Compare commits

..

202 Commits

Author SHA1 Message Date
4260d4fc70 wchess : minor 2023-11-28 15:10:18 +02:00
ee65df7982 wchess : add clear_audio callback 2023-11-28 13:37:26 +02:00
03f254193b wchess: hardcoded rules 2023-11-27 10:51:20 +02:00
8f2d8eae10 wchess: basic chess rules 2023-11-27 10:41:04 +02:00
a44b21bce0 wchess: tidy up entry files 2023-11-25 11:34:06 +02:00
f07ff2aa6a chess -> wchess 2023-11-25 10:16:48 +02:00
280e631bcf chess.wasm: poc of chess rules 2023-11-23 16:09:00 +02:00
2f86da0d09 chess.wasm: add chessboard 2023-11-23 08:49:47 +02:00
a787f7f85c chess.wasm: encoder context value resulting in echoing 2023-11-21 20:42:20 +02:00
c83a38e89d chess.wasm: go back to greedy 2023-11-21 16:56:22 +02:00
758c951729 chess.wasm: grammar in emscripten 2023-11-21 16:30:44 +02:00
eff3570f78 server : add a REST Whisper server example with OAI-like API (#1380)
* Add first draft of server

* Added json support and base funcs for server.cpp

* Add more user input via api-request

also some clean up

* Add reqest params and load post function

Also some general clean up

* Remove unused function

* Add readme

* Add exception handlers

* Update examples/server/server.cpp

* make : add server target

* Add magic curl syntax

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-20 21:40:24 +02:00
fa19bc4195 whisper : update example in whisper.h (#1529)
update the example in the header, previous examples deprecated.
2023-11-20 20:52:27 +02:00
a01b2e0971 sdl : fix audio callback (#1523) 2023-11-20 13:16:38 +02:00
8159a9ab99 whisper : reuse whisper_decode_with_state (#1521) 2023-11-20 13:16:11 +02:00
7516d9c16d ci : redistribute CUDA DLLs (#1522)
see https://docs.nvidia.com/cuda/eula/index.html#attachment-a
2023-11-19 12:43:22 +02:00
46cc26d1b9 whisper : fix with_state methods to use the correct state (#1519)
Co-authored-by: Sandro Hanea <sandrohanea@microsoft.com>
2023-11-19 11:25:30 +02:00
f784f9fa12 whisper : fix overriding the audio context 2023-11-19 10:32:32 +02:00
ca23f8ee6d cuda : assert ggml_add sources to be contiguous 2023-11-19 10:32:08 +02:00
e2f0eba2d4 ios : sync submodule 2023-11-17 10:42:04 +02:00
d4353e48f7 sync : ggml (ggml-alloc + linker + gguf fixes) (#1501) 2023-11-17 10:00:07 +02:00
bebf0da983 quantize : add support for K-quant types 2023-11-16 16:18:24 +02:00
848e54f3ad bench : fix memcpy bench size 2023-11-16 10:59:32 +02:00
7883d1cae4 talk-llama : improve quote and backtick handling (#1364)
* ISSUE-1329: replace " with ' so it doesn't try to execute code in backticks.

* Typo

* Update to keep possessives in the output

Closes the ' then puts a ' in quotes then reopens the ' to escape the ' characters.
2023-11-16 10:34:05 +02:00
ccc85b4ff8 talk-llama : enable GPU by default 2023-11-15 21:33:00 +02:00
c7606b47df models : add info about distilled models 2023-11-15 21:10:13 +02:00
d38af151a1 release : v1.5.0 2023-11-15 21:02:52 +02:00
94267df08e bench-all : add distil models 2023-11-15 20:49:12 +02:00
8713c67133 js : latest whisper.js 2023-11-15 20:10:16 +02:00
57a60639bb bench-all : indentations 2023-11-15 20:01:15 +02:00
bfbaa4dce5 whisper : make large version explicit + fix data size units (#1493) 2023-11-15 19:42:25 +02:00
1d79e78402 java : fix test (#1492) 2023-11-15 17:42:53 +02:00
b6c5f49b78 whisper : add batched decoding (#1486)
* whisper : add whisper_batch

* whisper : move kv_self to whisper_state

* whisper : full batched decoding support

* whisper : fix memory leak in whisper_batch

* whisper : fix mem leak again + remove oboslete function

* whisper : clear kv cache when using whisper_decode API

* whisper : speed-up sampling

* whisper : fix decoders initializer

* bench : add batch size 5 bench

* whisper : add comment about the KV cache size

* whisper : add check for max number of decoders

* whisper : avoid starting sampling threads with bs=1

* whisper : enable beam-search by default

* cuda : sync llama.cpp fixes
2023-11-15 16:12:52 +02:00
d4231649e6 java : use tiny.en for tests (#1484)
* java : use tiny.en for tests

* java : try to fix full params struct
2023-11-13 16:53:55 +02:00
3e5c7feeff whisper : add grammar-based sampling (#1229)
* whisper : add grammar-based sampling

* build : fix after master merge

* command : fix exception when recognizing the command

* whisper : fine-tuning grammar functionality

* command : grammar-related improvements

- option to read grammar from file
- add sample grammars for colors and chess moves
- fine-tune the performance further

* grammars : add assistant + update comments

* command : enable beam-search, add "no_timestamps", add "context", add p

* whisper : remove comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-13 10:51:34 +02:00
c23598e4ca talk-llama : add n_gpu_layers parameter (#1475) 2023-11-13 10:04:16 +02:00
54a08bde29 examples : add whisper.android.java for compatibility with older Android versions using Java (#1382)
* save the recorded audio to a file

* Alignment -help

* Save the correct audio

* chage to a consistent coding style

* Correct typo

* Update examples/stream/stream.cpp

* Update examples/stream/stream.cpp

* Correct variable misuse

* Update examples/stream/stream.cpp

* Update examples/stream/stream.cpp

* Update examples/stream/stream.cpp

* Update examples/stream/stream.cpp

* add *.bin .cxx/ .gradle/ cmake-build-debug/ to gitignore

* add whisper.android.java

* Added support for older versions of Android of Java

* add examples for android java

* add README.md for android java

* add fullTranscribeWithTime

* 增加 toString()方法和测试

* change return type to void

* update to v1.4.1

* add WhisperService

* chage to whisper_full_get_segment_t1

* add method transcribeDataWithTime

* modified toString
```
return "[" + start + " --> " + end + "]:" + sentence;
```

* Optimize code logic

* update text view on handle

* set max lines

* change Chinese to English

* Update bindings/java/build.gradle

* Update .gitignore

* add android.java to github action

* chage android.java to   android_java in build.yml

* remove gradle

* chage jdk to temurin in android_java of CI

* chage jdk to temurin 11 in android_java of CI

* add x to gradlew

* set api-level for android_java of CI

* Update examples/whisper.android.java/app/src/main/jni/whisper/CMakeLists.txt

* add ndk version in build.gradle

* remove local.properties

* add testFullTranscribeWithTime

---------

Co-authored-by: litongmacos <litongjava@qq.com>
Co-authored-by: bobqianic <129547291+bobqianic@users.noreply.github.com>
2023-11-12 18:31:58 +02:00
9f8bbd3fee readme : update comment about source code 2023-11-12 17:47:37 +02:00
3172006a24 ggml : fix some compile warnings 2023-11-12 16:36:20 +02:00
684bc8bd70 readme : update GPU / CUDA 2023-11-12 15:40:37 +02:00
b0502836b8 whisper : add full CUDA and Metal offloading (#1472)
* whisper : migrate to ggml-backend

* whisper : fix logit reading

* whisper : fix tensor allocation during load

* whisper : fix beam-search with CUDA

* whisper : free backends + fix compile warning

* whisper : print when CUDA is enabled

* whisper : fix CoreML

* make : clean-up

* talk : fix compile warning

* whisper : support ggml_conv with CUDA and Metal (#1473)

* ggml : add CUDA support for ggml_conv

* whisper : remove ggml_repeat for conv bias + single backend

* cuda : fix im2col kernel

* metal : add im2col support + mul mat-vec f16 x f16

* bench-all : add q4 models

* whisper : clean-up

* quantize-all : fix

* ggml : im2col opts

* whisper : avoid whisper_model_data wrapper

* whisper : add note that ggml_mul_mat_pad does not work with CUDA

* whisper : factor out graph compute in common function

* whisper : fixes

* whisper : fix UB with measure buffers

* whisper : try to fix the parallel whisper_state functionality (#1479)

* whisper : try to fix the parallel whisper_state functionality

* whisper : fix multi-state Metal

* whisper : free backend instances in whisper_state
2023-11-12 15:31:08 +02:00
ec7a6f04f9 whisper : return with error from whisper_encode_internal and whisper_decode_internal when abort callback is true (#1456)
Co-authored-by: Ben Nortier <ben@bjnortier.com>
2023-11-10 13:51:16 +02:00
37947203e6 talk-llama : add language auto detect (#1467)
* Add '-l auto' to talk-llama example

* Update examples/talk-llama/talk-llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-09 19:21:44 +02:00
953419c69a openvino : update convert-whisper-to-openvino.py to support v3 (#1459) 2023-11-09 12:42:39 +02:00
0de8582f65 coreml : use the correct n_mel value (#1458) 2023-11-08 20:01:41 +00:00
baeb733691 whisper : reset mel time when resetting timings (#1452)
Co-authored-by: Ben Nortier <ben@bjnortier.com>
2023-11-08 15:52:23 +02:00
d03c60dd7f ios : add support for Swift Package Manager (#1370)
* Add support for Swift

* Make it build in Xcode

* Use the SPM package in the SwiftUI example app
2023-11-07 23:53:31 +02:00
6a5d195109 release : v1.4.3 2023-11-07 16:15:48 +02:00
0cbef75422 ggml : fix MIN / MAX macro re-definition 2023-11-07 16:08:46 +02:00
2cdfc4e025 whisper : add support for large v3 (#1444)
* whisper : add support for large v3

* bench : fix build + fix go bindings

* bench : fix n_mels

* models : update readme
2023-11-07 15:30:18 +02:00
973111088b android : decouple example into a library and app module (#1445) 2023-11-07 14:27:33 +02:00
11b503055e whisper : reset ctx->t_start_us when calling whisper_reset_timings() (#1434)
Co-authored-by: Ben Nortier <ben@bjnortier.com>
2023-11-07 11:04:32 +02:00
b629d2d4fe cmake : fix talk-llama build 2023-11-07 11:03:21 +02:00
3bd7d48f51 metal : fix asserts for setThreadgroupMemoryLength (close #1435) 2023-11-07 11:02:16 +02:00
435a6b74e3 ci : fix variable names in GitHub actions config (#1440)
* Remove _SUPPORT from variables

* Change blasdir to OPENBLAS_PATH

* Update OpenBLAS URLs
2023-11-07 10:53:24 +02:00
75dc800d21 talk-llama : fix n_gpu_layers usage again (#1442) 2023-11-07 10:51:27 +02:00
0c91aef2d8 whisper : add missing about callback initializers 2023-11-07 10:49:51 +02:00
3989b29a9b examples : fix n_gpu_layers usage in talk-llama (#1441) 2023-11-07 01:36:23 +00:00
0463028bc2 whisper : add context param to disable gpu (#1293)
* whisper : check state->ctx_metal not null

* whisper : add whisper_context_params { use_gpu }

* whisper : new API with params & deprecate old API

* examples : use no-gpu param && whisper_init_from_file_with_params

* whisper.objc : enable metal & disable on simulator

* whisper.swiftui, metal : enable metal & support load default.metallib

* whisper.android : use new API

* bindings : use new API

* addon.node : fix build & test

* bindings : updata java binding

* bindings : add missing whisper_context_default_params_by_ref WHISPER_API for java

* metal : use SWIFTPM_MODULE_BUNDLE for GGML_SWIFT and reuse library load

* metal : move bundle var into block

* metal : use SWIFT_PACKAGE instead of GGML_SWIFT

* style : minor updates

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-06 11:04:24 +02:00
39cfad0dee whisper : add support for new distilled Whisper models (#1424)
* whisper : add support for new distilled Whisper models

* whisper : print log when using distilled models
2023-11-05 19:43:45 +02:00
6d4d0b5b4b cuda : fix HIPBLAS build 2023-11-05 19:41:15 +02:00
f96e1c5b78 sync : ggml (backend v2, k-quants, CUDA opts, Metal opts, etc.) (#1422)
* sync : ggml (backend v2, k-quants, CUDA opts, Metal opts, etc.)

* metal : allow env metal variable to override resource path (#1415)

* Allow env variable to override resource path

* Update ggml-metal.m

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* sync : restore common / main from `master`

* sync : restore whisper from `master`

* talk-llama : update to latest llama.cpp

* ruby : fix build

* ggml : fix 32-bit ARM build

* ggml : fix MIN / MAX macro collisions + update ios bindings

* ggml : fix ifdefs and MIN / MAX again

* exampels : fix Obj-C and Swift examples

* ggml : fix 32-bit ARM compatibility

* ggml : one more attempt to fix 32-bit ARM compat

* whisper : fix support for larger graphs

---------

Co-authored-by: Chris Raethke <codesoda@users.noreply.github.com>
2023-11-03 21:35:05 +02:00
8a2bee6717 models : use absolute paths for the converted model (#1356) 2023-11-03 10:44:27 +02:00
d445098c8f talk-llama : move up-to-date demo to top (#1417) 2023-11-02 18:50:13 +02:00
74de25158e talk-llama : add an up-to-date demo video 2023-11-02 15:28:48 +02:00
bce49a260e examples : Implement JSON output for Token-Level data in main (#1358) 2023-10-31 19:54:52 +00:00
45c87b5481 models : Faster download for models on windows using BitTransfer (#1404) 2023-10-30 19:18:12 +00:00
dfe4bc6e59 README : Update README in stream to clarify where to compile from (Issue #1400)
* Clarify doc about where to compile from

* Update examples/stream/README.md

* Update examples/stream/README.md

* Update README.md

---------

Co-authored-by: AI @ Home <>
Co-authored-by: bobqianic <129547291+bobqianic@users.noreply.github.com>
2023-10-29 17:11:13 +00:00
54c978c3a3 binding : Expose the audio_ctx param through the Go binding (#1368)
* expose the audio_ctx param through the go binding

* expose the audio_ctx param to the go binding context
2023-10-15 13:35:06 +01:00
9a7074d4aa README : fix typo (#1362) 2023-10-13 16:53:23 +01:00
a0040f5d12 docker : Add dockerfile for cublas (#1286)
* Create Dockerfile

* Rename Dockerfile to cublas.Dockerfile

* Rename cublas.Dockerfile to .devops/cublas.Dockerfile

---------

Co-authored-by: bobqianic <129547291+bobqianic@users.noreply.github.com>
2023-10-11 11:00:17 +01:00
940cdb1396 whisper : abort callback improvements (#1345)
* whisper : initialize abort_callback to null

* whisper : add example how to use abort_callback
2023-10-08 17:22:24 +03:00
1b775cdd68 cmake : Abort the build if a requested feature could not be configured (#1350) 2023-10-07 20:01:18 +01:00
80bf931668 cmake : Prefer pkg-config while looking for BLAS (#1349) 2023-10-07 15:02:07 +01:00
91c0b23384 models : add conversion scripts from HuggingFace models to CoreML (#1304) 2023-10-04 12:00:25 +03:00
2f668c330e whisper : add abort callback (#1335) 2023-10-04 11:57:55 +03:00
08fa34882f examples : move wav_writer from stream.cpp to common.h (#1317)
* Allocate class on the stack instead of on the heap

* Add class wav_writer

* fix some minor issues

* fix some minor issues

* remove potential misleading API
2023-10-03 22:56:11 +03:00
4037705531 whisper : add missing speaker turn API function for whisper_state (#1330) 2023-10-03 22:55:48 +03:00
c76c11e59c examples: Update the README for Talk - fixing the gpt2 URL (#1334) 2023-10-01 04:21:32 +08:00
9edbd0a204 extra: Add benchmark script implemented in Python (#1298)
* Create bench.py

* Various benchmark results

* Update benchmark script with hardware name, and file checks

* Remove old benchmark results

* Add git shorthash

* Round to 2 digits on calculated floats

* Fix the header reference when sorting results

* FIx order of models

* Parse file name

* Simplify filecheck

* Improve print run print statement

* Use simplified model name

* Update benchmark_results.csv

* Process single or lists of processors and threads

* Ignore benchmark results, dont check in

* Move bench.py to extra folder

* Readme section on how to use

* Move command to correct location

* Use separate list for models that exist

* Handle subprocess error in git short hash check

* Fix filtered models list initialization
2023-09-25 23:45:15 +08:00
707507ff6d Examples: Add save audio to file option in stream.cpp (#1310)
* save the recorded audio to a file

* Alignment -help

* Save the correct audio

* chage to a consistent coding style

* Correct typo

* Update examples/stream/stream.cpp

* Update examples/stream/stream.cpp

* Correct variable misuse

* Update examples/stream/stream.cpp

* Update examples/stream/stream.cpp

* Update examples/stream/stream.cpp

* Update examples/stream/stream.cpp

---------

Co-authored-by: bobqianic <129547291+bobqianic@users.noreply.github.com>
2023-09-22 23:43:21 +08:00
JJ
7e1592d2cd readme: Fix spelling error (#1290)
Fixed branding error:  Javascript to JavaScript
2023-09-21 15:55:33 +08:00
903c9579b8 examples: Update README.md of main.cpp (#1306) 2023-09-18 22:14:36 +08:00
b440ef8c96 binding : fix ruby build by adding missing ggml-alloc (#1305) 2023-09-18 21:15:45 +08:00
700f63a806 bench: fix missing include <cstring> (#1303) 2023-09-18 15:51:10 +08:00
951a119926 whisper : increase tokenizer buffer (close #1259) 2023-09-15 21:11:43 +03:00
1ca4041b86 talk-llama : update to latest llama.cpp 2023-09-15 20:06:31 +03:00
80c1512fd5 sync : ggml (const correctness) 2023-09-15 14:49:56 +03:00
0ac9cefd03 metal : restore matrix x vector f16_f32 kerenls for now 2023-09-15 14:40:41 +03:00
b8432f28f4 metal : add F32 support + update bench output 2023-09-15 13:56:08 +03:00
93935980f8 whisper : Metal and ggml-alloc support (#1270)
* metal : init

* whisper : factor out graph builds

* whisper : allocate encoder and decoder using ggml-alloc

* whisper : ggml-alloc is now supported

* whisper : CoreML support ggml-alloc

* build : fix ggml-alloc

* ios : update submodule

* extra : update sync-ggml.sh script to also sync ggml-alloc

* ci : see if this is causing the crash

* whisper : refactor ggml-alloc init

* whisper.android : try to fix build

* whisper : initial Metal version

* ci : try to debug vmem issue

* metal : decoder works on GPU!

* metal : add multi-decoder support

* ggml : fix ggml_nbytes (probably temp solution)

* metal : run "cross" step on the GPU

* whisper : remove ggml_repeat in the encoder

* whisper : offload the Encoder to Metal

* ggml : use simpler ggml_bytes() implementation

* ggml-alloc : try to make CI happy by reducing vram to 128GB

* whisper : add whisper_allocr to wrap ggml_allocr

* whisper : factor out alloc init in a function

* cmake : update to support Metal build

* whisper : add <functional> header

* objc : fix build (no Metal yet)

* ios : add Metal support

* swiftui : fix build

* metal : speed-up KQ multiplication

* metal : sync latest llama.cpp kernels

* readme : add Metal info

* ios : update submodule

* coreml : add code to toggle Core ML config (CPU, ANE, GPU)

* bench : fix timings by running a pre-heat

* bench : start benching the decoder

* whisper : add ggml_mul_mat_pad

* bench : fix uninitialized vars

* whisper : add comment for disabling mul-mat padding

* whisper : add description of ggml_mul_mat_pad

* whisper : clean-up ggml_mul_mat_pad

* metal : remove the "concurrent" flag

* bench : variable n_past

* ios : update SPM package
2023-09-15 12:18:18 +03:00
3fec2119e6 whisper : fix bench regression + fix performance when using CPU BLAS (#1275)
* whisper : fix bench regression

* ggml : use sched_yield when using BLAS + add comment
2023-09-12 13:54:04 +03:00
9b14418863 whisper : faster beam_search sampling via reduced KV cache copies (#1243)
* Faster `beam_search` sampling

Refine the KV cache update logic for more intelligent and efficient updating.

* Faster `whisper_sample_token_topk`

* Update whisper.cpp

* Update whisper.cpp

* Update whisper.cpp

* Reduce `memory allocation`

* Add `pointer swapping`

* Fixed some bugs

* Update whisper.cpp

* Apply suggestions from code review

* Updated the logic for determining `two-copy`

* Updated the logic for determining `two-copy` v2

* whisper : add debug logs + coding style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-10 16:04:27 +03:00
6ddc727fac java : fixed signing of java artifact using gradle (#1267)
* --stacktrace signMavenJavaPublication

* added temporary step "Debug gradle signing"

* cd bindings/java

* use GPG_PRIVATE_KEY and GPG_PASSPHRASE

* use secrets.GPG_PRIVATE_KEY and GPG_PASSPHRASE
2023-09-09 18:55:51 +03:00
acb5278cc8 ci : try to fix gradle action (#1265) 2023-09-08 20:50:15 +03:00
0839209cab gitignore : update 2023-09-08 19:45:28 +03:00
b39809668a sync : ggml (HBM + Metal + style) (#1264) 2023-09-08 17:58:31 +03:00
3e9edc6845 ci : upgrade gradle to 2.4.2 (#1263)
* ci : upgrade gradle to 2.4.2

* cmake : add comment (#1129)
2023-09-08 17:58:14 +03:00
bfc73f1fa2 sync : ggml (CUDA faster rope) 2023-09-08 15:01:26 +03:00
f00c9bba33 cmake : noramlize case (#1129) 2023-09-08 14:50:03 +03:00
b55b505690 build : do not use _GNU_SOURCE gratuitously (#1129)
* Do not use _GNU_SOURCE gratuitously.

What is needed to build whisper.cpp and examples is availability of
stuff defined in The Open Group Base Specifications Issue 6
(https://pubs.opengroup.org/onlinepubs/009695399/) known also as
Single Unix Specification v3 (SUSv3) or POSIX.1-2001 + XSI extensions,
plus some stuff from BSD that is not specified in POSIX.1.

Well, that was true until NUMA support was added recently in ggml,
so enable GNU libc extensions for Linux builds to cover that.

There is no need to penalize musl libc which simply follows standards.

Not having feature test macros in source code gives greater flexibility
to those wanting to reuse it in 3rd party app, as they can build it with
minimal FTM (_XOPEN_SOURCE=600) or other FTM depending on their needs.

It builds without issues in Alpine (musl libc), Ubuntu (glibc), MSYS2.

* examples : include SDL headers before other headers

Avoid macOS build error when _DARWIN_C_SOURCE is not defined, brought by
SDL2 relying on Darwin extension memset_pattern4/8/16 (from string.h).

* make : enable BSD extensions for DragonFlyBSD to expose RLIMIT_MEMLOCK

* make : use BSD-specific FTMs to enable alloca on BSDs

* make : fix OpenBSD build by exposing newer POSIX definitions

* cmake : follow recent FTM improvements from Makefile
2023-09-07 12:36:14 +03:00
2818de21ff examples : fix build + compile warnings (close #1256) 2023-09-07 12:33:12 +03:00
aed5d40607 models : add quantum models to download-ggml-model.sh (#1235)
* Add quantized models to download-ggml-model.sh

* Update names in download-ggml-model script to normalized
2023-09-07 12:16:58 +03:00
afa5477d1c whisper.android : bump gradle plugin and dependencies + a lint pass (#1255) 2023-09-07 12:15:59 +03:00
01fcd42431 sign jar for Maven Central repo 2023-09-07 11:45:44 +10:00
f990610776 whisper.android : address ARM's big.LITTLE arch by checking cpu info (#1254)
Addresses https://github.com/ggerganov/whisper.cpp/issues/1248
2023-09-06 18:32:30 +03:00
64cb45fd79 make : fix detection of AVX2 on macOS (#1250) 2023-09-06 18:22:21 +03:00
ace6c12ec6 ggml : posixify pagesize (#1251)
* ggml : use sysconf(_SC_PAGESIZE) instead of getpagesize() derived from BSD

sed -i 's,getpagesize(),sysconf(_SC_PAGESIZE),g' ggml.c

* metal : use sysconf(_SC_PAGESIZE) instead of getpagesize() derived from BSD

sed -i 's,getpagesize(),sysconf(_SC_PAGESIZE),g' ggml-metal.m
2023-09-06 18:19:36 +03:00
cac75be05b configured publishing.repositories 2023-09-06 13:13:36 +10:00
c3f319d7c2 ggml : sync latest llama.cpp (view_src + alloc improvements) (#1247)
* ggml : sync latest llama.cpp (view_src + alloc improvements)

* ggml : fix build
2023-09-05 20:57:27 +03:00
ba3c333611 make : improve cpuinfo handling on x86 hosts (#1238)
* make : simplify and correct x86 ISA extensions detection on the host

It got broken in commit c5f9acf4b7 for Haiku and Mac OS (Intel),
which report CPU features in upper case.

Now we're finding the names in case-insensitive manner and as words.
SSE3 detection has been corrected for Linux, which uses PNI for that
(Prescott New Instructions).

* make : use dmesg.boot in FreeBSD/DragonFlyBSD to detect x86 ISA extensions on the host

* make : enable x86 ISA extensions on the host both in CFLAGS and CXXFLAGS

* make : correct AVX x86 ISA extension detection on macOS (Intel) host

It got broken in commit c5f9acf4b7.  macOS calls it AVX1.0.
2023-09-05 14:58:47 +03:00
59a3d0cb57 ggml : sync (ggml-alloc, GPU, eps, etc.) (#1220)
* ggml : sync (ggml-alloc, GPU, eps, etc.)

* ggml : fix build

* wasm : fix build
2023-09-05 13:54:40 +03:00
6780c98e19 readme : update CMake build commands (#1231)
* Update README.md

* Update README.md: `vcpkg install opencl clblast`

* readme : update build commands

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-05 13:53:34 +03:00
2f52783a08 OSSRH_USERNAME -> JIRA_USER 2023-08-31 14:54:02 +10:00
7dec9d8cc4 build-root-directory: bindings/java 2023-08-31 12:04:16 +10:00
fb0a24fba2 ci : enable java package publishing (#1228) 2023-08-31 09:57:43 +10:00
8e30bf3c02 ggml : fix compilation errors incurred by -Werror (#1227)
The -Werror warning option turns all warnings into errors. This PR makes
the compiler happy to build ggml.c and whisper.cpp with the stricter option.
2023-08-30 22:09:15 +03:00
99d3c105f5 whisper.android : fix cmake multiple libraries build (#1224)
* whisper.android : fix multiple libraries build

* fix flags for default target
2023-08-30 14:45:13 +03:00
18e9889418 coreml : wrap inference call in @autoreleasepool to fix memory leak (#1218) 2023-08-29 15:44:38 +03:00
8e46ba80d3 make : use cpuinfo in MSYS2 to enable x86 ISA extensions on the host (#1216) 2023-08-28 13:28:26 +03:00
b0d35995c4 make : add support for building on DragonFlyBSD/NetBSD/OpenBSD (#1212) 2023-08-27 21:38:46 +03:00
25466aa1c3 ggml : fix compiling when SSE3 is available but not SSSE3 (#1210)
It got broken in commit 3998465721.
2023-08-27 21:37:31 +03:00
601c2d2181 ggml : detect SSSE3 (#1211)
* ggml : add ggml_cpu_has_ssse3

* whisper : show SSSE3 in system info

* make : detect SSSE3 via cpuinfo
2023-08-27 21:36:41 +03:00
175ffa64ee examples : vim plugin and LSP server (#1144)
* Initial proof of concept Vim plugin

At present, this is likely only slightly better than feature parity with
the existing whisper.nvim

Known issues:
 Trailing whitespace
 Up to an existing length(5 seconds) of speech may be processed when
  listening is enabled
 CPU cycles are spent processing speech even when not listening.

Fixing these issues is likely dependent upon future efforts to create a
dedicated library instead of wrapping examples/stream

* Support $WHISPER_CPP_HOME environment variable

A minor misunderstanding of the whisper.nvim implementation resulted in
a plugin that was functional, but not a drop in replacement as it should
be now.

* Initial progress on LSP implementation

Libcall is nonviable because the library is immediately freed after a
call is made. Further investigation has shown Language Server Protocol as
a promising alternative that both simplifies the required logic on the
vimscript side and increases the ease with which plugins for other
editors could be made in the future. This is a very large undertaking
and my progress has slowed substantially.

Work is far from being in a usable state, but I wish to keep track of
major refactors for organizational purposes.

* Rewrite audio windowing of guided transcription

One of the defining goals of this venture is allowing consecutive
commands to be rattled off without the existing deadzones of the current
implementation.

* Add unguided_transcription. Cleanup.

The unguided transcription implantation heavily borrows from existing
example implementations and the guided_transcription logic.

A high level pass was done to check that method arguments are accurate
to what inputs are actually required.

A first attempt at cancellation support was added for record keeping,
but will be deleted in a future commit.

* Fix compilation.

Resolves a large number of compilation errors.
No testing has been done yet for execution errors.

Update Makefile and .gitignore

* Functional unguided_transcription

* Functional guided_transcription

Fix commandset_list being passed by value
Properly register the first token of a multitoken command

* Minor changes before time fix

I've apparently made an awfully major mistake in thinking that unix time
was in milliseconds and will be changing all timekeeping code to use
standardized methods.

In preparation for this is a number of minor bugfixes.
Output is manually flushed.
An echo method has been added.
registerCommandset now wraps the returned index

* Swap timekeeping to use std::chrono

* Add work in progress lsp backed whisper.vim plugin

Current progress blockers are
 Adding modality awareness to the command processing
  (specifically, motion prompting)
 Improving the VAD to be a little more responsive
  (testing start of activity)

* Reworked vim plugin command loop

* Fix change inside

Multiple bug fixes that, crucially, bring the plugin to the point where a
demonstration video is possible

Add better echo messaging so whisper_log isn't required
 Add loading complete message as indicator when listening has started
Insert/append are actually included in command sets
Some more heavy handed corrections to prevent a double exit when leaving
insert mode
As a somewhat hacky fix, the very first space is removed when inserting.
 This cleans up most use cases, but leaves me unsatisfied with the few
 cases it would be desired.

* Forcibly set commandset_index to 0 after subinsert

Also remove unnecessary ! to use builtin vim command

* Fix upper

A minor scope mistake was causing upper'd inputs to be eaten.
This was fixed and echoing was slightly improved for clarity.

* Fix formatting

Corrects indentation to 4 spaces as project standard
Slightly better error support for malformed json input

* Remove obsolete vim plugin

* Add json.hpp library

The same library that is used for the llama.cpp server

* Minor cleanups

add lsp to the make clean directive.
remove a redundant params definition.
reorder whisper.vim logging for subtranscriptions
Corrections to unlets (variables of argument scope appear immutable)

* Fix indentation. Fallback for subTranscription

Indentation has been changed to 4 spaces.

Unit testing has been set up, I'm opting not to include it in the
repository for now.
It however, has revealed a bug in the state logic where a
subtranscription can be initiated without having a saved command
When this occurs, append is added as a fallback

* Move audio polling logic to a subfunction

While work on the improved vad will continue, It's grown to be a little
out of scope. Instead, a future commit will perform multiple detection
passes at substretches of audio when a backlog of audio exists.

To facilitate this, and prevent code duplication, the vad code has been
moved into a subfunction shared by both the unguided and guided
transcription functions.

* Test for voice over subchunks if backlog > 1s

As the existing VAD implementation only checks for a falling edge at the
end of an audio chunk. It fails to detect voice in cases where the
recorded voice is only at the beginning of the audio.

To ameliorate this, when the timestamp would cause analysis of audio
over a second in length, it is split into 1 second length subchunks
which are individually tested.

Results are promising, but there seems to be a remaining bug with
unguided transcription likely related to saving context

* Limit the maximum length of audio input.

This existing VAD implementation only detects falling edges, which
means any gap in the users speaking is processed for transcription.
This simply establishes a constant maximum length depending on the type
of transcription. Uguided gets a generous 10 seconds and guided, 2.

While quick testing showed that commands are generally around a half a
second to a second, limiting commands to an even second resulted in
extreme degradation of quality. (Seemingly always the same output for a
given commandset)

* Unguided timestamp tracking, cleanup

Unguided transcriptions where not setup to allow for passing of
timestamp data forward, but have been corrected.

No_context is now always set to false. While conceptually desirable for
the quality of guided transcription, It was seemingly responsible for
prior command inputs ghosting in unguided transcription.

Save and Run are now tracked by command number instead of command text.
While command_text was provided for convenience, I wish to keep command
index authoritative. This gives greater consistency and potentially
allows for end users to rename or even translate the spoken versions of
these commands

* By default, maintain mode.

Previously, mode was reset to 0 unless otherwise set.
In addition to causing some edge cases, this was didn't mesh well with
the existing approach to visual mode.

With this change, initial tests indicate visual mode is functional.

* Add undo breaks before subtranscriptions

Subtranscriptions use undo as a hack to allow for partial responses to
be displayed. However, scripts don't cause an undo break mid execution
unless specifically instructed to. This meant that multiple
unguided transcriptions from a single session would cause a latter to
undo a former.

This is now fixed and undo should be reasonably usable as a command.

* Append instead of insert for new undo sequence

When entering and leavening insert mode with `i`, the cursor shifts one
column to the left. This is remedied by using append instead of insert
for setting these breaks in the undo sequence

`-` was also added to the pronunciation dictionary to be pronounced as
minus as it was causing a particularly high failure rate.

* Move undo sequence breaks to command execution

Previously, undo sequence breaks were triggered when there was a command
that caused a move to insert mode. This caused commands that changed
state (like delete or paste) to be bundled together with into the last
command that caused text to be entered.

* Fix repeat. Add space, carrot, dollar commands

 Repeat (.) wasn't being tracked properly just like undo and is being
 manually tracked now.

 While efforts have been made to properly handle spaces, it was
 particularly finicky to add a single space when one is needed. A
 special 'space' command has been added to insert a single space and move
 the cursor after it.

 Carrot and Dollar commands have been added for start of line and end of
 line respectively. These are both simple to implement, and just a
 matter of defining a pronunciation.

* Return error on duplicate in commandset

Not every command in the commandset tokenizes to a single token.
Because of this, it's possible for that two commands could resolve to
the same single token after subsequent tokens are discarded.

This commit adds a simple check for duplicates when a commandset is
registered and returns an error if so.

Additional code will be required later on the vim side to actually
process this error.

* Add support for user-defined commands

This adds a user definable dictionary from spoken keys to strings or
funcrefs. All keys are added to the commandlist and when spoken, trigger
the corresponding function.

Like "save" and "run", these user commands are only available when the
command buffer is empty.

* Add readme, update cmake

* Add area commandset. Refactor spoken_dict

Area commands (inside word, around sentence...) have been given a
commandset as considered earlier.

Verbose definitions for spoken_dict entries now use dicts instead of
lists. This shortens the definition for most keys that require it and
scales better with the addition of further commandsets

* Add mark, jump. Fix change under visual.

Mark (m) and jump (') have been added.

When a visual selection was executed upon a command that initiated a
subtranscription (change) the area of the visual selection is not
properly tracked which causes the attempt to stream in partial response
to fail. This is solved by disabling partial transcriptions from being
streamed when a subtranscription is started while in visual mode.

* Accommodate ignorecase. Fix change.

From testing on older different versions of vim, the test for
distinguishing an 'R' replace all from an 'r' replace could fail if
ignorecase was set. The comparison has been changed to explicitly
require case matching

Change detection has been moved to the execution section as it was missing the
change+motion case.

* Support registers. Fix README typo

There's no logic to prevent doubled register entry, but the functional
result is equivalent to if the same key order was typed into vim.

A minor typo in the readme. I've mismemorized the mnemonic for 't' as 'to'
instead of till., but 'to' can't be used as it's a homophone with '2'.
While there was no mistake in the actual logic, it was misleading to use
'to' in the readme.
2023-08-27 21:35:06 +03:00
cb5fb0a12d whisper : initial hipBLAS support (#1209) 2023-08-27 20:03:58 +03:00
b5bb5c85d4 whisper : allow whisper_full from mel spectrogram - no audio (#1214)
Co-authored-by: jbrough <jamie1612@gmail.com>
2023-08-27 20:02:57 +03:00
7e54df414e whisper : significantly improve the inference quality (#1148)
* Fix MSVC compile error C3688

Instead of simply using 'add_compile_options(/utf-8)' to address the MSVC compile error C3688, a better approach would be to handle it in a way that prevents passing '/utf-8' to NVCC.

* Significantly improve inference quality

In the function `log_mel_spectrogram_worker_thread`, there's an array out-of-bounds issue occurring during the calculation of complex number moduli. This issue is causing disruptions in the FFT spectrum, which, in turn, is reducing the quality of inference.

* Significantly improve inference quality

At last, I've pinpointed the actual source of the problem. Given that the frequency spectrum generated from real input data is symmetrical around the Nyquist frequency, there's a for-loop within the `log_mel_spectrogram_worker_thread` function that attempts to fold the frequency spectrum. Regrettably, a bug within this for-loop is causing a frame shift in the frequency spectrum. The previous attempt to remedy this, which involved using `fft_size + 1` when calculating the modulus, was merely a band-aid solution and did not address the underlying issue.

* Addressed a few minor issues

Fixed the issue of `fft_out` continuously expanding. Resolved the fallback caused by using 'break' instead of `fft_in[j] = 0`.

* Significantly improve inference quality 

Thanks for your patience everyone. It's finally sorted out. Now, the right side of the FFT spectrum is being flipped over to the left, and the amplitudes at corresponding positions on the left and right are added together (the spectrum on the left needs to be shifted by one position), then the average is calculated. FFT_OUT[0] is no longer discarded, making full use of the limited space to pack in more information.

* Add annotation and performance improvement

* Calculate FFT only when fft_in are not all zero

* Some minor performance improvement

* Fixed a bug impacting inference quality

* The first version after all the analysis is completed.

* Fix some bugs and add debug mode

* Fixed several bugs

* Temporarily disable speed-up mode and add debug mode.

* Add debug mode

* Disable speed-up mode and add debug mode

* Fix CI error (#1)

* Fix error

* Fix error

* Fixed several bugs including [BLANK_AUDIO] problem

* Remove Hard-coded hann window

* Some Final Fix (#2)

* Fix error

* Fix error

* Probably the last commit

* Probably the last commit

* whisper : minor coding style changes

* whisper : remove debug from public API

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-27 19:51:33 +03:00
20a80972f4 whisper.android : migrate from ndk-build to CMake (#1204) 2023-08-27 19:35:16 +03:00
7ef3f3837e main : log probs to text file (#1205)
* token/probability file generated with -ls

* code comment cleaning

* main : indentations

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-27 19:09:06 +03:00
aad2dad38a whisper : minor fixes (#1154) 2023-08-27 19:02:00 +03:00
66f2078878 build : fix OpenBLAS detection under Arch Linux (#1173) 2023-08-25 19:26:34 +03:00
8ce20f0f3d make : fix Linux machines supporting AVX1 not AVX2 (#1162)
e.g. ancient CPU E5-2670 (v1)

See issue #1126

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-25 15:52:22 +03:00
c84cf87261 whisper : add precalculated values of sin/cos for speeding up FFT (#1142)
* Add sin/cos precalculated values to speedup FFT

* Update whisper.cpp

Co-authored-by: bobqianic <129547291+bobqianic@users.noreply.github.com>

* Update whisper.cpp

Co-authored-by: bobqianic <129547291+bobqianic@users.noreply.github.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: bobqianic <129547291+bobqianic@users.noreply.github.com>
2023-08-25 15:51:14 +03:00
c5f9acf4b7 make : simplify Makefile (#1147)
* Simplify Architecture specific in Makefile

* unified OS specific check
2023-08-25 15:20:44 +03:00
7decc85eb7 cmake : fix PowerPC build failures introduced in #1174 (#1196) 2023-08-25 15:19:48 +03:00
21e8c67a4f Fix AVX etc. under GCC/CMake (#1174) 2023-08-19 21:39:03 +03:00
a4bb2df36a quantize : fix load vocab crash when len is 128 (#1160)
* quantize : fix load vocab crash when len is 128

* ci : add quantize job
2023-08-06 11:04:42 +03:00
b948361956 examples : add tinydiarization support for streaming (#1137) 2023-08-03 11:24:07 +03:00
a792c4079c cmake : fix MSVC compile error C3688 (#1136)
Instead of simply using 'add_compile_options(/utf-8)' to address the MSVC compile error C3688, a better approach would be to handle it in a way that prevents passing '/utf-8' to NVCC.
2023-07-26 18:57:25 +03:00
7b374c9ac9 Revert "cmake : fix MSVC compile error C3688 on non-unicode Windows (#1110)"
This reverts commit fe5c1a7341.
2023-07-26 10:25:09 +03:00
a32c4aa482 whisper : fix visibility warning of struct whisper_full_params by declaring in advance (#1124) 2023-07-25 19:15:57 +03:00
a195bf899a cmake : enable OpenBLAS on Windows (#1128)
Fixed the issue of not being able to find OpenBLAS on the Windows platform. Even though the name of the previously released binary file was whisper-blas-bin-x64.zip, BLAS was actually not enabled. After enabling, the inference speed can increase by 3-4 times.
2023-07-25 19:15:08 +03:00
ded17dc1cf make : fix CLBlast build on MacOS (#1120) 2023-07-25 19:12:03 +03:00
a0bb409f51 make : check nvcc version and set flag (#1115) 2023-07-25 19:10:54 +03:00
a2684cd93a go : implement SetSplitOnWord (#1114)
* Go binding: Implement SetSplitOnWord

* Add comment for consistency
2023-07-25 19:10:12 +03:00
1450346214 make : tests can be called as "make tests base.en" (#1113) 2023-07-25 19:09:38 +03:00
fe5c1a7341 cmake : fix MSVC compile error C3688 on non-unicode Windows (#1110)
Co-authored-by: Gang Chen <cg@upiot.net>
2023-07-25 19:08:37 +03:00
1fa360fc6e readme : add OpenVINO support details (#1112) 2023-07-25 19:07:59 +03:00
41bf19f613 opencl : sync opencl compilation fix in ggml (#1111) 2023-07-25 19:07:08 +03:00
9ad35bd740 samples : add a larger (30min) sample (#1092)
Co-authored-by: Vadim Peretokin <vadim.peretokin@carasent.com>
2023-07-25 19:00:45 +03:00
fabf79fc67 whisper : expose API to let user control log output (#1060)
* expose api to let user control log output

Add
  whisper_set_log_callback()
that lets user set a callback for log messages.

Change all the
  fprintf(stderr, ...)
to call via the above.

* whisper : add <cstdarg>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-25 18:58:25 +03:00
925915ae37 whisper : move progress calculation out of whisper.cpp (#1081)
Current `progress_step` was hardcoded into whisper.cpp, this resulted in
bindings having to access progress only at that step even if progress
callback was being called at every iteration.

With this change we get greater granularity progress reporting from
whisper.cpp and bindings/implementations can define their own progress step.
2023-07-25 18:53:34 +03:00
97f4a7fee0 examples : add Vim plugin (#1131)
* Initial proof of concept Vim plugin

At present, this is likely only slightly better than feature parity with
the existing whisper.nvim

Known issues:
 Trailing whitespace
 Up to an existing length(5 seconds) of speech may be processed when
  listening is enabled
 CPU cycles are spent processing speech even when not listening.

Fixing these issues is likely dependent upon future efforts to create a
dedicated library instead of wrapping examples/stream

* Support $WHISPER_CPP_HOME environment variable

A minor misunderstanding of the whisper.nvim implementation resulted in
a plugin that was functional, but not a drop in replacement as it should
be now.
2023-07-25 18:34:23 +03:00
3998465721 ci : more platforms coverage (#1101)
* add multi platform

* add image name

* fix

* fix /bin/sh path

* add missing \

* add all platforms for check

* remove platforms

* remove s390x

* - add arm v6
- format run cmd

* remove arm v6

* - bump checkout to v3
- use setup emsdk action
- add arch to all ubuntu jobs

* mymindstorm/setup-emsdk to v12

* add missing QEMU step

* add fail-fast: false for debug

* add freebsd

* remark all jobs except freebsd for test

* add sudo

* enable all tests again

* format

* check __AVX__ support before include immintrin.h

* try auto detect flag by cmake

* fix check for immintrin.h

* fix include check for immintrin.h

* Remove all platforms for sanitizer build except amd64

We have no clue why they failed.

---------

Co-authored-by: Alon Faraj <alon.faraj@mapcore.com>
2023-07-16 23:00:34 +03:00
4774d2feb0 whisper : minor OpenVINO refactoring (#1037)
Hopefully I didn't break something - haven't tested
2023-07-04 20:28:27 +03:00
6f0114f4a6 go : call SetDuration appropriately (#1077) 2023-07-04 16:13:25 +03:00
66616dbd4d go : fix context.Process call in examples (#1067) 2023-07-04 16:05:35 +03:00
62b81276e0 whisper : add OpenVINO support (#1037)
* openvino: use OpenVINO encoder inference

* openvino: add python script for OpenVINO model generation

* whisper: Fix 'unused' warnings when OpenVINO isn't enabled in build

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* whisper: Fix compilation error

* whisper: revert whisper_get_openvino_path_encoder & whisper_get_openvino_path_cache to non-const func signatures

* cmake: Add openvino-encoder as separate object target

* whisper : minor style fixes

* minor : indentation fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-04 15:56:11 +03:00
176d7e4e7b readme : better wording (#1064) 2023-07-04 15:30:31 +03:00
70e6fcd78b readme : add tinydiarize instructions (#1058) 2023-07-04 09:51:22 +03:00
c8d0f5fe98 whisper : support speaker segmentation (local diarization) of mono audio via tinydiarize (#1058)
* add HuggingFace mirror to download  ggml model

* support tdrz via simple hack overriding solm tokens

* fix incorrect translate/transcribe token_ids that are not static const

* add apollo 13 sample for tdrz demo

* render [SPEAKER TURN] consistently in all terminal output using vocab.id_to_token

* extend whisper_segment with speaker_turn_next field and save in json output

* fix failing go build

* slipped in some python syntax whoops

* whisper : finalize tinydiarize support (add flag + fixes)

* whisper : tdrz support for word-level timestamps (respect max_len)

* java : try to fix tests after adding tdrz_enable flag

* main : remove TODO leftover

* java : fix params order list after adding "tdrz_enable"

* whisper : fix solm and add nosp token

* main : print tinydiarize help

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-04 09:45:00 +03:00
fdf58a6668 talk-llama : fix new rope interface 2023-07-03 19:24:01 +03:00
8ba42095c5 Revert "ggml : do not use _GNU_SOURCE gratuitously (#1027)"
This reverts commit 3f7a03ebe3.
2023-07-02 21:53:52 +03:00
d6509bf78d ggml : sync latest repo (mostly refactoring changes) 2023-07-02 21:46:09 +03:00
85ed71aaec talk-llama : fix build on macOS (#1062)
* talk-llama : use posix_madvise() instead of madvise() derived from BSD

sed -i 's,\<madvise\>,posix_&,g;s,\<MADV_,POSIX_&,g' examples/talk-llama/llama-util.h

* make : enable Darwin extensions for macOS builds

This is an attempt at fixing macOS build error coming from the fact that
RLIMIT_MEMLOCK define is not available there without Darwin extensions.
2023-06-28 22:34:50 +03:00
49c9472fa0 extra : update 'quantize-all.sh' to quantize all downloaded models (#1054)
Script will now do what it says: quantize everything except testing models in the 'models'  directory.
2023-06-28 22:07:02 +03:00
72deb41eb2 whisper : split_on_word no longer trims (#1046) 2023-06-25 23:51:01 +03:00
3f7a03ebe3 ggml : do not use _GNU_SOURCE gratuitously (#1027)
* Do not use _GNU_SOURCE gratuitously.

What is needed to build whisper.cpp and examples is availability of
stuff defined in The Open Group Base Specifications Issue 6
(https://pubs.opengroup.org/onlinepubs/009695399/) known also as
Single Unix Specification v3 (SUSv3) or POSIX.1-2001 + XSI extensions.

There is no need to penalize musl libc which simply follows standards.

Not having feature test macros in source code gives greater flexibility
to those wanting to reuse it in 3rd party app, as they can build it with
minimal FTM (_XOPEN_SOURCE=600) or other FTM depending on their needs.

It builds without issues in Alpine (musl libc), Ubuntu (glibc), MSYS2.

* examples : include SDL headers before other headers

This is an attempt at fixing macOS build error coming from SDL2 relying
on Darwin extension memset_pattern4/8/16 coming from Apple's string.h.
2023-06-25 16:34:30 +03:00
62642bb61c talk-llama : fix build after ggml sync (#1049)
sed -i 's,GGML_BACKEND_CUDA,GGML_BACKEND_GPU,g' examples/talk-llama/llama.cpp
2023-06-25 16:13:50 +03:00
f1c9df5806 metal : sync ggml-metal (ref #1047) 2023-06-25 15:40:39 +03:00
6c25fae1c4 opencl : sync latest ggml-opencl 2023-06-25 15:38:30 +03:00
44cb044e66 whisper : fix build with -Werror=undef (#1045) 2023-06-25 15:30:39 +03:00
6c68218e3c models : add ggml_to_pt script (#1042)
* adding ggml_to_pt

* typo sys too many args

* fixing swap errors dimensions

---------

Co-authored-by: simonMoisselin <simon.moisselin@gmail.com>
2023-06-25 15:29:54 +03:00
f11f33f1c0 models : cd statements are quoted to allow spaces in path (#1041) 2023-06-25 15:27:28 +03:00
8ac23c9f77 models : handle paths with spaces in download script (close #1038) 2023-06-25 15:23:23 +03:00
14baf2e7f3 main : add diarization support for all current output types (#1031)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-25 15:07:57 +03:00
bc2dcf85fe readme : add java alternative binding (#1029)
Signed-off-by: Miguel Álvarez <miguelwork92@gmail.com>
2023-06-25 14:46:07 +03:00
1e45911f1a go : add support for whisper_full_lang_id() (#1010)
* * Add support for whisper_full_lang_id() to go bindings

* Expose token.id so we can test beg, eot etc

---------

Co-authored-by: Jay Binks <jay.binks@overthewire.com.au>
2023-06-25 14:45:33 +03:00
67564201ec go : fix "cb" -> "callNewSegment" 2023-06-25 14:34:10 +03:00
5feb0dffba ggml : sync latest ggml lib 2023-06-25 14:30:44 +03:00
7dfc11843c go : improve progress reporting and callback handling (#1024)
- Rename `cb` to `callNewSegment` in the `Process` function
- Add `callProgress` as a new parameter to the `Process` function
- Introduce `ProgressCallback` type for reporting progress during processing
- Update `Whisper_full` function to include `progressCallback` parameter
- Add `registerProgressCallback` function and `cbProgress` map for handling progress callbacks

Signed-off-by: appleboy <appleboy.tw@gmail.com>
2023-06-25 14:07:55 +03:00
6a7f3b8db2 make : update cuBLAS build both x86 and aarch64 (#1015)
make cuBLAS compilation compatible with x86 as well as aarch64.
2023-06-25 13:59:48 +03:00
207a12f5bc make : fix for CUDA native not working as an option on Ubuntu (#1012) 2023-06-25 13:57:18 +03:00
26b70395ff main : exit gracefully when invalid params are passed
* Refactor whisper_params_parse to return false on failure

* Updated help flag behavior
2023-06-25 13:52:29 +03:00
598f607e28 main : gracefully exit when invalid params are passed (#1002)
* Refactor whisper_params_parse to return false on failure

* Updated help flag behavior
2023-06-25 13:51:59 +03:00
3ec7bfffe0 py : make convert-pt-to-ggml.py backwards compatible with older vocab.json tokenizer files (#1001)
* patch checkpoint convert script to keep compatibility with older hf_transformers whisper tokenizer

* typo fix
2023-06-25 13:50:14 +03:00
a7f822ef59 readme : corrected syntax for markdown link (#995) 2023-06-25 13:46:44 +03:00
57543c169e updated java README 2023-06-06 10:27:26 +10:00
5b9e59bc07 speak scripts for Windows 2023-06-01 22:45:00 +10:00
3f7436e8a0 updated README for java 2023-06-01 16:55:48 +10:00
ce6f747064 whisper.android : support decode wav file has 2 channels (#972) 2023-05-31 10:13:14 +03:00
d7c936b44a Feature/java bindings2 (#944)
* Java needs to call `whisper_full_default_params_by_ref()`, returning struct by val does not seem to work.
* added convenience methods to WhisperFullParams
* Remove unused WhisperJavaParams
2023-05-29 09:38:58 +10:00
9b926844e3 models : fix README.md (#964)
Fixes typo on line 76 of models/README.md
2023-05-27 10:40:28 +03:00
5e2b3407ef examples : update elevenlabs scripts to use official python API (#837)
* Update elevenlabs example to use ufficial python API

* Update elevenlabs example to use official python API
2023-05-24 21:11:01 +03:00
4e16a8fb63 readme : highlight OpenBLAS support (#956)
* highlight openblas support

* Update README.md
2023-05-24 11:23:51 +03:00
77eab3fbfe talk-llama : sync latest llama.cpp (close #922, close #954) 2023-05-23 14:04:39 +03:00
041be06d58 cmake : build with any BLAS compatible library (#927)
* Build with any BLAS library

* ci: Removed explicit CUDA nvcc path
2023-05-20 21:23:45 +03:00
429b9785c0 ggml : update WASM SIMD 2023-05-20 20:00:06 +03:00
e410cfc3ce ggml : sync latest ggml repo
- new Q4 and Q8 quantization
- updated CUDA
2023-05-20 18:56:30 +03:00
bc89f285d8 bindings : add java bindings (#931)
* WIP - java bindings

* updated README

* failed attempt at JNI

* fullTranscribe() test passes

* tested on Ubuntu 20

* link to Java bindings
2023-05-20 18:25:02 +03:00
56a87ba45d whisper : fix hebrew language code (#935) 2023-05-20 18:17:54 +03:00
95b02d76b0 coreml : add support of large-v1 model (#926) 2023-05-15 18:36:06 +03:00
278 changed files with 128849 additions and 11845 deletions

28
.devops/cublas.Dockerfile Normal file
View File

@ -0,0 +1,28 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential git cmake
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV WHISPER_CUBLAS=1
RUN make
ENTRYPOINT ["/app/main"]

View File

@ -1,31 +1,41 @@
name: CI
on: [push, pull_request]
env:
ubuntu_image: "ubuntu:22.04"
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install libsdl2-dev
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Build
- name: Build ${{ matrix.arch }}
run: |
make
make stream
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
apt update
apt install -y build-essential libsdl2-dev
make
make stream'
macOS-latest:
runs-on: macOS-latest
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Dependencies
run: |
@ -37,82 +47,104 @@ jobs:
make
make stream
freeBSD-latest:
runs-on: macos-12
steps:
- name: Clone
uses: actions/checkout@v3
- name: Build
uses: cross-platform-actions/action@v0.15.0
with:
operating_system: freebsd
version: '13.2'
run: |
sudo pkg update
sudo pkg install -y gmake sdl2
gmake
gmake stream
ubuntu-latest-gcc:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
build: [Debug, Release]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Dependencies
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Build ${{ matrix.arch }}
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
- name: Build
run: |
make
ctest -L gh --output-on-failure
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
apt update
apt install -y build-essential cmake libsdl2-dev
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make
ctest -L gh --output-on-failure'
ubuntu-latest-clang:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
build: [Debug, Release]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Dependencies
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Build ${{ matrix.arch }}
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libsdl2-dev
- name: Configure
run: cmake . -DWHISPER_SUPPORT_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
- name: Build
run: |
make
ctest -L gh --output-on-failure
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
apt update
apt install -y build-essential cmake libsdl2-dev
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
make
ctest -L gh --output-on-failure'
ubuntu-latest-gcc-sanitized:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
arch: [linux/amd64]
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Dependencies
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Build ${{ matrix.arch }}
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake
- name: Configure
run: cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
- name: Build
run: |
make
ctest -L gh --output-on-failure
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
apt update
apt install -y build-essential cmake
cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
make
ctest -L gh --output-on-failure'
windows:
runs-on: windows-latest
@ -125,14 +157,16 @@ jobs:
include:
- arch: Win32
s2arc: x86
jnaPath: win32-x86
- arch: x64
s2arc: x64
jnaPath: win32-x86-64
- sdl2: ON
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
@ -148,7 +182,7 @@ jobs:
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
-DWHISPER_SDL2=${{ matrix.sdl2 }}
- name: Build
run: |
@ -159,6 +193,12 @@ jobs:
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload dll
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.jnaPath }}_whisper.dll
path: build/bin/${{ matrix.build }}/whisper.dll
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
@ -177,17 +217,17 @@ jobs:
sdl2: [ON]
include:
- arch: Win32
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.24/OpenBLAS-0.3.24-x86.zip
s2arc: x86
- arch: x64
obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.24/OpenBLAS-0.3.24-x64.zip
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
@ -199,7 +239,7 @@ jobs:
7z x blas.zip -oblas -y
copy blas/include/cblas.h .
copy blas/include/openblas_config.h .
echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
echo "OPENBLAS_PATH=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
@ -212,9 +252,9 @@ jobs:
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_SUPPORT_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
-DWHISPER_SUPPORT_SDL2=${{ matrix.sdl2 }}
-DWHISPER_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:OPENBLAS_PATH/lib"
-DWHISPER_SDL2=${{ matrix.sdl2 }}
- name: Build
run: |
@ -223,7 +263,7 @@ jobs:
- name: Copy libopenblas.dll
if: matrix.blas == 'ON'
run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
run: copy "$env:OPENBLAS_PATH/bin/libopenblas.dll" build/bin/${{ matrix.build }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
@ -235,10 +275,10 @@ jobs:
with:
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
windows-cublas:
runs-on: windows-latest
strategy:
matrix:
build: [Release]
@ -250,40 +290,47 @@ jobs:
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Install CUDA Toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.10
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_CUBLAS=1
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Copy CUDA DLLs
run: >
Copy-Item -PassThru
-Path "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/*.dll"
-Include cudart64_*,cublas64_*,cublasLt64_*
-Destination build/bin/${{ matrix.build }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
@ -300,24 +347,16 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Dependencies
run: |
wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
tar -xvf master.tar.gz
emsdk-master/emsdk update
emsdk-master/emsdk install latest
emsdk-master/emsdk activate latest
- name: Setup emsdk
uses: mymindstorm/setup-emsdk@v12
- name: Configure
run: echo "tmp"
- name: Verify
run: emcc -v
- name: Build
run: |
pushd emsdk-master
source ./emsdk_env.sh
popd
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make
@ -330,7 +369,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Configure
run: |
@ -339,7 +378,7 @@ jobs:
- name: Build objc example
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build
- name: Build swiftui example
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphonesimulator build
@ -348,14 +387,14 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v1
uses: actions/checkout@v3
- name: Install Java
uses: actions/setup-java@v3
with:
distribution: zulu
java-version: 17
- name: Setup Android SDK
uses: android-actions/setup-android@v2
@ -363,3 +402,84 @@ jobs:
run: |
cd examples/whisper.android
./gradlew assembleRelease --no-daemon
android_java:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v3
- name: set up JDK 11
uses: actions/setup-java@v3
with:
java-version: '11'
distribution: 'temurin'
cache: gradle
- name: Setup Android SDK
uses: android-actions/setup-android@v2
with:
api-level: 30
build-tools-version: 30.0.3
- name: Build
run: |
cd examples/whisper.android.java
chmod +x ./gradlew
./gradlew assembleRelease
java:
needs: [ 'windows' ]
runs-on: windows-latest
steps:
- uses: actions/checkout@v3
- name: Install Java
uses: actions/setup-java@v1
with:
java-version: 17
- name: Download Windows lib
uses: actions/download-artifact@v3
with:
name: win32-x86-64_whisper.dll
path: bindings/java/build/generated/resources/main/win32-x86-64
- name: Build
run: |
models\download-ggml-model.cmd tiny.en
cd bindings/java
chmod +x ./gradlew
./gradlew build
- name: Upload jar
uses: actions/upload-artifact@v3
with:
name: whispercpp.jar
path: bindings/java/build/libs/whispercpp-*.jar
- name: Publish package
if: ${{ github.ref == 'refs/heads/master' }}
uses: gradle/gradle-build-action@v2.4.2
with:
arguments: publish
build-root-directory: bindings/java
env:
MAVEN_USERNAME: ${{ secrets.JIRA_USER }}
MAVEN_PASSWORD: ${{ secrets.JIRA_PASS }}
PGP_SECRET: ${{ secrets.GPG_PRIVATE_KEY }}
PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
quantize:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v3
- name: Test quantize
run: |
./models/download-ggml-model.sh tiny.en
make quantize
./quantize models/ggml-tiny.en.bin models/ggml-tiny.en-q4_0.bin q4_0

18
.gitignore vendored
View File

@ -8,15 +8,22 @@
.DS_Store
build/
build-coreml/
build-em/
build-debug/
build-release/
build-rwdi/
build-static/
build-cublas/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
# SPM
.build/
.swiftpm
*.metallib
/main
/stream
/command
@ -24,6 +31,8 @@ build-sanitize-thread/
/talk-llama
/bench
/quantize
/server
/lsp
arm_neon.h
sync.sh
@ -41,3 +50,12 @@ extra/bench-gg.txt
models/*.mlmodel
models/*.mlmodelc
models/*.mlpackage
bindings/java/.gradle/
bindings/java/.idea/
.idea/
benchmark_results.csv
cmake-build-debug/
.cxx/
.gradle/
local.properties

View File

@ -1,6 +1,6 @@
cmake_minimum_required (VERSION 3.0)
cmake_minimum_required (VERSION 3.5)
project(whisper.cpp VERSION 1.4.2)
project(whisper.cpp VERSION 1.5.0)
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
@ -35,6 +35,12 @@ endif()
# options
if (APPLE)
set(WHISPER_METAL_DEFAULT ON)
else()
set(WHISPER_METAL_DEFAULT OFF)
endif()
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
@ -54,14 +60,21 @@ option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
if (APPLE)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_METAL "whisper: use Metal" ${WHISPER_METAL_DEFAULT})
option(WHISPER_METAL_NDEBUG "whisper: disable Metal debugging" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
else()
option(WHISPER_OPENBLAS "whisper: support for OpenBLAS" OFF)
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
endif()
option(WHISPER_PERF "whisper: enable perf timings" OFF)
@ -104,10 +117,38 @@ if (APPLE)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
else()
message(WARNING "Accelerate framework not found")
message(FATAL_ERROR "Accelerate framework not found")
endif()
endif()
if (WHISPER_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
if (METAL_FRAMEWORK)
message(STATUS "Metal framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_METAL)
if (WHISPER_METAL_NDEBUG)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_NDEBUG)
endif()
else()
message(FATAL_ERROR "Metal framework not found")
endif()
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
endif()
if (WHISPER_COREML)
find_library(FOUNDATION_FRAMEWORK Foundation)
find_library(COREML_FRAMEWORK CoreML)
@ -117,7 +158,7 @@ if (APPLE)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
else()
message(WARNING "CoreML framework not found")
message(FATAL_ERROR "CoreML framework not found")
endif()
if (WHISPER_COREML_ALLOW_FALLBACK)
@ -127,19 +168,41 @@ if (APPLE)
endif()
if (WHISPER_OPENBLAS)
find_library(OPENBLAS_LIB
NAMES openblas libopenblas
)
if (OPENBLAS_LIB)
message(STATUS "OpenBLAS found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${OPENBLAS_LIB})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
else()
message(WARNING "OpenBLAS not found")
endif()
set(WHISPER_BLAS_VENDOR "OpenBLAS")
set(WHISPER_BLAS ON)
endif()
if (WHISPER_BLAS)
if (WIN32)
if(DEFINED ENV{OPENBLAS_PATH})
set(BLAS_LIBRARIES $ENV{OPENBLAS_PATH}/lib/libopenblas.dll.a)
message(STATUS "Libraries ${BLAS_LIBRARIES}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories($ENV{OPENBLAS_PATH}/include)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else ()
message(FATAL_ERROR "BLAS library was not found. Environment variable OPENBLAS_PATH not defined.")
endif ()
else ()
set(BLA_STATIC 1)
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
set(BLA_SIZEOF_INTEGER 8)
set(BLA_PREFER_PKGCONFIG 1)
find_package(BLAS)
if(BLAS_FOUND)
message(STATUS "BLAS compatible library found")
message(STATUS "Libraries ${BLAS_LIBRARIES}")
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas /usr/local/include/openblas $ENV{BLAS_HOME}/include)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories(${BLAS_INCLUDE_DIRS})
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else()
message(FATAL_ERROR "BLAS library was not found")
endif()
endif ()
endif ()
if (WHISPER_CUBLAS)
cmake_minimum_required(VERSION 3.17)
@ -150,7 +213,7 @@ if (WHISPER_CUBLAS)
enable_language(CUDA)
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
add_compile_definitions(GGML_USE_CUBLAS)
@ -161,7 +224,38 @@ if (WHISPER_CUBLAS)
endif()
else()
message(WARNING "cuBLAS not found")
message(FATAL_ERROR "cuBLAS not found")
endif()
endif()
if (WHISPER_HIPBLAS)
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
endif()
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
endif()
find_package(hip)
find_package(hipblas)
find_package(rocblas)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
set_property(TARGET ggml-rocm PROPERTY POSITION_INDEPENDENT_CODE ON)
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
if (WHISPER_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ggml-rocm)
else()
message(FATAL_ERROR "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
endif()
endif()
@ -170,16 +264,20 @@ if (WHISPER_CLBLAST)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_OPENCL_SOURCES ggml-opencl.c ggml-opencl.h)
set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h)
add_compile_definitions(GGML_USE_CLBLAST)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} clblast)
else()
message(WARNING "CLBlast not found")
message(FATAL_ERROR "CLBlast not found")
endif()
endif()
if( WHISPER_OPENVINO )
find_package(OpenVINO REQUIRED COMPONENTS Runtime)
endif()
# compiler flags
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
@ -219,20 +317,25 @@ message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
message(STATUS "ARM detected")
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
message(STATUS "PowerPC detected")
else()
message(STATUS "x86 detected")
if (MSVC)
if(NOT WHISPER_NO_AVX2)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /utf-8")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /utf-8")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /utf-8")
if(NOT WHISPER_NO_AVX2)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
endif()
else()
if (EMSCRIPTEN)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
@ -254,6 +357,53 @@ else()
endif()
endif()
#
# POSIX conformance
#
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
add_compile_definitions(_XOPEN_SOURCE=600)
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
remove_definitions(-D_XOPEN_SOURCE=600)
add_compile_definitions(_XOPEN_SOURCE=700)
endif()
# Data types, macros and functions related to controlling CPU affinity
# are available on Linux through GNU extensions in libc
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions(_GNU_SOURCE)
endif()
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
if (CMAKE_SYSTEM_NAME MATCHES "Darwin")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "DragonFly")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
add_compile_definitions(__BSD_VISIBLE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
add_compile_definitions(_NETBSD_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
add_compile_definitions(_BSD_SOURCE)
endif()
if (WHISPER_PERF)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
endif()
@ -285,6 +435,24 @@ if (WHISPER_COREML)
)
endif()
if (WHISPER_OPENVINO)
set(TARGET whisper.openvino)
add_library(${TARGET} OBJECT
openvino/whisper-openvino-encoder.h
openvino/whisper-openvino-encoder.cpp
)
target_include_directories(${TARGET} PUBLIC
.
)
set_property(TARGET ${TARGET} PROPERTY POSITION_INDEPENDENT_CODE ON)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
endif()
#
# whisper - this is the main library of the project
#
@ -294,8 +462,15 @@ set(TARGET whisper)
add_library(${TARGET}
ggml.h
ggml.c
${GGML_CUDA_SOURCES}
${GGML_OPENCL_SOURCES}
ggml-alloc.h
ggml-alloc.c
ggml-backend.h
ggml-backend.c
ggml-quants.h
ggml-quants.c
${GGML_SOURCES_METAL}
${GGML_SOURCES_CUDA}
${GGML_SOURCES_OPENCL}
whisper.h
whisper.cpp
)
@ -310,6 +485,10 @@ if (WHISPER_COREML)
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
endif()
if (WHISPER_OPENVINO)
target_link_libraries(${TARGET} PRIVATE whisper.openvino)
endif()
if (MSVC)
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
@ -332,9 +511,15 @@ if (BUILD_SHARED_LIBS)
WHISPER_BUILD
GGML_BUILD
)
if (WHISPER_METAL)
# TODO: I think this should make ggml-metal.m "see" the ggml-metal.metal file from the "bin" directory
# but for some reason it does not work here like it does in llama.cpp
set_target_properties(${TARGET} PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
endif()
endif()
if (GGML_CUDA_SOURCES)
if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
@ -350,10 +535,13 @@ target_compile_definitions(${TARGET} PUBLIC
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h")
include(GNUInstallDirs)
install(TARGETS ${TARGET}
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib/static
RUNTIME DESTINATION bin
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib/static
RUNTIME DESTINATION bin
RESOURCE DESTINATION bin
PUBLIC_HEADER DESTINATION include
)

309
Makefile
View File

@ -1,4 +1,4 @@
default: main bench quantize
default: main bench quantize server
ifndef UNAME_S
UNAME_S := $(shell uname -s)
@ -12,7 +12,13 @@ ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
CCV := $(shell $(CC) --version | head -n 1)
ifndef NVCC_VERSION
ifeq ($(call,$(shell which nvcc))$(.SHELLSTATUS),0)
NVCC_VERSION := $(shell nvcc --version | egrep -o "V[0-9]+.[0-9]+.[0-9]+" | cut -c2-)
endif
endif
CCV := $(shell $(CC) --version | head -n 1)
CXXV := $(shell $(CXX) --version | head -n 1)
# Mac OS + Arm can report x86_64
@ -36,27 +42,59 @@ CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
LDFLAGS =
# ref: https://github.com/ggerganov/whisper.cpp/issues/37
ifneq ($(wildcard /usr/include/musl/*),)
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
CXXFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
CFLAGS += -D_XOPEN_SOURCE=600
CXXFLAGS += -D_XOPEN_SOURCE=600
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
ifeq ($(UNAME_S),OpenBSD)
CFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
CXXFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
endif
# Data types, macros and functions related to controlling CPU affinity
# are available on Linux through GNU extensions in libc
ifeq ($(UNAME_S),Linux)
CFLAGS += -D_GNU_SOURCE
CXXFLAGS += -D_GNU_SOURCE
endif
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
ifeq ($(UNAME_S),Darwin)
CFLAGS += -D_DARWIN_C_SOURCE
CXXFLAGS += -D_DARWIN_C_SOURCE
endif
ifeq ($(UNAME_S),DragonFly)
CFLAGS += -D__BSD_VISIBLE
CXXFLAGS += -D__BSD_VISIBLE
endif
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
ifeq ($(UNAME_S),FreeBSD)
CFLAGS += -D__BSD_VISIBLE
CXXFLAGS += -D__BSD_VISIBLE
endif
ifeq ($(UNAME_S),NetBSD)
CFLAGS += -D_NETBSD_SOURCE
CXXFLAGS += -D_NETBSD_SOURCE
endif
ifeq ($(UNAME_S),OpenBSD)
CFLAGS += -D_BSD_SOURCE
CXXFLAGS += -D_BSD_SOURCE
endif
# OS specific
# TODO: support Windows
ifeq ($(UNAME_S),Linux)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),Darwin)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),FreeBSD)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),Haiku)
ifeq ($(filter $(UNAME_S),Linux Darwin DragonFly FreeBSD NetBSD OpenBSD Haiku),$(UNAME_S))
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
@ -64,66 +102,56 @@ endif
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
ifeq ($(UNAME_S),Darwin)
CFLAGS += -mf16c
AVX1_M := $(shell sysctl machdep.cpu.features)
ifneq (,$(findstring FMA,$(AVX1_M)))
CFLAGS += -mfma
endif
ifneq (,$(findstring AVX1.0,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell sysctl machdep.cpu.leaf7_features)
ifneq (,$(findstring AVX2,$(AVX2_M)))
CFLAGS += -mavx2
endif
CPUINFO_CMD := sysctl machdep.cpu.features machdep.cpu.leaf7_features
else ifeq ($(UNAME_S),Linux)
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
ifneq (,$(findstring avx2,$(AVX2_M)))
CFLAGS += -mavx2
endif
FMA_M := $(shell grep "fma " /proc/cpuinfo)
ifneq (,$(findstring fma,$(FMA_M)))
CFLAGS += -mfma
endif
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
ifneq (,$(findstring f16c,$(F16C_M)))
CFLAGS += -mf16c
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
endif
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
ifneq (,$(findstring sse3,$(SSE3_M)))
CFLAGS += -msse3
endif
CPUINFO_CMD := cat /proc/cpuinfo
else ifneq (,$(filter MINGW32_NT% MINGW64_NT%,$(UNAME_S)))
CPUINFO_CMD := cat /proc/cpuinfo
else ifneq (,$(filter DragonFly FreeBSD,$(UNAME_S)))
CPUINFO_CMD := grep Features /var/run/dmesg.boot
else ifeq ($(UNAME_S),Haiku)
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
ifneq (,$(findstring avx2,$(AVX2_M)))
CFLAGS += -mavx2
endif
FMA_M := $(shell sysinfo -cpu | grep "FMA ")
ifneq (,$(findstring fma,$(FMA_M)))
CFLAGS += -mfma
endif
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
ifneq (,$(findstring f16c,$(F16C_M)))
CFLAGS += -mf16c
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
endif
else
CFLAGS += -mfma -mf16c -mavx -mavx2
CPUINFO_CMD := sysinfo -cpu
endif
ifdef CPUINFO_CMD
AVX_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX|AVX1.0')
ifneq (,$(AVX_M))
CFLAGS += -mavx
CXXFLAGS += -mavx
endif
AVX2_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX2')
ifneq (,$(AVX2_M))
CFLAGS += -mavx2
CXXFLAGS += -mavx2
endif
FMA_M := $(shell $(CPUINFO_CMD) | grep -iw 'FMA')
ifneq (,$(FMA_M))
CFLAGS += -mfma
CXXFLAGS += -mfma
endif
F16C_M := $(shell $(CPUINFO_CMD) | grep -iw 'F16C')
ifneq (,$(F16C_M))
CFLAGS += -mf16c
CXXFLAGS += -mf16c
endif
SSE3_M := $(shell $(CPUINFO_CMD) | grep -iwE 'PNI|SSE3')
ifneq (,$(SSE3_M))
CFLAGS += -msse3
CXXFLAGS += -msse3
endif
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -iw 'SSSE3')
ifneq (,$(SSSE3_M))
CFLAGS += -mssse3
CXXFLAGS += -mssse3
endif
endif
endif
ifeq ($(UNAME_M),amd64)
CFLAGS += -mavx -mavx2 -mfma -mf16c
endif
ifneq ($(filter ppc64%,$(UNAME_M)),)
@ -154,30 +182,67 @@ ifdef WHISPER_COREML_ALLOW_FALLBACK
endif
endif
ifndef WHISPER_NO_METAL
ifeq ($(UNAME_S),Darwin)
WHISPER_METAL := 1
CFLAGS += -DGGML_USE_METAL
CXXFLAGS += -DGGML_USE_METAL
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
endif
endif
ifdef WHISPER_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
LDFLAGS += -lopenblas
endif
ifdef WHISPER_CUBLAS
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
ifeq ($(shell expr $(NVCC_VERSION) \>= 11.6), 1)
CUDA_ARCH_FLAG=native
else
CUDA_ARCH_FLAG=all
endif
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib
WHISPER_OBJ += ggml-cuda.o
NVCC = nvcc
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
endif
ifdef WHISPER_HIPBLAS
ROCM_PATH ?= /opt/rocm
HIPCC ?= $(ROCM_PATH)/bin/hipcc
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
WHISPER_OBJ += ggml-cuda.o
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif
ifdef WHISPER_CLBLAST
CFLAGS += -DGGML_USE_CLBLAST
LDFLAGS += -lclblast -lOpenCL
CXXFLAGS += -DGGML_USE_CLBLAST
LDFLAGS += -lclblast
ifeq ($(UNAME_S),Darwin)
LDFLAGS += -framework OpenCL
else
LDFLAGS += -lOpenCL
endif
WHISPER_OBJ += ggml-opencl.o
ggml-opencl.o: ggml-opencl.c ggml-opencl.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif
ifdef WHISPER_GPROF
@ -233,6 +298,17 @@ $(info )
ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h
$(CC) $(CFLAGS) -c $< -o $@
WHISPER_OBJ += ggml.o ggml-alloc.o ggml-backend.o ggml-quants.o
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
$(CXX) $(CXXFLAGS) -c $< -o $@
@ -248,14 +324,21 @@ whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-imp
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
endif
libwhisper.a: ggml.o $(WHISPER_OBJ)
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
ifdef WHISPER_METAL
ggml-metal.o: ggml-metal.m ggml-metal.h
$(CC) $(CFLAGS) -c $< -o $@
libwhisper.so: ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
WHISPER_OBJ += ggml-metal.o
endif
libwhisper.a: $(WHISPER_OBJ)
$(AR) rcs libwhisper.a $(WHISPER_OBJ)
libwhisper.so: $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so $(WHISPER_OBJ) $(LDFLAGS)
clean:
rm -f *.o main stream command talk talk-llama bench quantize libwhisper.a libwhisper.so
rm -f *.o main stream command talk talk-llama bench quantize server lsp libwhisper.a libwhisper.so
#
# Examples
@ -266,27 +349,33 @@ CC_SDL=`sdl2-config --cflags --libs`
SRC_COMMON = examples/common.cpp examples/common-ggml.cpp
SRC_COMMON_SDL = examples/common-sdl.cpp
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o main $(LDFLAGS)
main: examples/main/main.cpp $(SRC_COMMON) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) $(WHISPER_OBJ) -o main $(LDFLAGS)
./main -h
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
bench: examples/bench/bench.cpp $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp $(WHISPER_OBJ) -o bench $(LDFLAGS)
quantize: examples/quantize/quantize.cpp ggml.o $(WHISPER_OBJ) $(SRC_COMMON)
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o quantize $(LDFLAGS)
quantize: examples/quantize/quantize.cpp $(WHISPER_OBJ) $(SRC_COMMON)
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp $(SRC_COMMON) $(WHISPER_OBJ) -o quantize $(LDFLAGS)
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
server: examples/server/server.cpp $(SRC_COMMON) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/server/server.cpp $(SRC_COMMON) $(WHISPER_OBJ) -o server $(LDFLAGS)
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
command: examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o lsp $(CC_SDL) $(LDFLAGS)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
#
# Audio samples
@ -301,12 +390,19 @@ samples:
@wget --quiet --show-progress -O samples/gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
@wget --quiet --show-progress -O samples/hp0.ogg https://upload.wikimedia.org/wikipedia/en/d/d4/En.henryfphillips.ogg
@wget --quiet --show-progress -O samples/mm1.wav https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav
@wget --quiet --show-progress -O samples/a13.mp3 https://upload.wikimedia.org/wikipedia/commons/transcoded/6/6f/Apollo13-wehaveaproblem.ogg/Apollo13-wehaveaproblem.ogg.mp3
@wget --quiet --show-progress -O samples/diffusion2023-07-03.flac https://archive.org/download/diffusion2023-07-03/diffusion2023-07-03.flac
@echo "Converting to 16-bit WAV ..."
@ffmpeg -loglevel -0 -y -i samples/gb0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb0.wav
@ffmpeg -loglevel -0 -y -i samples/gb1.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb1.wav
@ffmpeg -loglevel -0 -y -i samples/hp0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/hp0.wav
@rm samples/*.ogg
@ffmpeg -loglevel -0 -y -i samples/mm1.wav -ar 16000 -ac 1 -c:a pcm_s16le samples/mm0.wav
@rm samples/mm1.wav
@ffmpeg -loglevel -0 -y -i samples/a13.mp3 -ar 16000 -ac 1 -c:a pcm_s16le -ss 00:00:00 -to 00:00:30 samples/a13.wav
@rm samples/a13.mp3
@ffmpeg -loglevel -0 -y -i samples/diffusion2023-07-03.flac -ar 16000 -ac 1 -c:a pcm_s16le samples/diffusion2023-07-03.wav
@rm samples/diffusion2023-07-03.flac
#
# Models
@ -324,9 +420,10 @@ samples:
.PHONY: medium.en
.PHONY: medium
.PHONY: large-v1
.PHONY: large
.PHONY: large-v2
.PHONY: large-v3
tiny.en tiny base.en base small.en small medium.en medium large-v1 large: main
tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large-v3: main
bash ./models/download-ggml-model.sh $@
@echo ""
@echo "==============================================="
@ -348,4 +445,4 @@ tiny.en tiny base.en base small.en small medium.en medium large-v1 large: main
.PHONY: tests
tests:
bash ./tests/run-tests.sh
bash ./tests/run-tests.sh $(word 2, $(MAKECMDGOALS))

