Commit Graph

1805 Commits

Author SHA1 Message Date
David Bauer
c94383de01 ath79: use kernel 6.1 as default
Signed-off-by: David Bauer <mail@david-bauer.net>
2023-09-08 21:00:26 +02:00
Shiji Yang
aee2af0f74 ath79: enable variable sector size erasure for generic subtarget
Make use of minor sector size (4k) erasure on supported flash chips
to improve spi read/write performance.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-09-08 18:06:30 +02:00
Shiji Yang
7ba69a94f9 ath79: backport gpio immutable irq_chip support
This patch converts the driver to immutable irq-chip, which can
silence some gpio warnings.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-09-08 18:06:30 +02:00
Shiji Yang
54758cf24b ath79: ignore the abused interrupt-map on PCIe node
ath79 PCIe interrupt controller has stopped working correctly. This
is because the DT exposing a non-sensical interrupt-map property,
and their drivers relying on the kernel ignoring this property[1].

This patch fixes the PCIe init error:
ath9k 0000:00:00.0: of_irq_parse_pci: failed with rc=-14

Notice:
This is just a workaround, not a fix. PCIe driver and related dts
node need to be rewritten.

[1] https://lore.kernel.org/all/20211201114102.13446-1-maz@kernel.org/

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-09-08 18:06:30 +02:00
Shiji Yang
7189b45784 ath79: fix ethernet driver build errors on kernel 6.1
Some net APIs have changed on the new kernel. Update them to fix
compile errors.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-09-08 18:06:30 +02:00
Shiji Yang
5f59d28bc3 ath79: refresh patches and configs to introduce kernel 6.1 support
All kernel configs are refreshed by
'make kernel_oldconfig CONFIG_TARGET=target' and
'make kernel_oldconfig CONFIG_TARGET=subtarget'.

upstreamed patches:
010-v5.17-spi-ar934x-fix-transfer-and-word-delays.patch
011-v5.17-spi-ar934x-fix-transfer-size.patch
020-v5.18-spi-ath79-Implement-the-spi_mem-interface.patch
030-v5.18-ath79-add-support-for-booting-QCN550x.patch

build and run tested on:
ath79/generic/ar7241
ath79/generic/qca9563
ath79/nand/ar9344

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-09-08 18:06:30 +02:00
Shiji Yang
d9a9caf352 ath79: copy patches and kernel config from 5.15 to 6.1
This is preparation for kernel 6.1 support.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-09-08 18:06:30 +02:00
Shiji Yang
c60dd7bef9 ath79: rename and sort patches by OpenWrt naming rules
The patches in the ath79 target have not been sorted for a long time
and they are very chaotic now. This patch sorts them again according
to the OpenWrt naming rules[1], so that we can better manage them.

[1] https://openwrt.org/docs/guide-developer/toolchain/use-patches-with-buildsystem#naming_patches

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-09-08 18:06:30 +02:00
Shiji Yang
496280ef4e ath79: add missing symbols by refreshing kernel configs
Some symbols are outdated or missing due to daily kernel bumps. It's
better to re-add them. All configs are automatically refreshed by
'make kernel_oldconfig CONFIG_TARGET=taget' and
'make kernel_oldconfig CONFIG_TARGET=subtarget'

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-09-08 18:06:30 +02:00
Shiji Yang
12f53724c6 ath79: fix first reboot issue on Netgear WNDR4300 v2 and WNDR4500 v3
From the Netgear u-boot GPL code[1]. Bootloader always unconditionally
marks block 768, 1020 - 1023 as bad blocks on each boot. This may lead
to conflicts with the OpenWrt nand driver since these blocks may be good
blocks. In this case, U-boot will override the oob of these blocks so
that break the ubi volume. The system will be damaged after first reboot.
To avoid this issue, manually skip these blocks by using "mtd-concat".

[1] https://www.downloads.netgear.com/files/GPL/EX7300v2series-V1.0.0.146_gpl_src.tar.bz2.zip

Fixes: https://github.com/openwrt/openwrt/issues/8878
Tested-by: Yousaf <yousaf465@gmail.com>
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-08-24 00:04:38 +02:00
Shiji Yang
0f9b8aa3f5 ath79: rework Netgear nand devices image recipe
In Netgear u-boot GPL code, nand devices uses this formula to locate the
rootfs offset.

offset = (((128 + KERNEL_SIZE) / BLOCK_SIZE) + 1) * BLOCK_SIZE;

Howerver, WNDR4500 source code incorrectly define the nand block size to
64k. In some cases, it causes u-boot can't get the correct rootfs offset,
which result in boot failure. This patch workaround it by padding kernel
size to (128k * n - 128 - 1). The additional char '\0' is used to ensure
the (128 + KERNEL_SIZE) can't be divided by the BLOCK_SIZE.

Fixes: https://github.com/openwrt/openwrt/issues/13050
Fixes: 3c1512a25d ("ath79: optimize the firmware recipe for Netgear NAND devices")
Tested-by: Yousaf <yousaf465@gmail.com>
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-08-24 00:04:38 +02:00
John Audia
daed3322d3 kernel: bump 5.15 to 5.15.125
1. Add new symbols to generic config
2. Bump kernel
   Changelog: https://lore.kernel.org/stable/2023080818-groin-gradient-a031@gregkh/

   All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-08-09 22:06:24 +02:00
John Audia
81c1172c36 kernel: bump 5.15 to 5.15.124
Changelog: https://lore.kernel.org/stable/2023080341-curliness-salary-4158@gregkh/

1. Needed to make a change to to package/kernel/linux/modules/netsupport.mk
   due to upstream moving vxlan to its own directory[1].  @john-tho suggested
   using the the 6.1 xvlan FILES to circumvent.
2. All patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.124&id=77396fa9096abdbfbb87d63e73ad44d5621cf103

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-08-09 22:06:23 +02:00
John Audia
8590531048 kernel: bump 5.15 to 5.15.123
Manually rebased:
	bcm4908/patches-5.15/071-v6.1-0001-net-broadcom-bcm4908_enet-handle-EPROBE_DEFER-when-g.patch
	bcm53xx/patches-5.15/180-usb-xhci-add-support-for-performing-fake-doorbell.patch
	ipq40xx/patches-5.15/902-dts-ipq4019-ap-dk04.1.patch[*]

Removed upstreamed:
	backport-5.15/735-v6.5-net-bgmac-postpone-turning-IRQs-off-to-avoid-SoC-han.patch[1]
	backport-5.15/817-v6.5-01-leds-trigger-netdev-Recheck-NETDEV_LED_MODE_LINKUP-o.patch[2]
	pending-5.15/143-jffs2-reduce-stack-usage-in-jffs2_build_xattr_subsys.patch[3]
	pending-5.15/160-workqueue-fix-enum-type-for-gcc-13.patch[4]
	bcm53xx/patches-5.15/036-v6.5-0003-ARM-dts-BCM5301X-Drop-clock-names-from-the-SPI-node.patch[5]
	bcm53xx/patches-5.15/036-v6.5-0015-ARM-dts-BCM5301X-fix-duplex-full-full-duplex.patch[6]

All other patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.123&id=02474292a44205c1eb5a03634ead155a3c9134f4
2. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.123&id=86b93cbfe104e99fd3d25a49748b99fb88101573
3. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.123&id=79b9ab357b6f5675007f4c02ff8765cbd8dc06a2
4. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.123&id=d528faa9e828b9fc46dfb684a2a9fd8c2e860ed8
5. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.123&id=5899bc4058e89d5110a23797ff94439c53b77c25
6. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.123&id=95afd2c7c7d26087730dc938709e025a303e5499

Build system: x86/64
Build-tested: ramips/tplink_archer-a6-v3
Run-tested: ramips/tplink_archer-a6-v3

Co-authored-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: John Audia <therealgraysky@proton.me>
[rebased ipq40xx/patches-5.15/902-dts-ipq4019-ap-dk04.1.patch ]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2023-07-30 18:02:47 +02:00
Rafał Miłecki
daaa0c1b25 ath79: replace "mac-address-ascii" with "mac-base"
With upstream accepted "mac-base" binding there is no need for a
downstream "mac-address-ascii" workaround anymore.

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2023-07-28 10:28:05 +02:00
Felix Baumann
9e86a96af5 ath79: move ubnt-xm 64M RAM boards back to generic
return ubnt_rocket-m and ubnt_powerbridge-m back to ath79-generic
They have enough RAM-ressources to not be considered as tiny.

This reverts the commit f4415f7635 partially

Signed-off-by: Felix Baumann <felix.bau@gmx.de>
2023-07-19 08:04:08 +02:00
Wenli Looi
520c9917f8 ath79: add support for ASUS RT-AC59U / ZenWiFi CD6
ASUS RT-AC59U / RT-AC59U v2 are wi-fi routers with a large number of
alternate names, including RT-AC1200GE, RT-AC1300G PLUS, RT-AC1500UHP,
RT-AC57U v2/v3, RT-AC58U v2/v3, and RT-ACRH12.

ASUS ZenWiFi AC Mini(CD6) is a mesh wifi system. The unit labeled CD6R
is the router, and CD6N is the node.

Hardware:

- SoC: QCN5502
- RAM: 128 MiB
- UART: 115200 baud (labeled on boards)
- Wireless:
  - 2.4GHz: QCN5502 on-chip 4x4 802.11b/g/n
    currently unsupported due to missing support for QCN550x in ath9k
  - 5GHz: QCA9888 pcie 5GHz 2x2 802.11a/n/ac
- Flash: SPI NOR
  - RT-AC59U / CD6N: 16 MiB
  - RT-AC59U v2 / CD6R: 32 MiB
- Ethernet: gigabit
  - RT-AC59U / RT-AC59U v2: 4x LAN 1x WAN
  - CD6R: 3x LAN 1x WAN
  - CD6N: 2x LAN
- USB:
  - RT-AC59U / RT-AC59U v2: 1 port USB 2.0
  - CD6R / CD6N: none

WiFi calibration data contains valid MAC addresses.

The initramfs image is uncompressed because I was unable to boot a
compressed initramfs from memory (gzip or lzma). Booting a compressed
image from flash works fine.

Installation:

To install without opening the case:

- Set your computer IP address to 192.168.1.10/24
- Power up with the Reset button pressed
- Release the Reset button after about 5 seconds or until you see the
  power LED blinking slowly
- Upload OpenWRT factory image via TFTP client to 192.168.1.1

Revert to stock firmware using the same TFTP method.

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2023-07-08 20:19:00 +02:00
Christian Svensson
c170fc78ba kernel: remove CRYPTO_BLAKE2S from all >=5.15
This option was removed from upstream kernel back in 2022.
See commits:
 2d16803c562ecc644803d42ba98a8e0aef9c014e (>=6.0)
 3dd33a09f5dc12ccb0902923c4c784eb0f8c7554 (>=5.15.61 backport)

Signed-off-by: Christian Svensson <blue@cmd.nu>
2023-07-08 16:54:01 +02:00
Wenli Looi
f2f33f77c4 ath79: fix broken 02_network script
Script was broken by an extraneous space.

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2023-07-02 01:21:27 +02:00
Joao Henrique Albuquerque
935a63c59d ath79: add support for COMFAST CF-E380AC v2
COMFAST CF-E380AC v2 is a ceiling mount AP with PoE
support, based on Qualcomm/Atheros QCA9558+QCA9880+AR8035.

There are two versions of this model, with different RAM
and U-Boot mtd partition sizes:
- v1: 128 MB of RAM, 128 KB U-Boot image size
- v2: 256 MB of RAM, 256 KB U-Boot image size

Version number is available only inside vendor GUI,
hardware and markings are the same.

