mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-18 20:27:53 +00:00
sync : llama.cpp (ggml/0)
ggml-ci
This commit is contained in:
parent
208de95ac7
commit
ce411498f6
@ -66,6 +66,7 @@ bool ggml_common_quantize_0(
|
||||
case GGML_FTYPE_MOSTLY_IQ2_XS:
|
||||
case GGML_FTYPE_MOSTLY_IQ3_XXS:
|
||||
case GGML_FTYPE_MOSTLY_IQ1_S:
|
||||
case GGML_FTYPE_MOSTLY_IQ4_NL:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
||||
return false;
|
||||
@ -199,6 +200,7 @@ bool ggml_common_quantize_0(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_COUNT:
|
||||
{
|
||||
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
||||
|
98
ggml-cuda.cu
98
ggml-cuda.cu
@ -528,6 +528,15 @@ typedef struct {
|
||||
} block_iq1_s;
|
||||
static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
|
||||
|
||||
#define QK4_NL 32
|
||||
#define QR4_NL 2
|
||||
#define QI4_NL (QK4_NL / (4*QR4_NL))
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[QK4_NL/2];
|
||||
} block_iq4_nl;
|
||||
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding");
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
@ -1987,6 +1996,26 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
|
||||
|
||||
}
|
||||
|
||||
static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[ib].qs + 4*il;
|
||||
const float d = (float)x[ib].d;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
@ -4732,6 +4761,56 @@ static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
|
||||
#endif
|
||||
}
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
|
||||
int & val1, int & val2) {
|
||||
|
||||
uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
|
||||
aux32 = q4 & 0x0f0f0f0f;
|
||||
uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
|
||||
uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
|
||||
val1 = v1 | (v2 << 16);
|
||||
aux32 = (q4 >> 4) & 0x0f0f0f0f;
|
||||
v1 = values[q8[0]] | (values[q8[1]] << 8);
|
||||
v2 = values[q8[2]] | (values[q8[3]] << 8);
|
||||
val2 = v1 | (v2 << 16);
|
||||
}
|
||||
#endif
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
|
||||
const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
|
||||
const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
|
||||
|
||||
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
||||
|
||||
int v1, v2;
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
|
||||
const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
|
||||
get_int_from_table_16(aux, values, v1, v2);
|
||||
sumi1 = __dp4a(v1, q8[l+0], sumi1);
|
||||
sumi2 = __dp4a(v2, q8[l+4], sumi2);
|
||||
}
|
||||
|
||||
#else
|
||||
const uint8_t * q4 = bq->qs + 4*iqs;
|
||||
const int8_t * q8 = bq8_1->qs + 4*iqs;
|
||||
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
|
||||
sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
|
||||
sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
|
||||
}
|
||||
#endif
|
||||
const float d = (float)bq->d * __low2float(bq8_1->ds);
|
||||
return d * (sumi1 + sumi2);
|
||||
}
|
||||
|
||||
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
|
||||
allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
|
||||
static __device__ __forceinline__ void mul_mat_q(
|
||||
@ -6777,6 +6856,12 @@ static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, c
|
||||
dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
@ -6818,6 +6903,8 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_F32:
|
||||
return convert_unary_cuda<float>;
|
||||
default:
|
||||
@ -6855,6 +6942,8 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_F16:
|
||||
return convert_unary_cuda<half>;
|
||||
default:
|
||||
@ -8599,6 +8688,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
@ -8623,6 +8713,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return max_compute_capability >= CC_VOLTA ? 128 : 64;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return 64;
|
||||
@ -8724,6 +8815,10 @@ static void ggml_cuda_op_mul_mat_vec_q(
|
||||
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
|
||||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
|
||||
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
@ -11446,7 +11541,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
return false;
|
||||
}
|
||||
ggml_type a_type = a->type;
|
||||
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ1_S) {
|
||||
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
|
||||
a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL) {
|
||||
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
|
||||
return false;
|
||||
}
|
||||
|
35
ggml-metal.m
35
ggml-metal.m
@ -62,6 +62,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
||||
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
||||
@ -85,6 +86,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
|
||||
@ -104,6 +106,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
|
||||
@ -120,6 +123,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
|
||||
@ -136,6 +140,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
|
