, Alexander Neundorf, <neundorf@kde.org>
# Copyright (c) 2011, Michael Jansen, <kde@michael-jansen.biz>
#
# Redistribution and use is allowed according to the terms of the BSD license.
# For details see the accompanying COPYING-CMAKE-SCRIPTS file.
include(FindPackageHandleStandardArgs)
# The default components were taken from a survey over other FindFFMPEG.cmake files
if (NOT FFmpeg_FIND_COMPONENTS)
set(FFmpeg_FIND_COMPONENTS AVFORMAT AVCODEC AVUTIL SWRESAMPLE)
endif()
#
### Macro: set_component_found
#
# Marks the given component as found if both *_LIBRARIES AND *_INCLUDE_DIRS is present.
#
macro(set_component_found _component )
if (${_component}_LIBRARIES AND ${_component}_INCLUDE_DIRS)
message(DEBUG " - ${_component} found.")
set(${_component}_FOUND TRUE)
else ()
message(DEBUG " - ${_component} not found.")
endif ()
endmacro()
#
### Macro: find_component
#
# Checks for the given component by invoking pkgconfig and then looking up the libraries and
# include directories.
#
macro(find_component _component _pkgconfig _library _header)
if (NOT WIN32)
# use pkg-config to get the directories and then use these values
# in the FIND_PATH() and FIND_LIBRARY() calls
find_package(PkgConfig)
if (PKG_CONFIG_FOUND)
pkg_check_modules(PC_${_component} ${_pkgconfig})
message(STATUS "Pkgconfig found: ${PC_${_component}_INCLUDEDIR}")
message(STATUS "Pkgconfig found: ${PC_${_component}_INCLUDE_DIRS}")
message(STATUS "${PC_${_component}_CFLAGS}")
endif ()
endif (NOT WIN32)
find_path(${_component}_INCLUDE_DIRS ${_header}
HINTS
${PC_${_component}_INCLUDEDIR}
${PC_${_component}_INCLUDE_DIRS}
PATH_SUFFIXES
ffmpeg
)
# CMake's default is to search first for shared libraries and then for static libraries.
# Todo later: add option to prefer static libs over dynamic:
find_library(${_component}_LIBRARIES NAMES ${_library} lib${_library}.a
HINTS
${PC_${_component}_LIBDIR}
${PC_${_component}_LIBRARY_DIRS}
)
set(${_component}_DEFINITIONS ${PC_${_component}_CFLAGS_OTHER} CACHE STRING "The ${_component} CFLAGS.")
set(${_component}_VERSION ${PC_${_component}_VERSION} CACHE STRING "The ${_component} version number.")
set_component_found(${_component})
mark_as_advanced(
${_component}_INCLUDE_DIRS
${_component}_LIBRARIES
${_component}_DEFINITIONS
${_component}_VERSION)
endmacro()
# Check for cached results. If there are skip the costly part.
if (NOT FFMPEG_LIBRARIES)
# Check for all possible component.
find_component(AVCODEC libavcodec avcodec libavcodec/avcodec.h)
find_component(AVFORMAT libavformat avformat libavformat/avformat.h)
find_component(AVDEVICE libavdevice avdevice libavdevice/avdevice.h)
#find_component(AVRESAMPLE libavresample avresample libavresample/avresample.h) # old name for swresample
find_component(AVUTIL libavutil avutil libavutil/avutil.h)
find_component(AVFILTER libavfilter avfilter libavfilter/avfilter.h)
find_component(SWSCALE libswscale swscale libswscale/swscale.h)
find_component(POSTPROC libpostproc postproc libpostproc/postprocess.h)
find_component(SWRESAMPLE libswresample swresample libswresample/swresample.h)
# Check if the required components were found and add their stuff to the FFMPEG_* vars.
foreach (_component ${FFmpeg_FIND_COMPONENTS})
if (${_component}_FOUND)
# message(STATUS "Required component ${_component} present.")
set(FFMPEG_LIBRARIES ${FFMPEG_LIBRARIES} ${${_component}_LIBRARIES})
set(FFMPEG_DEFINITIONS ${FFMPEG_DEFINITIONS} ${${_component}_DEFINITIONS})
list(APPEND FFMPEG_INCLUDE_DIRS ${${_component}_INCLUDE_DIRS})
else ()
# message(STATUS "Required component ${_component} missing.")
endif ()
endforeach ()
# Build the include path with duplicates removed.
if (FFMPEG_INCLUDE_DIRS)
list(REMOVE_DUPLICATES FFMPEG_INCLUDE_DIRS)
endif ()
# cache the vars.
set(FFMPEG_INCLUDE_DIRS ${FFMPEG_INCLUDE_DIRS} CACHE STRING "The FFmpeg include directories." FORCE)
set(FFMPEG_LIBRARIES ${FFMPEG_LIBRARIES} CACHE STRING "The FFmpeg libraries." FORCE)
set(FFMPEG_DEFINITIONS ${FFMPEG_DEFINITIONS} CACHE STRING "The FFmpeg cflags." FORCE)
mark_as_advanced(FFMPEG_INCLUDE_DIRS
FFMPEG_LIBRARIES
FFMPEG_DEFINITIONS)
endif ()
# Now set the noncached _FOUND vars for the components.
# whisper.cpp does not need SWSCALE
foreach (_component AVCODEC AVDEVICE AVFORMAT AVRESAMPLE AVUTIL POSTPROCESS)
set_component_found(${_component})
endforeach ()
# Compile the list of required vars
set(_FFmpeg_REQUIRED_VARS FFMPEG_LIBRARIES FFMPEG_INCLUDE_DIRS)
foreach (_component ${FFmpeg_FIND_COMPONENTS})
list(APPEND _FFmpeg_REQUIRED_VARS ${_component}_LIBRARIES ${_component}_INCLUDE_DIRS)
endforeach ()
# Give a nice error message if some of the required vars are missing.
find_package_handle_standard_args(FFmpeg DEFAULT_MSG ${_FFmpeg_REQUIRED_VARS})

View File

@ -24,9 +24,9 @@ struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
// select which device to run the Core ML model on
MLModelConfiguration *config = [[MLModelConfiguration alloc] init];
config.computeUnits = MLComputeUnitsCPUAndGPU;
// config.computeUnits = MLComputeUnitsCPUAndGPU;
//config.computeUnits = MLComputeUnitsCPUAndNeuralEngine;
//config.computeUnits = MLComputeUnitsAll;
config.computeUnits = MLComputeUnitsAll;
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model configuration:config error:nil]);

View File

@ -14,16 +14,26 @@ if (WHISPER_SDL2)
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
endif()
if (WHISPER_CLBLAST)
find_package(CLBlast REQUIRED)
endif()
# common
set(TARGET common)
if (WHISPER_FFMPEG)
set(COMMON_SOURCES_FFMPEG ffmpeg-transcode.cpp)
endif()
add_library(${TARGET} STATIC
common.h
common.cpp
common-ggml.h
common-ggml.cpp
grammar-parser.h
grammar-parser.cpp
${COMMON_SOURCES_FFMPEG}
)
include(DefaultTargetOptions)
@ -31,6 +41,7 @@ include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE whisper)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
if (WHISPER_SDL2)
# common-sdl
@ -48,27 +59,63 @@ if (WHISPER_SDL2)
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES})
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
endif()
# add json lib
add_library(json_cpp INTERFACE)
target_include_directories(json_cpp INTERFACE ${CMAKE_CURRENT_SOURCE_DIR})
# examples
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
add_subdirectory(whisper.wasm)
set_target_properties(libmain PROPERTIES FOLDER "libs")
add_subdirectory(stream.wasm)
set_target_properties(libstream PROPERTIES FOLDER "libs")
add_subdirectory(command.wasm)
set_target_properties(libcommand PROPERTIES FOLDER "libs")
add_subdirectory(talk.wasm)
set_target_properties(libtalk PROPERTIES FOLDER "libs")
add_subdirectory(bench.wasm)
set_target_properties(libbench PROPERTIES FOLDER "libs")
elseif(CMAKE_JS_VERSION)
add_subdirectory(addon.node)
set_target_properties(addon.node PROPERTIES FOLDER "examples")
else()
add_subdirectory(main)
set_target_properties(main PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(stream)
set_target_properties(stream PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)
add_subdirectory(server)
set_target_properties(server PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(command)
set_target_properties(command PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)
add_subdirectory(bench)
set_target_properties(bench PROPERTIES FOLDER "examples")
add_subdirectory(quantize)
set_target_properties(quantize PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(talk)
set_target_properties(talk PROPERTIES FOLDER "examples")
add_subdirectory(talk-llama)
set_target_properties(talk-llama PROPERTIES FOLDER "examples")
add_subdirectory(lsp)
set_target_properties(lsp PROPERTIES FOLDER "examples")
if (LLAMA_SYCL)
add_subdirectory(sycl)
set_target_properties(sycl PROPERTIES FOLDER "examples")
endif()
endif (WHISPER_SDL2)
endif()
if (WHISPER_SDL2)
add_subdirectory(wchess)
set_target_properties(wchess PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)

View File

@ -1,4 +1,4 @@
set(TARGET whisper-addon)
set(TARGET addon.node)
# Base settings
#==================================================================

View File

@ -14,14 +14,14 @@ npm install
Make sure it is in the project root directory and compiled with make-js.
```shell
npx cmake-js compile -T whisper-addon -B Release
npx cmake-js compile -T addon.node -B Release
```
For Electron addon and cmake-js options, you can see [cmake-js](https://github.com/cmake-js/cmake-js) and make very few configuration changes.
> Such as appointing special cmake path:
> ```shell
> npx cmake-js compile -c 'xxx/cmake' -T whisper-addon -B Release
> npx cmake-js compile -c 'xxx/cmake' -T addon.node -B Release
> ```
## Run

View File

@ -1,7 +1,7 @@
const path = require("path");
const { whisper } = require(path.join(
__dirname,
"../../../build/Release/whisper-addon"
"../../../build/Release/addon.node"
));
const { promisify } = require("util");
@ -12,6 +12,12 @@ const whisperParamsMock = {
model: path.join(__dirname, "../../../models/ggml-base.en.bin"),
fname_inp: path.join(__dirname, "../../../samples/jfk.wav"),
use_gpu: true,
flash_attn: false,
no_prints: true,
comma_in_time: false,
translate: true,
no_timestamps: false,
audio_ctx: 0,
};
describe("Run whisper.node", () => {

View File

@ -19,6 +19,7 @@ struct whisper_params {
int32_t max_len = 0;
int32_t best_of = 5;
int32_t beam_size = -1;
int32_t audio_ctx = 0;
float word_thold = 0.01f;
float entropy_thold = 2.4f;
@ -36,7 +37,10 @@ struct whisper_params {
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
bool no_prints = false;
bool use_gpu = true;
bool flash_attn = false;
bool comma_in_time = true;
std::string language = "en";
std::string prompt;
@ -44,6 +48,8 @@ struct whisper_params {
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_out = {};
std::vector<float> pcmf32 = {}; // mono-channel F32 PCM
};
struct whisper_print_user_data {
@ -52,27 +58,6 @@ struct whisper_print_user_data {
const std::vector<std::vector<float>> * pcmf32s;
};
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
}
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * state, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
@ -104,8 +89,8 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
if (params.diarize && pcmf32s.size() == 2) {
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
const int64_t is0 = timestamp_to_sample(t0, n_samples, WHISPER_SAMPLE_RATE);
const int64_t is1 = timestamp_to_sample(t1, n_samples, WHISPER_SAMPLE_RATE);
double energy0 = 0.0f;
double energy1 = 0.0f;
@ -141,9 +126,15 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
}
}
void cb_log_disable(enum ggml_log_level, const char *, void *) {}
int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
if (params.fname_inp.empty()) {
fprintf(stderr, "error: no input files specified\n");
if (params.no_prints) {
whisper_log_set(cb_log_disable, NULL);
}
if (params.fname_inp.empty() && params.pcmf32.empty()) {
fprintf(stderr, "error: no input files or audio buffer specified\n");
return 2;
}
@ -154,8 +145,9 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
// whisper init
struct whisper_context_params cparams;
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {
@ -163,6 +155,14 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
return 3;
}
// if params.pcmf32 is provided, set params.fname_inp to "buffer"
// this is simpler than further modifications in the code
if (!params.pcmf32.empty()) {
fprintf(stderr, "info: using audio buffer as input\n");
params.fname_inp.clear();
params.fname_inp.emplace_back("buffer");
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
@ -170,20 +170,25 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
continue;
// read the input audio file if params.pcmf32 is not provided
if (params.pcmf32.empty()) {
if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());
continue;
}
} else {
pcmf32 = params.pcmf32;
}
// print system information
{
if (!params.no_prints) {
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// print some info about the processing
{
if (!params.no_prints) {
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
@ -192,12 +197,13 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d, audio_ctx = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1);
params.no_timestamps ? 0 : 1,
params.audio_ctx);
fprintf(stderr, "\n");
}
@ -224,6 +230,7 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
@ -232,6 +239,8 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
wparams.initial_prompt = params.prompt.c_str();
wparams.no_timestamps = params.no_timestamps;
whisper_print_user_data user_data = { &params, &pcmf32s };
// this callback is called on each new segment
@ -267,8 +276,8 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
result[i].emplace_back(to_timestamp(t0, true));
result[i].emplace_back(to_timestamp(t1, true));
result[i].emplace_back(to_timestamp(t0, params.comma_in_time));
result[i].emplace_back(to_timestamp(t1, params.comma_in_time));
result[i].emplace_back(text);
}
@ -319,11 +328,33 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
std::string model = whisper_params.Get("model").As<Napi::String>();
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
bool use_gpu = whisper_params.Get("use_gpu").As<Napi::Boolean>();
bool flash_attn = whisper_params.Get("flash_attn").As<Napi::Boolean>();
bool no_prints = whisper_params.Get("no_prints").As<Napi::Boolean>();
bool no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>();
int32_t audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>();
bool comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>();
Napi::Value pcmf32Value = whisper_params.Get("pcmf32");
std::vector<float> pcmf32_vec;
if (pcmf32Value.IsTypedArray()) {
Napi::Float32Array pcmf32 = pcmf32Value.As<Napi::Float32Array>();
size_t length = pcmf32.ElementLength();
pcmf32_vec.reserve(length);
for (size_t i = 0; i < length; i++) {
pcmf32_vec.push_back(pcmf32[i]);
}
}
params.language = language;
params.model = model;
params.fname_inp.emplace_back(input);
params.use_gpu = use_gpu;
params.flash_attn = flash_attn;
params.no_prints = no_prints;
params.no_timestamps = no_timestamps;
params.audio_ctx = audio_ctx;
params.pcmf32 = pcmf32_vec;
params.comma_in_time = comma_in_time;
Napi::Function callback = info[1].As<Napi::Function>();
Worker* worker = new Worker(callback, params);

View File

@ -1,7 +1,7 @@
const path = require("path");
const { whisper } = require(path.join(
__dirname,
"../../build/Release/whisper-addon"
"../../build/Release/addon.node"
));
const { promisify } = require("util");
@ -10,15 +10,27 @@ const whisperAsync = promisify(whisper);
const whisperParams = {
language: "en",
model: path.join(__dirname, "../../models/ggml-base.en.bin"),
fname_inp: "../../samples/jfk.wav",
fname_inp: path.join(__dirname, "../../samples/jfk.wav"),
use_gpu: true,
flash_attn: false,
no_prints: true,
comma_in_time: false,
translate: true,
no_timestamps: false,
audio_ctx: 0,
};
const arguments = process.argv.slice(2);
const params = Object.fromEntries(
arguments.reduce((pre, item) => {
if (item.startsWith("--")) {
return [...pre, item.slice(2).split("=")];
const [key, value] = item.slice(2).split("=");
if (key === "audio_ctx") {
whisperParams[key] = parseInt(value);
} else {
whisperParams[key] = value;
}
return pre;
}
return pre;
}, [])
@ -33,5 +45,6 @@ for (const key in params) {
console.log("whisperParams =", whisperParams);
whisperAsync(whisperParams).then((result) => {
console.log(`Result from whisper: ${result}`);
console.log();
console.log(result);
});

View File

@ -1,5 +1,5 @@
{
"name": "whisper-addon",
"name": "addon.node",
"version": "0.0.0",
"description": "",
"main": "index.js",

View File

@ -8,11 +8,12 @@
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t what = 0; // what to benchmark: 0 - whisper ecoder, 1 - memcpy, 2 - ggml_mul_mat
int32_t what = 0; // what to benchmark: 0 - whisper encoder, 1 - memcpy, 2 - ggml_mul_mat
std::string model = "models/ggml-base.en.bin";
bool use_gpu = true;
bool use_gpu = true;
bool flash_attn = false;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
@ -25,10 +26,11 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -49,6 +51,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] enable flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " %-7s 0 - whisper\n", "");
fprintf(stderr, " %-7s 1 - memcpy\n", "");
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
@ -58,8 +61,10 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
int whisper_bench_full(const whisper_params & params) {
// whisper init
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);

View File

@ -37,9 +37,13 @@ https://user-images.githubusercontent.com/1991296/207435352-8fc4ed3f-bde5-4555-9
The `command` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash
# Install SDL2 on Linux
# Install SDL2
# On Debian based linux distributions:
sudo apt-get install libsdl2-dev
# On Fedora Linux:
sudo dnf install SDL2 SDL2-devel
# Install SDL2 on Mac OS
brew install sdl2

View File

@ -22,11 +22,6 @@
#include <vector>
#include <map>
bool file_exists(const std::string & fname) {
std::ifstream f(fname.c_str());
return f.good();
}
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
@ -49,6 +44,7 @@ struct whisper_params {
bool print_energy = false;
bool no_timestamps = true;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
@ -57,6 +53,9 @@ struct whisper_params {
std::string prompt;
std::string context;
std::string grammar;
// A regular expression that matches tokens to suppress
std::string suppress_regex;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
@ -82,6 +81,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
@ -90,6 +90,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ctx" || arg == "--context") { params.context = argv[++i]; }
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -119,6 +120,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
@ -127,6 +129,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ctx, --context [%-7s] sample text to help the transcription\n", params.context.c_str());
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
fprintf(stderr, "\n");
}
@ -172,6 +175,8 @@ std::string transcribe(
wparams.initial_prompt = params.context.data();
wparams.suppress_regex = params.suppress_regex.c_str();
const auto & grammar_parsed = params.grammar_parsed;
auto grammar_rules = grammar_parsed.c_rules();
@ -693,8 +698,10 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
@ -736,7 +743,7 @@ int main(int argc, char ** argv) {
if (!params.grammar.empty()) {
auto & grammar = params.grammar_parsed;
if (file_exists(params.grammar.c_str())) {
if (is_file_exist(params.grammar.c_str())) {
// read grammar from file
std::ifstream ifs(params.grammar.c_str());
const std::string txt = std::string((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());

View File

@ -9,6 +9,11 @@ static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
{"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
{"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
{"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
{"q2_k", GGML_FTYPE_MOSTLY_Q2_K},
{"q3_k", GGML_FTYPE_MOSTLY_Q3_K},
{"q4_k", GGML_FTYPE_MOSTLY_Q4_K},
{"q5_k", GGML_FTYPE_MOSTLY_Q5_K},
{"q6_k", GGML_FTYPE_MOSTLY_Q6_K},
};
void ggml_print_ftypes(FILE * fp) {
@ -48,15 +53,25 @@ bool ggml_common_quantize_0(
case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
case GGML_FTYPE_MOSTLY_Q2_K: qtype = GGML_TYPE_Q2_K; break;
case GGML_FTYPE_MOSTLY_Q3_K: qtype = GGML_TYPE_Q3_K; break;
case GGML_FTYPE_MOSTLY_Q4_K: qtype = GGML_TYPE_Q4_K; break;
case GGML_FTYPE_MOSTLY_Q5_K: qtype = GGML_TYPE_Q5_K; break;
case GGML_FTYPE_MOSTLY_Q6_K: qtype = GGML_TYPE_Q6_K; break;
case GGML_FTYPE_UNKNOWN:
case GGML_FTYPE_ALL_F32:
case GGML_FTYPE_MOSTLY_F16:
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
case GGML_FTYPE_MOSTLY_Q2_K:
case GGML_FTYPE_MOSTLY_Q3_K:
case GGML_FTYPE_MOSTLY_Q4_K:
case GGML_FTYPE_MOSTLY_Q5_K:
case GGML_FTYPE_MOSTLY_Q6_K:
case GGML_FTYPE_MOSTLY_IQ2_XXS:
case GGML_FTYPE_MOSTLY_IQ2_XS:
case GGML_FTYPE_MOSTLY_IQ2_S:
case GGML_FTYPE_MOSTLY_IQ3_XXS:
case GGML_FTYPE_MOSTLY_IQ3_S:
case GGML_FTYPE_MOSTLY_IQ1_S:
case GGML_FTYPE_MOSTLY_IQ4_NL:
case GGML_FTYPE_MOSTLY_IQ4_XS:
case GGML_FTYPE_MOSTLY_IQ1_M:
case GGML_FTYPE_MOSTLY_BF16:
{
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
return false;
@ -77,8 +92,6 @@ bool ggml_common_quantize_0(
std::vector<ggml_fp16_t> data_f16;
std::vector<float> data_f32;
std::vector<int64_t> hist_all(1 << 4, 0);
while (true) {
int32_t n_dims;
int32_t length;
@ -163,41 +176,39 @@ bool ggml_common_quantize_0(
work.resize(nelements); // for quantization
size_t cur_size = 0;
std::vector<int64_t> hist_cur(1 << 4, 0);
switch ((ggml_type) ttype) {
case GGML_TYPE_Q4_0:
{
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q4_1:
{
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_0:
{
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_1:
{
cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
{
cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
cur_size = ggml_quantize_chunk((ggml_type) ttype, data_f32.data(), work.data(), 0, nelements/ne[0], ne[0], nullptr);
} break;
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
case GGML_TYPE_F64:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q8_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_BF16:
case GGML_TYPE_COUNT:
{
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
@ -208,15 +219,7 @@ bool ggml_common_quantize_0(
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
total_size_new += cur_size;
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
for (int i = 0; i < (int) hist_cur.size(); ++i) {
hist_all[i] += hist_cur[i];
}
for (int i = 0; i < (int) hist_cur.size(); ++i) {
printf("%5.3f ", hist_cur[i] / (float)nelements);
}
printf("\n");
printf("size = %8.2f MB -> %8.2f MB\n", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
} else {
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
@ -229,18 +232,5 @@ bool ggml_common_quantize_0(
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
printf("%s: quant size = %8.2f MB | ftype = %d (%s)\n", __func__, total_size_new/1024.0/1024.0, ftype, ggml_type_name(qtype));
{
int64_t sum_all = 0;
for (int i = 0; i < (int) hist_all.size(); ++i) {
sum_all += hist_all[i];
}
printf("%s: hist: ", __func__);
for (int i = 0; i < (int) hist_all.size(); ++i) {
printf("%5.3f ", hist_all[i] / (float)sum_all);
}
printf("\n");
}
return true;
}

View File

@ -139,10 +139,13 @@ void audio_async::callback(uint8_t * stream, int len) {
return;
}
const size_t n_samples = len / sizeof(float);
size_t n_samples = len / sizeof(float);
m_audio_new.resize(n_samples);
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
if (n_samples > m_audio.size()) {
n_samples = m_audio.size();
stream += (len - (n_samples * sizeof(float)));
}
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
@ -153,7 +156,7 @@ void audio_async::callback(uint8_t * stream, int len) {
const size_t n0 = m_audio.size() - m_audio_pos;
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
memcpy(&m_audio[0], stream + n0 * sizeof(float), (n_samples - n0) * sizeof(float));
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = m_audio.size();

View File

@ -41,7 +41,6 @@ private:
std::mutex m_mutex;
std::vector<float> m_audio;
std::vector<float> m_audio_new;
size_t m_audio_pos = 0;
size_t m_audio_len = 0;
};

View File

@ -19,6 +19,16 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#ifdef _WIN32
#include <fcntl.h>
#include <io.h>
#endif
#ifdef WHISPER_FFMPEG
// as implemented in ffmpeg_trancode.cpp only embedded in common lib if whisper built with ffmpeg support
extern bool ffmpeg_decode_audio(const std::string & ifname, std::vector<uint8_t> & wav_data);
#endif
// Function to check if the next argument exists
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
if (i + 1 < argc && argv[i + 1][0] != '-') {
@ -615,12 +625,31 @@ gpt_vocab::id gpt_sample_top_k_top_p_repeat(
}
bool is_wav_buffer(const std::string buf) {
// RIFF ref: https://en.wikipedia.org/wiki/Resource_Interchange_File_Format
// WAV ref: https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
if (buf.size() < 12 || buf.substr(0, 4) != "RIFF" || buf.substr(8, 4) != "WAVE") {
return false;
}
uint32_t chunk_size = *reinterpret_cast<const uint32_t*>(buf.data() + 4);
if (chunk_size + 8 != buf.size()) {
return false;
}
return true;
}
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
std::vector<uint8_t> wav_data; // used for pipe input from stdin or ffmpeg decoding output
if (fname == "-") {
{
#ifdef _WIN32
_setmode(_fileno(stdin), _O_BINARY);
#endif
uint8_t buf[1024];
while (true)
{
@ -639,28 +668,49 @@ bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
}
else if (is_wav_buffer(fname)) {
if (drwav_init_memory(&wav, fname.c_str(), fname.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from fname buffer\n");
return false;
}
}
else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
#if defined(WHISPER_FFMPEG)
if (ffmpeg_decode_audio(fname, wav_data) != 0) {
fprintf(stderr, "error: failed to ffmpeg decode '%s' \n", fname.c_str());
return false;
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to read wav data as wav \n");
return false;
}
#else
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
return false;
#endif
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
if (stereo && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
if (wav.sampleRate != COMMON_SAMPLE_RATE) {
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
drwav_uninit(&wav);
return false;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
drwav_uninit(&wav);
return false;
}
@ -815,3 +865,48 @@ void sam_print_usage(int /*argc*/, char ** argv, const sam_params & params) {
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*whisper_sample_rate)/100)));
}
bool is_file_exist(const char *fileName)
{
std::ifstream infile(fileName);
return infile.good();
}
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id)
{
std::ofstream speak_file(path.c_str());
if (speak_file.fail()) {
fprintf(stderr, "%s: failed to open speak_file\n", __func__);
return false;
} else {
speak_file.write(text.c_str(), text.size());
speak_file.close();
int ret = system((command + " " + std::to_string(voice_id) + " " + path).c_str());
if (ret != 0) {
fprintf(stderr, "%s: failed to speak\n", __func__);
return false;
}
}
return true;
}

View File

@ -135,7 +135,11 @@ gpt_vocab::id gpt_sample_top_k_top_p_repeat(
// Audio utils
//
// Check if a buffer is a WAV audio file
bool is_wav_buffer(const std::string buf);
// Read WAV audio file and store the PCM data into pcmf32
// fname can be a buffer of WAV data instead of a filename
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
bool read_wav(
@ -277,3 +281,31 @@ struct sam_params {
bool sam_params_parse(int argc, char ** argv, sam_params & params);
void sam_print_usage(int argc, char ** argv, const sam_params & params);
//
// Terminal utils
//
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
// Lowest is red, middle is yellow, highest is green.
const std::vector<std::string> k_colors = {
"\033[38;5;196m", "\033[38;5;202m", "\033[38;5;208m", "\033[38;5;214m", "\033[38;5;220m",
"\033[38;5;226m", "\033[38;5;190m", "\033[38;5;154m", "\033[38;5;118m", "\033[38;5;82m",
};
//
// Other utils
//
// convert timestamp to string, 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false);
// given a timestamp get the sample
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate);
// check if file exists using ifstream
bool is_file_exist(const char *fileName);
// write text to file, and call system("command voice_id file")
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id);

