mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-18 20:27:53 +00:00
talk-llama : llama.cpp
This commit is contained in:
parent
d08445c9ad
commit
2a5874441d
@ -987,6 +987,7 @@ struct llama_mmap {
|
||||
}
|
||||
|
||||
if (prefetch > 0) {
|
||||
#if _WIN32_WINNT >= 0x602
|
||||
// PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
|
||||
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
|
||||
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
|
||||
@ -1004,6 +1005,9 @@ struct llama_mmap {
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
throw std::runtime_error("PrefetchVirtualMemory unavailable");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@ -1110,7 +1114,7 @@ struct llama_mlock {
|
||||
suggest = false;
|
||||
}
|
||||
|
||||
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||||
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||||
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||||
return false;
|
||||
}
|
||||
@ -1119,7 +1123,7 @@ struct llama_mlock {
|
||||
|
||||
static void raw_unlock(void * addr, size_t size) {
|
||||
if (munlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||
LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||
}
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
@ -1137,7 +1141,7 @@ struct llama_mlock {
|
||||
return true;
|
||||
}
|
||||
if (tries == 2) {
|
||||
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
len, size, llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
@ -1146,7 +1150,7 @@ struct llama_mlock {
|
||||
// set size and try again.
|
||||
SIZE_T min_ws_size, max_ws_size;
|
||||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||||
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
|
||||
LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
@ -1159,7 +1163,7 @@ struct llama_mlock {
|
||||
min_ws_size += increment;
|
||||
max_ws_size += increment;
|
||||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||||
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
|
||||
LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
@ -1168,7 +1172,7 @@ struct llama_mlock {
|
||||
|
||||
static void raw_unlock(void * ptr, size_t len) {
|
||||
if (!VirtualUnlock(ptr, len)) {
|
||||
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
||||
LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
@ -1180,7 +1184,7 @@ struct llama_mlock {
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr, size_t len) const {
|
||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -2081,13 +2085,13 @@ namespace GGUFMeta {
|
||||
__func__, override_type_to_str(override->tag), override->key);
|
||||
switch (override->tag) {
|
||||
case LLAMA_KV_OVERRIDE_BOOL: {
|
||||
printf("%s\n", override->bool_value ? "true" : "false");
|
||||
LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false");
|
||||
} break;
|
||||
case LLAMA_KV_OVERRIDE_INT: {
|
||||
printf("%" PRId64 "\n", override->int_value);
|
||||
LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value);
|
||||
} break;
|
||||
case LLAMA_KV_OVERRIDE_FLOAT: {
|
||||
printf("%.6f\n", override->float_value);
|
||||
LLAMA_LOG_INFO("%.6f\n", override->float_value);
|
||||
} break;
|
||||
default:
|
||||
// Shouldn't be possible to end up here, but just in case...
|
||||
@ -6989,7 +6993,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
||||
if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
||||
LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
||||
#endif
|
||||
auto source = std::distance(buffer.begin(), it);
|
||||
|
||||
@ -7002,7 +7006,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
||||
buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
|
||||
LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
|
||||
#endif
|
||||
it++;
|
||||
}
|
||||
@ -7018,7 +7022,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
||||
buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
|
||||
LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
|
||||
#endif
|
||||
|
||||
it++;
|
||||
@ -7034,7 +7038,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
||||
raw_text_base_length = right_reminder_length;
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
||||
LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
||||
#endif
|
||||
} else {
|
||||
if (source == 0) {
|
||||
@ -7091,7 +7095,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
||||
}
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
||||
LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
||||
#endif
|
||||
llm_tokenizer_spm tokenizer(vocab);
|
||||
llama_escape_whitespace(raw_text);
|
||||
@ -7112,7 +7116,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
||||
LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
||||
#endif
|
||||
llm_tokenizer_bpe tokenizer(vocab);
|
||||
tokenizer.tokenize(raw_text, output);
|
||||
@ -8429,9 +8433,23 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (new_type != GGML_TYPE_Q8_0) {
|
||||
new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
|
||||
if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
||||
else new_type = GGML_TYPE_Q2_K;
|
||||
++qs.i_attention_wv;
|
||||
}
|
||||
else if (name.find("ffn_down") != std::string::npos) {
|
||||
if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q2_K;
|
||||
++qs.i_feed_forward_w2;
|
||||
}
|
||||
else if (name == "token_embd.weight") new_type = GGML_TYPE_Q2_K;
|
||||
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
@ -8462,13 +8480,31 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
} else if (name.find("ffn_down") != std::string::npos) {
|
||||
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
|
||||
int i_layer, n_layer;
|
||||
if (n_expert == 1) {
|
||||
i_layer = qs.i_feed_forward_w2;
|
||||
n_layer = qs.n_feed_forward_w2;
|
||||
} else {
|
||||
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
|
||||
// sprinkled in the model. Hence, simply dividing i_feed_forward_w2 by n_expert does not work
|
||||
// for getting the current layer as I initially thought, and we need to resort to parsing the
|
||||
// tensor name.