||||
@ -448,6 +453,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
|
||||
@ -471,6 +477,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
|
||||
@ -490,6 +497,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
@ -506,6 +514,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
@ -522,6 +531,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
|
||||
@ -1338,6 +1348,7 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||
}
|
||||
|
||||
@ -1478,6 +1489,12 @@ static bool ggml_metal_graph_compute(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
||||
@ -1525,6 +1542,11 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ4_NL) {
|
||||
const int mem_size = 32*sizeof(float);
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
@ -1619,6 +1641,7 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
||||
}
|
||||
|
||||
@ -1762,6 +1785,12 @@ static bool ggml_metal_graph_compute(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
|
||||
@ -1825,6 +1854,11 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ4_NL) {
|
||||
const int mem_size = 32*sizeof(float);
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
@ -1867,6 +1901,7 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
|
||||
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
|
215
ggml-metal.metal
215
ggml-metal.metal
@ -2531,6 +2531,12 @@ typedef struct {
|
||||
uint8_t scales[QK_K/16];
|
||||
} block_iq1_s;
|
||||
|
||||
// Non-linear quants
|
||||
#define QK4_NL 32
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[QK4_NL/2];
|
||||
} block_iq4_nl;
|
||||
|
||||
//====================================== dot products =========================
|
||||
|
||||
@ -4384,7 +4390,6 @@ void kernel_mul_mv_iq1_s_f32_impl(
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
device const block_iq1_s * x = (device const block_iq1_s *) src0 + ib_row + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
@ -4447,6 +4452,103 @@ void kernel_mul_mv_iq1_s_f32_impl(
|
||||
}
|
||||
}
|
||||
|
||||
constexpr constant static float kvalues_iq4nl_f[16] = {
|
||||
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
|
||||
};
|
||||
|
||||
void kernel_mul_mv_iq4_nl_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup float * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
const int nb = ne00/QK4_NL;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
const int first_row = (r0 * 2 + sgitg) * 2;
|
||||
const int ib_row = first_row * nb;
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
device const block_iq4_nl * x = (device const block_iq4_nl *) src0 + ib_row + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
const int ix = tiisg/2; // 0...15
|
||||
const int it = tiisg%2; // 0 or 1
|
||||
|
||||
shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16];
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
float4 yl[4];
|
||||
float sumf[2]={0.f}, all_sum;
|
||||
|
||||
device const float * yb = y + ix * QK4_NL + it * 8;
|
||||
|
||||
uint32_t aux32[2];
|
||||
thread const uint8_t * q8 = (thread const uint8_t *)aux32;
|
||||
|
||||
float4 qf1, qf2;
|
||||
|
||||
for (int ib = ix; ib < nb; ib += 16) {
|
||||
|
||||
device const float4 * y4 = (device const float4 *)yb;
|
||||
yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5];
|
||||
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
|
||||
device const block_iq4_nl & xb = x[row*nb + ib];
|
||||
device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it);
|
||||
|
||||
float4 acc1 = {0.f}, acc2 = {0.f};
|
||||
|
||||
aux32[0] = q4[0] | (q4[1] << 16);
|
||||
aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
|
||||
aux32[0] &= 0x0f0f0f0f;
|
||||
qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
|
||||
qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
|
||||
acc1 += yl[0] * qf1;
|
||||
acc2 += yl[1] * qf2;
|
||||
|
||||
aux32[0] = q4[2] | (q4[3] << 16);
|
||||
aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
|
||||
aux32[0] &= 0x0f0f0f0f;
|
||||
qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
|
||||
qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
|
||||
acc1 += yl[2] * qf1;
|
||||
acc2 += yl[3] * qf2;
|
||||
|
||||
acc1 += acc2;
|
||||
|
||||
sumf[row] += (float)xb.d * (acc1[0] + acc1[1] + acc1[2] + acc1[3]);
|
||||
|
||||
}
|
||||
|
||||
yb += 16 * QK4_NL;
|
||||
}
|
||||
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_iq1_s_f32")]]
|
||||
kernel void kernel_mul_mv_iq1_s_f32(
|
||||
device const void * src0,
|
||||
@ -4475,6 +4577,34 @@ kernel void kernel_mul_mv_iq1_s_f32(
|
||||
kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_iq4_nl_f32")]]
|
||||
kernel void kernel_mul_mv_iq4_nl_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup float * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
//============================= templates and their specializations =============================
|
||||
|
||||
@ -4838,6 +4968,21 @@ void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 &