Short specification:

- 720/600/200 MHz (CPU/DDR/AHB)
- 1x 10/100/1000 Mbps Ethernet, with PoE support
- 128 or 256 MB of RAM (DDR2)
- 16 MB of FLASH
- 3T3R 2.4 GHz, with external PA (SE2576L), up to 28 dBm
- 3T3R 5 GHz, with external PA (SE5003L1), up to 30 dBm
- 6x internal antennas
- 1x RGB LED, 1x button
- UART (T11), LEDs/GPIO (J7) and USB (T12) headers on PCB
- external watchdog (Pericon Technology PT7A7514)

COMFAST MAC addresses :
Though the OEM firmware has four adresses in the usual locations,
it appears that the assigned addresses are just incremented in a different way:

Interface    address    location
Lan              *:00           0x0
2.4g             *:0A           n/a (0x0 + 10)
5g               *:02           0x6

Unused Addresses found in ART hexdump
address    location
*:01           0x1002
*:03           0x5006

To keep code consistency the MAC address assignments are made based on increments of the one found in 0x0;

Signed-off-by: Joao Henrique Albuquerque <joaohccalbu@gmail.com>
2023-07-01 16:11:27 +02:00
Pavel Pernička
dac0a133cf ath79: DTS improvement for buzzer on RB951G-2HnD
Mikrotik RB951 router has a buzzer on the board, which makes annoying noises
due to the interference caused by PoE input or Wifi transmission
when no GPIO pin state is set.
I added buzzer node to device's DTS in order to set deault level to 1
and to provide easier access for it.

Signed-off-by: Pavel Pernička <pernicka.pa@gmail.com>
2023-07-01 15:51:26 +02:00
John Audia
42cb0f0f26 kernel: bump 5.15 to 5.15.119
Build system: x86_64
Build-tested: x86_64/ACEMAGICIAN T8PLUS, ramips/tplink_archer-a6-v3
Run-tested: x86_64/ACEMAGICIAN T8PLUS, ramips/tplink_archer-a6-v3

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-07-01 11:42:11 +02:00
Michał Kępień
db02cecd6a ath79: add support for MikroTik RB951G-2HnD
MikroTik RB951G-2HnD is a wireless SOHO router that was previously
supported by the ar71xx target, see commit 7a709573d7 ("ar71xx: add
kernel support for the Mikrotik RB951G board").

Specifications
--------------

  - SoC: Atheros AR9344 (600 MHz)
  - RAM: 128 MB (2x 64 MB)
  - Storage: 128 MB NAND flash (various manufacturers)
  - Ethernet: Atheros AR8327 switch, 5x 10/100/1000 Mbit/s
      - 1x PoE in (port 1, 8-30 V input)
  - Wireless: Atheros AR9340 (802.11b/g/n)
  - USB: 2.0 (1A)
  - 8x LED:
      - 1x power (green, not configurable)
      - 1x user (green, not configurable)
      - 5x GE ports (green, not configurable)
      - 1x wireless (green, not configurable)
  - 1x button (restart)

Unlike on the RB951Ui-2HnD, none of the LEDs on this device seem to be
GPIO-controllable, which was also the case for older OpenWRT versions
that supported this board via a mach file.  The Ethernet port LEDs are
controlled by the switch chip.

See https://mikrotik.com/product/RB951G-2HnD for more details.

Flashing
--------

TFTP boot initramfs image and then perform sysupgrade.  Follow
common MikroTik procedures at https://openwrt.org/toh/mikrotik/common.

Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
2023-06-25 13:18:32 +02:00
Michał Kępień
c6ef417094 ath79: mikrotik: extract common bits for RB951x-2HnD devices
Mikrotik RouterBOARD 951Ui-2HnD and Mikrotik RouterBOARD RB951G-2HnD are
very similar devices.  Extract the DTS bits that are identical for these
two boards to a separate DTSI file.

Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
2023-06-25 13:18:31 +02:00
Luiz Angelo Daros de Luca
e95c772894 ath79: 5.15: fix not exported sym ath79_pll_base
ath79_pll_base was declared as extern but no code exported it.
Anyone including arch/mips/include/asm/mach-ath79/ath79.h and compiled
as a module would break with:

ERROR: modpost: "ath79_pll_base" [drivers/net/ethernet/atheros/ag71xx/ag71xx.ko] undefined!

Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
2023-06-25 13:05:39 +02:00
Maximilian Martin
906e2a1b99 ath79: Add support for MOXA AWK-1137C
Device specifications:
======================

* Qualcomm/Atheros AR9344
* 128 MB of RAM
* 16 MB of SPI NOR flash
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4/5 GHz Wi-Fi
* 4x GPIO-LEDs (1x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* 2x fast ethernet
  - lan1
    + builtin switch port 1
    + used as WAN interface
  - lan2
    + builtin switch port 2
    + used as LAN interface
* 9-30V DC
* external antennas

Flashing instructions:
======================

Log in to https://192.168.127.253/
   Username: admin
   Password: moxa

Open Maintenance > Firmware Upgrade and install the factory image.

Serial console access:
======================

Connect a RS232-USB converter to the maintenance port.
   Pinout: (reset button left) [GND] [NC] [RX] [TX]

Firmware Recovery:
==================

When the WLAN and SYS LEDs are flashing, the device is in recovery mode.

Serial console access is required to proceed with recovery.

Download the original image from MOXA and rename it to 'awk-1137c.rom'.
Set up a TFTP server at 192.168.127.1 and connect to a lan port.

Follow the instructions on the serial console to start the recovery.

Signed-off-by: Maximilian Martin <mm@simonwunderlich.de>
2023-06-25 12:59:26 +02:00
John Audia
1f5fce27c1 kernel: bump 5.15 to 5.15.118
All patches automatically rebased.

Build system: x86_64
Build-tested: ramips/tplink_archer-a6-v3, filogic/xiaomi_redmi-router-ax6000-ubootmod
Run-tested: ramips/tplink_archer-a6-v3, filogic/xiaomi_redmi-router-ax6000-ubootmod

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-06-23 23:05:45 +02:00
David Bauer
1b467a902e ath79: add support for Aruba AP-115
Hardware
========

CPU   Qualcomm Atheros QCA9558
RAM   256MB DDR2
FLASH 2x 16M SPI-NOR (Macronix MX25L12805D)
WIFI  Qualcomm Atheros QCA9558
      Atheros AR9590

Installation
============

1. Attach to the serial console of the AP-105.
   Interrupt autoboot and change the U-Boot env.

   $ setenv rb_openwrt "setenv ipaddr 192.168.1.1;
     setenv serverip 192.168.1.66;
     netget 0x80060000 ap115.bin; go 0x80060000"
   $ setenv fb_openwrt "bank 1;
     cp.b 0xbf100040 0x80060000 0x10000; go 0x80060000"
   $ setenv bootcmd "run fb_openwrt"
   $ saveenv

2. Load the OpenWrt initramfs image on the device using TFTP.
   Place the initramfs image as "ap105.bin" in the TFTP server
   root directory, connect it to the AP and make the server reachable
   at 192.168.1.66/24.

   $ run rb_openwrt

3. Once OpenWrt booted, transfer the sysupgrade image to the device
   using scp and use sysupgrade to install the firmware.

Signed-off-by: David Bauer <mail@david-bauer.net>
2023-06-23 00:20:56 +02:00
Joshua O'Leary
008cc836fe zbt-wd323: add GPIO WDT support
Watchdog has not been properly configured for this router - the PCB has a
hardware watchdog connected to one of the GPIO pin 21 [1]
This commit provides this fix [2]

Without this fix, the ZBT-WD323 is unusable in OpenWRT because it power
cycles every 30 seconds due to the watchdog tripping

[1] https://forum.openwrt.org/t/zbt-wd323-router-power-cycles-every-30-seconds/77535/7
[2] https://forum.openwrt.org/t/zbt-wd323-images-unusable-proposed-workaround/162145/5

Signed-off-by: Joshua O'Leary <josh.oleary@mobile-power.co.uk>
2023-06-20 22:08:05 +08:00
John Audia
0e89ba8430 kernel: bump 5.15 to 5.15.117
Manually rebased:
	generic/backport-5.15/346-v5.18-01-Revert-ata-ahci-mvebu-Make-SATA-PHY-optional-for-Arm.patch

Removed upstreamed:
	generic/backport-5.15/830-v6.2-ata-ahci-fix-enum-constants-for-gcc-13.patch

All other patches automatically rebased.

Build system: x86_64
Build-tested: ramips/tplink_archer-a6-v3
Run-tested: ramips/tplink_archer-a6-v3

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-06-16 19:44:28 +02:00
John Audia
5dc78d8f18 kernel: bump 5.15 to 5.15.116
All patches rebased automatically.

Build system: x86_64
Build-tested: ramips/tplink_archer-a6-v3, filogic/xiaomi_redmi-router-ax6000-ubootmod
Run-tested: ramips/tplink_archer-a6-v3, filogic/xiaomi_redmi-router-ax6000-ubootmod

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-06-12 20:39:38 +02:00
Xiaobing Luo
56f821fc6b ath79: add support for TP-Link TL-WDR6500 v2
This ports the TP-Link TL-WDR6500 v2 from ar71xx to ath79.

Specifications:

  SoC: QCA9561
  CPU: 750 MHz
  Flash: 8 MiB (Winbond W25Q64FVSIG)
  RAM: 128 MiB
  WiFi 2.4 GHz: QCA956X 3x3 MIMO 802.11b/g/n
  WiFi 5 GHz: QCA9882-BR4A 2x2 MIMO 802.11a/n/ac
  Ethernet: 4x LAN and 1x WAN (all 100M)
  USB: 1x Header

Flashing instructions:

  As it appears, the device does not support flashing via GUI or
  TFTP, only serial is possible.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Xiaobing Luo <luoxiaobing0926@gmail.com>
2023-06-11 23:20:39 +02:00
Shiji Yang
0ffbef9317 ath79: add support for D-Link DIR-859 A3
Specifications:
  SOC:      QCA9563 775 MHz + QCA9880
  Switch:   QCA8337N-AL3C
  RAM:      Winbond W9751G6KB-25 64 MiB
  Flash:    Winbond W25Q128FVSG 16 MiB
  WLAN:     Wi-Fi4 2.4 GHz 3*3 + 5 GHz 3*3
  LAN:      LAN ports *4
  WAN:      WAN port *1
  Buttons:  reset *1 + wps *1
  LEDs: ethernet *5, power, wlan, wps

MAC Address:
  use      address               source1          source2
  label    40:9b:xx:xx:xx:3c     lan && wlan      u-boot,env@ethaddr
  lan      40:9b:xx:xx:xx:3c     devdata@0x3f     $label
  wan      40:9b:xx:xx:xx:3f     devdata@0x8f     $label + 3
  wlan2g   40:9b:xx:xx:xx:3c     devdata@0x5b     $label
  wlan5g   40:9b:xx:xx:xx:3e     devdata@0x76     $label + 2

Install via Web UI:
  Apply factory image in the stock firmware's Web UI.

Install via Emergency Room Mode:
  DIR-859 A1 will enter recovery mode when the system fails to boot
  or press reset button for about 10 seconds.

  First, set computer IP to 192.168.0.5 and Gateway to 192.168.0.1.
  Then we can open http://192.168.0.1 in the web browser to upload
  OpenWrt factory image or stock firmware. Some modern browsers may
  need to turn on compatibility mode.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-05-22 14:45:03 +02:00
Shiji Yang
e5d8739aa8 ath79: improve support for D-Link DIR-8x9 A1 series
1. Remove unnecessary new lines in the dts.
2. Remove duplicate included file "gpio.h" in the device dts.
3. Add missing button labels "reset" and "wps".
4. Unify the format of the reg properties.
5. Add u-boot environment support.
6. Reduce spi clock frequency since the max value suggested by the
   chip datasheet is only 25 MHz.
7. Add seama header fixup for DIR-859 A1. Without this header fixup,
   u-boot checksum for kernel will fail after the first boot.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-05-22 14:45:03 +02:00
INAGAKI Hiroshi
e8f7957450 ath79: enable NVMEM u-boot-env driver on generic subtarget
This patch enables NVMEM u-boot-env driver (COFNIG_NVMEM_U_BOOT_ENV) on
generic subtarget to use from devices, for MAC address and etc.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2023-05-22 14:45:03 +02:00
Felix Baumann
f5cb556d4f treewide: Disable building 32M RAM devices
Following deprecation notice[1] in 21.02, disable targets with 32M of RAM

[1] https://openwrt.org/supported_devices/864_warning

Signed-off-by: Felix Baumann <felix.bau@gmx.de>
2023-05-21 01:08:22 +02:00
Aleksander Jan Bajkowski
7365e6b00a kernel: remove obsolete kernel version switches
This removes unneeded kernel version switches from the targets after
kernel 5.10 has been dropped.

Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
2023-05-20 15:19:14 +02:00
Lech Perczak
25eead21c5 ath79: fix 5GHz on QCA9886 variant of ZTE MF286
Recently, a strange variant of ZTE MF286 was discovered, having QCA9886
radio instead of QCA9882 - like MF286A, but having MF286 flash layout
and rest of hardware.
To support both variants in one image, bind calibration data at offset
0x5000 both as "calibration" and "pre-calibration" nvmem-cells, so
ath10k can load caldata for both at runtime.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2023-05-20 15:19:14 +02:00
Jan Forman
8d618a3186 ath79: Add support for D-Link DIR-869-A1
Specifications
	The D-Link EXO AC1750 (DIR-869) router released in 2016.
	It is powered by Qualcomm Atheros QCA9563 @ 750 MHz chipset, 64 MB RAM and 16 MB flash.
	10/100/1000 Gigabit Ethernet WAN port
	Four 10/100/1000 Gigabit Ethernet LAN ports
	Power Button, Reset Button, WPS Button, Mode Switch

Flashing
	1. Upload factory.bin via D-link web interface (Management/Upgrade).

Revert to stock
	Upload original firmware via OpenWrt sysupgrade interface.

Debricking
	D-Link Recovery GUI (192.168.0.1)

Signed-off-by: Jan Forman <forman.jan96@gmail.com>
2023-05-20 13:43:09 +02:00
Jan Forman
2f4b6d0f89 ath79: Convert calibration data to nvmem
For D-link DIR-859 and DIR-869
Replace the mtd-cal-data by an nvmem-cell.
Add the PCIe node for the ath10k radio to the devicetree.
Thanks to DragonBlue for this patch

Signed-off-by: Jan Forman <jforman@tuta.io>
2023-05-20 13:43:09 +02:00
Jan Forman
6ea910ab54 ath79: Create shared dtsi for DIR-859
Create a shared dtsi for the dir-859 and similarly device, it similarly as it done for the dir-842.

Signed-off-by: Jan Forman <jforman@tuta.io>
2023-05-20 13:43:09 +02:00
Jan Forman
7a29230752 ath79: Replace reset-button for DIR-859
gpio-export for the switch reset pin replaced with a reset pin definition for the driver, within the phy node.

Signed-off-by: Jan Forman <forman.jan96@gmail.com>
Tested-By: Sebastian Schaper <openwrt@sebastianschaper.net>
2023-05-20 13:43:09 +02:00
Christian Lamparter
ec4d63ffb3 nu801: add kmod-leds-uleds to MR26 + MR18
support for MR18 and MR26 was developped before
the userspace nu801 was integrated with x86's
MX100 into OpenWrt. The initial nu801 + kmod-leds-uleds
caused build-bot errors.

The solution that worked for the MX100 was to include
the kmod-leds-uleds to the device platform module.
Thankfully, the MR26 and MR18 can just add the uleds
package to the DEVICE_PACKAGES variable.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2023-05-18 16:17:52 +02:00
Michał Kępień
95577e7bd1
ath79: add support for MikroTik RB951Ui-2HnD
MikroTik RB951Ui-2HnD is a wireless SOHO router that was previously
supported by the ar71xx target, see commit d19b868b12 ("ar71xx: Add
support for MikroTik RB951Ui-2HnD").

Specifications
--------------

  - SoC: Atheros AR9344 (600 MHz)
  - RAM: 128 MB (2x 64 MB)
  - Storage: 128 MB NAND flash (various manufacturers)
  - Ethernet: Atheros AR8229 switch, 5x 10/100 Mbit/s
      - 1x PoE in (port 1, 8-30 V input)
      - 1x PoE out (port 5, 500 mA output)
  - Wireless: Atheros AR9340 (802.11b/g/n)
  - USB: 2.0 (1A)
  - 9x LED:
      - 1x power (green, not configurable)
      - 1x user (green)
      - 5x FE ports (green)
      - 1x wireless (green)
      - 1x PoE out (red)
  - 1x button (restart)

See https://mikrotik.com/product/RB951Ui-2HnD for more details.

Flashing
--------

TFTP boot initramfs image and then perform sysupgrade.  Follow
common MikroTik procedures at https://openwrt.org/toh/mikrotik/common.

Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
2023-05-16 14:55:18 +02:00
Thibaut VARÈNE
d97143fadc ath79: mikrotik: bump compat version for yafut images
Following 5264296, Mirotik NAND devices now use yafut to flash the
kernel on devices. This method is incompatible with the old-style
"kernel2minor" flash mechanism.

Even though NAND images were disabled in default build since 21.02, a
user flashing a new-style image onto an old-style image would result in
in a soft-brick[1]. In order to prevent such accidental mishap,
especially as these device images will be reenabled in the upcoming
release, bump the compat version.

After the new image is flashed, the compat version can be updated:

    uci set system.@system[0].compat_version='1.1'
    uci commit

[1] https://github.com/openwrt/openwrt/pull/12225#issuecomment-1517529262

Cc: Michał Kępień <openwrt@kempniu.pl>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Reviewed-by: Robert Marko <robimarko@gmail.com>
2023-05-15 15:35:52 +02:00
Christian Lamparter
1d49310fdb ath79: add Cisco Meraki MR18
Specifications:

SOC:    Atheros/Qualcomm QCA9557-AT4A @ 720MHz
RAM:    2x Winbond W9751G6KB-25 (128 MiB)
FLASH:  Hynix H27U1G8F2BTR-BC TSOP48 ONFI NAND (128 MiB)
WIFI1:  Atheros AR9550 5.0GHz (SoC)
WIFI2:  Atheros AR9582-AR1A 2.4GHz
WIFI2:  Atheros AR9582-AR1A 2.4GHz + 5GHz
PHYETH: Atheros AR8035-A, 802.3af PoE capable Atheros (1x Gigabit LAN)
LED:    1x Power-LED, 1 x RGB Tricolor-LED
INPUT:  One Reset Button
UART:   JP1 on PCB (Labeled UART), 3.3v-Level, 115200n8
        (VCC, RX, TX, GND - VCC is closest to the boot set jumper
	 under the console pins.)

Flashing instructions:

Depending on the installed firmware, there are vastly different
methods to flash a MR18. These have been documented on:
<https://openwrt.org/toh/meraki/mr18>

Tip:
Use an initramfs from a previous release and then use sysupgrade
to get to the later releases. This is because the initramfs can
no longer be built by the build-bots due to its size (>8 MiB).

Note on that:
Upgrades from AR71XX releases are possible, but they will
require the force sysupgrade option ( -F ).

Please backup your MR18's configuration before starting the
update. The reason here is that a lot of development happend
since AR71XX got removed, so I do advise to use the ( -n )
option for sysupgrade as well. This will cause the device
to drop the old AR71xx configuration and make a new
configurations from scratch.

Note on LEDs:
The LEDs has changed since AR71XX. The white LED is now used during
the boot and when upgrading instead of the green tricolor LED. The
technical reason is that currently the RGB-LED is brought up later
by a userspace daemon.

(added warning note about odm-caldata partition. remove initramfs -
it's too big to be built by the bots. MerakiNAND -> meraki-header.
sort nu801's targets)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2023-05-14 00:08:35 +02:00
Christian Lamparter
cb9ccd644b ath79: ar934x: still advertise subpage on soft ecc
This sort of reverts Koen Vandeputte's commit
6561ca1fa5 ("ath79: ar934x: fix mounting issues if subpage is not supported")

since it does not work on the MR18 as the UBI is coming from
Meraki in that way and it used to work with AR71XX before.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2023-05-14 00:08:35 +02:00
Christian Lamparter
32b6f1a5c8 ath79: nand: enable software BCH support
This is necessary to support the Meraki MR18 and likely Z1
as well.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2023-05-14 00:08:35 +02:00
Lech Perczak
4f1b2cee3e ath79: set 2048B ECC size for Mikrotik boards using soft ECC
Two Mikrotik board families (SXT 5nD R2 and Routerboard 92x are using
software ECC on NAND. Some of them use chips capable of subpage write,
others do not - within the same family, and a common block size is
required for UBI, to avoid mounting errors. Set the ECC step size
explicitly for them to 2048B, so UBI can mount existing volumes without
problems, at the same time allowing to unlocking subpage write functionality,
reuqired for Meraki MR18.

Fixes: 6561ca1fa5 ("ath79: ar934x: fix mounting issues if subpage is not supported")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2023-05-14 00:08:35 +02:00
Nick Hainke
1d3e71bd97
treewide: remove files for building 5.10 kernel
All targets are bumped to 5.15. Remove the old 5.10 patches, configs
and files using:

  find target/linux -iname '*-5.10' -exec rm -r {} \;

Further, remove the 5.10 include.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2023-05-12 13:02:43 +02:00
Christian Marangi
2d0125bd85
ath79: rb91x_nand: fix compilation warning for dev_err
Fix compilation warning for dev_err in rb91x_nand driver.
Fix compilation warning:
drivers/mtd/nand/raw/rb91x_nand.c:289:25: note: in expansion of macro 'dev_err'
  289 |                         dev_err(dev, "failed to get gpios: %d\n",
      |                         ^~~~~~~
drivers/mtd/nand/raw/rb91x_nand.c:289:61: note: format string is defined here
  289 |                         dev_err(dev, "failed to get gpios: %d\n",
      |                                                            ~^
      |                                                             |
      |                                                             int
      |                                                            %ld
cc1: all warnings being treated as errors

Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2023-05-12 03:15:43 +02:00
Christian Marangi
4d702a5399
ath79: gpio-latch: fix compilation warning for wrong dev_err %
Fix compilation warning for using %d instead of %ld for gpio-latch in
dev_err.
Fix compilation warning:
In file included from ./include/linux/device.h:15,
                 from ./include/linux/gpio/driver.h:5,
                 from drivers/gpio/gpio-latch.c:13:
drivers/gpio/gpio-latch.c: In function 'gpio_latch_probe':
drivers/gpio/gpio-latch.c:137:46: error: format '%d' expects argument of type 'int', but argument 4 has type 'long int' [-Werror=format=]
  137 |                                 dev_err(dev, "failed to get gpio %d: %d\n", i,
      |                                              ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
./include/linux/dev_printk.h:110:30: note: in definition of macro 'dev_printk_index_wrap'
  110 |                 _p_func(dev, fmt, ##__VA_ARGS__);                       \
      |                              ^~~
./include/linux/dev_printk.h:144:56: note: in expansion of macro 'dev_fmt'
  144 |         dev_printk_index_wrap(_dev_err, KERN_ERR, dev, dev_fmt(fmt), ##__VA_ARGS__)
      |                                                        ^~~~~~~
drivers/gpio/gpio-latch.c:137:33: note: in expansion of macro 'dev_err'
  137 |                                 dev_err(dev, "failed to get gpio %d: %d\n", i,
      |                                 ^~~~~~~
drivers/gpio/gpio-latch.c:137:71: note: format string is defined here
  137 |                                 dev_err(dev, "failed to get gpio %d: %d\n", i,
      |                                                                      ~^
      |                                                                       |
      |                                                                       int
      |                                                                      %ld
cc1: all warnings being treated as errors

Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2023-05-12 03:15:42 +02:00
Christian Marangi
b93d2d7c38
ath79: 5.15: drop unused res variable from pci ar724x OF convert patch
Drop unused res variable from pci ar724x OF convert patch fixing
compilation warning:

arch/mips/pci/pci-ar724x.c: In function 'ar724x_pci_probe':
arch/mips/pci/pci-ar724x.c:387:26: error: unused variable 'res' [-Werror=unused-variable]
  387 |         struct resource *res;
      |                          ^~~
cc1: all warnings being treated as errors

Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2023-05-12 03:15:34 +02:00
Christian Marangi
40c7429083
ath79: 5.15: drop unused res variable from pci ar71xx OF convert patch
Drop unused res variable from pci ar71xx OF convert patch fixing
compilation warning:

arch/mips/pci/pci-ar71xx.c: In function 'ar71xx_pci_probe':
arch/mips/pci/pci-ar71xx.c:287:26: error: unused variable 'res' [-Werror=unused-variable]
  287 |         struct resource *res;
      |                          ^~~
cc1: all warnings being treated as errors

Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2023-05-12 03:15:33 +02:00
Daniel Golle
43417aef84 Revert "ath79: add empty squashfs-lzma filesystem"
This reverts commit 91e3419a33.
Now that squashfs3-lzma generates reproducible output we can drop the
empty binary. Having a binary file in the tree is not nice and we actually
also use squashfs3-lzma for devices which expect the kernel to be loaded
from a squashfs3...

