mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-19 20:57:52 +00:00
readme : update GPU / CUDA
This commit is contained in:
parent
b0502836b8
commit
684bc8bd70
10
README.md
10
README.md
@ -16,12 +16,10 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
|
||||
- VSX intrinsics support for POWER architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
|
||||
- Low memory usage (Flash Attention)
|
||||
- Zero memory allocations at runtime
|
||||
- Support for CPU-only inference
|
||||
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
|
||||
- [Efficient GPU support for NVIDIA](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
|
||||
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
|
||||
- [BLAS CPU support via OpenBLAS](https://github.com/ggerganov/whisper.cpp#blas-cpu-support-via-openblas)
|
||||
- [OpenVINO Support](https://github.com/ggerganov/whisper.cpp#openvino-support)
|
||||
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
||||
|
||||
@ -400,12 +398,12 @@ This can result in significant speedup in encoder performance. Here are the inst
|
||||
|
||||
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
|
||||
cached for the next run.
|
||||
|
||||
|
||||
For more information about the Core ML implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
|
||||
|
||||
## NVIDIA GPU support via cuBLAS
|
||||
## NVIDIA GPU support
|
||||
|
||||
With NVIDIA cards the Encoder processing can to a large extent be offloaded to the GPU through cuBLAS.
|
||||
With NVIDIA cards the processing of the models is done efficiently on the GPU via cuBLAS and custom CUDA kernels.
|
||||
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
|
||||
|
||||
Now build `whisper.cpp` with cuBLAS support:
|
||||
|
Loading…
Reference in New Issue
Block a user