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
|
||||
device const uint16_t * q4 = (device const uint16_t *)xb->qs;
|
||||
const float d = xb->d;
|
||||
uint32_t aux32;
|
||||
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f;
|
||||
reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
|
||||
reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
|
||||
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
|
||||
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
|
||||
kernel void kernel_get_rows(
|
||||
device const void * src0,
|
||||
@ -5381,6 +5526,7 @@ template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_t kernel_get_r
|
||||
template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_t kernel_get_rows<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_rows<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||
|
||||
//
|
||||
// matrix-matrix multiplication
|
||||
@ -5421,6 +5567,7 @@ template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_m
|
||||
template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||
|
||||
//
|
||||
// indirect matrix-matrix multiplication
|
||||
@ -5473,6 +5620,7 @@ template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel
|
||||
template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||
|
||||
//
|
||||
// matrix-vector multiplication
|
||||
@ -6503,3 +6651,68 @@ kernel void kernel_mul_mv_id_iq1_s_f32(
|
||||
tiisg,
|
||||
sgitg);
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_id_iq4_nl_f32")]]
|
||||
kernel void kernel_mul_mv_id_iq4_nl_f32(
|
||||
device const char * ids,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant uint64_t & nbi1,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne13,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint64_t & nb1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
constant int & idx,
|
||||
device const char * src00,
|
||||
device const char * src01,
|
||||
device const char * src02,
|
||||
device const char * src03,
|
||||
device const char * src04,
|
||||
device const char * src05,
|
||||
device const char * src06,
|
||||
device const char * src07,
|
||||
threadgroup float * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
|
||||
|
||||
const int64_t bid = tgpig.z/(ne12*ne13);
|
||||
|
||||
tgpig.z = tgpig.z%(ne12*ne13);
|
||||
|
||||
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
|
||||
|
||||
kernel_mul_mv_iq4_nl_f32_impl(
|
||||
src0[id],
|
||||
(device const float *) (src1 + bid*nb11),
|
||||
dst + bid*ne0,
|
||||
ne00,
|
||||
ne01,
|
||||
ne02,
|
||||
ne10,
|
||||
ne12,
|
||||
ne0,
|
||||
ne1,
|
||||
r2,
|
||||
r3,
|
||||
shared_values,
|
||||
tgpig,
|
||||
tiisg,
|
||||
sgitg);
|
||||
}
|
||||
|
234
ggml-quants.c
234
ggml-quants.c
@ -3754,6 +3754,26 @@ void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, in
|
||||
}
|
||||
}
|
||||
|
||||
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
|
||||
void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
|
||||
assert(k % QK4_NL == 0);
|
||||
const int nb = k / QK4_NL;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const uint8_t * qs = x[i].qs;
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d);
|
||||
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||
y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
|
||||
y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
y += QK4_NL;
|
||||
qs += QK4_NL/2;
|
||||
}
|
||||
}
|
||||
|
||||
//===================================== Q8_K ==============================================
|
||||
|
||||
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
|
||||
@ -9148,7 +9168,6 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void *
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
assert(nrc == 1);
|
||||
@ -9452,7 +9471,100 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = sumf;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
UNUSED(bx);
|
||||
UNUSED(by);
|
||||
UNUSED(bs);
|
||||
assert(n % QK4_NL == 0);
|
||||
static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
|
||||
|
||||
const block_iq4_nl * restrict x = vx;
|
||||
const block_q8_0 * restrict y = vy;
|
||||
|
||||
const int nb = n / QK4_NL;
|
||||
|
||||
#if defined __ARM_NEON
|
||||
const int8x16_t values = vld1q_s8(kvalues_iq4nl);
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0f);
|
||||
uint8x16x2_t q4bits;
|
||||
int8x16x4_t q4b;
|
||||
int8x16x4_t q8b;
|
||||
int32x4_t prod_1, prod_2;
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
for (int ib = 0; ib < nb; ib += 2) {
|
||||
|
||||
q4bits.val[0] = vld1q_u8(x[ib+0].qs);
|
||||
q4bits.val[1] = vld1q_u8(x[ib+1].qs);
|
||||
q8b.val[0] = vld1q_s8(y[ib+0].qs);
|
||||
q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
|
||||
q8b.val[2] = vld1q_s8(y[ib+1].qs);
|
||||
q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
|
||||
|
||||
q4b.val[0] = vqtbl1q_s8(values, vandq_u8(q4bits.val[0], m4b));
|
||||
q4b.val[1] = vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
|
||||