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2023-05-12 02:27:17 +02:00
Paul Spooren
91e3419a33 ath79: add empty squashfs-lzma filesystem
The filesystem is currently created on every build to trick the boot
loader of some FRITZ! devices into accepting the image. Sadly the
resulting squashfs-lzma filesystem is not reproducible. To fix this,
create a squashfs filesystem once and include it into the repository.

Creation happend as shown below

    rm -rf empty_dir
    mkdir empty_dir
    ./staging_dir/host/bin/mksquashfs-lzma \
    	empty_dir/ empty-squashfs-lzma \
    	-noappend -root-owned -be -nopad -b 65536 -fixed-time 0

Signed-off-by: Paul Spooren <mail@aparcar.org>
2023-05-08 20:03:44 +02:00
Andreas Böhler
590d1fd0e6 ath79: add support for ZTE MF282
The ZTE MF282 is a LTE router used (exclusively?) by the network operator
"3".

Specifications
==============

SoC: QCA9563 (775MHz)
RAM: 128MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 1x GBit LAN
LTE: ZTE MF270 (Cat4), detected as P685M
WiFi: QCA9880ac + QCA9560bgn

MAC addresses
=============

LAN: from config
WiFi 1: from config
WiFi 2: +1

Installation
============

TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:

  setenv serverip 192.168.1.100
  setenv ipaddr 192.168.1.1
  tftpboot 0x82000000 openwrt.bin
  bootm 0x82000000

From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download.

Once booted, transfer the sysupgrade image and run sysupgrade.

LTE Modem
=========

The LTE modem is probably the same as in the MF283+, all instructions
apply.

Configuring the connection using modemmanager works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.

Signed-off-by: Andreas Böhler <dev@aboehler.at>
2023-05-06 20:59:46 +02:00
Andreas Böhler
8bc4aaf45c ath79: refactor ZTE MF28x dts files
Move common dts entries of ZTE MF281 and ZTE MF286 to a common .dtsi file
to reduce redundancies.

Signed-off-by: Andreas Böhler <dev@aboehler.at>
2023-05-06 20:59:46 +02:00
John Audia
80c1105b03 kernel: bump 5.10 to 5.10.179
All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-04-30 00:01:12 +02:00
Martin Kennedy
90ad13c763 ath79: create APBoot-compatible image for Aruba AP-175
As was done in commit e11d00d44c ("ath79: create Aruba AP-105 APBoot
compatible image"), alter the Aruba AP-175 image generation process so
OpenWrt can be loaded with the vendor Aruba APBoot. Since the
remainder of the explanation and installation process is identical,
continuing the quote from that commit:

This works by prepending the OpenWrt LZMA loader to the uImage and
jumping directly to the loader. Aruba does not offer bootm on these
boards.

This approach keeps compatibility to devices which had their U-Boot
replaced. Both bootloaders can boot the same image.

With this patch, new installations do not require replacing the
bootloader and can be performed from the serial console without
opening the case.

Installation
------------

1. Attach to the serial console of the AP-175.
   Interrupt autoboot and change the U-Boot env.

   $ setenv apb_rb_openwrt "setenv ipaddr 192.168.1.1;
     setenv serverip 192.168.1.66;
     netget 0x84000000 ap175.bin; go 0x84000040"
   $ setenv apb_fb_openwrt "cp.b 0xbf040000 0x84000000 0x10000;
     go 0x84000040"
   $ setenv bootcmd "run apb_fb_openwrt"
   $ saveenv

2. Load the OpenWrt initramfs image on the device using TFTP.
   Place the initramfs image as "ap175.bin" in the TFTP server
   root directory, connect it to the AP and make the server reachable
   at 192.168.1.66/24.

   $ run apb_rb_openwrt

3. Once OpenWrt booted, transfer the sysupgrade image to the device
   using scp and use sysupgrade to install the firmware.

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
2023-04-24 10:44:49 +02:00
Andreas Böhler
097f350aeb ath79: add support for Alcatel HH40V
The Alcatel HH40V is a CAT4 LTE router used by various ISPs.

Specifications
==============

SoC: QCA9531 650MHz
RAM: 128MiB
Flash: 32MiB SPI NOR
LAN: 1x 10/100MBit
WAN: 1x 10/100MBit
LTE: MDM9607 USB 2.0 (rndis configuration)
WiFi: 802.11n (SoC integrated)

MAC address assignment
======================

There are three MAC addresses stored in the flash ROM, the assignment
follows stock. The MAC on the label is the WiFi MAC address.

Installation (TFTP)
===================

1. Connect serial console
2. Configure static IP to 192.168.1.112
3. Put OpenWrt factory.bin file as firmware-system.bin
4. Press Power + WPS and plug in power
5. Keep buttons pressed until TFTP requests are visible
6. Wait for the system to finish flashing and wait for reboot
7. Bootup will fail as the kernel offset is wrong
8. Run "setenv bootcmd bootm 0x9f150000"
9. Reset board and enjoy OpenWrt

Installation (without UART)
===========================

Installation without UART is a bit tricky and requires several steps too
long for the commit message. Basic steps:

1. Create configure backup
2. Patch backup file to enable SSH
3. Login via SSH and configure the new bootcmd
3. Flash OpenWrt factory.bin image manually (sysupgrade doesn't work)

More detailed instructions will be provided on the Wiki page.

Tested by: Christian Heuff <christian@heuff.at>
Signed-off-by: Andreas Böhler <dev@aboehler.at>
2023-04-23 19:32:18 +02:00
Tony Ambardar
70000ab509 ath79: use gpios for switch management in WZR-HP-G300NH variants
The RTL8366S/RB switch node in DTS defines "mii-bus = <&mdio0>" to permit
management via SMI but this has likely never worked, instead falling back
to using GPIOs in the past:

     rtl8366s switch: cannot find mdio bus from bus handle (yet)
     rtl8366s switch: using GPIO pins 19 (SDA) and 20 (SCK)
     rtl8366s switch: RTL8366 ver. 1 chip found

Recently, the rtl8366s and rtl8366_smi drivers were changed from built-in
to loadable modules. This affected driver probing order and caused switch
initialization (and network access) to fail:

     rtl8366s switch: using MDIO bus 'ag71xx_mdio'
     rtl8366s switch: unknown chip id (ffff)
     rtl8366s switch: chip detection failed, err=-19

Force using GPIOs to manage the switch by dropping the "mii-bus" DTS
definition, which works for both built-in and loadable switch drivers.

Fixes: 6e0f0eae5b ("ath79: use rtl8366s and rtl8366_smi as a module")
Fixes: 575ec7a4b1 ("ath79: use rtl8366rb as a module")
Tested-by: Tony Ambardar <itugrok@yahoo.com> # WZR-HP-G300NH (RTL8366S)
Signed-off-by: Tony Ambardar <itugrok@yahoo.com>
2023-04-23 18:57:29 +02:00
Tony Ambardar
f3bb1eea32 ath79: fix switch support for WZR-HP-G300NH devices
Switch drivers for RTL8366S/RB were packaged as modules but not properly
added to device definitions for WZR-HP-G300NH router variants, breaking
network access to both after installation or upgrade.

Assign the correct switch driver package for each router.

Fixes: 6e0f0eae5b ("ath79: use rtl8366s and rtl8366_smi as a module")
Fixes: 575ec7a4b1 ("ath79: use rtl8366rb as a module")
Signed-off-by: Tony Ambardar <itugrok@yahoo.com>
2023-04-23 18:57:29 +02:00
Michał Kępień
5264296ce4
ath79: mikrotik: update kernel on NAND using Yafut
Instead of erasing the entire NAND partition holding the kernel during
every system upgrade and then flashing a Yaffs file system image
prepared using kernel2minor (not accounting for bad blocks in the
process), use the Yafut utility to replace the kernel executable on
MikroTik NAND devices, preserving the existing Yaffs file system
(including bad block information) on the partition holding the kernel.

Add Yafut to DEFAULT_PACKAGES for the ath79/mikrotik target, so that the
tool is included in the initramfs images created when building for
multiple profiles.  However, exclude Yafut from the images built for
MikroTik devices with NOR flash as the tool is currently only meant to
be used on devices with NAND flash.

As this addresses the concerns for MikroTik NAND devices discussed in
commit 9d96b6fb72 ("ath79/mikrotik: disable building NAND images"),
re-enable building images for these devices.

Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
2023-04-18 13:53:04 +02:00
Michał Kępień
3d110053f8
ath79: mikrotik: drop unused files from ramdisk
The ramdisk used by sysupgrade on MikroTik devices currently includes
U-Boot fw_* files that are not necessary for performing a system upgrade
on that platform.  The relevant lines were added to
target/linux/ath79/mikrotik/base-files/lib/upgrade/platform.sh by commit
a66eee6336 ("ath79: add mikrotik subtarget"), likely because they also
existed in target/linux/ath79/nand/base-files/lib/upgrade/platform.sh,
where the platform_do_upgrade_mikrotik_nand() function moved by commit
a66eee6336 originally lived.  However, these lines were added to
target/linux/ath79/nand/base-files/lib/upgrade/platform.sh by commit
55e6c903ae ("ath79: GL-AR300M: provide NAND support; increase to 4 MB
kernel"), which is not related to MikroTik devices in any way.

Remove the code adding unused U-Boot fw_* files to the ramdisk used by
sysupgrade on MikroTik devices.

Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
2023-04-18 13:53:00 +02:00
David Bauer
e11d00d44c ath79: create Aruba AP-105 APBoot compatible image
Alter the Aruba AP-105 image generation process so OpenWrt can be loaded
with the vendor Aruba APBoot.

This works by prepending the OpenWrt LZMA loader to the uImage and
jumping directly to the loader. Aruba does not offer bootm on these
boards.

This approach keeps compatibility to devices which had their U-Boot
replaced. Both bootloaders can boot the same image.

The same modification is most likely also possible for the Aruba AP-175.

With this patch, new installations do not require replacing the
bootloader and can be performed from the serial console without opening
the case.

Installation
------------

1. Attach to the serial console of the AP-105.
   Interrupt autoboot and change the U-Boot env.

   $ setenv apb_rb_openwrt "setenv ipaddr 192.168.1.1;
     setenv serverip 192.168.1.66;
     netget 0x84000000 ap105.bin; go 0x84000040"
   $ setenv apb_fb_openwrt "cp.b 0xbf040000 0x84000000 0x10000;
     go 0x84000040"
   $ setenv bootcmd "run apb_fb_openwrt"
   $ saveenv

2. Load the OpenWrt initramfs image on the device using TFTP.
   Place the initramfs image as "ap105.bin" in the TFTP server
   root directory, connect it to the AP and make the server reachable
   at 192.168.1.66/24.

   $ run apb_rb_openwrt

3. Once OpenWrt booted, transfer the sysupgrade image to the device
   using scp and use sysupgrade to install the firmware.

Signed-off-by: David Bauer <mail@david-bauer.net>
2023-04-18 00:11:22 +02:00
Mark Onstid
5811db1d0b
ath79: fix LED pinout for Comfast CF-E314N v2
In addition to standardizing LED names to match the rest of the systems, this
commit fixes a possibly erroneous pinout for LEDs in Comfast CF-E314N v2.

In particular, rssimediumhigh and rssihigh are moved from pins 13 and 14 to
14 and 16 respectively. In addition to working on a test device, this pinout
better matches the one set out in the prototype support patch for the device
in Github PR #1873.

Signed-off-by: Mark Onstid <turretkeeper@mail.com>
2023-04-17 19:02:25 +02:00
John Audia
78a468f690 kernel: bump 5.10 to 5.10.177
All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-04-08 15:32:01 +02:00
Martin Kennedy
12f52336d2 ath79: Add Aruba AP-175 support
This board is very similar to the Aruba AP-105, but is
outdoor-first. It is very similar to the MSR2000 (though certain
MSR2000 models have a different PHY[^1]).

A U-Boot replacement is required to install OpenWrt on these
devices[^2].