|
||||
n_layer = qs.n_feed_forward_w2 / n_expert;
|
||||
if (sscanf(name.c_str(), "blk.%d.ffn_down", &i_layer) != 1) {
|
||||
throw std::runtime_error(format("Failed to determine layer for tensor %s", name.c_str()));
|
||||
}
|
||||
if (i_layer < 0 || i_layer >= n_layer) {
|
||||
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name.c_str(), n_layer));
|
||||
}
|
||||
}
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
|
||||
if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q4_K;
|
||||
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q5_K
|
||||
: arch != LLM_ARCH_FALCON || use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q4_K
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
|
||||
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||||
: GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||||
@ -8476,22 +8512,29 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
if (arch == LLM_ARCH_FALCON) {
|
||||
new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
} else {
|
||||
if (use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) {
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
++qs.i_feed_forward_w2;
|
||||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (arch != LLM_ARCH_FALCON) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
@ -8594,6 +8637,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
if (params->only_copy) {
|
||||
ftype = model.ftype;
|
||||
}
|
||||
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
|
||||
if (params->imatrix) {
|
||||
imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
|
||||
if (imatrix_data) {
|
||||
LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
|
||||
}
|
||||
}
|
||||
|
||||
const size_t align = GGUF_DEFAULT_ALIGNMENT;
|
||||
struct gguf_context * ctx_out = gguf_init_empty();
|
||||
@ -8651,6 +8701,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
// placeholder for the meta data
|
||||
::zeros(fout, meta_size);
|
||||
|
||||
std::set<ggml_type> used_iq2;
|
||||
|
||||
for (int i = 0; i < ml.n_tensors; ++i) {
|
||||
struct ggml_tensor * tensor = ml.get_tensor_meta(i);
|
||||
|
||||
@ -8703,6 +8755,35 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
} else {
|
||||
const size_t nelements = ggml_nelements(tensor);
|
||||
|
||||
if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS) && used_iq2.find(new_type) == used_iq2.end()) {
|
||||
ggml_init_iq2_quantization(new_type);
|
||||
used_iq2.insert(new_type);
|
||||
}
|
||||
|
||||
const float * imatrix = nullptr;
|
||||
if (imatrix_data) {
|
||||
auto it = imatrix_data->find(tensor->name);
|
||||
if (it == imatrix_data->end()) {
|
||||
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
|
||||
} else {
|
||||
if (it->second.size() == (size_t)tensor->ne[0]) {
|
||||
imatrix = it->second.data();
|
||||
} else {
|
||||
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
|
||||
int(it->second.size()), int(tensor->ne[0]), tensor->name);
|
||||
}
|
||||
}
|
||||
}
|
||||
if ((new_type == GGML_TYPE_IQ2_XXS ||
|
||||
new_type == GGML_TYPE_IQ2_XS ||
|
||||
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
|
||||
LLAMA_LOG_ERROR("\n\n============================================================\n");
|
||||
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
|
||||
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
|
||||
LLAMA_LOG_ERROR("============================================================\n\n");
|
||||
throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
|
||||
}
|
||||
|
||||
float * f32_data;
|
||||
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
@ -8723,21 +8804,28 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
new_data = work.data();
|
||||
std::array<int64_t, 1 << 4> hist_cur = {};
|
||||
|
||||
static const int chunk_size = 32 * 512;
|
||||
const int n_per_row = tensor->ne[0];
|
||||
const int nrows = nelements / n_per_row;
|
||||
|
||||
static const int min_chunk_size = 32 * 512;
|
||||
const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
|
||||
|
||||
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
|
||||
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
|
||||
if (nthread_use < 2) {
|
||||
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
|
||||
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix);
|
||||
} else {
|
||||
size_t counter = 0;
|
||||
int counter = 0;
|
||||
new_size = 0;
|
||||
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
|
||||
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
|
||||
nrows, n_per_row, imatrix]() {
|
||||
std::array<int64_t, 1 << 4> local_hist = {};
|
||||
const int nrows_per_chunk = chunk_size / n_per_row;
|
||||
size_t local_size = 0;
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
size_t first = counter; counter += chunk_size;
|
||||
if (first >= nelements) {
|
||||
int first_row = counter; counter += nrows_per_chunk;
|
||||
if (first_row >= nrows) {
|
||||
if (local_size > 0) {
|
||||
for (int j=0; j<int(local_hist.size()); ++j) {
|
||||
hist_cur[j] += local_hist[j];
|
||||
@ -8747,8 +8835,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
size_t last = std::min(nelements, first + chunk_size);
|
||||
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
|
||||
const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
|
||||
local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
|
||||
first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
|
||||
}
|
||||
};
|
||||
for (int it = 0; it < nthread_use - 1; ++it) {
|
||||
@ -8759,7 +8848,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
workers.clear();
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
int64_t tot_count = 0;
|
||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||
hist_all[i] += hist_cur[i];
|
||||
@ -8767,6 +8856,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
}
|
||||
|
||||
if (tot_count > 0) {
|
||||
LLAMA_LOG_INFO(" | hist: ");
|
||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
|
||||
}
|
||||
@ -8795,6 +8885,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
fout.close();
|
||||
|
||||
for (auto type : used_iq2) {
|
||||
ggml_deinit_iq2_quantization(type);
|
||||
}
|
||||
|
||||
gguf_free(ctx_out);
|
||||
|
||||
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
||||
@ -9159,6 +9253,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
||||
/*.quantize_output_tensor =*/ true,
|
||||
/*.only_copy =*/ false,
|
||||
/*.pure =*/ false,
|
||||
/*.imatrix =*/ nullptr,
|
||||
};
|
||||
|
||||
return result;
|
||||
|
@ -249,6 +249,7 @@ extern "C" {
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||
bool pure; // disable k-quant mixtures and quantize all tensors to the same type
|
||||
void * imatrix; // pointer to importance matrix data
|
||||
} llama_model_quantize_params;
|
||||
|
||||
// grammar types
|
||||
|
Loading…
Reference in New Issue
Block a user