talk-llama : sync llama.cpp

This commit is contained in:
Georgi Gerganov 2024-01-28 19:44:10 +02:00
parent bd41733db2
commit e72e4158de
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
2 changed files with 276 additions and 11 deletions

View File

@ -11,6 +11,10 @@
# include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
# include "ggml-opencl.h"
#elif defined(GGML_USE_VULKAN)
# include "ggml-vulkan.h"
#elif defined(GGML_USE_SYCL)
# include "ggml-sycl.h"
#endif
#ifdef GGML_USE_METAL
@ -52,6 +56,7 @@
#include <algorithm>
#include <array>
#include <cassert>
#include <cfloat>
#include <cinttypes>
#include <climits>
#include <cmath>
@ -196,6 +201,7 @@ enum llm_arch {
LLM_ARCH_PHI2,
LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL,
LLM_ARCH_ORION,
LLM_ARCH_UNKNOWN,
};
@ -217,6 +223,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" },
};
enum llm_kv {
@ -641,6 +648,25 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_ORION,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_UNKNOWN,
@ -1256,8 +1282,14 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer
if (host_buffer) {
buft = ggml_backend_cuda_host_buffer_type();
}
#elif defined(GGML_USE_SYCL)
buft = ggml_backend_sycl_host_buffer_type();
#elif defined(GGML_USE_CPU_HBM)
buft = ggml_backend_cpu_hbm_buffer_type();
#elif defined(GGML_USE_VULKAN)
if (host_buffer) {
buft = ggml_backend_vk_host_buffer_type();
}
#endif
if (buft == nullptr) {
@ -1275,6 +1307,10 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
buft = ggml_backend_metal_buffer_type();
#elif defined(GGML_USE_CUBLAS)
buft = ggml_backend_cuda_buffer_type(gpu);
#elif defined(GGML_USE_VULKAN)
buft = ggml_backend_vk_buffer_type();
#elif defined(GGML_USE_SYCL)
buft = ggml_backend_sycl_buffer_type(gpu);
#elif defined(GGML_USE_CLBLAST)
buft = ggml_backend_opencl_buffer_type();
#endif
@ -1332,6 +1368,7 @@ enum e_model {
MODEL_7B,
MODEL_8B,
MODEL_13B,
MODEL_14B,
MODEL_15B,
MODEL_30B,
MODEL_34B,
@ -2683,6 +2720,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_7B: return "7B";
case MODEL_8B: return "8B";
case MODEL_13B: return "13B";
case MODEL_14B: return "14B";
case MODEL_15B: return "15B";
case MODEL_30B: return "30B";
case MODEL_34B: return "34B";
@ -2950,7 +2988,15 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_ORION:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 40: model.type = e_model::MODEL_14B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
}
@ -3933,6 +3979,38 @@ static bool llm_load_tensors(
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
}
} break;
case LLM_ARCH_ORION:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
default:
throw std::runtime_error("unknown architecture");
}
@ -4563,6 +4641,126 @@ struct llm_build_context {
ctx0 = nullptr;
}
}
struct ggml_cgraph * build_orion() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed
if (do_rope_shift) {
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
// if (model.layers[il].bq) {
// Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
// cb(Qcur, "Qcur", il);
// }
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
// if (model.layers[il].bk) {
// Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
// cb(Kcur, "Kcur", il);
// }
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
// if (model.layers[il].bv) {
// Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
// cb(Vcur, "Vcur", il);
// }
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_llama() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@ -6520,6 +6718,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_codeshell();
} break;
case LLM_ARCH_ORION:
{
result = llm.build_orion();
} break;
default:
GGML_ASSERT(false);
}
@ -6652,7 +6854,7 @@ static int llama_decode_internal(
}
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 1;
if (ggml_cpu_has_cublas() && fully_offloaded) {
if ((ggml_cpu_has_cublas() || ggml_cpu_has_vulkan()) && fully_offloaded) {
n_threads = 1;
}
@ -7946,6 +8148,11 @@ void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * c
}
void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
// if (k >= (int32_t)candidates->size) {
// return;
// }
const int64_t t_start_sample_us = ggml_time_us();
k = std::max(k, (int) min_keep);
@ -8054,21 +8261,56 @@ void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * can
return;
}
llama_sample_softmax(ctx, candidates);
const int64_t t_start_sample_us = ggml_time_us();
float scale = candidates->data[0].p; // scale by max prob
size_t i = 1; // first token always matches
bool min_p_applied = false;
for (; i < candidates->size; ++i) {
if (candidates->data[i].p < p * scale && i >= min_keep) {
break; // prob too small
// if the candidates aren't sorted, try the unsorted implementation first
if (!candidates->sorted) {
std::vector<llama_token_data> filtered_tokens;
float max_logit = -FLT_MAX;
for (size_t i = 0; i < candidates->size; ++i) {
max_logit = std::max(max_logit, candidates->data[i].logit);
}
const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
for (size_t i = 0; i < candidates->size; ++i) {
if (candidates->data[i].logit >= min_logit) {
filtered_tokens.push_back(candidates->data[i]);
}
}
// if we have enough values the operation was a success
if (filtered_tokens.size() >= min_keep) {
memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
candidates->size = filtered_tokens.size();
min_p_applied = true;
}
}
// Resize the output vector to keep only the matching tokens
candidates->size = i;
// if the candidates are sorted or the unsorted implementation failed, use this implementation
if (!min_p_applied) {
// Sort the logits in descending order
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
size_t i = 1; // first token always matches
for (; i < candidates->size; ++i) {
if (candidates->data[i].logit < min_logit && i >= min_keep) {
break; // prob too small
}
}
// Resize the output vector to keep only the matching tokens
candidates->size = i;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
@ -9997,6 +10239,26 @@ struct llama_context * llama_new_context_with_model(
}
}
}
#elif defined(GGML_USE_VULKAN)
if (model->n_gpu_layers > 0) {
ggml_backend_t backend = ggml_backend_vk_init();
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
#elif defined(GGML_USE_SYCL)
if (model->n_gpu_layers > 0) {
ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
#endif
ctx->backend_cpu = ggml_backend_cpu_init();
if (ctx->backend_cpu == nullptr) {

View File

@ -6,6 +6,9 @@
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#elif defined(GGML_USE_SYCL)
#include "ggml-sycl.h"
#define LLAMA_MAX_DEVICES GGML_SYCL_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
@ -46,7 +49,7 @@
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 4
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif