mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-29 15:44:06 +00:00
whisper : fix bench regression + fix performance when using CPU BLAS (#1275)
* whisper : fix bench regression * ggml : use sched_yield when using BLAS + add comment
This commit is contained in:
parent
9b14418863
commit
3fec2119e6
14
ggml.c
14
ggml.c
@ -17283,10 +17283,18 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
} else {
|
||||
// wait for other threads to finish
|
||||
const int last = node_n;
|
||||
do {
|
||||
//sched_yield();
|
||||
while (true) {
|
||||
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
|
||||
// depending on the workload and the operating system.
|
||||
// since it is not clear what is the best approach, it should potentially become user-configurable
|
||||
// ref: https://github.com/ggerganov/ggml/issues/291
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
sched_yield();
|
||||
#endif
|
||||
|
||||
node_n = atomic_load(&state->shared->node_n);
|
||||
} while (node_n == last);
|
||||
if (node_n != last) break;
|
||||
};
|
||||
}
|
||||
|
||||
// check if we should stop
|
||||
|
33
whisper.cpp
33
whisper.cpp
@ -118,6 +118,21 @@ static void byteswap_tensor(ggml_tensor * tensor) {
|
||||
#define WHISPER_USE_SCRATCH
|
||||
#define WHISPER_MAX_SCRATCH_BUFFERS 16
|
||||
|
||||
//
|
||||
// ggml helpers
|
||||
//
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
// available whisper models
|
||||
enum e_model {
|
||||
MODEL_UNKNOWN,
|
||||
@ -666,6 +681,7 @@ struct whisper_state {
|
||||
|
||||
// memory buffers used by encode / decode contexts
|
||||
std::vector<uint8_t> buf_compute;
|
||||
std::vector<uint8_t> buf_work;
|
||||
std::vector<uint8_t> buf_scratch[WHISPER_MAX_SCRATCH_BUFFERS];
|
||||
|
||||
int buf_last = 0;
|
||||
@ -1830,8 +1846,8 @@ static bool whisper_encode_internal(
|
||||
{
|
||||
struct ggml_cgraph gf = {};
|
||||
|
||||
ggml_build_forward_expand (&gf, cur);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_build_forward_expand(&gf, cur);
|
||||
ggml_graph_compute_helper(wstate.buf_work, &gf, n_threads);
|
||||
|
||||
//ggml_graph_print(&gf);
|
||||
}
|
||||
@ -1916,7 +1932,7 @@ static bool whisper_encode_internal(
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
|
||||
}
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_graph_compute_helper(wstate.buf_work, &gf, n_threads);
|
||||
//ggml_graph_print(&gf);
|
||||
}
|
||||
|
||||
@ -2329,8 +2345,8 @@ static bool whisper_decode_internal(
|
||||
|
||||
// run the computation
|
||||
{
|
||||
ggml_build_forward_expand (&gf, logits);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_build_forward_expand(&gf, logits);
|
||||
ggml_graph_compute_helper(wstate.buf_work, &gf, n_threads);
|
||||
}
|
||||
|
||||
// extract logits for all N tokens
|
||||
@ -5225,7 +5241,8 @@ WHISPER_API const char * whisper_bench_ggml_mul_mat_str(int n_threads) {
|
||||
// b: N*N*sizeof(float)
|
||||
// c: N*N*sizeof(float)
|
||||
// when F16 is used, there is an extra work buffer of size N*N*sizeof(float)
|
||||
std::vector<char> buf(4llu*N_max*N_max*sizeof(float) + 4*512);
|
||||
std::vector<uint8_t> buf (3llu*N_max*N_max*sizeof(float) + 3*ggml_tensor_overhead());
|
||||
std::vector<uint8_t> work(1llu*N_max*N_max*sizeof(float) + 1*ggml_tensor_overhead());
|
||||
|
||||
// put a bunch of random data in the buffer
|
||||
for (size_t i = 0; i < buf.size(); i++) buf[i] = i;
|
||||
@ -5280,12 +5297,12 @@ WHISPER_API const char * whisper_bench_ggml_mul_mat_str(int n_threads) {
|
||||
double tsum = 0.0;
|
||||
|
||||
// heat-up
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_graph_compute_helper(work, &gf, n_threads);
|
||||
|
||||
for (int i = 0; i < n_max; ++i) {
|
||||
const int64_t t0 = ggml_time_us();
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_graph_compute_helper(work, &gf, n_threads);
|
||||
|
||||
const int64_t t1 = ggml_time_us();
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user