77
Package.swift Normal file
View File

@ -0,0 +1,77 @@
// swift-tools-version:5.5
import PackageDescription
#if arch(arm) || arch(arm64)
let platforms: [SupportedPlatform]? = [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
]
let exclude: [String] = []
let resources: [Resource] = [
.process("ggml-metal.metal")
]
let additionalSources: [String] = ["ggml-metal.m"]
let additionalSettings: [CSetting] = [
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL")
]
#else
let platforms: [SupportedPlatform]? = nil
let exclude: [String] = ["ggml-metal.metal"]
let resources: [Resource] = []
let additionalSources: [String] = []
let additionalSettings: [CSetting] = []
#endif
let package = Package(
name: "whisper",
platforms: platforms,
products: [
.library(name: "whisper", targets: ["whisper"]),
],
targets: [
.target(
name: "whisper",
path: ".",
exclude: exclude + [
"bindings",
"cmake",
"coreml",
"examples",
"extra",
"models",
"samples",
"tests",
"CMakeLists.txt",
"ggml-cuda.cu",
"ggml-cuda.h",
"Makefile"
],
sources: [
"ggml.c",
"whisper.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c"
] + additionalSources,
resources: resources,
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_ACCELERATE")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
] + additionalSettings,
linkerSettings: [
.linkedFramework("Accelerate")
]
)
],
cxxLanguageStandard: .cxx11
)

208
README.md
View File

@ -6,21 +6,21 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Beta: [v1.4.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.2) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.5.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.5.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
- Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate framework and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
- AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
- Low memory usage (Flash Attention)
- Zero memory allocations at runtime
- Runs on the CPU
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- Support for CPU-only inference
- [Efficient GPU support for NVIDIA](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
- [OpenVINO Support](https://github.com/ggerganov/whisper.cpp#openvino-support)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
Supported platforms:
@ -28,15 +28,14 @@ Supported platforms:
- [x] Mac OS (Intel and Arm)
- [x] [iOS](examples/whisper.objc)
- [x] [Android](examples/whisper.android)
- [x] [Java](bindings/java/README.md)
- [x] Linux / [FreeBSD](https://github.com/ggerganov/whisper.cpp/issues/56#issuecomment-1350920264)
- [x] [WebAssembly](examples/whisper.wasm)
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
- [x] [Raspberry Pi](https://github.com/ggerganov/whisper.cpp/discussions/166)
The entire implementation of the model is contained in 2 source files:
- Tensor operations: [ggml.h](ggml.h) / [ggml.c](ggml.c)
- Transformer inference: [whisper.h](whisper.h) / [whisper.cpp](whisper.cpp)
The entire high-level implementation of the model is contained in [whisper.h](whisper.h) and [whisper.cpp](whisper.cpp).
The rest of the code is part of the [ggml](https://github.com/ggerganov/ggml) machine learning library.
Having such a lightweight implementation of the model allows to easily integrate it in different platforms and applications.
As an example, here is a video of running the model on an iPhone 13 device - fully offline, on-device: [whisper.objc](examples/whisper.objc)
@ -47,6 +46,10 @@ You can also easily make your own offline voice assistant application: [command]
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
On Apple Silicon, the inference runs fully on the GPU via Metal:
https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
## Implementation details
@ -58,7 +61,7 @@ Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
- Various other examples are available in the [examples](examples) folder
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
intrinsics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
## Quick start
@ -106,29 +109,37 @@ options:
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-bo N, --best-of N [5 ] number of best candidates to keep
-sow, --split-on-word [false ] split on word rather than on token
-bo N, --best-of N [2 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-olrc, --output-lrc [false ] output result in a lrc file
-owts, --output-words [false ] output script for generating karaoke video
-fp, --font-path [/System/Library/Fonts/Supplemental/Courier New Bold.ttf] path to a monospace font for karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-oj, --output-json [false ] output result in a JSON file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [true ] do not print timestamps
-nt, --no-timestamps [false ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
-dl, --detect-language [false ] exit after automatically detecting language
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
-ls, --log-score [false ] log best decoder scores of token
bash ./models/download-ggml-model.sh base.en
@ -219,18 +230,19 @@ make small
make medium.en
make medium
make large-v1
make large
make large-v2
make large-v3
```
## Memory usage
| Model | Disk | Mem | SHA |
| --- | --- | --- | --- |
| tiny | 75 MB | ~125 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
| base | 142 MB | ~210 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
| small | 466 MB | ~600 MB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
| Model | Disk | Mem |
| --- | --- | --- |
| tiny | 75 MiB | ~273 MB |
| base | 142 MiB | ~388 MB |
| small | 466 MiB | ~852 MB |
| medium | 1.5 GiB | ~2.1 GB |
| large | 2.9 GiB | ~3.9 GB |
## Quantization
@ -283,8 +295,8 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
WHISPER_COREML=1 make -j
# using CMake
cd build
cmake -DWHISPER_COREML=1 ..
cmake -B build -DWHISPER_COREML=1
cmake --build build -j --config Release
```
- Run the examples as usual. For example:
@ -308,9 +320,88 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
## NVIDIA GPU support via cuBLAS
## OpenVINO support
With NVIDIA cards, the Encoder processing can be offloaded to the GPU to a large extend through cuBLAS.
On platforms that support [OpenVINO](https://github.com/openvinotoolkit/openvino), the Encoder inference can be executed
on OpenVINO-supported devices including x86 CPUs and Intel GPUs (integrated & discrete).
This can result in significant speedup in encoder performance. Here are the instructions for generating the OpenVINO model and using it with `whisper.cpp`:
- First, setup python virtual env. and install python dependencies. Python 3.10 is recommended.
Windows:
```
cd models
python -m venv openvino_conv_env
openvino_conv_env\Scripts\activate
python -m pip install --upgrade pip
pip install -r openvino-conversion-requirements.txt
```
Linux and macOS:
```
cd models
python3 -m venv openvino_conv_env
source openvino_conv_env/bin/activate
python -m pip install --upgrade pip
pip install -r openvino-conversion-requirements.txt
```
- Generate an OpenVINO encoder model. For example, to generate a `base.en` model, use:
```
python convert-whisper-to-openvino.py --model base.en
```
This will produce ggml-base.en-encoder-openvino.xml/.bin IR model files. It's recommended to relocate these to the same folder as ggml models, as that
is the default location that the OpenVINO extension will search at runtime.
- Build `whisper.cpp` with OpenVINO support:
Download OpenVINO package from [release page](https://github.com/openvinotoolkit/openvino/releases). The recommended version to use is [2023.0.0](https://github.com/openvinotoolkit/openvino/releases/tag/2023.0.0).
After downloading & extracting package onto your development system, set up required environment by sourcing setupvars script. For example:
Linux:
```bash
source /path/to/l_openvino_toolkit_ubuntu22_2023.0.0.10926.b4452d56304_x86_64/setupvars.sh
```
Windows (cmd):
```
C:\Path\To\w_openvino_toolkit_windows_2023.0.0.10926.b4452d56304_x86_64\setupvars.bat
```
And then build the project using cmake:
```bash
cmake -B build -DWHISPER_OPENVINO=1
cmake --build build -j --config Release
```
- Run the examples as usual. For example:
```bash
./main -m models/ggml-base.en.bin -f samples/jfk.wav
...
whisper_ctx_init_openvino_encoder: loading OpenVINO model from 'models/ggml-base.en-encoder-openvino.xml'
whisper_ctx_init_openvino_encoder: first run on a device may take a while ...
whisper_openvino_init: path_model = models/ggml-base.en-encoder-openvino.xml, device = GPU, cache_dir = models/ggml-base.en-encoder-openvino-cache
whisper_ctx_init_openvino_encoder: OpenVINO model loaded
system_info: n_threads = 4 / 8 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | COREML = 0 | OPENVINO = 1 |
...
```
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
cached for the next run.
For more information about the Core ML implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
## NVIDIA GPU support
With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
Now build `whisper.cpp` with cuBLAS support:
@ -322,7 +413,7 @@ WHISPER_CUBLAS=1 make -j
## OpenCL GPU support via CLBlast
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APU's or low end devices for up to ~2x speedup.
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APUs or low end devices for up to ~2x speedup.
First, make sure you have installed `CLBlast` for your OS or Distribution: https://github.com/CNugteren/CLBlast
@ -335,16 +426,26 @@ make clean
WHISPER_CLBLAST=1 make -j
CMake:
cd whisper.cpp ; mkdir build ; cd build
cmake -DWHISPER_CLBLAST=ON ..
make clean
make -j
cp bin/* ../
cd whisper.cpp
cmake -B build -DWHISPER_CLBLAST=ON
cmake --build build -j --config Release
```
Run all the examples as usual.
## BLAS CPU support via OpenBLAS
Encoder processing can be accelerated on the CPU via OpenBLAS.
First, make sure you have installed `openblas`: https://www.openblas.net/
Now build `whisper.cpp` with OpenBLAS support:
```
make clean
WHISPER_OPENBLAS=1 make -j
```
## Limitations
- Inference only
@ -479,7 +580,7 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
[00:00:10.020 --> 00:00:11.000] country.
```
## Word-level timestamp
## Word-level timestamp (experimental)
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
@ -520,6 +621,32 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
[00:00:10.510 --> 00:00:11.000] .
```
## Speaker segmentation via tinydiarize (experimental)
More information about this approach is available here: https://github.com/ggerganov/whisper.cpp/pull/1058
Sample usage:
```py
# download a tinydiarize compatible model
./models/download-ggml-model.sh small.en-tdrz
# run as usual, adding the "-tdrz" command-line argument
./main -f ./samples/a13.wav -m ./models/ggml-small.en-tdrz.bin -tdrz
...
main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, tdrz = 1, timestamps = 1 ...
...
[00:00:00.000 --> 00:00:03.800] Okay Houston, we've had a problem here. [SPEAKER_TURN]
[00:00:03.800 --> 00:00:06.200] This is Houston. Say again please. [SPEAKER_TURN]
[00:00:06.200 --> 00:00:08.260] Uh Houston we've had a problem.
[00:00:08.260 --> 00:00:11.320] We've had a main beam up on a volt. [SPEAKER_TURN]
[00:00:11.320 --> 00:00:13.820] Roger main beam interval. [SPEAKER_TURN]
[00:00:13.820 --> 00:00:15.100] Uh uh [SPEAKER_TURN]
[00:00:15.100 --> 00:00:18.020] So okay stand, by thirteen we're looking at it. [SPEAKER_TURN]
[00:00:18.020 --> 00:00:25.740] Okay uh right now uh Houston the uh voltage is uh is looking good um.
[00:00:27.620 --> 00:00:29.940] And we had a a pretty large bank or so.
```
## Karaoke-style movie generation (experimental)
The [main](examples/main) example provides support for output of karaoke-style movies, where the
@ -579,6 +706,19 @@ took to execute it. The results are summarized in the following Github issue:
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
Additionally a script to run whisper.cpp with different models and audio files is provided [bench.py](bench.py).
You can run it with the following command, by default it will run against any standard model in the models folder.
```bash
python3 extra/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
```
It is written in python with the intention of being easy to modify and extend for your benchmarking use case.
It outputs a csv file with the results of the benchmarking.
## ggml format
The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
@ -600,9 +740,11 @@ in [models](models).
## [Bindings](https://github.com/ggerganov/whisper.cpp/discussions/categories/bindings)
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs) | [#310](https://github.com/ggerganov/whisper.cpp/discussions/310)
- [X] Javascript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
- [X] JavaScript: [bindings/javascript](bindings/javascript) | [#309](https://github.com/ggerganov/whisper.cpp/discussions/309)
- React Native (iOS / Android): [whisper.rn](https://github.com/mybigday/whisper.rn)
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
- [X] Java:
- [GiviMAD/whisper-jni](https://github.com/GiviMAD/whisper-jni)
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)

View File

@ -32,7 +32,7 @@ mkdir:
modtidy:
@go mod tidy
clean:
clean:
@echo Clean
@rm -fr $(BUILD_DIR)
@go clean

View File

@ -31,7 +31,7 @@ func main() {
if err != nil {
panic(err)
}
if err := context.Process(samples, nil); err != nil {
if err := context.Process(samples, nil, nil); err != nil {
return err
}
@ -71,7 +71,7 @@ The examples are placed in the `build` directory. Once built, you can download a
And you can then test a model against samples with the following command:
```bash
./build/go-whisper -model models/ggml-tiny.en.bin samples/jfk.wav
./build/go-whisper -model models/ggml-tiny.en.bin samples/jfk.wav
```
## Using the bindings

View File

@ -24,7 +24,7 @@ const (
var (
// The models which will be downloaded, if no model is specified as an argument
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large"}
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large-v2", "ggml-large-v3"}
)
var (

View File

@ -67,7 +67,7 @@ func Process(model whisper.Model, path string, flags *Flags) error {
// Process the data
fmt.Fprintf(flags.Output(), " ...processing %q\n", path)
context.ResetTimings()
if err := context.Process(data, cb); err != nil {
if err := context.Process(data, cb, nil); err != nil {
return err
}

View File

@ -19,6 +19,10 @@ func (p *Params) SetTranslate(v bool) {
p.translate = toBool(v)
}
func (p *Params) SetSplitOnWord(v bool) {
p.split_on_word = toBool(v)
}
func (p *Params) SetNoContext(v bool) {
p.no_context = toBool(v)
}
@ -114,6 +118,11 @@ func (p *Params) SetMaxTokensPerSegment(n int) {
p.max_tokens = C.int(n)
}
// Set audio encoder context
func (p *Params) SetAudioCtx(n int) {
p.audio_ctx = C.int(n)
}
///////////////////////////////////////////////////////////////////////////////
// PRIVATE METHODS
@ -137,6 +146,7 @@ func (p *Params) String() string {
str += fmt.Sprintf(" n_max_text_ctx=%d", p.n_max_text_ctx)
str += fmt.Sprintf(" offset_ms=%d", p.offset_ms)
str += fmt.Sprintf(" duration_ms=%d", p.duration_ms)
str += fmt.Sprintf(" audio_ctx=%d", p.audio_ctx)
if p.translate {
str += " translate"
}

View File

@ -81,6 +81,10 @@ func (context *context) SetSpeedup(v bool) {
context.params.SetSpeedup(v)
}
func (context *context) SetSplitOnWord(v bool) {
context.params.SetSplitOnWord(v)
}
// Set number of threads to use
func (context *context) SetThreads(v uint) {
context.params.SetThreads(int(v))
@ -93,7 +97,7 @@ func (context *context) SetOffset(v time.Duration) {
// Set duration of audio to process
func (context *context) SetDuration(v time.Duration) {
context.params.SetOffset(int(v.Milliseconds()))
context.params.SetDuration(int(v.Milliseconds()))
}
// Set timestamp token probability threshold (~0.01)
@ -121,6 +125,11 @@ func (context *context) SetMaxTokensPerSegment(n uint) {
context.params.SetMaxTokensPerSegment(int(n))
}
// Set audio encoder context
func (context *context) SetAudioCtx(n uint) {
context.params.SetAudioCtx(int(n))
}
// ResetTimings resets the mode timings. Should be called before processing
func (context *context) ResetTimings() {
context.model.ctx.Whisper_reset_timings()
@ -152,12 +161,16 @@ func (context *context) WhisperLangAutoDetect(offset_ms int, n_threads int) ([]f
}
// Process new sample data and return any errors
func (context *context) Process(data []float32, cb SegmentCallback) error {
func (context *context) Process(
data []float32,
callNewSegment SegmentCallback,
callProgress ProgressCallback,
) error {
if context.model.ctx == nil {
return ErrInternalAppError
}
// If the callback is defined then we force on single_segment mode
if cb != nil {
if callNewSegment != nil {
context.params.SetSingleSegment(true)
}
@ -165,24 +178,28 @@ func (context *context) Process(data []float32, cb SegmentCallback) error {
processors := 0
if processors > 1 {
if err := context.model.ctx.Whisper_full_parallel(context.params, data, processors, nil, func(new int) {
if cb != nil {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
for i := s0; i < num_segments; i++ {
cb(toSegment(context.model.ctx, i))
callNewSegment(toSegment(context.model.ctx, i))
}
}
}); err != nil {
return err
}
} else if err := context.model.ctx.Whisper_full(context.params, data, nil, func(new int) {
if cb != nil {
if callNewSegment != nil {
num_segments := context.model.ctx.Whisper_full_n_segments()
s0 := num_segments - new
for i := s0; i < num_segments; i++ {
cb(toSegment(context.model.ctx, i))
callNewSegment(toSegment(context.model.ctx, i))
}
}
}, func(progress int) {
if callProgress != nil {
callProgress(progress)
}
}); err != nil {
return err
}

View File

@ -12,6 +12,10 @@ import (
// time. It is called during the Process function
type SegmentCallback func(Segment)
// ProgressCallback is the callback function for reporting progress during
// processing. It is called during the Process function
type ProgressCallback func(int)
// Model is the interface to a whisper model. Create a new model with the
// function whisper.New(string)
type Model interface {
@ -38,16 +42,18 @@ type Context interface {
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSpeedup(bool) // Set speedup flag
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
SetAudioCtx(uint) // Set audio encoder context
// Process mono audio data and return any errors.
// If defined, newly generated segments are passed to the
// callback function during processing.
Process([]float32, SegmentCallback) error
Process([]float32, SegmentCallback, ProgressCallback) error
// After process is called, return segments until the end of the stream
// is reached, when io.EOF is returned.

View File

@ -15,6 +15,7 @@ import (
#include <stdlib.h>
extern void callNewSegment(void* user_data, int new);
extern void callProgress(void* user_data, int progress);
extern bool callEncoderBegin(void* user_data);
// Text segment callback
@ -26,6 +27,15 @@ static void whisper_new_segment_cb(struct whisper_context* ctx, struct whisper_s
}
}
// Progress callback
// Called on every newly generated text segment
// Use the whisper_full_...() functions to obtain the text segments
static void whisper_progress_cb(struct whisper_context* ctx, struct whisper_state* state, int progress, void* user_data) {
if(user_data != NULL && ctx != NULL) {
callProgress(user_data, progress);
}
}
// Encoder begin callback
// If not NULL, called before the encoder starts
// If it returns false, the computation is aborted
@ -43,6 +53,8 @@ static struct whisper_full_params whisper_full_default_params_cb(struct whisper_
params.new_segment_callback_user_data = (void*)(ctx);
params.encoder_begin_callback = whisper_encoder_begin_cb;
params.encoder_begin_callback_user_data = (void*)(ctx);
params.progress_callback = whisper_progress_cb;
params.progress_callback_user_data = (void*)(ctx);
return params;
}
*/
@ -71,7 +83,6 @@ const (
SampleRate = C.WHISPER_SAMPLE_RATE // Expected sample rate, samples per second
SampleBits = uint16(unsafe.Sizeof(C.float(0))) * 8 // Sample size in bits
NumFFT = C.WHISPER_N_FFT
NumMEL = C.WHISPER_N_MEL
HopLength = C.WHISPER_HOP_LENGTH
ChunkSize = C.WHISPER_CHUNK_SIZE
)
@ -91,7 +102,7 @@ var (
func Whisper_init(path string) *Context {
cPath := C.CString(path)
defer C.free(unsafe.Pointer(cPath))
if ctx := C.whisper_init_from_file(cPath); ctx != nil {
if ctx := C.whisper_init_from_file_with_params(cPath, C.whisper_context_default_params()); ctx != nil {
return (*Context)(ctx)
} else {
return nil
@ -258,13 +269,13 @@ func (ctx *Context) Whisper_token_lang(lang_id int) Token {
}
// Task tokens
func Whisper_token_translate() Token {
return Token(C.whisper_token_translate())
func (ctx *Context) Whisper_token_translate() Token {
return Token(C.whisper_token_translate((*C.struct_whisper_context)(ctx)))
}
// Task tokens
func Whisper_token_transcribe() Token {
return Token(C.whisper_token_transcribe())
func (ctx *Context) Whisper_token_transcribe() Token {
return Token(C.whisper_token_transcribe((*C.struct_whisper_context)(ctx)))
}
// Performance information
@ -290,11 +301,19 @@ func (ctx *Context) Whisper_full_default_params(strategy SamplingStrategy) Param
// Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
// Uses the specified decoding strategy to obtain the text.
func (ctx *Context) Whisper_full(params Params, samples []float32, encoderBeginCallback func() bool, newSegmentCallback func(int)) error {
func (ctx *Context) Whisper_full(
params Params,
samples []float32,
encoderBeginCallback func() bool,
newSegmentCallback func(int),
progressCallback func(int),
) error {
registerEncoderBeginCallback(ctx, encoderBeginCallback)
registerNewSegmentCallback(ctx, newSegmentCallback)
registerProgressCallback(ctx, progressCallback)
defer registerEncoderBeginCallback(ctx, nil)
defer registerNewSegmentCallback(ctx, nil)
defer registerProgressCallback(ctx, nil)
if C.whisper_full((*C.struct_whisper_context)(ctx), (C.struct_whisper_full_params)(params), (*C.float)(&samples[0]), C.int(len(samples))) == 0 {
return nil
} else {
@ -318,6 +337,18 @@ func (ctx *Context) Whisper_full_parallel(params Params, samples []float32, proc
}
}
// Return the id of the autodetected language, returns -1 if not found
// Added to whisper.cpp in
// https://github.com/ggerganov/whisper.cpp/commit/a1c1583cc7cd8b75222857afc936f0638c5683d6
//
// Examples:
//
// "de" -> 2
// "german" -> 2
func (ctx *Context) Whisper_full_lang_id() int {
return int(C.whisper_full_lang_id((*C.struct_whisper_context)(ctx)))
}
// Number of generated text segments.
// A segment can be a few words, a sentence, or even a paragraph.
func (ctx *Context) Whisper_full_n_segments() int {
@ -370,6 +401,7 @@ func (ctx *Context) Whisper_full_get_token_p(segment int, token int) float32 {
var (
cbNewSegment = make(map[unsafe.Pointer]func(int))
cbProgress = make(map[unsafe.Pointer]func(int))
cbEncoderBegin = make(map[unsafe.Pointer]func() bool)
)
@ -381,6 +413,14 @@ func registerNewSegmentCallback(ctx *Context, fn func(int)) {
}
}
func registerProgressCallback(ctx *Context, fn func(int)) {
if fn == nil {
delete(cbProgress, unsafe.Pointer(ctx))
} else {
cbProgress[unsafe.Pointer(ctx)] = fn
}
}
func registerEncoderBeginCallback(ctx *Context, fn func() bool) {
if fn == nil {
delete(cbEncoderBegin, unsafe.Pointer(ctx))
@ -396,6 +436,13 @@ func callNewSegment(user_data unsafe.Pointer, new C.int) {
}
}
//export callProgress
func callProgress(user_data unsafe.Pointer, progress C.int) {
if fn, ok := cbProgress[user_data]; ok {
fn(int(progress))
}
}
//export callEncoderBegin
func callEncoderBegin(user_data unsafe.Pointer) C.bool {
if fn, ok := cbEncoderBegin[user_data]; ok {
@ -415,3 +462,7 @@ func (t TokenData) T0() int64 {
func (t TokenData) T1() int64 {
return int64(t.t1)
}
func (t TokenData) Id() Token {
return Token(t.id)
}

View File

@ -52,7 +52,7 @@ func Test_Whisper_001(t *testing.T) {
defer ctx.Whisper_free()
params := ctx.Whisper_full_default_params(whisper.SAMPLING_GREEDY)
data := buf.AsFloat32Buffer().Data
err = ctx.Whisper_full(params, data, nil, nil)
err = ctx.Whisper_full(params, data, nil, nil, nil)
assert.NoError(err)
// Print out tokens

124
bindings/java/.idea/uiDesigner.xml generated Normal file
View File

@ -0,0 +1,124 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Palette2">
<group name="Swing">
<item class="com.intellij.uiDesigner.HSpacer" tooltip-text="Horizontal Spacer" icon="/com/intellij/uiDesigner/icons/hspacer.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="1" hsize-policy="6" anchor="0" fill="1" />
</item>
<item class="com.intellij.uiDesigner.VSpacer" tooltip-text="Vertical Spacer" icon="/com/intellij/uiDesigner/icons/vspacer.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="1" anchor="0" fill="2" />
</item>
<item class="javax.swing.JPanel" icon="/com/intellij/uiDesigner/icons/panel.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3" />
</item>
<item class="javax.swing.JScrollPane" icon="/com/intellij/uiDesigner/icons/scrollPane.svg" removable="false" auto-create-binding="false" can-attach-label="true">
<default-constraints vsize-policy="7" hsize-policy="7" anchor="0" fill="3" />
</item>
<item class="javax.swing.JButton" icon="/com/intellij/uiDesigner/icons/button.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="3" anchor="0" fill="1" />
<initial-values>
<property name="text" value="Button" />
</initial-values>
</item>
<item class="javax.swing.JRadioButton" icon="/com/intellij/uiDesigner/icons/radioButton.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="3" anchor="8" fill="0" />
<initial-values>
<property name="text" value="RadioButton" />
</initial-values>
</item>
<item class="javax.swing.JCheckBox" icon="/com/intellij/uiDesigner/icons/checkBox.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="3" anchor="8" fill="0" />
<initial-values>
<property name="text" value="CheckBox" />
</initial-values>
</item>
<item class="javax.swing.JLabel" icon="/com/intellij/uiDesigner/icons/label.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="0" anchor="8" fill="0" />
<initial-values>
<property name="text" value="Label" />
</initial-values>
</item>
<item class="javax.swing.JTextField" icon="/com/intellij/uiDesigner/icons/textField.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
<preferred-size width="150" height="-1" />
</default-constraints>
</item>
<item class="javax.swing.JPasswordField" icon="/com/intellij/uiDesigner/icons/passwordField.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
<preferred-size width="150" height="-1" />
</default-constraints>
</item>
<item class="javax.swing.JFormattedTextField" icon="/com/intellij/uiDesigner/icons/formattedTextField.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
<preferred-size width="150" height="-1" />
</default-constraints>
</item>
<item class="javax.swing.JTextArea" icon="/com/intellij/uiDesigner/icons/textArea.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JTextPane" icon="/com/intellij/uiDesigner/icons/textPane.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JEditorPane" icon="/com/intellij/uiDesigner/icons/editorPane.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JComboBox" icon="/com/intellij/uiDesigner/icons/comboBox.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="2" anchor="8" fill="1" />
</item>
<item class="javax.swing.JTable" icon="/com/intellij/uiDesigner/icons/table.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JList" icon="/com/intellij/uiDesigner/icons/list.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="2" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JTree" icon="/com/intellij/uiDesigner/icons/tree.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JTabbedPane" icon="/com/intellij/uiDesigner/icons/tabbedPane.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3">
<preferred-size width="200" height="200" />
</default-constraints>
</item>
<item class="javax.swing.JSplitPane" icon="/com/intellij/uiDesigner/icons/splitPane.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3">
<preferred-size width="200" height="200" />
</default-constraints>
</item>
<item class="javax.swing.JSpinner" icon="/com/intellij/uiDesigner/icons/spinner.svg" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1" />
</item>
<item class="javax.swing.JSlider" icon="/com/intellij/uiDesigner/icons/slider.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1" />
</item>
<item class="javax.swing.JSeparator" icon="/com/intellij/uiDesigner/icons/separator.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3" />
</item>
<item class="javax.swing.JProgressBar" icon="/com/intellij/uiDesigner/icons/progressbar.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="0" fill="1" />
</item>
<item class="javax.swing.JToolBar" icon="/com/intellij/uiDesigner/icons/toolbar.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="0" fill="1">
<preferred-size width="-1" height="20" />
</default-constraints>
</item>
<item class="javax.swing.JToolBar$Separator" icon="/com/intellij/uiDesigner/icons/toolbarSeparator.svg" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="0" anchor="0" fill="1" />
</item>
<item class="javax.swing.JScrollBar" icon="/com/intellij/uiDesigner/icons/scrollbar.svg" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="0" anchor="0" fill="2" />
</item>
</group>
</component>
</project>

71
bindings/java/README.md Normal file
View File

@ -0,0 +1,71 @@
# Java JNI bindings for Whisper
This package provides Java JNI bindings for whisper.cpp. They have been tested on:
* <strike>Darwin (OS X) 12.6 on x64_64</strike>
* Ubuntu on x86_64
* Windows on x86_64
The "low level" bindings are in `WhisperCppJnaLibrary`. The most simple usage is as follows:
JNA will attempt to load the `whispercpp` shared library from:
- jna.library.path
- jna.platform.library
- ~/Library/Frameworks
- /Library/Frameworks
- /System/Library/Frameworks
- classpath
```java
import io.github.ggerganov.whispercpp.WhisperCpp;
public class Example {
public static void main(String[] args) {
WhisperCpp whisper = new WhisperCpp();
// By default, models are loaded from ~/.cache/whisper/ and are usually named "ggml-${name}.bin"
// or you can provide the absolute path to the model file.
long context = whisper.initContext("base.en");
try {
var whisperParams = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
// custom configuration if required
whisperParams.temperature_inc = 0f;
var samples = readAudio(); // divide each value by 32767.0f
whisper.fullTranscribe(whisperParams, samples);
int segmentCount = whisper.getTextSegmentCount(context);
for (int i = 0; i < segmentCount; i++) {
String text = whisper.getTextSegment(context, i);
System.out.println(segment.getText());
}
} finally {
whisper.freeContext(context);
}
}
}
```
## Building & Testing
In order to build, you need to have the JDK 8 or higher installed. Run the tests with:
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp/bindings/java
./gradlew build
```
You need to have the `whisper` library in your [JNA library path](https://java-native-access.github.io/jna/4.2.1/com/sun/jna/NativeLibrary.html). On Windows the dll is included in the jar and you can update it:
```bash
copy /y ..\..\build\bin\Release\whisper.dll build\generated\resources\main\win32-x86-64\whisper.dll
```
## License
The license for the Go bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details.

133
bindings/java/build.gradle Normal file
View File

@ -0,0 +1,133 @@
plugins {
id 'java'
id 'java-library'
id 'maven-publish'
id 'signing'
}
archivesBaseName = 'whispercpp'
group = 'io.github.ggerganov'
version = '1.4.0'
sourceCompatibility = 1.8
targetCompatibility = 1.8
sourceSets {
main {
resources {
srcDirs = ['src/main/resources', 'build/generated/resources/main']
}
}
test {
runtimeClasspath += files('build/generated/resources/main')
}
}
tasks.register('copyLibwhisperDynlib', Copy) {
from '../../build'
include 'libwhisper.dynlib'
into 'build/generated/resources/main/darwin'
}
tasks.register('copyLibwhisperSo', Copy) {
from '../../build'
include 'libwhisper.so'
into 'build/generated/resources/main/linux-x86-64'
}
tasks.register('copyWhisperDll', Copy) {
from '../../build/Release'
include 'whisper.dll'
into 'build/generated/resources/main/windows-x86-64'
}
tasks.register('copyLibs') {
dependsOn copyLibwhisperDynlib, copyLibwhisperSo, copyWhisperDll
}
test {
systemProperty 'jna.library.path', project.file('build/generated/resources/main').absolutePath
}
java {
withSourcesJar()
withJavadocJar()
}
jar {
exclude '**/whisper_java.exp', '**/whisper_java.lib'
}
javadoc {
options.addStringOption('Xdoclint:none', '-quiet')
}
tasks.withType(Test) {
useJUnitPlatform()
}
dependencies {
implementation "net.java.dev.jna:jna:5.13.0"
testImplementation "org.junit.jupiter:junit-jupiter:5.9.2"
testImplementation "org.assertj:assertj-core:3.24.2"
}
repositories {
mavenCentral()
}
publishing {
publications {
mavenJava(MavenPublication) {
artifactId = 'whispercpp'
from components.java
pom {
name = 'whispercpp'
description = "Java JNA bindings for OpenAI's Whisper model, implemented in C/C++"
url = 'https://github.com/ggerganov/whisper.cpp'
licenses {
license {
name = 'MIT licence'
url = 'https://raw.githubusercontent.com/ggerganov/whisper.cpp/master/LICENSE'
}
}
developers {
developer {
id = 'ggerganov'
name = 'Georgi Gerganov'
email = 'ggerganov@gmail.com'
}
developer {
id = 'nalbion'
name = 'Nicholas Albion'
email = 'nalbion@yahoo.com'
}
}
scm {
connection = 'scm:git:git://github.com/ggerganov/whisper.cpp.git'
url = 'https://github.com/ggerganov/whisper.cpp'
}
}
}
}
repositories {
maven {
def releasesRepoUrl = 'https://s01.oss.sonatype.org/service/local/staging/deploy/maven2/'
def snapshotsRepoUrl = 'https://s01.oss.sonatype.org/content/repositories/snapshots/'
url = version.endsWith('-SNAPSHOT') ? snapshotsRepoUrl : releasesRepoUrl
credentials {
username = System.getenv("MAVEN_USERNAME")
password = System.getenv("MAVEN_PASSWORD")
}
}
}
}
signing {
def signingKey = System.getenv("PGP_SECRET")
def signingPassword = System.getenv("PGP_PASSPHRASE")
useInMemoryPgpKeys(signingKey, signingPassword)
sign publishing.publications.mavenJava
}

View File

@ -0,0 +1,6 @@
org.gradle.jvmargs=-Xms256m -Xmx1024m
system.include.dir=/usr/include
#system.local.include.dir=../../include
system.local.include.dir=./build/generated/sources/headers/java/main
jni.include.dir=/usr/lib/jvm/java-8-openjdk-amd64/include/
jni.lib.dir=/usr/lib/jvm/java-8-openjdk-amd64/lib/

Binary file not shown.