View File

@ -0,0 +1,350 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* transcode.c - convert audio file to WAVE
*
* Copyright (C) 2019 Andrew Clayton <andrew@digital-domain.net>
* Copyright (C) 2024 William Tambellini <william.tambellini@gmail.com>
*/
// Just for conveninent C++ API
#include <vector>
#include <string>
// C
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
extern "C" {
#include <libavutil/opt.h>
#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libswresample/swresample.h>
}
typedef uint64_t u64;
typedef int64_t s64;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint8_t u8;
typedef int8_t s8;
#define WAVE_SAMPLE_RATE 16000
#define AVIO_CTX_BUF_SZ 4096
static const char* ffmpegLog = getenv("FFMPEG_LOG");
// Todo: add __FILE__ __LINE__
#define LOG(...) \
do { if (ffmpegLog) fprintf(stderr, __VA_ARGS__); } while(0) // C99
/*
* WAVE file header based on definition from
* https://gist.github.com/Jon-Schneider/8b7c53d27a7a13346a643dac9c19d34f
*
* We must ensure this structure doesn't have any holes or
* padding so we can just map it straight to the WAVE data.
*/
struct wave_hdr {
/* RIFF Header: "RIFF" */
char riff_header[4];
/* size of audio data + sizeof(struct wave_hdr) - 8 */
int wav_size;
/* "WAVE" */
char wav_header[4];
/* Format Header */
/* "fmt " (includes trailing space) */
char fmt_header[4];
/* Should be 16 for PCM */
int fmt_chunk_size;
/* Should be 1 for PCM. 3 for IEEE Float */
s16 audio_format;
s16 num_channels;
int sample_rate;
/*
* Number of bytes per second
* sample_rate * num_channels * bit_depth/8
*/
int byte_rate;
/* num_channels * bytes per sample */
s16 sample_alignment;
/* bits per sample */
s16 bit_depth;
/* Data Header */
/* "data" */
char data_header[4];
/*
* size of audio
* number of samples * num_channels * bit_depth/8
*/
int data_bytes;
} __attribute__((__packed__));
struct audio_buffer {
u8 *ptr;
int size; /* size left in the buffer */
};
static void set_wave_hdr(wave_hdr& wh, size_t size) {
memcpy(&wh.riff_header, "RIFF", 4);
wh.wav_size = size + sizeof(struct wave_hdr) - 8;
memcpy(&wh.wav_header, "WAVE", 4);
memcpy(&wh.fmt_header, "fmt ", 4);
wh.fmt_chunk_size = 16;
wh.audio_format = 1;
wh.num_channels = 1;
wh.sample_rate = WAVE_SAMPLE_RATE;
wh.sample_alignment = 2;
wh.bit_depth = 16;
wh.byte_rate = wh.sample_rate * wh.sample_alignment;
memcpy(&wh.data_header, "data", 4);
wh.data_bytes = size;
}
static void write_wave_hdr(int fd, size_t size) {
struct wave_hdr wh;
set_wave_hdr(wh, size);
write(fd, &wh, sizeof(struct wave_hdr));
}
static int map_file(int fd, u8 **ptr, size_t *size)
{
struct stat sb;
fstat(fd, &sb);
*size = sb.st_size;
*ptr = (u8*)mmap(NULL, *size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
if (*ptr == MAP_FAILED) {
perror("mmap");
return -1;
}
return 0;
}
static int read_packet(void *opaque, u8 *buf, int buf_size)
{
struct audio_buffer *audio_buf = (audio_buffer*)opaque;
buf_size = FFMIN(buf_size, audio_buf->size);
/* copy internal buffer data to buf */
memcpy(buf, audio_buf->ptr, buf_size);
audio_buf->ptr += buf_size;
audio_buf->size -= buf_size;
return buf_size;
}
static void convert_frame(struct SwrContext *swr, AVCodecContext *codec,
AVFrame *frame, s16 **data, int *size, bool flush)
{
int nr_samples;
s64 delay;
u8 *buffer;
delay = swr_get_delay(swr, codec->sample_rate);
nr_samples = av_rescale_rnd(delay + frame->nb_samples,
WAVE_SAMPLE_RATE, codec->sample_rate,
AV_ROUND_UP);
av_samples_alloc(&buffer, NULL, 1, nr_samples, AV_SAMPLE_FMT_S16, 0);
/*
* !flush is used to check if we are flushing any remaining
* conversion buffers...
*/
nr_samples = swr_convert(swr, &buffer, nr_samples,
!flush ? (const u8 **)frame->data : NULL,
!flush ? frame->nb_samples : 0);
*data = (s16*)realloc(*data, (*size + nr_samples) * sizeof(s16));
memcpy(*data + *size, buffer, nr_samples * sizeof(s16));
*size += nr_samples;
av_freep(&buffer);
}
static bool is_audio_stream(const AVStream *stream)
{
if (stream->codecpar->codec_type == AVMEDIA_TYPE_AUDIO)
return true;
return false;
}
// Return non zero on error, 0 on success
// audio_buffer: input memory
// data: decoded output audio data (wav file)
// size: size of output data
static int decode_audio(struct audio_buffer *audio_buf, s16 **data, int *size)
{
LOG("decode_audio: input size: %d\n", audio_buf->size);
AVFormatContext *fmt_ctx;
AVIOContext *avio_ctx;
AVStream *stream;
AVCodecContext *codec;
AVPacket packet;
AVFrame *frame;
struct SwrContext *swr;
u8 *avio_ctx_buffer;
unsigned int i;
int stream_index = -1;
int err;
const size_t errbuffsize = 1024;
char errbuff[errbuffsize];
av_register_all(); // from avformat. Still a must-have call for ffmpeg v3! (can be skipped for later versions)
fmt_ctx = avformat_alloc_context();
avio_ctx_buffer = (u8*)av_malloc(AVIO_CTX_BUF_SZ);
LOG("Creating an avio context: AVIO_CTX_BUF_SZ=%d\n", AVIO_CTX_BUF_SZ);
avio_ctx = avio_alloc_context(avio_ctx_buffer, AVIO_CTX_BUF_SZ, 0, audio_buf, &read_packet, NULL, NULL);
fmt_ctx->pb = avio_ctx;
// open the input stream and read header
err = avformat_open_input(&fmt_ctx, NULL, NULL, NULL);
if (err) {
LOG("Could not read audio buffer: %d: %s\n", err, av_make_error_string(errbuff, errbuffsize, err));
return err;
}
err = avformat_find_stream_info(fmt_ctx, NULL);
if (err < 0) {
LOG("Could not retrieve stream info from audio buffer: %d\n", err);
return err;
}
for (i = 0; i < fmt_ctx->nb_streams; i++) {
if (is_audio_stream(fmt_ctx->streams[i])) {
stream_index = i;
break;
}
}
if (stream_index == -1) {
LOG("Could not retrieve audio stream from buffer\n");
return -1;
}
stream = fmt_ctx->streams[stream_index];
codec = avcodec_alloc_context3(
avcodec_find_decoder(stream->codecpar->codec_id));
avcodec_parameters_to_context(codec, stream->codecpar);
err = avcodec_open2(codec, avcodec_find_decoder(codec->codec_id),
NULL);
if (err) {
LOG("Failed to open decoder for stream #%d in audio buffer\n", stream_index);
return err;
}
/* prepare resampler */
swr = swr_alloc();
av_opt_set_int(swr, "in_channel_count", codec->channels, 0);
av_opt_set_int(swr, "out_channel_count", 1, 0);
av_opt_set_int(swr, "in_channel_layout", codec->channel_layout, 0);
av_opt_set_int(swr, "out_channel_layout", AV_CH_LAYOUT_MONO, 0);
av_opt_set_int(swr, "in_sample_rate", codec->sample_rate, 0);
av_opt_set_int(swr, "out_sample_rate", WAVE_SAMPLE_RATE, 0);
av_opt_set_sample_fmt(swr, "in_sample_fmt", codec->sample_fmt, 0);
av_opt_set_sample_fmt(swr, "out_sample_fmt", AV_SAMPLE_FMT_S16, 0);
swr_init(swr);
if (!swr_is_initialized(swr)) {
LOG("Resampler has not been properly initialized\n");
return -1;
}
av_init_packet(&packet);
frame = av_frame_alloc();
if (!frame) {
LOG("Error allocating the frame\n");
return -1;
}
/* iterate through frames */
*data = NULL;
*size = 0;
while (av_read_frame(fmt_ctx, &packet) >= 0) {
avcodec_send_packet(codec, &packet);
err = avcodec_receive_frame(codec, frame);
if (err == AVERROR(EAGAIN))
continue;
convert_frame(swr, codec, frame, data, size, false);
}
/* Flush any remaining conversion buffers... */
convert_frame(swr, codec, frame, data, size, true);
av_frame_free(&frame);
swr_free(&swr);
//avio_context_free(); // todo?
avcodec_close(codec);
avformat_close_input(&fmt_ctx);
avformat_free_context(fmt_ctx);
if (avio_ctx) {
av_freep(&avio_ctx->buffer);
av_freep(&avio_ctx);
}
return 0;
}
// in mem decoding/conversion/resampling:
// ifname: input file path
// owav_data: in mem wav file. Can be forwarded as it to whisper/drwav
// return 0 on success
int ffmpeg_decode_audio(const std::string &ifname, std::vector<uint8_t>& owav_data) {
LOG("ffmpeg_decode_audio: %s\n", ifname.c_str());
int ifd = open(ifname.c_str(), O_RDONLY);
if (ifd == -1) {
fprintf(stderr, "Couldn't open input file %s\n", ifname.c_str());
return -1;
}
u8 *ibuf = NULL;
size_t ibuf_size;
int err = map_file(ifd, &ibuf, &ibuf_size);
if (err) {
LOG("Couldn't map input file %s\n", ifname.c_str());
return err;
}
LOG("Mapped input file: %x size: %d\n", ibuf, ibuf_size);
struct audio_buffer inaudio_buf;
inaudio_buf.ptr = ibuf;
inaudio_buf.size = ibuf_size;
s16 *odata=NULL;
int osize=0;
err = decode_audio(&inaudio_buf, &odata, &osize);
LOG("decode_audio returned %d \n", err);
if (err != 0) {
LOG("decode_audio failed\n");
return err;
}
LOG("decode_audio output size: %d\n", osize);
wave_hdr wh;
const size_t outdatasize = osize * sizeof(s16);
set_wave_hdr(wh, outdatasize);
owav_data.resize(sizeof(wave_hdr) + outdatasize);
// header:
memcpy(owav_data.data(), &wh, sizeof(wave_hdr));
// the data:
memcpy(owav_data.data() + sizeof(wave_hdr), odata, osize* sizeof(s16));
return 0;
}

View File

@ -190,7 +190,7 @@ namespace grammar_parser {
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to

View File

@ -22,6 +22,7 @@ var printTextarea = (function() {
async function clearCache() {
if (confirm('Are you sure you want to clear the cache?\nAll the models will be downloaded again.')) {
indexedDB.deleteDatabase(dbName);
location.reload();
}
}
@ -33,9 +34,6 @@ async function fetchRemote(url, cbProgress, cbPrint) {
url,
{
method: 'GET',
headers: {
'Content-Type': 'application/octet-stream',
},
}
);

View File

@ -5,5 +5,5 @@ if (WHISPER_SDL2)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common json_cpp common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
endif ()

View File

@ -31,6 +31,7 @@ struct whisper_params {
bool print_special = false;
bool print_energy = false;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
@ -74,6 +75,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else {
@ -105,6 +107,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, "\n");
@ -435,8 +438,11 @@ int main(int argc, char ** argv) {
}
// whisper init
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
// init audio

View File

@ -3,4 +3,4 @@ add_executable(${TARGET} main.cpp)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common whisper ${FFMPEG_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})

View File

@ -17,28 +17,37 @@ options:
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-sow, --split-on-word [false ] split on word rather than on token
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-bs N, --beam-size N [5 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-olrc, --output-lrc [false ] output result in a lrc file
-owts, --output-words [false ] output script for generating karaoke video
-fp, --font-path [/System/Library/Fonts/Supplemental/Courier New Bold.ttf] path to a monospace font for karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-oj, --output-json [false ] output result in a JSON file
-ojf, --output-json-full [false ] include more information in the JSON file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [true ] do not print timestamps
-nt, --no-timestamps [false ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
-dl, --detect-language [false ] exit after automatically detecting language
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
-ls, --log-score [false ] log best decoder scores of tokens
-ng, --no-gpu [false ] disable GPU
```

View File

@ -1,10 +1,12 @@
#include "common.h"
#include "whisper.h"
#include "grammar-parser.h"
#include <cmath>
#include <fstream>
#include <cstdio>
#include <regex>
#include <string>
#include <thread>
#include <vector>
@ -14,34 +16,6 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
// Lowest is red, middle is yellow, highest is green.
const std::vector<std::string> k_colors = {
"\033[38;5;196m", "\033[38;5;202m", "\033[38;5;208m", "\033[38;5;214m", "\033[38;5;220m",
"\033[38;5;226m", "\033[38;5;190m", "\033[38;5;154m", "\033[38;5;118m", "\033[38;5;82m",
};
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
}
// helper function to replace substrings
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
for (size_t pos = 0; ; pos += replace.length()) {
@ -54,20 +28,24 @@ void replace_all(std::string & s, const std::string & search, const std::string
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t progress_step = 5;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = whisper_full_default_params(WHISPER_SAMPLING_GREEDY).greedy.best_of;
int32_t beam_size = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH).beam_search.beam_size;
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t progress_step = 5;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = whisper_full_default_params(WHISPER_SAMPLING_GREEDY).greedy.best_of;
int32_t beam_size = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH).beam_search.beam_size;
int32_t audio_ctx = 0;
float word_thold = 0.01f;
float entropy_thold = 2.40f;
float logprob_thold = -1.00f;
float word_thold = 0.01f;
float entropy_thold = 2.40f;
float logprob_thold = -1.00f;
float grammar_penalty = 100.0f;
float temperature = 0.0f;
float temperature_inc = 0.2f;
bool speed_up = false;
bool debug_mode = false;
@ -85,29 +63,48 @@ struct whisper_params {
bool output_jsn = false;
bool output_jsn_full = false;
bool output_lrc = false;
bool no_prints = false;
bool print_special = false;
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
bool log_score = false;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string prompt;
std::string font_path = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
std::string model = "models/ggml-base.en.bin";
std::string grammar;
std::string grammar_rule;
// [TDRZ] speaker turn string
std::string tdrz_speaker_turn = " [SPEAKER_TURN]"; // TODO: set from command line
// A regular expression that matches tokens to suppress
std::string suppress_regex;
std::string openvino_encode_device = "CPU";
std::string dtw = "";
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_out = {};
grammar_parser::parse_state grammar_parsed;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
char* whisper_param_turn_lowercase(char* in){
int string_len = strlen(in);
for(int i = 0; i < string_len; i++){
*(in+i) = tolower((unsigned char)*(in+i));
}
return in;
}
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -135,9 +132,12 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
else if (arg == "-tp" || arg == "--temperature") { params.temperature = std::stof(argv[++i]); }
else if (arg == "-tpi" || arg == "--temperature-inc") { params.temperature_inc = std::stof(argv[++i]); }
// else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
@ -155,18 +155,25 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
else if (arg == "-ojf" || arg == "--output-json-full"){ params.output_jsn_full = params.output_jsn = true; }
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
else if (arg == "-np" || arg == "--no-prints") { params.no_prints = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-l" || arg == "--language") { params.language = whisper_param_turn_lowercase(argv[++i]); }
else if (arg == "-dl" || arg == "--detect-language") { params.detect_language = true; }
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
else if ( arg == "--grammar-rule") { params.grammar_rule = argv[++i]; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -193,9 +200,12 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -sow, --split-on-word [%-7s] split on word rather than on token\n", params.split_on_word ? "true" : "false");
fprintf(stderr, " -bo N, --best-of N [%-7d] number of best candidates to keep\n", params.best_of);
fprintf(stderr, " -bs N, --beam-size N [%-7d] beam size for beam search\n", params.beam_size);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
fprintf(stderr, " -tp, --temperature N [%-7.2f] The sampling temperature, between 0 and 1\n", params.temperature);
fprintf(stderr, " -tpi, --temperature-inc N [%-7.2f] The increment of temperature, between 0 and 1\n",params.temperature_inc);
// fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
@ -212,18 +222,25 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -oj, --output-json [%-7s] output result in a JSON file\n", params.output_jsn ? "true" : "false");
fprintf(stderr, " -ojf, --output-json-full [%-7s] include more information in the JSON file\n", params.output_jsn_full ? "true" : "false");
fprintf(stderr, " -of FNAME, --output-file FNAME [%-7s] output file path (without file extension)\n", "");
fprintf(stderr, " -np, --no-prints [%-7s] do not print anything other than the results\n", params.no_prints ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
fprintf(stderr, " -dl, --detect-language [%-7s] exit after automatically detecting language\n", params.detect_language ? "true" : "false");
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt (max n_text_ctx/2 tokens)\n", params.prompt.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
fprintf(stderr, " -dtw MODEL --dtw MODEL [%-7s] compute token-level timestamps\n", params.dtw.c_str());
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
fprintf(stderr, " --grammar-rule RULE [%-7s] top-level GBNF grammar rule name\n", params.grammar_rule.c_str());
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
fprintf(stderr, "\n");
}
@ -238,8 +255,8 @@ std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s
std::string speaker = "";
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
const int64_t is0 = timestamp_to_sample(t0, n_samples, WHISPER_SAMPLE_RATE);
const int64_t is1 = timestamp_to_sample(t1, n_samples, WHISPER_SAMPLE_RATE);
double energy0 = 0.0f;
double energy1 = 0.0f;
@ -463,6 +480,38 @@ char *escape_double_quotes_and_backslashes(const char *str) {
return escaped;
}
// double quote should be escaped by another double quote. (rfc4180)
char *escape_double_quotes_in_csv(const char *str) {
if (str == NULL) {
return NULL;
}
size_t escaped_length = strlen(str) + 1;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"') {
escaped_length++;
}
}
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
if (escaped == NULL) {
return NULL;
}
size_t pos = 0;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"') {
escaped[pos++] = '"';
}
escaped[pos++] = str[i];
}
// no need to set zero due to calloc() being used prior
return escaped;
}
bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
@ -484,7 +533,7 @@ bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
char * text_escaped = escape_double_quotes_and_backslashes(text);
char * text_escaped = escape_double_quotes_in_csv(text);
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
fout << 10 * t0 << "," << 10 * t1 << ",";
@ -663,7 +712,8 @@ bool output_json(
times_o(token.t0, token.t1, false);
}
value_i("id", token.id, false);
value_f("p", token.p, true);
value_f("p", token.p, false);
value_f("t_dtw", token.t_dtw, true);
end_obj(j == (n - 1));
}
end_arr(!params.diarize && !params.tinydiarize);
@ -852,14 +902,59 @@ bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
int main(int argc, char ** argv) {
whisper_params params;
// If the only argument starts with "@", read arguments line-by-line
// from the given file.
std::vector<std::string> vec_args;
if (argc == 2 && argv != nullptr && argv[1] != nullptr && argv[1][0] == '@') {
// Save the name of the executable.
vec_args.push_back(argv[0]);
// Open the response file.
char const * rspfile = argv[1] + sizeof(char);
std::ifstream fin(rspfile);
if (fin.is_open() == false) {
fprintf(stderr, "error: response file '%s' not found\n", rspfile);
return 1;
}
// Read the entire response file.
std::string line;
while (std::getline(fin, line)) {
vec_args.push_back(line);
}
// Use the contents of the response file as the command-line arguments.
argc = static_cast<int>(vec_args.size());
argv = static_cast<char **>(alloca(argc * sizeof (char *)));
for (int i = 0; i < argc; ++i) {
argv[i] = const_cast<char *>(vec_args[i].c_str());
}
}
if (whisper_params_parse(argc, argv, params) == false) {
whisper_print_usage(argc, argv, params);
return 1;
}
// remove non-existent files
for (auto it = params.fname_inp.begin(); it != params.fname_inp.end();) {
const auto fname_inp = it->c_str();
if (*it != "-" && !is_file_exist(fname_inp)) {
fprintf(stderr, "error: input file not found '%s'\n", fname_inp);
it = params.fname_inp.erase(it);
continue;
}
it++;
}
if (params.fname_inp.empty()) {
fprintf(stderr, "error: no input files specified\n");
whisper_print_usage(argc, argv, params);
@ -878,10 +973,38 @@ int main(int argc, char ** argv) {
exit(0);
}
if (params.no_prints) {
whisper_log_set(cb_log_disable, NULL);
}
// whisper init
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
if (!params.dtw.empty()) {
cparams.dtw_token_timestamps = true;
cparams.dtw_aheads_preset = WHISPER_AHEADS_NONE;
if (params.dtw == "tiny") cparams.dtw_aheads_preset = WHISPER_AHEADS_TINY;
if (params.dtw == "tiny.en") cparams.dtw_aheads_preset = WHISPER_AHEADS_TINY_EN;
if (params.dtw == "base") cparams.dtw_aheads_preset = WHISPER_AHEADS_BASE;
if (params.dtw == "base.en") cparams.dtw_aheads_preset = WHISPER_AHEADS_BASE_EN;
if (params.dtw == "small") cparams.dtw_aheads_preset = WHISPER_AHEADS_SMALL;
if (params.dtw == "small.en") cparams.dtw_aheads_preset = WHISPER_AHEADS_SMALL_EN;
if (params.dtw == "medium") cparams.dtw_aheads_preset = WHISPER_AHEADS_MEDIUM;
if (params.dtw == "medium.en") cparams.dtw_aheads_preset = WHISPER_AHEADS_MEDIUM_EN;
if (params.dtw == "large.v1") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V1;
if (params.dtw == "large.v2") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V2;
if (params.dtw == "large.v3") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V3;
if (cparams.dtw_aheads_preset == WHISPER_AHEADS_NONE) {
fprintf(stderr, "error: unknown DTW preset '%s'\n", params.dtw.c_str());
return 3;
}
}
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
@ -893,6 +1016,29 @@ int main(int argc, char ** argv) {
// initialize openvino encoder. this has no effect on whisper.cpp builds that don't have OpenVINO configured
whisper_ctx_init_openvino_encoder(ctx, nullptr, params.openvino_encode_device.c_str(), nullptr);
if (!params.grammar.empty()) {
auto & grammar = params.grammar_parsed;
if (is_file_exist(params.grammar.c_str())) {
// read grammar from file
std::ifstream ifs(params.grammar.c_str());
const std::string txt = std::string((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
grammar = grammar_parser::parse(txt.c_str());
} else {
// read grammar from string
grammar = grammar_parser::parse(params.grammar.c_str());
}
// will be empty (default) if there are parse errors
if (grammar.rules.empty()) {
fprintf(stderr, "error: failed to parse grammar \"%s\"\n", params.grammar.c_str());
return 4;
} else {
fprintf(stderr, "%s: grammar:\n", __func__);
grammar_parser::print_grammar(stderr, grammar);
fprintf(stderr, "\n");
}
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
@ -905,26 +1051,25 @@ int main(int argc, char ** argv) {
continue;
}
// print system information
{
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
if (params.detect_language) {
params.language = "auto";
}
if (!params.no_prints) {
// print system information
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// print some info about the processing
{
// print some info about the processing
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
if (params.detect_language) {
params.language = "auto";
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, %d beams + best of %d, lang = %s, task = %s, %stimestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors, params.beam_size, params.best_of,
@ -940,7 +1085,8 @@ int main(int argc, char ** argv) {
{
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
const bool use_grammar = (!params.grammar_parsed.rules.empty() && !params.grammar_rule.empty());
wparams.strategy = (params.beam_size > 1 || use_grammar) ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
wparams.print_realtime = false;
wparams.print_progress = params.print_progress;
@ -958,23 +1104,44 @@ int main(int argc, char ** argv) {
wparams.thold_pt = params.word_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.split_on_word = params.split_on_word;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.debug_mode = params.debug_mode;
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
wparams.suppress_regex = params.suppress_regex.empty() ? nullptr : params.suppress_regex.c_str();
wparams.initial_prompt = params.prompt.c_str();
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
wparams.temperature_inc = params.no_fallback ? 0.0f : params.temperature_inc;
wparams.temperature = params.temperature;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
wparams.no_timestamps = params.no_timestamps;
whisper_print_user_data user_data = { &params, &pcmf32s, 0 };
const auto & grammar_parsed = params.grammar_parsed;
auto grammar_rules = grammar_parsed.c_rules();
if (use_grammar) {
if (grammar_parsed.symbol_ids.find(params.grammar_rule) == grammar_parsed.symbol_ids.end()) {
fprintf(stderr, "%s: warning: grammar rule '%s' not found - skipping grammar sampling\n", __func__, params.grammar_rule.c_str());
} else {
wparams.grammar_rules = grammar_rules.data();
wparams.n_grammar_rules = grammar_rules.size();
wparams.i_start_rule = grammar_parsed.symbol_ids.at(params.grammar_rule);
wparams.grammar_penalty = params.grammar_penalty;
}
}
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
@ -1071,7 +1238,9 @@ int main(int argc, char ** argv) {
}
}
whisper_print_timings(ctx);
if (!params.no_prints) {
whisper_print_timings(ctx);
}
whisper_free(ctx);
return 0;

View File

@ -0,0 +1,7 @@
import whisper_processor
try:
result = whisper_processor.process_audio("./audio/wake_word_detected16k.wav", "base.en")
print(result)
except Exception as e:
print(f"Error: {e}")

View File

@ -0,0 +1,54 @@
import subprocess
import sys
import os
def process_audio(wav_file, model_name="base.en"):
"""
Processes an audio file using a specified model and returns the processed string.
:param wav_file: Path to the WAV file
:param model_name: Name of the model to use
:return: Processed string output from the audio processing
:raises: Exception if an error occurs during processing
"""
model = f"./models/ggml-{model_name}.bin"
# Check if the file exists
if not os.path.exists(model):
raise FileNotFoundError(f"Model file not found: {model} \n\nDownload a model with this command:\n\n> bash ./models/download-ggml-model.sh {model_name}\n\n")
if not os.path.exists(wav_file):
raise FileNotFoundError(f"WAV file not found: {wav_file}")
full_command = f"./main -m {model} -f {wav_file} -np -nt"
# Execute the command
process = subprocess.Popen(full_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Get the output and error (if any)
output, error = process.communicate()
if error:
raise Exception(f"Error processing audio: {error.decode('utf-8')}")
# Process and return the output string
decoded_str = output.decode('utf-8').strip()
processed_str = decoded_str.replace('[BLANK_AUDIO]', '').strip()
return processed_str
def main():
if len(sys.argv) >= 2:
wav_file = sys.argv[1]
model_name = sys.argv[2] if len(sys.argv) == 3 else "base.en"
try:
result = process_audio(wav_file, model_name)
print(result)
except Exception as e:
print(f"Error: {e}")
else:
print("Usage: python whisper_processor.py <wav_file> [<model_name>]")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,10 @@
set(TARGET server)
add_executable(${TARGET} server.cpp httplib.h)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common json_cpp whisper ${CMAKE_THREAD_LIBS_INIT})
if (WIN32)
target_link_libraries(${TARGET} PRIVATE ws2_32)
endif()

69
examples/server/README.md Normal file
View File

@ -0,0 +1,69 @@
# whisper.cpp http server
Simple http server. WAV Files are passed to the inference model via http requests.
https://github.com/ggerganov/whisper.cpp/assets/1991296/e983ee53-8741-4eb5-9048-afe5e4594b8f
## Usage
```
./server -h
usage: ./bin/server [options]
options:
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-sow, --split-on-word [false ] split on word rather than on token
-bo N, --best-of N [2 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pr, --print-realtime [false ] print output in realtime
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [false ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
-dl, --detect-language [false ] exit after automatically detecting language
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
--host HOST, [127.0.0.1] Hostname/ip-adress for the server
--port PORT, [8080 ] Port number for the server
--convert, [false ] Convert audio to WAV, requires ffmpeg on the server
```
> [!WARNING]
> **Do not run the server example with administrative privileges and ensure it's operated in a sandbox environment, especially since it involves risky operations like accepting user file uploads and using ffmpeg for format conversions. Always validate and sanitize inputs to guard against potential security threats.**
## request examples
**/inference**
```
curl 127.0.0.1:8080/inference \
-H "Content-Type: multipart/form-data" \
-F file="@<file-path>" \
-F temperature="0.0" \
-F temperature_inc="0.2" \
-F response_format="json"
```
**/load**
```
curl 127.0.0.1:8080/load \
-H "Content-Type: multipart/form-data" \
-F model="<path-to-model-file>"
```

9262
examples/server/httplib.h Normal file

File diff suppressed because it is too large Load Diff

1041
examples/server/server.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -103,11 +103,11 @@ void stream_main(size_t index) {
{
const int n_segments = whisper_full_n_segments(ctx);
for (int i = n_segments - 1; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
if (n_segments > 0) {
const char * text = whisper_full_get_segment_text(ctx, n_segments - 1);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, n_segments - 1);
const int64_t t1 = whisper_full_get_segment_t1(ctx, n_segments - 1);
printf("transcribed: %s\n", text);

View File

@ -4,7 +4,7 @@ This is a naive example of performing real-time inference on audio from your mic
The `stream` tool samples the audio every half a second and runs the transcription continously.
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
```java
```bash
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
```
@ -14,7 +14,7 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
Setting the `--step` argument to `0` enables the sliding window mode:
```java
```bash
./stream -m ./models/ggml-small.en.bin -t 6 --step 0 --length 30000 -vth 0.6
```
@ -30,17 +30,21 @@ a transcription block that is suitable for parsing.
The `stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash
# Install SDL2 on Linux
# Install SDL2
# On Debian based linux distributions:
sudo apt-get install libsdl2-dev
# On Fedora Linux:
sudo dnf install SDL2 SDL2-devel
# Install SDL2 on Mac OS
brew install sdl2
make stream
```
Ensure you are at the root of the repo when running `make stream`. Not within the `examples/stream` dir
as the libraries needed like `common-sdl.h` are located within `examples`. Attempting to compile within
Ensure you are at the root of the repo when running `make stream`. Not within the `examples/stream` dir
as the libraries needed like `common-sdl.h` are located within `examples`. Attempting to compile within
`examples/steam` means your compiler cannot find them and it gives an error it cannot find the file.
```bash

View File

@ -14,20 +14,6 @@
#include <fstream>
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t) {
int64_t sec = t/100;
int64_t msec = t - sec*100;
int64_t min = sec/60;
sec = sec - min*60;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
return std::string(buf);
}
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
@ -50,6 +36,7 @@ struct whisper_params {
bool tinydiarize = false;
bool save_audio = false; // save audio to wav file
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
@ -86,6 +73,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
else if (arg == "-sa" || arg == "--save-audio") { params.save_audio = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
@ -123,6 +111,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
fprintf(stderr, " -sa, --save-audio [%-7s] save the recorded audio to a file\n", params.save_audio ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU inference\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention during inference\n", params.flash_attn ? "true" : "false");
fprintf(stderr, "\n");
}
@ -166,8 +155,10 @@ int main(int argc, char ** argv) {
exit(0);
}
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
@ -372,7 +363,7 @@ int main(int argc, char ** argv) {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
std::string output = "[" + to_timestamp(t0) + " --> " + to_timestamp(t1) + "] " + text;
std::string output = "[" + to_timestamp(t0, false) + " --> " + to_timestamp(t1, false) + "] " + text;
if (whisper_full_get_segment_speaker_turn_next(ctx, i)) {
output += " [SPEAKER_TURN]";

View File

@ -0,0 +1,9 @@
# MIT license
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: MIT
set(TARGET ls-sycl-device)
add_executable(${TARGET} ls-sycl-device.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

47
examples/sycl/README.md Normal file
View File

@ -0,0 +1,47 @@
# llama.cpp/example/sycl
This example program provide the tools for llama.cpp for SYCL on Intel GPU.
## Tool
|Tool Name| Function|Status|
|-|-|-|
|ls-sycl-device| List all SYCL devices with ID, compute capability, max work group size, ect.|Support|
### ls-sycl-device
List all SYCL devices with ID, compute capability, max work group size, ect.
1. Build the llama.cpp for SYCL for all targets.
2. Enable oneAPI running environment
```
source /opt/intel/oneapi/setvars.sh
```
3. Execute
```
./build/bin/ls-sycl-device
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|

19
examples/sycl/build.sh Normal file
View File

@ -0,0 +1,19 @@
# MIT license
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: MIT
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
#for FP16
#cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON # faster for long-prompt inference
#for FP32
cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only
#cmake --build . --config Release --target main
#build all binary
cmake --build . --config Release -v

View File

@ -0,0 +1,11 @@
/*MIT license
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
*/
#include "ggml-sycl.h"
int main(int argc, char ** argv) {
ggml_backend_sycl_print_sycl_devices();
return 0;
}

View File

@ -0,0 +1,17 @@
#!/bin/bash
# MIT license
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: MIT
INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
source /opt/intel/oneapi/setvars.sh
if [ $# -gt 0 ]; then
export GGML_SYCL_DEVICE=$1
else
export GGML_SYCL_DEVICE=0
fi
echo GGML_SYCL_DEVICE=$GGML_SYCL_DEVICE
#export GGML_SYCL_DEBUG=1
./build/bin/main -m models/ggml-base.en.bin -f samples/jfk.wav

View File

@ -1 +1,2 @@
audio.mp3
to_speak.txt

View File

@ -1,25 +1,18 @@
if (WHISPER_SDL2)
# talk-llama
set(TARGET talk-llama)
#add_executable(${TARGET} talk-llama.cpp llama.cpp)
#target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
#target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp unicode-data.cpp)
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
# TODO: this is temporary
# need to export ggml symbols for MSVC, but too lazy ..
add_executable(${TARGET}
talk-llama.cpp
llama.cpp
../common.cpp
../common-sdl.cpp
../../ggml.c
../../ggml-alloc.c
../../ggml-backend.c
../../ggml-quants.c
../../whisper.cpp)
if (WHISPER_CLBLAST)
set(CLBLAST_LIBNAME clblast)
endif ()
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${SDL2_LIBRARIES} ${CLBLAST_LIBNAME} ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
if(WIN32)
# It requires Windows 8.1 or later for PrefetchVirtualMemory
target_compile_definitions(${TARGET} PRIVATE -D_WIN32_WINNT=0x0602)
endif()
include(DefaultTargetOptions)
endif ()

View File

@ -15,9 +15,13 @@ https://github.com/ggerganov/whisper.cpp/assets/1991296/d97a3788-bf2a-4756-9a43-
The `talk-llama` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash
# Install SDL2 on Linux
# Install SDL2
# On Debian based linux distributions:
sudo apt-get install libsdl2-dev
# On Fedora Linux:
sudo dnf install SDL2 SDL2-devel
# Install SDL2 on Mac OS
brew install sdl2

View File

@ -1,20 +1,80 @@
import sys
import importlib.util
import argparse
import textwrap
if importlib.util.find_spec("elevenlabs") is None:
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
parser = argparse.ArgumentParser(add_help=False,
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("-q", "--quick", action="store_true",
help="skip checking the required library")
modes = parser.add_argument_group("action")
modes.add_argument("inputfile", metavar="TEXTFILE",
nargs='?', type=argparse.FileType(), default=sys.stdin,
help="read the text file (default: stdin)")
modes.add_argument("-l", "--list", action="store_true",
help="show the list of voices and exit")
modes.add_argument("-h", "--help", action="help",
help="show this help and exit")
selopts = parser.add_argument_group("voice selection")
selmodes = selopts.add_mutually_exclusive_group()
selmodes.add_argument("-n", "--name",
default="Arnold",
help="get a voice object by name (default: Arnold)")
selmodes.add_argument("-v", "--voice", type=int, metavar="NUMBER",
help="get a voice object by number (see --list)")
selopts.add_argument("-f", "--filter", action="append", metavar="KEY=VAL",
default=["use case=narration"],
help=textwrap.dedent('''\
filter voices by labels (default: "use case=narration")
this option can be used multiple times
filtering will be disabled if the first -f has no "=" (e.g. -f "any")
'''))
outmodes = parser.add_argument_group("output")
outgroup = outmodes.add_mutually_exclusive_group()
outgroup.add_argument("-s", "--save", metavar="FILE",
default="audio.mp3",
help="save the TTS to a file (default: audio.mp3)")
outgroup.add_argument("-p", "--play", action="store_true",
help="play the TTS with ffplay")
args = parser.parse_args()
if not args.quick:
import importlib.util
if importlib.util.find_spec("elevenlabs") is None:
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
sys.exit()
from elevenlabs import voices, generate, play, save
if args.filter and "=" in args.filter[0]:
voicelist = voices()
for f in args.filter:
label, value = f.split("=")
voicelist = filter(lambda x: x.labels.get(label) == value, voicelist)
voicelist = list(voicelist)
else:
voicelist = list(voices())
if args.list:
for i, v in enumerate(voicelist):
print(str(i) + ": " + v.name + " " + str(v.labels))
sys.exit()
from elevenlabs import generate, play, save
if args.voice:
voice = voicelist[args.voice % len(voicelist)]
else:
voice = args.name
# if -n should consult -f, use the following
#voice = next(x for x in voicelist if x.name == args.name)
# Get a Voice object, by name or UUID
voice = "Arnold" #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
# Generate the TTS
audio = generate(
text=str(sys.argv[2:]),
voice=voice
text=str(args.inputfile.read()),
voice=voice
)
# Save the TTS to a file
save(audio, "audio.mp3")
if args.play:
play(audio)
else:
save(audio, args.save)