Specifications
--------------
* Device:	Aruba AP-175
* SoC:		Atheros AR7161 680 MHz MIPS
* RAM:		128MB - 2x Mira P3S12D40ETP
* Flash:	16MB MXIC MX25L12845EMI-10G (SPI-NOR)
* WiFi:		2 x DNMA-H92 Atheros AR9220-AC1A 802.11abgn
* ETH:		IC+ IP1001 Gigabit + PoE PHY
* LED:		2x int., plus 12 ext. on TCA6416 GPIO expander
* Console:	CP210X linking USB-A Port to CPU console @ 115200
* RTC:		DS1374C, with internal battery
* Temp:		LM75 temperature sensor

Factory installation:

- Needs a u-boot replacement. The process is almost identical to that
  of the AP105, except that the case is easier to open, and that you
  need to compile u-boot from a slightly different branch:
  https://github.com/Hurricos/u-boot-ap105/tree/ap175

  The instructions for performing an in-circuit reflash with an
  SPI-Flasher like a CH314A can be found on the OpenWrt Wiki
  (https://openwrt.org/toh/aruba/ap-105); in addition a detailed guide
  may be found on YouTube[^3].

- Once u-boot has been replaced, a USB-A-to-A cable may be used to
  connect your PC to the CP210X inside the AP at 115200 baud; at this
  point, the normal u-boot serial flashing procedure will work (set up
  networking; tftpboot and boot an OpenWrt initramfs; sysupgrade to
  OpenWrt proper.)

- There is no built-in functionality to revert back to stock firmware,
  because the AP-175 has been declared by the vendor[^4] end-of-life
  as of 31 Jul 2020. If for some reason you wish to return to stock
  firmware, take a backup of the 16MiB flash before flashing u-boot.

[^1]: https://github.com/shalzz/aruba-ap-310/blob/master/platform/bootloader/apboot-11n/include/configs/msr2k.h#L186

[^2]: https://github.com/Hurricos/u-boot-ap105/tree/ap175

[^3]: https://www.youtube.com/watch?v=Vof__dPiprs

[^4]: https://www.arubanetworks.com/support-services/end-of-life/#product=access-points&version=0

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
2023-03-27 00:27:59 +02:00
Edward Chow
de3d60b982 ath79: calibrate dlink dir-825 b1 with nvmem
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.

This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.

Currently, only ethernet devices uses the mac address of
"mac-address-ascii" cells, while PCI ath9k devices uses the mac address
within calibration data.

Signed-off-by: Edward Chow <equu@openmail.cc>
(restored switch configuration in 02_network, integrated caldata into
partition)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2023-03-26 16:39:37 +02:00
Lech Perczak
0eebc6f0dd ath79: support Ruckus ZoneFlex 7341/7343/7363
Ruckus ZoneFlex 7363 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point. ZoneFlex 7343 is the single band variant of 7363
restricted to 2.4GHz, and ZoneFlex 7341 is 7343 minus two Fast Ethernet
ports.

Hardware highligts:
- CPU: Atheros AR7161 SoC at 680 MHz
- RAM: 64MB DDR
- Flash: 16MB SPI-NOR
- Wi-Fi 2.4GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Wi-Fi 5GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Ethernet 1: single Gigabit Ethernet port through Marvell 88E1116R gigabit PHY
- Ethernet 2: two Fast Ethernet ports through Realtek RTL8363S switch,
  connected with Fast Ethernet link to CPU.
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the -U variants.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1 ----------
   |1|x3|4|5|
   ----------

Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

Installation:
- Using serial console - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server, and removing a single PH1 screw.

0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0xbf040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed.
   Use the Gigabit interface, Fast Ethernet ports are not supported
   under U-boot:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7363-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7363_fw_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7363-squashfs-sysupgrade.bin

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Copy over the backup to /tmp, for example using scp
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Use sysupgrade with force to restore the backup:
   sysupgrade -F ruckus_zf7363_backup.bin
4. System will reboot.

Quirks and known issues:
- Fast Ethernet ports on ZF7363 and ZF7343 are supported, but management
  features of the RTL8363S switch aren't implemented yet, though the
  switch is visible over MDIO0 bus. This is a gigabit-capable switch, so
  link establishment with a gigabit link partner may take a longer time
  because RTL8363S advertises gigabit, and the port magnetics don't
  support it, so a downshift needs to occur. Both ports are accessible
  at eth1 interface, which - strangely - runs only at 100Mbps itself.
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
- Both radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014
- There is second method to achieve root shell, using command injection
  in the web interface:
  1. Login to web administration interface
  2. Go to Administration > Diagnostics
  3. Enter |telnetd${IFS}-p${IFS}204${IFS}-l${IFS}/bin/sh into "ping"
     field
  4. Press "Run test"
  5. Telnet to the device IP at port 204
  6. Busybox shell shall open.
  Source: https://github.com/chk-jxcn/ruckusremoteshell

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2023-03-22 22:25:08 +01:00
Lech Perczak
694b8e6521 ath79: support Ruckus ZoneFlex 7351
Ruckus ZoneFlex 7351 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.

Hardware highligts:
- CPU: Atheros AR7161 SoC at 680 MHz
- RAM: 64MB DDR
- Flash: 16MB SPI-NOR
- Wi-Fi 2.4GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Wi-Fi 5GHz: AR9280 PCI 2x2 MIMO radio with external beamforming
- Ethernet: single Gigabit Ethernet port through Marvell 88E1116R gigabit PHY
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7351-U variant.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1 ----------
   |1|x3|4|5|
   ----------

Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

Installation:
- Using serial console - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server, and removing a single T10 screw.

0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0xbf040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7351-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7351_fw_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7351-squashfs-sysupgrade.bin

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:
1. Copy over the backup to /tmp, for example using scp
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Use sysupgrade with force to restore the backup:
   sysupgrade -F ruckus_zf7351_backup.bin
4. System will reboot.

Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
- Both radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014
- There is second method to achieve root shell, using command injection
  in the web interface:
  1. Login to web administration interface
  2. Go to Administration > Diagnostics
  3. Enter |telnetd${IFS}-p${IFS}204${IFS}-l${IFS}/bin/sh into "ping"
     field
  4. Press "Run test"
  5. Telnet to the device IP at port 204
  6. Busybox shell shall open.
  Source: https://github.com/chk-jxcn/ruckusremoteshell

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2023-03-22 22:25:08 +01:00
Rafał Miłecki
e026a65af1 kernel: backport eth_addr_add()
It's required by upcoming NVMEM layout drivers.

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2023-03-21 06:16:50 +01:00
John Audia
d4aad642ff kernel: bump 5.10 to 5.10.173
Manually rebased:
        ramips/patches-5.10/810-uvc-add-iPassion-iP2970-support.patch

All other patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-03-20 22:44:28 +01:00
John Audia
d6d8851d12 kernel: bump 5.15 to 5.15.100
Manually rebased:
        bcm27xx/patches-5.15/950-0421-Support-RPi-DPI-interface-in-mode6-for-18-bit-color.patch
        bcm27xx/patches-5.15/950-0706-media-i2c-imx219-Scale-the-pixel-clock-rate-for-the-.patch
        ramips/patches-5.15/810-uvc-add-iPassion-iP2970-support.patch

Removed upstreamed:
        bcm27xx/patches-5.15/950-0707-drm-vc4-For-DPI-MEDIA_BUS_FMT_RGB565_1X16-is-mode-1-.patch[1]
        bcm27xx/patches-5.15/950-0596-drm-vc4-dpi-Add-option-for-inverting-pixel-clock-and.patch[2]
        ipq807x/0006-v5.16-arm64-dts-qcom-Fix-IPQ8074-PCIe-PHY-nodes.patch [3]
        ipq807x/0034-v6.1-arm64-dts-qcom-ipq8074-fix-PCIe-PHY-serdes-size.patch [4]
        ipq807x/0103-arm64-dts-qcom-ipq8074-fix-Gen2-PCIe-QMP-PHY.patch [5]
        ipq807x/0104-arm64-dts-qcom-ipq8074-fix-Gen3-PCIe-QMP-PHY.patch [6]
        ipq807x/0105-arm64-dts-qcom-ipq8074-correct-Gen2-PCIe-ranges.patch [7]
        ipq807x/0108-arm64-dts-qcom-ipq8074-fix-Gen3-PCIe-node.patch [8]
        ipq807x/0109-arm64-dts-qcom-ipq8074-correct-PCIe-QMP-PHY-output-c.patch [9]
        ipq807x/0132-arm64-dts-qcom-ipq8074-correct-USB3-QMP-PHY-s-clock-.patch [10]

All other patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.99&id=d2991e6b30020e286f2dd9d3b4f43548c547caa6
2. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/drivers/gpu/drm/vc4/vc4_dpi.c?h=v5.15.100&id=8e04aaffb6de5f1ae61de7b671c1531172ccf429
3. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/arch/arm64/boot/dts/qcom/ipq8074.dtsi?h=v5.15.99&id=a55a645aa303a3f7ec37db69822d5420657626da
4. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/arch/arm64/boot/dts/qcom/ipq8074.dtsi?h=v5.15.99&id=d9df682bcea57fa25f37bbf17eae56fa05662635
5. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/arch/arm64/boot/dts/qcom/ipq8074.dtsi?h=v5.15.99&id=7e6eeb5fb3aa9e5feffdb6e137dcc06f5f6410e1
6. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/arch/arm64/boot/dts/qcom/ipq8074.dtsi?h=v5.15.99&id=e88204931d9a60634cd50bbc679f045439c4b91d
7.  https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/arch/arm64/boot/dts/qcom/ipq8074.dtsi?h=v5.15.99&id=1563af0f28afd3b6d64ac79a2aecced3969c90bf
8. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/arch/arm64/boot/dts/qcom/ipq8074.dtsi?h=v5.15.99&id=feb8c71f015d416f1afe90e1f62cf51e47376c67
9. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/arch/arm64/boot/dts/qcom/ipq8074.dtsi?h=v5.15.99&id=69c7a270357a7d50ffd3471b14c60250041200e3
10. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/arch/arm64/boot/dts/qcom/ipq8074.dtsi?h=v5.15.99&id=dd3d021ae5471d98adf81f1e897431c8657d0a18

Build system: x86_64
Build-tested: bcm2711/RPi4B, ramips/tplink_archer-a6-v3
Run-tested: bcm2711/RPi4B, ramips/tplink_archer-a6-v3

Signed-off-by: John Audia <therealgraysky@proton.me>
Tested-by: Robert Marko <robimarko@gmail.com> #ipq807x/Dynalink WRX36
Tested-by: Stefan Lippers-Hollmann <s.l-h@gmx.de> #ipq807x/ax3600, x86_64/FW-7543B, ath79/tl-wdr3600, ipq806x/g10, ipq806x/nbg6817
2023-03-18 12:52:17 +01:00
Eneas U de Queiroz
4662adef2a
uencrypt: add support for mbedtls
This commit includes some additional changes:
 - better handling of iv and keys in openssl/wolfssl variants
 - fix compiler warnings and whitespace
 - build all 3 variants as separate packages
 - adjust the new package name in targets' DEVICE_PACKAGES
 - remove PKG_FLAGS:=nonshared

[Beeline SmartBox Flash - OK]
Tested-by: Mikhail Zhilkin <csharper2005@gmail.com>
[after test: replaced a hardcoded IV size of 16 by cipher_info->iv_size]
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
2023-03-17 17:22:53 -03:00
Lech Perczak
a7a3de5edb ath79: fix user LED glow on Mikrotik 911 Lite boards
GPIO3, to which the user LED is connected on RB911-Lite boards seems to
still sink current, even when driven high. Enabling open drain for this
pin fixes this behaviour and gets rid of the glow when LED is set to
off, so enable it.