q4b.val[2] = vqtbl1q_s8(values, vandq_u8(q4bits.val[1], m4b));
|
||||
q4b.val[3] = vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
|
||||
|
||||
prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
|
||||
prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
|
||||
|
||||
sumf += (float)x[ib+0].d * (float)y[ib+0].d * vaddvq_s32(prod_1) + (float)x[ib+1].d * (float)y[ib+1].d * vaddvq_s32(prod_2);
|
||||
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __AVX2__
|
||||
|
||||
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
|
||||
const __m128i m4b = _mm_set1_epi8(0x0f);
|
||||
const __m256i mone = _mm256_set1_epi16(1);
|
||||
|
||||
__m256 accum1 = _mm256_setzero_ps();
|
||||
__m256 accum2 = _mm256_setzero_ps();
|
||||
for (int ib = 0; ib < nb; ib += 2) {
|
||||
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
|
||||
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
|
||||
const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
|
||||
const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
|
||||
const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
|
||||
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
|
||||
const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
|
||||
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
|
||||
const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
|
||||
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
|
||||
const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
|
||||
const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
|
||||
accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
|
||||
_mm256_cvtepi32_ps(p_1), accum1);
|
||||
accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
|
||||
_mm256_cvtepi32_ps(p_2), accum2);
|
||||
|
||||
y += 2;
|
||||
x += 2;
|
||||
}
|
||||
|
||||
*s = hsum_float_8(_mm256_add_ps(accum1, accum2));
|
||||
|
||||
#else
|
||||
float sumf = 0;
|
||||
for (int ib = 0; ib < nb; ++ib) {
|
||||
const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||
sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
|
||||
sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
|
||||
}
|
||||
sumf += d * (sumi1 + sumi2);
|
||||
}
|
||||
*s = sumf;
|
||||
#endif
|
||||
}
|
||||
|
||||
// ================================ IQ2 quantization =============================================
|
||||
@ -10729,3 +10841,123 @@ size_t quantize_iq1_s(const float * src, void * dst, int nrow, int n_per_row, in
|
||||
}
|
||||
return nrow * nblock * sizeof(block_iq1_s);
|
||||
}
|
||||
|
||||
// ============================ 4-bit non-linear quants
|
||||
|
||||
static inline int best_index_int8(int n, const int8_t * val, float x) {
|
||||
if (x <= val[0]) return 0;
|
||||
if (x >= val[n-1]) return n-1;
|
||||
int ml = 0, mu = n-1;
|
||||
while (mu-ml > 1) {
|
||||
int mav = (ml+mu)/2;
|
||||
if (x < val[mav]) mu = mav; else ml = mav;
|
||||
}
|
||||
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
|
||||
}
|
||||
|
||||
static void quantize_row_iq4_nl_impl(const int block_size, const float * GGML_RESTRICT x,
|
||||
ggml_fp16_t * dh, uint8_t * q4,
|
||||
float * weight, uint8_t * L,
|
||||
const int8_t * values,
|
||||
const float * quant_weights) {
|
||||
|
||||
const int ntry = 7;
|
||||
|
||||
float sigma2 = 0;
|
||||
for (int j = 0; j < QK4_NL; ++j) sigma2 += x[j]*x[j];
|
||||
sigma2 *= 2.f/QK4_NL;
|
||||
|
||||
const int nb = QK4_NL/block_size;
|
||||
|
||||
memset(q4, 0, QK4_NL/2);
|
||||
for (int ib = 0; ib < nb; ++ib) {
|
||||
dh[ib] = GGML_FP32_TO_FP16(0.f);
|
||||
const float * xb = x + ib*block_size;
|
||||
if (quant_weights) {
|
||||
const float * qw = quant_weights + ib*block_size;
|
||||
for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
|
||||
} else {
|
||||
for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
|
||||
}
|
||||
float amax = 0, max = 0;
|
||||
for (int j = 0; j < block_size; ++j) {
|
||||
float ax = fabsf(xb[j]);
|
||||
if (ax > amax) {
|
||||
amax = ax; max = xb[j];
|
||||
}
|
||||
}
|
||||
if (!amax) {
|
||||
continue;
|
||||
}
|
||||
float d = -max/values[0];
|
||||
float id = 1/d;
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int j = 0; j < block_size; ++j) {
|
||||
float al = id*xb[j];
|
||||
int l = best_index_int8(16, values, al);
|
||||
float q = values[l];
|
||||
float w = weight[j];
|
||||
sumqx += w*q*xb[j];
|
||||
sumq2 += w*q*q;
|
||||
}
|
||||
float best_id = id;
|
||||
d = sumqx/sumq2;
|
||||
float best = d*sumqx;
|
||||
for (int itry = -ntry; itry <= ntry; ++itry) {
|
||||
id = (itry + values[0])/max;
|
||||
sumqx = sumq2 = 0;
|
||||
for (int j = 0; j < block_size; ++j) {
|
||||
float al = id*xb[j];
|
||||
int l = best_index_int8(16, values, al);
|
||||
float q = values[l];
|
||||
float w = weight[j];
|
||||
sumqx += w*q*xb[j];
|
||||
sumq2 += w*q*q;
|
||||
}
|
||||
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
|
||||
d = sumqx/sumq2; best = d * sumqx;
|
||||
best_id = id;
|
||||
}
|
||||
}
|
||||
dh[ib] = GGML_FP32_TO_FP16(d);
|
||||