File diff suppressed because it is too large Load Diff

View File

@ -2,12 +2,8 @@
#define LLAMA_H
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
#include "ggml-backend.h"
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
@ -39,15 +35,15 @@
#define LLAMA_MAX_RNG_STATE (64*1024)
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 2
#define LLAMA_SESSION_VERSION 6
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
#define LLAMA_STATE_SEQ_VERSION 1
#ifdef __cplusplus
extern "C" {
@ -67,8 +63,36 @@ extern "C" {
typedef int32_t llama_seq_id;
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
};
// pre-tokenization types
enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
LLAMA_VOCAB_PRE_TYPE_MPT = 5,
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 10,
LLAMA_VOCAB_PRE_TYPE_OLMO = 11,
LLAMA_VOCAB_PRE_TYPE_DBRX = 12,
};
// note: these values should be synchronized with ggml_rope
// TODO: maybe move this enum to ggml.h (ggml_rope_type)
enum llama_rope_type {
LLAMA_ROPE_TYPE_NONE = -1,
LLAMA_ROPE_TYPE_NORM = 0,
LLAMA_ROPE_TYPE_NEOX = 2,
LLAMA_ROPE_TYPE_GLM = 4,
};
enum llama_token_type {
@ -102,16 +126,43 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
};
enum llama_rope_scaling_type {
LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
LLAMA_ROPE_SCALING_NONE = 0,
LLAMA_ROPE_SCALING_LINEAR = 1,
LLAMA_ROPE_SCALING_YARN = 2,
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
};
enum llama_pooling_type {
LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
LLAMA_POOLING_TYPE_NONE = 0,
LLAMA_POOLING_TYPE_MEAN = 1,
LLAMA_POOLING_TYPE_CLS = 2,
};
enum llama_split_mode {
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
};
typedef struct llama_token_data {
@ -126,7 +177,7 @@ extern "C" {
bool sorted;
} llama_token_data_array;
typedef void (*llama_progress_callback)(float progress, void *ctx);
typedef bool (*llama_progress_callback)(float progress, void * user_data);
// Input data for llama_decode
// A llama_batch object can contain input about one or many sequences
@ -136,7 +187,7 @@ extern "C" {
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
// - pos : the positions of the respective token in the sequence
// - seq_id : the sequence to which the respective token belongs
// - logits : if zero, the logits for the respective token will not be output
// - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
//
typedef struct llama_batch {
int32_t n_tokens;
@ -146,7 +197,7 @@ extern "C" {
llama_pos * pos;
int32_t * n_seq_id;
llama_seq_id ** seq_id;
int8_t * logits;
int8_t * logits; // TODO: rename this to "output"
// NOTE: helpers for smooth API transition - can be deprecated in the future
// for future-proof code, use the above fields instead and ignore everything below
@ -158,54 +209,112 @@ extern "C" {
llama_seq_id all_seq_id; // used if seq_id == NULL
} llama_batch;
enum llama_model_kv_override_type {
LLAMA_KV_OVERRIDE_TYPE_INT,
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
LLAMA_KV_OVERRIDE_TYPE_BOOL,
LLAMA_KV_OVERRIDE_TYPE_STR,
};
struct llama_model_kv_override {
enum llama_model_kv_override_type tag;
char key[128];
union {
int64_t val_i64;
double val_f64;
bool val_bool;
char val_str[128];
};
};
struct llama_model_params {
int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
// called with a progress value between 0 and 1, pass NULL to disable
// main_gpu interpretation depends on split_mode:
// LLAMA_SPLIT_NONE: the GPU that is used for the entire model
// LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
// LLAMA_SPLIT_LAYER: ignored
int32_t main_gpu;
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
const float * tensor_split;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues.
// If it returns false, model loading is immediately aborted.
llama_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
// override key-value pairs of the model meta data
const struct llama_model_kv_override * kv_overrides;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool check_tensors; // validate model tensor data
};
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
uint32_t n_ctx; // text context, 0 = from model
uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
uint32_t n_ubatch; // physical maximum batch size
uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing
int8_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
// (ignored if no pooling layer)
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
float yarn_ext_factor; // YaRN extrapolation mix factor, NaN = from model
float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
float yarn_attn_factor; // YaRN magnitude scaling factor
float yarn_beta_fast; // YaRN low correction dim
float yarn_beta_slow; // YaRN high correction dim
uint32_t yarn_orig_ctx; // YaRN original context size
float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
enum ggml_type type_k; // data type for K cache
enum ggml_type type_v; // data type for V cache
// Keep the booleans together to avoid misalignment during copy-by-value.
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
bool f16_kv; // use fp16 for KV cache, fp32 otherwise
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool embedding; // embedding mode only
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
// currently works only with CPU execution
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // disable k-quant mixtures and quantize all tensors to the same type
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
enum ggml_type output_tensor_type; // output tensor type
enum ggml_type token_embedding_type; // itoken embeddings tensor type
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // quantize all tensors to the default type
bool keep_split; // quantize to the same number of shards
void * imatrix; // pointer to importance matrix data
void * kv_overrides; // pointer to vector containing overrides
} llama_model_quantize_params;
// grammar types
@ -256,6 +365,12 @@ extern "C" {
int32_t n_eval;
};
// used in chat template
typedef struct llama_chat_message {
const char * role;
const char * content;
} llama_chat_message;
// Helpers for getting default parameters
LLAMA_API struct llama_model_params llama_model_default_params(void);
LLAMA_API struct llama_context_params llama_context_default_params(void);
@ -264,7 +379,10 @@ extern "C" {
// Initialize the llama + ggml backend
// If numa is true, use NUMA optimizations
// Call once at the start of the program
LLAMA_API void llama_backend_init(bool numa);
LLAMA_API void llama_backend_init(void);
//optional:
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(void);
@ -284,25 +402,51 @@ extern "C" {
LLAMA_API int64_t llama_time_us(void);
LLAMA_API int llama_max_devices (void);
LLAMA_API bool llama_mmap_supported (void);
LLAMA_API bool llama_mlock_supported(void);
LLAMA_API size_t llama_max_devices(void);
LLAMA_API bool llama_supports_mmap (void);
LLAMA_API bool llama_supports_mlock (void);
LLAMA_API bool llama_supports_gpu_offload(void);
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API int llama_n_vocab (const struct llama_model * model);
LLAMA_API int llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int llama_n_embd (const struct llama_model * model);
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
// Functions to access the model's GGUF metadata scalar values
// - The functions return the length of the string on success, or -1 on failure
// - The output string is always null-terminated and cleared on failure
// - GGUF array values are not supported by these functions
// Get metadata value as a string by key name
LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
// Get the number of metadata key/value pairs
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
// Get metadata key name by index
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
// Get metadata value as a string by index
LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
// Get a string describing the model type
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
// Returns the total size of all the tensors in the model in bytes
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
@ -314,7 +458,7 @@ extern "C" {
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
// Returns 0 on success
LLAMA_API int llama_model_quantize(
LLAMA_API uint32_t llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params);
@ -325,38 +469,96 @@ extern "C" {
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
struct llama_context * ctx,
const char * path_lora,
float scale,
const char * path_base_model,
int n_threads),
"use llama_model_apply_lora_from_file instead");
LLAMA_API int llama_model_apply_lora_from_file(
LLAMA_API int32_t llama_model_apply_lora_from_file(
const struct llama_model * model,
const char * path_lora,
float scale,
const char * path_base_model,
int n_threads);
const char * path_lora,
float scale,
const char * path_base_model,
int32_t n_threads);
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
// the currently loaded vector.
// n_embd should be the size of a single layer's control, and data should point
// to an n_embd x n_layers buffer starting from layer 1.
// il_start and il_end are the layer range the vector should apply to (both inclusive)
// See llama_control_vector_load in common to load a control vector.
LLAMA_API int32_t llama_control_vector_apply(
struct llama_context * lctx,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
//
// KV cache
//
// Returns the number of tokens in the KV cache
LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx),
"avoid using this, it will be removed in the future, instead - count the tokens in user code");
// Information associated with an individual cell in the KV cache view.
struct llama_kv_cache_view_cell {
// The position for this cell. Takes KV cache shifts into account.
// May be negative if the cell is not populated.
llama_pos pos;
};
// Clear the KV cache
// An updateable view of the KV cache.
struct llama_kv_cache_view {
// Number of KV cache cells. This will be the same as the context size.
int32_t n_cells;
// Maximum number of sequences that can exist in a cell. It's not an error
// if there are more sequences in a cell than this value, however they will
// not be visible in the view cells_sequences.
int32_t n_seq_max;
// Number of tokens in the cache. For example, if there are two populated
// cells, the first with 1 sequence id in it and the second with 2 sequence
// ids then you'll have 3 tokens.
int32_t token_count;
// Number of populated cache cells.
int32_t used_cells;
// Maximum contiguous empty slots in the cache.
int32_t max_contiguous;
// Index to the start of the max_contiguous slot range. Can be negative
// when cache is full.
int32_t max_contiguous_idx;
// Information for an individual cell.
struct llama_kv_cache_view_cell * cells;
// The sequences for each cell. There will be n_seq_max items per cell.
llama_seq_id * cells_sequences;
};
// Create an empty KV cache view. (use only for debugging purposes)
LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
// Free a KV cache view. (use only for debugging purposes)
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
// Returns the number of tokens in the KV cache (slow, use only for debug)
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
// Clear the KV cache - both cell info is erased and KV data is zeroed
LLAMA_API void llama_kv_cache_clear(
struct llama_context * ctx);
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
// Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
// seq_id < 0 : match any sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_rm(
LLAMA_API bool llama_kv_cache_seq_rm(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
@ -379,76 +581,142 @@ extern "C" {
llama_seq_id seq_id);
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
// If the KV cache is RoPEd, the KV data is updated accordingly
// If the KV cache is RoPEd, the KV data is updated accordingly:
// - lazily on next llama_decode()
// - explicitly with llama_kv_cache_update()
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_shift(
LLAMA_API void llama_kv_cache_seq_add(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta);
// Integer division of the positions by factor of `d > 1`
// If the KV cache is RoPEd, the KV data is updated accordingly:
// - lazily on next llama_decode()
// - explicitly with llama_kv_cache_update()
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_div(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d);
// Returns the largest position present in the KV cache for the specified sequence
LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
struct llama_context * ctx,
llama_seq_id seq_id);
// Defragment the KV cache
// This will be applied:
// - lazily on next llama_decode()
// - explicitly with llama_kv_cache_update()
LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
//
// State / sessions
//
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
"use llama_state_get_size instead");
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data(
LLAMA_API size_t llama_state_get_data(
struct llama_context * ctx,
uint8_t * dst);
LLAMA_API DEPRECATED(size_t llama_copy_state_data(
struct llama_context * ctx,
uint8_t * dst),
"use llama_state_get_data instead");
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(
LLAMA_API size_t llama_state_set_data(
struct llama_context * ctx,
uint8_t * src);
const uint8_t * src);
LLAMA_API DEPRECATED(size_t llama_set_state_data(
struct llama_context * ctx,
const uint8_t * src),
"use llama_state_set_data instead");
// Save/load session file
LLAMA_API bool llama_load_session_file(
LLAMA_API bool llama_state_load_file(
struct llama_context * ctx,
const char * path_session,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out);
LLAMA_API DEPRECATED(bool llama_load_session_file(
struct llama_context * ctx,
const char * path_session,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out),
"use llama_state_load_file instead");
LLAMA_API bool llama_save_session_file(
LLAMA_API bool llama_state_save_file(
struct llama_context * ctx,
const char * path_session,
const llama_token * tokens,
size_t n_token_count);
LLAMA_API DEPRECATED(bool llama_save_session_file(
struct llama_context * ctx,
const char * path_session,
const llama_token * tokens,
size_t n_token_count),
"use llama_state_save_file instead");
// Get the exact size needed to copy the KV cache of a single sequence
LLAMA_API size_t llama_state_seq_get_size(
struct llama_context * ctx,
llama_seq_id seq_id);
// Copy the KV cache of a single sequence into the specified buffer
LLAMA_API size_t llama_state_seq_get_data(
struct llama_context * ctx,
uint8_t * dst,
llama_seq_id seq_id);
// Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
// Returns:
// - Positive: Ok
// - Zero: Failed to load
LLAMA_API size_t llama_state_seq_set_data(
struct llama_context * ctx,
const uint8_t * src,
llama_seq_id dest_seq_id);
LLAMA_API size_t llama_state_seq_save_file(
struct llama_context * ctx,
const char * filepath,
llama_seq_id seq_id,
const llama_token * tokens,
size_t n_token_count);
LLAMA_API size_t llama_state_seq_load_file(
struct llama_context * ctx,
const char * filepath,
llama_seq_id dest_seq_id,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out);
//
// Decoding
//
// Run the llama inference to obtain the logits and probabilities for the next token(s).
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
// DEPRECATED: use llama_decode() instead
LLAMA_API DEPRECATED(int llama_eval(
struct llama_context * ctx,
llama_token * tokens,
int32_t n_tokens,
int n_past),
"use llama_decode() instead");
// Same as llama_eval, but use float matrix input directly.
// DEPRECATED: use llama_decode() instead
LLAMA_API DEPRECATED(int llama_eval_embd(
struct llama_context * ctx,
float * embd,
int32_t n_tokens,
int n_past),
"use llama_decode() instead");
// Return batch for single sequence of tokens starting at pos_0
//
// NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
@ -478,7 +746,7 @@ extern "C" {
// 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
// < 0 - error
LLAMA_API int llama_decode(
LLAMA_API int32_t llama_decode(
struct llama_context * ctx,
struct llama_batch batch);
@ -487,21 +755,51 @@ extern "C" {
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Logits for which llama_batch.logits[i] == 0 are undefined
// Rows: n_tokens provided with llama_batch
// Set whether to use causal attention or not
// If set to true, the model will only attend to the past tokens
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
// Set abort callback
LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
// Wait until all computations are finished
// This is automatically done when using one of the functions below to obtain the computation results
// and is not necessary to call it explicitly in most cases
LLAMA_API void llama_synchronize(struct llama_context * ctx);
// Token logits obtained from the last call to llama_decode()
// The logits for which llama_batch.logits[i] != 0 are stored contiguously
// in the order they have appeared in the batch.
// Rows: number of tokens for which llama_batch.logits[i] != 0
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Logits for the ith token. Equivalent to:
// llama_get_logits(ctx) + i*n_vocab
// Logits for the ith token. For positive indices, Equivalent to:
// llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
// Negative indicies can be used to access logits in reverse order, -1 is the last logit.
// returns NULL for invalid ids.
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
// Get all output token embeddings.
// when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
// the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
// in the order they have appeared in the batch.
// shape: [n_outputs*n_embd]
// Otherwise, returns NULL.
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Get the embeddings for the ith token. For positive indices, Equivalent to:
// llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
// Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
// shape: [n_embd] (1-dimensional)
// returns NULL for invalid ids.
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
// Get the embeddings for a sequence id
// Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
//
// Vocab
//
@ -512,12 +810,23 @@ extern "C" {
LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
// codellama infill tokens
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
// Codellama infill tokens
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
@ -529,28 +838,49 @@ extern "C" {
/// @details Convert the provided text into tokens.
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
/// @return Returns the number of tokens on success, no more than n_max_tokens
/// @return Returns the number of tokens on success, no more than n_tokens_max
/// @return Returns a negative number on failure - the number of tokens that would have been returned
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
/// Does not insert a leading space.
LLAMA_API int llama_tokenize(
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
/// as plaintext. Does not insert a leading space.
LLAMA_API int32_t llama_tokenize(
const struct llama_model * model,
const char * text,
int text_len,
int32_t text_len,
llama_token * tokens,
int n_max_tokens,
bool add_bos,
bool special);
int32_t n_tokens_max,
bool add_special,
bool parse_special);
// Token Id -> Piece.
// Uses the vocabulary in the provided context.
// Does not write null terminator to the buffer.
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
LLAMA_API int llama_token_to_piece(
// @param special If true, special tokens are rendered in the output.
LLAMA_API int32_t llama_token_to_piece(
const struct llama_model * model,
llama_token token,
char * buf,
int length);
int32_t length,
bool special);
/// Apply chat template. Inspired by hf apply_chat_template() on python.
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
/// @param tmpl A Jinja template to use for this chat. If this is nullptr, the models default chat template will be used instead.
/// @param chat Pointer to a list of multiple llama_chat_message
/// @param n_msg Number of llama_chat_message in this chat
/// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
/// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
/// @param length The size of the allocated buffer
/// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
LLAMA_API int32_t llama_chat_apply_template(
const struct llama_model * model,
const char * tmpl,
const struct llama_chat_message * chat,
size_t n_msg,
bool add_ass,
char * buf,
int32_t length);
//
// Grammar
@ -584,13 +914,13 @@ extern "C" {
float penalty_present);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
LLAMA_API void llama_sample_classifier_free_guidance(
/// @param logits Logits extracted from the original generation context.
/// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
LLAMA_API void llama_sample_apply_guidance(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_context * guidance_ctx,
float * logits,
float * logits_guidance,
float scale);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
@ -602,7 +932,7 @@ extern "C" {
LLAMA_API void llama_sample_top_k(
struct llama_context * ctx,
llama_token_data_array * candidates,
int k,
int32_t k,
size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
@ -633,17 +963,19 @@ extern "C" {
float p,
size_t min_keep);
/// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
LLAMA_API void llama_sample_entropy(
struct llama_context * ctx,
llama_token_data_array * candidates_p,
float min_temp,
float max_temp,
float exponent_val);
LLAMA_API void llama_sample_temp(
struct llama_context * ctx,
llama_token_data_array * candidates,
float temp);
LLAMA_API DEPRECATED(void llama_sample_temperature(
struct llama_context * ctx,
llama_token_data_array * candidates,
float temp),
"use llama_sample_temp instead");
/// @details Apply constraints from grammar
LLAMA_API void llama_sample_grammar(
struct llama_context * ctx,
@ -661,7 +993,7 @@ extern "C" {
llama_token_data_array * candidates,
float tau,
float eta,
int m,
int32_t m,
float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
@ -682,7 +1014,7 @@ extern "C" {
struct llama_context * ctx,
llama_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
/// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
LLAMA_API llama_token llama_sample_token(
struct llama_context * ctx,
llama_token_data_array * candidates);
@ -734,8 +1066,18 @@ extern "C" {
llama_beam_search_callback_fn_t callback,
void * callback_data,
size_t n_beams,
int n_past,
int n_predict);
int32_t n_past,
int32_t n_predict);
/// @details Build a split GGUF final path for this chunk.
/// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
// Returns the split_path length.
LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
/// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
/// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
// Returns the split_prefix length.
LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
// Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
@ -759,15 +1101,49 @@ extern "C" {
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
#include <vector>
#include <random>
#include <string>
#include <vector>
struct ggml_tensor;
struct llama_partial_utf8 {
uint32_t value; // bit value so far (unshifted)
int n_remain; // num bytes remaining; -1 indicates invalid sequence
};
struct llama_grammar {
const std::vector<std::vector<llama_grammar_element>> rules;
std::vector<std::vector<const llama_grammar_element *>> stacks;
// buffer for partially generated UTF-8 sequence from accepted tokens
llama_partial_utf8 partial_utf8;
};
struct llama_grammar_candidate {
size_t index;
const uint32_t * code_points;
llama_partial_utf8 partial_utf8;
};
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
);
void llama_grammar_accept(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
const uint32_t chr,
std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
const std::string & src,
llama_partial_utf8 partial_start);
// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
#endif // LLAMA_API_INTERNAL
#endif // LLAMA_H

View File

@ -1,24 +1,40 @@
#!/bin/bash
# Usage:
# speak.sh <voice_id> <text-to-speak>
# speak <voice_id> <textfile>
# espeak
# Mac OS: brew install espeak
# Linux: apt-get install espeak
#
#espeak -v en-us+m$1 -s 225 -p 50 -a 200 -g 5 -k 5 "$2"
function installed() { command -v $1 >/dev/null 2>&1; }
if installed espeak; then
espeak -v en-us+m$1 -s 225 -p 50 -a 200 -g 5 -k 5 -f $2
elif installed piper && installed aplay; then
cat $2 | piper --model ~/en_US-lessac-medium.onnx --output-raw | aplay -q -r 22050 -f S16_LE -t raw -
# for Mac
say "$2"
elif installed say; then
say -f $2
# Eleven Labs
# To use it, install the elevenlabs module from pip (pip install elevenlabs)
# It's possible to use the API for free with limited number of characters. To increase this limit register to https://beta.elevenlabs.io to get an api key and paste it after 'ELEVEN_API_KEY='
#Keep the line commented to use the free version whitout api key
#
#export ELEVEN_API_KEY=your_api_key
#wd=$(dirname $0)
#script=$wd/eleven-labs.py
#python3 $script $1 "$2" >/dev/null 2>&1
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3 >/dev/null 2>&1
elif installed python3 && \
python3 -c 'import importlib.util; exit(not importlib.util.find_spec("elevenlabs"))' && \
installed ffplay; then
# It's possible to use the API for free with limited number of characters.
# To increase this limit register to https://beta.elevenlabs.io to get an api key
# and paste it after 'ELEVEN_API_KEY='
# Keep the line commented to use the free version without api key
#export ELEVEN_API_KEY=your_api_key
wd=$(dirname $0)
script=$wd/eleven-labs.py
python3 $script -q -p -v $1 $2 >/dev/null 2>&1
# Uncomment to keep the audio file
#python3 $script -q -s ./audio.mp3 -v $1 $2 >/dev/null 2>&1
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3 >/dev/null 2>&1
else
echo 'Install espeak ("brew install espeak" or "apt-get install espeak"),'
echo 'piper ("pip install piper-tts" or https://github.com/rhasspy/piper) with aplay,'
echo 'or elevenlabs ("pip install elevenlabs") with ffplay.'
echo '(export ELEVEN_API_KEY if you have an api key from https://beta.elevenlabs.io)'
fi

View File

@ -1 +1 @@
@powershell -ExecutionPolicy Bypass -F examples\talk\speak.ps1 %1 %2
@powershell -ExecutionPolicy Bypass -F examples\talk-llama\speak.ps1 %1 %2

View File

@ -1,12 +1,14 @@
# Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope CurrentUser
param(
# voice options are David or Zira
[Parameter(Mandatory=$true)][string]$voice,
[Parameter(Mandatory=$true)][string]$text
[Parameter(Mandatory=$true)][int]$voicenum,
[Parameter(Mandatory=$true)][string]$textfile
)
Add-Type -AssemblyName System.Speech;
$speak = New-Object System.Speech.Synthesis.SpeechSynthesizer;
$speak.SelectVoice("Microsoft $voice Desktop");
$voiceoptions = $speak.GetInstalledVoices("en-US");
$voice = $voiceoptions[$voicenum % $voiceoptions.count];
$speak.SelectVoice($voice.VoiceInfo.Name);
$speak.Rate="0";
$text = Get-Content -Path $textfile;
$speak.Speak($text);

View File

@ -14,6 +14,7 @@
#include <thread>
#include <vector>
#include <regex>
#include <sstream>
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
auto * model = llama_get_model(ctx);
@ -34,10 +35,10 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
@ -53,7 +54,7 @@ struct whisper_params {
int32_t capture_id = -1;
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
int32_t n_gpu_layers = 0;
int32_t n_gpu_layers = 999;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
@ -65,12 +66,17 @@ struct whisper_params {
bool no_timestamps = true;
bool verbose_prompt = false;
bool use_gpu = true;
bool flash_attn = false;
std::string person = "Georgi";
std::string bot_name = "LLaMA";
std::string wake_cmd = "";
std::string heard_ok = "";
std::string language = "en";
std::string model_wsp = "models/ggml-base.en.bin";
std::string model_llama = "models/ggml-llama-7B.bin";
std::string speak = "./examples/talk-llama/speak";
std::string speak_file = "./examples/talk-llama/to_speak.txt";
std::string prompt = "";
std::string fname_out;
std::string path_session = ""; // path to file for saving/loading model eval state
@ -100,12 +106,17 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-vp" || arg == "--verbose-prompt") { params.verbose_prompt = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
else if (arg == "--session") { params.path_session = argv[++i];}
else if (arg == "-bn" || arg == "--bot-name") { params.bot_name = argv[++i]; }
else if (arg == "--session") { params.path_session = argv[++i]; }
else if (arg == "-w" || arg == "--wake-command") { params.wake_cmd = argv[++i]; }
else if (arg == "-ho" || arg == "--heard-ok") { params.heard_ok = argv[++i]; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; }
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
else if (arg == "-sf" || arg == "--speak-file") { params.speak_file = argv[++i]; }
else if (arg == "--prompt-file") {
std::ifstream file(argv[++i]);
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
@ -114,7 +125,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
}
}
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -136,7 +146,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -ngl N, --n-gpu-layers N [%-7s] number of layers to store in VRAM\n", params.n_gpu_layers);
fprintf(stderr, " -ngl N, --n-gpu-layers N [%-7d] number of layers to store in VRAM\n", params.n_gpu_layers);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
@ -145,11 +155,16 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -vp, --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
fprintf(stderr, " -bn NAME, --bot-name NAME [%-7s] bot name (to display)\n", params.bot_name.c_str());
fprintf(stderr, " -w TEXT, --wake-command T [%-7s] wake-up command to listen for\n", params.wake_cmd.c_str());
fprintf(stderr, " -ho TEXT, --heard-ok TEXT [%-7s] said by TTS before generating reply\n", params.heard_ok.c_str());
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
fprintf(stderr, " -ml FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str());
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
fprintf(stderr, " -sf FILE, --speak-file [%-7s] file to pass to TTS\n", params.speak_file.c_str());
fprintf(stderr, " --prompt-file FNAME [%-7s] file with custom prompt to start dialog\n", "");
fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n");
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
@ -224,6 +239,18 @@ std::string transcribe(
return result;
}
std::vector<std::string> get_words(const std::string &txt) {
std::vector<std::string> words;
std::istringstream iss(txt);
std::string word;
while (iss >> word) {
words.push_back(word);
}
return words;
}
const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)";
const std::string k_prompt_llama = R"(Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}.
@ -259,14 +286,20 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);
if (!ctx_wsp) {
fprintf(stderr, "No whisper.cpp model specified. Please provide using -mw <modelfile>\n");
return 1;
}
// llama init
llama_backend_init(true);
llama_backend_init();
auto lmparams = llama_model_default_params();
if (!params.use_gpu) {
@ -276,14 +309,18 @@ int main(int argc, char ** argv) {
}
struct llama_model * model_llama = llama_load_model_from_file(params.model_llama.c_str(), lmparams);
if (!model_llama) {
fprintf(stderr, "No llama.cpp model specified. Please provide using -ml <modelfile>\n");
return 1;
}
llama_context_params lcparams = llama_context_default_params();
// tune these to your liking
lcparams.n_ctx = 2048;
lcparams.seed = 1;
lcparams.f16_kv = true;
lcparams.n_threads = params.n_threads;
lcparams.flash_attn = params.flash_attn;
struct llama_context * ctx_llama = llama_new_context_with_model(model_llama, lcparams);
@ -324,12 +361,11 @@ int main(int argc, char ** argv) {
float prob0 = 0.0f;
const std::string chat_symb = ":";
const std::string bot_name = "LLaMA";
std::vector<float> pcmf32_cur;
std::vector<float> pcmf32_prompt;
const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", bot_name);
const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", params.bot_name);
// construct the initial prompt for LLaMA inference
std::string prompt_llama = params.prompt.empty() ? k_prompt_llama : params.prompt;
@ -338,7 +374,7 @@ int main(int argc, char ** argv) {
prompt_llama.insert(0, 1, ' ');
prompt_llama = ::replace(prompt_llama, "{0}", params.person);
prompt_llama = ::replace(prompt_llama, "{1}", bot_name);
prompt_llama = ::replace(prompt_llama, "{1}", params.bot_name);
{
// get time string
@ -368,6 +404,8 @@ int main(int argc, char ** argv) {
prompt_llama = ::replace(prompt_llama, "{4}", chat_symb);
llama_batch batch = llama_batch_init(llama_n_ctx(ctx_llama), 0, 1);
// init session
std::string path_session = params.path_session;
std::vector<llama_token> session_tokens;
@ -403,8 +441,21 @@ int main(int argc, char ** argv) {
printf("\n");
printf("%s : initializing - please wait ...\n", __func__);
if (llama_eval(ctx_llama, embd_inp.data(), embd_inp.size(), 0)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
// prepare batch
{
batch.n_tokens = embd_inp.size();
for (int i = 0; i < batch.n_tokens; i++) {
batch.token[i] = embd_inp[i];
batch.pos[i] = i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = i == batch.n_tokens - 1;
}
}
if (llama_decode(ctx_llama, batch)) {
fprintf(stderr, "%s : failed to decode\n", __func__);
return 1;
}
@ -440,6 +491,16 @@ int main(int argc, char ** argv) {
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < (embd_inp.size() * 3 / 4);
printf("%s : done! start speaking in the microphone\n", __func__);
// show wake command if enabled
const std::string wake_cmd = params.wake_cmd;
const int wake_cmd_length = get_words(wake_cmd).size();
const bool use_wake_cmd = wake_cmd_length > 0;
if (use_wake_cmd) {
printf("%s : the wake-up command is: '%s%s%s'\n", __func__, "\033[1m", wake_cmd.c_str(), "\033[0m");
}
printf("\n");
printf("%s%s", params.person.c_str(), chat_symb.c_str());
fflush(stdout);
@ -485,10 +546,38 @@ int main(int argc, char ** argv) {
audio.get(params.voice_ms, pcmf32_cur);
std::string text_heard;
std::string all_heard;
if (!force_speak) {
text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prompt_whisper, prob0, t_ms));
all_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prompt_whisper, prob0, t_ms));
}
const auto words = get_words(all_heard);
std::string wake_cmd_heard;
std::string text_heard;
for (int i = 0; i < (int) words.size(); ++i) {
if (i < wake_cmd_length) {
wake_cmd_heard += words[i] + " ";
} else {
text_heard += words[i] + " ";
}
}
// check if audio starts with the wake-up command if enabled
if (use_wake_cmd) {
const float sim = similarity(wake_cmd_heard, wake_cmd);
if ((sim < 0.7f) || (text_heard.empty())) {
audio.clear();
continue;
}
}
// optionally give audio feedback that the current text is being processed
if (!params.heard_ok.empty()) {
speak_with_file(params.speak, params.heard_ok, params.speak_file, voice_id);
}
// remove text between brackets using regex
@ -525,7 +614,7 @@ int main(int argc, char ** argv) {
force_speak = false;
text_heard.insert(0, 1, ' ');
text_heard += "\n" + bot_name + chat_symb;
text_heard += "\n" + params.bot_name + chat_symb;
fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m");
fflush(stdout);
@ -586,8 +675,21 @@ int main(int argc, char ** argv) {
n_session_consumed = session_tokens.size();
}
if (llama_eval(ctx_llama, embd.data(), embd.size(), n_past)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
// prepare batch
{
batch.n_tokens = embd.size();
for (int i = 0; i < batch.n_tokens; i++) {
batch.token[i] = embd[i];
batch.pos[i] = n_past + i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = i == batch.n_tokens - 1;
}
}
if (llama_decode(ctx_llama, batch)) {
fprintf(stderr, "%s : failed to decode\n", __func__);
return 1;
}
}
@ -658,6 +760,7 @@ int main(int argc, char ** argv) {
text_to_speak += llama_token_to_piece(ctx_llama, id);
printf("%s", llama_token_to_piece(ctx_llama, id).c_str());
fflush(stdout);
}
}
@ -686,11 +789,7 @@ int main(int argc, char ** argv) {
}
}
text_to_speak = ::replace(text_to_speak, "\"", "");
int ret = system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
if (ret != 0) {
fprintf(stderr, "%s: failed to speak\n", __func__);
}
speak_with_file(params.speak, text_to_speak, params.speak_file, voice_id);
audio.clear();
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,17 @@
#pragma once
#include <cstdint>
#include <map>
#include <utility>
#include <vector>
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_number;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_separator;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_control;
extern const std::multimap<uint32_t, uint32_t> unicode_map_nfd;
extern const std::map<char32_t, char32_t> unicode_map_lowercase;