Fixes: 43c7132bf8 ("ath79: add support for MikroTik RouterBOARD 911 Lite2/Lite5")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2023-03-12 14:00:26 +01:00
David Bauer
14334c222e ath79: refactor devolo WiFi pro image definitions
Reuse common parts for the devolo WiFi pro series. The series is
discontinued and we support all existing devices, so changes due to new
revisions or models are highly unlikely

Signed-off-by: David Bauer <mail@david-bauer.net>
2023-03-10 02:31:50 +01:00
John Audia
b88955aa22 kernel: bump 5.10 to 5.10.169
Manually rebased:
        backport-5.10/811-v6.1-0001-nvmem-core-Fix-memleak-in-nvmem_register.patch

Removed upstreamed:
        backport-5.10/811-v6.1-0003-nvmem-core-add-error-handling-for-dev_set_name.patch[1]
	patches-5.10/070-net-bgmac-fix-BCM5358-support-by-setting-correct-fla.patch[2]

Add fix:
	target/linux/generic/backport-5.10/804-0001-net-Remove-WARN_ON_ONCE-sk-sk_forward_alloc-from-sk_.patch[3]

All other patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.10.169&id=a19a0f67dbb89ad2bfc466f2003841acba645884
2. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.10.169&id=a5c51e0c3202820192db3f3809e072f3ca2b1177
3. https://lore.kernel.org/stable/20230227211548.13923-1-kuniyu@amazon.com

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-03-07 00:06:40 +01:00
John Audia
de8d5b50e2 kernel: bump 5.15 to 5.15.95
Removed upstreamed:
	backport-5.15/807-v6.1-0003-nvmem-core-add-error-handling-for-dev_set_name.patch[1]
	bcm47xx/patches-5.15/070-net-bgmac-fix-BCM5358-support-by-setting-correct-fla.patch[2]

Added fix:
	backport-5.15/883-0001-net-Remove-WARN_ON_ONCE-sk-sk_forward_alloc-from-sk_.patch[3]

All other patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.95&id=14eea6449473c1f55e196cc104ba16d144465869
2. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.95&id=2603a5ca6223bb3a88814e2728335eec14f715ab
3. https://lore.kernel.org/stable/20230227211548.13923-1-kuniyu@amazon.com

Build system: x86_64
Build-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-ubootmod
Run-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-ubootmod

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-02-28 04:38:13 -05:00
Tomasz Maciej Nowak
43c7132bf8 ath79: add support for MikroTik RouterBOARD 911 Lite2/Lite5
Forward-port from ar71xx target the board introduced in commit
eb9e3651dd (" ar71xx: add support for the MikroTik RB911-2Hn/5Hn
boards"). Citing:

The patch adds support for the MikroTik RB911-2Hn (911 Lite2)
and the RB911-5Hn (911 Lite5) boards:

  https://mikrotik.com/product/RB911-2Hn
  https://mikrotik.com/product/RB911-5Hn

The two boards are using the same hardware design, the only difference
between the two is the supported wireless band.

Specifications:
  * SoC: Atheros AR9344 (600MHz)
  * RAM: 64MiB
  * Storage: 16 MiB SPI NOR flash
  * Ethernet: 1x100M (Passive PoE in)
  * Wireless: AR9344 built-in wireless MAC, single chain
              802.11b/g/n (911-2Hn) or 802.11a/g/n (911-5Hn)

Notes:
  * Older versions of these boards might be equipped with a NAND
    flash chip instead of the SPI NOR device. Those boards are not
    supported (yet).[1]
  * The MikroTik RB911-5HnD (911 Lite5 Dual) board also uses the
    same hardware. Support for that can be added later with little
    effort probably.[2]

End of citation.

Follow intallation instruction from that commit message, using
openwrt-ath79-mikrotik-mikrotik_routerboard-911-lite-initramfs-kernel.bin
and
openwrt-ath79-mikrotik-mikrotik_routerboard-911-lite-squashfs-sysupgrade.bin
images found in ath79/mikrotik directory. Be advised that the board
accepts 10-30 V on PoE input.

Known issues
Compared to ar71xx target image, there is still small leak of current to
user LED, which makes it lit, although weaker, even if brightness is set
to 0. The cause of that is still unknown.

1. https://github.com/openwrt/openwrt/pull/3652
2. RB911-5HnD should work with this commit or with [1], depending on
   what flash topology was used.

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2023-02-26 22:22:48 +01:00
Tomasz Maciej Nowak
173d864253 ath79: mikrotik: stack ar9344 devices to single dtsi
Most of boards from MikroTik with AR9344 SoC (supported and
un-supported) replicate the same schematic, so stack common device nodes
to a single dtsi.

ar9344_mikrotik_routerboard-16m-nor.dtsi:
- remove include paragraph and wmac node, make it single nor flash node
  for others dts to include

ar9344_mikrotik_routerboard-lhg-5nd.dts:
- move all of the nodes to new file ar9344_mikrotik_routerboard.dtsi
  and leave only power, user and lan LEDs which differ from sxt-5nd-r2
  and other yet unsupported devices

ar9344_mikrotik_routerboard-sxt-5n.dtsi:
- remove, it made no sense to keep it, as only
  ar9344_mikrotik_routerboard-sxt-5nd-r2.dts included this file and
  added only compatible and model

ar9344_mikrotik_routerboard-sxt-5nd-r2.dts:
- include ar9344_mikrotik_routerboard.dtsi
- add nand gpio activating node, beeper, additional LEDs and flash chips
  which previously have been in ar9344_mikrotik_routerboard-sxt-5n.dtsi

ar9344_mikrotik_routerboard.dtsi:
- inherited most of the content from ar9344_mikrotik_routerboard-lhg-5nd.dts
  except three LEDs
- add wmac node, removed from ar9344_mikrotik_routerboard-16m-nor.dtsi

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2023-02-26 22:22:48 +01:00
Arınç ÜNAL
9df035b3ea treewide: remove label = "cpu" from DSA dt-binding
This is not used by the DSA dt-binding, so remove it from all devicetrees.

Link: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9cc115d8d6f73dd260de1609182f3645844d6907
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
2023-02-26 22:22:48 +01:00
Xinfa Deng
dd8a4a8c34 ath79: add support for GL.iNet GL-X1200
This patch adds supports for GL-X1200.

Specification:
	- SOC: QCA9563 (775MHz)
	- Flash: 16 MiB
	- RAM: 128 MiB DDR2
	- Ethernet: 4x 1Gbps LAN + 1x 1Gbps WAN
	- Wireless: QCA9563(2.4GHz) and QCA9886(5GHz)
	- SIM: 2x SIM card slots
	- MicroSD: 1x microSD slot
	- Antenna: 2x external 5dBi antennas
	- USB: 1x USB 2.0 port
	- Button: 1x reset button
	- LED: 16x LEDs (3x GPIO controllable)
	- UART: 1x UART on PCB (JP1: 3.3V, RX, TX, GND)
	- OEM U-Boot supplies HTTP/GUI access

Implementation Notes
====================

Both the NOR and NAND variants boot off a NOR-based kernel,
consistent with the OEM's firmware.

The mode LEDs are
    * Boot, Running   system
    * Failsafe        2G
    * Upgrade         5G

Installation
============

Using sysupgrade
----------------

sysupgrade may be used to install a NAND image on a device running
a NAND image or a NOR image on a device running a NOR image. It is
recommended to *not* preserve config when upgrading from OEM firmware
or previous versions of OpenWrt. No supported sysupgrade path should
require "force". Transitioning from NOR to NAND can be accomplished

Using U-Boot
------------

The OEM U-Boot can be put into a graphical, firmware-upload mode by
holding down the button on the side of the router while applying power
and for a bit more than five seconds following with the current OEM
U-Boot. The power LED will come on, then the 5G LED will flash five
times, about once a second.  When the 5G LED stops flashing and the
2G LED lights solid, the router's U-Boot will provide an upload page
at http://192.168.1.1/ Either a browser may be used to upload an image,
or a utility such as curl may be used:

curl -X POST -F gl_firmware=\@*-nand-squashfs-factory.img \
         http://192.168.1.1/index.html
or
    curl -X POST -F gl_firmware=\@*-nor-squashfs-sysupgrade.bin \
         http://192.168.1.1/index.html

Note that NOR vs. NAND is based on the file name extension.

Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com>
2023-02-25 14:31:42 +01:00
Christian Marangi
01262c921c
tools/squashfs: rename to squashfs3-lzma
The name of squashfs is confusing since in reality it's a really old
version using an old lzma library. This tools is used for old ath79
netgear target and to produde a fake squasfs3 image needed for some
specific bootloader from some OEM (AVM for example)

Rename squashfs tool to squasfs3-lzma to better describe it.
Rename the installed bin from mksquashfs-lzma to mksquashfs3-lzma.
Use tar transform to migrate the root directory in tar to the new
naming.
Drop redundant PKG_CAT variable not needed anymore.
Also update any user of this tool.

Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2023-02-18 21:11:36 +01:00
John Audia
461072fc7b kernel: bump 5.10 to 5.10.168
Manually rebased:
  backport-5.10/804-v5.14-0001-nvmem-core-allow-specifying-of_node.patch

Removed upstreamed:
  generic-backport/807-v5.17-0003-nvmem-core-Fix-a-conflict-between-MTD-and-NVMEM-on-w.patch[1]

All other patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.10.168&id=34ec4c7831c416ac56619477f1701986634a7efc

Build system: x86_64
Build-tested: ramips/tplink_archer-a6-v3
Run-tested: ramips/tplink_archer-a6-v3

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-02-18 17:41:23 +01:00
John Audia
4536c76b55 kernel: bump 5.15 to 5.15.94
Patches automatically rebased.

Build system: x86_64
Build-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-ubootmod
Run-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-ubootmod

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-02-18 15:06:04 +01:00
Michael Pratt
51982560a9 ath79: bump SPI frequency of Senao qca955x routers
All boards using this DTSI are expected to have
the same 16 MB MX25L12845EMI-10G flash chip,
or a larger one which can also use 40 MHz frequency.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-02-12 18:07:31 +01:00
Michael Pratt
5e973dd61f ath79: add eth0 mac and initvals for Engenius EPG5000
Although VLANs are used, the "eth0" device by itself
does not have a valid MAC, so fix that with preinit script.

More initvals added by editing the driver to print switch registers,
after the bootloader sets them but before openwrt changes them.

The register bits needed for the QCA8337 switch
can be read from interrupted boot (tftpboot, bootm)
by adding print lines in the switch driver ar8327.c
before 'qca,ar8327-initvals' is parsed from DTS and written
for example:

  pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE));

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-02-12 18:07:31 +01:00
Michael Pratt
f545caf001 ath79: convert Engenius EPG5000 radios to nvmem-cells
Use nvmem kernel subsystem to pull radio calibration data
with the devicetree instead of userspace scripts.

Existing blocks for caldata_extract are reordered alphabetically.

MAC address is set using the hotplug script.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-02-12 18:07:31 +01:00
Michael Pratt
f9c28222c8 ath79: add support for Senao Engenius ESR1200
FCC ID: A8J-ESR900

Engenius ESR1200 is an indoor wireless router with
a gigabit ethernet switch, dual-band wireless,
internal antenna plates, and a USB 2.0 port

**Specification:**

  - QCA9557 SOC		2.4 GHz, 2x2
  - QCA9882 WLAN	PCIe mini card, 5 GHz, 2x2
  - QCA8337N SW		4 ports LAN, 1 port WAN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM
  - UART at J1		populated, RX grounded
  - 6 internal antenna plates (omni-directional)
  - 5 LEDs, 1 button (power, 2G, 5G, WAN, WPS) (reset)

**MAC addresses:**

  Base MAC address labeled as "MAC ADDRESS"
  MAC "wanaddr" is not similar to "ethaddr"

  eth0 *:c8 MAC u-boot-env ethaddr
  phy0 *:c8 MAC u-boot-env ethaddr
  phy1 *:c9 --- u-boot-env ethaddr +1
  WAN  *:66:44  u-boot-env wanaddr

**Serial Access:**

  RX on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin

**Installation:**

  Method 1: Firmware upgrade page

    OEM webpage at 192.168.0.1
    username and password "admin"
    Navigate to Settings (gear icon) --> Tools --> Firmware
    select the factory.bin image
    confirm and wait 3 minutes

  Method 2: TFTP recovery

    Follow TFTP instructions using initramfs.bin
    use sysupgrade.bin to flash using openwrt web interface

**Return to OEM:**

  MTD partitions should be backed up before flashing
  using TFTP to boot openwrt without overwriting flash

  Alternatively, it is possible to edit OEM firmware images
  to flash MTD partitions in openwrt to restore OEM firmware
  by removing the OEM header and writing the rest to "firmware"

**TFTP recovery:**

  Requires serial console, reset button does nothing at boot

  rename initramfs.bin to 'uImageESR1200'
  make available on TFTP server at 192.168.99.8
  power board, interrupt boot by pressing '4' rapidly
  execute tftpboot and bootm

**Note on ETH switch registers**

  Registers must be written to the ethernet switch
  in order to set up the switch's MAC interface.
  U-boot can write the registers on it's own
  which is needed, for example, in a TFTP transfer.