View File

@ -0,0 +1,6 @@
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-8.1-bin.zip
networkTimeout=10000
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

244
bindings/java/gradlew vendored Normal file
View File

@ -0,0 +1,244 @@
#!/bin/sh
#
# Copyright © 2015-2021 the original authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
##############################################################################
#
# Gradle start up script for POSIX generated by Gradle.
#
# Important for running:
#
# (1) You need a POSIX-compliant shell to run this script. If your /bin/sh is
# noncompliant, but you have some other compliant shell such as ksh or
# bash, then to run this script, type that shell name before the whole
# command line, like:
#
# ksh Gradle
#
# Busybox and similar reduced shells will NOT work, because this script
# requires all of these POSIX shell features:
# * functions;
# * expansions «$var», «${var}», «${var:-default}», «${var+SET}»,
# «${var#prefix}», «${var%suffix}», and «$( cmd )»;
# * compound commands having a testable exit status, especially «case»;
# * various built-in commands including «command», «set», and «ulimit».
#
# Important for patching:
#
# (2) This script targets any POSIX shell, so it avoids extensions provided
# by Bash, Ksh, etc; in particular arrays are avoided.
#
# The "traditional" practice of packing multiple parameters into a
# space-separated string is a well documented source of bugs and security
# problems, so this is (mostly) avoided, by progressively accumulating
# options in "$@", and eventually passing that to Java.
#
# Where the inherited environment variables (DEFAULT_JVM_OPTS, JAVA_OPTS,
# and GRADLE_OPTS) rely on word-splitting, this is performed explicitly;
# see the in-line comments for details.
#
# There are tweaks for specific operating systems such as AIX, CygWin,
# Darwin, MinGW, and NonStop.
#
# (3) This script is generated from the Groovy template
# https://github.com/gradle/gradle/blob/HEAD/subprojects/plugins/src/main/resources/org/gradle/api/internal/plugins/unixStartScript.txt
# within the Gradle project.
#
# You can find Gradle at https://github.com/gradle/gradle/.
#
##############################################################################
# Attempt to set APP_HOME
# Resolve links: $0 may be a link
app_path=$0
# Need this for daisy-chained symlinks.
while
APP_HOME=${app_path%"${app_path##*/}"} # leaves a trailing /; empty if no leading path
[ -h "$app_path" ]
do
ls=$( ls -ld "$app_path" )
link=${ls#*' -> '}
case $link in #(
/*) app_path=$link ;; #(
*) app_path=$APP_HOME$link ;;
esac
done
# This is normally unused
# shellcheck disable=SC2034
APP_BASE_NAME=${0##*/}
APP_HOME=$( cd "${APP_HOME:-./}" && pwd -P ) || exit
# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
DEFAULT_JVM_OPTS='"-Xmx64m" "-Xms64m"'
# Use the maximum available, or set MAX_FD != -1 to use that value.
MAX_FD=maximum
warn () {
echo "$*"
} >&2
die () {
echo
echo "$*"
echo
exit 1
} >&2
# OS specific support (must be 'true' or 'false').
cygwin=false
msys=false
darwin=false
nonstop=false
case "$( uname )" in #(
CYGWIN* ) cygwin=true ;; #(
Darwin* ) darwin=true ;; #(
MSYS* | MINGW* ) msys=true ;; #(
NONSTOP* ) nonstop=true ;;
esac
CLASSPATH=$APP_HOME/gradle/wrapper/gradle-wrapper.jar
# Determine the Java command to use to start the JVM.
if [ -n "$JAVA_HOME" ] ; then
if [ -x "$JAVA_HOME/jre/sh/java" ] ; then
# IBM's JDK on AIX uses strange locations for the executables
JAVACMD=$JAVA_HOME/jre/sh/java
else
JAVACMD=$JAVA_HOME/bin/java
fi
if [ ! -x "$JAVACMD" ] ; then
die "ERROR: JAVA_HOME is set to an invalid directory: $JAVA_HOME
Please set the JAVA_HOME variable in your environment to match the
location of your Java installation."
fi
else
JAVACMD=java
which java >/dev/null 2>&1 || die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
Please set the JAVA_HOME variable in your environment to match the
location of your Java installation."
fi
# Increase the maximum file descriptors if we can.
if ! "$cygwin" && ! "$darwin" && ! "$nonstop" ; then
case $MAX_FD in #(
max*)
# In POSIX sh, ulimit -H is undefined. That's why the result is checked to see if it worked.
# shellcheck disable=SC3045
MAX_FD=$( ulimit -H -n ) ||
warn "Could not query maximum file descriptor limit"
esac
case $MAX_FD in #(
'' | soft) :;; #(
*)
# In POSIX sh, ulimit -n is undefined. That's why the result is checked to see if it worked.
# shellcheck disable=SC3045
ulimit -n "$MAX_FD" ||
warn "Could not set maximum file descriptor limit to $MAX_FD"
esac
fi
# Collect all arguments for the java command, stacking in reverse order:
# * args from the command line
# * the main class name
# * -classpath
# * -D...appname settings
# * --module-path (only if needed)
# * DEFAULT_JVM_OPTS, JAVA_OPTS, and GRADLE_OPTS environment variables.
# For Cygwin or MSYS, switch paths to Windows format before running java
if "$cygwin" || "$msys" ; then
APP_HOME=$( cygpath --path --mixed "$APP_HOME" )
CLASSPATH=$( cygpath --path --mixed "$CLASSPATH" )
JAVACMD=$( cygpath --unix "$JAVACMD" )
# Now convert the arguments - kludge to limit ourselves to /bin/sh
for arg do
if
case $arg in #(
-*) false ;; # don't mess with options #(
/?*) t=${arg#/} t=/${t%%/*} # looks like a POSIX filepath
[ -e "$t" ] ;; #(
*) false ;;
esac
then
arg=$( cygpath --path --ignore --mixed "$arg" )
fi
# Roll the args list around exactly as many times as the number of
# args, so each arg winds up back in the position where it started, but
# possibly modified.
#
# NB: a `for` loop captures its iteration list before it begins, so
# changing the positional parameters here affects neither the number of
# iterations, nor the values presented in `arg`.
shift # remove old arg
set -- "$@" "$arg" # push replacement arg
done
fi
# Collect all arguments for the java command;
# * $DEFAULT_JVM_OPTS, $JAVA_OPTS, and $GRADLE_OPTS can contain fragments of
# shell script including quotes and variable substitutions, so put them in
# double quotes to make sure that they get re-expanded; and
# * put everything else in single quotes, so that it's not re-expanded.
set -- \
"-Dorg.gradle.appname=$APP_BASE_NAME" \
-classpath "$CLASSPATH" \
org.gradle.wrapper.GradleWrapperMain \
"$@"
# Stop when "xargs" is not available.
if ! command -v xargs >/dev/null 2>&1
then
die "xargs is not available"
fi
# Use "xargs" to parse quoted args.
#
# With -n1 it outputs one arg per line, with the quotes and backslashes removed.
#
# In Bash we could simply go:
#
# readarray ARGS < <( xargs -n1 <<<"$var" ) &&
# set -- "${ARGS[@]}" "$@"
#
# but POSIX shell has neither arrays nor command substitution, so instead we
# post-process each arg (as a line of input to sed) to backslash-escape any
# character that might be a shell metacharacter, then use eval to reverse
# that process (while maintaining the separation between arguments), and wrap
# the whole thing up as a single "set" statement.
#
# This will of course break if any of these variables contains a newline or
# an unmatched quote.
#
eval "set -- $(
printf '%s\n' "$DEFAULT_JVM_OPTS $JAVA_OPTS $GRADLE_OPTS" |
xargs -n1 |
sed ' s~[^-[:alnum:]+,./:=@_]~\\&~g; ' |
tr '\n' ' '
)" '"$@"'
exec "$JAVACMD" "$@"

92
bindings/java/gradlew.bat vendored Normal file
View File

@ -0,0 +1,92 @@
@rem
@rem Copyright 2015 the original author or authors.
@rem
@rem Licensed under the Apache License, Version 2.0 (the "License");
@rem you may not use this file except in compliance with the License.
@rem You may obtain a copy of the License at
@rem
@rem https://www.apache.org/licenses/LICENSE-2.0
@rem
@rem Unless required by applicable law or agreed to in writing, software
@rem distributed under the License is distributed on an "AS IS" BASIS,
@rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@rem See the License for the specific language governing permissions and
@rem limitations under the License.
@rem
@if "%DEBUG%"=="" @echo off
@rem ##########################################################################
@rem
@rem Gradle startup script for Windows
@rem
@rem ##########################################################################
@rem Set local scope for the variables with windows NT shell
if "%OS%"=="Windows_NT" setlocal
set DIRNAME=%~dp0
if "%DIRNAME%"=="" set DIRNAME=.
@rem This is normally unused
set APP_BASE_NAME=%~n0
set APP_HOME=%DIRNAME%
@rem Resolve any "." and ".." in APP_HOME to make it shorter.
for %%i in ("%APP_HOME%") do set APP_HOME=%%~fi
@rem Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
set DEFAULT_JVM_OPTS="-Xmx64m" "-Xms64m"
@rem Find java.exe
if defined JAVA_HOME goto findJavaFromJavaHome
set JAVA_EXE=java.exe
%JAVA_EXE% -version >NUL 2>&1
if %ERRORLEVEL% equ 0 goto execute
echo.
echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:findJavaFromJavaHome
set JAVA_HOME=%JAVA_HOME:"=%
set JAVA_EXE=%JAVA_HOME%/bin/java.exe
if exist "%JAVA_EXE%" goto execute
echo.
echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME%
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:execute
@rem Setup the command line
set CLASSPATH=%APP_HOME%\gradle\wrapper\gradle-wrapper.jar
@rem Execute Gradle
"%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %GRADLE_OPTS% "-Dorg.gradle.appname=%APP_BASE_NAME%" -classpath "%CLASSPATH%" org.gradle.wrapper.GradleWrapperMain %*
:end
@rem End local scope for the variables with windows NT shell
if %ERRORLEVEL% equ 0 goto mainEnd
:fail
rem Set variable GRADLE_EXIT_CONSOLE if you need the _script_ return code instead of
rem the _cmd.exe /c_ return code!
set EXIT_CODE=%ERRORLEVEL%
if %EXIT_CODE% equ 0 set EXIT_CODE=1
if not ""=="%GRADLE_EXIT_CONSOLE%" exit %EXIT_CODE%
exit /b %EXIT_CODE%
:mainEnd
if "%OS%"=="Windows_NT" endlocal
:omega

View File

@ -0,0 +1 @@
rootProject.name = "whispercpp"

View File

@ -0,0 +1,41 @@
package io.github.ggerganov.whispercpp;
import com.sun.jna.Structure;
import com.sun.jna.ptr.PointerByReference;
import io.github.ggerganov.whispercpp.ggml.GgmlType;
import io.github.ggerganov.whispercpp.WhisperModel;
import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import java.util.List;
public class WhisperContext extends Structure {
int t_load_us = 0;
int t_start_us = 0;
/** weight type (FP32 / FP16 / QX) */
GgmlType wtype = GgmlType.GGML_TYPE_F16;
/** intermediate type (FP32 or FP16) */
GgmlType itype = GgmlType.GGML_TYPE_F16;
// WhisperModel model;
public PointerByReference model;
// whisper_vocab vocab;
// whisper_state * state = nullptr;
public PointerByReference vocab;
public PointerByReference state;
/** populated by whisper_init_from_file_with_params() */
String path_model;
WhisperContextParams params;
// public static class ByReference extends WhisperContext implements Structure.ByReference {
// }
//
// public static class ByValue extends WhisperContext implements Structure.ByValue {
// }
//
// @Override
// protected List<String> getFieldOrder() {
// return List.of("t_load_us", "t_start_us", "wtype", "itype", "model", "vocab", "state", "path_model");
// }
}

View File

@ -0,0 +1,207 @@
package io.github.ggerganov.whispercpp;
import com.sun.jna.Native;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.bean.WhisperSegment;
import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
import io.github.ggerganov.whispercpp.params.WhisperSamplingStrategy;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/**
* Before calling most methods, you must call `initContext(modelPath)` to initialise the `ctx` Pointer.
*/
public class WhisperCpp implements AutoCloseable {
private WhisperCppJnaLibrary lib = WhisperCppJnaLibrary.instance;
private Pointer ctx = null;
private Pointer paramsPointer = null;
private Pointer greedyParamsPointer = null;
private Pointer beamParamsPointer = null;
public File modelDir() {
String modelDirPath = System.getenv("XDG_CACHE_HOME");
if (modelDirPath == null) {
modelDirPath = System.getProperty("user.home") + "/.cache";
}
return new File(modelDirPath, "whisper");
}
/**
* @param modelPath - absolute path, or just the name (eg: "base", "base-en" or "base.en")
*/
public void initContext(String modelPath) throws FileNotFoundException {
initContextImpl(modelPath, getContextDefaultParams());
}
/**
* @param modelPath - absolute path, or just the name (eg: "base", "base-en" or "base.en")
* @param params - params to use when initialising the context
*/
public void initContext(String modelPath, WhisperContextParams params) throws FileNotFoundException {
initContextImpl(modelPath, params);
}
private void initContextImpl(String modelPath, WhisperContextParams params) throws FileNotFoundException {
if (ctx != null) {
lib.whisper_free(ctx);
}
if (!modelPath.contains("/") && !modelPath.contains("\\")) {
if (!modelPath.endsWith(".bin")) {
modelPath = "ggml-" + modelPath.replace("-", ".") + ".bin";
}
modelPath = new File(modelDir(), modelPath).getAbsolutePath();
}
ctx = lib.whisper_init_from_file_with_params(modelPath, params);
if (ctx == null) {
throw new FileNotFoundException(modelPath);
}
}
/**
* Provides default params which can be used with `whisper_init_from_file_with_params()` etc.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_context_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
*/
public WhisperContextParams getContextDefaultParams() {
paramsPointer = lib.whisper_context_default_params_by_ref();
WhisperContextParams params = new WhisperContextParams(paramsPointer);
params.read();
return params;
}
/**
* Provides default params which can be used with `whisper_full()` etc.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
*
* @param strategy - GREEDY
*/
public WhisperFullParams getFullDefaultParams(WhisperSamplingStrategy strategy) {
Pointer pointer;
// whisper_full_default_params_by_ref allocates memory which we need to delete, so only create max 1 pointer for each strategy.
if (strategy == WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY) {
if (greedyParamsPointer == null) {
greedyParamsPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
}
pointer = greedyParamsPointer;
} else {
if (beamParamsPointer == null) {
beamParamsPointer = lib.whisper_full_default_params_by_ref(strategy.ordinal());
}
pointer = beamParamsPointer;
}
WhisperFullParams params = new WhisperFullParams(pointer);
params.read();
return params;
}
@Override
public void close() {
freeContext();
freeParams();
System.out.println("Whisper closed");
}
private void freeContext() {
if (ctx != null) {
lib.whisper_free(ctx);
}
}
private void freeParams() {
if (paramsPointer != null) {
Native.free(Pointer.nativeValue(paramsPointer));
paramsPointer = null;
}
if (greedyParamsPointer != null) {
Native.free(Pointer.nativeValue(greedyParamsPointer));
greedyParamsPointer = null;
}
if (beamParamsPointer != null) {
Native.free(Pointer.nativeValue(beamParamsPointer));
beamParamsPointer = null;
}
}
/**
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text.
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*/
public String fullTranscribe(WhisperFullParams whisperParams, float[] audioData) throws IOException {
if (ctx == null) {
throw new IllegalStateException("Model not initialised");
}
if (lib.whisper_full(ctx, whisperParams, audioData, audioData.length) != 0) {
throw new IOException("Failed to process audio");
}
int nSegments = lib.whisper_full_n_segments(ctx);
StringBuilder str = new StringBuilder();
for (int i = 0; i < nSegments; i++) {
String text = lib.whisper_full_get_segment_text(ctx, i);
System.out.println("Segment:" + text);
str.append(text);
}
return str.toString().trim();
}
public List<WhisperSegment> fullTranscribeWithTime(WhisperFullParams whisperParams, float[] audioData) throws IOException {
if (ctx == null) {
throw new IllegalStateException("Model not initialised");
}
if (lib.whisper_full(ctx, whisperParams, audioData, audioData.length) != 0) {
throw new IOException("Failed to process audio");
}
int nSegments = lib.whisper_full_n_segments(ctx);
List<WhisperSegment> segments= new ArrayList<>(nSegments);
for (int i = 0; i < nSegments; i++) {
long t0 = lib.whisper_full_get_segment_t0(ctx, i);
String text = lib.whisper_full_get_segment_text(ctx, i);
long t1 = lib.whisper_full_get_segment_t1(ctx, i);
segments.add(new WhisperSegment(t0,t1,text));
}
return segments;
}
// public int getTextSegmentCount(Pointer ctx) {
// return lib.whisper_full_n_segments(ctx);
// }
// public String getTextSegment(Pointer ctx, int index) {
// return lib.whisper_full_get_segment_text(ctx, index);
// }
public String getSystemInfo() {
return lib.whisper_print_system_info();
}
public int benchMemcpy(int nthread) {
return lib.whisper_bench_memcpy(nthread);
}
public int benchGgmlMulMat(int nthread) {
return lib.whisper_bench_ggml_mul_mat(nthread);
}
}

View File

@ -0,0 +1,396 @@
package io.github.ggerganov.whispercpp;
import com.sun.jna.Library;
import com.sun.jna.Native;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.model.WhisperModelLoader;
import io.github.ggerganov.whispercpp.model.WhisperTokenData;
import io.github.ggerganov.whispercpp.params.WhisperContextParams;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
public interface WhisperCppJnaLibrary extends Library {
WhisperCppJnaLibrary instance = Native.load("whisper", WhisperCppJnaLibrary.class);
String whisper_print_system_info();
/**
* DEPRECATED. Allocate (almost) all memory needed for the model by loading from a file.
*
* @param path_model Path to the model file
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file(String path_model);
/**
* Provides default params which can be used with `whisper_init_from_file_with_params()` etc.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_context_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
*/
Pointer whisper_context_default_params_by_ref();
void whisper_free_context_params(Pointer params);
/**
* Allocate (almost) all memory needed for the model by loading from a file.
*
* @param path_model Path to the model file
* @param params Pointer to whisper_context_params
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file_with_params(String path_model, WhisperContextParams params);
/**
* Allocate (almost) all memory needed for the model by loading from a buffer.
*
* @param buffer Model buffer
* @param buffer_size Size of the model buffer
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_buffer(Pointer buffer, int buffer_size);
/**
* Allocate (almost) all memory needed for the model using a model loader.
*
* @param loader Model loader
* @return Whisper context on success, null on failure
*/
Pointer whisper_init(WhisperModelLoader loader);
/**
* Allocate (almost) all memory needed for the model by loading from a file without allocating the state.
*
* @param path_model Path to the model file
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_file_no_state(String path_model);
/**
* Allocate (almost) all memory needed for the model by loading from a buffer without allocating the state.
*
* @param buffer Model buffer
* @param buffer_size Size of the model buffer
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_from_buffer_no_state(Pointer buffer, int buffer_size);
// Pointer whisper_init_from_buffer_no_state(Pointer buffer, long buffer_size);
/**
* Allocate (almost) all memory needed for the model using a model loader without allocating the state.
*
* @param loader Model loader
* @return Whisper context on success, null on failure
*/
Pointer whisper_init_no_state(WhisperModelLoader loader);
/**
* Allocate memory for the Whisper state.
*
* @param ctx Whisper context
* @return Whisper state on success, null on failure
*/
Pointer whisper_init_state(Pointer ctx);
/**
* Free all allocated memory associated with the Whisper context.
*
* @param ctx Whisper context
*/
void whisper_free(Pointer ctx);
/**
* Free all allocated memory associated with the Whisper state.
*
* @param state Whisper state
*/
void whisper_free_state(Pointer state);
/**
* Convert RAW PCM audio to log mel spectrogram.
* The resulting spectrogram is stored inside the default state of the provided whisper context.
*
* @param ctx - Pointer to a WhisperContext
* @return 0 on success
*/
int whisper_pcm_to_mel(Pointer ctx, final float[] samples, int n_samples, int n_threads);
/**
* @param ctx Pointer to a WhisperContext
* @param state Pointer to WhisperState
* @param n_samples
* @param n_threads
* @return 0 on success
*/
int whisper_pcm_to_mel_with_state(Pointer ctx, Pointer state, final float[] samples, int n_samples, int n_threads);
/**
* This can be used to set a custom log mel spectrogram inside the default state of the provided whisper context.
* Use this instead of whisper_pcm_to_mel() if you want to provide your own log mel spectrogram.
* n_mel must be 80
* @return 0 on success
*/
int whisper_set_mel(Pointer ctx, final float[] data, int n_len, int n_mel);
int whisper_set_mel_with_state(Pointer ctx, Pointer state, final float[] data, int n_len, int n_mel);
/**
* Run the Whisper encoder on the log mel spectrogram stored inside the default state in the provided whisper context.
* Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first.
* Offset can be used to specify the offset of the first frame in the spectrogram.
* @return 0 on success
*/
int whisper_encode(Pointer ctx, int offset, int n_threads);
int whisper_encode_with_state(Pointer ctx, Pointer state, int offset, int n_threads);
/**
* Run the Whisper decoder to obtain the logits and probabilities for the next token.
* Make sure to call whisper_encode() first.
* tokens + n_tokens is the provided context for the decoder.
* n_past is the number of tokens to use from previous decoder calls.
* Returns 0 on success
* TODO: add support for multiple decoders
*/
int whisper_decode(Pointer ctx, Pointer tokens, int n_tokens, int n_past, int n_threads);
/**
* @param ctx
* @param state
* @param tokens Pointer to int tokens
* @param n_tokens
* @param n_past
* @param n_threads
* @return
*/
int whisper_decode_with_state(Pointer ctx, Pointer state, Pointer tokens, int n_tokens, int n_past, int n_threads);
/**
* Convert the provided text into tokens.
* The tokens pointer must be large enough to hold the resulting tokens.
* Returns the number of tokens on success, no more than n_max_tokens
* Returns -1 on failure
* TODO: not sure if correct
*/
int whisper_tokenize(Pointer ctx, String text, Pointer tokens, int n_max_tokens);
/** Largest language id (i.e. number of available languages - 1) */
int whisper_lang_max_id();
/**
* @return the id of the specified language, returns -1 if not found.
* Examples:
* "de" -> 2
* "german" -> 2
*/
int whisper_lang_id(String lang);
/** @return the short string of the specified language id (e.g. 2 -> "de"), returns nullptr if not found */
String whisper_lang_str(int id);
/**
* Use mel data at offset_ms to try and auto-detect the spoken language.
* Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first
* Returns the top language id or negative on failure
* If not null, fills the lang_probs array with the probabilities of all languages
* The array must be whisper_lang_max_id() + 1 in size
*
* ref: https://github.com/openai/whisper/blob/main/whisper/decoding.py#L18-L69
*/
int whisper_lang_auto_detect(Pointer ctx, int offset_ms, int n_threads, float[] lang_probs);
int whisper_lang_auto_detect_with_state(Pointer ctx, Pointer state, int offset_ms, int n_threads, float[] lang_probs);
int whisper_n_len (Pointer ctx); // mel length
int whisper_n_len_from_state(Pointer state); // mel length
int whisper_n_vocab (Pointer ctx);
int whisper_n_text_ctx (Pointer ctx);
int whisper_n_audio_ctx (Pointer ctx);
int whisper_is_multilingual (Pointer ctx);
int whisper_model_n_vocab (Pointer ctx);
int whisper_model_n_audio_ctx (Pointer ctx);
int whisper_model_n_audio_state(Pointer ctx);
int whisper_model_n_audio_head (Pointer ctx);
int whisper_model_n_audio_layer(Pointer ctx);
int whisper_model_n_text_ctx (Pointer ctx);
int whisper_model_n_text_state (Pointer ctx);
int whisper_model_n_text_head (Pointer ctx);
int whisper_model_n_text_layer (Pointer ctx);
int whisper_model_n_mels (Pointer ctx);
int whisper_model_ftype (Pointer ctx);
int whisper_model_type (Pointer ctx);
/**
* Token logits obtained from the last call to whisper_decode().
* The logits for the last token are stored in the last row
* Rows: n_tokens
* Cols: n_vocab
*/
float[] whisper_get_logits (Pointer ctx);
float[] whisper_get_logits_from_state(Pointer state);
// Token Id -> String. Uses the vocabulary in the provided context
String whisper_token_to_str(Pointer ctx, int token);
String whisper_model_type_readable(Pointer ctx);
// Special tokens
int whisper_token_eot (Pointer ctx);
int whisper_token_sot (Pointer ctx);
int whisper_token_prev(Pointer ctx);
int whisper_token_solm(Pointer ctx);
int whisper_token_not (Pointer ctx);
int whisper_token_beg (Pointer ctx);
int whisper_token_lang(Pointer ctx, int lang_id);
// Task tokens
int whisper_token_translate (Pointer ctx);
int whisper_token_transcribe(Pointer ctx);
// Performance information from the default state.
void whisper_print_timings(Pointer ctx);
void whisper_reset_timings(Pointer ctx);
// Note: Even if `whisper_full_params is stripped back to just 4 ints, JNA throws "Invalid memory access"
// when `whisper_full_default_params()` tries to return a struct.
// WhisperFullParams whisper_full_default_params(int strategy);
/**
* Provides default params which can be used with `whisper_full()` etc.
* Because this function allocates memory for the params, the caller must call either:
* - call `whisper_free_params()`
* - `Native.free(Pointer.nativeValue(pointer));`
*
* @param strategy - WhisperSamplingStrategy.value
*/
Pointer whisper_full_default_params_by_ref(int strategy);
void whisper_free_params(Pointer params);
/**
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*/
int whisper_full(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples);
int whisper_full_with_state(Pointer ctx, Pointer state, WhisperFullParams params, final float[] samples, int n_samples);
// Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
// Result is stored in the default state of the context
// Not thread safe if executed in parallel on the same context.
// It seems this approach can offer some speedup in some cases.
// However, the transcription accuracy can be worse at the beginning and end of each chunk.
int whisper_full_parallel(Pointer ctx, WhisperFullParams params, final float[] samples, int n_samples, int n_processors);
/**
* Number of generated text segments.
* A segment can be a few words, a sentence, or even a paragraph.
* @param ctx Pointer to WhisperContext
*/
int whisper_full_n_segments (Pointer ctx);
/**
* @param state Pointer to WhisperState
*/
int whisper_full_n_segments_from_state(Pointer state);
/**
* Language id associated with the context's default state.
* @param ctx Pointer to WhisperContext
*/
int whisper_full_lang_id(Pointer ctx);
/** Language id associated with the provided state */
int whisper_full_lang_id_from_state(Pointer state);
/**
* Convert RAW PCM audio to log mel spectrogram but applies a Phase Vocoder to speed up the audio x2.
* The resulting spectrogram is stored inside the default state of the provided whisper context.
* @return 0 on success
*/
int whisper_pcm_to_mel_phase_vocoder(Pointer ctx, final float[] samples, int n_samples, int n_threads);
int whisper_pcm_to_mel_phase_vocoder_with_state(Pointer ctx, Pointer state, final float[] samples, int n_samples, int n_threads);
/** Get the start time of the specified segment. */
long whisper_full_get_segment_t0(Pointer ctx, int i_segment);
/** Get the start time of the specified segment from the state. */
long whisper_full_get_segment_t0_from_state(Pointer state, int i_segment);
/** Get the end time of the specified segment. */
long whisper_full_get_segment_t1(Pointer ctx, int i_segment);
/** Get the end time of the specified segment from the state. */
long whisper_full_get_segment_t1_from_state(Pointer state, int i_segment);
/** Get the text of the specified segment. */
String whisper_full_get_segment_text(Pointer ctx, int i_segment);
/** Get the text of the specified segment from the state. */
String whisper_full_get_segment_text_from_state(Pointer state, int i_segment);
/** Get the number of tokens in the specified segment. */
int whisper_full_n_tokens(Pointer ctx, int i_segment);
/** Get the number of tokens in the specified segment from the state. */
int whisper_full_n_tokens_from_state(Pointer state, int i_segment);
/** Get the token text of the specified token in the specified segment. */
String whisper_full_get_token_text(Pointer ctx, int i_segment, int i_token);
/** Get the token text of the specified token in the specified segment from the state. */
String whisper_full_get_token_text_from_state(Pointer ctx, Pointer state, int i_segment, int i_token);
/** Get the token ID of the specified token in the specified segment. */
int whisper_full_get_token_id(Pointer ctx, int i_segment, int i_token);
/** Get the token ID of the specified token in the specified segment from the state. */
int whisper_full_get_token_id_from_state(Pointer state, int i_segment, int i_token);
/** Get token data for the specified token in the specified segment. */
WhisperTokenData whisper_full_get_token_data(Pointer ctx, int i_segment, int i_token);
/** Get token data for the specified token in the specified segment from the state. */
WhisperTokenData whisper_full_get_token_data_from_state(Pointer state, int i_segment, int i_token);
/** Get the probability of the specified token in the specified segment. */
float whisper_full_get_token_p(Pointer ctx, int i_segment, int i_token);
/** Get the probability of the specified token in the specified segment from the state. */
float whisper_full_get_token_p_from_state(Pointer state, int i_segment, int i_token);
/**
* Benchmark function for memcpy.
*
* @param nThreads Number of threads to use for the benchmark.
* @return The result of the benchmark.
*/
int whisper_bench_memcpy(int nThreads);
/**
* Benchmark function for memcpy as a string.
*
* @param nThreads Number of threads to use for the benchmark.
* @return The result of the benchmark as a string.
*/
String whisper_bench_memcpy_str(int nThreads);
/**
* Benchmark function for ggml_mul_mat.
*
* @param nThreads Number of threads to use for the benchmark.
* @return The result of the benchmark.
*/
int whisper_bench_ggml_mul_mat(int nThreads);
/**
* Benchmark function for ggml_mul_mat as a string.
*
* @param nThreads Number of threads to use for the benchmark.
* @return The result of the benchmark as a string.
*/
String whisper_bench_ggml_mul_mat_str(int nThreads);
}

View File

@ -0,0 +1,47 @@
package io.github.ggerganov.whispercpp.bean;
/**
* Created by litonglinux@qq.com on 10/21/2023_7:48 AM
*/
public class WhisperSegment {
private long start, end;
private String sentence;
public WhisperSegment() {
}
public WhisperSegment(long start, long end, String sentence) {
this.start = start;
this.end = end;
this.sentence = sentence;
}
public long getStart() {
return start;
}
public long getEnd() {
return end;
}
public String getSentence() {
return sentence;
}
public void setStart(long start) {
this.start = start;
}
public void setEnd(long end) {
this.end = end;
}
public void setSentence(String sentence) {
this.sentence = sentence;
}
@Override
public String toString() {
return "[" + start + " --> " + end + "]:" + sentence;
}
}

View File

@ -0,0 +1,24 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.WhisperContext;
import io.github.ggerganov.whispercpp.model.WhisperState;
/**
* Callback before the encoder starts.
* If not null, called before the encoder starts.
* If it returns false, the computation is aborted.
*/
public interface WhisperEncoderBeginCallback extends Callback {
/**
* Callback method before the encoder starts.
*
* @param ctx The whisper context.
* @param state The whisper state.
* @param user_data User data.
* @return True if the computation should proceed, false otherwise.
*/
boolean callback(Pointer ctx, Pointer state, Pointer user_data);
}

View File

@ -0,0 +1,25 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.model.WhisperTokenData;
/**
* Callback to filter logits.
* Can be used to modify the logits before sampling.
* If not null, called after applying temperature to logits.
*/
public interface WhisperLogitsFilterCallback extends Callback {
/**
* Callback method to filter logits.
*
* @param ctx The whisper context.
* @param state The whisper state.
* @param tokens The array of whisper_token_data.
* @param n_tokens The number of tokens.
* @param logits The array of logits.
* @param user_data User data.
*/
void callback(Pointer ctx, Pointer state, WhisperTokenData[] tokens, int n_tokens, float[] logits, Pointer user_data);
}

View File

@ -0,0 +1,24 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.WhisperContext;
import io.github.ggerganov.whispercpp.model.WhisperState;
/**
* Callback for the text segment.
* Called on every newly generated text segment.
* Use the whisper_full_...() functions to obtain the text segments.
*/
public interface WhisperNewSegmentCallback extends Callback {
/**
* Callback method for the text segment.
*
* @param ctx The whisper context.
* @param state The whisper state.
* @param n_new The number of newly generated text segments.
* @param user_data User data.
*/
void callback(Pointer ctx, Pointer state, int n_new, Pointer user_data);
}

View File

@ -0,0 +1,22 @@
package io.github.ggerganov.whispercpp.callbacks;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import io.github.ggerganov.whispercpp.WhisperContext;
import io.github.ggerganov.whispercpp.model.WhisperState;
/**
* Callback for progress updates.
*/
public interface WhisperProgressCallback extends Callback {
/**
* Callback method for progress updates.
*
* @param ctx The whisper context.
* @param state The whisper state.
* @param progress The progress value.
* @param user_data User data.
*/
void callback(Pointer ctx, Pointer state, int progress, Pointer user_data);
}

View File

@ -0,0 +1,4 @@
package io.github.ggerganov.whispercpp.ggml;
public class GgmlTensor {
}

View File

@ -0,0 +1,18 @@
package io.github.ggerganov.whispercpp.ggml;
public enum GgmlType {
GGML_TYPE_F32,
GGML_TYPE_F16,
GGML_TYPE_Q4_0,
GGML_TYPE_Q4_1,
REMOVED_GGML_TYPE_Q4_2, // support has been removed
REMOVED_GGML_TYPE_Q4_3, // support has been removed
GGML_TYPE_Q5_0,
GGML_TYPE_Q5_1,
GGML_TYPE_Q8_0,
GGML_TYPE_Q8_1,
GGML_TYPE_I8,
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_COUNT,
}

View File

@ -0,0 +1,10 @@
package io.github.ggerganov.whispercpp.model;
public enum EModel {
MODEL_UNKNOWN,
MODEL_TINY,
MODEL_BASE,
MODEL_SMALL,
MODEL_MEDIUM,
MODEL_LARGE,
}

View File

@ -0,0 +1,49 @@
package io.github.ggerganov.whispercpp;
import io.github.ggerganov.whispercpp.ggml.GgmlTensor;
import io.github.ggerganov.whispercpp.model.EModel;
public class WhisperModel {
// EModel type = EModel.MODEL_UNKNOWN;
//
// WhisperHParams hparams;
// WhisperFilters filters;
//
// // encoder.positional_embedding
// GgmlTensor e_pe;
//
// // encoder.conv1
// GgmlTensor e_conv_1_w;
// GgmlTensor e_conv_1_b;
//
// // encoder.conv2
// GgmlTensor e_conv_2_w;
// GgmlTensor e_conv_2_b;
//
// // encoder.ln_post
// GgmlTensor e_ln_w;
// GgmlTensor e_ln_b;
//
// // decoder.positional_embedding
// GgmlTensor d_pe;
//
// // decoder.token_embedding
// GgmlTensor d_te;
//
// // decoder.ln
// GgmlTensor d_ln_w;
// GgmlTensor d_ln_b;
//
// std::vector<whisper_layer_encoder> layers_encoder;
// std::vector<whisper_layer_decoder> layers_decoder;
//
// // context
// struct ggml_context * ctx;
//
// // the model memory buffer is read-only and can be shared between processors
// std::vector<uint8_t> * buf;
//
// // tensors
// int n_loaded;
// Map<String, GgmlTensor> tensors;
}

View File

@ -0,0 +1,62 @@
package io.github.ggerganov.whispercpp.model;
import com.sun.jna.Callback;
import com.sun.jna.Pointer;
import com.sun.jna.Structure;
public class WhisperModelLoader extends Structure {
public Pointer context;
public ReadFunction read;
public EOFFunction eof;
public CloseFunction close;
public static class ReadFunction implements Callback {
public Pointer invoke(Pointer ctx, Pointer output, int readSize) {
// TODO
return ctx;
}
}
public static class EOFFunction implements Callback {
public boolean invoke(Pointer ctx) {
// TODO
return false;
}
}
public static class CloseFunction implements Callback {
public void invoke(Pointer ctx) {
// TODO
}
}
// public WhisperModelLoader(Pointer p) {
// super(p);
// read = new ReadFunction();
// eof = new EOFFunction();
// close = new CloseFunction();
// read.setCallback(this);
// eof.setCallback(this);
// close.setCallback(this);
// read.write();
// eof.write();
// close.write();
// }
public WhisperModelLoader() {
super();
}
public interface ReadCallback extends Callback {
Pointer invoke(Pointer ctx, Pointer output, int readSize);
}
public interface EOFCallback extends Callback {
boolean invoke(Pointer ctx);
}
public interface CloseCallback extends Callback {
void invoke(Pointer ctx);
}
}

View File

@ -0,0 +1,4 @@
package io.github.ggerganov.whispercpp.model;
public class WhisperState {
}

View File

@ -0,0 +1,50 @@
package io.github.ggerganov.whispercpp.model;
import com.sun.jna.Structure;
import java.util.Arrays;
import java.util.List;
/**
* Structure representing token data.
*/
public class WhisperTokenData extends Structure {
/** Token ID. */
public int id;
/** Forced timestamp token ID. */
public int tid;
/** Probability of the token. */
public float p;
/** Log probability of the token. */
public float plog;
/** Probability of the timestamp token. */
public float pt;
/** Sum of probabilities of all timestamp tokens. */
public float ptsum;
/**
* Start time of the token (token-level timestamp data).
* Do not use if you haven't computed token-level timestamps.
*/
public long t0;
/**
* End time of the token (token-level timestamp data).
* Do not use if you haven't computed token-level timestamps.
*/
public long t1;
/** Voice length of the token. */
public float vlen;
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("id", "tid", "p", "plog", "pt", "ptsum", "t0", "t1", "vlen");
}
}

View File

@ -0,0 +1,19 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.Structure;
import java.util.Arrays;
import java.util.List;
public class BeamSearchParams extends Structure {
/** ref: <a href="https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L265">...</a> */
public int beam_size;
/** ref: <a href="https://arxiv.org/pdf/2204.05424.pdf">...</a> */
public float patience;
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("beam_size", "patience");
}
}

View File

@ -0,0 +1,30 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.IntegerType;
import java.util.function.BooleanSupplier;
public class CBool extends IntegerType implements BooleanSupplier {
public static final int SIZE = 1;
public static final CBool FALSE = new CBool(0);
public static final CBool TRUE = new CBool(1);
public CBool() {
this(0);
}
public CBool(long value) {
super(SIZE, value, true);
}
@Override
public boolean getAsBoolean() {
return intValue() == 1;
}
@Override
public String toString() {
return intValue() == 1 ? "true" : "false";
}
}

View File

@ -0,0 +1,16 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.Structure;
import java.util.Collections;
import java.util.List;
public class GreedyParams extends Structure {
/** <a href="https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/transcribe.py#L264">...</a> */
public int best_of;
@Override
protected List<String> getFieldOrder() {
return Collections.singletonList("best_of");
}
}

View File

@ -0,0 +1,31 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import java.util.Arrays;
import java.util.List;
/**
* Parameters for the whisper_init_from_file_with_params() function.
* If you change the order or add new parameters, make sure to update the default values in whisper.cpp:
* whisper_context_default_params()
*/
public class WhisperContextParams extends Structure {
public WhisperContextParams(Pointer p) {
super(p);
}
/** Use GPU for inference Number (default = true) */
public CBool use_gpu;
/** Use GPU for inference Number (default = true) */
public void useGpu(boolean enable) {
use_gpu = enable ? CBool.TRUE : CBool.FALSE;
}
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("use_gpu");
}
}

View File

@ -0,0 +1,10 @@
package io.github.ggerganov.whispercpp.params;
import java.util.List;
public class WhisperFilters {
int n_mel;
int n_fft;
List<Float> data;
}

View File

@ -0,0 +1,331 @@
package io.github.ggerganov.whispercpp.params;
import com.sun.jna.*;
import io.github.ggerganov.whispercpp.callbacks.WhisperEncoderBeginCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperLogitsFilterCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperNewSegmentCallback;
import io.github.ggerganov.whispercpp.callbacks.WhisperProgressCallback;
import java.util.Arrays;
import java.util.List;
/**
* Parameters for the whisper_full() function.
* If you change the order or add new parameters, make sure to update the default values in whisper.cpp:
* whisper_full_default_params()
*/
public class WhisperFullParams extends Structure {
public WhisperFullParams(Pointer p) {
super(p);
// super(p, ALIGN_MSVC);
// super(p, ALIGN_GNUC);
}
/** Sampling strategy for whisper_full() function. */
public int strategy;
/** Number of threads. (default = 4) */
public int n_threads;
/** Maximum tokens to use from past text as a prompt for the decoder. (default = 16384) */
public int n_max_text_ctx;
/** Start offset in milliseconds. (default = 0) */
public int offset_ms;
/** Audio duration to process in milliseconds. (default = 0) */
public int duration_ms;
/** Translate flag. (default = false) */
public CBool translate;
/** The compliment of translateMode() */
public void transcribeMode() {
translate = CBool.FALSE;
}
/** The compliment of transcribeMode() */
public void translateMode() {
translate = CBool.TRUE;
}
/** Flag to indicate whether to use past transcription (if any) as an initial prompt for the decoder. (default = true) */
public CBool no_context;
/** Flag to indicate whether to use past transcription (if any) as an initial prompt for the decoder. (default = true) */
public void enableContext(boolean enable) {
no_context = enable ? CBool.FALSE : CBool.TRUE;
}
/** Generate timestamps or not? */
public CBool no_timestamps;
/** Flag to force single segment output (useful for streaming). (default = false) */
public CBool single_segment;
/** Flag to force single segment output (useful for streaming). (default = false) */
public void singleSegment(boolean single) {
single_segment = single ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print special tokens (e.g., &lt;SOT>, &lt;EOT>, &lt;BEG>, etc.). (default = false) */
public CBool print_special;
/** Flag to print special tokens (e.g., &lt;SOT>, &lt;EOT>, &lt;BEG>, etc.). (default = false) */
public void printSpecial(boolean enable) {
print_special = enable ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print progress information. (default = true) */
public CBool print_progress;
/** Flag to print progress information. (default = true) */
public void printProgress(boolean enable) {
print_progress = enable ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print results from within whisper.cpp (avoid it, use callback instead). (default = true) */
public CBool print_realtime;
/** Flag to print results from within whisper.cpp (avoid it, use callback instead). (default = true) */
public void printRealtime(boolean enable) {
print_realtime = enable ? CBool.TRUE : CBool.FALSE;
}
/** Flag to print timestamps for each text segment when printing realtime. (default = true) */
public CBool print_timestamps;
/** Flag to print timestamps for each text segment when printing realtime. (default = true) */
public void printTimestamps(boolean enable) {
print_timestamps = enable ? CBool.TRUE : CBool.FALSE;
}
/** [EXPERIMENTAL] Flag to enable token-level timestamps. (default = false) */
public CBool token_timestamps;
/** [EXPERIMENTAL] Flag to enable token-level timestamps. (default = false) */
public void tokenTimestamps(boolean enable) {
token_timestamps = enable ? CBool.TRUE : CBool.FALSE;
}
/** [EXPERIMENTAL] Timestamp token probability threshold (~0.01). (default = 0.01) */
public float thold_pt;
/** [EXPERIMENTAL] Timestamp token sum probability threshold (~0.01). */
public float thold_ptsum;
/** Maximum segment length in characters. (default = 0) */
public int max_len;
/** Flag to split on word rather than on token (when used with max_len). (default = false) */
public CBool split_on_word;
/** Flag to split on word rather than on token (when used with max_len). (default = false) */
public void splitOnWord(boolean enable) {
split_on_word = enable ? CBool.TRUE : CBool.FALSE;
}
/** Maximum tokens per segment (0, default = no limit) */
public int max_tokens;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public CBool speed_up;
/** Flag to speed up the audio by 2x using Phase Vocoder. (default = false) */
public void speedUp(boolean enable) {
speed_up = enable ? CBool.TRUE : CBool.FALSE;
}
/** Overwrite the audio context size (0 = use default). */
public int audio_ctx;
/** Enable tinydiarize (default = false) */
public CBool tdrz_enable;
/** Enable tinydiarize (default = false) */
public void tdrzEnable(boolean enable) {
tdrz_enable = enable ? CBool.TRUE : CBool.FALSE;
}
/** Tokens to provide to the whisper decoder as an initial prompt.
* These are prepended to any existing text context from a previous call. */
public String initial_prompt;
/** Prompt tokens. (int*) */
public Pointer prompt_tokens;
public void setPromptTokens(int[] tokens) {
Memory mem = new Memory(tokens.length * 4L);
mem.write(0, tokens, 0, tokens.length);
prompt_tokens = mem;
}
/** Number of prompt tokens. */
public int prompt_n_tokens;
/** Language for auto-detection.
* For auto-detection, set to `null`, `""`, or "auto". */
public String language;
/** Flag to indicate whether to detect language automatically. */
public CBool detect_language;
/** Flag to indicate whether to detect language automatically. */
public void detectLanguage(boolean enable) {
detect_language = enable ? CBool.TRUE : CBool.FALSE;
}
// Common decoding parameters.
/** Flag to suppress blank tokens. */
public CBool suppress_blank;
public void suppressBlanks(boolean enable) {
suppress_blank = enable ? CBool.TRUE : CBool.FALSE;
}
/** Flag to suppress non-speech tokens. */
public CBool suppress_non_speech_tokens;
/** Flag to suppress non-speech tokens. */
public void suppressNonSpeechTokens(boolean enable) {
suppress_non_speech_tokens = enable ? CBool.TRUE : CBool.FALSE;
}
/** Initial decoding temperature. */
public float temperature;
/** Maximum initial timestamp. */
public float max_initial_ts;
/** Length penalty. */
public float length_penalty;
// Fallback parameters.
/** Temperature increment. */
public float temperature_inc;
/** Entropy threshold (similar to OpenAI's "compression_ratio_threshold"). */
public float entropy_thold;
/** Log probability threshold. */
public float logprob_thold;
/** No speech threshold. */
public float no_speech_thold;
/** Greedy decoding parameters. */
public GreedyParams greedy;
/**
* Beam search decoding parameters.
*/
public BeamSearchParams beam_search;
public void setBestOf(int bestOf) {
if (greedy == null) {
greedy = new GreedyParams();
}
greedy.best_of = bestOf;
}
public void setBeamSize(int beamSize) {
if (beam_search == null) {
beam_search = new BeamSearchParams();
}
beam_search.beam_size = beamSize;
}
public void setBeamSizeAndPatience(int beamSize, float patience) {
if (beam_search == null) {
beam_search = new BeamSearchParams();
}
beam_search.beam_size = beamSize;
beam_search.patience = patience;
}
/**
* Callback for every newly generated text segment.
* WhisperNewSegmentCallback
*/
public Pointer new_segment_callback;
/**
* User data for the new_segment_callback.
*/
public Pointer new_segment_callback_user_data;
/**
* Callback on each progress update.
* WhisperProgressCallback
*/
public Pointer progress_callback;
/**
* User data for the progress_callback.
*/
public Pointer progress_callback_user_data;
/**
* Callback each time before the encoder starts.
* WhisperEncoderBeginCallback
*/
public Pointer encoder_begin_callback;
/**
* User data for the encoder_begin_callback.
*/
public Pointer encoder_begin_callback_user_data;
/**
* Callback by each decoder to filter obtained logits.
* WhisperLogitsFilterCallback
*/
public Pointer logits_filter_callback;
/**
* User data for the logits_filter_callback.
*/
public Pointer logits_filter_callback_user_data;
public void setNewSegmentCallback(WhisperNewSegmentCallback callback) {
new_segment_callback = CallbackReference.getFunctionPointer(callback);
}
public void setProgressCallback(WhisperProgressCallback callback) {
progress_callback = CallbackReference.getFunctionPointer(callback);
}
public void setEncoderBeginCallbackeginCallbackCallback(WhisperEncoderBeginCallback callback) {
encoder_begin_callback = CallbackReference.getFunctionPointer(callback);
}
public void setLogitsFilterCallback(WhisperLogitsFilterCallback callback) {
logits_filter_callback = CallbackReference.getFunctionPointer(callback);
}
/** Grammar stuff */
public Pointer grammar_rules;
public long n_grammar_rules;
public long i_start_rule;
public float grammar_penalty;
@Override
protected List<String> getFieldOrder() {
return Arrays.asList("strategy", "n_threads", "n_max_text_ctx", "offset_ms", "duration_ms", "translate",
"no_context", "single_segment", "no_timestamps",
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "speed_up", "audio_ctx",
"tdrz_enable", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty",
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
"new_segment_callback", "new_segment_callback_user_data",
"progress_callback", "progress_callback_user_data",
"encoder_begin_callback", "encoder_begin_callback_user_data",
"logits_filter_callback", "logits_filter_callback_user_data",
"grammar_rules", "n_grammar_rules", "i_start_rule", "grammar_penalty");
}
}

View File

@ -0,0 +1,15 @@
package io.github.ggerganov.whispercpp.params;
public class WhisperHParams {
int n_vocab = 51864;
int n_audio_ctx = 1500;
int n_audio_state = 384;
int n_audio_head = 6;
int n_audio_layer = 4;
int n_text_ctx = 448;
int n_text_state = 384;
int n_text_head = 6;
int n_text_layer = 4;
int n_mels = 80;
int ftype = 1;
}

View File

@ -0,0 +1,10 @@
package io.github.ggerganov.whispercpp.params;
/** Available sampling strategies */
public enum WhisperSamplingStrategy {
/** similar to OpenAI's GreedyDecoder */
WHISPER_SAMPLING_GREEDY,
/** similar to OpenAI's BeamSearchDecoder */
WHISPER_SAMPLING_BEAM_SEARCH
}

View File

@ -0,0 +1,144 @@
package io.github.ggerganov.whispercpp;
import static org.junit.jupiter.api.Assertions.*;
import io.github.ggerganov.whispercpp.bean.WhisperSegment;
import io.github.ggerganov.whispercpp.params.CBool;
import io.github.ggerganov.whispercpp.params.WhisperFullParams;
import io.github.ggerganov.whispercpp.params.WhisperSamplingStrategy;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.List;
class WhisperCppTest {
private static WhisperCpp whisper = new WhisperCpp();
private static boolean modelInitialised = false;
@BeforeAll
static void init() throws FileNotFoundException {
// By default, models are loaded from ~/.cache/whisper/ and are usually named "ggml-${name}.bin"
// or you can provide the absolute path to the model file.
//String modelName = "../../models/ggml-tiny.bin";
String modelName = "../../models/ggml-tiny.en.bin";
try {
whisper.initContext(modelName);
//whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
//whisper.getJavaDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
modelInitialised = true;
} catch (FileNotFoundException ex) {
System.out.println("Model " + modelName + " not found");
}
}
@Test
void testGetDefaultFullParams_BeamSearch() {
// When
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
// Then
assertEquals(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH.ordinal(), params.strategy);
assertNotEquals(0, params.n_threads);
assertEquals(16384, params.n_max_text_ctx);
assertFalse(params.translate);
assertEquals(0.01f, params.thold_pt);
assertEquals(5, params.beam_search.beam_size);
assertEquals(-1.0f, params.beam_search.patience);
}
@Test
void testGetDefaultFullParams_Greedy() {
// When
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
// Then
assertEquals(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY.ordinal(), params.strategy);
assertNotEquals(0, params.n_threads);
assertEquals(16384, params.n_max_text_ctx);
assertEquals(5, params.greedy.best_of);
}
@Test
void testFullTranscribe() throws Exception {
if (!modelInitialised) {
System.out.println("Model not initialised, skipping test");
return;
}
// Given
File file = new File(System.getProperty("user.dir"), "../../samples/jfk.wav");
AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(file);
byte[] b = new byte[audioInputStream.available()];
float[] floats = new float[b.length / 2];
//WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
params.print_progress = CBool.FALSE;
//params.initial_prompt = "and so my fellow Americans um, like";
try {
audioInputStream.read(b);
for (int i = 0, j = 0; i < b.length; i += 2, j++) {
int intSample = (int) (b[i + 1]) << 8 | (int) (b[i]) & 0xFF;
floats[j] = intSample / 32767.0f;
}
// When
String result = whisper.fullTranscribe(params, floats);
// Then
System.err.println(result);
assertEquals("And so my fellow Americans ask not what your country can do for you " +
"ask what you can do for your country.",
result.replace(",", ""));
} finally {
audioInputStream.close();
}
}
@Test
void testFullTranscribeWithTime() throws Exception {
if (!modelInitialised) {
System.out.println("Model not initialised, skipping test");
return;
}
// Given
File file = new File(System.getProperty("user.dir"), "../../samples/jfk.wav");
AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(file);
byte[] b = new byte[audioInputStream.available()];
float[] floats = new float[b.length / 2];
//WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_GREEDY);
WhisperFullParams params = whisper.getFullDefaultParams(WhisperSamplingStrategy.WHISPER_SAMPLING_BEAM_SEARCH);
params.setProgressCallback((ctx, state, progress, user_data) -> System.out.println("progress: " + progress));
params.print_progress = CBool.FALSE;
//params.initial_prompt = "and so my fellow Americans um, like";
try {
audioInputStream.read(b);
for (int i = 0, j = 0; i < b.length; i += 2, j++) {
int intSample = (int) (b[i + 1]) << 8 | (int) (b[i]) & 0xFF;
floats[j] = intSample / 32767.0f;
}
List<WhisperSegment> segments = whisper.fullTranscribeWithTime(params, floats);
assertTrue(segments.size() > 0, "The size of segments should be greater than 0");
for (WhisperSegment segment : segments) {
System.out.println(segment);
}
} finally {
audioInputStream.close();
}
}
}

View File

@ -0,0 +1,17 @@
package io.github.ggerganov.whispercpp;
import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;
class WhisperJnaLibraryTest {
@Test
void testWhisperPrint_system_info() {
String systemInfo = WhisperCppJnaLibrary.instance.whisper_print_system_info();
// eg: "AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0
// | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | COREML = 0 | "
System.out.println("System info: " + systemInfo);
assertTrue(systemInfo.length() > 10);
}
}

View File

@ -20,7 +20,7 @@ struct whisper_context * g_context;
EMSCRIPTEN_BINDINGS(whisper) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
if (g_context == nullptr) {
g_context = whisper_init_from_file(path_model.c_str());
g_context = whisper_init_from_file_with_params(path_model.c_str(), whisper_context_default_params());
if (g_context != nullptr) {
return true;
} else {

View File

@ -1 +1 @@
"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}whisper_factory(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){Module["__embind_initialize_bindings"]();pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};
"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:f=>(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f),postMessage:msg=>parentPort.postMessage(msg),performance:global.performance||{now:Date.now}})}var initializedJS=false;function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var module=Module["wasmModule"];Module["wasmModule"]=null;var instance=new WebAssembly.Instance(module,info);return receiveInstance(instance)};self.onunhandledrejection=e=>{throw e.reason||e};function handleMessage(e){try{if(e.data.cmd==="load"){let messageQueue=[];self.onmessage=e=>messageQueue.push(e);self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"});for(let msg of messageQueue){handleMessage(msg)}self.onmessage=handleMessage};Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=(...args)=>{postMessage({cmd:"callHandler",handler:handler,args:args})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}whisper_factory(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["__emscripten_thread_mailbox_await"](e.data.pthread_ptr);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){Module["__embind_initialize_bindings"]();initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){throw ex}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="checkMailbox"){if(initializedJS){Module["checkMailbox"]()}}else if(e.data.cmd){err(`worker.js received unknown command ${e.data.cmd}`);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}}self.onmessage=handleMessage;

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.4.2",
"version": "1.5.0",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

File diff suppressed because one or more lines are too long

View File

@ -1,6 +1,8 @@
Makefile
ggml.c
ggml.h
ggml-alloc.c
ggml-alloc.h
whisper.bundle
whisper.cpp
whisper.h

View File

@ -3,6 +3,14 @@ system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-impl.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend-impl.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','examples','dr_wav.h')} .")

View File

@ -0,0 +1,87 @@
#pragma once
// ggml-backend internal header
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
ggml_backend_buffer_context_t context;
size_t size;
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
//
// Backend
//
typedef void * ggml_backend_context_t;
struct ggml_backend_i {
const char * (*get_name)(ggml_backend_t backend);
void (*free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
};
struct ggml_backend {
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,950 @@
#include "ggml-backend-impl.h"
#include "ggml-alloc.h"
#include "ggml-impl.h"
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define UNUSED GGML_UNUSED
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// backend buffer
ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size) {
ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
GGML_ASSERT(iface.get_base != NULL);
(*buffer) = (struct ggml_backend_buffer) {
/* .interface = */ iface,
/* .backend = */ backend,
/* .context = */ context,
/* .size = */ size,
};
return buffer;
}
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
if (buffer == NULL) {
return;
}
if (buffer->iface.free_buffer != NULL) {
buffer->iface.free_buffer(buffer);
}
free(buffer);
}
size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
return ggml_backend_get_alignment(buffer->backend);
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
return buffer->size;
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
return base;
}
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buffer->iface.get_alloc_size) {
return buffer->iface.get_alloc_size(buffer, tensor);
}
return ggml_nbytes(tensor);
}
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// init_tensor is optional
if (buffer->iface.init_tensor) {
buffer->iface.init_tensor(buffer, tensor);
}
}
void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// free_tensor is optional
if (buffer->iface.free_tensor) {
buffer->iface.free_tensor(buffer, tensor);
}
}
// backend
ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
return tensor->buffer ? tensor->buffer->backend : NULL;
}
const char * ggml_backend_name(ggml_backend_t backend) {
if (backend == NULL) {
return "NULL";
}
return backend->iface.get_name(backend);
}
void ggml_backend_free(ggml_backend_t backend) {
if (backend == NULL) {
return;
}
backend->iface.free(backend);
}
ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
return backend->iface.alloc_buffer(backend, size);
}
size_t ggml_backend_get_alignment(ggml_backend_t backend) {
return backend->iface.get_alignment(backend);
}
void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
}
void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
}
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_t backend = ggml_get_backend(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
}
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_t backend = ggml_get_backend(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
}
void ggml_backend_synchronize(ggml_backend_t backend) {
backend->iface.synchronize(backend);
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return backend->iface.graph_plan_create(backend, cgraph);
}
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
backend->iface.graph_plan_free(backend, plan);
}
void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
backend->iface.graph_plan_compute(backend, plan);
}
void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
backend->iface.graph_compute(backend, cgraph);
}
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
return backend->iface.supports_op(backend, op);
}
// backend copy
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
//printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
// fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
if (src == dst) {
return;
}
// TODO: allow backends to support copy to/from same backend
if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) {
ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst);
} else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) {
ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst);
} else {
// shouldn't be hit when copying from/to CPU
#ifndef NDEBUG
fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend));
#endif
size_t nbytes = ggml_nbytes(src);
void * data = malloc(nbytes);
ggml_backend_tensor_get(src, data, 0, nbytes);
ggml_backend_tensor_set(dst, data, 0, nbytes);
free(data);
}
}
// backend CPU
struct ggml_backend_cpu_context {
int n_threads;
void * work_data;
size_t work_size;
};
static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
return "CPU";
UNUSED(backend);
}
static void ggml_backend_cpu_free(ggml_backend_t backend) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
free(cpu_ctx->work_data);
free(cpu_ctx);
free(backend);
}
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
return (void *)buffer->context;
}
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
free(buffer->context);
UNUSED(buffer);
}
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .init_tensor = */ NULL, // no initialization required
/* .free_tensor = */ NULL, // no cleanup required
};
// for buffers from ptr, free is not called
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .init_tensor = */ NULL,
/* .free_tensor = */ NULL,
};
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) {
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
GGML_ASSERT(data != NULL && "failed to allocate buffer");
return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
}
static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) {
return TENSOR_ALIGNMENT;
UNUSED(backend);
}
static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy((char *)tensor->data + offset, data, size);
UNUSED(backend);
}
static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy(data, (const char *)tensor->data + offset, size);
UNUSED(backend);
}
static void ggml_backend_cpu_synchronize(ggml_backend_t backend) {
UNUSED(backend);
}
static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
UNUSED(backend);
}
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
UNUSED(backend);
}
struct ggml_backend_plan_cpu {
struct ggml_cplan cplan;
struct ggml_cgraph cgraph;
};
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
cpu_plan->cgraph = *cgraph;
if (cpu_plan->cplan.work_size > 0) {
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
}
return cpu_plan;
}
static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
free(cpu_plan->cplan.work_data);
free(cpu_plan);
UNUSED(backend);
}
static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
UNUSED(backend);
}
static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
if (cpu_ctx->work_size < cplan.work_size) {
// TODO: may be faster to free and use malloc to avoid the copy
cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
cpu_ctx->work_size = cplan.work_size;
}
cplan.work_data = cpu_ctx->work_data;
ggml_graph_compute(cgraph, &cplan);
}
static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
return true;
UNUSED(backend);
UNUSED(op);
}
static struct ggml_backend_i cpu_backend_i = {
/* .get_name = */ ggml_backend_cpu_name,
/* .free = */ ggml_backend_cpu_free,
/* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_get_alignment,
/* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
/* .synchronize = */ ggml_backend_cpu_synchronize,
/* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .supports_op = */ ggml_backend_cpu_supports_op,
};
ggml_backend_t ggml_backend_cpu_init(void) {
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
ctx->n_threads = GGML_DEFAULT_N_THREADS;
ctx->work_data = NULL;
ctx->work_size = 0;
ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
*cpu_backend = (struct ggml_backend) {
/* .interface = */ cpu_backend_i,
/* .context = */ ctx
};
return cpu_backend;
}
bool ggml_backend_is_cpu(ggml_backend_t backend) {
return backend->iface.get_name == ggml_backend_cpu_name;
}
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
ctx->n_threads = n_threads;
}
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
}
// scheduler
#define GGML_MAX_BACKENDS 4
#define GGML_MAX_SPLITS 256
#define GGML_MAX_SPLIT_INPUTS 16
struct ggml_backend_sched_split {
ggml_tallocr_t tallocr;
int i_start;
int i_end;
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
int n_inputs;
struct ggml_cgraph * graph;
};
struct ggml_backend_sched {
int n_backends;
ggml_backend_t backends[GGML_MAX_BACKENDS];
ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
ggml_gallocr_t galloc;
struct ggml_hash_set hash_set;
ggml_tallocr_t * node_talloc; // [hash_set.size]
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
struct ggml_cgraph * graph;
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
int n_splits;
struct ggml_context * ctx;
// align context_buffer to GGML_MEM_ALIGN
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + GGML_MAX_SPLITS*sizeof(struct ggml_cgraph)];
};
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
#define node_allocr(node) sched->node_talloc[hash_id(node)]
static bool ggml_is_view_op(enum ggml_op op) {
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
}
// returns the priority of the backend, lower is better
static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->backends[i] == backend) {
return i;
}
}
return INT_MAX;
}
static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->tallocs[i] == allocr) {
return i;
}
}
return INT_MAX;
}
// returns the backend that should be used for the node based on the current locations
char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
// ie. kv cache updates
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
// dst
ggml_backend_t cur_backend = ggml_get_backend(node);
if (cur_backend != NULL) {
sprintf(causes[hash_id(node)], "1.dst");
return cur_backend;
}
// view_src
if (node->view_src != NULL && ggml_get_backend(node->view_src) != NULL) {
sprintf(causes[hash_id(node)], "1.vsrc");
return ggml_get_backend(node->view_src);
}
// src
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = node->src[i];
if (src == NULL) {
break;
}
ggml_backend_t src_backend = ggml_get_backend(src);
if (src_backend != NULL) {
int src_prio = sched_backend_prio(sched, src_backend);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
cur_backend = src_backend;
sprintf(causes[hash_id(node)], "1.src%d", i);
}
}
}
return cur_backend;
}
static char * fmt_size(size_t size) {
static char buffer[128];
if (size >= 1024*1024) {
sprintf(buffer, "%zuM", size/1024/1024);
} else {
sprintf(buffer, "%zuK", size/1024);
}
return buffer;
}
static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
ggml_backend_t split_backend = ggml_tallocr_get_buffer(sched->splits[cur_split].tallocr)->backend;
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs);
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
}
fprintf(stderr, "\n");
cur_split++;
}
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer(node_allocr)->backend : NULL;
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", causes[hash_id(node)]);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer(src_allocr)->backend : NULL;
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", causes[hash_id(src)]);
}
fprintf(stderr, "\n");
}
}
// creates a copy of the tensor with the same memory layout
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
dup->nb[i] = tensor->nb[i];
}
return dup;
}
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
// TODO: merge passes
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset state
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
sched->n_splits = 0;
struct ggml_init_params params = {
/*.mem_size = */ sizeof(sched->context_buffer),
/*.mem_buffer = */ sched->context_buffer,
/*.no_alloc = */ true
};
if (sched->ctx != NULL) {
ggml_free(sched->ctx);
}
sched->ctx = ggml_init(params);
// pass 1: assign backends to ops with allocated inputs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
if (node_allocr(leaf) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t leaf_backend = ggml_get_backend(leaf);
if (leaf_backend == NULL && leaf->view_src != NULL) {
leaf_backend = ggml_get_backend(leaf->view_src);
}
if (leaf_backend != NULL) {
node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
}
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node_allocr(node) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
if (node_backend != NULL) {
node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
}
}
//printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 2: assign backends to ops from current assignments
// TODO:
// - reuse sched_backend_from_cur
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != NULL) {
int src_prio = sched_allocr_prio(sched, src_allocr);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
node_allocr = src_allocr;
sprintf(causes[hash_id(node)], "2.src%d", j);
}
}
}
if (node_allocr != NULL) {
node_allocr(node) = node_allocr;
}
}
}
//printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 3: assign backends to remaining src from dst (should only be leafs)
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr == NULL) {
node_allocr(src) = node_allocr;
}
}
}
//printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 4: split graph, find tensors that need to be copied
// TODO:
// - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
// find first backend
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node->view_src == NULL) {
sched->splits[0].tallocr = node_allocr(node);
break;
}
}
sched->splits[0].i_start = 0;
sched->splits[0].n_inputs = 0;
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr != cur_allocr) {
sched->splits[cur_split].i_end = i;
cur_split++;
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
sched->splits[cur_split].tallocr = node_allocr;
sched->splits[cur_split].i_start = i;
sched->splits[cur_split].n_inputs = 0;
memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
cur_allocr = node_allocr;
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
}
// find inputs that are not on the same backend
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr) {
int n_inputs = sched->splits[cur_split].n_inputs++;
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
// create copies
size_t id = hash_id(src);
if (sched->node_copies[id][cur_backend_id] == NULL) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
sched->node_copies[id][cur_backend_id] = tensor_copy;
node_allocr(tensor_copy) = cur_allocr;
ggml_backend_t backend = ggml_tallocr_get_buffer(cur_allocr)->backend;
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
}
node->src[j] = sched->node_copies[id][cur_backend_id];
}
}
}
sched->splits[cur_split].i_end = graph->n_nodes;
sched->n_splits = cur_split + 1;
//fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
#if 1
// sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
node->name, node_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(node_allocr)->backend) : "NULL",
j, src->name, src_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(src_allocr)->backend) : "NULL");
}
}
}
#endif
// create copies of the graph for each split
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(sched->ctx, graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
input_cpy->src[0] = input;
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
}
for (int j = split->i_start; j < split->i_end; j++) {
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
}
sched->graph = graph_copy;
}
static void sched_alloc_splits(ggml_backend_sched_t sched) {
ggml_gallocr_alloc_graph_n(
sched->galloc,
sched->graph,
sched->hash_set,
sched->node_talloc);
}
static void sched_compute_splits(ggml_backend_sched_t sched) {
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &splits[i];
ggml_backend_t split_backend = ggml_tallocr_get_buffer(split->tallocr)->backend;
int split_backend_id = sched_backend_prio(sched, split_backend);
// copy the input tensors to the split backend
uint64_t copy_start_us = ggml_time_us();
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(split->inputs[j])][sched_backend_prio(sched, split_backend)];
if (split->inputs[j]->buffer == NULL) {
if (split->inputs[j]->view_src == NULL) {
fprintf(stderr, "input %s has no buffer and no view_src\n", split->inputs[j]->name);
exit(1);
}
struct ggml_tensor * view = split->inputs[j];
view->backend = view->view_src->backend;
view->buffer = view->view_src->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view);
}
if (input_cpy->buffer == NULL) {
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
exit(1);
}
GGML_ASSERT(split->inputs[j]->buffer->backend != input_cpy->buffer->backend);
GGML_ASSERT(input_cpy->buffer->backend == split_backend);
ggml_backend_tensor_copy(split->inputs[j], input_cpy);
}
// ggml_backend_synchronize(split_backend);
int64_t copy_end_us = ggml_time_us();
copy_us[split_backend_id] += copy_end_us - copy_start_us;
#if 0
char split_filename[GGML_MAX_NAME];
snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif
uint64_t compute_start_us = ggml_time_us();
ggml_backend_graph_compute(split_backend, split->graph);
// ggml_backend_synchronize(split_backend);
uint64_t compute_end_us = ggml_time_us();
compute_us[split_backend_id] += compute_end_us - compute_start_us;
}
#if 0
// per-backend timings
fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
for (int i = 0; i < sched->n_backends; i++) {
if (copy_us[i] > 0 || compute_us[i] > 0) {
fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
}
}
#endif
}
static void sched_reset(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_reset(sched->tallocs[i]);
}
}
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
memset(sched, 0, sizeof(struct ggml_backend_sched));
fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024);
sched->n_backends = n_backends;
for (int i = 0; i < n_backends; i++) {
sched->backends[i] = backends[i];
}
sched->galloc = ggml_gallocr_new();
// init measure allocs for each backend
for (int i = 0; i < n_backends; i++) {
sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
}
return sched;
}
void ggml_backend_sched_free(ggml_backend_sched_t sched) {
if (sched == NULL) {
return;
}
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_free(sched->tallocs[i]);
}
ggml_gallocr_free(sched->galloc);
free(sched->hash_set.keys);
free(sched->node_talloc);
free(sched->node_copies);
free(sched);
}
void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
// initialize hash tables
size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
sched->hash_set.size = hash_size;
sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
sched_split_graph(sched, measure_graph);
sched_alloc_splits(sched);
// allocate buffers and reset allocators
for (int i = 0; i < sched->n_backends; i++) {
size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
ggml_tallocr_free(sched->tallocs[i]);
sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
}
sched_reset(sched);
}
void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched_split_graph(sched, graph);
sched_alloc_splits(sched);
sched_compute_splits(sched);
sched_reset(sched);
}
ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return sched->tallocs[backend_index];
}
ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
}
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
node_allocr(node) = sched->tallocs[backend_index];
}

View File

@ -0,0 +1,136 @@
#pragma once
#include "ggml.h"
#include "ggml-alloc.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
struct ggml_backend_buffer;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
// backend buffer functions
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
//
// Backend
//
struct ggml_backend;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
GGML_API void ggml_backend_free(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
// Create a backend buffer from an existing pointer
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
//
// Backend scheduler
//
// The backend scheduler allows for multiple backends to be used together
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
// The backends are selected based on:
// - the backend that supports the operation
// - the location of the pre-allocated tensors (e.g. the weights)
/*
Example usage:
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
// initialize buffers from a measure graph
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
// in build_graph:
build_graph(...) {
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
ggml_allocr_alloc(alloc_cpu, tensor);
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
}
// allocate backend buffers from measure graph
ggml_backend_sched_init_measure(sched, measure_graph);
// the scheduler is now ready to compute graphs
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
*/
struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
// Allocate a graph on the backend scheduler
GGML_API void ggml_backend_sched_graph_compute(
ggml_backend_sched_t sched,
struct ggml_cgraph * graph);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,249 @@
#pragma once
#include "ggml.h"
// GGML internal header
#include <assert.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
// static_assert should be a #define, but if it's not,
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#ifndef __SSE3__
#define __SSE3__
#endif
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON) && !defined(_MSC_VER)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
#define GGML_FP16_TO_FP32(x) ((float) (x))
#define GGML_FP32_TO_FP16(x) (x)
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // __ARM_NEON
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,224 @@
#pragma once
#include "ggml-impl.h"
// GGML internal header
#include <stdint.h>
#include <stddef.h>
#define QK4_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
#define QK5_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
#define QK8_0 32
typedef struct {
ggml_fp16_t d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define QK8_1 32
typedef struct {
float d; // delta
float s; // d * sum(qs[i])
int8_t qs[QK8_1]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
//
// Super-block quantization structures
//
// Super-block size
#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#endif
// 2-bit quantization
// weight is represented as x = a * q + b
// 16 blocks of 16 elements each
// Effectively 2.5625 bits per weight
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
// 3-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 3.4375 bits per weight
#ifdef GGML_QKK_64
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[2];
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
#else
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[12]; // scales, quantized with 6 bits
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
#endif
// 4-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 4.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d[2]; // super-block scales/mins
uint8_t scales[2]; // 4-bit block scales/mins
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
#endif
// 5-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 5.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d; // super-block scale
int8_t scales[QK_K/16]; // 8-bit block scales
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif
// 6-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 6.5625 bits per weight
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
ggml_fp16_t d; // super-block scale
} block_q6_K;
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
// This is only used for intermediate quantization and dot products
typedef struct {
float d; // delta
int8_t qs[QK_K]; // quants
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
} block_q8_K;
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
// Quantization
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k);
void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k);
void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k);
void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k);
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
// Dequantization
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k);
void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k);
void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k);
void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k);
//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k);
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
// Dot product
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);

View File

@ -87,7 +87,7 @@ static VALUE ruby_whisper_initialize(int argc, VALUE *argv, VALUE self) {
if (!rb_respond_to(whisper_model_file_path, rb_intern("to_s"))) {
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
}
rw->context = whisper_init_from_file(StringValueCStr(whisper_model_file_path));
rw->context = whisper_init_from_file_with_params(StringValueCStr(whisper_model_file_path), whisper_context_default_params());
if (rw->context == nullptr) {
rb_raise(rb_eRuntimeError, "error: failed to initialize whisper context");
}

View File

@ -123,7 +123,7 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
/**
Make a prediction using the convenience interface
@param logmel_data as 1 × 80 × 3000 3-dimensional array of floats:
@param logmel_data as 1 × n_mel × 3000 3-dimensional array of floats:
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_encoder_implOutput
*/

View File

@ -3,6 +3,8 @@
// Code is derived from the work of Github user @wangchou
// ref: https://github.com/wangchou/callCoreMLFromCpp
#include <stdint.h>
#if __cplusplus
extern "C" {
#endif
@ -14,6 +16,8 @@ void whisper_coreml_free(struct whisper_coreml_context * ctx);
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
int64_t n_ctx,
int64_t n_mel,
float * mel,
float * out);

View File

@ -22,7 +22,13 @@ struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model error:nil]);
// select which device to run the Core ML model on
MLModelConfiguration *config = [[MLModelConfiguration alloc] init];
config.computeUnits = MLComputeUnitsCPUAndGPU;
//config.computeUnits = MLComputeUnitsCPUAndNeuralEngine;
//config.computeUnits = MLComputeUnitsAll;
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model configuration:config error:nil]);
if (data == NULL) {
return NULL;
@ -42,20 +48,24 @@ void whisper_coreml_free(struct whisper_coreml_context * ctx) {
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
int64_t n_ctx,
int64_t n_mel,
float * mel,
float * out) {
MLMultiArray * inMultiArray = [
[MLMultiArray alloc] initWithDataPointer: mel
shape: @[@1, @80, @3000]
shape: @[@1, @(n_mel), @(n_ctx)]
dataType: MLMultiArrayDataTypeFloat32
strides: @[@(240000), @(3000), @1]
strides: @[@(n_ctx*n_mel), @(n_ctx), @1]
deallocator: nil
error: nil
];
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
@autoreleasepool {
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
memcpy(out, outCoreML.output.dataPointer, outCoreML.output.count * sizeof(float));
memcpy(out, outCoreML.output.dataPointer, outCoreML.output.count * sizeof(float));
}
}
#if __cplusplus

View File

@ -23,6 +23,7 @@ add_library(${TARGET} STATIC
common.cpp
common-ggml.h
common-ggml.cpp
grammar-parser.cpp
)
include(DefaultTargetOptions)
@ -64,9 +65,13 @@ elseif(CMAKE_JS_VERSION)
else()
add_subdirectory(main)
add_subdirectory(stream)
add_subdirectory(server)
add_subdirectory(command)
add_subdirectory(bench)
add_subdirectory(quantize)
add_subdirectory(talk)
add_subdirectory(talk-llama)
add_subdirectory(lsp)
endif()
add_subdirectory(wchess)

View File

@ -11,6 +11,7 @@ const whisperParamsMock = {
language: "en",
model: path.join(__dirname, "../../../models/ggml-base.en.bin"),
fname_inp: path.join(__dirname, "../../../samples/jfk.wav"),
use_gpu: true,
};
describe("Run whisper.node", () => {

View File

@ -36,6 +36,7 @@ struct whisper_params {
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
bool use_gpu = true;
std::string language = "en";
std::string prompt;
@ -153,7 +154,9 @@ int run(whisper_params &params, std::vector<std::vector<std::string>> &result) {
// whisper init
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
@ -315,10 +318,12 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
std::string language = whisper_params.Get("language").As<Napi::String>();
std::string model = whisper_params.Get("model").As<Napi::String>();
std::string input = whisper_params.Get("fname_inp").As<Napi::String>();
bool use_gpu = whisper_params.Get("use_gpu").As<Napi::Boolean>();
params.language = language;
params.model = model;
params.fname_inp.emplace_back(input);
params.use_gpu = use_gpu;
Napi::Function callback = info[1].As<Napi::Function>();
Worker* worker = new Worker(callback, params);

View File

@ -11,6 +11,7 @@ const whisperParams = {
language: "en",
model: path.join(__dirname, "../../models/ggml-base.en.bin"),
fname_inp: "../../samples/jfk.wav",
use_gpu: true,
};
const arguments = process.argv.slice(2);

View File

@ -23,7 +23,9 @@ void bench_main(size_t index) {
fprintf(stderr, "%s: running benchmark with %d threads - please wait...\n", __func__, n_threads);
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
const int n_mels = whisper_model_n_mels(ctx);
if (int ret = whisper_set_mel(ctx, nullptr, 0, n_mels)) {
fprintf(stderr, "error: failed to set mel: %d\n", ret);
return;
}
@ -57,7 +59,7 @@ EMSCRIPTEN_BINDINGS(bench) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
for (size_t i = 0; i < g_contexts.size(); ++i) {
if (g_contexts[i] == nullptr) {
g_contexts[i] = whisper_init_from_file(path_model.c_str());
g_contexts[i] = whisper_init_from_file_with_params(path_model.c_str(), whisper_context_default_params());
if (g_contexts[i] != nullptr) {
if (g_worker.joinable()) {
g_worker.join();