View File

@ -0,0 +1,818 @@
#include "unicode.h"
#include "unicode-data.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <regex>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <locale>
#include <codecvt>
static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
std::string result;
for (size_t i = 0; i < cps.size(); ++i) {
result.append(unicode_cpt_to_utf8(cps[i]));
}
return result;
}
static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
assert(offset < utf8.size());
if (!(utf8[offset + 0] & 0x80)) {
auto result = utf8[offset + 0];
offset += 1;
return result;
}
if (!(utf8[offset + 0] & 0x40)) {
throw std::invalid_argument("invalid character");
}
if (!(utf8[offset + 0] & 0x20)) {
if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) {
throw std::invalid_argument("invalid character");
}
auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
offset += 2;
return result;
}
if (!(utf8[offset + 0] & 0x10)) {
if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) {
throw std::invalid_argument("invalid character");
}
auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
offset += 3;
return result;
}
if (!(utf8[offset + 0] & 0x08)) {
if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) {
throw std::invalid_argument("invalid character");
}
auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
offset += 4;
return result;
}
throw std::invalid_argument("failed to convert utf8 to codepoint");
}
//static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cp) {
// std::vector<uint16_t> result;
// if (/* 0x0000 <= cp && */ cp <= 0xffff) {
// result.emplace_back(cp);
// return result;
// }
// if (0x10000 <= cp && cp <= 0x10ffff) {
// result.emplace_back(0xd800 | ((cp - 0x10000) >> 10));
// result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff));
// return result;
// }
// throw std::invalid_argument("failed to convert codepoint to utf16");
//}
//static std::vector<uint16_t> unicode_cpts_to_utf16(const std::vector<uint32_t> & cps) {
// std::vector<uint16_t> result;
// for (size_t i = 0; i < cps.size(); ++i) {
// auto temp = unicode_cpt_to_utf16(cps[i]);
// result.insert(result.end(), temp.begin(), temp.end());
// }
// return result;
//}
//static uint32_t unicode_cpt_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
// assert(offset < utf16.size());
// if (((utf16[0] >> 10) << 10) != 0xd800) {
// auto result = utf16[offset + 0];
// offset += 1;
// return result;
// }
//
// if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) {
// throw std::invalid_argument("invalid character");
// }
//
// auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
// offset += 2;
// return result;
//}
//static std::vector<uint32_t> unicode_cpts_from_utf16(const std::vector<uint16_t> & utf16) {
// std::vector<uint32_t> result;
// size_t offset = 0;
// while (offset < utf16.size()) {
// result.push_back(unicode_cpt_from_utf16(utf16, offset));
// }
// return result;
//}
static std::unordered_map<uint32_t, int> unicode_cpt_type_map() {
std::unordered_map<uint32_t, int> cpt_types;
for (auto p : unicode_ranges_number) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_NUMBER;
}
}
for (auto p : unicode_ranges_letter) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_LETTER;
}
}
for (auto p : unicode_ranges_separator) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_SEPARATOR;
}
}
for (auto p : unicode_ranges_accent_mark) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_ACCENT_MARK;
}
}
for (auto p : unicode_ranges_punctuation) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_PUNCTUATION;
}
}
for (auto p : unicode_ranges_symbol) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_SYMBOL;
}
}
for (auto p : unicode_ranges_control) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_CONTROL;
}
}
return cpt_types;
}
static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() {
std::unordered_map<uint8_t, std::string> map;
for (int ch = u'!'; ch <= u'~'; ++ch) {
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(ch) == map.end()) {
map[ch] = unicode_cpt_to_utf8(256 + n);
++n;
}
}
return map;
}
static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
std::unordered_map<std::string, uint8_t> map;
for (int ch = u'!'; ch <= u'~'; ++ch) {
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) {
map[unicode_cpt_to_utf8(256 + n)] = ch;
++n;
}
}
return map;
}
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
return conv.from_bytes(s);
}
static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
std::vector<std::string> bpe_encoded_words;
for (const auto & word : bpe_words) {
std::string text_utf;
auto utf_word = unicode_cpts_from_utf8(word);
for (size_t i = 0; i < utf_word.size(); ++i) {
text_utf += unicode_cpt_to_utf8(utf_word[i]);
}
std::string encoded_token;
for (char & c : text_utf) {
encoded_token += unicode_byte_to_utf8(c);
}
bpe_encoded_words.emplace_back(encoded_token);
}
return bpe_encoded_words;
}
// GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
const auto cpts = unicode_cpts_from_utf8(text);
size_t start = 0;
for (auto offset : offsets) {
const size_t offset_ini = start;
const size_t offset_end = start + offset;
assert(offset_end <= cpts.size());
start = offset_end;
auto _get_cpt = [&] (const size_t pos) -> char32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
};
auto _get_cpt_type = [&] (const size_t pos) -> int {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_type(cpts[pos]) : CODEPOINT_TYPE_UNIDENTIFIED;
};
size_t _prev_end = offset_ini;
auto _add_token = [&] (const size_t end) -> size_t {
assert(_prev_end <= end && end <= offset_end);
size_t len = end - _prev_end;
if (len > 0) {
bpe_offsets.push_back(len);
}
_prev_end = end;
//if (len > 0) {
// std::string s = "";
// for(size_t p = end-len; p < end; p++)
// s += unicode_cpt_to_utf8(cpts[p]);
// printf(">>> '%s'\n", s.c_str());
//}
return len;
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const char32_t cpt = _get_cpt(pos);
const int cpt_type = _get_cpt_type(pos);
// regex: 's|'t|'re|'ve|'m|'ll|'d
if (cpt == '\'' && pos+1 < offset_end) {
char32_t cpt_next = _get_cpt(pos+1);
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
char32_t cpt_next_next = _get_cpt(pos+2);
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
pos += _add_token(pos+3);
continue;
}
}
}
char32_t cpt2 = (cpt == ' ' ? _get_cpt(pos+1) : cpt);
int cpt2_type = (cpt == ' ' ? _get_cpt_type(pos+1) : cpt_type);
// regex: <space>?\p{L}+
if (cpt2_type == CODEPOINT_TYPE_LETTER) {
pos += (cpt == ' ');
while (cpt2_type == CODEPOINT_TYPE_LETTER) {
cpt2_type = _get_cpt_type(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?\p{N}+
if (cpt2_type == CODEPOINT_TYPE_NUMBER) {
pos += (cpt == ' ');
while (cpt2_type == CODEPOINT_TYPE_NUMBER) {
cpt2_type = _get_cpt_type(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?[^\s\p{L}\p{N}]+
if (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
pos += (cpt == ' ');
while (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
cpt2_type = _get_cpt_type(++pos);
cpt2 = _get_cpt(pos);
}
_add_token(pos);
continue;
}
size_t num_whitespaces = 0;
while (unicode_cpt_is_whitespace(_get_cpt(pos+num_whitespaces))) {
num_whitespaces++;
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
}
// regex: \s+
if (num_whitespaces > 0) {
pos += num_whitespaces;
_add_token(pos);
continue;
}
// no matches
_add_token(++pos);
}
}
return bpe_offsets;
}
// LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
const auto cpts = unicode_cpts_from_utf8(text);
size_t start = 0;
for (auto offset : offsets) {
const size_t offset_ini = start;
const size_t offset_end = start + offset;
assert(offset_end <= cpts.size());
start = offset_end;
auto _get_cpt = [&] (const size_t pos) -> char32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
};
auto _get_cpt_type = [&] (const size_t pos) -> int {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_type(cpts[pos]) : CODEPOINT_TYPE_UNIDENTIFIED;
};
size_t _prev_end = offset_ini;
auto _add_token = [&] (const size_t end) -> size_t {
assert(_prev_end <= end && end <= offset_end);
size_t len = end - _prev_end;
if (len > 0) {
bpe_offsets.push_back(len);
}
_prev_end = end;
//if (len > 0) {
// std::string s = "";
// for(size_t p = end-len; p < end; p++)
// s += unicode_cpt_to_utf8(cpts[p]);
// printf(">>> '%s'\n", s.c_str());
//}
return len;
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const char32_t cpt = _get_cpt(pos);
const int cpt_type = _get_cpt_type(pos);
// regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
if (cpt == '\'' && pos+1 < offset_end) {
char32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
char32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
pos += _add_token(pos+3);
continue;
}
}
}
// regex: [^\r\n\p{L}\p{N}]?\p{L}+ //####FIXME: the first \p{L} is correct?
if (cpt != '\r' && cpt != '\n' && /*cpt_type != CODEPOINT_TYPE_LETTER &&*/ cpt_type != CODEPOINT_TYPE_NUMBER) {
if (cpt_type == CODEPOINT_TYPE_LETTER || _get_cpt_type(pos+1) == CODEPOINT_TYPE_LETTER) { // one or more letters
pos++;
while (_get_cpt_type(pos) == CODEPOINT_TYPE_LETTER) {
pos++;
}
_add_token(pos);
continue;
}
}
// regex: \p{N}{1,3}
if (cpt_type == CODEPOINT_TYPE_NUMBER) {
size_t ini = pos;
while (_get_cpt_type(pos) == CODEPOINT_TYPE_NUMBER) {
if (++pos - ini >= 3 ) {
_add_token(pos);
ini = pos;
}
}
_add_token(pos);
continue;
}
// regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
char32_t cpt2 = (cpt == ' ' ? _get_cpt(pos+1) : cpt);
int cpt2_type = (cpt == ' ' ? _get_cpt_type(pos+1) : cpt_type);
if (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
pos += (cpt == ' ');
while (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
cpt2_type = _get_cpt_type(++pos);
cpt2 = _get_cpt(pos);
}
while (cpt2 == '\r' || cpt2 == '\n') {
cpt2 = _get_cpt(++pos);
}
_add_token(pos);
continue;
}
size_t num_whitespaces = 0;
size_t last_end_r_or_n = 0;
while (unicode_cpt_is_whitespace(_get_cpt(pos+num_whitespaces))) {
char32_t cpt2 = _get_cpt(pos+num_whitespaces);
if (cpt2 == '\r' || cpt2 == '\n') {
last_end_r_or_n = pos + num_whitespaces + 1;
}
num_whitespaces++;
}
// regex: \s*[\r\n]+
if (last_end_r_or_n > 0) {
pos = last_end_r_or_n;
_add_token(pos);
continue;
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
}
// regex: \s+
if (num_whitespaces > 0) {
pos += num_whitespaces;
_add_token(pos);
continue;
}
// no matches
_add_token(++pos);
}
}
return bpe_offsets;
}
// use std::wregex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
std::wregex expr(regex_expr);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
std::wcregex_iterator end;
int64_t start_idx = 0;
while (it != end) {
std::wcmatch match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}
bpe_offsets.emplace_back(match.length());
start_idx = match.position() + match.length();
++it;
}
if (start_idx < (int64_t) offset) {
bpe_offsets.emplace_back(offset - start_idx);
}
start += offset;
}
return bpe_offsets;
}
// use std::regex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
std::regex expr(regex_expr);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
std::cregex_iterator end;
int64_t start_idx = 0;
while (it != end) {
std::cmatch match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}
bpe_offsets.emplace_back(match.length());
start_idx = match.position() + match.length();
++it;
}
if (start_idx < (int64_t) offset) {
bpe_offsets.emplace_back(offset - start_idx);
}
start += offset;
}
return bpe_offsets;
}
static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets;
if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") {
bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets);
} else if (
regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" ||
regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") {
bpe_offsets = unicode_regex_split_custom_llama3(text, offsets);
}
return bpe_offsets;
}
//
// interface
//
std::string unicode_cpt_to_utf8(uint32_t cp) {
std::string result;
if (/* 0x00 <= cp && */ cp <= 0x7f) {
result.push_back(cp);
return result;
}
if (0x80 <= cp && cp <= 0x7ff) {
result.push_back(0xc0 | ((cp >> 6) & 0x1f));
result.push_back(0x80 | (cp & 0x3f));
return result;
}
if (0x800 <= cp && cp <= 0xffff) {
result.push_back(0xe0 | ((cp >> 12) & 0x0f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
return result;
}
if (0x10000 <= cp && cp <= 0x10ffff) {
result.push_back(0xf0 | ((cp >> 18) & 0x07));
result.push_back(0x80 | ((cp >> 12) & 0x3f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
return result;
}
throw std::invalid_argument("invalid codepoint");
}
std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) {
std::vector<uint32_t> result;
result.reserve(cpts.size());
for (size_t i = 0; i < cpts.size(); ++i) {
auto it = unicode_map_nfd.find(cpts[i]);
if (it == unicode_map_nfd.end()) {
result.push_back(cpts[i]);
} else {
result.push_back(it->second);
}
}
return result;
}
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
std::vector<uint32_t> result;
size_t offset = 0;
while (offset < utf8.size()) {
result.push_back(unicode_cpt_from_utf8(utf8, offset));
}
return result;
}
int unicode_cpt_type(uint32_t cp) {
static std::unordered_map<uint32_t, int> cpt_types = unicode_cpt_type_map();
const auto it = cpt_types.find(cp);
return it == cpt_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : it->second;
}
int unicode_cpt_type(const std::string & utf8) {
if (utf8.length() == 0) {
return CODEPOINT_TYPE_UNIDENTIFIED;
}
size_t offset = 0;
return unicode_cpt_type(unicode_cpt_from_utf8(utf8, offset));
}
bool unicode_cpt_is_whitespace(uint32_t cp) {
static const std::unordered_set<uint32_t> is_whitespace = [] {
std::unordered_set<uint32_t> is_whitespace;
for (auto p : unicode_ranges_whitespace) {
for (auto i = p.first; i <= p.second; ++i) {
is_whitespace.insert(i);
}
}
return is_whitespace;
}();
return (bool)is_whitespace.count(cp);
}
std::string unicode_byte_to_utf8(uint8_t byte) {
static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map();
return map.at(byte);
}
uint8_t unicode_utf8_to_byte(const std::string & utf8) {
static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map();
return map.at(utf8);
}
char32_t unicode_tolower(char32_t cp) {
auto it = unicode_map_lowercase.find(cp);
return it == unicode_map_lowercase.end() ? cp : it->second;
}
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
// unicode categories
static const std::map<std::string, int> k_ucat_enum = {
{ "\\p{N}", CODEPOINT_TYPE_NUMBER },
{ "\\p{L}", CODEPOINT_TYPE_LETTER },
{ "\\p{P}", CODEPOINT_TYPE_PUNCTUATION },
};
static const std::map<int, int> k_ucat_cpt = {
{ CODEPOINT_TYPE_NUMBER, 0xD1 },
{ CODEPOINT_TYPE_LETTER, 0xD2 },
{ CODEPOINT_TYPE_PUNCTUATION, 0xD3 },
};
static const std::map<int, std::string> k_ucat_map = {
{ CODEPOINT_TYPE_NUMBER, "\x30-\x39" }, // 0-9
{ CODEPOINT_TYPE_LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
{ CODEPOINT_TYPE_PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
};
// compute collapsed codepoints only if needed by at least one regex
bool need_collapse = false;
for (auto & regex_expr : regex_exprs) {
// search for unicode categories
for (const auto & ucat : k_ucat_enum) {
if (std::string::npos != regex_expr.find(ucat.first)) {
need_collapse = true;
break;
}
}
}
const auto cpts = unicode_cpts_from_utf8(text);
// generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte
// ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935
std::string text_collapsed;
if (need_collapse) {
// collapse all unicode categories
text_collapsed.resize(cpts.size());
for (size_t i = 0; i < cpts.size(); ++i) {
// keep single-byte codepoints as is
if (cpts[i] < 128) {
text_collapsed[i] = cpts[i];
continue;
}
const int cpt_type = unicode_cpt_type(cpts[i]);
if (k_ucat_cpt.find(cpt_type) != k_ucat_cpt.end()) {
text_collapsed[i] = k_ucat_cpt.at(cpt_type);
} else {
text_collapsed[i] = (char) 0xD0; // fallback
}
}
}
std::vector<size_t> bpe_offsets = { cpts.size() };
for (auto & regex_expr : regex_exprs) {
// first, see if we have an efficient custom regex implementation
auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets);
if (!tmp.empty()) {
bpe_offsets = std::move(tmp);
continue;
}
// fallback to general-purpose std::regex / std::wregex
try {
// if a unicode category is used in the regex, we use the collapsed text and replace the unicode category
// with the corresponding collapsed representation
bool use_collapsed = false;
for (auto & ucat : k_ucat_enum) {
if (std::string::npos != regex_expr.find(ucat.first)) {
use_collapsed = true;
break;
}
}
if (use_collapsed) {
// sanity-check that the original regex does not contain any non-ASCII characters
const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
for (size_t i = 0; i < cpts_regex.size(); ++i) {
if (cpts_regex[i] >= 128) {
throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported");
}
}
// generate a collapsed representation of the regex
std::string regex_expr_collapsed;
// track if we are inside [], because nested [] are not allowed
bool inside = false;
for (size_t i = 0; i < regex_expr.size(); ++i) {
if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) {
regex_expr_collapsed += '[';
inside = true;
continue;
}
if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') {
regex_expr_collapsed += ']';
inside = false;
continue;
}
if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() &&
regex_expr[i + 1] == 'p' &&
regex_expr[i + 2] == '{' &&
regex_expr[i + 4] == '}') {
const std::string pat = regex_expr.substr(i, 5);
if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
if (!inside) {
regex_expr_collapsed += '[';
}
regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
if (!inside) {
regex_expr_collapsed += ']';
}
i += 4;
continue;
}
}
regex_expr_collapsed += regex_expr[i];
}
//printf("text_collapsed: %s\n", text_collapsed.c_str());
//printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str());
bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
} else {
// no unicode category used, we can use std::wregex directly
const std::wstring wtext = unicode_wstring_from_utf8(text);
const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
//printf("text: %s\n", text.c_str());
//printf("regex_expr: %s\n", regex_expr.c_str());
bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);
}
} catch (std::regex_error & e) {
fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str());
fprintf(stderr, "Regex error: %s\n", e.what());
throw std::runtime_error("Failed to process regex");
}
}
std::vector<std::string> bpe_words;
bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size
size_t start = 0;
for (size_t & offset : bpe_offsets) {
bpe_words.emplace_back();
for (size_t i = start; i < start + offset; ++i) {
bpe_words.back() += unicode_cpt_to_utf8(cpts[i]);
}
start += offset;
}
return unicode_byte_encoding_process(bpe_words);
}

