mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-18 20:27:53 +00:00
models : add ggml_to_pt script (#1042)
* adding ggml_to_pt * typo sys too many args * fixing swap errors dimensions --------- Co-authored-by: simonMoisselin <simon.moisselin@gmail.com>
This commit is contained in:
parent
f11f33f1c0
commit
6c68218e3c
109
models/ggml_to_pt.py
Normal file
109
models/ggml_to_pt.py
Normal file
@ -0,0 +1,109 @@
|
||||
import struct
|
||||
import torch
|
||||
import numpy as np
|
||||
from collections import OrderedDict
|
||||
from pathlib import Path
|
||||
import sys
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print(
|
||||
"Usage: convert-ggml-to-pt.py model.bin dir-output\n")
|
||||
sys.exit(1)
|
||||
|
||||
fname_inp = Path(sys.argv[1])
|
||||
dir_out = Path(sys.argv[2])
|
||||
fname_out = dir_out / "torch-model.pt"
|
||||
|
||||
|
||||
|
||||
# Open the ggml file
|
||||
with open(fname_inp, "rb") as f:
|
||||
# Read magic number and hyperparameters
|
||||
magic_number, n_vocab, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer, n_text_ctx, n_text_state, n_text_head, n_text_layer, n_mels, use_f16 = struct.unpack("12i", f.read(48))
|
||||
print(f"Magic number: {magic_number}")
|
||||
print(f"Vocab size: {n_vocab}")
|
||||
print(f"Audio context size: {n_audio_ctx}")
|
||||
print(f"Audio state size: {n_audio_state}")
|
||||
print(f"Audio head size: {n_audio_head}")
|
||||
print(f"Audio layer size: {n_audio_layer}")
|
||||
print(f"Text context size: {n_text_ctx}")
|
||||
print(f"Text head size: {n_text_head}")
|
||||
print(f"Mel size: {n_mels}")
|
||||
# Read mel filters
|
||||
# mel_filters = np.fromfile(f, dtype=np.float32, count=n_mels * 2).reshape(n_mels, 2)
|
||||
# print(f"Mel filters: {mel_filters}")
|
||||
filters_shape_0 = struct.unpack("i", f.read(4))[0]
|
||||
print(f"Filters shape 0: {filters_shape_0}")
|
||||
filters_shape_1 = struct.unpack("i", f.read(4))[0]
|
||||
print(f"Filters shape 1: {filters_shape_1}")
|
||||
|
||||
# Read tokenizer tokens
|
||||
# bytes = f.read(4)
|
||||
# print(bytes)
|
||||
|
||||
|
||||
# for i in range(filters.shape[0]):
|
||||
# for j in range(filters.shape[1]):
|
||||
# fout.write(struct.pack("f", filters[i][j]))
|
||||
mel_filters = np.zeros((filters_shape_0, filters_shape_1))
|
||||
|
||||
for i in range(filters_shape_0):
|
||||
for j in range(filters_shape_1):
|
||||
mel_filters[i][j] = struct.unpack("f", f.read(4))[0]
|
||||
|
||||
bytes_data = f.read(4)
|
||||
num_tokens = struct.unpack("i", bytes_data)[0]
|
||||
tokens = {}
|
||||
|
||||
|
||||
for _ in range(num_tokens):
|
||||
token_len = struct.unpack("i", f.read(4))[0]
|
||||
token = f.read(token_len)
|
||||
tokens[token] = {}
|
||||
|
||||
# Read model variables
|
||||
model_state_dict = OrderedDict()
|
||||
while True:
|
||||
try:
|
||||
n_dims, name_length, ftype = struct.unpack("iii", f.read(12))
|
||||
except struct.error:
|
||||
break # End of file
|
||||
dims = [struct.unpack("i", f.read(4))[0] for _ in range(n_dims)]
|
||||
dims = dims[::-1]
|
||||
name = f.read(name_length).decode("utf-8")
|
||||
if ftype == 1: # f16
|
||||
data = np.fromfile(f, dtype=np.float16, count=np.prod(dims)).reshape(dims)
|
||||
else: # f32
|
||||
data = np.fromfile(f, dtype=np.float32, count=np.prod(dims)).reshape(dims)
|
||||
|
||||
|
||||
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
|
||||
|
||||
data = data[:, 0]
|
||||
|
||||
|
||||
model_state_dict[name] = torch.from_numpy(data)
|
||||
|
||||
# Now you have the model's state_dict stored in model_state_dict
|
||||
# You can load this state_dict into a model with the same architecture
|
||||
|
||||
# dims = ModelDimensions(**checkpoint["dims"])
|
||||
# model = Whisper(dims)
|
||||
from whisper import Whisper, ModelDimensions
|
||||
dims = ModelDimensions(
|
||||
n_mels=n_mels,
|
||||
n_audio_ctx=n_audio_ctx,
|
||||
n_audio_state=n_audio_state,
|
||||
n_audio_head=n_audio_head,
|
||||
n_audio_layer=n_audio_layer,
|
||||
n_text_ctx=n_text_ctx,
|
||||
n_text_state=n_text_state,
|
||||
n_text_head=n_text_head,
|
||||
n_text_layer=n_text_layer,
|
||||
n_vocab=n_vocab,
|
||||
)
|
||||
model = Whisper(dims) # Replace with your model's class
|
||||
model.load_state_dict(model_state_dict)
|
||||
|
||||
# Save the model in PyTorch format
|
||||
torch.save(model.state_dict(), fname_out)
|
Loading…
Reference in New Issue
Block a user