  The register bits from OEM for the QCA8337 switch
  can be read from interrupted boot (tftpboot, bootm)
  by adding print lines in the switch driver ar8327.c
  before 'qca,ar8327-initvals' is parsed from DTS and written.
  for example:

    pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE));

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-02-12 18:07:31 +01:00
Michael Pratt
96c2119dba ath79: add support for Senao Engenius ESR1750
FCC ID: A8J-ESR1750

Engenius ESR1750 is an indoor wireless router with
a gigabit ethernet switch, dual-band wireless,
internal antenna plates, and a USB 2.0 port

**Specification:**

  - QCA9558 SOC		2.4 GHz, 3x3
  - QCA9880 WLAN	PCIe mini card, 5 GHz, 3x3
  - QCA8337N SW		4 ports LAN, 1 port WAN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM
  - UART at J1		populated, RX grounded
  - 6 internal antenna plates (omni-directional)
  - 5 LEDs, 1 button (power, 2G, 5G, WAN, WPS) (reset)

**MAC addresses:**

  Base MAC address labeled as "MAC ADDRESS"
  MAC "wanaddr" is similar to "ethaddr"

  eth0 *:58 MAC u-boot-env ethaddr
  phy0 *:58 MAC u-boot-env ethaddr
  phy1 *:59 --- u-boot-env ethaddr +1
  WAN  *:10:58  u-boot-env wanaddr

**Serial Access:**

  RX on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin

**Installation:**

  Method 1: Firmware upgrade page

    NOTE: ESR1750 might require the factory.bin
      for ESR1200 instead, OEM provides 1 image for both.

    OEM webpage at 192.168.0.1
    username and password "admin"
    Navigate to Settings (gear icon) --> Tools --> Firmware
    select the factory.bin image
    confirm and wait 3 minutes

  Method 2: TFTP recovery

    Follow TFTP instructions using initramfs.bin
    use sysupgrade.bin to flash using openwrt web interface

**Return to OEM:**

  MTD partitions should be backed up before flashing
  using TFTP to boot openwrt without overwriting flash

  Alternatively, it is possible to edit OEM firmware images
  to flash MTD partitions in openwrt to restore OEM firmware
  by removing the OEM header and writing the rest to "firmware"

**TFTP recovery:**

  Requires serial console, reset button does nothing at boot

  rename initramfs.bin to 'uImageESR1200'
  make available on TFTP server at 192.168.99.8
  power board, interrupt boot by pressing '4' rapidly
  execute tftpboot and bootm

**Note on ETH switch registers**

  Registers must be written to the ethernet switch
  in order to set up the switch's MAC interface.
  U-boot can write the registers on it's own
  which is needed, for example, in a TFTP transfer.

  The register bits from OEM for the QCA8337 switch
  can be read from interrupted boot (tftpboot, bootm)
  by adding print lines in the switch driver ar8327.c
  before 'qca,ar8327-initvals' is parsed from DTS and written.
  for example:

    pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE));

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-02-12 18:07:31 +01:00
Michael Pratt
2f99f7e2d0 ath79: add support for Senao Engenius ESR900
FCC ID: A8J-ESR900

Engenius ESR900 is an indoor wireless router with
a gigabit ethernet switch, dual-band wireless,
internal antenna plates, and a USB 2.0 port

**Specification:**

  - QCA9558 SOC		2.4 GHz, 3x3
  - AR9580 WLAN		PCIe on board, 5 GHz, 3x3
  - AR8327N SW		4 ports LAN, 1 port WAN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM
  - UART at J1		populated, RX grounded
  - 6 internal antenna plates (omni-directional)
  - 5 LEDs, 1 button (power, 2G, 5G, WAN, WPS) (reset)

**MAC addresses:**

  Base MAC address labeled as "MAC ADDRESS"
  MAC "wanaddr" is not similar to "ethaddr"

  eth0 *:06 MAC u-boot-env ethaddr
  phy0 *:06 MAC u-boot-env ethaddr
  phy1 *:07 --- u-boot-env ethaddr +1
  WAN  *:6E:81  u-boot-env wanaddr

**Serial Access:**

  RX on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin

**Installation:**

  Method 1: Firmware upgrade page

    OEM webpage at 192.168.0.1
    username and password "admin"
    Navigate to Settings (gear icon) --> Tools --> Firmware
    select the factory.bin image
    confirm and wait 3 minutes

  Method 2: TFTP recovery

    Follow TFTP instructions using initramfs.bin
    use sysupgrade.bin to flash using openwrt web interface

**Return to OEM:**

  MTD partitions should be backed up before flashing
  using TFTP to boot openwrt without overwriting flash

  Alternatively, it is possible to edit OEM firmware images
  to flash MTD partitions in openwrt to restore OEM firmware
  by removing the OEM header and writing the rest to "firmware"

**TFTP recovery:**

  Requires serial console, reset button does nothing at boot

  rename initramfs.bin to 'uImageESR900'
  make available on TFTP server at 192.168.99.8
  power board, interrupt boot by pressing '4' rapidly
  execute tftpboot and bootm

**Note on ETH switch registers**

  Registers must be written to the ethernet switch
  in order to set up the switch's MAC interface.
  U-boot can write the registers on it's own
  which is needed, for example, in a TFTP transfer.

  The register bits from OEM for the AR8327 switch
  can be read from interrupted boot (tftpboot, bootm)
  by adding print lines in the switch driver ar8327.c
  before 'qca,ar8327-initvals' is parsed from DTS and written.
  for example:

    pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE));

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-02-12 18:07:31 +01:00
Michael Pratt
2742705fa5 ath79: split Engenius EPG5000 DTS to common DTSI
Split the DTS to be used with similar boards made by Senao,
dual-band routers with Atheros / Qualcomm ethernet switch.

Set initvals for the switch in each device's DTS.
Set some common calibration nvmem-cells in DTSI.

While at it, fix MTD partition node names.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-02-12 18:07:31 +01:00
Felix Baumann
d0c64ae695
ath79: fix dts whitespace
Replace blanks with tabs
Remove whitespace from otherwise empty lines

Signed-off-by: Felix Baumann <felix.bau@gmx.de>
2023-02-09 03:03:50 +01:00
Rosen Penev
2630e5063d treewide: replace wpad-basic-wolfssl default
The newly merged mbedtls backend is smaller and has fewer ABI related
issues than the wolfSSL one.

Signed-off-by: Rosen Penev <rosenp@gmail.com>
2023-02-04 02:35:03 +01:00
Tony Butler
8bc72ea7be treewide: strip useless default n Kconfig lines
Kconfig docs say:
> The default value deliberately defaults to 'n' in order to avoid
> bloating the build.

Apply this rule everywhere, to avoid more cloning of bad examples

Signed-off-by: Tony Butler <spudz76@gmail.com>
2023-02-03 12:50:15 +01:00
Tom Herbers
67f283be44 ath79: add LTE packages for GL-XE300
Add LTE packages required for operating the LTE modems shipped with
the GL-XE300.

Example configuration for an unauthenticated dual-stack APN:

network.wwan0=interface
network.wwan0.proto='qmi'
network.wwan0.device='/dev/cdc-wdm0'
network.wwan0.apn='internet'
network.wwan0.auth='none'
network.wwan0.delay='10'
network.wwan0.pdptype='IPV4V6'

Signed-off-by: Tom Herbers <mail@tomherbers.de>
2023-01-28 21:38:51 +01:00
Shiji Yang
c7059c56a8 ath79: improve support for Letv LBA-047-CH
1. Convert wireless calibration data to NVMEM.
2. Enable control green status LED and change default LED behaviors.
   The three LEDs of LBA-047-CH are in the same position, and the green
   LED will be completely covered by the other two LEDs. So don's use
   green LED as WAN indicator to ensure that only one LED is on at a time.
   LED     Factory          OpenWrt
   blue    internet fail    failsafe && upgrade
   green   internet okay    run
   red     boot             boot
3. Reduce the SPI clock to 30 MHz because the ath79 target does not
   support 50 MHz SPI operation well. Keep the fast-read support to
   ensure the spi-mem feature (b3f9842330) is enabled.
4. Remove unused package "uboot-envtools".
5. Split the factory image into two parts: rootfs and kernel.
   This change can reduce the factory image size and allow users to
   upgrade the OpenWrt kernel loader uImage (OKLI) independently.

   The new installation method: First, rename "squashfs-kernel.bin" to
   "openwrt-ar71xx-generic-ap147-16M-kernel.bin" and rename "rootfs.bin"
   to "openwrt-ar71xx-generic-ap147-16M-rootfs-squashfs.bin". Then we
   can press reset button for about 5 seconds to enter tftp download mode.
   Finally, set IP address to 192.168.67.100 and upload the above two
   parts via tftp server.

Tested on Letv LBA-047-CH

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-01-28 21:37:14 +01:00
Edward Chow
2a20dc717a ath79: calibrate dlink dir-825 c1 and dir-835 a1 with nvmem
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.

This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.

Currently, "mac-address-ascii" cells only works for ethernet and wmac devices,
so PCI ath9k device uses the old method to calibrate.

Signed-off-by: Edward Chow <equu@openmail.cc>
2023-01-28 21:28:25 +01:00
Tom Herbers
f83f5f8452 ath79: add label-mac-device for GL-XE300
This adds an label-mac-device alias which refrences the mac which is
printed on the Label of the device.

Signed-off-by: Tom Herbers <mail@tomherbers.de>
2023-01-28 21:11:17 +01:00
Michael Pratt
52992efc34 ath79: add support for Senao Engenius EWS660AP
FCC ID: A8J-EWS660AP

Engenius EWS660AP is an outdoor wireless access point with
2 gigabit ethernet ports, dual-band wireless,
internal antenna plates, and 802.3at PoE+

**Specification:**

  - QCA9558 SOC		2.4 GHz, 3x3
  - QCA9880 WLAN	mini PCIe card, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - AR8033 PHY		SGMII GbE with PoE+ OUT
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM
  - UART at J1		populated, RX grounded
  - 6 internal antenna plates (5 dbi, omni-directional)
  - 5 LEDs, 1 button (power, eth0, eth1, 2G, 5G) (reset)

**MAC addresses:**

  Base MAC addressed labeled as "MAC"
  Only one Vendor MAC address in flash

  eth0 *:d4 MAC art 0x0
  eth1 *:d5 --- art 0x0 +1
  phy1 *:d6 --- art 0x0 +2
  phy0 *:d7 --- art 0x0 +3

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin

**Installation:**

  2 ways to flash factory.bin from OEM:

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot
  execute tftpboot and bootm 0x81000000

**Format of OEM firmware image:**

  The OEM software of EWS660AP is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-generic-ews660ap-uImage-lzma.bin
    openwrt-ar71xx-generic-ews660ap-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Tested-by: Niklas Arnitz <openwrt@arnitz.email>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-01-28 20:34:00 +01:00
Michael Pratt
290a6527be ath79: add pcie1 wifi device to Senao qca955x AP DTSI
Each individual device DTS now enables either pcie0 or pcie1.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-01-28 20:34:00 +01:00
Shiji Yang
cfb296b79a ath79: add support for D-Link DIR-629 A1
Specifications:
  SOC:      QCA9588 CPU 720 MHz AHB 200 MHz
  Switch:   AR8236
  RAM:      64 MiB DDR2-600
  Flash:    8 MiB
  WLAN:     Wi-Fi4 2.4 GHz 3*3
  LAN:      LAN ports *4
  WAN:      WAN port *1
  Buttons:  reset *1 + wps *1
  LEDs: ethernet *5, power, wlan, wps

MAC Address:
  use      address               source
  label    70:62:b8:xx:xx:96     lan && wlan
  lan      70:62:b8:xx:xx:96     mfcdata@0x35
  wan      70:62:b8:xx:xx:97     mfcdata@0x6a
  wlan     70:62:b8:xx:xx:96     mfcdata@0x51

Install via Web UI:
  Apply factory image in the stock firmware's Web UI.

Install via Emergency Room Mode:
  DIR-629 A1 will enter recovery mode when the system fails to boot or
  press reset button for about 10 seconds.

  First, set IP address to 192.168.0.1 and server IP to 192.168.0.10.
  Then we can open http://192.168.0.1 in the web browser to upload
  OpenWrt factory image or stock firmware. Some modern browsers may
  need to turn on compatibility mode.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2023-01-26 00:32:36 +01:00
Wenli Looi
7396263680 ath79: convert Netgear EX7300 caldata to nvmem
Transition to specify caldata in the DTS.