View File

@ -1,462 +1,31 @@
#pragma once
#pragma once
#include <cassert>
#include <stdexcept>
#include <cstdint>
#include <string>
#include <vector>
#include <unordered_map>
static const std::vector<std::pair<uint32_t, uint32_t>> digit_ranges = {
{0x30, 0x39}, {0xB2, 0xB3}, {0xB9, 0xB9}, {0x660, 0x669}, {0x6F0, 0x6F9}, {0x7C0, 0x7C9}, {0x966, 0x96F}, {0x9E6, 0x9EF}, {0xA66, 0xA6F}, {0xAE6, 0xAEF}, {0xB66, 0xB6F}, {0xBE6, 0xBEF}, {0xC66, 0xC6F},
{0xCE6, 0xCEF}, {0xD66, 0xD6F}, {0xDE6, 0xDEF}, {0xE50, 0xE59}, {0xED0, 0xED9}, {0xF20, 0xF29}, {0x1040, 0x1049}, {0x1090, 0x1099}, {0x1369, 0x1371}, {0x17E0, 0x17E9}, {0x1810, 0x1819}, {0x1946, 0x194F},
{0x19D0, 0x19DA}, {0x1A80, 0x1A89}, {0x1A90, 0x1A99}, {0x1B50, 0x1B59}, {0x1BB0, 0x1BB9}, {0x1C40, 0x1C49}, {0x1C50, 0x1C59}, {0x2070, 0x2070}, {0x2074, 0x2079}, {0x2080, 0x2089}, {0x2460, 0x2468},
{0x2474, 0x247C}, {0x2488, 0x2490}, {0x24EA, 0x24EA}, {0x24F5, 0x24FD}, {0x24FF, 0x24FF}, {0x2776, 0x277E}, {0x2780, 0x2788}, {0x278A, 0x2792}, {0xA620, 0xA629}, {0xA8D0, 0xA8D9}, {0xA900, 0xA909},
{0xA9D0, 0xA9D9}, {0xA9F0, 0xA9F9}, {0xAA50, 0xAA59}, {0xABF0, 0xABF9}, {0xFF10, 0xFF19}, {0x104A0, 0x104A9}, {0x10A40, 0x10A43}, {0x10D30, 0x10D39}, {0x10E60, 0x10E68}, {0x11052, 0x1105A},
{0x11066, 0x1106F}, {0x110F0, 0x110F9}, {0x11136, 0x1113F}, {0x111D0, 0x111D9}, {0x112F0, 0x112F9}, {0x11450, 0x11459}, {0x114D0, 0x114D9}, {0x11650, 0x11659}, {0x116C0, 0x116C9}, {0x11730, 0x11739},
{0x118E0, 0x118E9}, {0x11950, 0x11959}, {0x11C50, 0x11C59}, {0x11D50, 0x11D59}, {0x11DA0, 0x11DA9}, {0x16A60, 0x16A69}, {0x16B50, 0x16B59}, {0x1D7CE, 0x1D7FF}, {0x1E140, 0x1E149}, {0x1E2F0, 0x1E2F9},
{0x1E950, 0x1E959}, {0x1F100, 0x1F10A}, {0x1FBF0, 0x1FBF9},
};
static const std::vector<std::pair<uint32_t, uint32_t>> letter_ranges = {
{0x41, 0x5A}, {0x61, 0x7A}, {0xAA, 0xAA}, {0xB5, 0xB5}, {0xBA, 0xBA}, {0xC0, 0xD6}, {0xD8, 0xF6}, {0xF8, 0x2C1}, {0x2C6, 0x2D1}, {0x2E0, 0x2E4}, {0x2EC, 0x2EC}, {0x2EE, 0x2EE}, {0x370, 0x374},
{0x376, 0x377}, {0x37A, 0x37D}, {0x37F, 0x37F}, {0x386, 0x386}, {0x388, 0x38A}, {0x38C, 0x38C}, {0x38E, 0x3A1}, {0x3A3, 0x3F5}, {0x3F7, 0x481}, {0x48A, 0x52F}, {0x531, 0x556}, {0x559, 0x559},
{0x560, 0x588}, {0x5D0, 0x5EA}, {0x5EF, 0x5F2}, {0x620, 0x64A}, {0x66E, 0x66F}, {0x671, 0x6D3}, {0x6D5, 0x6D5}, {0x6E5, 0x6E6}, {0x6EE, 0x6EF}, {0x6FA, 0x6FC}, {0x6FF, 0x6FF}, {0x710, 0x710},
{0x712, 0x72F}, {0x74D, 0x7A5}, {0x7B1, 0x7B1}, {0x7CA, 0x7EA}, {0x7F4, 0x7F5}, {0x7FA, 0x7FA}, {0x800, 0x815}, {0x81A, 0x81A}, {0x824, 0x824}, {0x828, 0x828}, {0x840, 0x858}, {0x860, 0x86A},
{0x8A0, 0x8B4}, {0x8B6, 0x8C7}, {0x904, 0x939}, {0x93D, 0x93D}, {0x950, 0x950}, {0x958, 0x961}, {0x971, 0x980}, {0x985, 0x98C}, {0x98F, 0x990}, {0x993, 0x9A8}, {0x9AA, 0x9B0}, {0x9B2, 0x9B2},
{0x9B6, 0x9B9}, {0x9BD, 0x9BD}, {0x9CE, 0x9CE}, {0x9DC, 0x9DD}, {0x9DF, 0x9E1}, {0x9F0, 0x9F1}, {0x9FC, 0x9FC}, {0xA05, 0xA0A}, {0xA0F, 0xA10}, {0xA13, 0xA28}, {0xA2A, 0xA30}, {0xA32, 0xA33},
{0xA35, 0xA36}, {0xA38, 0xA39}, {0xA59, 0xA5C}, {0xA5E, 0xA5E}, {0xA72, 0xA74}, {0xA85, 0xA8D}, {0xA8F, 0xA91}, {0xA93, 0xAA8}, {0xAAA, 0xAB0}, {0xAB2, 0xAB3}, {0xAB5, 0xAB9}, {0xABD, 0xABD},
{0xAD0, 0xAD0}, {0xAE0, 0xAE1}, {0xAF9, 0xAF9}, {0xB05, 0xB0C}, {0xB0F, 0xB10}, {0xB13, 0xB28}, {0xB2A, 0xB30}, {0xB32, 0xB33}, {0xB35, 0xB39}, {0xB3D, 0xB3D}, {0xB5C, 0xB5D}, {0xB5F, 0xB61},
{0xB71, 0xB71}, {0xB83, 0xB83}, {0xB85, 0xB8A}, {0xB8E, 0xB90}, {0xB92, 0xB95}, {0xB99, 0xB9A}, {0xB9C, 0xB9C}, {0xB9E, 0xB9F}, {0xBA3, 0xBA4}, {0xBA8, 0xBAA}, {0xBAE, 0xBB9}, {0xBD0, 0xBD0},
{0xC05, 0xC0C}, {0xC0E, 0xC10}, {0xC12, 0xC28}, {0xC2A, 0xC39}, {0xC3D, 0xC3D}, {0xC58, 0xC5A}, {0xC60, 0xC61}, {0xC80, 0xC80}, {0xC85, 0xC8C}, {0xC8E, 0xC90}, {0xC92, 0xCA8}, {0xCAA, 0xCB3},
{0xCB5, 0xCB9}, {0xCBD, 0xCBD}, {0xCDE, 0xCDE}, {0xCE0, 0xCE1}, {0xCF1, 0xCF2}, {0xD04, 0xD0C}, {0xD0E, 0xD10}, {0xD12, 0xD3A}, {0xD3D, 0xD3D}, {0xD4E, 0xD4E}, {0xD54, 0xD56}, {0xD5F, 0xD61},
{0xD7A, 0xD7F}, {0xD85, 0xD96}, {0xD9A, 0xDB1}, {0xDB3, 0xDBB}, {0xDBD, 0xDBD}, {0xDC0, 0xDC6}, {0xE01, 0xE30}, {0xE32, 0xE33}, {0xE40, 0xE46}, {0xE81, 0xE82}, {0xE84, 0xE84}, {0xE86, 0xE8A},
{0xE8C, 0xEA3}, {0xEA5, 0xEA5}, {0xEA7, 0xEB0}, {0xEB2, 0xEB3}, {0xEBD, 0xEBD}, {0xEC0, 0xEC4}, {0xEC6, 0xEC6}, {0xEDC, 0xEDF}, {0xF00, 0xF00}, {0xF40, 0xF47}, {0xF49, 0xF6C}, {0xF88, 0xF8C},
{0x1000, 0x102A}, {0x103F, 0x103F}, {0x1050, 0x1055}, {0x105A, 0x105D}, {0x1061, 0x1061}, {0x1065, 0x1066}, {0x106E, 0x1070}, {0x1075, 0x1081}, {0x108E, 0x108E}, {0x10A0, 0x10C5}, {0x10C7, 0x10C7},
{0x10CD, 0x10CD}, {0x10D0, 0x10FA}, {0x10FC, 0x1248}, {0x124A, 0x124D}, {0x1250, 0x1256}, {0x1258, 0x1258}, {0x125A, 0x125D}, {0x1260, 0x1288}, {0x128A, 0x128D}, {0x1290, 0x12B0}, {0x12B2, 0x12B5},
{0x12B8, 0x12BE}, {0x12C0, 0x12C0}, {0x12C2, 0x12C5}, {0x12C8, 0x12D6}, {0x12D8, 0x1310}, {0x1312, 0x1315}, {0x1318, 0x135A}, {0x1380, 0x138F}, {0x13A0, 0x13F5}, {0x13F8, 0x13FD}, {0x1401, 0x166C},
{0x166F, 0x167F}, {0x1681, 0x169A}, {0x16A0, 0x16EA}, {0x16F1, 0x16F8}, {0x1700, 0x170C}, {0x170E, 0x1711}, {0x1720, 0x1731}, {0x1740, 0x1751}, {0x1760, 0x176C}, {0x176E, 0x1770}, {0x1780, 0x17B3},
{0x17D7, 0x17D7}, {0x17DC, 0x17DC}, {0x1820, 0x1878}, {0x1880, 0x1884}, {0x1887, 0x18A8}, {0x18AA, 0x18AA}, {0x18B0, 0x18F5}, {0x1900, 0x191E}, {0x1950, 0x196D}, {0x1970, 0x1974}, {0x1980, 0x19AB},
{0x19B0, 0x19C9}, {0x1A00, 0x1A16}, {0x1A20, 0x1A54}, {0x1AA7, 0x1AA7}, {0x1B05, 0x1B33}, {0x1B45, 0x1B4B}, {0x1B83, 0x1BA0}, {0x1BAE, 0x1BAF}, {0x1BBA, 0x1BE5}, {0x1C00, 0x1C23}, {0x1C4D, 0x1C4F},
{0x1C5A, 0x1C7D}, {0x1C80, 0x1C88}, {0x1C90, 0x1CBA}, {0x1CBD, 0x1CBF}, {0x1CE9, 0x1CEC}, {0x1CEE, 0x1CF3}, {0x1CF5, 0x1CF6}, {0x1CFA, 0x1CFA}, {0x1D00, 0x1DBF}, {0x1E00, 0x1F15}, {0x1F18, 0x1F1D},
{0x1F20, 0x1F45}, {0x1F48, 0x1F4D}, {0x1F50, 0x1F57}, {0x1F59, 0x1F59}, {0x1F5B, 0x1F5B}, {0x1F5D, 0x1F5D}, {0x1F5F, 0x1F7D}, {0x1F80, 0x1FB4}, {0x1FB6, 0x1FBC}, {0x1FBE, 0x1FBE}, {0x1FC2, 0x1FC4},
{0x1FC6, 0x1FCC}, {0x1FD0, 0x1FD3}, {0x1FD6, 0x1FDB}, {0x1FE0, 0x1FEC}, {0x1FF2, 0x1FF4}, {0x1FF6, 0x1FFC}, {0x2071, 0x2071}, {0x207F, 0x207F}, {0x2090, 0x209C}, {0x2102, 0x2102}, {0x2107, 0x2107},
{0x210A, 0x2113}, {0x2115, 0x2115}, {0x2119, 0x211D}, {0x2124, 0x2124}, {0x2126, 0x2126}, {0x2128, 0x2128}, {0x212A, 0x212D}, {0x212F, 0x2139}, {0x213C, 0x213F}, {0x2145, 0x2149}, {0x214E, 0x214E},
{0x2183, 0x2184}, {0x2C00, 0x2C2E}, {0x2C30, 0x2C5E}, {0x2C60, 0x2CE4}, {0x2CEB, 0x2CEE}, {0x2CF2, 0x2CF3}, {0x2D00, 0x2D25}, {0x2D27, 0x2D27}, {0x2D2D, 0x2D2D}, {0x2D30, 0x2D67}, {0x2D6F, 0x2D6F},
{0x2D80, 0x2D96}, {0x2DA0, 0x2DA6}, {0x2DA8, 0x2DAE}, {0x2DB0, 0x2DB6}, {0x2DB8, 0x2DBE}, {0x2DC0, 0x2DC6}, {0x2DC8, 0x2DCE}, {0x2DD0, 0x2DD6}, {0x2DD8, 0x2DDE}, {0x2E2F, 0x2E2F}, {0x3005, 0x3006},
{0x3031, 0x3035}, {0x303B, 0x303C}, {0x3041, 0x3096}, {0x309D, 0x309F}, {0x30A1, 0x30FA}, {0x30FC, 0x30FF}, {0x3105, 0x312F}, {0x3131, 0x318E}, {0x31A0, 0x31BF}, {0x31F0, 0x31FF}, {0x3400, 0x4DBF},
{0x4E00, 0x9FFC}, {0xA000, 0xA48C}, {0xA4D0, 0xA4FD}, {0xA500, 0xA60C}, {0xA610, 0xA61F}, {0xA62A, 0xA62B}, {0xA640, 0xA66E}, {0xA67F, 0xA69D}, {0xA6A0, 0xA6E5}, {0xA717, 0xA71F}, {0xA722, 0xA788},
{0xA78B, 0xA7BF}, {0xA7C2, 0xA7CA}, {0xA7F5, 0xA801}, {0xA803, 0xA805}, {0xA807, 0xA80A}, {0xA80C, 0xA822}, {0xA840, 0xA873}, {0xA882, 0xA8B3}, {0xA8F2, 0xA8F7}, {0xA8FB, 0xA8FB}, {0xA8FD, 0xA8FE},
{0xA90A, 0xA925}, {0xA930, 0xA946}, {0xA960, 0xA97C}, {0xA984, 0xA9B2}, {0xA9CF, 0xA9CF}, {0xA9E0, 0xA9E4}, {0xA9E6, 0xA9EF}, {0xA9FA, 0xA9FE}, {0xAA00, 0xAA28}, {0xAA40, 0xAA42}, {0xAA44, 0xAA4B},
{0xAA60, 0xAA76}, {0xAA7A, 0xAA7A}, {0xAA7E, 0xAAAF}, {0xAAB1, 0xAAB1}, {0xAAB5, 0xAAB6}, {0xAAB9, 0xAABD}, {0xAAC0, 0xAAC0}, {0xAAC2, 0xAAC2}, {0xAADB, 0xAADD}, {0xAAE0, 0xAAEA}, {0xAAF2, 0xAAF4},
{0xAB01, 0xAB06}, {0xAB09, 0xAB0E}, {0xAB11, 0xAB16}, {0xAB20, 0xAB26}, {0xAB28, 0xAB2E}, {0xAB30, 0xAB5A}, {0xAB5C, 0xAB69}, {0xAB70, 0xABE2}, {0xAC00, 0xD7A3}, {0xD7B0, 0xD7C6}, {0xD7CB, 0xD7FB},
{0xF900, 0xFA6D}, {0xFA70, 0xFAD9}, {0xFB00, 0xFB06}, {0xFB13, 0xFB17}, {0xFB1D, 0xFB1D}, {0xFB1F, 0xFB28}, {0xFB2A, 0xFB36}, {0xFB38, 0xFB3C}, {0xFB3E, 0xFB3E}, {0xFB40, 0xFB41}, {0xFB43, 0xFB44},
{0xFB46, 0xFBB1}, {0xFBD3, 0xFD3D}, {0xFD50, 0xFD8F}, {0xFD92, 0xFDC7}, {0xFDF0, 0xFDFB}, {0xFE70, 0xFE74}, {0xFE76, 0xFEFC}, {0xFF21, 0xFF3A}, {0xFF41, 0xFF5A}, {0xFF66, 0xFFBE}, {0xFFC2, 0xFFC7},
{0xFFCA, 0xFFCF}, {0xFFD2, 0xFFD7}, {0xFFDA, 0xFFDC}, {0x10000, 0x1000B}, {0x1000D, 0x10026}, {0x10028, 0x1003A}, {0x1003C, 0x1003D}, {0x1003F, 0x1004D}, {0x10050, 0x1005D}, {0x10080, 0x100FA},
{0x10280, 0x1029C}, {0x102A0, 0x102D0}, {0x10300, 0x1031F}, {0x1032D, 0x10340}, {0x10342, 0x10349}, {0x10350, 0x10375}, {0x10380, 0x1039D}, {0x103A0, 0x103C3}, {0x103C8, 0x103CF}, {0x10400, 0x1049D},
{0x104B0, 0x104D3}, {0x104D8, 0x104FB}, {0x10500, 0x10527}, {0x10530, 0x10563}, {0x10600, 0x10736}, {0x10740, 0x10755}, {0x10760, 0x10767}, {0x10800, 0x10805}, {0x10808, 0x10808}, {0x1080A, 0x10835},
{0x10837, 0x10838}, {0x1083C, 0x1083C}, {0x1083F, 0x10855}, {0x10860, 0x10876}, {0x10880, 0x1089E}, {0x108E0, 0x108F2}, {0x108F4, 0x108F5}, {0x10900, 0x10915}, {0x10920, 0x10939}, {0x10980, 0x109B7},
{0x109BE, 0x109BF}, {0x10A00, 0x10A00}, {0x10A10, 0x10A13}, {0x10A15, 0x10A17}, {0x10A19, 0x10A35}, {0x10A60, 0x10A7C}, {0x10A80, 0x10A9C}, {0x10AC0, 0x10AC7}, {0x10AC9, 0x10AE4}, {0x10B00, 0x10B35},
{0x10B40, 0x10B55}, {0x10B60, 0x10B72}, {0x10B80, 0x10B91}, {0x10C00, 0x10C48}, {0x10C80, 0x10CB2}, {0x10CC0, 0x10CF2}, {0x10D00, 0x10D23}, {0x10E80, 0x10EA9}, {0x10EB0, 0x10EB1}, {0x10F00, 0x10F1C},
{0x10F27, 0x10F27}, {0x10F30, 0x10F45}, {0x10FB0, 0x10FC4}, {0x10FE0, 0x10FF6}, {0x11003, 0x11037}, {0x11083, 0x110AF}, {0x110D0, 0x110E8}, {0x11103, 0x11126}, {0x11144, 0x11144}, {0x11147, 0x11147},
{0x11150, 0x11172}, {0x11176, 0x11176}, {0x11183, 0x111B2}, {0x111C1, 0x111C4}, {0x111DA, 0x111DA}, {0x111DC, 0x111DC}, {0x11200, 0x11211}, {0x11213, 0x1122B}, {0x11280, 0x11286}, {0x11288, 0x11288},
{0x1128A, 0x1128D}, {0x1128F, 0x1129D}, {0x1129F, 0x112A8}, {0x112B0, 0x112DE}, {0x11305, 0x1130C}, {0x1130F, 0x11310}, {0x11313, 0x11328}, {0x1132A, 0x11330}, {0x11332, 0x11333}, {0x11335, 0x11339},
{0x1133D, 0x1133D}, {0x11350, 0x11350}, {0x1135D, 0x11361}, {0x11400, 0x11434}, {0x11447, 0x1144A}, {0x1145F, 0x11461}, {0x11480, 0x114AF}, {0x114C4, 0x114C5}, {0x114C7, 0x114C7}, {0x11580, 0x115AE},
{0x115D8, 0x115DB}, {0x11600, 0x1162F}, {0x11644, 0x11644}, {0x11680, 0x116AA}, {0x116B8, 0x116B8}, {0x11700, 0x1171A}, {0x11800, 0x1182B}, {0x118A0, 0x118DF}, {0x118FF, 0x11906}, {0x11909, 0x11909},
{0x1190C, 0x11913}, {0x11915, 0x11916}, {0x11918, 0x1192F}, {0x1193F, 0x1193F}, {0x11941, 0x11941}, {0x119A0, 0x119A7}, {0x119AA, 0x119D0}, {0x119E1, 0x119E1}, {0x119E3, 0x119E3}, {0x11A00, 0x11A00},
{0x11A0B, 0x11A32}, {0x11A3A, 0x11A3A}, {0x11A50, 0x11A50}, {0x11A5C, 0x11A89}, {0x11A9D, 0x11A9D}, {0x11AC0, 0x11AF8}, {0x11C00, 0x11C08}, {0x11C0A, 0x11C2E}, {0x11C40, 0x11C40}, {0x11C72, 0x11C8F},
{0x11D00, 0x11D06}, {0x11D08, 0x11D09}, {0x11D0B, 0x11D30}, {0x11D46, 0x11D46}, {0x11D60, 0x11D65}, {0x11D67, 0x11D68}, {0x11D6A, 0x11D89}, {0x11D98, 0x11D98}, {0x11EE0, 0x11EF2}, {0x11FB0, 0x11FB0},
{0x12000, 0x12399}, {0x12480, 0x12543}, {0x13000, 0x1342E}, {0x14400, 0x14646}, {0x16800, 0x16A38}, {0x16A40, 0x16A5E}, {0x16AD0, 0x16AED}, {0x16B00, 0x16B2F}, {0x16B40, 0x16B43}, {0x16B63, 0x16B77},
{0x16B7D, 0x16B8F}, {0x16E40, 0x16E7F}, {0x16F00, 0x16F4A}, {0x16F50, 0x16F50}, {0x16F93, 0x16F9F}, {0x16FE0, 0x16FE1}, {0x16FE3, 0x16FE3}, {0x17000, 0x187F7}, {0x18800, 0x18CD5}, {0x18D00, 0x18D08},
{0x1B000, 0x1B11E}, {0x1B150, 0x1B152}, {0x1B164, 0x1B167}, {0x1B170, 0x1B2FB}, {0x1BC00, 0x1BC6A}, {0x1BC70, 0x1BC7C}, {0x1BC80, 0x1BC88}, {0x1BC90, 0x1BC99}, {0x1D400, 0x1D454}, {0x1D456, 0x1D49C},
{0x1D49E, 0x1D49F}, {0x1D4A2, 0x1D4A2}, {0x1D4A5, 0x1D4A6}, {0x1D4A9, 0x1D4AC}, {0x1D4AE, 0x1D4B9}, {0x1D4BB, 0x1D4BB}, {0x1D4BD, 0x1D4C3}, {0x1D4C5, 0x1D505}, {0x1D507, 0x1D50A}, {0x1D50D, 0x1D514},
{0x1D516, 0x1D51C}, {0x1D51E, 0x1D539}, {0x1D53B, 0x1D53E}, {0x1D540, 0x1D544}, {0x1D546, 0x1D546}, {0x1D54A, 0x1D550}, {0x1D552, 0x1D6A5}, {0x1D6A8, 0x1D6C0}, {0x1D6C2, 0x1D6DA}, {0x1D6DC, 0x1D6FA},
{0x1D6FC, 0x1D714}, {0x1D716, 0x1D734}, {0x1D736, 0x1D74E}, {0x1D750, 0x1D76E}, {0x1D770, 0x1D788}, {0x1D78A, 0x1D7A8}, {0x1D7AA, 0x1D7C2}, {0x1D7C4, 0x1D7CB}, {0x1E100, 0x1E12C}, {0x1E137, 0x1E13D},
{0x1E14E, 0x1E14E}, {0x1E2C0, 0x1E2EB}, {0x1E800, 0x1E8C4}, {0x1E900, 0x1E943}, {0x1E94B, 0x1E94B}, {0x1EE00, 0x1EE03}, {0x1EE05, 0x1EE1F}, {0x1EE21, 0x1EE22}, {0x1EE24, 0x1EE24}, {0x1EE27, 0x1EE27},
{0x1EE29, 0x1EE32}, {0x1EE34, 0x1EE37}, {0x1EE39, 0x1EE39}, {0x1EE3B, 0x1EE3B}, {0x1EE42, 0x1EE42}, {0x1EE47, 0x1EE47}, {0x1EE49, 0x1EE49}, {0x1EE4B, 0x1EE4B}, {0x1EE4D, 0x1EE4F}, {0x1EE51, 0x1EE52},
{0x1EE54, 0x1EE54}, {0x1EE57, 0x1EE57}, {0x1EE59, 0x1EE59}, {0x1EE5B, 0x1EE5B}, {0x1EE5D, 0x1EE5D}, {0x1EE5F, 0x1EE5F}, {0x1EE61, 0x1EE62}, {0x1EE64, 0x1EE64}, {0x1EE67, 0x1EE6A}, {0x1EE6C, 0x1EE72},
{0x1EE74, 0x1EE77}, {0x1EE79, 0x1EE7C}, {0x1EE7E, 0x1EE7E}, {0x1EE80, 0x1EE89}, {0x1EE8B, 0x1EE9B}, {0x1EEA1, 0x1EEA3}, {0x1EEA5, 0x1EEA9}, {0x1EEAB, 0x1EEBB}, {0x20000, 0x2A6DD}, {0x2A700, 0x2B734},
{0x2B740, 0x2B81D}, {0x2B820, 0x2CEA1}, {0x2CEB0, 0x2EBE0}, {0x2F800, 0x2FA1D}, {0x30000, 0x3134A},
};
static const std::vector<std::pair<uint32_t, uint32_t>> whitespace_ranges = {
{0x9, 0xD}, {0x1C, 0x20}, {0x85, 0x85}, {0xA0, 0xA0}, {0x1680, 0x1680}, {0x2000, 0x200A}, {0x2028, 0x2029}, {0x202F, 0x202F}, {0x205F, 0x205F}, {0x3000, 0x3000},
};
static const std::vector<std::pair<uint32_t, uint32_t>> accent_mark_ranges = {
{0x300, 0x36F}, {0x483, 0x489}, {0x591, 0x5BD}, {0x5BF, 0x5BF}, {0x5C1, 0x5C2}, {0x5C4, 0x5C5}, {0x5C7, 0x5C7}, {0x610, 0x61A}, {0x64B, 0x65F}, {0x670, 0x670}, {0x6D6, 0x6DC}, {0x6DF, 0x6E4},
{0x6E7, 0x6E8}, {0x6EA, 0x6ED}, {0x711, 0x711}, {0x730, 0x74A}, {0x7A6, 0x7B0}, {0x7EB, 0x7F3}, {0x7FD, 0x7FD}, {0x816, 0x819}, {0x81B, 0x823}, {0x825, 0x827}, {0x829, 0x82D}, {0x859, 0x85B},
{0x8D3, 0x8E1}, {0x8E3, 0x903}, {0x93A, 0x93C}, {0x93E, 0x94F}, {0x951, 0x957}, {0x962, 0x963}, {0x981, 0x983}, {0x9BC, 0x9BC}, {0x9BE, 0x9C4}, {0x9C7, 0x9C8}, {0x9CB, 0x9CD}, {0x9D7, 0x9D7},
{0x9E2, 0x9E3}, {0x9FE, 0x9FE}, {0xA01, 0xA03}, {0xA3C, 0xA3C}, {0xA3E, 0xA42}, {0xA47, 0xA48}, {0xA4B, 0xA4D}, {0xA51, 0xA51}, {0xA70, 0xA71}, {0xA75, 0xA75}, {0xA81, 0xA83}, {0xABC, 0xABC},
{0xABE, 0xAC5}, {0xAC7, 0xAC9}, {0xACB, 0xACD}, {0xAE2, 0xAE3}, {0xAFA, 0xAFF}, {0xB01, 0xB03}, {0xB3C, 0xB3C}, {0xB3E, 0xB44}, {0xB47, 0xB48}, {0xB4B, 0xB4D}, {0xB55, 0xB57}, {0xB62, 0xB63},
{0xB82, 0xB82}, {0xBBE, 0xBC2}, {0xBC6, 0xBC8}, {0xBCA, 0xBCD}, {0xBD7, 0xBD7}, {0xC00, 0xC04}, {0xC3E, 0xC44}, {0xC46, 0xC48}, {0xC4A, 0xC4D}, {0xC55, 0xC56}, {0xC62, 0xC63}, {0xC81, 0xC83},
{0xCBC, 0xCBC}, {0xCBE, 0xCC4}, {0xCC6, 0xCC8}, {0xCCA, 0xCCD}, {0xCD5, 0xCD6}, {0xCE2, 0xCE3}, {0xD00, 0xD03}, {0xD3B, 0xD3C}, {0xD3E, 0xD44}, {0xD46, 0xD48}, {0xD4A, 0xD4D}, {0xD57, 0xD57},
{0xD62, 0xD63}, {0xD81, 0xD83}, {0xDCA, 0xDCA}, {0xDCF, 0xDD4}, {0xDD6, 0xDD6}, {0xDD8, 0xDDF}, {0xDF2, 0xDF3}, {0xE31, 0xE31}, {0xE34, 0xE3A}, {0xE47, 0xE4E}, {0xEB1, 0xEB1}, {0xEB4, 0xEBC},
{0xEC8, 0xECD}, {0xF18, 0xF19}, {0xF35, 0xF35}, {0xF37, 0xF37}, {0xF39, 0xF39}, {0xF3E, 0xF3F}, {0xF71, 0xF84}, {0xF86, 0xF87}, {0xF8D, 0xF97}, {0xF99, 0xFBC}, {0xFC6, 0xFC6}, {0x102B, 0x103E},
{0x1056, 0x1059}, {0x105E, 0x1060}, {0x1062, 0x1064}, {0x1067, 0x106D}, {0x1071, 0x1074}, {0x1082, 0x108D}, {0x108F, 0x108F}, {0x109A, 0x109D}, {0x135D, 0x135F}, {0x1712, 0x1714}, {0x1732, 0x1734},
{0x1752, 0x1753}, {0x1772, 0x1773}, {0x17B4, 0x17D3}, {0x17DD, 0x17DD}, {0x180B, 0x180D}, {0x1885, 0x1886}, {0x18A9, 0x18A9}, {0x1920, 0x192B}, {0x1930, 0x193B}, {0x1A17, 0x1A1B}, {0x1A55, 0x1A5E},
{0x1A60, 0x1A7C}, {0x1A7F, 0x1A7F}, {0x1AB0, 0x1AC0}, {0x1B00, 0x1B04}, {0x1B34, 0x1B44}, {0x1B6B, 0x1B73}, {0x1B80, 0x1B82}, {0x1BA1, 0x1BAD}, {0x1BE6, 0x1BF3}, {0x1C24, 0x1C37}, {0x1CD0, 0x1CD2},
{0x1CD4, 0x1CE8}, {0x1CED, 0x1CED}, {0x1CF4, 0x1CF4}, {0x1CF7, 0x1CF9}, {0x1DC0, 0x1DF9}, {0x1DFB, 0x1DFF}, {0x20D0, 0x20F0}, {0x2CEF, 0x2CF1}, {0x2D7F, 0x2D7F}, {0x2DE0, 0x2DFF}, {0x302A, 0x302F},
{0x3099, 0x309A}, {0xA66F, 0xA672}, {0xA674, 0xA67D}, {0xA69E, 0xA69F}, {0xA6F0, 0xA6F1}, {0xA802, 0xA802}, {0xA806, 0xA806}, {0xA80B, 0xA80B}, {0xA823, 0xA827}, {0xA82C, 0xA82C}, {0xA880, 0xA881},
{0xA8B4, 0xA8C5}, {0xA8E0, 0xA8F1}, {0xA8FF, 0xA8FF}, {0xA926, 0xA92D}, {0xA947, 0xA953}, {0xA980, 0xA983}, {0xA9B3, 0xA9C0}, {0xA9E5, 0xA9E5}, {0xAA29, 0xAA36}, {0xAA43, 0xAA43}, {0xAA4C, 0xAA4D},
{0xAA7B, 0xAA7D}, {0xAAB0, 0xAAB0}, {0xAAB2, 0xAAB4}, {0xAAB7, 0xAAB8}, {0xAABE, 0xAABF}, {0xAAC1, 0xAAC1}, {0xAAEB, 0xAAEF}, {0xAAF5, 0xAAF6}, {0xABE3, 0xABEA}, {0xABEC, 0xABED}, {0xFB1E, 0xFB1E},
{0xFE00, 0xFE0F}, {0xFE20, 0xFE2F}, {0x101FD, 0x101FD}, {0x102E0, 0x102E0}, {0x10376, 0x1037A}, {0x10A01, 0x10A03}, {0x10A05, 0x10A06}, {0x10A0C, 0x10A0F}, {0x10A38, 0x10A3A}, {0x10A3F, 0x10A3F},
{0x10AE5, 0x10AE6}, {0x10D24, 0x10D27}, {0x10EAB, 0x10EAC}, {0x10F46, 0x10F50}, {0x11000, 0x11002}, {0x11038, 0x11046}, {0x1107F, 0x11082}, {0x110B0, 0x110BA}, {0x11100, 0x11102}, {0x11127, 0x11134},
{0x11145, 0x11146}, {0x11173, 0x11173}, {0x11180, 0x11182}, {0x111B3, 0x111C0}, {0x111C9, 0x111CC}, {0x111CE, 0x111CF}, {0x1122C, 0x11237}, {0x1123E, 0x1123E}, {0x112DF, 0x112EA}, {0x11300, 0x11303},
{0x1133B, 0x1133C}, {0x1133E, 0x11344}, {0x11347, 0x11348}, {0x1134B, 0x1134D}, {0x11357, 0x11357}, {0x11362, 0x11363}, {0x11366, 0x1136C}, {0x11370, 0x11374}, {0x11435, 0x11446}, {0x1145E, 0x1145E},
{0x114B0, 0x114C3}, {0x115AF, 0x115B5}, {0x115B8, 0x115C0}, {0x115DC, 0x115DD}, {0x11630, 0x11640}, {0x116AB, 0x116B7}, {0x1171D, 0x1172B}, {0x1182C, 0x1183A}, {0x11930, 0x11935}, {0x11937, 0x11938},
{0x1193B, 0x1193E}, {0x11940, 0x11940}, {0x11942, 0x11943}, {0x119D1, 0x119D7}, {0x119DA, 0x119E0}, {0x119E4, 0x119E4}, {0x11A01, 0x11A0A}, {0x11A33, 0x11A39}, {0x11A3B, 0x11A3E}, {0x11A47, 0x11A47},
{0x11A51, 0x11A5B}, {0x11A8A, 0x11A99}, {0x11C2F, 0x11C36}, {0x11C38, 0x11C3F}, {0x11C92, 0x11CA7}, {0x11CA9, 0x11CB6}, {0x11D31, 0x11D36}, {0x11D3A, 0x11D3A}, {0x11D3C, 0x11D3D}, {0x11D3F, 0x11D45},
{0x11D47, 0x11D47}, {0x11D8A, 0x11D8E}, {0x11D90, 0x11D91}, {0x11D93, 0x11D97}, {0x11EF3, 0x11EF6}, {0x16AF0, 0x16AF4}, {0x16B30, 0x16B36}, {0x16F4F, 0x16F4F}, {0x16F51, 0x16F87}, {0x16F8F, 0x16F92},
{0x16FE4, 0x16FE4}, {0x16FF0, 0x16FF1}, {0x1BC9D, 0x1BC9E}, {0x1D165, 0x1D169}, {0x1D16D, 0x1D172}, {0x1D17B, 0x1D182}, {0x1D185, 0x1D18B}, {0x1D1AA, 0x1D1AD}, {0x1D242, 0x1D244}, {0x1DA00, 0x1DA36},
{0x1DA3B, 0x1DA6C}, {0x1DA75, 0x1DA75}, {0x1DA84, 0x1DA84}, {0x1DA9B, 0x1DA9F}, {0x1DAA1, 0x1DAAF}, {0x1E000, 0x1E006}, {0x1E008, 0x1E018}, {0x1E01B, 0x1E021}, {0x1E023, 0x1E024}, {0x1E026, 0x1E02A},
{0x1E130, 0x1E136}, {0x1E2EC, 0x1E2EF}, {0x1E8D0, 0x1E8D6}, {0x1E944, 0x1E94A}, {0xE0100, 0xE01EF},
};
static const std::vector<std::pair<uint32_t, uint32_t>> punctuation_ranges = {
{0x21, 0x23}, {0x25, 0x2A}, {0x2C, 0x2F}, {0x3A, 0x3B}, {0x3F, 0x40}, {0x5B, 0x5D}, {0x5F, 0x5F}, {0x7B, 0x7B}, {0x7D, 0x7D}, {0xA1, 0xA1}, {0xA7, 0xA7}, {0xAB, 0xAB}, {0xB6, 0xB7}, {0xBB, 0xBB},
{0xBF, 0xBF}, {0x37E, 0x37E}, {0x387, 0x387}, {0x55A, 0x55F}, {0x589, 0x58A}, {0x5BE, 0x5BE}, {0x5C0, 0x5C0}, {0x5C3, 0x5C3}, {0x5C6, 0x5C6}, {0x5F3, 0x5F4}, {0x609, 0x60A}, {0x60C, 0x60D},
{0x61B, 0x61B}, {0x61E, 0x61F}, {0x66A, 0x66D}, {0x6D4, 0x6D4}, {0x700, 0x70D}, {0x7F7, 0x7F9}, {0x830, 0x83E}, {0x85E, 0x85E}, {0x964, 0x965}, {0x970, 0x970}, {0x9FD, 0x9FD}, {0xA76, 0xA76},
{0xAF0, 0xAF0}, {0xC77, 0xC77}, {0xC84, 0xC84}, {0xDF4, 0xDF4}, {0xE4F, 0xE4F}, {0xE5A, 0xE5B}, {0xF04, 0xF12}, {0xF14, 0xF14}, {0xF3A, 0xF3D}, {0xF85, 0xF85}, {0xFD0, 0xFD4}, {0xFD9, 0xFDA},
{0x104A, 0x104F}, {0x10FB, 0x10FB}, {0x1360, 0x1368}, {0x1400, 0x1400}, {0x166E, 0x166E}, {0x169B, 0x169C}, {0x16EB, 0x16ED}, {0x1735, 0x1736}, {0x17D4, 0x17D6}, {0x17D8, 0x17DA}, {0x1800, 0x180A},
{0x1944, 0x1945}, {0x1A1E, 0x1A1F}, {0x1AA0, 0x1AA6}, {0x1AA8, 0x1AAD}, {0x1B5A, 0x1B60}, {0x1BFC, 0x1BFF}, {0x1C3B, 0x1C3F}, {0x1C7E, 0x1C7F}, {0x1CC0, 0x1CC7}, {0x1CD3, 0x1CD3}, {0x2010, 0x2027},
{0x2030, 0x2043}, {0x2045, 0x2051}, {0x2053, 0x205E}, {0x207D, 0x207E}, {0x208D, 0x208E}, {0x2308, 0x230B}, {0x2329, 0x232A}, {0x2768, 0x2775}, {0x27C5, 0x27C6}, {0x27E6, 0x27EF}, {0x2983, 0x2998},
{0x29D8, 0x29DB}, {0x29FC, 0x29FD}, {0x2CF9, 0x2CFC}, {0x2CFE, 0x2CFF}, {0x2D70, 0x2D70}, {0x2E00, 0x2E2E}, {0x2E30, 0x2E4F}, {0x2E52, 0x2E52}, {0x3001, 0x3003}, {0x3008, 0x3011}, {0x3014, 0x301F},
{0x3030, 0x3030}, {0x303D, 0x303D}, {0x30A0, 0x30A0}, {0x30FB, 0x30FB}, {0xA4FE, 0xA4FF}, {0xA60D, 0xA60F}, {0xA673, 0xA673}, {0xA67E, 0xA67E}, {0xA6F2, 0xA6F7}, {0xA874, 0xA877}, {0xA8CE, 0xA8CF},
{0xA8F8, 0xA8FA}, {0xA8FC, 0xA8FC}, {0xA92E, 0xA92F}, {0xA95F, 0xA95F}, {0xA9C1, 0xA9CD}, {0xA9DE, 0xA9DF}, {0xAA5C, 0xAA5F}, {0xAADE, 0xAADF}, {0xAAF0, 0xAAF1}, {0xABEB, 0xABEB}, {0xFD3E, 0xFD3F},
{0xFE10, 0xFE19}, {0xFE30, 0xFE52}, {0xFE54, 0xFE61}, {0xFE63, 0xFE63}, {0xFE68, 0xFE68}, {0xFE6A, 0xFE6B}, {0xFF01, 0xFF03}, {0xFF05, 0xFF0A}, {0xFF0C, 0xFF0F}, {0xFF1A, 0xFF1B}, {0xFF1F, 0xFF20},
{0xFF3B, 0xFF3D}, {0xFF3F, 0xFF3F}, {0xFF5B, 0xFF5B}, {0xFF5D, 0xFF5D}, {0xFF5F, 0xFF65}, {0x10100, 0x10102}, {0x1039F, 0x1039F}, {0x103D0, 0x103D0}, {0x1056F, 0x1056F}, {0x10857, 0x10857},
{0x1091F, 0x1091F}, {0x1093F, 0x1093F}, {0x10A50, 0x10A58}, {0x10A7F, 0x10A7F}, {0x10AF0, 0x10AF6}, {0x10B39, 0x10B3F}, {0x10B99, 0x10B9C}, {0x10EAD, 0x10EAD}, {0x10F55, 0x10F59}, {0x11047, 0x1104D},
{0x110BB, 0x110BC}, {0x110BE, 0x110C1}, {0x11140, 0x11143}, {0x11174, 0x11175}, {0x111C5, 0x111C8}, {0x111CD, 0x111CD}, {0x111DB, 0x111DB}, {0x111DD, 0x111DF}, {0x11238, 0x1123D}, {0x112A9, 0x112A9},
{0x1144B, 0x1144F}, {0x1145A, 0x1145B}, {0x1145D, 0x1145D}, {0x114C6, 0x114C6}, {0x115C1, 0x115D7}, {0x11641, 0x11643}, {0x11660, 0x1166C}, {0x1173C, 0x1173E}, {0x1183B, 0x1183B}, {0x11944, 0x11946},
{0x119E2, 0x119E2}, {0x11A3F, 0x11A46}, {0x11A9A, 0x11A9C}, {0x11A9E, 0x11AA2}, {0x11C41, 0x11C45}, {0x11C70, 0x11C71}, {0x11EF7, 0x11EF8}, {0x11FFF, 0x11FFF}, {0x12470, 0x12474}, {0x16A6E, 0x16A6F},
{0x16AF5, 0x16AF5}, {0x16B37, 0x16B3B}, {0x16B44, 0x16B44}, {0x16E97, 0x16E9A}, {0x16FE2, 0x16FE2}, {0x1BC9F, 0x1BC9F}, {0x1DA87, 0x1DA8B}, {0x1E95E, 0x1E95F},
};
static const std::vector<std::pair<uint32_t, uint32_t>> symbol_ranges = {
{0x24, 0x24}, {0x2B, 0x2B}, {0x3C, 0x3E}, {0x5E, 0x5E}, {0x60, 0x60}, {0x7C, 0x7C}, {0x7E, 0x7E}, {0xA2, 0xA6}, {0xA8, 0xA9}, {0xAC, 0xAC}, {0xAE, 0xB1}, {0xB4, 0xB4}, {0xB8, 0xB8}, {0xD7, 0xD7},
{0xF7, 0xF7}, {0x2C2, 0x2C5}, {0x2D2, 0x2DF}, {0x2E5, 0x2EB}, {0x2ED, 0x2ED}, {0x2EF, 0x2FF}, {0x375, 0x375}, {0x384, 0x385}, {0x3F6, 0x3F6}, {0x482, 0x482}, {0x58D, 0x58F}, {0x606, 0x608},
{0x60B, 0x60B}, {0x60E, 0x60F}, {0x6DE, 0x6DE}, {0x6E9, 0x6E9}, {0x6FD, 0x6FE}, {0x7F6, 0x7F6}, {0x7FE, 0x7FF}, {0x9F2, 0x9F3}, {0x9FA, 0x9FB}, {0xAF1, 0xAF1}, {0xB70, 0xB70}, {0xBF3, 0xBFA},
{0xC7F, 0xC7F}, {0xD4F, 0xD4F}, {0xD79, 0xD79}, {0xE3F, 0xE3F}, {0xF01, 0xF03}, {0xF13, 0xF13}, {0xF15, 0xF17}, {0xF1A, 0xF1F}, {0xF34, 0xF34}, {0xF36, 0xF36}, {0xF38, 0xF38}, {0xFBE, 0xFC5},
{0xFC7, 0xFCC}, {0xFCE, 0xFCF}, {0xFD5, 0xFD8}, {0x109E, 0x109F}, {0x1390, 0x1399}, {0x166D, 0x166D}, {0x17DB, 0x17DB}, {0x1940, 0x1940}, {0x19DE, 0x19FF}, {0x1B61, 0x1B6A}, {0x1B74, 0x1B7C},