View File

@ -1,6 +1,7 @@
#include "whisper.h"
#include <cstdio>
#include <cstring>
#include <string>
#include <thread>
@ -10,6 +11,8 @@ struct whisper_params {
int32_t what = 0; // what to benchmark: 0 - whisper ecoder, 1 - memcpy, 2 - ggml_mul_mat
std::string model = "models/ggml-base.en.bin";
bool use_gpu = true;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
@ -22,9 +25,10 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -44,16 +48,20 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
fprintf(stderr, " %-7s 0 - whisper encoder\n", "");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " %-7s 0 - whisper\n", "");
fprintf(stderr, " %-7s 1 - memcpy\n", "");
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
fprintf(stderr, "\n");
}
int whisper_bench_encoder(const whisper_params & params) {
int whisper_bench_full(const whisper_params & params) {
// whisper init
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
{
fprintf(stderr, "\n");
@ -65,16 +73,65 @@ int whisper_bench_encoder(const whisper_params & params) {
return 2;
}
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
const int n_mels = whisper_model_n_mels(ctx);
if (int ret = whisper_set_mel(ctx, nullptr, 0, n_mels)) {
fprintf(stderr, "error: failed to set mel: %d\n", ret);
return 3;
}
// heat encoder
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret);
fprintf(stderr, "error: failed to encode: %d\n", ret);
return 4;
}
whisper_token tokens[512];
memset(tokens, 0, sizeof(tokens));
// prompt heat
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4;
}
// text-generation heat
if (int ret = whisper_decode(ctx, tokens, 1, 256, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4;
}
whisper_reset_timings(ctx);
// actual run
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode: %d\n", ret);
return 4;
}
// text-generation
for (int i = 0; i < 256; i++) {
if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4;
}
}
// batched decoding
for (int i = 0; i < 64; i++) {
if (int ret = whisper_decode(ctx, tokens, 5, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4;
}
}
// prompt processing
for (int i = 0; i < 16; i++) {
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4;
}
}
whisper_print_timings(ctx);
whisper_free(ctx);
@ -103,7 +160,7 @@ int main(int argc, char ** argv) {
int ret = -1;
switch (params.what) {
case 0: ret = whisper_bench_encoder(params); break;
case 0: ret = whisper_bench_full(params); break;
case 1: ret = whisper_bench_memcpy(params.n_threads); break;
case 2: ret = whisper_bench_ggml_mul_mat(params.n_threads); break;
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;

View File

@ -243,7 +243,7 @@ EMSCRIPTEN_BINDINGS(command) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
for (size_t i = 0; i < g_contexts.size(); ++i) {
if (g_contexts[i] == nullptr) {
g_contexts[i] = whisper_init_from_file(path_model.c_str());
g_contexts[i] = whisper_init_from_file_with_params(path_model.c_str(), whisper_context_default_params());
if (g_contexts[i] != nullptr) {
g_running = true;
if (g_worker.joinable()) {

View File

@ -6,9 +6,10 @@
// ref: https://github.com/ggerganov/whisper.cpp/issues/171
//
#include "common.h"
#include "common-sdl.h"
#include "common.h"
#include "whisper.h"
#include "grammar-parser.h"
#include <sstream>
#include <cassert>
@ -21,6 +22,11 @@
#include <vector>
#include <map>
bool file_exists(const std::string & fname) {
std::ifstream f(fname.c_str());
return f.good();
}
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
@ -30,20 +36,27 @@ struct whisper_params {
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
float grammar_penalty = 100.0f;
grammar_parser::parse_state grammar_parsed;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
bool use_gpu = true;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
std::string fname_out;
std::string commands;
std::string prompt;
std::string context;
std::string grammar;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
@ -68,11 +81,15 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else if (arg == "-cmd" || arg == "--commands") { params.commands = argv[++i]; }
else if (arg == "-p" || arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-ctx" || arg == "--context") { params.context = argv[++i]; }
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -101,21 +118,36 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, " -cmd FNAME, --commands FNAME [%-7s] text file with allowed commands\n", params.commands.c_str());
fprintf(stderr, " -p, --prompt [%-7s] the required activation prompt\n", params.prompt.c_str());
fprintf(stderr, " -ctx, --context [%-7s] sample text to help the transcription\n", params.context.c_str());
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
fprintf(stderr, "\n");
}
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
std::string transcribe(
whisper_context * ctx,
const whisper_params & params,
const std::vector<float> & pcmf32,
const std::string & grammar_rule,
float & logprob_min,
float & logprob_sum,
int & n_tokens,
int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
prob = 0.0f;
logprob_min = 0.0f;
logprob_sum = 0.0f;
n_tokens = 0;
t_ms = 0;
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
//whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH);
wparams.print_progress = false;
wparams.print_special = params.print_special;
@ -123,19 +155,41 @@ std::string transcribe(whisper_context * ctx, const whisper_params & params, con
wparams.print_timestamps = !params.no_timestamps;
wparams.translate = params.translate;
wparams.no_context = true;
wparams.no_timestamps = params.no_timestamps;
wparams.single_segment = true;
wparams.max_tokens = params.max_tokens;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.temperature = 0.4f;
wparams.temperature_inc = 1.0f;
wparams.greedy.best_of = 5;
wparams.beam_search.beam_size = 5;
wparams.initial_prompt = params.context.data();
const auto & grammar_parsed = params.grammar_parsed;
auto grammar_rules = grammar_parsed.c_rules();
if (!params.grammar_parsed.rules.empty() && !grammar_rule.empty()) {
if (grammar_parsed.symbol_ids.find(grammar_rule) == grammar_parsed.symbol_ids.end()) {
fprintf(stderr, "%s: warning: grammar rule '%s' not found - skipping grammar sampling\n", __func__, grammar_rule.c_str());
} else {
wparams.grammar_rules = grammar_rules.data();
wparams.n_grammar_rules = grammar_rules.size();
wparams.i_start_rule = grammar_parsed.symbol_ids.at(grammar_rule);
wparams.grammar_penalty = params.grammar_penalty;
}
}
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
return "";
}
int prob_n = 0;
std::string result;
const int n_segments = whisper_full_n_segments(ctx);
@ -144,19 +198,17 @@ std::string transcribe(whisper_context * ctx, const whisper_params & params, con
result += text;
const int n_tokens = whisper_full_n_tokens(ctx, i);
for (int j = 0; j < n_tokens; ++j) {
const int n = whisper_full_n_tokens(ctx, i);
for (int j = 0; j < n; ++j) {
const auto token = whisper_full_get_token_data(ctx, i, j);
prob += token.p;
++prob_n;
if(token.plog > 0.0f) exit(0);
logprob_min = std::min(logprob_min, token.plog);
logprob_sum += token.plog;
++n_tokens;
}
}
if (prob_n > 0) {
prob /= prob_n;
}
const auto t_end = std::chrono::high_resolution_clock::now();
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
@ -247,7 +299,7 @@ int process_command_list(struct whisper_context * ctx, audio_async &audio, const
fprintf(stderr, " ]\n");
}
std::string k_prompt = "select one from the available words: ";
std::string k_prompt = "select one from the available words: ";
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
if (i > 0) {
k_prompt += ", ";
@ -415,7 +467,9 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
bool is_running = true;
bool ask_prompt = true;
float prob = 0.0f;
float logprob_min = 0.0f;
float logprob_sum = 0.0f;
int n_tokens = 0;
std::vector<float> pcmf32_cur;
@ -453,7 +507,7 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
// detect the commands
audio.get(params.command_ms, pcmf32_cur);
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, "", logprob_min, logprob_sum, n_tokens, t_ms));
const auto words = get_words(txt);
@ -489,18 +543,27 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
// general-purpose mode
// freely transcribe the voice into text
int process_general_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
int process_general_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
bool is_running = true;
bool have_prompt = false;
bool ask_prompt = true;
float prob0 = 0.0f;
float prob = 0.0f;
float logprob_min0 = 0.0f;
float logprob_min = 0.0f;
float logprob_sum0 = 0.0f;
float logprob_sum = 0.0f;
int n_tokens0 = 0;
int n_tokens = 0;
std::vector<float> pcmf32_cur;
std::vector<float> pcmf32_prompt;
const std::string k_prompt = "Ok Whisper, start listening for commands.";
std::string k_prompt = "Ok Whisper, start listening for commands.";
if (!params.prompt.empty()) {
k_prompt = params.prompt;
}
fprintf(stderr, "\n");
fprintf(stderr, "%s: general-purpose mode\n", __func__);
@ -533,9 +596,11 @@ int process_general_transcription(struct whisper_context * ctx, audio_async &aud
// wait for activation phrase
audio.get(params.prompt_ms, pcmf32_cur);
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms));
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, "prompt", logprob_min0, logprob_sum0, n_tokens0, t_ms));
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
const float p = 100.0f * std::exp(logprob_min0);
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms, p = %.2f%%)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms, p);
const float sim = similarity(txt, k_prompt);
@ -556,19 +621,30 @@ int process_general_transcription(struct whisper_context * ctx, audio_async &aud
// we have heard the activation phrase, now detect the commands
audio.get(params.command_ms, pcmf32_cur);
//printf("len prompt: %.4f\n", pcmf32_prompt.size() / (float) WHISPER_SAMPLE_RATE);
//printf("len command: %.4f\n", pcmf32_cur.size() / (float) WHISPER_SAMPLE_RATE);
// prepend 3 second of silence
pcmf32_cur.insert(pcmf32_cur.begin(), 3.0f*WHISPER_SAMPLE_RATE, 0.0f);
// prepend the prompt audio
pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, "root", logprob_min, logprob_sum, n_tokens, t_ms));
prob = 100.0f*(prob - prob0);
//const float p = 100.0f * std::exp((logprob - logprob0) / (n_tokens - n_tokens0));
const float p = 100.0f * std::exp(logprob_min);
//fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
// find the prompt in the text
float best_sim = 0.0f;
size_t best_len = 0;
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
for (size_t n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
if (n >= txt.size()) {
break;
}
const auto prompt = txt.substr(0, n);
const float sim = similarity(prompt, k_prompt);
@ -581,9 +657,16 @@ int process_general_transcription(struct whisper_context * ctx, audio_async &aud
}
}
const std::string command = ::trim(txt.substr(best_len));
fprintf(stdout, "%s: DEBUG: txt = '%s', prob = %.2f%%\n", __func__, txt.c_str(), p);
if (best_len == 0) {
fprintf(stdout, "%s: WARNING: command not recognized, try again\n", __func__);
} else {
// cut the prompt from the decoded text
const std::string command = ::trim(txt.substr(best_len));
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
}
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
fprintf(stdout, "\n");
}
@ -610,7 +693,10 @@ int main(int argc, char ** argv) {
// whisper init
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
// print some info about the processing
{
@ -648,12 +734,36 @@ int main(int argc, char ** argv) {
int ret_val = 0;
if (!params.commands.empty()) {
ret_val = process_command_list(ctx, audio, params);
} else if (!params.prompt.empty()) {
ret_val = always_prompt_transcription(ctx, audio, params);
} else {
ret_val = process_general_transcription(ctx, audio, params);
if (!params.grammar.empty()) {
auto & grammar = params.grammar_parsed;
if (file_exists(params.grammar.c_str())) {
// read grammar from file
std::ifstream ifs(params.grammar.c_str());
const std::string txt = std::string((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
grammar = grammar_parser::parse(txt.c_str());
} else {
// read grammar from string
grammar = grammar_parser::parse(params.grammar.c_str());
}
// will be empty (default) if there are parse errors
if (grammar.rules.empty()) {
ret_val = 1;
} else {
fprintf(stderr, "%s: grammar:\n", __func__);
grammar_parser::print_grammar(stderr, grammar);
fprintf(stderr, "\n");
}
}
if (ret_val == 0) {
if (!params.commands.empty()) {
ret_val = process_command_list(ctx, audio, params);
} else if (!params.prompt.empty() && params.grammar_parsed.rules.empty()) {
ret_val = always_prompt_transcription(ctx, audio, params);
} else {
ret_val = process_general_transcription(ctx, audio, params);
}
}
audio.pause();

View File

@ -9,6 +9,11 @@ static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
{"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
{"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
{"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
{"q2_k", GGML_FTYPE_MOSTLY_Q2_K},
{"q3_k", GGML_FTYPE_MOSTLY_Q3_K},
{"q4_k", GGML_FTYPE_MOSTLY_Q4_K},
{"q5_k", GGML_FTYPE_MOSTLY_Q5_K},
{"q6_k", GGML_FTYPE_MOSTLY_Q6_K},
};
void ggml_print_ftypes(FILE * fp) {
@ -48,6 +53,11 @@ bool ggml_common_quantize_0(
case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
case GGML_FTYPE_MOSTLY_Q2_K: qtype = GGML_TYPE_Q2_K; break;
case GGML_FTYPE_MOSTLY_Q3_K: qtype = GGML_TYPE_Q3_K; break;
case GGML_FTYPE_MOSTLY_Q4_K: qtype = GGML_TYPE_Q4_K; break;
case GGML_FTYPE_MOSTLY_Q5_K: qtype = GGML_TYPE_Q5_K; break;
case GGML_FTYPE_MOSTLY_Q6_K: qtype = GGML_TYPE_Q6_K; break;
case GGML_FTYPE_UNKNOWN:
case GGML_FTYPE_ALL_F32:
case GGML_FTYPE_MOSTLY_F16:
@ -162,24 +172,17 @@ bool ggml_common_quantize_0(
switch ((ggml_type) ttype) {
case GGML_TYPE_Q4_0:
{
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q4_1:
{
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_0:
{
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_1:
{
cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
{
cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
cur_size = ggml_quantize_chunk((ggml_type) ttype, data_f32.data(), work.data(), 0, nelements, hist_cur.data());
} break;
case GGML_TYPE_F32:
case GGML_TYPE_F16:
@ -187,6 +190,7 @@ bool ggml_common_quantize_0(
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q8_K:
case GGML_TYPE_COUNT:
{
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));

View File

@ -139,10 +139,13 @@ void audio_async::callback(uint8_t * stream, int len) {
return;
}
const size_t n_samples = len / sizeof(float);
size_t n_samples = len / sizeof(float);
m_audio_new.resize(n_samples);
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
if (n_samples > m_audio.size()) {
n_samples = m_audio.size();
stream += (len - (n_samples * sizeof(float)));
}
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
@ -153,7 +156,7 @@ void audio_async::callback(uint8_t * stream, int len) {
const size_t n0 = m_audio.size() - m_audio_pos;
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
memcpy(&m_audio[0], stream + n0 * sizeof(float), (n_samples - n0) * sizeof(float));
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = m_audio.size();

View File

@ -41,7 +41,6 @@ private:
std::mutex m_mutex;
std::vector<float> m_audio;
std::vector<float> m_audio_new;
size_t m_audio_pos = 0;
size_t m_audio_len = 0;
};

View File

@ -1,3 +1,5 @@
#define _USE_MATH_DEFINES // for M_PI
#include "common.h"
// third-party utilities
@ -6,43 +8,72 @@
#include "dr_wav.h"
#include <cmath>
#include <cstring>
#include <fstream>
#include <regex>
#include <locale>
#include <codecvt>
#include <sstream>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
// Function to check if the next argument exists
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
if (i + 1 < argc && argv[i + 1][0] != '-') {
return argv[++i];
} else {
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
gpt_print_usage(argc, argv, params);
exit(0);
}
}
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(argv[++i]);
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]);
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-p" || arg == "--prompt") {
params.prompt = argv[++i];
params.prompt = get_next_arg(i, argc, argv, arg, params);
} else if (arg == "-n" || arg == "--n_predict") {
params.n_predict = std::stoi(argv[++i]);
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-np" || arg == "--n_parallel") {
params.n_parallel = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--top_k") {
params.top_k = std::stoi(argv[++i]);
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--top_p") {
params.top_p = std::stof(argv[++i]);
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--temp") {
params.temp = std::stof(argv[++i]);
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--repeat-last-n") {
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--repeat-penalty") {
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-b" || arg == "--batch_size") {
params.n_batch = std::stoi(argv[++i]);
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-c" || arg == "--context") {
params.n_ctx= std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--ignore-eos") {
params.ignore_eos = true;
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
params.model = get_next_arg(i, argc, argv, arg, params);
} else if (arg == "-i" || arg == "--interactive") {
params.interactive = true;
} else if (arg == "-ip" || arg == "--interactive-port") {
params.interactive = true;
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, params);
exit(0);
} else if (arg == "-f" || arg == "--file") {
if (++i > argc) {
fprintf(stderr, "Invalid file param");
break;
}
get_next_arg(i, argc, argv, arg, params);
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
@ -52,7 +83,10 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
}
} else {
} else if (arg == "-tt" || arg == "--token_test") {
params.token_test = get_next_arg(i, argc, argv, arg, params);
}
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, params);
exit(0);
@ -73,11 +107,18 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " prompt to start generation with (default: random)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " load prompt from a file\n");
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
fprintf(stderr, " test tokenization\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " -c N, --context N context / KV cache size (default: %d)\n", params.n_ctx);
fprintf(stderr, " --ignore-eos ignore EOS token during generation\n");
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
@ -117,6 +158,10 @@ std::string replace(const std::string & s, const std::string & from, const std::
return result;
}
void gpt_vocab::add_special_token(const std::string & token) {
special_tokens.push_back(token);
}
std::map<std::string, int32_t> json_parse(const std::string & fname) {
std::map<std::string, int32_t> result;
@ -208,8 +253,28 @@ std::map<std::string, int32_t> json_parse(const std::string & fname) {
return result;
}
void gpt_vocab::add_special_token(const std::string & token) {
special_tokens.push_back(token);
std::string convert_to_utf8(const std::wstring & input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.to_bytes(input);
}
std::wstring convert_to_wstring(const std::string & input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.from_bytes(input);
}
void gpt_split_words(std::string str, std::vector<std::string>& words) {
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
@ -218,62 +283,52 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
// first split the text into words
{
std::string str = text;
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
// Generate the subpattern from the special_tokens vector if it's not empty
if (!vocab.special_tokens.empty()) {
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
std::string special_tokens_subpattern;
for (const auto & token : vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern += token;
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
}
// Modify the regex pattern with the generated special tokens subpattern
pat = special_tokens_subpattern + "|" + pat;
}
std::regex re(pat);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
std::regex re(special_tokens_subpattern);
std::smatch m;
// Split the text by special tokens.
while (std::regex_search(str, m, re)) {
// Split the substrings in-between special tokens into words.
gpt_split_words(m.prefix(), words);
// Add matched special tokens as words.
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
str = m.suffix();
// Remaining text without special tokens will be handled below.
}
gpt_split_words(str, words);
}
// find the longest tokens that form the words:
// find the longest token that forms each word in words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
if (word.size() == 0) continue;
int i = 0;
int n = word.size();
while (i < n) {
int j = n;
while (j > i) {
auto it = vocab.token_to_id.find(word.substr(i, j-i));
if (it != vocab.token_to_id.end()) {
for (int i = 0; i < (int) word.size(); ){
for (int j = word.size() - 1; j >= i; j--){
auto cand = word.substr(i, j-i+1);
auto it = vocab.token_to_id.find(cand);
if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab
tokens.push_back(it->second);
i = j;
i = j + 1;
break;
}
--j;
}
if (i == n) {
break;
}
if (j == i) {
auto sub = word.substr(i, 1);
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
tokens.push_back(vocab.token_to_id.at(sub));
} else {
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
else if (j == i){ // word.substr(i, 1) has no matching
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
i++;
}
++i;
}
}
}
@ -281,6 +336,70 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
return tokens;
}
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
std::vector<gpt_vocab::id> output;
std::stringstream ss(input);
std::string token;
while (std::getline(ss, token, delimiter)) {
output.push_back(std::stoi(token));
}
return output;
}
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
if (fpath_test.empty()){
fprintf(stderr, "%s : No test file found.\n", __func__);
return std::map<std::string, std::vector<gpt_vocab::id>>();
}
std::map<std::string, std::vector<gpt_vocab::id>> tests;
auto fin = std::ifstream(fpath_test, std::ios_base::in);
const char * delimeter = " => ";
const char del_tok = ',';
std::string line;
while (std::getline(fin, line)) {
size_t delimiterPos = line.find(delimeter);
if (delimiterPos != std::string::npos) {
std::string text = line.substr(0, delimiterPos);
std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
tests[text] = parse_tokens_from_string(s_tokens, del_tok);
}
}
return tests;
}
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){
std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
size_t n_fails = 0;
for (const auto & test : tests) {
std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
if (tokens != test.second){
n_fails++;
// print out failure cases
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
fprintf(stderr, "%s : tokens in hf: ", __func__);
for (const auto & t : test.second) {
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
}
fprintf(stderr, "\n");
fprintf(stderr, "%s : tokens in ggml: ", __func__);
for (const auto & t : tokens) {
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
}
fprintf(stderr, "\n");
}
}
fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
}
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
@ -380,6 +499,122 @@ gpt_vocab::id gpt_sample_top_k_top_p(
return logits_id[idx].second;
}
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
const gpt_vocab & vocab,
const float * logits,
const int32_t * last_n_tokens_data,
size_t last_n_tokens_data_size,
int top_k,
double top_p,
double temp,
int repeat_last_n,
float repeat_penalty,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
const auto * plogits = logits;
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
if (temp <= 0) {
// select the token with the highest logit directly
float max_logit = plogits[0];
gpt_vocab::id max_id = 0;
for (int i = 1; i < n_logits; ++i) {
if (plogits[i] > max_logit) {
max_logit = plogits[i];
max_id = i;
}
}
return max_id;
}
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const float scale = 1.0f/temp;
for (int i = 0; i < n_logits; ++i) {
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if (plogits[i] < 0.0f) {
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
}
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
}
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
// printf("\n");
// for (int i = 0; i < (int) probs.size(); i++) {
// for (int i = 0; i < 10; i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
// }
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
@ -537,3 +772,46 @@ float similarity(const std::string & s0, const std::string & s1) {
return 1.0f - (dist / std::max(s0.size(), s1.size()));
}
bool sam_params_parse(int argc, char ** argv, sam_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
} else if (arg == "-i" || arg == "--inp") {
params.fname_inp = argv[++i];
} else if (arg == "-o" || arg == "--out") {
params.fname_out = argv[++i];
} else if (arg == "-h" || arg == "--help") {
sam_print_usage(argc, argv, params);
exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
sam_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void sam_print_usage(int /*argc*/, char ** argv, const sam_params & params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -i FNAME, --inp FNAME\n");
fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str());
fprintf(stderr, " -o FNAME, --out FNAME\n");
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}

View File

@ -7,27 +7,39 @@
#include <vector>
#include <random>
#include <thread>
#include <ctime>
#include <fstream>
#define COMMON_SAMPLE_RATE 16000
//
// CLI argument parsing
// GPT CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_parallel = 1; // number of parallel streams
int32_t n_batch = 8; // batch size for prompt processing
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
bool ignore_eos = false; // ignore EOS token when generating text
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t repeat_last_n = 64;
float repeat_penalty = 1.00f;
int32_t n_batch = 8; // batch size for prompt processing
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt = "";
std::string token_test = "";
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt;
bool interactive = false;
int32_t interactive_port = -1;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
@ -61,6 +73,12 @@ struct gpt_vocab {
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
std::string convert_to_utf8(const std::wstring & input);
std::wstring convert_to_wstring(const std::string & input);
void gpt_split_words(std::string str, std::vector<std::string>& words);
// split text into tokens
//
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
@ -73,6 +91,15 @@ std::map<std::string, int32_t> json_parse(const std::string & fname);
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// test outputs of gpt_tokenize
//
// - compare with tokens generated by the huggingface tokenizer
// - test cases are chosen based on the model's main language (under 'prompt' directory)
// - if all sentences are tokenized identically, print 'All tests passed.'
// - otherwise, print sentence, huggingface tokens, ggml tokens
//
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
@ -92,6 +119,18 @@ gpt_vocab::id gpt_sample_top_k_top_p(
double temp,
std::mt19937 & rng);
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
const gpt_vocab & vocab,
const float * logits,
const int32_t * last_n_tokens_data,
size_t last_n_tokens_data_size,
int top_k,
double top_p,
double temp,
int repeat_last_n,
float repeat_penalty,
std::mt19937 & rng);
//
// Audio utils
//
@ -105,6 +144,104 @@ bool read_wav(
std::vector<std::vector<float>> & pcmf32s,
bool stereo);
// Write PCM data into WAV audio file
class wav_writer {
private:
std::ofstream file;
uint32_t dataSize = 0;
std::string wav_filename;
bool write_header(const uint32_t sample_rate,
const uint16_t bits_per_sample,
const uint16_t channels) {
file.write("RIFF", 4);
file.write("\0\0\0\0", 4); // Placeholder for file size
file.write("WAVE", 4);
file.write("fmt ", 4);
const uint32_t sub_chunk_size = 16;
const uint16_t audio_format = 1; // PCM format
const uint32_t byte_rate = sample_rate * channels * bits_per_sample / 8;
const uint16_t block_align = channels * bits_per_sample / 8;
file.write(reinterpret_cast<const char *>(&sub_chunk_size), 4);
file.write(reinterpret_cast<const char *>(&audio_format), 2);
file.write(reinterpret_cast<const char *>(&channels), 2);
file.write(reinterpret_cast<const char *>(&sample_rate), 4);
file.write(reinterpret_cast<const char *>(&byte_rate), 4);
file.write(reinterpret_cast<const char *>(&block_align), 2);
file.write(reinterpret_cast<const char *>(&bits_per_sample), 2);
file.write("data", 4);
file.write("\0\0\0\0", 4); // Placeholder for data size
return true;
}
// It is assumed that PCM data is normalized to a range from -1 to 1
bool write_audio(const float * data, size_t length) {
for (size_t i = 0; i < length; ++i) {
const int16_t intSample = data[i] * 32767;
file.write(reinterpret_cast<const char *>(&intSample), sizeof(int16_t));
dataSize += sizeof(int16_t);
}
if (file.is_open()) {
file.seekp(4, std::ios::beg);
uint32_t fileSize = 36 + dataSize;
file.write(reinterpret_cast<char *>(&fileSize), 4);
file.seekp(40, std::ios::beg);
file.write(reinterpret_cast<char *>(&dataSize), 4);
file.seekp(0, std::ios::end);
}
return true;
}
bool open_wav(const std::string & filename) {
if (filename != wav_filename) {
if (file.is_open()) {
file.close();
}
}
if (!file.is_open()) {
file.open(filename, std::ios::binary);
wav_filename = filename;
dataSize = 0;
}
return file.is_open();
}
public:
bool open(const std::string & filename,
const uint32_t sample_rate,
const uint16_t bits_per_sample,
const uint16_t channels) {
if (open_wav(filename)) {
write_header(sample_rate, bits_per_sample, channels);
} else {
return false;
}
return true;
}
bool close() {
file.close();
return true;
}
bool write(const float * data, size_t length) {
return write_audio(data, length);
}
~wav_writer() {
if (file.is_open()) {
file.close();
}
}
};
// Apply a high-pass frequency filter to PCM audio
// Suppresses frequencies below cutoff Hz
void high_pass_filter(
@ -123,3 +260,20 @@ bool vad_simple(
// compute similarity between two strings using Levenshtein distance
float similarity(const std::string & s0, const std::string & s1);
//
// SAM argument parsing
//
struct sam_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path
std::string fname_inp = "img.jpg";
std::string fname_out = "img.out";
};
bool sam_params_parse(int argc, char ** argv, sam_params & params);
void sam_print_usage(int argc, char ** argv, const sam_params & params);

423
examples/grammar-parser.cpp Normal file
View File

@ -0,0 +1,423 @@
#include "grammar-parser.h"
#include <cstdint>
#include <cwchar>
#include <string>
#include <utility>
#include <stdexcept>
#include <exception>
namespace grammar_parser {
// NOTE: assumes valid utf8 (but checks for overrun)
// copied from whisper.cpp
std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t first_byte = static_cast<uint8_t>(*src);
uint8_t highbits = first_byte >> 4;
int len = lookup[highbits];
uint8_t mask = (1 << (8 - len)) - 1;
uint32_t value = first_byte & mask;
const char * end = src + len; // may overrun!
const char * pos = src + 1;
for ( ; pos < end && *pos; pos++) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
}
return std::make_pair(value, pos);
}
uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
return result.first->second;
}
uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
return next_id;
}
void add_rule(
parse_state & state,
uint32_t rule_id,
const std::vector<whisper_grammar_element> & rule) {
if (state.rules.size() <= rule_id) {
state.rules.resize(rule_id + 1);
}
state.rules[rule_id] = rule;
}
bool is_word_char(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
}
std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
const char * pos = src;
const char * end = src + size;
uint32_t value = 0;
for ( ; pos < end && *pos; pos++) {
value <<= 4;
char c = *pos;
if ('a' <= c && c <= 'f') {
value += c - 'a' + 10;
} else if ('A' <= c && c <= 'F') {
value += c - 'A' + 10;
} else if ('0' <= c && c <= '9') {
value += c - '0';
} else {
break;
}
}
if (pos != end) {
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
}
return std::make_pair(value, pos);
}
const char * parse_space(const char * src, bool newline_ok) {
const char * pos = src;
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
if (*pos == '#') {
while (*pos && *pos != '\r' && *pos != '\n') {
pos++;
}
} else {
pos++;
}
}
return pos;
}
const char * parse_name(const char * src) {
const char * pos = src;
while (is_word_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting name at ") + src);
}
return pos;
}
std::pair<uint32_t, const char *> parse_char(const char * src) {
if (*src == '\\') {
switch (src[1]) {
case 'x': return parse_hex(src + 2, 2);
case 'u': return parse_hex(src + 2, 4);
case 'U': return parse_hex(src + 2, 8);
case 't': return std::make_pair('\t', src + 2);
case 'r': return std::make_pair('\r', src + 2);
case 'n': return std::make_pair('\n', src + 2);
case '\\':
case '"':
case '[':
case ']':
return std::make_pair(src[1], src + 2);
default:
throw std::runtime_error(std::string("unknown escape at ") + src);
}
} else if (*src) {
return decode_utf8(src);
}
throw std::runtime_error("unexpected end of input");
}
const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested);
const char * parse_sequence(
parse_state & state,
const char * src,
const std::string & rule_name,
std::vector<whisper_grammar_element> & out_elements,
bool is_nested) {
size_t last_sym_start = out_elements.size();
const char * pos = src;
while (*pos) {
if (*pos == '"') { // literal string
pos++;
last_sym_start = out_elements.size();
while (*pos != '"') {
auto char_pair = parse_char(pos);
pos = char_pair.second;
out_elements.push_back({WHISPER_GRETYPE_CHAR, char_pair.first});
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '[') { // char range(s)
pos++;
enum whisper_gretype start_type = WHISPER_GRETYPE_CHAR;
if (*pos == '^') {
pos++;
start_type = WHISPER_GRETYPE_CHAR_NOT;
}
last_sym_start = out_elements.size();
while (*pos != ']') {
auto char_pair = parse_char(pos);
pos = char_pair.second;
enum whisper_gretype type = last_sym_start < out_elements.size()
? WHISPER_GRETYPE_CHAR_ALT
: start_type;
out_elements.push_back({type, char_pair.first});
if (pos[0] == '-' && pos[1] != ']') {
auto endchar_pair = parse_char(pos + 1);
pos = endchar_pair.second;
out_elements.push_back({WHISPER_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
}
}
pos = parse_space(pos + 1, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
pos = parse_space(name_end, is_nested);
last_sym_start = out_elements.size();
out_elements.push_back({WHISPER_GRETYPE_RULE_REF, ref_rule_id});
} else if (*pos == '(') { // grouping
// parse nested alternates into synthesized rule
pos = parse_space(pos + 1, true);
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
last_sym_start = out_elements.size();
// output reference to synthesized rule
out_elements.push_back({WHISPER_GRETYPE_RULE_REF, sub_rule_id});
if (*pos != ')') {
throw std::runtime_error(std::string("expecting ')' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
// rewrite rules:
// S* --> S' ::= S S' |
// S+ --> S' ::= S S' | S
// S? --> S' ::= S |
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
std::vector<whisper_grammar_element> sub_rule;
// add preceding symbol to generated rule
sub_rule.insert(
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
if (*pos == '*' || *pos == '+') {
// cause generated rule to recurse
sub_rule.push_back({WHISPER_GRETYPE_RULE_REF, sub_rule_id});
}
// mark start of alternate def
sub_rule.push_back({WHISPER_GRETYPE_ALT, 0});
if (*pos == '+') {
// add preceding symbol as alternate only for '+' (otherwise empty)
sub_rule.insert(
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
}
sub_rule.push_back({WHISPER_GRETYPE_END, 0});
add_rule(state, sub_rule_id, sub_rule);
// in original rule, replace previous symbol with reference to generated rule
out_elements.resize(last_sym_start);
out_elements.push_back({WHISPER_GRETYPE_RULE_REF, sub_rule_id});
pos = parse_space(pos + 1, is_nested);
} else {
break;
}
}
return pos;
}
const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested) {
std::vector<whisper_grammar_element> rule;
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
while (*pos == '|') {
rule.push_back({WHISPER_GRETYPE_ALT, 0});
pos = parse_space(pos + 1, true);
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
}
rule.push_back({WHISPER_GRETYPE_END, 0});
add_rule(state, rule_id, rule);
return pos;
}
const char * parse_rule(parse_state & state, const char * src) {
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
uint32_t rule_id = get_symbol_id(state, src, name_len);
const std::string name(src, name_len);
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
throw std::runtime_error(std::string("expecting ::= at ") + pos);
}
pos = parse_space(pos + 3, true);
pos = parse_alternates(state, pos, name, rule_id, false);
if (*pos == '\r') {
pos += pos[1] == '\n' ? 2 : 1;
} else if (*pos == '\n') {
pos++;
} else if (*pos) {
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
}
return parse_space(pos, true);
}
parse_state parse(const char * src) {
try {
parse_state state;
const char * pos = parse_space(src, true);
while (*pos) {
pos = parse_rule(state, pos);
}
return state;
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
return parse_state();
}
}
void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
} else {
// cop out of encoding UTF-8
fprintf(file, "<U+%04X>", c);
}
}
bool is_char_element(whisper_grammar_element elem) {
switch (elem.type) {
case WHISPER_GRETYPE_CHAR: return true;
case WHISPER_GRETYPE_CHAR_NOT: return true;
case WHISPER_GRETYPE_CHAR_ALT: return true;
case WHISPER_GRETYPE_CHAR_RNG_UPPER: return true;
default: return false;
}
}
void print_rule_binary(FILE * file, const std::vector<whisper_grammar_element> & rule) {
for (auto elem : rule) {
switch (elem.type) {
case WHISPER_GRETYPE_END: fprintf(file, "END"); break;
case WHISPER_GRETYPE_ALT: fprintf(file, "ALT"); break;
case WHISPER_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
case WHISPER_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
case WHISPER_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
case WHISPER_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case WHISPER_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
}
switch (elem.type) {
case WHISPER_GRETYPE_END:
case WHISPER_GRETYPE_ALT:
case WHISPER_GRETYPE_RULE_REF:
fprintf(file, "(%u) ", elem.value);
break;
case WHISPER_GRETYPE_CHAR:
case WHISPER_GRETYPE_CHAR_NOT:
case WHISPER_GRETYPE_CHAR_RNG_UPPER:
case WHISPER_GRETYPE_CHAR_ALT:
fprintf(file, "(\"");
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
break;
}
}
fprintf(file, "\n");
}
void print_rule(
FILE * file,
uint32_t rule_id,
const std::vector<whisper_grammar_element> & rule,
const std::map<uint32_t, std::string> & symbol_id_names) {
if (rule.empty() || rule.back().type != WHISPER_GRETYPE_END) {
throw std::runtime_error(
"malformed rule, does not end with WHISPER_GRETYPE_END: " + std::to_string(rule_id));
}
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
whisper_grammar_element elem = rule[i];
switch (elem.type) {
case WHISPER_GRETYPE_END:
throw std::runtime_error(
"unexpected end of rule: " + std::to_string(rule_id) + "," +
std::to_string(i));
case WHISPER_GRETYPE_ALT:
fprintf(file, "| ");
break;
case WHISPER_GRETYPE_RULE_REF:
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
break;
case WHISPER_GRETYPE_CHAR:
fprintf(file, "[");
print_grammar_char(file, elem.value);
break;
case WHISPER_GRETYPE_CHAR_NOT:
fprintf(file, "[^");
print_grammar_char(file, elem.value);
break;
case WHISPER_GRETYPE_CHAR_RNG_UPPER:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"WHISPER_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
fprintf(file, "-");
print_grammar_char(file, elem.value);
break;
case WHISPER_GRETYPE_CHAR_ALT:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"WHISPER_GRETYPE_CHAR_ALT without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
print_grammar_char(file, elem.value);
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
case WHISPER_GRETYPE_CHAR_ALT:
case WHISPER_GRETYPE_CHAR_RNG_UPPER:
break;
default:
fprintf(file, "] ");
}
}
}
fprintf(file, "\n");
}
void print_grammar(FILE * file, const parse_state & state) {
try {
std::map<uint32_t, std::string> symbol_id_names;
for (auto kv : state.symbol_ids) {
symbol_id_names[kv.second] = kv.first;
}
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
// fprintf(file, "%zu: ", i);
// print_rule_binary(file, state.rules[i]);
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
// fprintf(file, "\n");
}
} catch (const std::exception & err) {
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
}
}
std::vector<const whisper_grammar_element *> parse_state::c_rules() const{
std::vector<const whisper_grammar_element *> ret;
for (const auto & rule : rules) {
ret.push_back(rule.data());
}
return ret;
}
}

29
examples/grammar-parser.h Normal file
View File

@ -0,0 +1,29 @@
// Implements a parser for an extended Backus-Naur form (BNF), producing the
// binary context-free grammar format specified by whisper.h. Supports character
// ranges, grouping, and repetition operators. As an example, a grammar for
// arithmetic might look like:
//
// root ::= expr
// expr ::= term ([-+*/] term)*
// term ::= num | "(" space expr ")" space
// num ::= [0-9]+ space
// space ::= [ \t\n]*
#pragma once
#include "whisper.h"
#include <vector>
#include <map>
#include <cstdint>
#include <string>
namespace grammar_parser {
struct parse_state {
std::map<std::string, uint32_t> symbol_ids;
std::vector<std::vector<whisper_grammar_element>> rules;
std::vector<const whisper_grammar_element *> c_rules() const;
};
parse_state parse(const char * src);
void print_grammar(FILE * file, const parse_state & state);
}

View File

@ -48,7 +48,7 @@ if [ -n "$3" ]; then
fi
# Whisper models
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" )
# list available models
function list_models {

View File

@ -0,0 +1,9 @@
if (WHISPER_SDL2)
# stream
set(TARGET lsp)
add_executable(${TARGET} lsp.cpp)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
endif ()

104
examples/lsp/README.md Normal file
View File

@ -0,0 +1,104 @@
# Language Server
This example consists of a simple language server to expose both unguided
and guided (command) transcriptions by sending json messages over stdout/stdin
as well as a rather robust vim plugin that makes use of the language server.
## Vim plugin quick start
Compile the language server with
```bash
make lsp
```
Install the plugin itself by copying or symlinking whisper.vim into ~/.vim/autoload/
In your vimrc, set the path of your whisper.cpp directory and optionally add some keybinds.
```vim
let g:whisper_dir = "~/whisper.cpp"
" Start listening for commands when Ctrl - g is pressed in normal mode
nnoremap <C-G> call whisper#requestCommands()<CR>
" Start unguided transcription when Ctrl - g is pressed in insert mode
inoremap <C-G> <Cmd>call whisper#doTranscription()<CR>
```
## Vim plugin usage
The vim plugin was designed to closely follow the mnemonics of vim
`s:spoken_dict` is used to translate keys to their spoken form.
Keys corresponding to a string use that spoken value normally and when a motion is expected, but use the key itself when a character is expected.
Keys corresponding to a dict, like `i`, can have manual difinitions given to each possible commandset.
0 is normal (insert), 1 is motion (inside), 2 is it's usage as a single key ([till] i), and 3 is it's usage in an area selection (s -> [around] sentence)
Some punctuation items, like `-` are explicitly given pronunciations to prevent them from being picked as punctuation instead of an actual command word.
Not all commands will tokenize to a single token and this can interfere with interpretation. "yank" as an example, takes multiple tokens and correspondingly, will give more accurate detection when only the first "ya" is used. While it could be changed to something else that is a single token (copy), value was placed on maintaining vim mnemonics.
Commands that would normally move the editor into insert mode (insert, append, open, change) will begin unguided transcription.
Unguided transcription will end when a speech segment ends in exit.
Presence of punctuation can be designated by whether or not you add a pause between the previous speech segment and exit.
Exiting only occurs if exit is the last word, so "Take the first exit on your right" would not cause transcription to end.
After a command is evaluated, the plugin will continue listening for the next command.
While in command mode, "Exit" will end listening.
A best effort approach is taken to keep track of audio that is recorded while a previous chunk is still processing and immediately interpret it afterwards, but the current voice detection still needs a fairly sizable gap to determine when a command has been spoken.
Log information is sent to a special `whisper_log` buffer and can be accessed with
```vim
:e whisper_log
```
## Vim plugin configuration
`g:whisper_dir`
A full path to the whisper.cpp repo. It can be expanded in the definition like so:
```vim
let g:whisper_dir = expand("~/whisper.cpp/")
```
(The WHISPER_CPP_HOME environment variable is also checked for users of the existing whisper.nvim script)
`g:whisper_lsp_path`
Can be used to manually set the path to the language server.
If not defined, it will be inferred from the above whisper_dir
`g:whisper_model_path`
A full path to the model to load. If not defined, it will default to ggml-base.en.bin
`g:whisper_user_commands`
A dictionary of spoken commands that correspond to either strings or funcrefs.
This can be used to create connections with other user plugins, for example
```vim
let g:whisper_user_commands = {"gen": "llama#doLlamaGen"}
```
will trigger the llama.cpp plugin to begin generation when "gen" is spoken
## Language server methods
`registerCommandset`
`params` is a list of strings that should be checked for with this commandset. The server prepends a space to these strings before tokenizing.
Responds with
`result.index` an integer index for the commandset registered, which should be included when initiating a guided transcription to select this commandset.
Will return an error if any of the commands in the commandset have duplicate tokenizations
`guided`
`params.commandset_index` An index returned by a corresponding commandset registration. If not set, the most recently registered commandset is used.
`params.timestamp` A positive unsigned integer which designates a point in time which audio should begin processing from. If left blank, the start point of audio processing will be the moment the message is recieved. This should be left blank unless you have a timestamp from a previous response.
Responds with
`result.command_index` The numerical index (starting from 0) of the detected command in the selected commandset
`result.command_text` A string containing the command as provided in the commandset
`result.timestamp` A positive unsigned integer that designates the point in time which audio stopped being processed at. Pass this timestamp back in a subsequent message to mask the latency of transcription.
`unguided`
`params.no_context` Sets the corresponding whisper `no_context` param. Defaults to true. Might provide more accurate results for consecutive unguided transcriptions if those after the first are set to false.
`params.prompt` If provided, sets the initial prompt used during transcription.
`params.timestamp` A positive unsigned integer which designates a point in time which audio should begin processing from. If left blank, the start point of audio processing will be the moment the message is recieved. This should be left blank unless you have a timestamp from a previous response.
Responds with
`result.transcription` A string containing the transcribed text. N.B. This will almost always start with a space due to how text is tokenized.
`result.timestamp` A positive unsigned integer that designates the point in time which audio stopped being processed at. Pass this timestamp back in a subsequent message to mask the latency of transcription.