for (int j = 0; j < block_size; ++j) {
|
||||
L[ib*block_size + j] = best_index_int8(16, values, best_id*xb[j]);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < QK4_NL/32; ++i) {
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_iq4_nl(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
GGML_ASSERT(n_per_row%QK4_NL == 0);
|
||||
int nblock = n_per_row/QK4_NL;
|
||||
char * qrow = (char *)dst;
|
||||
uint8_t L[QK4_NL];
|
||||
float weight[32];
|
||||
for (int row = 0; row < nrow; ++row) {
|
||||
block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
|
||||
for (int ibl = 0; ibl < nblock; ++ibl) {
|
||||
const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
|
||||
quantize_row_iq4_nl_impl(32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, weight, L, kvalues_iq4nl, qw);
|
||||
}
|
||||
src += n_per_row;
|
||||
qrow += nblock*sizeof(block_iq4_nl);
|
||||
}
|
||||
return nrow * nblock * sizeof(block_iq4_nl);
|
||||
}
|
||||
|
||||
void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
|
||||
assert(k % QK4_NL == 0);
|
||||
block_iq4_nl * restrict y = vy;
|
||||
quantize_row_iq4_nl_reference(x, y, k);
|
||||
}
|
||||
|
||||
void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
|
||||
assert(k % QK4_NL == 0);
|
||||
quantize_iq4_nl(x, y, 1, k, NULL, NULL);
|
||||
}
|
||||
|
||||
|
@ -198,6 +198,14 @@ typedef struct {
|
||||
} block_iq1_s;
|
||||
static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
|
||||
|
||||
// Non-linear quants
|
||||
#define QK4_NL 32
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[QK4_NL/2];
|
||||
} block_iq4_nl;
|
||||
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding");
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -217,6 +225,7 @@ void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGM
|
||||
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int k);
|
||||
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
@ -232,6 +241,7 @@ void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
@ -251,6 +261,7 @@ void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
@ -268,6 +279,7 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
//
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
@ -276,6 +288,7 @@ size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row,
|
||||
size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq4_nl (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
|
30
ggml.c
30
ggml.c
@ -690,6 +690,18 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_IQ4_NL] = {
|
||||
.type_name = "iq4_nl",
|
||||
.blck_size = QK4_NL,
|
||||
.type_size = sizeof(block_iq4_nl),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
|
||||
.from_float = quantize_row_iq4_nl,
|
||||
.from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
|
||||
.vec_dot = ggml_vec_dot_iq4_nl_q8_0,
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_Q8_K] = {
|
||||
.type_name = "q8_K",
|
||||
.blck_size = QK_K,
|
||||
@ -2291,6 +2303,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
||||
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
|
||||
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
|
||||
}
|
||||
@ -7724,6 +7737,7 @@ static void ggml_compute_forward_add(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
ggml_compute_forward_add_q_f32(params, dst);
|
||||
} break;
|
||||
@ -8002,6 +8016,7 @@ static void ggml_compute_forward_add1(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
ggml_compute_forward_add1_q_f32(params, dst);
|
||||
} break;
|
||||
@ -8125,6 +8140,7 @@ static void ggml_compute_forward_acc(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
@ -11022,6 +11038,7 @@ static void ggml_compute_forward_out_prod(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
ggml_compute_forward_out_prod_q_f32(params, dst);
|
||||
} break;
|
||||
@ -11209,6 +11226,7 @@ static void ggml_compute_forward_set(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
@ -11410,6 +11428,7 @@ static void ggml_compute_forward_get_rows(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
ggml_compute_forward_get_rows_q(params, dst);
|
||||
} break;
|
||||
@ -12109,6 +12128,7 @@ static void ggml_compute_forward_alibi(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
@ -12191,6 +12211,7 @@ static void ggml_compute_forward_clamp(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
@ -19725,6 +19746,15 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
||||
result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
{
|
||||
GGML_ASSERT(start % QK4_NL == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
size_t elemsize = sizeof(ggml_fp16_t);
|
||||
|
2
ggml.h
2
ggml.h
@ -355,6 +355,7 @@ extern "C" {
|
||||
GGML_TYPE_IQ2_XS = 17,
|
||||
GGML_TYPE_IQ3_XXS = 18,
|
||||
GGML_TYPE_IQ1_S = 19,
|
||||
GGML_TYPE_IQ4_NL = 20,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
@ -393,6 +394,7 @@ extern "C" {
|
||||
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
|
Loading…
Reference in New Issue
Block a user