{0x1FBD, 0x1FBD}, {0x1FBF, 0x1FC1}, {0x1FCD, 0x1FCF}, {0x1FDD, 0x1FDF}, {0x1FED, 0x1FEF}, {0x1FFD, 0x1FFE}, {0x2044, 0x2044}, {0x2052, 0x2052}, {0x207A, 0x207C}, {0x208A, 0x208C}, {0x20A0, 0x20BF},
{0x2100, 0x2101}, {0x2103, 0x2106}, {0x2108, 0x2109}, {0x2114, 0x2114}, {0x2116, 0x2118}, {0x211E, 0x2123}, {0x2125, 0x2125}, {0x2127, 0x2127}, {0x2129, 0x2129}, {0x212E, 0x212E}, {0x213A, 0x213B},
{0x2140, 0x2144}, {0x214A, 0x214D}, {0x214F, 0x214F}, {0x218A, 0x218B}, {0x2190, 0x2307}, {0x230C, 0x2328}, {0x232B, 0x2426}, {0x2440, 0x244A}, {0x249C, 0x24E9}, {0x2500, 0x2767}, {0x2794, 0x27C4},
{0x27C7, 0x27E5}, {0x27F0, 0x2982}, {0x2999, 0x29D7}, {0x29DC, 0x29FB}, {0x29FE, 0x2B73}, {0x2B76, 0x2B95}, {0x2B97, 0x2BFF}, {0x2CE5, 0x2CEA}, {0x2E50, 0x2E51}, {0x2E80, 0x2E99}, {0x2E9B, 0x2EF3},
{0x2F00, 0x2FD5}, {0x2FF0, 0x2FFB}, {0x3004, 0x3004}, {0x3012, 0x3013}, {0x3020, 0x3020}, {0x3036, 0x3037}, {0x303E, 0x303F}, {0x309B, 0x309C}, {0x3190, 0x3191}, {0x3196, 0x319F}, {0x31C0, 0x31E3},
{0x3200, 0x321E}, {0x322A, 0x3247}, {0x3250, 0x3250}, {0x3260, 0x327F}, {0x328A, 0x32B0}, {0x32C0, 0x33FF}, {0x4DC0, 0x4DFF}, {0xA490, 0xA4C6}, {0xA700, 0xA716}, {0xA720, 0xA721}, {0xA789, 0xA78A},
{0xA828, 0xA82B}, {0xA836, 0xA839}, {0xAA77, 0xAA79}, {0xAB5B, 0xAB5B}, {0xAB6A, 0xAB6B}, {0xFB29, 0xFB29}, {0xFBB2, 0xFBC1}, {0xFDFC, 0xFDFD}, {0xFE62, 0xFE62}, {0xFE64, 0xFE66}, {0xFE69, 0xFE69},
{0xFF04, 0xFF04}, {0xFF0B, 0xFF0B}, {0xFF1C, 0xFF1E}, {0xFF3E, 0xFF3E}, {0xFF40, 0xFF40}, {0xFF5C, 0xFF5C}, {0xFF5E, 0xFF5E}, {0xFFE0, 0xFFE6}, {0xFFE8, 0xFFEE}, {0xFFFC, 0xFFFD}, {0x10137, 0x1013F},
{0x10179, 0x10189}, {0x1018C, 0x1018E}, {0x10190, 0x1019C}, {0x101A0, 0x101A0}, {0x101D0, 0x101FC}, {0x10877, 0x10878}, {0x10AC8, 0x10AC8}, {0x1173F, 0x1173F}, {0x11FD5, 0x11FF1}, {0x16B3C, 0x16B3F},
{0x16B45, 0x16B45}, {0x1BC9C, 0x1BC9C}, {0x1D000, 0x1D0F5}, {0x1D100, 0x1D126}, {0x1D129, 0x1D164}, {0x1D16A, 0x1D16C}, {0x1D183, 0x1D184}, {0x1D18C, 0x1D1A9}, {0x1D1AE, 0x1D1E8}, {0x1D200, 0x1D241},
{0x1D245, 0x1D245}, {0x1D300, 0x1D356}, {0x1D6C1, 0x1D6C1}, {0x1D6DB, 0x1D6DB}, {0x1D6FB, 0x1D6FB}, {0x1D715, 0x1D715}, {0x1D735, 0x1D735}, {0x1D74F, 0x1D74F}, {0x1D76F, 0x1D76F}, {0x1D789, 0x1D789},
{0x1D7A9, 0x1D7A9}, {0x1D7C3, 0x1D7C3}, {0x1D800, 0x1D9FF}, {0x1DA37, 0x1DA3A}, {0x1DA6D, 0x1DA74}, {0x1DA76, 0x1DA83}, {0x1DA85, 0x1DA86}, {0x1E14F, 0x1E14F}, {0x1E2FF, 0x1E2FF}, {0x1ECAC, 0x1ECAC},
{0x1ECB0, 0x1ECB0}, {0x1ED2E, 0x1ED2E}, {0x1EEF0, 0x1EEF1}, {0x1F000, 0x1F02B}, {0x1F030, 0x1F093}, {0x1F0A0, 0x1F0AE}, {0x1F0B1, 0x1F0BF}, {0x1F0C1, 0x1F0CF}, {0x1F0D1, 0x1F0F5}, {0x1F10D, 0x1F1AD},
{0x1F1E6, 0x1F202}, {0x1F210, 0x1F23B}, {0x1F240, 0x1F248}, {0x1F250, 0x1F251}, {0x1F260, 0x1F265}, {0x1F300, 0x1F6D7}, {0x1F6E0, 0x1F6EC}, {0x1F6F0, 0x1F6FC}, {0x1F700, 0x1F773}, {0x1F780, 0x1F7D8},
{0x1F7E0, 0x1F7EB}, {0x1F800, 0x1F80B}, {0x1F810, 0x1F847}, {0x1F850, 0x1F859}, {0x1F860, 0x1F887}, {0x1F890, 0x1F8AD}, {0x1F8B0, 0x1F8B1}, {0x1F900, 0x1F978}, {0x1F97A, 0x1F9CB}, {0x1F9CD, 0x1FA53},
{0x1FA60, 0x1FA6D}, {0x1FA70, 0x1FA74}, {0x1FA78, 0x1FA7A}, {0x1FA80, 0x1FA86}, {0x1FA90, 0x1FAA8}, {0x1FAB0, 0x1FAB6}, {0x1FAC0, 0x1FAC2}, {0x1FAD0, 0x1FAD6}, {0x1FB00, 0x1FB92}, {0x1FB94, 0x1FBCA},
};
static const std::vector<std::pair<uint32_t, uint32_t>> control_ranges = {
{0x0, 0x8}, {0xE, 0x1B}, {0x7F, 0x84}, {0x86, 0x9F}, {0xAD, 0xAD}, {0x378, 0x379}, {0x380, 0x383}, {0x38B, 0x38B}, {0x38D, 0x38D}, {0x3A2, 0x3A2}, {0x530, 0x530}, {0x557, 0x558}, {0x58B, 0x58C},
{0x590, 0x590}, {0x5C8, 0x5CF}, {0x5EB, 0x5EE}, {0x5F5, 0x605}, {0x61C, 0x61D}, {0x6DD, 0x6DD}, {0x70E, 0x70F}, {0x74B, 0x74C}, {0x7B2, 0x7BF}, {0x7FB, 0x7FC}, {0x82E, 0x82F}, {0x83F, 0x83F},
{0x85C, 0x85D}, {0x85F, 0x85F}, {0x86B, 0x89F}, {0x8B5, 0x8B5}, {0x8C8, 0x8D2}, {0x8E2, 0x8E2}, {0x984, 0x984}, {0x98D, 0x98E}, {0x991, 0x992}, {0x9A9, 0x9A9}, {0x9B1, 0x9B1}, {0x9B3, 0x9B5},
{0x9BA, 0x9BB}, {0x9C5, 0x9C6}, {0x9C9, 0x9CA}, {0x9CF, 0x9D6}, {0x9D8, 0x9DB}, {0x9DE, 0x9DE}, {0x9E4, 0x9E5}, {0x9FF, 0xA00}, {0xA04, 0xA04}, {0xA0B, 0xA0E}, {0xA11, 0xA12}, {0xA29, 0xA29},
{0xA31, 0xA31}, {0xA34, 0xA34}, {0xA37, 0xA37}, {0xA3A, 0xA3B}, {0xA3D, 0xA3D}, {0xA43, 0xA46}, {0xA49, 0xA4A}, {0xA4E, 0xA50}, {0xA52, 0xA58}, {0xA5D, 0xA5D}, {0xA5F, 0xA65}, {0xA77, 0xA80},
{0xA84, 0xA84}, {0xA8E, 0xA8E}, {0xA92, 0xA92}, {0xAA9, 0xAA9}, {0xAB1, 0xAB1}, {0xAB4, 0xAB4}, {0xABA, 0xABB}, {0xAC6, 0xAC6}, {0xACA, 0xACA}, {0xACE, 0xACF}, {0xAD1, 0xADF}, {0xAE4, 0xAE5},
{0xAF2, 0xAF8}, {0xB00, 0xB00}, {0xB04, 0xB04}, {0xB0D, 0xB0E}, {0xB11, 0xB12}, {0xB29, 0xB29}, {0xB31, 0xB31}, {0xB34, 0xB34}, {0xB3A, 0xB3B}, {0xB45, 0xB46}, {0xB49, 0xB4A}, {0xB4E, 0xB54},
{0xB58, 0xB5B}, {0xB5E, 0xB5E}, {0xB64, 0xB65}, {0xB78, 0xB81}, {0xB84, 0xB84}, {0xB8B, 0xB8D}, {0xB91, 0xB91}, {0xB96, 0xB98}, {0xB9B, 0xB9B}, {0xB9D, 0xB9D}, {0xBA0, 0xBA2}, {0xBA5, 0xBA7},
{0xBAB, 0xBAD}, {0xBBA, 0xBBD}, {0xBC3, 0xBC5}, {0xBC9, 0xBC9}, {0xBCE, 0xBCF}, {0xBD1, 0xBD6}, {0xBD8, 0xBE5}, {0xBFB, 0xBFF}, {0xC0D, 0xC0D}, {0xC11, 0xC11}, {0xC29, 0xC29}, {0xC3A, 0xC3C},
{0xC45, 0xC45}, {0xC49, 0xC49}, {0xC4E, 0xC54}, {0xC57, 0xC57}, {0xC5B, 0xC5F}, {0xC64, 0xC65}, {0xC70, 0xC76}, {0xC8D, 0xC8D}, {0xC91, 0xC91}, {0xCA9, 0xCA9}, {0xCB4, 0xCB4}, {0xCBA, 0xCBB},
{0xCC5, 0xCC5}, {0xCC9, 0xCC9}, {0xCCE, 0xCD4}, {0xCD7, 0xCDD}, {0xCDF, 0xCDF}, {0xCE4, 0xCE5}, {0xCF0, 0xCF0}, {0xCF3, 0xCFF}, {0xD0D, 0xD0D}, {0xD11, 0xD11}, {0xD45, 0xD45}, {0xD49, 0xD49},
{0xD50, 0xD53}, {0xD64, 0xD65}, {0xD80, 0xD80}, {0xD84, 0xD84}, {0xD97, 0xD99}, {0xDB2, 0xDB2}, {0xDBC, 0xDBC}, {0xDBE, 0xDBF}, {0xDC7, 0xDC9}, {0xDCB, 0xDCE}, {0xDD5, 0xDD5}, {0xDD7, 0xDD7},
{0xDE0, 0xDE5}, {0xDF0, 0xDF1}, {0xDF5, 0xE00}, {0xE3B, 0xE3E}, {0xE5C, 0xE80}, {0xE83, 0xE83}, {0xE85, 0xE85}, {0xE8B, 0xE8B}, {0xEA4, 0xEA4}, {0xEA6, 0xEA6}, {0xEBE, 0xEBF}, {0xEC5, 0xEC5},
{0xEC7, 0xEC7}, {0xECE, 0xECF}, {0xEDA, 0xEDB}, {0xEE0, 0xEFF}, {0xF48, 0xF48}, {0xF6D, 0xF70}, {0xF98, 0xF98}, {0xFBD, 0xFBD}, {0xFCD, 0xFCD}, {0xFDB, 0xFFF}, {0x10C6, 0x10C6}, {0x10C8, 0x10CC},
{0x10CE, 0x10CF}, {0x1249, 0x1249}, {0x124E, 0x124F}, {0x1257, 0x1257}, {0x1259, 0x1259}, {0x125E, 0x125F}, {0x1289, 0x1289}, {0x128E, 0x128F}, {0x12B1, 0x12B1}, {0x12B6, 0x12B7}, {0x12BF, 0x12BF},
{0x12C1, 0x12C1}, {0x12C6, 0x12C7}, {0x12D7, 0x12D7}, {0x1311, 0x1311}, {0x1316, 0x1317}, {0x135B, 0x135C}, {0x137D, 0x137F}, {0x139A, 0x139F}, {0x13F6, 0x13F7}, {0x13FE, 0x13FF}, {0x169D, 0x169F},
{0x16F9, 0x16FF}, {0x170D, 0x170D}, {0x1715, 0x171F}, {0x1737, 0x173F}, {0x1754, 0x175F}, {0x176D, 0x176D}, {0x1771, 0x1771}, {0x1774, 0x177F}, {0x17DE, 0x17DF}, {0x17EA, 0x17EF}, {0x17FA, 0x17FF},
{0x180E, 0x180F}, {0x181A, 0x181F}, {0x1879, 0x187F}, {0x18AB, 0x18AF}, {0x18F6, 0x18FF}, {0x191F, 0x191F}, {0x192C, 0x192F}, {0x193C, 0x193F}, {0x1941, 0x1943}, {0x196E, 0x196F}, {0x1975, 0x197F},
{0x19AC, 0x19AF}, {0x19CA, 0x19CF}, {0x19DB, 0x19DD}, {0x1A1C, 0x1A1D}, {0x1A5F, 0x1A5F}, {0x1A7D, 0x1A7E}, {0x1A8A, 0x1A8F}, {0x1A9A, 0x1A9F}, {0x1AAE, 0x1AAF}, {0x1AC1, 0x1AFF}, {0x1B4C, 0x1B4F},
{0x1B7D, 0x1B7F}, {0x1BF4, 0x1BFB}, {0x1C38, 0x1C3A}, {0x1C4A, 0x1C4C}, {0x1C89, 0x1C8F}, {0x1CBB, 0x1CBC}, {0x1CC8, 0x1CCF}, {0x1CFB, 0x1CFF}, {0x1DFA, 0x1DFA}, {0x1F16, 0x1F17}, {0x1F1E, 0x1F1F},
{0x1F46, 0x1F47}, {0x1F4E, 0x1F4F}, {0x1F58, 0x1F58}, {0x1F5A, 0x1F5A}, {0x1F5C, 0x1F5C}, {0x1F5E, 0x1F5E}, {0x1F7E, 0x1F7F}, {0x1FB5, 0x1FB5}, {0x1FC5, 0x1FC5}, {0x1FD4, 0x1FD5}, {0x1FDC, 0x1FDC},
{0x1FF0, 0x1FF1}, {0x1FF5, 0x1FF5}, {0x1FFF, 0x1FFF}, {0x200B, 0x200F}, {0x202A, 0x202E}, {0x2060, 0x206F}, {0x2072, 0x2073}, {0x208F, 0x208F}, {0x209D, 0x209F}, {0x20C0, 0x20CF}, {0x20F1, 0x20FF},
{0x218C, 0x218F}, {0x2427, 0x243F}, {0x244B, 0x245F}, {0x2B74, 0x2B75}, {0x2B96, 0x2B96}, {0x2C2F, 0x2C2F}, {0x2C5F, 0x2C5F}, {0x2CF4, 0x2CF8}, {0x2D26, 0x2D26}, {0x2D28, 0x2D2C}, {0x2D2E, 0x2D2F},
{0x2D68, 0x2D6E}, {0x2D71, 0x2D7E}, {0x2D97, 0x2D9F}, {0x2DA7, 0x2DA7}, {0x2DAF, 0x2DAF}, {0x2DB7, 0x2DB7}, {0x2DBF, 0x2DBF}, {0x2DC7, 0x2DC7}, {0x2DCF, 0x2DCF}, {0x2DD7, 0x2DD7}, {0x2DDF, 0x2DDF},
{0x2E53, 0x2E7F}, {0x2E9A, 0x2E9A}, {0x2EF4, 0x2EFF}, {0x2FD6, 0x2FEF}, {0x2FFC, 0x2FFF}, {0x3040, 0x3040}, {0x3097, 0x3098}, {0x3100, 0x3104}, {0x3130, 0x3130}, {0x318F, 0x318F}, {0x31E4, 0x31EF},
{0x321F, 0x321F}, {0x9FFD, 0x9FFF}, {0xA48D, 0xA48F}, {0xA4C7, 0xA4CF}, {0xA62C, 0xA63F}, {0xA6F8, 0xA6FF}, {0xA7C0, 0xA7C1}, {0xA7CB, 0xA7F4}, {0xA82D, 0xA82F}, {0xA83A, 0xA83F}, {0xA878, 0xA87F},
{0xA8C6, 0xA8CD}, {0xA8DA, 0xA8DF}, {0xA954, 0xA95E}, {0xA97D, 0xA97F}, {0xA9CE, 0xA9CE}, {0xA9DA, 0xA9DD}, {0xA9FF, 0xA9FF}, {0xAA37, 0xAA3F}, {0xAA4E, 0xAA4F}, {0xAA5A, 0xAA5B}, {0xAAC3, 0xAADA},
{0xAAF7, 0xAB00}, {0xAB07, 0xAB08}, {0xAB0F, 0xAB10}, {0xAB17, 0xAB1F}, {0xAB27, 0xAB27}, {0xAB2F, 0xAB2F}, {0xAB6C, 0xAB6F}, {0xABEE, 0xABEF}, {0xABFA, 0xABFF}, {0xD7A4, 0xD7AF}, {0xD7C7, 0xD7CA},
{0xD7FC, 0xF8FF}, {0xFA6E, 0xFA6F}, {0xFADA, 0xFAFF}, {0xFB07, 0xFB12}, {0xFB18, 0xFB1C}, {0xFB37, 0xFB37}, {0xFB3D, 0xFB3D}, {0xFB3F, 0xFB3F}, {0xFB42, 0xFB42}, {0xFB45, 0xFB45}, {0xFBC2, 0xFBD2},
{0xFD40, 0xFD4F}, {0xFD90, 0xFD91}, {0xFDC8, 0xFDEF}, {0xFDFE, 0xFDFF}, {0xFE1A, 0xFE1F}, {0xFE53, 0xFE53}, {0xFE67, 0xFE67}, {0xFE6C, 0xFE6F}, {0xFE75, 0xFE75}, {0xFEFD, 0xFF00}, {0xFFBF, 0xFFC1},
{0xFFC8, 0xFFC9}, {0xFFD0, 0xFFD1}, {0xFFD8, 0xFFD9}, {0xFFDD, 0xFFDF}, {0xFFE7, 0xFFE7}, {0xFFEF, 0xFFFB}, {0xFFFE, 0xFFFF}, {0x1000C, 0x1000C}, {0x10027, 0x10027}, {0x1003B, 0x1003B},
{0x1003E, 0x1003E}, {0x1004E, 0x1004F}, {0x1005E, 0x1007F}, {0x100FB, 0x100FF}, {0x10103, 0x10106}, {0x10134, 0x10136}, {0x1018F, 0x1018F}, {0x1019D, 0x1019F}, {0x101A1, 0x101CF}, {0x101FE, 0x1027F},
{0x1029D, 0x1029F}, {0x102D1, 0x102DF}, {0x102FC, 0x102FF}, {0x10324, 0x1032C}, {0x1034B, 0x1034F}, {0x1037B, 0x1037F}, {0x1039E, 0x1039E}, {0x103C4, 0x103C7}, {0x103D6, 0x103FF}, {0x1049E, 0x1049F},
{0x104AA, 0x104AF}, {0x104D4, 0x104D7}, {0x104FC, 0x104FF}, {0x10528, 0x1052F}, {0x10564, 0x1056E}, {0x10570, 0x105FF}, {0x10737, 0x1073F}, {0x10756, 0x1075F}, {0x10768, 0x107FF}, {0x10806, 0x10807},
{0x10809, 0x10809}, {0x10836, 0x10836}, {0x10839, 0x1083B}, {0x1083D, 0x1083E}, {0x10856, 0x10856}, {0x1089F, 0x108A6}, {0x108B0, 0x108DF}, {0x108F3, 0x108F3}, {0x108F6, 0x108FA}, {0x1091C, 0x1091E},
{0x1093A, 0x1093E}, {0x10940, 0x1097F}, {0x109B8, 0x109BB}, {0x109D0, 0x109D1}, {0x10A04, 0x10A04}, {0x10A07, 0x10A0B}, {0x10A14, 0x10A14}, {0x10A18, 0x10A18}, {0x10A36, 0x10A37}, {0x10A3B, 0x10A3E},
{0x10A49, 0x10A4F}, {0x10A59, 0x10A5F}, {0x10AA0, 0x10ABF}, {0x10AE7, 0x10AEA}, {0x10AF7, 0x10AFF}, {0x10B36, 0x10B38}, {0x10B56, 0x10B57}, {0x10B73, 0x10B77}, {0x10B92, 0x10B98}, {0x10B9D, 0x10BA8},
{0x10BB0, 0x10BFF}, {0x10C49, 0x10C7F}, {0x10CB3, 0x10CBF}, {0x10CF3, 0x10CF9}, {0x10D28, 0x10D2F}, {0x10D3A, 0x10E5F}, {0x10E7F, 0x10E7F}, {0x10EAA, 0x10EAA}, {0x10EAE, 0x10EAF}, {0x10EB2, 0x10EFF},
{0x10F28, 0x10F2F}, {0x10F5A, 0x10FAF}, {0x10FCC, 0x10FDF}, {0x10FF7, 0x10FFF}, {0x1104E, 0x11051}, {0x11070, 0x1107E}, {0x110BD, 0x110BD}, {0x110C2, 0x110CF}, {0x110E9, 0x110EF}, {0x110FA, 0x110FF},
{0x11135, 0x11135}, {0x11148, 0x1114F}, {0x11177, 0x1117F}, {0x111E0, 0x111E0}, {0x111F5, 0x111FF}, {0x11212, 0x11212}, {0x1123F, 0x1127F}, {0x11287, 0x11287}, {0x11289, 0x11289}, {0x1128E, 0x1128E},
{0x1129E, 0x1129E}, {0x112AA, 0x112AF}, {0x112EB, 0x112EF}, {0x112FA, 0x112FF}, {0x11304, 0x11304}, {0x1130D, 0x1130E}, {0x11311, 0x11312}, {0x11329, 0x11329}, {0x11331, 0x11331}, {0x11334, 0x11334},
{0x1133A, 0x1133A}, {0x11345, 0x11346}, {0x11349, 0x1134A}, {0x1134E, 0x1134F}, {0x11351, 0x11356}, {0x11358, 0x1135C}, {0x11364, 0x11365}, {0x1136D, 0x1136F}, {0x11375, 0x113FF}, {0x1145C, 0x1145C},
{0x11462, 0x1147F}, {0x114C8, 0x114CF}, {0x114DA, 0x1157F}, {0x115B6, 0x115B7}, {0x115DE, 0x115FF}, {0x11645, 0x1164F}, {0x1165A, 0x1165F}, {0x1166D, 0x1167F}, {0x116B9, 0x116BF}, {0x116CA, 0x116FF},
{0x1171B, 0x1171C}, {0x1172C, 0x1172F}, {0x11740, 0x117FF}, {0x1183C, 0x1189F}, {0x118F3, 0x118FE}, {0x11907, 0x11908}, {0x1190A, 0x1190B}, {0x11914, 0x11914}, {0x11917, 0x11917}, {0x11936, 0x11936},
{0x11939, 0x1193A}, {0x11947, 0x1194F}, {0x1195A, 0x1199F}, {0x119A8, 0x119A9}, {0x119D8, 0x119D9}, {0x119E5, 0x119FF}, {0x11A48, 0x11A4F}, {0x11AA3, 0x11ABF}, {0x11AF9, 0x11BFF}, {0x11C09, 0x11C09},
{0x11C37, 0x11C37}, {0x11C46, 0x11C4F}, {0x11C6D, 0x11C6F}, {0x11C90, 0x11C91}, {0x11CA8, 0x11CA8}, {0x11CB7, 0x11CFF}, {0x11D07, 0x11D07}, {0x11D0A, 0x11D0A}, {0x11D37, 0x11D39}, {0x11D3B, 0x11D3B},
{0x11D3E, 0x11D3E}, {0x11D48, 0x11D4F}, {0x11D5A, 0x11D5F}, {0x11D66, 0x11D66}, {0x11D69, 0x11D69}, {0x11D8F, 0x11D8F}, {0x11D92, 0x11D92}, {0x11D99, 0x11D9F}, {0x11DAA, 0x11EDF}, {0x11EF9, 0x11FAF},
{0x11FB1, 0x11FBF}, {0x11FF2, 0x11FFE}, {0x1239A, 0x123FF}, {0x1246F, 0x1246F}, {0x12475, 0x1247F}, {0x12544, 0x12FFF}, {0x1342F, 0x143FF}, {0x14647, 0x167FF}, {0x16A39, 0x16A3F}, {0x16A5F, 0x16A5F},
{0x16A6A, 0x16A6D}, {0x16A70, 0x16ACF}, {0x16AEE, 0x16AEF}, {0x16AF6, 0x16AFF}, {0x16B46, 0x16B4F}, {0x16B5A, 0x16B5A}, {0x16B62, 0x16B62}, {0x16B78, 0x16B7C}, {0x16B90, 0x16E3F}, {0x16E9B, 0x16EFF},
{0x16F4B, 0x16F4E}, {0x16F88, 0x16F8E}, {0x16FA0, 0x16FDF}, {0x16FE5, 0x16FEF}, {0x16FF2, 0x16FFF}, {0x187F8, 0x187FF}, {0x18CD6, 0x18CFF}, {0x18D09, 0x1AFFF}, {0x1B11F, 0x1B14F}, {0x1B153, 0x1B163},
{0x1B168, 0x1B16F}, {0x1B2FC, 0x1BBFF}, {0x1BC6B, 0x1BC6F}, {0x1BC7D, 0x1BC7F}, {0x1BC89, 0x1BC8F}, {0x1BC9A, 0x1BC9B}, {0x1BCA0, 0x1CFFF}, {0x1D0F6, 0x1D0FF}, {0x1D127, 0x1D128}, {0x1D173, 0x1D17A},
{0x1D1E9, 0x1D1FF}, {0x1D246, 0x1D2DF}, {0x1D2F4, 0x1D2FF}, {0x1D357, 0x1D35F}, {0x1D379, 0x1D3FF}, {0x1D455, 0x1D455}, {0x1D49D, 0x1D49D}, {0x1D4A0, 0x1D4A1}, {0x1D4A3, 0x1D4A4}, {0x1D4A7, 0x1D4A8},
{0x1D4AD, 0x1D4AD}, {0x1D4BA, 0x1D4BA}, {0x1D4BC, 0x1D4BC}, {0x1D4C4, 0x1D4C4}, {0x1D506, 0x1D506}, {0x1D50B, 0x1D50C}, {0x1D515, 0x1D515}, {0x1D51D, 0x1D51D}, {0x1D53A, 0x1D53A}, {0x1D53F, 0x1D53F},
{0x1D545, 0x1D545}, {0x1D547, 0x1D549}, {0x1D551, 0x1D551}, {0x1D6A6, 0x1D6A7}, {0x1D7CC, 0x1D7CD}, {0x1DA8C, 0x1DA9A}, {0x1DAA0, 0x1DAA0}, {0x1DAB0, 0x1DFFF}, {0x1E007, 0x1E007}, {0x1E019, 0x1E01A},
{0x1E022, 0x1E022}, {0x1E025, 0x1E025}, {0x1E02B, 0x1E0FF}, {0x1E12D, 0x1E12F}, {0x1E13E, 0x1E13F}, {0x1E14A, 0x1E14D}, {0x1E150, 0x1E2BF}, {0x1E2FA, 0x1E2FE}, {0x1E300, 0x1E7FF}, {0x1E8C5, 0x1E8C6},
{0x1E8D7, 0x1E8FF}, {0x1E94C, 0x1E94F}, {0x1E95A, 0x1E95D}, {0x1E960, 0x1EC70}, {0x1ECB5, 0x1ED00}, {0x1ED3E, 0x1EDFF}, {0x1EE04, 0x1EE04}, {0x1EE20, 0x1EE20}, {0x1EE23, 0x1EE23}, {0x1EE25, 0x1EE26},
{0x1EE28, 0x1EE28}, {0x1EE33, 0x1EE33}, {0x1EE38, 0x1EE38}, {0x1EE3A, 0x1EE3A}, {0x1EE3C, 0x1EE41}, {0x1EE43, 0x1EE46}, {0x1EE48, 0x1EE48}, {0x1EE4A, 0x1EE4A}, {0x1EE4C, 0x1EE4C}, {0x1EE50, 0x1EE50},
{0x1EE53, 0x1EE53}, {0x1EE55, 0x1EE56}, {0x1EE58, 0x1EE58}, {0x1EE5A, 0x1EE5A}, {0x1EE5C, 0x1EE5C}, {0x1EE5E, 0x1EE5E}, {0x1EE60, 0x1EE60}, {0x1EE63, 0x1EE63}, {0x1EE65, 0x1EE66}, {0x1EE6B, 0x1EE6B},
{0x1EE73, 0x1EE73}, {0x1EE78, 0x1EE78}, {0x1EE7D, 0x1EE7D}, {0x1EE7F, 0x1EE7F}, {0x1EE8A, 0x1EE8A}, {0x1EE9C, 0x1EEA0}, {0x1EEA4, 0x1EEA4}, {0x1EEAA, 0x1EEAA}, {0x1EEBC, 0x1EEEF}, {0x1EEF2, 0x1EFFF},
{0x1F02C, 0x1F02F}, {0x1F094, 0x1F09F}, {0x1F0AF, 0x1F0B0}, {0x1F0C0, 0x1F0C0}, {0x1F0D0, 0x1F0D0}, {0x1F0F6, 0x1F0FF}, {0x1F1AE, 0x1F1E5}, {0x1F203, 0x1F20F}, {0x1F23C, 0x1F23F}, {0x1F249, 0x1F24F},
{0x1F252, 0x1F25F}, {0x1F266, 0x1F2FF}, {0x1F6D8, 0x1F6DF}, {0x1F6ED, 0x1F6EF}, {0x1F6FD, 0x1F6FF}, {0x1F774, 0x1F77F}, {0x1F7D9, 0x1F7DF}, {0x1F7EC, 0x1F7FF}, {0x1F80C, 0x1F80F}, {0x1F848, 0x1F84F},
{0x1F85A, 0x1F85F}, {0x1F888, 0x1F88F}, {0x1F8AE, 0x1F8AF}, {0x1F8B2, 0x1F8FF}, {0x1F979, 0x1F979}, {0x1F9CC, 0x1F9CC}, {0x1FA54, 0x1FA5F}, {0x1FA6E, 0x1FA6F}, {0x1FA75, 0x1FA77}, {0x1FA7B, 0x1FA7F},
{0x1FA87, 0x1FA8F}, {0x1FAA9, 0x1FAAF}, {0x1FAB7, 0x1FABF}, {0x1FAC3, 0x1FACF}, {0x1FAD7, 0x1FAFF}, {0x1FB93, 0x1FB93}, {0x1FBCB, 0x1FBEF}, {0x1FBFA, 0x1FFFF}, {0x2A6DE, 0x2A6FF}, {0x2B735, 0x2B73F},
{0x2B81E, 0x2B81F}, {0x2CEA2, 0x2CEAF}, {0x2EBE1, 0x2F7FF}, {0x2FA1E, 0x2FFFF}, {0x3134B, 0xE00FF}, {0xE01F0, 0x10FFFF},
};
static std::string codepoint_to_utf8(uint32_t cp) {
std::string result;
if (/* 0x00 <= cp && */ cp <= 0x7f) {
result.push_back(cp);
}
else if (0x80 <= cp && cp <= 0x7ff) {
result.push_back(0xc0 | ((cp >> 6) & 0x1f));
result.push_back(0x80 | (cp & 0x3f));
}
else if (0x800 <= cp && cp <= 0xffff) {
result.push_back(0xe0 | ((cp >> 12) & 0x0f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
}
else if (0x10000 <= cp && cp <= 0x10ffff) {
result.push_back(0xf0 | ((cp >> 18) & 0x07));
result.push_back(0x80 | ((cp >> 12) & 0x3f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
}
else {
throw std::invalid_argument("invalid codepoint");
}
return result;
}
static std::string codepoints_to_utf8(const std::vector<uint32_t> & cps) {
std::string result;
for (size_t i = 0; i < cps.size(); ++i) {
result.append(codepoint_to_utf8(cps[i]));
}
return result;
}
static uint32_t codepoint_from_utf8(const std::string & utf8, size_t & offset) {
assert(offset < utf8.size());
if (!(utf8[offset + 0] & 0x80)) {
auto result = utf8[offset + 0];
offset += 1;
return result;
}
else if (!(utf8[offset + 0] & 0x40)) {
throw std::invalid_argument("invalid character");
}
else if (!(utf8[offset + 0] & 0x20)) {
if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80))
throw std::invalid_argument("invalid character");
auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
offset += 2;
return result;
}
else if (!(utf8[offset + 0] & 0x10)) {
if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80))
throw std::invalid_argument("invalid character");
auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
offset += 3;
return result;
}
else if (!(utf8[offset + 0] & 0x08)) {
if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80))
throw std::invalid_argument("invalid character");
auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
offset += 4;
return result;
}
throw std::invalid_argument("invalid string");
}
static std::vector<uint32_t> codepoints_from_utf8(const std::string & utf8) {
std::vector<uint32_t> result;
size_t offset = 0;
while (offset < utf8.size()) {
result.push_back(codepoint_from_utf8(utf8, offset));
}
return result;
}
static std::vector<uint16_t> codepoint_to_utf16(uint32_t cp) {
std::vector<uint16_t> result;
if (/* 0x0000 <= cp && */ cp <= 0xffff) {
result.emplace_back(cp);
}
else if (0x10000 <= cp && cp <= 0x10ffff) {
result.emplace_back(0xd800 | ((cp - 0x10000) >> 10));
result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff));
}
else {
throw std::invalid_argument("invalid codepoint");
}
return result;
}
static std::vector<uint16_t> codepoints_to_utf16(const std::vector<uint32_t> & cps) {
std::vector<uint16_t> result;
for (size_t i = 0; i < cps.size(); ++i) {
auto temp = codepoint_to_utf16(cps[i]);
result.insert(result.end(), temp.begin(), temp.end());
}
return result;
}
static uint32_t codepoint_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
assert(offset < utf16.size());
if (((utf16[0] >> 10) << 10) != 0xd800) {
auto result = utf16[offset + 0];
offset += 1;
return result;
}
else {
if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00))
throw std::invalid_argument("invalid character");
auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
offset += 2;
return result;
}
throw std::invalid_argument("invalid string");
}
static std::vector<uint32_t> codepoints_from_utf16(const std::vector<uint16_t> & utf16) {
std::vector<uint32_t> result;
size_t offset = 0;
while (offset < utf16.size())
result.push_back(codepoint_from_utf16(utf16, offset));
return result;
}
#define CODEPOINT_TYPE_UNIDENTIFIED 0
#define CODEPOINT_TYPE_DIGIT 1
#define CODEPOINT_TYPE_LETTER 2
#define CODEPOINT_TYPE_WHITESPACE 3
#define CODEPOINT_TYPE_ACCENT_MARK 4
#define CODEPOINT_TYPE_PUNCTUATION 5
#define CODEPOINT_TYPE_SYMBOL 6
#define CODEPOINT_TYPE_CONTROL 7
#define CODEPOINT_TYPE_NUMBER 1
#define CODEPOINT_TYPE_LETTER 2
#define CODEPOINT_TYPE_SEPARATOR 3
#define CODEPOINT_TYPE_ACCENT_MARK 4
#define CODEPOINT_TYPE_PUNCTUATION 5
#define CODEPOINT_TYPE_SYMBOL 6
#define CODEPOINT_TYPE_CONTROL 7
static std::unordered_map<uint32_t, int> codepoint_type_map() {
std::unordered_map<uint32_t, int> codepoint_types;
for (auto p : digit_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_DIGIT;
}
for(auto p : letter_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_LETTER;
}
for(auto p : whitespace_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_WHITESPACE;
}
for(auto p : accent_mark_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_ACCENT_MARK;
}
for(auto p : punctuation_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_PUNCTUATION;
}
for (auto p : symbol_ranges) {
for (auto i = p.first; i <= p.second; ++i)
codepoint_types[i] = CODEPOINT_TYPE_SYMBOL;
}
for(auto p : control_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_CONTROL;
}
return codepoint_types;
}
std::string unicode_cpt_to_utf8(uint32_t cp);
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8);
static int codepoint_type(uint32_t cp) {
static std::unordered_map<uint32_t, int> codepoint_types = codepoint_type_map();
return codepoint_types[cp];
}
std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts);
static int codepoint_type(const std::string & utf8) {
if (utf8.length() == 0)
return CODEPOINT_TYPE_UNIDENTIFIED;
size_t offset = 0;
return codepoint_type(codepoint_from_utf8(utf8, offset));
}
int unicode_cpt_type(uint32_t cp);
int unicode_cpt_type(const std::string & utf8);
static std::unordered_map<uint8_t, std::string> bytes_to_unicode_map_bpe() {
std::unordered_map<uint8_t, std::string> map;
for (int ch = u'!'; ch <= u'~'; ++ch) {
assert(0 <= ch && ch < 256);
map[ch] = codepoint_to_utf8(ch);
}
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
assert(0 <= ch && ch < 256);
map[ch] = codepoint_to_utf8(ch);
}
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
assert(0 <= ch && ch < 256);
map[ch] = codepoint_to_utf8(ch);
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(ch) == map.end()) {
map[ch] = codepoint_to_utf8(256 + n);
++n;
}
}
return map;
}
bool unicode_cpt_is_whitespace(uint32_t cp);
static std::string bytes_to_unicode_bpe(uint8_t byte) {
static std::unordered_map<uint8_t, std::string> map = bytes_to_unicode_map_bpe();
return map.at(byte);
}
std::string unicode_byte_to_utf8(uint8_t byte);
uint8_t unicode_utf8_to_byte(const std::string & utf8);
static std::unordered_map<std::string, uint8_t> unicode_to_bytes_map_bpe() {
std::unordered_map<std::string, uint8_t> map;
for (int ch = u'!'; ch <= u'~'; ++ch) {
assert(0 <= ch && ch < 256);
map[codepoint_to_utf8(ch)] = ch;
}
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
assert(0 <= ch && ch < 256);
map[codepoint_to_utf8(ch)] = ch;
}
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
assert(0 <= ch && ch < 256);
map[codepoint_to_utf8(ch)] = ch;
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(codepoint_to_utf8(ch)) == map.end()) {
map[codepoint_to_utf8(256 + n)] = ch;
++n;
}
}
return map;
}
static uint8_t unicode_to_bytes_bpe(const std::string & utf8) {
static std::unordered_map<std::string, uint8_t> map = unicode_to_bytes_map_bpe();
return map.at(utf8);
}
char32_t unicode_tolower(char32_t cp);
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs);