24596
examples/lsp/json.hpp Normal file

File diff suppressed because it is too large Load Diff

463
examples/lsp/lsp.cpp Normal file
View File

@ -0,0 +1,463 @@
#include "common.h"
#include "common-sdl.h"
#include "whisper.h"
#include "json.hpp"
#include <iostream>
#include <cassert>
#include <cstdio>
#include <string>
#include <thread>
#include <vector>
#include <deque>
#include <set>
using json = nlohmann::json;
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t prompt_ms = 5000;
int32_t command_ms = 8000;
int32_t capture_id = -1;
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool use_gpu = true;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
};
struct command {
std::vector<whisper_token> tokens;
std::string plaintext;
};
struct commandset {
std::vector<struct command> commands;
std::vector<whisper_token> prompt_tokens;
// TODO: Store longest command?
// Multi-token commands should have probabilities of subsequent logits
// given that the prior logit is correct.
// In this case, all commands must be iterated.
// This however, is likely highly involved as different tokens
// almost certainly have different spoken lengths
// It would also have performance implications equivalent to a beam search
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-h" || arg == "--help") {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-pms" || arg == "--prompt-ms") { params.prompt_ms = std::stoi(argv[++i]); }
else if (arg == "-cms" || arg == "--command-ms") { params.command_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -pms N, --prompt-ms N [%-7d] prompt duration in milliseconds\n", params.prompt_ms);
fprintf(stderr, " -cms N, --command-ms N [%-7d] command duration in milliseconds\n", params.command_ms);
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, "\n");
}
uint64_t wait_for_vad(audio_async & audio, json jparams, const whisper_params & params, uint64_t maxlength_ms, std::vector<float> & pcmf32) {
using namespace std::chrono;
uint64_t time_now = time_point_cast<milliseconds>(system_clock::now()).time_since_epoch().count();
uint64_t start_time = time_now;
if (jparams.contains("timestamp")) {
start_time = jparams.at("timestamp");
}
if(time_now - start_time < 500) {
//wait for a backlog of audio
std::this_thread::sleep_for(milliseconds(500 - (time_now - start_time)));
time_now = time_point_cast<milliseconds>(system_clock::now()).time_since_epoch().count();
} else if (time_now - start_time > 1000) {
audio.get(time_now-start_time, pcmf32);
size_t max_offset = pcmf32.size() - WHISPER_SAMPLE_RATE;
for(size_t offset=0;offset < max_offset;offset+=WHISPER_SAMPLE_RATE/10) {
std::vector<float> audio_chunk(&pcmf32[offset], &pcmf32[offset+WHISPER_SAMPLE_RATE]);
if(::vad_simple(audio_chunk, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
pcmf32.resize(offset+WHISPER_SAMPLE_RATE);
if (offset*1000/WHISPER_SAMPLE_RATE+1000 > maxlength_ms) {
//remove samples from the beginning
pcmf32.erase(pcmf32.begin(),pcmf32.end()-(maxlength_ms*WHISPER_SAMPLE_RATE/1000));
fprintf(stderr, "Shortened samples");
}
return start_time + offset*1000/WHISPER_SAMPLE_RATE+1000;
}
}
}
size_t window_duration = std::max((uint64_t)1000, time_now-start_time);
audio.get(window_duration, pcmf32);
while (!::vad_simple(pcmf32, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
std::this_thread::sleep_for(milliseconds(100));
time_now = time_point_cast<milliseconds>(system_clock::now()).time_since_epoch().count();
window_duration = std::max((uint64_t)1000,time_now-start_time);
audio.get(window_duration, pcmf32);
}
if (time_now - start_time > maxlength_ms) {
audio.get(maxlength_ms, pcmf32);
} else {
audio.get(time_now - start_time, pcmf32);
}
return time_now;
}
json unguided_transcription(struct whisper_context * ctx, audio_async &audio, json jparams, const whisper_params &params) {
std::vector<whisper_token> prompt_tokens;
std::vector<float> pcmf32;
uint64_t unprocessed_audio_timestamp = wait_for_vad(audio, jparams, params, 10000U, pcmf32);
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
if (jparams.contains("prompt")) {
// unlikely to see much use. Under normal circumstances, no_context would be set to false
std::string prompt = jparams.at("prompt");
prompt_tokens.resize(1024);
int n = whisper_tokenize(ctx, prompt.c_str(), prompt_tokens.data(), 1024);
prompt_tokens.resize(n);
wparams.prompt_tokens = prompt_tokens.data();
wparams.prompt_n_tokens = prompt_tokens.size();
}
wparams.print_progress = false;
wparams.print_special = params.print_special;
wparams.print_realtime = false;
wparams.print_timestamps = false;
wparams.translate = params.translate;
wparams.no_context = jparams.value("no_context", true);
wparams.single_segment = true;
wparams.max_tokens = params.max_tokens;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.suppress_non_speech_tokens = true;
// run the transformer and a single decoding pass
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
throw json{
{"code", -32803},
{"message", "ERROR: whisper_full() failed"}
};
}
std::string result = whisper_full_get_segment_text(ctx,0);
return json {
{"transcription", result},
{"timestamp", unprocessed_audio_timestamp}
};
}
// command-list mode
// guide the transcription to match the most likely command from a provided list
json guided_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params &params, json jparams, std::vector<struct commandset> commandset_list) {
struct commandset cs = commandset_list[jparams.value("commandset_index", commandset_list.size()-1)];
std::vector<float> pcmf32;
uint64_t unprocessed_audio_timestamp = wait_for_vad(audio, jparams, params, 2000U, pcmf32);
fprintf(stderr, "%s: Speech detected! Processing ...\n", __func__);
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.print_progress = false;
wparams.print_special = params.print_special;
wparams.print_realtime = false;
wparams.print_timestamps = false;
wparams.translate = params.translate;
wparams.no_context = true;
wparams.single_segment = true;
wparams.max_tokens = 1;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
// TODO: Do some time testing. Does an overly long prompt slow down processing?
// Set up command sets/precompute prompts
wparams.prompt_tokens = cs.prompt_tokens.data();
wparams.prompt_n_tokens = cs.prompt_tokens.size();
// TODO: properly expose as option
wparams.suppress_non_speech_tokens = true;
// run the transformer and a single decoding pass
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
throw json{
{"code", -32803},
{"message", "ERROR: whisper_full() failed"}//TODO: format string (sprintf?)
};
}
// estimate command probability
// NOTE: not optimal
{
const auto * logits = whisper_get_logits(ctx);
std::vector<float> probs(whisper_n_vocab(ctx), 0.0f);
// compute probs from logits via softmax
{
float max = -1e9;
for (int i = 0; i < (int) probs.size(); ++i) {
max = std::max(max, logits[i]);
}
float sum = 0.0f;
for (int i = 0; i < (int) probs.size(); ++i) {
probs[i] = expf(logits[i] - max);
sum += probs[i];
}
for (int i = 0; i < (int) probs.size(); ++i) {
probs[i] /= sum;
}
}
std::vector<std::pair<float, int>> probs_id;
// In my testing, the most verbose token is always the desired.
// TODO: Trim commandset struct once efficacy has been verified
for (int i = 0; i < (int) cs.commands.size(); ++i) {
probs_id.emplace_back(probs[cs.commands[i].tokens[0]], i);
}
// sort descending
{
using pair_type = decltype(probs_id)::value_type;
std::sort(probs_id.begin(), probs_id.end(), [](const pair_type & a, const pair_type & b) {
return a.first > b.first;
});
}
int id = probs_id[0].second;
return json{
{"command_index", id},
{"command_text", cs.commands[id].plaintext},
{"timestamp", unprocessed_audio_timestamp},
};
}
}
json register_commandset(struct whisper_context * ctx, json jparams, std::vector<struct commandset> &commandset_list) {
// TODO: check for token collision
struct commandset cs;
std::string k_prompt = " select one from the available words: ";
std::set<whisper_token> token_set;
whisper_token tokens[32];
for (std::string s : jparams) {
std::vector<whisper_token> token_vec;
// The existing command implementation uses a nested for loop to tokenize single characters
// I fail to see the purpose of this when ' a' has a wholly different pronunciation than the start of ' apple'
const int n = whisper_tokenize(ctx, (" " + s).c_str(), tokens, 32);
if (n < 0) {
fprintf(stderr, "%s: error: failed to tokenize command '%s'\n", __func__, s.c_str());
return 3;
}
token_vec.push_back(tokens[0]);
if (!token_set.insert(tokens[0]).second) {
fprintf(stderr, "%s: warning: %s is a duplicate of an existing token\n", __func__, s.c_str());
throw json{
{"code",-31000},
{"message", "Duplicate token in token set: " + s}
};
}
if (n > 1) {// empty string if n=0? Should never occur
fprintf(stderr, "%s: error: command is more than a single token: %s\n", __func__, s.c_str());
}
struct command command = {token_vec, s};
cs.commands.push_back(command);
k_prompt += s;
}
k_prompt = k_prompt.substr(0,k_prompt.length()-2) + ". Selected word:";
cs.prompt_tokens.resize(1024);
int n = whisper_tokenize(ctx, k_prompt.c_str(), cs.prompt_tokens.data(), 1024);
cs.prompt_tokens.resize(n);
// prepare response
int index = commandset_list.size();
commandset_list.push_back(cs);
return json{{"index",index}};
}
json seek(struct whisper_context * /*ctx*/, audio_async & /*audio*/, json /*params*/) {
// whisper_state has the pertinent offsets, but there also seem to be a large
// number of scratch buffers that would prevent rewinding context in a manner similar to llama
// I'll give this a another pass once everything else is implemented,
// but for now, it's unsupported
throw json {
{"code", -32601},
{"message", "Seeking is not yet supported."}
};
}
json parse_job(const json &body, struct whisper_context * ctx, audio_async &audio, const whisper_params &params, std::vector<struct commandset> &commandset_list) {
// See: https://www.jsonrpc.org/specification
json id = body.at("id");
try {
std::string version = body.at("jsonrpc");
if (version != "2.0") {
// unsupported version
throw json{
{"code", -3260},
{"message", "invalid jsonrpc version"}
};
}
std::string method = body.at("method");
json jparams = json{{"dummy", "dummy"}};
if (body.contains("params"))
jparams = body.at("params");
json res;
// TODO: be consistent about argument order
fprintf(stderr, "Dispatching a job\n");
if (method == "unguided") { res = unguided_transcription(ctx, audio, jparams, params); }
else if (method == "guided") { res = guided_transcription(ctx, audio, params, jparams, commandset_list); }
else if (method == "seek") { res = seek(ctx, audio, jparams); }
else if (method == "registerCommandset") { res = register_commandset(ctx, jparams, commandset_list); }
else if (method == "echo") { res = jparams; }
return json{
{"jsonrpc", "2.0"},
{"result", res},
{"id", id}
};
} catch(json ex) {
return json {
{"jsonrpc", "2.0"},
{"error", ex},
{"id", id}
};
}
}
void process_loop(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
std::deque<json> jobqueue;
std::vector<struct commandset> commandset_list;
while (true) {
// For eventual cancellation support, shouldn't block if job exists
if (std::cin.rdbuf()->in_avail() > 22 || jobqueue.size() == 0) {
int content_length;
if (scanf("Content-Length: %d", &content_length) != 1) {
fprintf(stderr, "Could not read input: %d", std::cin.peek());
return;
}
// scanf leaves the new lines intact
std::cin.ignore(2);
if (std::cin.peek() != 13) {
// Content-Type. jsonrpc necessitates utf8.
std::cin.ignore(200,10);
}
std::cin.ignore(2);
// A message is being sent and blocking is acceptable
std::string content(content_length,'\0');
std::cin.read(&content[0], content_length);
json job = json::parse(content);
// TODO: Some messages(cancellation) should skip queue here
if (job.is_array()) {
// response must also be batched. Will implement later
// for (subjob : job.begin())
// TODO: At the very least respond with an unsupported error.
} else {
jobqueue.push_back(job);
}
}
assert(jobqueue.size() > 0);
json job = jobqueue.front();
json resp = parse_job(job, ctx, audio, params, commandset_list);
if (resp != "unfinished") {
jobqueue.pop_front();
// send response
std::string data = resp.dump(-1, ' ', false, json::error_handler_t::replace);
fprintf(stdout, "Content-Length: %d\r\n\r\n%s\n", (int)data.length()+1, data.c_str());
std::cout.flush();
}
}
}
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
return 1;
}
if (whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
// whisper init
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
// init audio
audio_async audio(30*1000);
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
return 1;
}
audio.resume();
// TODO: Investigate why this is required. An extra second of startup latency is not great
// wait for 1 second to avoid any buffered noise
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
audio.clear();
// TODO: consider some sort of indicator to designate loading has finished?
// Potentially better for the client to just start with a non-blocking message (register commands)
process_loop(ctx, audio, params);
audio.pause();
whisper_print_timings(ctx);
whisper_free(ctx);
return 0;
}

362
examples/lsp/whisper.vim Normal file
View File

@ -0,0 +1,362 @@
if !exists("g:whisper_dir")
let g:whisper_dir = expand($WHISPER_CPP_HOME)
if g:whisper_dir == ""
echoerr "Please provide a path to the whisper.cpp repo in either the $WHISPER_CPP_HOME environment variable, or g:whisper_dir"
endif
endif
if !exists("g:whisper_lsp_path")
let g:whisper_lsp_path = g:whisper_dir .. "lsp"
if !filereadable(g:whisper_lsp_path)
echoerr "Was not able to locate a lsp executable at: " .. g:whisper_lsp_path
throw "Executable not found"
endif
endif
if !exists("g:whisper_model_path")
" TODO: allow custom paths relative to the repo dir
let g:whisper_model_path = g:whisper_dir .. "models/ggml-base.en.bin"
if !filereadable(g:whisper_model_path)
echoerr "Could not find model at: " .. g:whisper_model_path
throw "Model not found"
endif
endif
let s:output_buffer = bufnr("whisper_log", v:true)
call setbufvar(s:output_buffer,"&buftype","nofile")
let s:lsp_command = [g:whisper_lsp_path,"-m",g:whisper_model_path]
" For faster execution. TODO: server load multiple models/run multiple servers?
" let s:lsp_command = [g:whisper_lsp_path, "-m", g:whisper_dir .. "models/ggml-tiny.en.bin", "-ac", "128"]
" requestCommands([params_dict])
func whisper#requestCommands(...)
let l:req = {"method": "guided", "params": {"commandset_index": 0}}
if a:0 > 0
call extend(l:req.params, a:1)
endif
let resp = ch_sendexpr(g:lsp_job, l:req, {"callback": function("s:commandCallback", [l:req.params, 0])})
endfunction
" doTranscription([params_dict])
func whisper#doTranscription(...)
let l:req = {"method": "unguided", "params": {}}
if a:0 > 0
call extend(l:req.params, a:1)
endif
let resp = ch_sendexpr(g:lsp_job, l:req, {"callback": function("s:transcriptionCallback", [function("s:insertText"),function("s:endTranscription")])})
endfunction
" For testing
func whisper#uppertest(cha)
echo tr(a:cha, s:c_lowerkeys, s:c_upperkeys)
endfunction
" (upper, exit, count, motion, command, insert/append, save run) "base"
" (upper, exit, count, motion, command, inside/around) "motion/visual"
" (upper, exit, count, motion, line, inside/around) "command already entered"
" (upper, exit, key, ) "from/till"
" upper and lower keys is used to translate between cases with tr
" Must be sunchronized
let s:c_lowerkeys = "1234567890-=qwertyuiop[]\\asdfghjkl;'zxcvbnm,./\""
let s:c_upperkeys = "!@#$%^&*()_+QWERTYUIOP{}|ASDFGHJKL:\"ZXCVBNM<>?'"
let s:c_count = split("1234567890\"",'\zs')
let s:c_command = split("ryuogpdxcv.iam", '\zs')
let s:c_motion = split("wetf'hjklnb$^)",'\zs')
" object words: Word, Sentence, Paragraph, [, (, <, Tag, {. ", '
let s:c_area = split("wsp])>t}\"'",'\zs')
"Special commands.
let s:c_special_always = ["exit", "upper"]
let s:c_special_normal = ["save", "run", "space"]
" If not in dict, key is spoken word,
" If key resolves to string, value is used for normal/motion, but key for chars
" If key resolves to dict, {0: "normal",1: "motion",2:"single char",3: "area"}
" Missing entries fall back as follows {0: "required", 1: 0, 2: "key", 3: 0}
let s:spoken_dict = {"w": "word", "e": "end", "r": "replace", "t": {0: "till", 3: "tag"}, "y": "yank", "u": "undo", "i": {0: "insert", 1: "inside"}, "o": "open", "p": {0: "paste", 3: "paragraph"}, "a": {0: "append", 1: "around"}, "s": {0: "substitute", 3: "sentence"}, "d": "delete", "f": "from", "g": "go", "h": "left", "j": "down", "k": "up", "l": "right", "c": "change", "v": "visual", "b": "back", "n": "next", "m": "mark", ".": {0: "repeat", 2: "period"}, "]": {0: "bracket", 2: "bracket"}, "'": {0: "jump", 2: "apostrophe", 3: "apostrophe"}, '"': {0: 'register', 2: "quotation", 3: "quotation"}, "-": {0: "minus", 2: "minus"}, "$": {0: "dollar", 2: "dollar"}, "^": {0: "carrot", 2: "carrot"}, ")": {0: "sentence", 2: "parenthesis", 3: "parenthesis"}, "}": {0: "paragraph", 2: "brace", 3: "brace"}, ">": {0: "indent", 2: "angle", 3: "angle"}}
" Give this another pass. This seems overly hacky even if it's functional
let s:sub_tran_msg = ""
func s:subTranProg(msg)
if s:sub_tran_msg != ""
let s:sub_tran_msg = s:sub_tran_msg .. a:msg
if mode() !=? 'v'
exe "normal" "u" .. s:sub_tran_msg
endif
else
if s:command_backlog == ""
" this should not occur
call s:logCallback(0, "Warning: Encountered sub transcription without prior command")
let s:command_backlog = "a"
endif
if a:msg[0] == ' '
let s:sub_tran_msg = s:command_backlog .. a:msg[1:-1]
else
let s:sub_tran_msg = s:command_backlog .. a:msg
endif
if mode() !=? 'v'
exe "normal" s:sub_tran_msg
endif
endif
call appendbufline(s:output_buffer, "$", s:sub_tran_msg .. ":" .. string(a:msg ))
endfunction
func s:subTranFinish(params, timestamp)
let s:repeat_command = s:sub_tran_msg
" Visual selection is lot if used with streaming, so streaming of partial
" transcriptions is disabled in visual mode
if mode() ==? 'v'
exe "normal" s:sub_tran_msg
endif
let s:sub_tran_msg = ""
let s:command_backlog = ""
exe "normal a\<C-G>u"
let l:params = a:params
let l:params.timestamp = a:timestamp
if exists("l:params.commandset_index")
unlet l:params.commandset_index
endif
call whisper#requestCommands(a:params)
endfunction
func s:logCallback(channel, msg)
call appendbufline(s:output_buffer,"$",a:msg)
endfunction
func s:transcriptionCallback(progressCallback, finishedCallback, channel, msg)
let l:tr = a:msg.result.transcription
let l:ex_ind = match(tolower(l:tr),"exit", len(l:tr)-6)
" The worst case I've observed so far is " Exit.", which is 6 characters
if l:ex_ind != -1
call a:progressCallback(strpart(l:tr,0,l:ex_ind-1))
call a:finishedCallback(a:msg.result.timestamp)
else
call a:progressCallback(l:tr)
let req = {"method": "unguided", "params": {"timestamp": a:msg.result.timestamp, "no_context": v:true}}
let resp = ch_sendexpr(g:lsp_job, req, {"callback": function("s:transcriptionCallback", [a:progressCallback, a:finishedCallback])})
endif
endfunc
func s:insertText(msg)
exe "normal a" .. a:msg
endfunction
func s:endTranscription(timestamp)
call appendbufline(s:output_buffer, "$", "Ending unguided transcription")
endfunction
" If a command does not include a whole actionable step, attempting to execute
" it discards the remainder of things. There is likely a simpler solution,
" but it can be made functional now by storing a backbuffer until actionable
let s:command_backlog = ""
let s:repeat_command = ""
let s:preceeding_upper = v:false
func s:commandCallback(params, commandset_index, channel, msg)
let l:command_index = a:msg.result.command_index
let l:do_execute = v:false
let l:next_mode = a:commandset_index
let l:command = s:commandset_list[a:commandset_index][l:command_index]
call s:logCallback(0, string(a:msg) .. " " .. a:commandset_index .. " " .. l:command)
if l:command_index == 0
"exit
"if s:command_backlog == ""
call s:logCallback(0,"Stopping command mode")
echo "No longer listening"
let s:command_backlog = ""
return
"else
" Legacy code to clear an existing buffer with exit.
" Was found to be rarely desired and is better introduced as a
" standalone command (clear?)
" call s:logCallback(0,"Clearing command_backlog" .. s:command_backlog)
" let s:command_backlog = ""
" let s:preceeding_upper = v:false
" endif
elseif l:command_index == 1
" upper
let s:preceeding_upper = !s:preceeding_upper
elseif l:command == "save"
" save and run can only happen in commandset 0,
exe "w"
elseif l:command == "run"
exe "make run"
elseif l:command == "space"
exe "normal i \<ESC>l"
elseif has_key(s:c_user, l:command)
let Userfunc = s:c_user[l:command]
if type(Userfunc) == v:t_string
let Userfunc = function(Userfunc)
endif
call Userfunc()
else
if s:preceeding_upper
" Upper should keep commandset
let s:preceeding_upper = v:false
let l:visual_command = tr(l:command, s:c_lowerkeys, s:c_upperkeys)
else
let l:visual_command = l:command
endif
echo s:command_backlog .. " - " .. l:visual_command
let s:command_backlog = s:command_backlog .. l:visual_command
if a:commandset_index == 2 || a:commandset_index == 3
" single key, either completes motion, replace, or register
" Should move to execute unless part of a register
" Change will be caught at execute
if s:command_backlog[-2:-2] !=# '"'
call s:logCallback(0,"not register")
let l:do_execute = v:true
end
let l:next_mode = 0
" commandset index only matters for a/i
elseif (l:command == "a" || l:command == "i") && a:commandset_index == 1
" inside/around. Is commandset 3
let l:next_mode = 3
elseif l:command ==# '"'
let l:next_mode = 2
elseif index(s:c_count, l:command) != -1
let l:next_mode = a:commandset_index
elseif index(s:c_motion, l:command) != -1
if l:command == 't' || l:command == 'f' || l:command == "'"
" prompt single key
let l:next_mode = 2
else
let l:do_execute = v:true
let l:next_mode = 0
endif
elseif index(s:c_command, l:command) != -1
if index(["y","g","d","c"], s:command_backlog[-1:-1]) != -1 && s:command_backlog[-1:-1] != s:command_backlog[-2:-2] && mode() !=? 'v'
" need motion or repeated command
" Potential for bad state here if disparaging command keys are
" entered (i.e. yd), but vim can handle checks for this at exe
" And checking for cases like y123d would complicate things
let l:next_mode = 1
elseif index(["i","a","c", "o", "s"], l:command) != -1 || s:command_backlog[-1:-1] ==# 'R'
"'Insert' mode, do general transcription
let l:req = {"method": "unguided", "params": a:params}
let l:req.params.timestamp = a:msg.result.timestamp
let l:req.params.no_context = v:true
let resp = ch_sendexpr(g:lsp_job, req, {"callback": function("s:transcriptionCallback", [function("s:subTranProg"), function("s:subTranFinish", [a:params])])})
return
elseif l:command == 'r' || l:command == 'm'
let l:next_mode = 2
elseif l:command == '.'
let l:next_mode = 0
let l:do_execute = v:true
let s:command_backlog = s:command_backlog[0:-2] .. s:repeat_command
else
if l:command ==? 'v'
let l:next_mode = 1
else
let l:next_mode = 0
endif
let l:do_execute = v:true
endif
else
throw "Invalid command state: " .. l:command .. " " .. a:commandset_index .. " " .. s:command_backlog
endif
endif
if l:do_execute
if mode() ==?'v' && l:next_mode == 0
let l:next_mode = 1
elseif match(s:command_backlog, 'c') != -1
let l:req = {"method": "unguided", "params": a:params}
let l:req.params.timestamp = a:msg.result.timestamp
let l:req.params.no_context = v:true
let resp = ch_sendexpr(g:lsp_job, req, {"callback": function("s:transcriptionCallback", [function("s:subTranProg"), function("s:subTranFinish", [a:params])])})
return
endif
exe "normal" s:command_backlog
if index(s:c_motion + ["u"],l:command) == -1
exe "normal a\<C-G>u"
let s:repeat_command = s:command_backlog
call s:logCallback(0, s:command_backlog)
endif
let s:command_backlog = ""
endif
let l:req = {"method": "guided", "params": a:params}
let l:req.params.timestamp = a:msg.result.timestamp
let l:req.params.commandset_index = l:next_mode
let resp = ch_sendexpr(g:lsp_job, l:req, {"callback": function("s:commandCallback",[a:params, l:next_mode])})
endfunction
func s:loadedCallback(channel, msg)
echo "Loading complete"
call s:logCallback(a:channel, a:msg)
endfunction
func s:registerCommandset(commandlist, is_final)
let req = {"method": "registerCommandset"}
let req.params = a:commandlist
call s:logCallback(0, join(a:commandlist))
call add(g:whisper_commandlist_spoken, a:commandlist)
if a:is_final
let resp = ch_sendexpr(g:lsp_job, req, {"callback": "s:loadedCallback"})
else
let resp = ch_sendexpr(g:lsp_job, req, {"callback": "s:logCallback"})
endif
endfunction
func s:registerAllCommands()
let l:normal = s:c_special_always + s:c_special_normal + s:c_count + s:c_command + s:c_motion + keys(s:c_user)
let l:visual = s:c_special_always + s:c_count + s:c_command + s:c_motion
" Currently the same as visual.
" let l:post_command = s:c_special_always + s:c_count + s:c_command + s:c_motion
let l:single_key = s:c_special_always + split(s:c_lowerkeys, '\zs')
let l:area = s:c_special_always + s:c_area
" Used only for compatibility with the testing script
let g:whisper_commandlist_spoken = []
let s:commandset_list = [l:normal, l:visual, l:single_key, l:area]
call s:registerCommandset(s:commandsetToSpoken(l:normal, 0), v:false)
call s:registerCommandset(s:commandsetToSpoken(l:visual, 1), v:false)
call s:registerCommandset(s:commandsetToSpoken(l:single_key, 2), v:false)
call s:registerCommandset(s:commandsetToSpoken(l:area, 3), v:true)
endfunction
func s:commandsetToSpoken(commandset, spoken_index)
let l:spoken_list = []
for l:command in a:commandset
if has_key(s:spoken_dict, l:command)
let l:spoken_value = s:spoken_dict[l:command]
if type(l:spoken_value) == v:t_dict
if has_key(l:spoken_value, a:spoken_index)
let l:spoken_value = l:spoken_value[a:spoken_index]
else
if a:spoken_index == 2
let l:spoken_value = l:command
else
let l:spoken_value = l:spoken_value[0]
endif
endif
else
if a:spoken_index == 2
let l:spoken_value = l:command
endif
endif
else
let l:spoken_value = l:command
endif
call add(l:spoken_list, l:spoken_value)
endfor
return l:spoken_list
endfunction
" TODO: Check lifetime. If the script is resourced, is the existing
" s:lsp_job dropped and therefore killed?
" This seems to not be the case and I've had to deal with zombie processes
" that survive exiting vim, even though said behavior conflicts with my
" understanding of the provided documentation
let s:lsp_opts = {"in_mode": "lsp", "out_mode": "lsp", "err_mode": "nl", "err_io": "buffer", "err_buf": s:output_buffer}
if !exists("g:lsp_job")
if exists("g:whisper_user_commands")
let s:c_user = g:whisper_user_commands
else
let s:c_user = {}
endif
let g:lsp_job = job_start(s:lsp_command, s:lsp_opts)
if job_status(g:lsp_job) == "fail"
echoerr "Failed to start whisper job"
endif
call s:registerAllCommands()
endif

View File

@ -10,6 +10,10 @@
#include <vector>
#include <cstring>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
// Lowest is red, middle is yellow, highest is green.
const std::vector<std::string> k_colors = {
@ -55,37 +59,48 @@ struct whisper_params {
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t progress_step = 5;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = 2;
int32_t beam_size = -1;
int32_t best_of = whisper_full_default_params(WHISPER_SAMPLING_GREEDY).greedy.best_of;
int32_t beam_size = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH).beam_search.beam_size;
float word_thold = 0.01f;
float entropy_thold = 2.40f;
float logprob_thold = -1.00f;
bool speed_up = false;
bool translate = false;
bool detect_language= false;
bool diarize = false;
bool split_on_word = false;
bool no_fallback = false;
bool output_txt = false;
bool output_vtt = false;
bool output_srt = false;
bool output_wts = false;
bool output_csv = false;
bool output_jsn = false;
bool output_lrc = false;
bool print_special = false;
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
bool speed_up = false;
bool debug_mode = false;
bool translate = false;
bool detect_language = false;
bool diarize = false;
bool tinydiarize = false;
bool split_on_word = false;
bool no_fallback = false;
bool output_txt = false;
bool output_vtt = false;
bool output_srt = false;
bool output_wts = false;
bool output_csv = false;
bool output_jsn = false;
bool output_jsn_full = false;
bool output_lrc = false;
bool print_special = false;
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
bool log_score = false;
bool use_gpu = true;
std::string language = "en";
std::string language = "en";
std::string prompt;
std::string font_path = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
std::string model = "models/ggml-base.en.bin";
std::string model = "models/ggml-base.en.bin";
// [TDRZ] speaker turn string
std::string tdrz_speaker_turn = " [SPEAKER_TURN]"; // TODO: set from command line
std::string openvino_encode_device = "CPU";
std::vector<std::string> fname_inp = {};
std::vector<std::string> fname_out = {};
@ -111,41 +126,47 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
else if (arg == "-sow" || arg == "--split-on-word") { params.split_on_word = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-dl" || arg == "--detect-language"){ params.detect_language= true; }
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
// else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
else if (arg == "-sow" || arg == "--split-on-word") { params.split_on_word = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-otxt" || arg == "--output-txt") { params.output_txt = true; }
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
else if (arg == "-ojf" || arg == "--output-json-full"){ params.output_jsn_full = params.output_jsn = true; }
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-dl" || arg == "--detect-language") { params.detect_language = true; }
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -175,9 +196,11 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
// fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
@ -187,6 +210,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -fp, --font-path [%-7s] path to a monospace font for karaoke video\n", params.font_path.c_str());
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
fprintf(stderr, " -oj, --output-json [%-7s] output result in a JSON file\n", params.output_jsn ? "true" : "false");
fprintf(stderr, " -ojf, --output-json-full [%-7s] include more information in the JSON file\n", params.output_jsn_full ? "true" : "false");
fprintf(stderr, " -of FNAME, --output-file FNAME [%-7s] output file path (without file extension)\n", "");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
@ -197,6 +221,9 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, "\n");
}
@ -204,8 +231,50 @@ struct whisper_print_user_data {
const whisper_params * params;
const std::vector<std::vector<float>> * pcmf32s;
int progress_prev;
};
std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s, int64_t t0, int64_t t1, bool id_only = false) {
std::string speaker = "";
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
double energy0 = 0.0f;
double energy1 = 0.0f;
for (int64_t j = is0; j < is1; j++) {
energy0 += fabs(pcmf32s[0][j]);
energy1 += fabs(pcmf32s[1][j]);
}
if (energy0 > 1.1*energy1) {
speaker = "0";
} else if (energy1 > 1.1*energy0) {
speaker = "1";
} else {
speaker = "?";
}
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, speaker = %s\n", is0, is1, energy0, energy1, speaker.c_str());
if (!id_only) {
speaker.insert(0, "(speaker ");
speaker.append(")");
}
return speaker;
}
void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) {
int progress_step = ((whisper_print_user_data *) user_data)->params->progress_step;
int * progress_prev = &(((whisper_print_user_data *) user_data)->progress_prev);
if (progress >= *progress_prev + progress_step) {
*progress_prev += progress_step;
fprintf(stderr, "%s: progress = %3d%%\n", __func__, progress);
}
}
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
@ -235,28 +304,7 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
}
if (params.diarize && pcmf32s.size() == 2) {
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
double energy0 = 0.0f;
double energy1 = 0.0f;
for (int64_t j = is0; j < is1; j++) {
energy0 += fabs(pcmf32s[0][j]);
energy1 += fabs(pcmf32s[1][j]);
}
if (energy0 > 1.1*energy1) {
speaker = "(speaker 0)";
} else if (energy1 > 1.1*energy0) {
speaker = "(speaker 1)";
} else {
speaker = "(speaker ?)";
}
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str());
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
if (params.print_colors) {
@ -281,6 +329,12 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
printf("%s%s", speaker.c_str(), text);
}
if (params.tinydiarize) {
if (whisper_full_get_segment_speaker_turn_next(ctx, i)) {
printf("%s", params.tdrz_speaker_turn.c_str());
}
}
// with timestamps or speakers: each segment on new line
if (!params.no_timestamps || params.diarize) {
printf("\n");
@ -290,7 +344,7 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
}
}
bool output_txt(struct whisper_context * ctx, const char * fname) {
bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -302,13 +356,22 @@ bool output_txt(struct whisper_context * ctx, const char * fname) {
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
fout << text << "\n";
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2)
{
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
fout << speaker << text << "\n";
}
return true;
}
bool output_vtt(struct whisper_context * ctx, const char * fname) {
bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -324,15 +387,23 @@ bool output_vtt(struct whisper_context * ctx, const char * fname) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2)
{
speaker = estimate_diarization_speaker(pcmf32s, t0, t1, true);
speaker.insert(0, "<v Speaker");
speaker.append(">");
}
fout << to_timestamp(t0) << " --> " << to_timestamp(t1) << "\n";
fout << text << "\n\n";
fout << speaker << text << "\n\n";
}
return true;
}
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -346,10 +417,16 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2)
{
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
fout << i + 1 + params.offset_n << "\n";
fout << to_timestamp(t0, true) << " --> " << to_timestamp(t1, true) << "\n";
fout << text << "\n\n";
fout << speaker << text << "\n\n";
}
return true;
@ -386,7 +463,7 @@ char *escape_double_quotes_and_backslashes(const char *str) {
return escaped;
}
bool output_csv(struct whisper_context * ctx, const char * fname) {
bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -396,7 +473,13 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
const int n_segments = whisper_full_n_segments(ctx);
fout << "start,end,text\n";
fout << "start,end,";
if (params.diarize && pcmf32s.size() == 2)
{
fout << "speaker,";
}
fout << "text\n";
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
@ -404,13 +487,42 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
char * text_escaped = escape_double_quotes_and_backslashes(text);
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
fout << 10 * t0 << "," << 10 * t1 << ",\"" << text_escaped << "\"\n";
fout << 10 * t0 << "," << 10 * t1 << ",";
if (params.diarize && pcmf32s.size() == 2)
{
fout << estimate_diarization_speaker(pcmf32s, t0, t1, true) << ",";
}
fout << "\"" << text_escaped << "\"\n";
}
return true;
}
bool output_json(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
bool output_score(struct whisper_context * ctx, const char * fname, const whisper_params & /*params*/, std::vector<std::vector<float>> /*pcmf32s*/) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
const int n_segments = whisper_full_n_segments(ctx);
// fprintf(stderr,"segments: %d\n",n_segments);
for (int i = 0; i < n_segments; ++i) {
const int n_tokens = whisper_full_n_tokens(ctx, i);
// fprintf(stderr,"tokens: %d\n",n_tokens);
for (int j = 0; j < n_tokens; j++) {
auto token = whisper_full_get_token_text(ctx, i, j);
auto probability = whisper_full_get_token_p(ctx, i, j);
fout << token << '\t' << probability << std::endl;
// fprintf(stderr,"token: %s %f\n",token,probability);
}
}
return true;
}
bool output_json(
struct whisper_context * ctx,
const char * fname,
const whisper_params & params,
std::vector<std::vector<float>> pcmf32s,
bool full) {
std::ofstream fout(fname);
int indent = 0;
@ -424,13 +536,13 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
indent++;
};
auto end_arr = [&](bool end = false) {
auto end_arr = [&](bool end) {
indent--;
doindent();
fout << (end ? "]\n" : "},\n");
fout << (end ? "]\n" : "],\n");
};
auto start_obj = [&](const char *name = nullptr) {
auto start_obj = [&](const char *name) {
doindent();
if (name) {
fout << "\"" << name << "\": {\n";
@ -440,7 +552,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
indent++;
};
auto end_obj = [&](bool end = false) {
auto end_obj = [&](bool end) {
indent--;
doindent();
fout << (end ? "}\n" : "},\n");
@ -451,82 +563,119 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
fout << "\"" << name << "\": ";
};
auto value_s = [&](const char *name, const char *val, bool end = false) {
auto value_s = [&](const char *name, const char *val, bool end) {
start_value(name);
char * val_escaped = escape_double_quotes_and_backslashes(val);
fout << "\"" << val_escaped << (end ? "\"\n" : "\",\n");
free(val_escaped);
};
auto end_value = [&](bool end = false) {
auto end_value = [&](bool end) {
fout << (end ? "\n" : ",\n");
};
auto value_i = [&](const char *name, const int64_t val, bool end = false) {
auto value_i = [&](const char *name, const int64_t val, bool end) {
start_value(name);
fout << val;
end_value(end);
};
auto value_b = [&](const char *name, const bool val, bool end = false) {
auto value_f = [&](const char *name, const float val, bool end) {
start_value(name);
fout << val;
end_value(end);
};
auto value_b = [&](const char *name, const bool val, bool end) {
start_value(name);
fout << (val ? "true" : "false");
end_value(end);
};
auto times_o = [&](int64_t t0, int64_t t1, bool end) {
start_obj("timestamps");
value_s("from", to_timestamp(t0, true).c_str(), false);
value_s("to", to_timestamp(t1, true).c_str(), true);
end_obj(false);
start_obj("offsets");
value_i("from", t0 * 10, false);
value_i("to", t1 * 10, true);
end_obj(end);
};
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
start_obj();
value_s("systeminfo", whisper_print_system_info());
start_obj(nullptr);
value_s("systeminfo", whisper_print_system_info(), false);
start_obj("model");
value_s("type", whisper_model_type_readable(ctx));
value_b("multilingual", whisper_is_multilingual(ctx));
value_i("vocab", whisper_model_n_vocab(ctx));
value_s("type", whisper_model_type_readable(ctx), false);
value_b("multilingual", whisper_is_multilingual(ctx), false);
value_i("vocab", whisper_model_n_vocab(ctx), false);
start_obj("audio");
value_i("ctx", whisper_model_n_audio_ctx(ctx));
value_i("state", whisper_model_n_audio_state(ctx));
value_i("head", whisper_model_n_audio_head(ctx));
value_i("ctx", whisper_model_n_audio_ctx(ctx), false);
value_i("state", whisper_model_n_audio_state(ctx), false);
value_i("head", whisper_model_n_audio_head(ctx), false);
value_i("layer", whisper_model_n_audio_layer(ctx), true);
end_obj();
end_obj(false);
start_obj("text");
value_i("ctx", whisper_model_n_text_ctx(ctx));
value_i("state", whisper_model_n_text_state(ctx));
value_i("head", whisper_model_n_text_head(ctx));
value_i("ctx", whisper_model_n_text_ctx(ctx), false);
value_i("state", whisper_model_n_text_state(ctx), false);
value_i("head", whisper_model_n_text_head(ctx), false);
value_i("layer", whisper_model_n_text_layer(ctx), true);
end_obj();
value_i("mels", whisper_model_n_mels(ctx));
end_obj(false);
value_i("mels", whisper_model_n_mels(ctx), false);
value_i("ftype", whisper_model_ftype(ctx), true);
end_obj();
end_obj(false);
start_obj("params");
value_s("model", params.model.c_str());
value_s("language", params.language.c_str());
value_s("model", params.model.c_str(), false);
value_s("language", params.language.c_str(), false);
value_b("translate", params.translate, true);
end_obj();
end_obj(false);
start_obj("result");
value_s("language", whisper_lang_str(whisper_full_lang_id(ctx)), true);
end_obj();
end_obj(false);
start_arr("transcription");
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
start_obj();
start_obj("timestamps");
value_s("from", to_timestamp(t0, true).c_str());
value_s("to", to_timestamp(t1, true).c_str(), true);
end_obj();
start_obj("offsets");
value_i("from", t0 * 10);
value_i("to", t1 * 10, true);
end_obj();
value_s("text", text, true);
start_obj(nullptr);
times_o(t0, t1, false);
value_s("text", text, !params.diarize && !params.tinydiarize && !full);
if (full) {
start_arr("tokens");
const int n = whisper_full_n_tokens(ctx, i);
for (int j = 0; j < n; ++j) {
auto token = whisper_full_get_token_data(ctx, i, j);
start_obj(nullptr);
value_s("text", whisper_token_to_str(ctx, token.id), false);
if(token.t0 > -1 && token.t1 > -1) {
// If we have per-token timestamps, write them out
times_o(token.t0, token.t1, false);
}
value_i("id", token.id, false);
value_f("p", token.p, true);
end_obj(j == (n - 1));
}
end_arr(!params.diarize && !params.tinydiarize);
}
if (params.diarize && pcmf32s.size() == 2) {
value_s("speaker", estimate_diarization_speaker(pcmf32s, t0, t1, true).c_str(), true);
}
if (params.tinydiarize) {
value_b("speaker_turn_next", whisper_full_get_segment_speaker_turn_next(ctx, i), true);
}
end_obj(i == (n_segments - 1));
}
@ -538,7 +687,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
// karaoke video generation
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
// TODO: font parameter adjustments
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec) {
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
@ -575,6 +724,11 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
fout << "drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='':enable='between(t," << t0/100.0 << "," << t0/100.0 << ")'";
bool is_first = true;
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2) {
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
for (int j = 0; j < n; ++j) {
const auto & token = tokens[j];
@ -583,13 +737,19 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
continue;
}
std::string txt_bg;
std::string txt_fg; // highlight token
std::string txt_ul; // underline
std::string txt_bg = "";
std::string txt_fg = ""; // highlight token
std::string txt_ul = ""; // underline
txt_bg = "> ";
txt_fg = "> ";
txt_ul = "\\ \\ ";
if (params.diarize && pcmf32s.size() == 2) {
txt_bg = speaker;
txt_fg = speaker;
txt_ul = "\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ ";
}
txt_bg.append("> ");
txt_fg.append("> ");
txt_ul.append("\\ \\ ");
{
for (int k = 0; k < n; ++k) {
@ -652,8 +812,7 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
return true;
}
bool output_lrc(struct whisper_context * ctx, const char * fname) {
bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -678,8 +837,16 @@ bool output_lrc(struct whisper_context * ctx, const char * fname) {
char buf[16];
snprintf(buf, sizeof(buf), "%02d:%02d.%02d", (int) min, (int) sec, (int) ( msec / 10));
std::string timestamp_lrc = std::string(buf);
std::string speaker = "";
fout << '[' << timestamp_lrc << ']' << text << "\n";
if (params.diarize && pcmf32s.size() == 2)
{
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
fout << '[' << timestamp_lrc << ']' << speaker << text << "\n";
}
return true;
@ -689,6 +856,7 @@ int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
whisper_print_usage(argc, argv, params);
return 1;
}
@ -704,15 +872,27 @@ int main(int argc, char ** argv) {
exit(0);
}
if (params.diarize && params.tinydiarize) {
fprintf(stderr, "error: cannot use both --diarize and --tinydiarize\n");
whisper_print_usage(argc, argv, params);
exit(0);
}
// whisper init
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 3;
}
// initialize openvino encoder. this has no effect on whisper.cpp builds that don't have OpenVINO configured
whisper_ctx_init_openvino_encoder(ctx, nullptr, params.openvino_encode_device.c_str(), nullptr);
for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f];
const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f];
@ -745,11 +925,12 @@ int main(int argc, char ** argv) {
if (params.detect_language) {
params.language = "auto";
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, %d beams + best of %d, lang = %s, task = %s, %stimestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.n_threads, params.n_processors, params.beam_size, params.best_of,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.tinydiarize ? "tdrz = 1, " : "",
params.no_timestamps ? 0 : 1);
fprintf(stderr, "\n");
@ -773,12 +954,15 @@ int main(int argc, char ** argv) {
wparams.offset_ms = params.offset_t_ms;
wparams.duration_ms = params.duration_ms;
wparams.token_timestamps = params.output_wts || params.max_len > 0;
wparams.token_timestamps = params.output_wts || params.output_jsn_full || params.max_len > 0;
wparams.thold_pt = params.word_thold;
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
wparams.split_on_word = params.split_on_word;
wparams.speed_up = params.speed_up;
wparams.debug_mode = params.debug_mode;
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
wparams.initial_prompt = params.prompt.c_str();
@ -789,7 +973,7 @@ int main(int argc, char ** argv) {
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
whisper_print_user_data user_data = { &params, &pcmf32s };
whisper_print_user_data user_data = { &params, &pcmf32s, 0 };
// this callback is called on each new segment
if (!wparams.print_realtime) {
@ -797,8 +981,14 @@ int main(int argc, char ** argv) {
wparams.new_segment_callback_user_data = &user_data;
}
// example for abort mechanism
// in this example, we do not abort the processing, but we could if the flag is set to true
if (wparams.print_progress) {
wparams.progress_callback = whisper_print_progress_callback;
wparams.progress_callback_user_data = &user_data;
}
// examples for abort mechanism
// in examples below, we do not abort the processing, but we could if the flag is set to true
// the callback is called before every encoder run - if it returns false, the processing is aborted
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
@ -810,6 +1000,17 @@ int main(int argc, char ** argv) {
wparams.encoder_begin_callback_user_data = &is_aborted;
}
// the callback is called before every computation - if it returns true, the computation is aborted
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
wparams.abort_callback = [](void * user_data) {
bool is_aborted = *(bool*)user_data;
return is_aborted;
};
wparams.abort_callback_user_data = &is_aborted;
}
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
return 10;
@ -823,43 +1024,49 @@ int main(int argc, char ** argv) {
// output to text file
if (params.output_txt) {
const auto fname_txt = fname_out + ".txt";
output_txt(ctx, fname_txt.c_str());
output_txt(ctx, fname_txt.c_str(), params, pcmf32s);
}
// output to VTT file
if (params.output_vtt) {
const auto fname_vtt = fname_out + ".vtt";
output_vtt(ctx, fname_vtt.c_str());
output_vtt(ctx, fname_vtt.c_str(), params, pcmf32s);
}
// output to SRT file
if (params.output_srt) {
const auto fname_srt = fname_out + ".srt";
output_srt(ctx, fname_srt.c_str(), params);
output_srt(ctx, fname_srt.c_str(), params, pcmf32s);
}
// output to WTS file
if (params.output_wts) {
const auto fname_wts = fname_out + ".wts";
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE);
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE, pcmf32s);
}
// output to CSV file
if (params.output_csv) {
const auto fname_csv = fname_out + ".csv";
output_csv(ctx, fname_csv.c_str());
output_csv(ctx, fname_csv.c_str(), params, pcmf32s);
}
// output to JSON file
if (params.output_jsn) {
const auto fname_jsn = fname_out + ".json";
output_json(ctx, fname_jsn.c_str(), params);
output_json(ctx, fname_jsn.c_str(), params, pcmf32s, params.output_jsn_full);
}
// output to LRC file
if (params.output_lrc) {
const auto fname_lrc = fname_out + ".lrc";
output_lrc(ctx, fname_lrc.c_str());
output_lrc(ctx, fname_lrc.c_str(), params, pcmf32s);
}
// output to score file
if (params.log_score) {
const auto fname_score = fname_out + ".score.txt";
output_score(ctx, fname_score.c_str(), params, pcmf32s);
}
}
}

View File

@ -57,7 +57,7 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
{
uint32_t magic;
finp.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
if (magic != GGML_FILE_MAGIC) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
return false;
}
@ -99,17 +99,17 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
fprintf(stderr, "%s: ftype (dst) = %d\n", __func__, ftype_dst);
fprintf(stderr, "%s: qntvr (dst) = %d\n", __func__, GGML_QNT_VERSION);
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fout.write((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
fout.write((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
fout.write((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
fout.write((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
fout.write((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
fout.write((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
fout.write((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
fout.write((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
fout.write((char *) &hparams.n_mels, sizeof(hparams.n_mels));
fout.write((char *) &ftype_dst, sizeof(hparams.ftype));
fout.write((const char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fout.write((const char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
fout.write((const char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
fout.write((const char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
fout.write((const char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
fout.write((const char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
fout.write((const char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
fout.write((const char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
fout.write((const char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
fout.write((const char *) &hparams.n_mels, sizeof(hparams.n_mels));
fout.write((const char *) &ftype_dst, sizeof(hparams.ftype));
}
// load mel filters
@ -138,15 +138,17 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
// return false;
//}
std::string word;
char word[129];
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
finp.read ((char *) &len, sizeof(len));
fout.write((char *) &len, sizeof(len));
word.resize(len);
finp.read ((char *) word.data(), len);
fout.write((char *) word.data(), len);
word[len] = '\0';
finp.read ((char *) word, len);
fout.write((char *) word, len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;

View File

@ -0,0 +1,6 @@
set(TARGET server)
add_executable(${TARGET} server.cpp httplib.h json.hpp)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})

59
examples/server/README.md Normal file
View File

@ -0,0 +1,59 @@
# whisper.cpp http server
Simple http server. WAV Files are passed to the inference model via http requests.
```
./server -h
usage: ./bin/server [options]
options:
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-sow, --split-on-word [false ] split on word rather than on token
-bo N, --best-of N [2 ] number of best candidates to keep
-bs N, --beam-size N [-1 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [false ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
-dl, --detect-language [false ] exit after automatically detecting language
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
--host HOST, [127.0.0.1] Hostname/ip-adress for the server
--port PORT, [8080 ] Port number for the server
```
## request examples
**/inference**
```
curl 127.0.0.1:8080/inference \
-H "Content-Type: multipart/form-data" \
-F file="@<file-path>" \
-F temperature="0.2" \
-F response-format="json"
```
**/load**
```
curl 127.0.0.1:8080/load \
-H "Content-Type: multipart/form-data" \
-F model="<path-to-model-file>"
```

9262
examples/server/httplib.h Normal file

File diff suppressed because it is too large Load Diff

24596
examples/server/json.hpp Normal file

File diff suppressed because it is too large Load Diff

699
examples/server/server.cpp Normal file
View File

@ -0,0 +1,699 @@
#include "common.h"
#include "whisper.h"
#include "httplib.h"
#include "json.hpp"
#include <cmath>
#include <fstream>
#include <cstdio>
#include <string>
#include <thread>
#include <vector>
#include <cstring>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
using namespace httplib;
using json = nlohmann::json;
namespace {
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
// Lowest is red, middle is yellow, highest is green.
const std::vector<std::string> k_colors = {
"\033[38;5;196m", "\033[38;5;202m", "\033[38;5;208m", "\033[38;5;214m", "\033[38;5;220m",
"\033[38;5;226m", "\033[38;5;190m", "\033[38;5;154m", "\033[38;5;118m", "\033[38;5;82m",
};
// output formats
const std::string json_format = "json";
const std::string text_format = "text";
const std::string srt_format = "srt";
const std::string vjson_format = "verbose_json";
const std::string vtt_format = "vtt";
struct server_params
{
std::string hostname = "127.0.0.1";
std::string public_path = "examples/server/public";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
};
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t duration_ms = 0;
int32_t progress_step = 5;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = 2;
int32_t beam_size = -1;
float word_thold = 0.01f;
float entropy_thold = 2.40f;
float logprob_thold = -1.00f;
float userdef_temp = 0.20f;
bool speed_up = false;
bool debug_mode = false;
bool translate = false;
bool detect_language = false;
bool diarize = false;
bool tinydiarize = false;
bool split_on_word = false;
bool no_fallback = false;
bool print_special = false;
bool print_colors = false;
bool print_progress = false;
bool no_timestamps = false;
bool use_gpu = true;
std::string language = "en";
std::string prompt = "";
std::string font_path = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
std::string model = "models/ggml-base.en.bin";
std::string response_format = json_format;
// [TDRZ] speaker turn string
std::string tdrz_speaker_turn = " [SPEAKER_TURN]"; // TODO: set from command line
std::string openvino_encode_device = "CPU";
};
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false) {
int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf);
}
int timestamp_to_sample(int64_t t, int n_samples) {
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
}
bool is_file_exist(const char *fileName)
{
std::ifstream infile(fileName);
return infile.good();
}
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params,
const server_params& sparams) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options] \n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -p N, --processors N [%-7d] number of processors to use during computation\n", params.n_processors);
fprintf(stderr, " -ot N, --offset-t N [%-7d] time offset in milliseconds\n", params.offset_t_ms);
fprintf(stderr, " -on N, --offset-n N [%-7d] segment index offset\n", params.offset_n);
fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
fprintf(stderr, " -sow, --split-on-word [%-7s] split on word rather than on token\n", params.split_on_word ? "true" : "false");
fprintf(stderr, " -bo N, --best-of N [%-7d] number of best candidates to keep\n", params.best_of);
fprintf(stderr, " -bs N, --beam-size N [%-7d] beam size for beam search\n", params.beam_size);
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
// fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -di, --diarize [%-7s] stereo audio diarization\n", params.diarize ? "true" : "false");
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
fprintf(stderr, " -dl, --detect-language [%-7s] exit after automatically detecting language\n", params.detect_language ? "true" : "false");
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -oved D, --ov-e-device DNAME [%-7s] the OpenVINO device used for encode inference\n", params.openvino_encode_device.c_str());
// server params
fprintf(stderr, " --host HOST, [%-7s] Hostname/ip-adress for the server\n", sparams.hostname.c_str());
fprintf(stderr, " --port PORT, [%-7d] Port number for the server\n", sparams.port);
fprintf(stderr, " --public PATH, [%-7s] Path to the public folder\n", sparams.public_path.c_str());
fprintf(stderr, "\n");
}
bool whisper_params_parse(int argc, char ** argv, whisper_params & params, server_params & sparams) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-h" || arg == "--help") {
whisper_print_usage(argc, argv, params, sparams);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
// else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
else if (arg == "-sow" || arg == "--split-on-word") { params.split_on_word = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-dl" || arg == "--detect-language") { params.detect_language = true; }
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
// server params
else if ( arg == "--port") { sparams.port = std::stoi(argv[++i]); }
else if ( arg == "--host") { sparams.hostname = argv[++i]; }
else if ( arg == "--public") { sparams.public_path = argv[++i]; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params, sparams);
exit(0);
}
}
return true;
}
struct whisper_print_user_data {
const whisper_params * params;
const std::vector<std::vector<float>> * pcmf32s;
int progress_prev;
};
std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s, int64_t t0, int64_t t1, bool id_only = false) {
std::string speaker = "";
const int64_t n_samples = pcmf32s[0].size();
const int64_t is0 = timestamp_to_sample(t0, n_samples);
const int64_t is1 = timestamp_to_sample(t1, n_samples);
double energy0 = 0.0f;
double energy1 = 0.0f;
for (int64_t j = is0; j < is1; j++) {
energy0 += fabs(pcmf32s[0][j]);
energy1 += fabs(pcmf32s[1][j]);
}
if (energy0 > 1.1*energy1) {
speaker = "0";
} else if (energy1 > 1.1*energy0) {
speaker = "1";
} else {
speaker = "?";
}
//printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, speaker = %s\n", is0, is1, energy0, energy1, speaker.c_str());
if (!id_only) {
speaker.insert(0, "(speaker ");
speaker.append(")");
}
return speaker;
}
void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) {
int progress_step = ((whisper_print_user_data *) user_data)->params->progress_step;
int * progress_prev = &(((whisper_print_user_data *) user_data)->progress_prev);
if (progress >= *progress_prev + progress_step) {
*progress_prev += progress_step;
fprintf(stderr, "%s: progress = %3d%%\n", __func__, progress);
}
}
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
const int n_segments = whisper_full_n_segments(ctx);
std::string speaker = "";
int64_t t0 = 0;
int64_t t1 = 0;
// print the last n_new segments
const int s0 = n_segments - n_new;
if (s0 == 0) {
printf("\n");
}
for (int i = s0; i < n_segments; i++) {
if (!params.no_timestamps || params.diarize) {
t0 = whisper_full_get_segment_t0(ctx, i);
t1 = whisper_full_get_segment_t1(ctx, i);
}
if (!params.no_timestamps) {
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
}
if (params.diarize && pcmf32s.size() == 2) {
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
if (params.print_colors) {
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
if (params.print_special == false) {
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
if (id >= whisper_token_eot(ctx)) {
continue;
}
}
const char * text = whisper_full_get_token_text(ctx, i, j);
const float p = whisper_full_get_token_p (ctx, i, j);
const int col = std::max(0, std::min((int) k_colors.size() - 1, (int) (std::pow(p, 3)*float(k_colors.size()))));
printf("%s%s%s%s", speaker.c_str(), k_colors[col].c_str(), text, "\033[0m");
}
} else {
const char * text = whisper_full_get_segment_text(ctx, i);
printf("%s%s", speaker.c_str(), text);
}
if (params.tinydiarize) {
if (whisper_full_get_segment_speaker_turn_next(ctx, i)) {
printf("%s", params.tdrz_speaker_turn.c_str());
}
}
// with timestamps or speakers: each segment on new line
if (!params.no_timestamps || params.diarize) {
printf("\n");
}
fflush(stdout);
}
}
std::string output_str(struct whisper_context * ctx, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::stringstream result;
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
std::string speaker = "";
if (params.diarize && pcmf32s.size() == 2)
{
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
speaker = estimate_diarization_speaker(pcmf32s, t0, t1);
}
result << speaker << text << "\n";
}
return result.str();
}
void get_req_parameters(const Request & req, whisper_params & params)
{
// user model configu.has_fileion
if (req.has_file("offset-t"))
{
params.offset_t_ms = std::stoi(req.get_file_value("offset-t").content);
}
if (req.has_file("offset-n"))
{
params.offset_n = std::stoi(req.get_file_value("offset-n").content);
}
if (req.has_file("duration"))
{
params.duration_ms = std::stoi(req.get_file_value("duration").content);
}
if (req.has_file("max-context"))
{
params.max_context = std::stoi(req.get_file_value("max-context").content);
}
if (req.has_file("prompt"))
{
params.prompt = req.get_file_value("prompt").content;
}
if (req.has_file("response-format"))
{
params.response_format = req.get_file_value("response-format").content;
}
if (req.has_file("temerature"))
{
params.userdef_temp = std::stof(req.get_file_value("temperature").content);
}
}
} // namespace
int main(int argc, char ** argv) {
whisper_params params;
server_params sparams;
std::mutex whisper_mutex;
if (whisper_params_parse(argc, argv, params, sparams) == false) {
whisper_print_usage(argc, argv, params, sparams);
return 1;
}
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params, sparams);
exit(0);
}
if (params.diarize && params.tinydiarize) {
fprintf(stderr, "error: cannot use both --diarize and --tinydiarize\n");
whisper_print_usage(argc, argv, params, sparams);
exit(0);
}
// whisper init
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 3;
}
// initialize openvino encoder. this has no effect on whisper.cpp builds that don't have OpenVINO configured
whisper_ctx_init_openvino_encoder(ctx, nullptr, params.openvino_encode_device.c_str(), nullptr);
Server svr;
std::string const default_content = "<html>hello</html>";
// this is only called if no index.html is found in the public --path
svr.Get("/", [&default_content](const Request &, Response &res){
res.set_content(default_content, "text/html");
return false;
});
svr.Post("/inference", [&](const Request &req, Response &res){
// aquire whisper model mutex lock
whisper_mutex.lock();
// first check user requested fields of the request
if (!req.has_file("file"))
{
fprintf(stderr, "error: no 'file' field in the request\n");
const std::string error_resp = "{\"error\":\"no 'file' field in the request\"}";
res.set_content(error_resp, "application/json");
whisper_mutex.unlock();
return;
}
auto audio_file = req.get_file_value("file");
// check non-required fields
get_req_parameters(req, params);
std::string filename{audio_file.filename};
printf("Received request: %s\n", filename.c_str());
// audio arrays
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
// write file to temporary file
std::ofstream temp_file{filename, std::ios::binary};
temp_file << audio_file.content;
// read wav content into pcmf32
if (!::read_wav(filename, pcmf32, pcmf32s, params.diarize)) {
fprintf(stderr, "error: failed to read WAV file '%s'\n", filename.c_str());
const std::string error_resp = "{\"error\":\"failed to read WAV file\"}";
res.set_content(error_resp, "application/json");
whisper_mutex.unlock();
return;
}
// remove temp file
std::remove(filename.c_str());
printf("Successfully loaded %s\n", filename.c_str());
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// print some info about the processing
{
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
if (params.detect_language) {
params.language = "auto";
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, %stimestamps = %d ...\n",
__func__, filename.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.tinydiarize ? "tdrz = 1, " : "",
params.no_timestamps ? 0 : 1);
fprintf(stderr, "\n");
}
// run the inference
{
printf("Running whisper.cpp inference on %s\n", filename.c_str());
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;
wparams.print_realtime = false;
wparams.print_progress = params.print_progress;
wparams.print_timestamps = !params.no_timestamps;
wparams.print_special = params.print_special;
wparams.translate = params.translate;
wparams.language = params.language.c_str();
wparams.detect_language = params.detect_language;
wparams.n_threads = params.n_threads;
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms;
wparams.duration_ms = params.duration_ms;
wparams.thold_pt = params.word_thold;
wparams.split_on_word = params.split_on_word;
wparams.speed_up = params.speed_up;
wparams.debug_mode = params.debug_mode;
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
wparams.initial_prompt = params.prompt.c_str();
wparams.greedy.best_of = params.best_of;
wparams.beam_search.beam_size = params.beam_size;
wparams.temperature_inc = params.userdef_temp;
wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold;
whisper_print_user_data user_data = { &params, &pcmf32s, 0 };
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
wparams.new_segment_callback_user_data = &user_data;
}
if (wparams.print_progress) {
wparams.progress_callback = whisper_print_progress_callback;
wparams.progress_callback_user_data = &user_data;
}
// examples for abort mechanism
// in examples below, we do not abort the processing, but we could if the flag is set to true
// the callback is called before every encoder run - if it returns false, the processing is aborted
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
wparams.encoder_begin_callback_user_data = &is_aborted;
}
// the callback is called before every computation - if it returns true, the computation is aborted
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
wparams.abort_callback = [](void * user_data) {
bool is_aborted = *(bool*)user_data;
return is_aborted;
};
wparams.abort_callback_user_data = &is_aborted;
}
if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
const std::string error_resp = "{\"error\":\"failed to process audio\"}";
res.set_content(error_resp, "application/json");
whisper_mutex.unlock();
return;
}
}
// return results to user
if (params.response_format == text_format)
{
std::string results = output_str(ctx, params, pcmf32s);
res.set_content(results.c_str(), "text/html");
}
// TODO add more output formats
else
{
std::string results = output_str(ctx, params, pcmf32s);
json jres = json{
{"text", results}
};
res.set_content(jres.dump(-1, ' ', false, json::error_handler_t::replace),
"application/json");
}
// return whisper model mutex lock
whisper_mutex.unlock();
});
svr.Post("/load", [&](const Request &req, Response &res){
whisper_mutex.lock();
if (!req.has_file("model"))
{
fprintf(stderr, "error: no 'model' field in the request\n");
const std::string error_resp = "{\"error\":\"no 'model' field in the request\"}";
res.set_content(error_resp, "application/json");
whisper_mutex.unlock();
return;
}
std::string model = req.get_file_value("model").content;
if (!is_file_exist(model.c_str()))
{
fprintf(stderr, "error: 'model': %s not found!\n", model.c_str());
const std::string error_resp = "{\"error\":\"model not found!\"}";
res.set_content(error_resp, "application/json");
whisper_mutex.unlock();
return;
}
// clean up
whisper_free(ctx);
// whisper init
ctx = whisper_init_from_file_with_params(model.c_str(), cparams);
// TODO perhaps load prior model here instead of exit
if (ctx == nullptr) {
fprintf(stderr, "error: model init failed, no model loaded must exit\n");
exit(1);
}
// initialize openvino encoder. this has no effect on whisper.cpp builds that don't have OpenVINO configured
whisper_ctx_init_openvino_encoder(ctx, nullptr, params.openvino_encode_device.c_str(), nullptr);
const std::string success = "Load was successful!";
res.set_content(success, "application/text");
// check if the model is in the file system
whisper_mutex.unlock();
});
svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep) {
const char fmt[] = "500 Internal Server Error\n%s";
char buf[BUFSIZ];
try {
std::rethrow_exception(std::move(ep));
} catch (std::exception &e) {
snprintf(buf, sizeof(buf), fmt, e.what());
} catch (...) {
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
}
res.set_content(buf, "text/plain");
res.status = 500;
});
svr.set_error_handler([](const Request &, Response &res) {
if (res.status == 400) {
res.set_content("Invalid request", "text/plain");
} else if (res.status != 500) {
res.set_content("File Not Found", "text/plain");
res.status = 404;
}
});
// set timeouts and change hostname and port
svr.set_read_timeout(sparams.read_timeout);
svr.set_write_timeout(sparams.write_timeout);
if (!svr.bind_to_port(sparams.hostname, sparams.port))
{
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n",
sparams.hostname.c_str(), sparams.port);
return 1;
}
// Set the base directory for serving static files
svr.set_base_dir(sparams.public_path);
// to make it ctrl+clickable:
printf("\nwhisper server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
if (!svr.listen_after_bind())
{
return 1;
}
whisper_print_timings(ctx);
whisper_free(ctx);
return 0;
}

View File

@ -132,7 +132,7 @@ EMSCRIPTEN_BINDINGS(stream) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
for (size_t i = 0; i < g_contexts.size(); ++i) {
if (g_contexts[i] == nullptr) {
g_contexts[i] = whisper_init_from_file(path_model.c_str());
g_contexts[i] = whisper_init_from_file_with_params(path_model.c_str(), whisper_context_default_params());
if (g_contexts[i] != nullptr) {
g_running = true;
if (g_worker.joinable()) {

View File

@ -39,6 +39,20 @@ brew install sdl2
make stream
```
Ensure you are at the root of the repo when running `make stream`. Not within the `examples/stream` dir
as the libraries needed like `common-sdl.h` are located within `examples`. Attempting to compile within
`examples/steam` means your compiler cannot find them and it gives an error it cannot find the file.
```bash
whisper.cpp/examples/stream$ make stream
g++ stream.cpp -o stream
stream.cpp:6:10: fatal error: common/sdl.h: No such file or directory
6 | #include "common/sdl.h"
| ^~~~~~~~~~~~~~
compilation terminated.
make: *** [<builtin>: stream] Error 1
```
## Web version
This tool can also run in the browser: [examples/stream.wasm](/examples/stream.wasm)

View File

@ -2,9 +2,8 @@
//
// A very quick-n-dirty implementation serving mainly as a proof of concept.
//
#include "common.h"
#include "common-sdl.h"
#include "common.h"
#include "whisper.h"
#include <cassert>
@ -14,6 +13,7 @@
#include <vector>
#include <fstream>
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t) {
@ -47,6 +47,9 @@ struct whisper_params {
bool print_special = false;
bool no_context = true;
bool no_timestamps = false;
bool tinydiarize = false;
bool save_audio = false; // save audio to wav file
bool use_gpu = true;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
@ -63,23 +66,27 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if ( arg == "--step") { params.step_ms = std::stoi(argv[++i]); }
else if ( arg == "--length") { params.length_ms = std::stoi(argv[++i]); }
else if ( arg == "--keep") { params.keep_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if ( arg == "--step") { params.step_ms = std::stoi(argv[++i]); }
else if ( arg == "--length") { params.length_ms = std::stoi(argv[++i]); }
else if ( arg == "--keep") { params.keep_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
else if (arg == "-sa" || arg == "--save-audio") { params.save_audio = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
@ -113,6 +120,9 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
fprintf(stderr, " -sa, --save-audio [%-7s] save the recorded audio to a file\n", params.save_audio ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU inference\n", params.use_gpu ? "false" : "true");
fprintf(stderr, "\n");
}
@ -150,14 +160,16 @@ int main(int argc, char ** argv) {
audio.resume();
// whisper init
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1){
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
std::vector<float> pcmf32 (n_samples_30s, 0.0f);
std::vector<float> pcmf32_old;
@ -208,14 +220,28 @@ int main(int argc, char ** argv) {
}
}
printf("[Start speaking]");
wav_writer wavWriter;
// save wav file
if (params.save_audio) {
// Get current date/time for filename
time_t now = time(0);
char buffer[80];
strftime(buffer, sizeof(buffer), "%Y%m%d%H%M%S", localtime(&now));
std::string filename = std::string(buffer) + ".wav";
wavWriter.open(filename, WHISPER_SAMPLE_RATE, 16, 1);
}
printf("[Start speaking]\n");
fflush(stdout);
auto t_last = std::chrono::high_resolution_clock::now();
auto t_last = std::chrono::high_resolution_clock::now();
const auto t_start = t_last;
// main audio loop
while (is_running) {
if (params.save_audio) {
wavWriter.write(pcmf32_new.data(), pcmf32_new.size());
}
// handle Ctrl + C
is_running = sdl_poll_events();
@ -299,6 +325,8 @@ int main(int argc, char ** argv) {
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
// disable temperature fallback
//wparams.temperature_inc = -1.0f;
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
@ -344,10 +372,19 @@ int main(int argc, char ** argv) {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
std::string output = "[" + to_timestamp(t0) + " --> " + to_timestamp(t1) + "] " + text;
if (whisper_full_get_segment_speaker_turn_next(ctx, i)) {
output += " [SPEAKER_TURN]";
}
output += "\n";
printf("%s", output.c_str());
fflush(stdout);
if (params.fname_out.length() > 0) {
fout << "[" << to_timestamp(t0) << " --> " << to_timestamp(t1) << "] " << text << std::endl;
fout << output;
}
}
}
@ -356,7 +393,7 @@ int main(int argc, char ** argv) {
fout << std::endl;
}
if (use_vad){
if (use_vad) {
printf("\n");
printf("### Transcription %d END\n", n_iter);
}

View File

@ -7,7 +7,16 @@ if (WHISPER_SDL2)
# TODO: this is temporary
# need to export ggml symbols for MSVC, but too lazy ..
add_executable(${TARGET} talk-llama.cpp llama.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../whisper.cpp)
add_executable(${TARGET}
talk-llama.cpp
llama.cpp
../common.cpp
../common-sdl.cpp
../../ggml.c
../../ggml-alloc.c
../../ggml-backend.c
../../ggml-quants.c
../../whisper.cpp)
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})

View File

@ -2,6 +2,12 @@
Talk with an LLaMA AI in your terminal
*Latest perf as of 2 Nov 2023 using Whisper Medium + LLaMA v2 13B Q8_0 on M2 Ultra:*
https://github.com/ggerganov/whisper.cpp/assets/1991296/d97a3788-bf2a-4756-9a43-60c6b391649e
*Previous demo running on CPUs*
[Demo Talk](https://user-images.githubusercontent.com/1991296/228024237-848f998c-c334-46a6-bef8-3271590da83b.mp4)
## Building
@ -19,7 +25,7 @@ brew install sdl2
make talk-llama
# Run it
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/13B/ggml-model-q4_0.bin -p "Georgi" -t 8
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
```
- The `-mw` argument specifies the Whisper model that you would like to use. Recommended `base` or `small` for real-time experience
@ -36,14 +42,14 @@ This feature is especially helpful for maintaining context in long conversations
Example usage:
```bash
./talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/13B/ggml-model-q4_0.bin -p "Georgi" -t 8
./talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
```
## TTS
For best experience, this example needs a TTS tool to convert the generated text responses to voice.
You can use any TTS engine that you would like - simply edit the [speak.sh](speak.sh) script to your needs.
By default, it is configured to use MacOS's `say`, but you can use whatever you wish.
You can use any TTS engine that you would like - simply edit the [speak](speak) script to your needs.
By default, it is configured to use MacOS's `say` or Windows SpeechSynthesizer, but you can use whatever you wish.
## Discussion

Some files were not shown because too many files have changed in this diff Show More