View File

@ -29,18 +29,6 @@ std::string g_status_forced = "";
std::vector<float> g_pcmf32;
std::string to_timestamp(int64_t t) {
int64_t sec = t/100;
int64_t msec = t - sec*100;
int64_t min = sec/60;
sec = sec - min*60;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
return std::string(buf);
}
void talk_set_status(const std::string & status) {
std::lock_guard<std::mutex> lock(g_mutex);
g_status = status;

View File

@ -155,33 +155,33 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd); // ln_f_g
ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd); // ln_f_b
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
ctx_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
ctx_size += n_vocab*ggml_row_size(wtype, n_embd); // wte
ctx_size += n_ctx*ggml_row_size(GGML_TYPE_F32, n_embd); // wpe
ctx_size += n_vocab*ggml_row_size(wtype, n_embd); // lm_head
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_1_g
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_1_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_2_g
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_2_b
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size += n_layer*(ggml_row_size(wtype, 3*n_embd*n_embd)); // c_attn_attn_w
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 3*n_embd)); // c_attn_attn_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer*(ggml_row_size(wtype, n_embd*n_embd)); // c_attn_proj_w
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // c_attn_proj_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd)); // c_mlp_fc_w
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 4*n_embd)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd)); // c_mlp_proj_w
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // c_mlp_proj_b
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd); // memory_k
ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd); // memory_v
ctx_size += (6 + 12*n_layer)*256; // object overhead
@ -524,8 +524,7 @@ bool gpt2_eval(
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
1.0f/sqrt(float(n_embd)/n_head));
// KQ_masked = mask_past(KQ_scaled)
// [n_past + N, N, 12]

View File

@ -1 +1,2 @@
audio.mp3
to_speak.txt

View File

@ -11,9 +11,13 @@ Web version: [examples/talk.wasm](/examples/talk.wasm)
The `talk` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash
# Install SDL2 on Linux
# Install SDL2
# On Debian based linux distributions:
sudo apt-get install libsdl2-dev
# On Fedora Linux:
sudo dnf install SDL2 SDL2-devel
# Install SDL2 on Mac OS
brew install sdl2

View File

@ -1,20 +1,80 @@
import sys
import importlib.util
import argparse
import textwrap
if importlib.util.find_spec("elevenlabs") is None:
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
parser = argparse.ArgumentParser(add_help=False,
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("-q", "--quick", action="store_true",
help="skip checking the required library")
modes = parser.add_argument_group("action")
modes.add_argument("inputfile", metavar="TEXTFILE",
nargs='?', type=argparse.FileType(), default=sys.stdin,
help="read the text file (default: stdin)")
modes.add_argument("-l", "--list", action="store_true",
help="show the list of voices and exit")
modes.add_argument("-h", "--help", action="help",
help="show this help and exit")
selopts = parser.add_argument_group("voice selection")
selmodes = selopts.add_mutually_exclusive_group()
selmodes.add_argument("-n", "--name",
default="Arnold",
help="get a voice object by name (default: Arnold)")
selmodes.add_argument("-v", "--voice", type=int, metavar="NUMBER",
help="get a voice object by number (see --list)")
selopts.add_argument("-f", "--filter", action="append", metavar="KEY=VAL",
default=["use case=narration"],
help=textwrap.dedent('''\
filter voices by labels (default: "use case=narration")
this option can be used multiple times
filtering will be disabled if the first -f has no "=" (e.g. -f "any")
'''))
outmodes = parser.add_argument_group("output")
outgroup = outmodes.add_mutually_exclusive_group()
outgroup.add_argument("-s", "--save", metavar="FILE",
default="audio.mp3",
help="save the TTS to a file (default: audio.mp3)")
outgroup.add_argument("-p", "--play", action="store_true",
help="play the TTS with ffplay")
args = parser.parse_args()
if not args.quick:
import importlib.util
if importlib.util.find_spec("elevenlabs") is None:
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
sys.exit()
from elevenlabs import voices, generate, play, save
if args.filter and "=" in args.filter[0]:
voicelist = voices()
for f in args.filter:
label, value = f.split("=")
voicelist = filter(lambda x: x.labels.get(label) == value, voicelist)
voicelist = list(voicelist)
else:
voicelist = list(voices())
if args.list:
for i, v in enumerate(voicelist):
print(str(i) + ": " + v.name + " " + str(v.labels))
sys.exit()
from elevenlabs import generate, play, save
if args.voice:
voice = voicelist[args.voice % len(voicelist)]
else:
voice = args.name
# if -n should consult -f, use the following
#voice = next(x for x in voicelist if x.name == args.name)
# Get a Voice object, by name or UUID
voice = "Arnold" #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
# Generate the TTS
audio = generate(
text=str(sys.argv[2:]),
voice=voice
text=str(args.inputfile.read()),
voice=voice
)
# Save the TTS to a file
save(audio, "audio.mp3")
if args.play:
play(audio)
else:
save(audio, args.save)

View File

@ -155,33 +155,33 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd); // ln_f_g
ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd); // ln_f_b
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
ctx_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
ctx_size += n_vocab*ggml_row_size(wtype, n_embd); // wte
ctx_size += n_ctx*ggml_row_size(GGML_TYPE_F32, n_embd); // wpe
ctx_size += n_vocab*ggml_row_size(wtype, n_embd); // lm_head
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_1_g
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_1_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_2_g
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_2_b
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size += n_layer*(ggml_row_size(wtype, 3*n_embd*n_embd)); // c_attn_attn_w
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 3*n_embd)); // c_attn_attn_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer*(ggml_row_size(wtype, n_embd*n_embd)); // c_attn_proj_w
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // c_attn_proj_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd)); // c_mlp_fc_w
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 4*n_embd)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd)); // c_mlp_proj_w
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // c_mlp_proj_b
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd); // memory_k
ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd); // memory_v
ctx_size += (6 + 12*n_layer)*256; // object overhead
@ -525,8 +525,7 @@ bool gpt2_eval(
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
1.0f/sqrt(float(n_embd)/n_head));
// KQ_masked = mask_past(KQ_scaled)
// [n_past + N, N, 12]

View File

@ -1,24 +1,40 @@
#!/bin/bash
# Usage:
# speak.sh <voice_id> <text-to-speak>
# speak <voice_id> <textfile>
# espeak
# Mac OS: brew install espeak
# Linux: apt-get install espeak
#
#espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
function installed() { command -v $1 >/dev/null 2>&1; }
# Mac OS "say" command
say "$2"
if installed espeak; then
espeak -v en-us+m$1 -s 225 -p 50 -a 200 -g 5 -k 5 -f $2
elif installed piper && installed aplay; then
cat $2 | piper --model ~/en_US-lessac-medium.onnx --output-raw | aplay -q -r 22050 -f S16_LE -t raw -
# for Mac
elif installed say; then
say -f $2
# Eleven Labs
# To use it, install the elevenlabs module from pip (pip install elevenlabs)
# It's possible to use the API for free with limited number of characters. To increase this limit register to https://beta.elevenlabs.io to get an api key and paste it after 'ELEVEN_API_KEY='
#Keep the line commented to use the free version without api key
#
#export ELEVEN_API_KEY=your_api_key
#wd=$(dirname $0)
#script=$wd/eleven-labs.py
#python3 $script $1 "$2"
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3
elif installed python3 && \
python3 -c 'import importlib.util; exit(not importlib.util.find_spec("elevenlabs"))' && \
installed ffplay; then
# It's possible to use the API for free with limited number of characters.
# To increase this limit register to https://beta.elevenlabs.io to get an api key
# and paste it after 'ELEVEN_API_KEY='
# Keep the line commented to use the free version without api key
#export ELEVEN_API_KEY=your_api_key
wd=$(dirname $0)
script=$wd/eleven-labs.py
python3 $script -q -p -v $1 $2 >/dev/null 2>&1
# Uncomment to keep the audio file
#python3 $script -q -s ./audio.mp3 -v $1 $2 >/dev/null 2>&1
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3 >/dev/null 2>&1
else
echo 'Install espeak ("brew install espeak" or "apt-get install espeak"),'
echo 'piper ("pip install piper-tts" or https://github.com/rhasspy/piper) with aplay,'
echo 'or elevenlabs ("pip install elevenlabs") with ffplay.'
echo '(export ELEVEN_API_KEY if you have an api key from https://beta.elevenlabs.io)'
fi

View File

@ -1,12 +1,14 @@
# Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope CurrentUser
param(
# voice options are David or Zira
[Parameter(Mandatory=$true)][string]$voice,
[Parameter(Mandatory=$true)][string]$text
[Parameter(Mandatory=$true)][int]$voicenum,
[Parameter(Mandatory=$true)][string]$textfile
)
Add-Type -AssemblyName System.Speech;
$speak = New-Object System.Speech.Synthesis.SpeechSynthesizer;
$speak.SelectVoice("Microsoft $voice Desktop");
$voiceoptions = $speak.GetInstalledVoices("en-US");
$voice = $voiceoptions[$voicenum % $voiceoptions.count];
$speak.SelectVoice($voice.VoiceInfo.Name);
$speak.Rate="0";
$text = Get-Content -Path $textfile;
$speak.Speak($text);

View File

@ -32,12 +32,14 @@ struct whisper_params {
bool print_energy = false;
bool no_timestamps = true;
bool use_gpu = true;
bool flash_attn = false;
std::string person = "Santa";
std::string language = "en";
std::string model_wsp = "models/ggml-base.en.bin";
std::string model_gpt = "models/ggml-gpt-2-117M.bin";
std::string speak = "./examples/talk/speak";
std::string speak_file= "./examples/talk/to_speak.txt";
std::string fname_out;
};
@ -63,11 +65,13 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
else if (arg == "-mg" || arg == "--model-gpt") { params.model_gpt = argv[++i]; }
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
else if (arg == "-sf" || arg == "--speak_file") { params.speak_file = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
@ -97,11 +101,13 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
fprintf(stderr, " -mg FILE, --model-gpt [%-7s] gpt model file\n", params.model_gpt.c_str());
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
fprintf(stderr, " -sf FILE, --speak_file [%-7s] file to pass to TTS\n", params.speak_file.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}
@ -184,8 +190,10 @@ int main(int argc, char ** argv) {
}
// whisper init
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);
@ -316,7 +324,7 @@ int main(int argc, char ** argv) {
std::string prompt = ::replace(::replace(k_prompt, "{0}", params.person), "{1}", prompt_base);
text_to_speak = gpt2_gen_text(ctx_gpt, prompt.c_str(), params.max_tokens);
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
//text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of('\n'));
// remove first 2 lines of base prompt
@ -354,10 +362,7 @@ int main(int argc, char ** argv) {
gpt2_set_prompt(ctx_gpt, prompt_base.c_str());
text_to_speak = ::replace(text_to_speak, params.person + ": ", "");
int ret = system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
if (ret != 0) {
fprintf(stderr, "%s: system() failed!\n", __func__);
}
speak_with_file(params.speak, text_to_speak, params.speak_file, voice_id);
audio.clear();

View File

@ -0,0 +1,10 @@
add_subdirectory(libwchess)
set_target_properties(wchess-core PROPERTIES FOLDER "libs")
if (EMSCRIPTEN)
add_subdirectory(wchess.wasm)
set_target_properties(wchess.wasm PROPERTIES FOLDER "libs")
else()
add_subdirectory(wchess.cmd)
set_target_properties(wchess PROPERTIES FOLDER "libs")
endif()

45
examples/wchess/README.md Normal file
View File

@ -0,0 +1,45 @@
# wchess
Voice-controlled chess using Whisper
Online demo: https://whisper.ggerganov.com/wchess/
https://github.com/ggerganov/whisper.cpp/assets/1991296/c2b2f03c-9684-49f3-8106-357d2d4e67fa
## Command-line tool
```bash
mkdir build && cd build
cmake -DWHISPER_SDL2=1 ..
make -j
./bin/wchess -m ../models/ggml-base.en.bin
Move: start
a b c d e f g h
r n b q k b n r 8
p p p p p p p p 7
. * . * . * . * 6
* . * . * . * . 5
. * . * . * . * 4
* . * . * . * . 3
P P P P P P P P 2
R N B Q K B N R 1
White's turn
[(l)isten/(p)ause/(q)uit]:
```
## TODO
- Fix bugs in the chess moves logic
- Improve web-browser audio capture - sometimes it does not record the voice properly
- Add support for more languages by making the generated grammar string multilingual
- Explore ways to improve the dynamic grammar to be narrower
PRs welcome!
## Thanks
- [chessboardjs](https://chessboardjs.com) for the neat chessboard JS library used in this demo

View File

@ -0,0 +1,19 @@
add_library(wchess-core STATIC
WChess.cpp
WChess.h
Chessboard.cpp
Chessboard.h
)
target_link_libraries(wchess-core
PUBLIC
whisper
common
)
target_include_directories(wchess-core
PUBLIC
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>"
)
# add_executable(test-chessboard test-chessboard.cpp Chessboard.cpp)

View File

@ -0,0 +1,803 @@
#include "Chessboard.h"
#include <array>
#include <vector>
#include <algorithm>
#include <cstring>
#include <set>
#include <list>
#include <chrono>
namespace {
constexpr std::array<const char*, 64> positions = {
"a1", "b1", "c1", "d1", "e1", "f1", "g1", "h1",
"a2", "b2", "c2", "d2", "e2", "f2", "g2", "h2",
"a3", "b3", "c3", "d3", "e3", "f3", "g3", "h3",
"a4", "b4", "c4", "d4", "e4", "f4", "g4", "h4",
"a5", "b5", "c5", "d5", "e5", "f5", "g5", "h5",
"a6", "b6", "c6", "d6", "e6", "f6", "g6", "h6",
"a7", "b7", "c7", "d7", "e7", "f7", "g7", "h7",
"a8", "b8", "c8", "d8", "e8", "f8", "g8", "h8",
};
constexpr char INVALID_POS = positions.size();
constexpr int R = 0; // rank index
constexpr int F = 1; // file index
#define FILE (c[F] - '1')
#define RANK (c[R] - 'a')
constexpr char operator ""_P(const char * c, size_t size) {
return size < 2 || RANK < 0 || RANK > 7 ||
FILE < 0 || FILE > 7 ? INVALID_POS : FILE * 8 + RANK;
}
#undef FILE
#undef RANK
struct sview {
const char * ptr = nullptr;
size_t size = 0;
sview() = default;
sview(const char * p, size_t s) : ptr(p), size(s) {}
sview(const std::string& s) : ptr(s.data()), size(s.size()) {}
size_t find(char del, size_t pos) {
while (pos < size && ptr[pos] != del) ++pos;
return pos < size ? pos : std::string::npos;
}
};
std::vector<sview> split(sview str, char del) {
std::vector<sview> res;
size_t cur = 0;
size_t last = 0;
while (cur != std::string::npos) {
if (str.ptr[last] == ' ') {
++last;
continue;
}
cur = str.find(del, last);
size_t len = cur == std::string::npos ? str.size - last : cur - last;
res.emplace_back(str.ptr + last, len);
last = cur + 1;
}
return res;
}
char strToPos(sview str) {
return operator ""_P(str.ptr, str.size);
}
constexpr std::array<const char*, 6> pieceNames = {
"pawn", "knight", "bishop", "rook", "queen", "king",
};
static constexpr std::array<char, 6> blackShort = {
'p', 'n', 'b', 'r', 'q', 'k',
};
static constexpr std::array<char, 6> whiteShort = {
'P', 'N', 'B', 'R', 'Q', 'K',
};
char strToType(sview str) {
auto it = std::find_if(pieceNames.begin(), pieceNames.end(), [str] (const char* name) { return strncmp(name, str.ptr, str.size) == 0; });
return it != pieceNames.end() ? it - pieceNames.begin() : pieceNames.size();
}
// directions
using Direction = std::array<char, 2>;
constexpr Direction N = {(char) 0, (char) 1};
constexpr Direction NNE = {(char) 1, (char) 2};
constexpr Direction NE = {(char) 1, (char) 1};
constexpr Direction ENE = {(char) 2, (char) 1};
constexpr Direction E = {(char) 1, (char) 0};
constexpr Direction ESE = {(char) 2, (char) -1};
constexpr Direction SE = {(char) 1, (char) -1};
constexpr Direction SSE = {(char) 1, (char) -2};
constexpr Direction S = {(char) 0, (char) -1};
constexpr Direction SSW = {(char) -1, (char) -2};
constexpr Direction SW = {(char) -1, (char) -1};
constexpr Direction WSW = {(char) -2, (char) -1};
constexpr Direction W = {(char) -1, (char) 0};
constexpr Direction WNW = {(char) -2, (char) 1};
constexpr Direction NW = {(char) -1, (char) 1};
constexpr Direction NNW = {(char) -1, (char) 2};
char makeStep(char pos, const Direction& d) {
char next[2] = { char(positions[pos][R] + d[R]) , char(positions[pos][F] + d[F]) };
return strToPos(sview{next, sizeof(next)});
}
template<class Modifier>
char traverse(char pos, const Direction& d, const Modifier& m, int count = 8) {
while (--count >= 0) {
pos = makeStep(pos, d);
if (pos == INVALID_POS || m(pos)) break;
}
return pos;
}
Direction normalize(const Direction& distance) {
//return {char((distance[R] > 0) - (distance[R] < 0)), char((distance[F] > 0) - (distance[F] < 0))};
const int drp = distance[R] > 0 ? 1 : 0;
const int drn = distance[R] < 0 ? 1 : 0;
const int dfp = distance[F] > 0 ? 1 : 0;
const int dfn = distance[F] < 0 ? 1 : 0;
return {char(drp - drn), char(dfp - dfn)};
}
struct Pin {
Direction d;
Piece* pinner;
Piece* pinned;
};
using Pins = std::list<Pin>;
using Board = std::array<Piece*, 64>;
std::vector<Direction> filter(const Direction& pin, std::initializer_list<Direction> directions) {
if (pin[R] == 0 && pin[F] == 0) return directions;
std::vector<Direction> result;
for (auto& d : directions) {
if ((d[R] == pin[R] || d[R] == -pin[R]) && (d[F] == pin[F] || d[F] == -pin[F])) result.push_back(d);
}
return result;
}
}
class Piece {
public:
enum Types : char {
Pawn,
Knight,
Bishop,
Rook,
Queen,
King,
//
NUM_PIECES
};
enum Colors : char {
White,
Black,
};
const char* name() const;
char initial() const;
Types type() const { return m_type; }
Colors color() const { return m_color; }
char pos() const { return m_pos; }
void setPos(char pos) {
m_pos = pos;
invalidate();
}
const char* coord() const;
const std::set<char>& allowed() const { return m_allowed; }
bool canReach(char pos) const;
virtual bool movePattern(char pos) const = 0;
void take();
virtual void reinit(const State& state) = 0;
void invalidate();
protected:
Piece(Types type, Colors color, char pos, std::set<char> allowed)
: m_type(type), m_color(color), m_pos(pos), m_allowed(std::move(allowed)) {}
Piece(const Piece&) = delete;
~Piece() = default;
const Types m_type;
const Colors m_color;
char m_pos;
std::set<char> m_allowed;
bool m_update = false;
};
struct Pawn : public Piece {
Pawn(Colors color, char pos, std::set<char> next) : Piece(Types::Pawn, color, pos, std::move(next)) {}
bool is_first_move() const {
return m_color ? coord()[F] == '7' : coord()[F] == '2';
}
virtual bool movePattern(char pos) const override {
if (m_pos == INVALID_POS) return false;
auto cur = coord();
auto next = positions[pos];
Direction distance = {char(next[R] - cur[R]), char(next[F] - cur[F])};
char forward = m_color ? -1 : 1;
return (forward == distance[F] && distance[R] * distance[R] <= 1)
|| (is_first_move() && 2 * forward == distance[F] && distance[R] == 0);
}
virtual void reinit(const State& state) override;
};
struct Knight : public Piece {
Knight(Colors color, char pos, std::set<char> next) : Piece(Types::Knight, color, pos, std::move(next)) {}
virtual bool movePattern(char pos) const override {
if (m_pos == INVALID_POS) return false;
auto cur = coord();
auto next = positions[pos];
Direction diff = {char(next[R] - cur[R]), char(next[F] - cur[F])};
return diff[R]*diff[R] + diff[F]*diff[F] == 5;
}
virtual void reinit(const State& state) override;
};
struct Bishop : public Piece {
Bishop(Colors color, char pos) : Piece(Types::Bishop, color, pos, {}) {}
virtual bool movePattern(char pos) const override {
if (m_pos == INVALID_POS) return false;
auto cur = coord();
auto next = positions[pos];
return cur[R] - cur[F] == next[R] - next[F] || cur[R] + cur[F] == next[R] + next[F];
}
virtual void reinit(const State& state) override;
};
struct Rook : public Piece {
Rook(Colors color, char pos) : Piece(Types::Rook, color, pos, {}) {}
virtual bool movePattern(char pos) const override {
if (m_pos == INVALID_POS) return false;
auto cur = coord();
auto next = positions[pos];
return cur[R] == next[R] || cur[F] == next[F];
}
virtual void reinit(const State& state) override;
};
struct Queen : public Piece {
Queen(Colors color, char pos) : Piece(Types::Queen, color, pos, {}) {}
virtual bool movePattern(char pos) const override {
if (m_pos == INVALID_POS) return false;
auto cur = coord();
auto next = positions[pos];
return cur[R] == next[R] || cur[F] == next[F] || cur[R] - cur[F] == next[R] - next[F] || cur[R] + cur[F] == next[R] + next[F];
}
virtual void reinit(const State& state) override;
};
struct King : public Piece {
King(Colors color, char pos) : Piece(Types::King, color, pos, {}) {}
virtual bool movePattern(char pos) const override {
if (m_pos == INVALID_POS) return false;
auto cur = coord();
auto next = positions[pos];
Direction diff = {char(next[R] - cur[R]), char(next[F] - cur[F])};
return diff[R]*diff[R] + diff[F]*diff[F] <= 2;
}
virtual void reinit(const State& state) override;
};
struct PieceSet {
Piece* begin() { return &p1; }
Piece* end() { return &r2 + 1; }
const Piece* begin() const { return &p1; }
const Piece* end() const { return &r2 + 1; }
Piece& operator[](int i) { return *(begin() + i); }
const Piece& operator[](int i) const { return *(begin() + i); }
Pawn p1;
Pawn p2;
Pawn p3;
Pawn p4;
Pawn p5;
Pawn p6;
Pawn p7;
Pawn p8;
Rook r1;
Knight n1;
Bishop b1;
Queen q;
King k;
Bishop b2;
Knight n2;
Rook r2;
};
struct State {
State();
PieceSet blacks;
PieceSet whites;
Board board;
Pins blackPins;
Pins whitePins;
};
Direction findPin(const Piece& piece, const State& state) {
auto& pins = piece.color() ? state.blackPins : state.whitePins;
auto it = std::find_if(pins.begin(), pins.end(), [&] (const Pin& pin) { return pin.pinned == &piece; });
if (it != pins.end()) return it->d;
return {0, 0};
}
struct Find {
Find(const Board& board) : m_board(board) {}
bool operator() (char pos) const { return m_board[pos]; }
const Board& m_board;
};
struct Add {
Add(const Board& board, std::set<char>& moves, Piece::Colors color) : m_board(board), m_moves(moves), m_color(color) {}
bool operator() (char pos) const {
if (!m_board[pos] || m_board[pos]->color() != m_color) m_moves.insert(pos);
return m_board[pos];
}
const Board& m_board;
std::set<char>& m_moves;
Piece::Colors m_color;
};
void Pawn::reinit(const State& state) {
if (m_pos == INVALID_POS) return;
if (!m_update) return;
m_update = false;
m_allowed.clear();
auto pin = findPin(*this, state);
auto & left = m_color ? SW : NW;
auto & right = m_color ? SE : NE;
for (auto& direction : filter(pin, { left, right })) {
auto pos = makeStep(m_pos, direction);
if (pos != INVALID_POS && state.board[pos] && state.board[pos]->color() != m_color) m_allowed.insert(pos);
}
auto & forward = m_color ? S : N;
if (!filter(pin, {forward}).empty()) {
traverse(m_pos, forward, [&] (char pos) {
if (!state.board[pos]) m_allowed.insert(pos);
return state.board[pos] || !is_first_move();
}, 2);
}
}
void Knight::reinit(const State& state) {
if (m_pos == INVALID_POS) return;
if (!m_update) return;
m_update = false;
m_allowed.clear();
auto pin = findPin(*this, state);
if (pin[R] != 0 || pin[F] != 0) return;
for (auto& direction : { NNE, ENE, ESE, SSE, SSW, WSW, WNW, NNW }) {
auto pos = makeStep(m_pos, direction);
if (pos != INVALID_POS && (!state.board[pos] || state.board[pos]->color() != m_color)) m_allowed.insert(pos);
}
}
void Bishop::reinit(const State& state) {
if (m_pos == INVALID_POS) return;
if (!m_update) return;
m_update = false;
m_allowed.clear();
auto pin = findPin(*this, state);
for (auto& direction : filter(pin, { NE, SE, SW, NW })) {
traverse(m_pos, direction, Add(state.board, m_allowed, m_color));
}
}
void Rook::reinit(const State& state) {
if (m_pos == INVALID_POS) return;
if (!m_update) return;
m_update = false;
m_allowed.clear();
auto pin = findPin(*this, state);
for (auto& direction : filter(pin, { N, E, S, W })) {
traverse(m_pos, direction, Add(state.board, m_allowed, m_color));
}
}
void Queen::reinit(const State& state) {
if (m_pos == INVALID_POS) return;
if (!m_update) return;
m_update = false;
m_allowed.clear();
auto pin = findPin(*this, state);
for (auto& direction : filter(pin, { N, NE, E, SE, S, SW, W, NW })) {
traverse(m_pos, direction, Add(state.board, m_allowed, m_color));
}
}
void King::reinit(const State& state) {
if (m_pos == INVALID_POS) return;
if (!m_update) return;
m_update = false;
m_allowed.clear();
auto& enemyPieces = m_color ? state.whites : state.blacks;
auto& pawnAttackLeft = m_color ? SW : NW;
auto& pawnAttackRight = m_color ? SE : NE;
for (auto& direction : { N, NE, E, SE, S, SW, W, NW }) {
auto pos = makeStep(m_pos, direction);
bool accept = pos != INVALID_POS && !(state.board[pos] && state.board[pos]->color() == m_color);
if (accept) {
for (auto& p : enemyPieces) {
if (!p.movePattern(pos)) continue;
if (p.type() == Piece::Knight || p.type() == Piece::King) {
accept = false;
break;
}
else if (p.type() == Piece::Pawn) {
auto from = positions[pos];
auto to = p.coord();
Direction d {char(to[R] - from[R]), char(to[F] - from[F])};
if (d == pawnAttackLeft || d == pawnAttackRight) {
accept = false;
break;
}
}
else {
auto from = positions[pos];
auto to = p.coord();
Direction d = normalize({char(to[R] - from[R]), char(to[F] - from[F])});
auto reached = traverse(pos, d, Find(state.board));
if (p.pos() == reached) {
accept = false;
break;
}
}
}
}
if (accept) m_allowed.insert(pos);
}
}
const char* Piece::name() const {
static_assert(pieceNames.size() == Piece::NUM_PIECES, "Mismatch between piece names and types");
return pieceNames[m_type];
}
char Piece::initial() const {
static_assert(blackShort.size() == Piece::NUM_PIECES, "Mismatch between piece names and types");
static_assert(whiteShort.size() == Piece::NUM_PIECES, "Mismatch between piece names and types");
return m_color ? blackShort[m_type] : whiteShort[m_type];
}
void Piece::invalidate() {
m_update = true;
}
const char* Piece::coord() const {
if (m_pos == INVALID_POS) return "";
return positions[m_pos];
}
bool Piece::canReach(char pos) const {
return movePattern(pos) && m_allowed.count(pos);
}
void Piece::take() {
m_pos = INVALID_POS;
m_allowed = {};
}
State::State()
: blacks {
{Piece::Black, "a7"_P, {"a5"_P, "a6"_P} },
{Piece::Black, "b7"_P, {"b5"_P, "b6"_P} },
{Piece::Black, "c7"_P, {"c5"_P, "c6"_P} },
{Piece::Black, "d7"_P, {"d5"_P, "d6"_P} },
{Piece::Black, "e7"_P, {"e5"_P, "e6"_P} },
{Piece::Black, "f7"_P, {"f5"_P, "f6"_P} },
{Piece::Black, "g7"_P, {"g5"_P, "g6"_P} },
{Piece::Black, "h7"_P, {"h5"_P, "h6"_P} },
{Piece::Black, "a8"_P},
{Piece::Black, "b8"_P, {"a6"_P, "c6"_P} },
{Piece::Black, "c8"_P},
{Piece::Black, "d8"_P},
{Piece::Black, "e8"_P},
{Piece::Black, "f8"_P},
{Piece::Black, "g8"_P, {"f6"_P, "h6"_P} },
{Piece::Black, "h8"_P},
}
, whites {
{Piece::White, "a2"_P, {"a3"_P, "a4"_P} },
{Piece::White, "b2"_P, {"b3"_P, "b4"_P} },
{Piece::White, "c2"_P, {"c3"_P, "c4"_P} },
{Piece::White, "d2"_P, {"d3"_P, "d4"_P} },
{Piece::White, "e2"_P, {"e3"_P, "e4"_P} },
{Piece::White, "f2"_P, {"f3"_P, "f4"_P} },
{Piece::White, "g2"_P, {"g3"_P, "g4"_P} },
{Piece::White, "h2"_P, {"h3"_P, "h4"_P} },
{Piece::White, "a1"_P},
{Piece::White, "b1"_P, {"a3"_P, "c3"_P} },
{Piece::White, "c1"_P},
{Piece::White, "d1"_P},
{Piece::White, "e1"_P},
{Piece::White, "f1"_P},
{Piece::White, "g1"_P, {"f3"_P, "h3"_P} },
{Piece::White, "h1"_P},
}
, board {{
&whites[ 8], &whites[ 9], &whites[10], &whites[11], &whites[12], &whites[13], &whites[14], &whites[15],
&whites[ 0], &whites[ 1], &whites[ 2], &whites[ 3], &whites[ 4], &whites[ 5], &whites[ 6], &whites[ 7],
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
&blacks[ 0], &blacks[ 1], &blacks[ 2], &blacks[ 3], &blacks[ 4], &blacks[ 5], &blacks[ 6], &blacks[ 7],
&blacks[ 8], &blacks[ 9], &blacks[10], &blacks[11], &blacks[12], &blacks[13], &blacks[14], &blacks[15],
}}
{}
Chessboard::Chessboard()
: m_state(new State())
{
setGrammar();
}
Chessboard::~Chessboard() = default;
void Chessboard::setPrompt(const std::string& prompt) {
m_prompt = prompt;
setGrammar();
}
void Chessboard::setGrammar() {
m_grammar.clear();
std::string result;
if (m_prompt.empty()) {
result += "move ::= \" \" ((piece | frompos) \" \" \"to \"?)? topos\n";
//result += "move ::= \" \" frompos \" \" \"to \"? topos\n";
}
else {
// result += "move ::= prompt \" \" ((piece | frompos) \" \" \"to \"?)? topos\n"
result += "move ::= prompt \" \" frompos \" \" \"to \"? topos\n"
"prompt ::= \" " + m_prompt + "\"\n";
}
std::set<Piece::Types> pieceTypes;
std::set<char> from_pos;
std::set<char> to_pos;
auto& pieces = m_moveCounter % 2 ? m_state->blacks : m_state->whites;
std::set<size_t> flags;
for (auto& p : pieces) {
if (p.allowed().empty()) continue;
bool addPiece = false;
if (!m_inCheck || p.type() == Piece::King) {
to_pos.insert(p.allowed().begin(), p.allowed().end());
addPiece = !p.allowed().empty();
}
else {
for (auto move : p.allowed()) {
if (m_allowedInCheck.count(move)) {
to_pos.insert(move);
addPiece = true;
}
}
}
if (addPiece) {
pieceTypes.insert(p.type());
from_pos.insert(p.pos());
}
}
if (pieceTypes.empty()) return;
result += "piece ::= (";
for (auto& p : pieceTypes) result += " \"" + std::string(pieceNames[p]) + "\" |";
result.pop_back();
result += ")\n\n";
result += "frompos ::= (";
for (auto& p : from_pos) result += " \"" + std::string(positions[p]) + "\" |";
result.pop_back();
result += ")\n";
result += "topos ::= (";
for (auto& p : to_pos) result += " \"" + std::string(positions[p]) + "\" |";
result.pop_back();
result += ")\n";
m_grammar = std::move(result);
}
std::string Chessboard::stringifyBoard() {
std::string result;
result.reserve(16 + 2 * 64 + 16);
for (char rank = 'a'; rank <= 'h'; ++rank) {
result.push_back(rank);
result.push_back(' ');
}
result.back() = '\n';
for (int i = 7; i >= 0; --i) {
for (int j = 0; j < 8; ++j) {
auto p = m_state->board[i * 8 + j];
if (p) result.push_back(p->initial());
else result.push_back((i + j) % 2 ? '.' : '*');
result.push_back(' ');
}
result.push_back('0' + i + 1);
result.push_back('\n');
}
return result;
}
std::string Chessboard::process(const std::string& command) {
const auto t_start = std::chrono::high_resolution_clock::now();
auto color = Piece::Colors(m_moveCounter % 2);
Piece* piece = nullptr;
auto pos_to = INVALID_POS;
if (!parseCommand(command, piece, pos_to)) return "";
auto pos_from = piece->pos();
if (!move(*piece, pos_to)) return "";
flagUpdates(pos_from, pos_to);
detectChecks();
auto& enemyPieces = color ? m_state->whites : m_state->blacks;
for (auto& p : enemyPieces) p.reinit(*m_state); // only enemy moves needed next
std::string result = {positions[pos_from][R], positions[pos_from][F], '-', positions[pos_to][R], positions[pos_to][F]};
++m_moveCounter;
setGrammar();
const auto t_end = std::chrono::high_resolution_clock::now();
auto t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
fprintf(stdout, "%s: Move '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", result.data(), "\033[0m", (int) t_ms);
if (m_grammar.empty()) result.push_back('#');
return result;
}
bool Chessboard::parseCommand(const std::string& command, Piece*& piece, char& pos_to) {
auto color = Piece::Colors(m_moveCounter % 2);
fprintf(stdout, "%s: Command to %s: '%s%.*s%s'\n", __func__, (color ? "Black" : "White"), "\033[1m", int(command.size()), command.data(), "\033[0m");
if (command.empty()) return false;
auto tokens = split(command, ' ');
auto pos_from = INVALID_POS;
auto type = Piece::Types::NUM_PIECES;
if (tokens.size() == 1) {
type = Piece::Types::Pawn;
pos_to = strToPos(tokens.front());
}
else {
pos_from = strToPos(tokens.front());
if (pos_from == INVALID_POS) type = Piece::Types(strToType(tokens.front()));
pos_to = strToPos(tokens.back());
}
if (pos_to == INVALID_POS) return false;
if (pos_from == INVALID_POS) {
if (type == Piece::Types::NUM_PIECES) return false;
auto& pieces = color ? m_state->blacks : m_state->whites;
for (auto& p : pieces) {
if (p.type() == type && p.canReach(pos_to)) {
pos_from = p.pos();
break;
}
}
}
if (pos_from == INVALID_POS) return false;
if (m_state->board[pos_from] == nullptr) return false;
piece = m_state->board[pos_from];
if (piece->color() != color) return false;
return true;
}
void Chessboard::flagUpdates(char pos_from, char pos_to) {
auto color = Piece::Colors(m_moveCounter % 2);
auto& enemyPieces = color ? m_state->whites : m_state->blacks;
auto& ownPieces = color ? m_state->blacks : m_state->whites;
for (auto& p : enemyPieces) {
if (p.movePattern(pos_to) || p.movePattern(pos_from)) {
updatePins(p);
p.invalidate();
}
}
for (auto& p : ownPieces) {
if (p.movePattern(pos_to) || p.movePattern(pos_from)) {
updatePins(p);
p.invalidate();
}
}
}
void Chessboard::updatePins(Piece& piece) {
if (piece.type() == Piece::Pawn || piece.type() == Piece::Knight || piece.type() == Piece::King) return;
auto& enemyPieces = piece.color() ? m_state->whites : m_state->blacks;
auto& enemyPins = piece.color() ? m_state->whitePins : m_state->blackPins;
auto& king = enemyPieces.k;
auto it = std::find_if(enemyPins.begin(), enemyPins.end(), [&] (const Pin& pin) { return pin.pinner == &piece; });
if (it != enemyPins.end()) {
it->pinned->invalidate();
enemyPins.erase(it);
}
if (piece.movePattern(king.pos())) {
auto to = positions[king.pos()];
auto from = piece.coord();
Direction d = normalize({char(to[R] - from[R]), char(to[F] - from[F])});
auto reached = traverse(piece.pos(), d, Find(m_state->board));
auto foundPiece = m_state->board[reached];
if (&king == foundPiece) {
// check
king.invalidate();
}
else if (foundPiece && foundPiece->color() != piece.color()) {
reached = traverse(reached, d, Find(m_state->board));
if (&king == m_state->board[reached]) {
enemyPins.push_back({d, &piece, foundPiece});
foundPiece->invalidate();
}
}
}
}
void Chessboard::detectChecks() {
auto color = Piece::Colors(m_moveCounter % 2);
auto& enemyPieces = color ? m_state->whites : m_state->blacks;
auto& ownPieces = color ? m_state->blacks : m_state->whites;
auto& king = enemyPieces.k;
auto& pawnAttackLeft = color ? SW : NW;
auto& pawnAttackRight = color ? SE : NE;
for (auto& p : ownPieces) {
if (!p.movePattern(king.pos())) continue;
auto to = positions[king.pos()];
auto from = p.coord();
if (p.type() == Piece::Knight) {
if (!m_inCheck) {
m_allowedInCheck = { p.pos() };
}
else {
m_allowedInCheck.clear();
}
m_inCheck = true;
}
else if (p.type() == Piece::Pawn) {
Direction d {char(to[R] - from[R]), char(to[F] - from[F])};
if (d == pawnAttackLeft || d == pawnAttackRight) {
if (!m_inCheck) {
m_allowedInCheck = { p.pos() };
}
else {
m_allowedInCheck.clear();
}
m_inCheck = true;
}
}
else {
Direction d = normalize({char(to[R] - from[R]), char(to[F] - from[F])});
std::set<char> tmp;
auto pos = traverse(p.pos(), d, Add(m_state->board, tmp, king.color()));
if (pos == king.pos()) {
tmp.insert(p.pos());
if (!m_inCheck) {
m_allowedInCheck = std::move(tmp);
}
else {
m_allowedInCheck.clear();
}
m_inCheck = true;
}
}
}
}
bool Chessboard::move(Piece& piece, char pos_to) {
auto& allowed = piece.allowed();
if (allowed.count(pos_to) == 0 || (m_inCheck && piece.type() != Piece::King && m_allowedInCheck.count(pos_to) == 0)) return false;
if (m_state->board[pos_to] && m_state->board[pos_to]->color() == piece.color()) return false;
if (m_state->board[pos_to]) m_state->board[pos_to]->take();
m_state->board[piece.pos()] = nullptr;
m_state->board[pos_to] = &piece;
piece.setPos(pos_to);
m_inCheck = false;
m_allowedInCheck.clear();
return true;
}

View File

@ -0,0 +1,33 @@
#pragma once
#include <string>
#include <set>
#include <memory>
// just basic validation
// fixme: missing en passant, castling, promotion, etc.
struct State;
class Piece;
class Chessboard {
public:
Chessboard();
~Chessboard();
std::string process(const std::string& command);
std::string stringifyBoard();
const std::string& grammar() { return m_grammar; }
const std::string& prompt() { return m_prompt; }
void setPrompt(const std::string& prompt);
private:
bool parseCommand(const std::string& command, Piece*& piece, char& pos_to);
bool move(Piece& piece, char pos);
void flagUpdates(char pos_from, char pos_to);
void updatePins(Piece& piece);
void detectChecks();
void setGrammar();
std::unique_ptr<State> m_state;
std::set<char> m_allowedInCheck;
bool m_inCheck = false;
int m_moveCounter = 0;
std::string m_grammar;
std::string m_prompt;
};

View File

@ -0,0 +1,193 @@
#include "WChess.h"
#include "Chessboard.h"
#include "grammar-parser.h"
#include "common.h"
#include <thread>
WChess::WChess(whisper_context * ctx,
const whisper_full_params & wparams,
callbacks cb,
settings s)
: m_ctx(ctx)
, m_wparams(wparams)
, m_cb(cb)
, m_settings(s)
, m_board(new Chessboard())
{}
WChess::~WChess() = default;
void WChess::set_move(const std::string& moves, float prob) const {
if (m_cb.set_move) (*m_cb.set_move)(moves, prob);
}
void WChess::set_grammar(const std::string& grammar) const {
if (m_cb.set_grammar) (*m_cb.set_grammar)(grammar);
}
bool WChess::get_audio(std::vector<float>& pcmf32) const {
if (m_cb.get_audio) return (*m_cb.get_audio)(pcmf32);
return false;
}
std::string WChess::stringify_board() const {
return m_board->stringifyBoard();
}
std::string WChess::get_grammar() const {
return m_board->grammar();
}
void WChess::run() {
bool have_prompt = true;
bool ask_prompt = !have_prompt;
float logprob_min = 0.0f;
float logprob_sum = 0.0f;
int n_tokens = 0;
std::vector<float> pcmf32_cur;
std::vector<float> pcmf32_prompt;
const std::string k_prompt = have_prompt ? "" : "rook to d4, f3";
int64_t t_ms = 0;
if (ask_prompt) {
fprintf(stdout, "\n");
fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m");
fprintf(stdout, "\n");
ask_prompt = false;
}
while (get_audio(pcmf32_cur)) {
if (!pcmf32_cur.empty()) {
// fprintf(stdout, "%s: Processing ...\n", __func__);
if (!have_prompt) {
const auto txt = ::trim(transcribe(pcmf32_cur, logprob_min, logprob_sum, n_tokens, t_ms));
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
const float sim = similarity(txt, k_prompt);
if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) {
fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__);
ask_prompt = true;
} else {
fprintf(stdout, "\n");
fprintf(stdout, "%s: The prompt has been recognized!\n", __func__);
fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__);
fprintf(stdout, "\n");
// save the audio for the prompt
pcmf32_prompt = pcmf32_cur;
have_prompt = true;
m_board->setPrompt(k_prompt);
}
} else {
if (!pcmf32_prompt.empty()) pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
constexpr size_t MIN_SIZE = 1.2 * WHISPER_SAMPLE_RATE;
if (MIN_SIZE > pcmf32_cur.size()) pcmf32_cur.insert(pcmf32_cur.begin(), MIN_SIZE - pcmf32_cur.size(), 0.0f);
// fprintf(stdout, "%s: grammar rules:\n'%s'\n", __func__, m_board->grammar().c_str());
auto grammar_parsed = grammar_parser::parse(m_board->grammar().c_str());
auto grammar_rules = grammar_parsed.c_rules();
m_wparams.grammar_rules = grammar_rules.data();
m_wparams.n_grammar_rules = grammar_rules.size();
m_wparams.i_start_rule = grammar_parsed.symbol_ids.at("move");
auto txt = ::trim(transcribe(pcmf32_cur, logprob_min, logprob_sum, n_tokens, t_ms));
const float p = 100.0f * std::exp(logprob_min);
fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
// find the prompt in the text
float best_sim = 0.0f;
size_t best_len = 0;
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
const auto prompt = txt.substr(0, n);
const float sim = similarity(prompt, k_prompt);
//fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim);
if (sim > best_sim) {
best_sim = sim;
best_len = n;
}
}
fprintf(stdout, "%s: DEBUG: txt = '%s', prob = %.2f%%\n", __func__, txt.c_str(), p);
std::string command = ::trim(txt.substr(best_len));
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
fprintf(stdout, "\n");
if (!command.empty()) {
set_move(m_board->process(command), p);
set_grammar(m_board->grammar());
}
if (m_board->grammar().empty()) {
fprintf(stdout, "%s: No more moves possible\n", __func__);
break;
}
}
}
if (ask_prompt) {
fprintf(stdout, "\n");
fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m");
fprintf(stdout, "\n");
ask_prompt = false;
}
}
}
std::string WChess::transcribe(
const std::vector<float> & pcmf32,
float & logprob_min,
float & logprob_sum,
int & n_tokens,
int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
logprob_min = 0.0f;
logprob_sum = 0.0f;
n_tokens = 0;
t_ms = 0;
if (whisper_full(m_ctx, m_wparams, pcmf32.data(), pcmf32.size()) != 0) {
return {};
}
std::string result;
const int n_segments = whisper_full_n_segments(m_ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(m_ctx, i);
result += text;
const int n = whisper_full_n_tokens(m_ctx, i);
for (int j = 0; j < n; ++j) {
const auto token = whisper_full_get_token_data(m_ctx, i, j);
if(token.plog > 0.0f) return {};
logprob_min = std::min(logprob_min, token.plog);
logprob_sum += token.plog;
++n_tokens;
}
}
const auto t_end = std::chrono::high_resolution_clock::now();
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
return result;
}

View File

@ -0,0 +1,63 @@
#pragma once
#include "whisper.h"
#include <string>
#include <vector>
#include <memory>
class Chessboard;
class WChess {
public:
using CheckRunningCb = bool (*)();
using GetAudioCb = bool (*)(std::vector<float> &);
using SetMovesCb = void (*)(const std::string &, float);
using SetGrammarCb = void (*)(const std::string &);
using ClearAudioCb = void (*)();
struct callbacks {
GetAudioCb get_audio = nullptr;
SetMovesCb set_move = nullptr;
SetGrammarCb set_grammar = nullptr;
};
struct settings {
int32_t vad_ms = 2000;
int32_t prompt_ms = 5000;
int32_t command_ms = 4000;
float vad_thold = 0.2f;
float freq_thold = 100.0f;
bool print_energy = false;
};
WChess(
whisper_context * ctx,
const whisper_full_params & wparams,
callbacks cb,
settings s
);
~WChess();
void run();
std::string stringify_board() const;
std::string get_grammar() const;
private:
bool get_audio(std::vector<float>& pcmf32) const;
void set_move(const std::string& moves, float prob) const;
void set_grammar(const std::string& grammar) const;
std::string transcribe(
const std::vector<float> & pcmf32,
float & logprob_min,
float & logprob_sum,
int & n_tokens,
int64_t & t_ms);
whisper_context * m_ctx;
whisper_full_params m_wparams;
const callbacks m_cb;
const settings m_settings;
std::unique_ptr<Chessboard> m_board;
};

View File

@ -0,0 +1,117 @@
#include "Chessboard.h"
#define ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
fflush(stderr); \
exit(1); \
} \
} while (0)
int main() {
{
Chessboard chess;
ASSERT(chess.process("pawn to d4") == "d2-d4");
ASSERT(chess.process("e5") == "e7-e5");
ASSERT(chess.process("c1 h6") == "c1-h6");
ASSERT(chess.process("queen h4") == "d8-h4");
ASSERT(chess.process("bishop to g5") == "h6-g5");
ASSERT(chess.process("bishop to b4") == "f8-b4");
ASSERT(chess.process("c4") == "");
ASSERT(chess.process("knight c3") == "b1-c3");
ASSERT(chess.process("knight c6") == "b8-c6");
ASSERT(chess.process("f3") == "");
}
{
Chessboard chess;
ASSERT(chess.process("d4") == "d2-d4");
ASSERT(chess.process("e5") == "e7-e5");
ASSERT(chess.process("e4") == "e2-e4");
ASSERT(chess.process("queen h4") == "d8-h4");
ASSERT(chess.process("queen h5") == "d1-h5");
ASSERT(chess.process("f5") == "");
ASSERT(chess.process("g6") == "g7-g6");
ASSERT(chess.process("knight e2") == "g1-e2");
ASSERT(chess.process("f5") == "f7-f5");
ASSERT(chess.process("knight g3") == "e2-g3");
ASSERT(chess.process("g5") == "");
ASSERT(chess.process("king e7") == "e8-e7");
ASSERT(chess.process("f4") == "f2-f4");
ASSERT(chess.process("g5") == "g6-g5");
}
{
Chessboard chess;
ASSERT(chess.process("e4") == "e2-e4");
ASSERT(chess.process("c5") == "c7-c5");
ASSERT(chess.process("e5") == "e4-e5");
ASSERT(chess.process("c4") == "c5-c4");
ASSERT(chess.process("e6") == "e5-e6");
ASSERT(chess.process("c3") == "c4-c3");
ASSERT(chess.process("e7") == "");
ASSERT(chess.process("f7") == "e6-f7");
ASSERT(chess.process("d2") == "");
ASSERT(chess.process("king to f7") == "e8-f7");
ASSERT(chess.process("f4") == "f2-f4");
ASSERT(chess.process("d2") == "c3-d2");
ASSERT(chess.process("f5") == "");
ASSERT(chess.process("king to e2") == "e1-e2");
ASSERT(chess.process("king to g6") == "f7-g6");
ASSERT(chess.process("f5") == "f4-f5");
ASSERT(chess.process("e6") == "");
ASSERT(chess.process("king to h5") == "g6-h5");
ASSERT(chess.process("g4") == "g2-g4");
ASSERT(chess.process("king to g5") == "h5-g5");
ASSERT(chess.process("h4") == "h2-h4");
ASSERT(chess.process("king to h5") == "");
ASSERT(chess.process("king to g6") == "");
ASSERT(chess.process("king to h6") == "g5-h6");
ASSERT(chess.process("bishop to d2") == "c1-d2");
ASSERT(chess.process("king to g5") == "");
ASSERT(chess.process("g5") == "g7-g5");
}
{
Chessboard chess;
ASSERT(chess.process("f4") == "f2-f4");
ASSERT(chess.process("e5") == "e7-e5");
ASSERT(chess.process("g4") == "g2-g4");
ASSERT(chess.process("queen to h4") == "d8-h4#");
ASSERT(chess.process("knight f3") == "");
ASSERT(chess.grammar().empty());
}
{
Chessboard chess;
ASSERT(chess.process("f4") == "f2-f4");
ASSERT(chess.process("e5") == "e7-e5");
ASSERT(chess.process("g4") == "g2-g4");
ASSERT(chess.process("d5") == "d7-d5");
ASSERT(chess.process("g1 f3") == "g1-f3");
ASSERT(chess.process("queen to h4") == "d8-h4");
ASSERT(!chess.grammar().empty());
}
{
Chessboard chess;
ASSERT(chess.process("knight c3") == "b1-c3");
ASSERT(chess.process("knight c6") == "b8-c6");
ASSERT(chess.process("knight b5") == "c3-b5");
ASSERT(chess.process("knight f6") == "g8-f6");
ASSERT(chess.process("knight d6") == "b5-d6");
ASSERT(chess.process("knight d4") == "");
ASSERT(chess.process("d6") == "c7-d6");
ASSERT(chess.process("e4") == "e2-e4");
ASSERT(chess.process("knight d4") == "c6-d4");
ASSERT(chess.process("d3") == "d2-d3");
ASSERT(chess.process("knight e4") == "f6-e4");
ASSERT(chess.process("king to e2") == "");
ASSERT(chess.process("king to d2") == "");
}
}

View File

@ -0,0 +1,8 @@
if (WHISPER_SDL2)
set(TARGET wchess)
add_executable(${TARGET} wchess.cmd.cpp)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE wchess-core common-sdl ${CMAKE_THREAD_LIBS_INIT})
endif ()

View File

@ -0,0 +1,252 @@
// Command line voice assisted chess
//
// Speak chess move commands to the microphone.
// The moves will translated to chessboard positions.
//
//
#include "WChess.h"
#include "common-sdl.h"
#include <iostream>
#include <memory>
#include <thread>
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t prompt_ms = 5000;
int32_t command_ms = 8000;
int32_t capture_id = -1;
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
float grammar_penalty = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
bool use_gpu = true;
bool flash_attn = false;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
std::string fname_out;
std::string commands;
std::string prompt;
std::string context;
std::string grammar;
};
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -pms N, --prompt-ms N [%-7d] prompt duration in milliseconds\n", params.prompt_ms);
fprintf(stderr, " -cms N, --command-ms N [%-7d] command duration in milliseconds\n", params.command_ms);
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention during decoding\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, " -cmd FNAME, --commands FNAME [%-7s] text file with allowed commands\n", params.commands.c_str());
fprintf(stderr, " -p, --prompt [%-7s] the required activation prompt\n", params.prompt.c_str());
fprintf(stderr, " -ctx, --context [%-7s] sample text to help the transcription\n", params.context.c_str());
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
fprintf(stderr, "\n");
}
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-h" || arg == "--help") {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-pms" || arg == "--prompt-ms") { params.prompt_ms = std::stoi(argv[++i]); }
else if (arg == "-cms" || arg == "--command-ms") { params.command_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else if (arg == "-cmd" || arg == "--commands") { params.commands = argv[++i]; }
else if (arg == "-p" || arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-ctx" || arg == "--context") { params.context = argv[++i]; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
std::unique_ptr<WChess> g_wchess;
int g_moveCount = 0;
void set_move(const std::string & move, float) {
if (!move.empty()) {
g_moveCount++;
fprintf(stdout, "Move: %s\n\n", move.c_str());
}
else fprintf(stdout, "Move rejected\n\n");
fprintf(stdout, "%s\n", g_wchess->stringify_board().c_str());
fprintf(stdout, "%s\n", g_moveCount ? "White's turn" : "Black's turn");
}
audio_async g_audio(30*1000);
bool g_listening = false;
std::vector<float> g_pcmf32;
bool read_input() {
std::string input;
while (true) {
fprintf(stdout, "[(l)isten/(p)ause/(q)uit]: ");
std::cin >> input;
fprintf(stdout, "\n");
if (input[0] == 'q') {
fprintf(stdout, "Quitting\n");
return false;
}
if (input[0] == 'l') {
if (!g_listening) {
fprintf(stdout, "Listening\n");
g_listening = true;
g_pcmf32.clear();
g_audio.resume();
g_audio.clear();
}
else fprintf(stdout, "Still listening\n");
return true;
}
else {
if (g_listening) {
g_listening = false;
g_audio.get(0, g_pcmf32);
g_audio.pause();
fprintf(stdout, "Processing\n");
}
else fprintf(stdout, "Not listening\n");
return true;
}
}
return true;
}
bool get_audio(std::vector<float> & pcmf32_cur) {
if (!read_input()) return false;
if (!g_pcmf32.empty()) pcmf32_cur = std::move(g_pcmf32);
else pcmf32_cur.clear();
return true;
}
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
return 1;
}
if (whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (!ctx) {
fprintf(stderr, "%s: whisper_init_from_file_with_params() failed!\n", __func__);
return 1;
}
// init audio
if (!g_audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
return 1;
}
struct whisper_full_params wparams = whisper_full_default_params(whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY);
wparams.offset_ms = 0;
wparams.translate = false;
wparams.no_context = true;
wparams.single_segment = true;
wparams.print_realtime = false;
wparams.print_progress = false;
wparams.print_timestamps = true;
wparams.print_special = false;
wparams.no_timestamps = true;
wparams.max_tokens = 32;
wparams.audio_ctx = 768; // partial encoder context for better performance
wparams.temperature = 0.0f;
wparams.temperature_inc = 2.0f;
wparams.greedy.best_of = 1;
wparams.beam_search.beam_size = 1;
wparams.language = "en";
wparams.grammar_penalty = 100.0;
wparams.initial_prompt = params.context.data();
WChess::callbacks cb;
cb.get_audio = get_audio;
cb.set_move = set_move;
WChess::settings s;
s.vad_ms = 2000;
s.prompt_ms = params.prompt_ms;
s.command_ms = params.command_ms;
s.vad_thold = params.vad_thold;
s.freq_thold = params.freq_thold;
s.print_energy = params.print_energy;
g_wchess.reset(new WChess(ctx, wparams, cb, s));
set_move("start", 0);
g_wchess->run();
whisper_print_timings(ctx);
whisper_free(ctx);
return 0;
}

Some files were not shown because too many files have changed in this diff Show More