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2023-01-25 00:42:52 +01:00
Wenli Looi
f0eb73a888 ath79: consolidate Netgear EX7300 series images
This change consolidates Netgear EX7300 series devices into two images
corresponding to devices that share the same manufacturer firmware
image. Similar to the manufacturer firmware, the actual device model is
detected at runtime. The logic is taken from the netgear GPL dumps in a
file called generate_board_conf.sh.

Hardware details for EX7300 v2 variants
---------------------------------------
SoC: QCN5502
Flash: 16 MiB
RAM: 128 MiB
Ethernet: 1 gigabit port
Wireless 2.4GHz (currently unsupported due to lack of ath9k support):
- EX6250 / EX6400 v2 / EX6410 / EX6420: QCN5502 3x3
- EX7300 v2 / EX7320: QCN5502 4x4
Wireless 5GHz:
- EX6250: QCA9986 3x3 (detected by ath10k as QCA9984 3x3)
- EX6400 v2 / EX6410 / EX6420 / EX7300 v2 / EX7320: QCA9984 4x4

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2023-01-25 00:42:52 +01:00
John Audia
2835df54ab kernel: bump 5.10 to 5.10.163
Removed upstreamed:
  generic/101-Use-stddefs.h-instead-of-compiler.h.patch[1]

All patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.10.163&id=ddd2bb08bd99b7ee4442fbbe0f9b80236fdd71d2

Build system: x86_64
Build-tested: ramips/tplink_archer-a6-v3
Run-tested: ramips/tplink_archer-a6-v3

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-01-14 22:31:38 +01:00
Luo Chongjun
b352124cd2 ath79: Fix glinet ar300m usb not working
glinet forum users reported the problem at
https://forum.gl-inet.com/t/gl-ar300m16-openwrt-22-03-0-rc5-usb-port-power-off-by-default/23199

The current code uses the regulator framework to control the USB power
supply. Although usb0 described in DTS refers to the regulator by
vbus-supply, but there is no code related to regulator implemented
in the USB driver of QCA953X, so the USB of the device cannot work.

Under the regulator framework, adding the regulator-always-on attribute
fixes this problem, but it means that USB power will not be able to be
turned off. Since we need to control the USB power supply in user space,
I didn't find any other better way under the regulator framework of Linux,
so I directly export gpio.

Signed-off-by: Luo Chongjun <luochongjun@gl-inet.com>
2023-01-14 19:13:42 +01:00
John Audia
843e3dace7 kernel: bump 5.15 to 5.15.87
Removed upstreamed:
  generic/hack-5.15/290-net-dsa-mv88e6xxx-depend-on-PTP-conditionally.patch[1]

Build system: x86_64
Build-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-ubootmod
Run-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-ubootmod

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.87&id=945e58bdaf6faf6e3f957d182244fa830acddab4

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-01-13 22:04:22 +01:00
David Bauer
e4a76673ff ath79: combine UniFi AC dual firmware-partitions
In order to maximize the available space on UniFi AC boards using a
dual-image partition layout, combine the two OS partitions into a single
partition.

This allows users to access more usable space for additional packages.

Don't limit the usable image size to the size of a single OS partition.
The initial installation has to be done with an older version of OpenWrt
in case the generated image exceeds the space of a single kernel
partition in the future.

Signed-off-by: David Bauer <mail@david-bauer.net>
2023-01-07 01:32:58 +01:00
David Bauer
eded295cd7 ath79: combine OCEDO dual firmware-partitions
In order to maximize the available space on OCEDO boards using a
dual-image partition layout, combine the two OS partitions into a single
partition.

This allows users to access more usable space for additional packages.

Don't limit the usable image size to the size of a single OS partition.
The initial installation has to be done with an older version of OpenWrt
in case the generated image exceeds the space of a single OS
partition in the future.

Signed-off-by: David Bauer <mail@david-bauer.net>
2023-01-07 01:32:58 +01:00
Joe Mullally
4965cbd259 ath79: tiny: Do not build TPLink WPA8630Pv2 by default
22.03.1+ and snapshot builds no longer fit the 6M flash space
available for these models.

This disables failing buildbot image builds for these devices.
Images can still be built manually with ImageBuilder.

Signed-off-by: Joe Mullally <jwmullally@gmail.com>
2023-01-06 18:52:01 +01:00
Stefan Kalscheuer
f193f2d1a0 ath79: convert UBNT Aircube AC WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Merge art into partition node.

Signed-off-by: Stefan Kalscheuer <stefan@stklcode.de>
2023-01-06 18:20:31 +01:00
Michael Pratt
e085812a7d ath79: add support for Fortinet FAP-221-B
FCC ID: U2M-CAP4100AG

Fortinet FAP-221-B is an indoor access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

Hardware and board design from Senao

**Specification:**

 - AR9344 SOC		2G 2x2, 5G 2x2, 25 MHz CLK
 - AR9382 WLAN		2G 2x2 PCIe, 40 MHz CLK
 - AR8035-A PHY		RGMII, PoE+ IN, 25 MHz CLK
 - 16 MB FLASH		MX25L12845EMI-10G
 - 2x 32 MB RAM		W9725G6JB-25
 - UART at J11		populated, 9600 baud
 - 6 LEDs, 1 button	power, ethernet, wlan, reset

  Note:	ethernet LEDs are not enabled
	because a new netifd hotplug is required
	in order to operate like OEM.
	Board has 1 amber and 1 green
	for each of the 3 case viewports.

**MAC addresses:**

1 MAC Address in flash at end of uboot
ASCII encoded, no delimiters
Labeled as "MAC Address" on case
OEM firmware sets offsets 1 and 8 for wlan

  eth0 *:1e	uboot 0x3ff80
  phy0 *:1f	uboot 0x3ff80 +1
  phy1 *:26	uboot 0x3ff80 +8

**Serial Access:**

Pinout: (arrow) VCC GND RX TX

Pins are populated with a header and traces not blocked.
Bootloader is set to 9600 baud, 8 data, 1 stop.

**Console Access:**

Bootloader:

Interrupt boot with Ctrl+C
Press "k" and enter password "1"
OR
Hold reset button for 5 sec during power on
Interrupt the TFTP transfer with Ctrl+C

to print commands available, enter "help"

OEM:

default username is "admin", password blank
telnet is available at default address 192.168.1.2
serial is available with baud 9600

to print commands available, enter "help"
or tab-tab (busybox list of commands)

**Installation:**

Use factory.bin with OEM upgrade procedures
OR
Use initramfs.bin with uboot TFTP commands.
Then perform a sysupgrade with sysupgrade.bin

**TFTP Recovery:**

Using serial console, load initramfs.bin using TFTP
to boot openwrt without touching the flash.
TFTP is not reliable due to bugged bootloader,
set MTU to 600 and try many times.
If your TFTP server supports setting block size,
higher block size is better.
Splitting the file into 1 MB parts may be necessary

example:

$ tftpboot 0x80100000 image1.bin
$ tftpboot 0x80200000 image2.bin
$ tftpboot 0x80300000 image3.bin
$ tftpboot 0x80400000 image4.bin
$ tftpboot 0x80500000 image5.bin
$ tftpboot 0x80600000 image6.bin
$ bootm 0x80100000

**Return to OEM:**

The best way to return to OEM firmware
is to have a copy of the MTD partitions
before flashing Openwrt.

Backup copies should be made of partitions
"fwconcat0", "loader", and "fwconcat1"
which together is the same flash range
as OEM's "rootfs" and "uimage"
by loading an initramfs.bin
and using LuCI to download the mtdblocks.

It is also possible to extract from the
OEM firmware upgrade image by splitting it up
in parts of lengths that correspond
to the partitions in openwrt
and write them to flash,
after gzip decompression.

After writing to the firmware partitions,
erase the "reserved" partition and reboot.

**OEM firmware image format:**

Images from Fortinet for this device
ending with the suffix .out
are actually a .gz file

The gzip metadata stores the original filename
before compression, which is a special string
used to verify the image during OEM upgrade.

After gzip decompression, the resulting file
is an exact copy of the MTD partitions
"rootfs" and "uimage" combined in the same order and size
that they appear in /proc/mtd and as they are on flash.

OEM upgrade is performed by a customized busybox
with the command "upgrade".
Another binary, "restore"
is a wrapper for busybox's "tftp" and "upgrade".

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-01-06 15:34:07 +01:00
Michael Pratt
766de7013f ath79: allow skipping hash for Senao sysupgrade
Some vendors of Senao boards have a similar flash layout
situation that causes the need to split the firmware partition
and use the lzma-loader, but do not store
checksums of the partitions or otherwise
do not even have a uboot environment partition.

This adds simple shell logic to skip that part.

Also, simplify some lines and variable usage.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-01-06 15:34:07 +01:00
Michael Pratt
8342c092a0 ath79: use lzma-loader for Senao initramfs images
Some vendors of Senao boards have put a bootloader
that cannot handle both large gzip or large lzma files.

There is no disadvantage by doing this for all of them.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2023-01-06 15:34:07 +01:00
John Audia
2621ddb0be kernel: bump 5.10 to 5.10.162
All patches automatically rebased.

Build system: x86_64
Build-tested: ramips/tplink_archer-a6-v3
Run-tested: ramips/tplink_archer-a6-v3

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-01-06 12:13:49 +01:00
Nick Hainke
aa6c8c38ea ath79: convert Netgear WNDAP360 WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Merge art into partition node.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2023-01-04 23:59:09 +01:00
John Audia
738b04c881 kernel: bump 5.15 to 5.15.86
Removed upstreamed:
  pending-5.15/101-Use-stddefs.h-instead-of-compiler.h.patch[1]
  ipq806x/patches-5.15/122-01-clk-qcom-clk-krait-fix-wrong-div2-functions.patch[2]
  bcm27xx/patches-5.15/950-0198-drm-fourcc-Add-packed-10bit-YUV-4-2-0-format.patch[3]

Manually rebased:
  ramips/patches-5.15/100-PCI-mt7621-Add-MediaTek-MT7621-PCIe-host-controller-.patch[4]

Added patch/backported:
  ramips/patches-5.15/107-PCI-mt7621-Add-sentinel-to-quirks-table.patch[5]

All other patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.86&id=c160505c9b574b346031fdf2c649d19e7939ca11
2. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.86&id=a051e10bfc6906d29dae7a31f0773f2702edfe1b
3. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.86&id=ec1727f89ecd6f2252c0c75e200058819f7ce47a
4. Quilt gave this output when I applied the patch to rebase it:
% quilt push -f
Applying patch platform/100-PCI-mt7621-Add-MediaTek-MT7621-PCIe-host-controller-.patch
patching file arch/mips/ralink/Kconfig
patching file drivers/pci/controller/Kconfig
patching file drivers/pci/controller/Makefile
patching file drivers/staging/Kconfig
patching file drivers/staging/Makefile
patching file drivers/staging/mt7621-pci/Kconfig
patching file drivers/staging/mt7621-pci/Makefile
patching file drivers/staging/mt7621-pci/TODO
patching file drivers/staging/mt7621-pci/mediatek,mt7621-pci.txt
patching file drivers/staging/mt7621-pci/pci-mt7621.c
Hunk #1 FAILED at 1.
Not deleting file drivers/staging/mt7621-pci/pci-mt7621.c as content differs from patch
1 out of 1 hunk FAILED -- saving rejects to file drivers/staging/mt7621-pci/pci-mt7621.c.rej
patching file drivers/pci/controller/pcie-mt7621.c
Applied patch platform/100-PCI-mt7621-Add-MediaTek-MT7621-PCIe-host-controller-.patch (forced; needs refresh)

Upon inspecting drivers/staging/mt7621-pci/pci-mt7621.c.rej, it seems that
the original patch wants to delete drivers/staging/mt7621-pci/pci-mt7621.c
but upstream's version was not an exact match.  I opted to delete that
file.

5. Suggestion by hauke: 19098934f9
"This patch is in upstream kernel, but it was backported to the old
staging driver in kernel 5.15."

Build system: x86_64
Build-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-ubootmod
Run-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-ubootmod

Signed-off-by: John Audia <therealgraysky@proton.me>
2023-01-03 23:55:45 +01:00
Nick Hainke
a14170b6e9 ath79: fix calibration-art for some boards
"0x1000" looks suspicious. By looking at data provided
by @DragonBluep I was able to identify the correct size for
AR9380, AR9287 WiFis. Furthermore, PowerCloud Systems CAP324
has a AR9344 WiFi.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-28 22:36:32 +01:00
Alexander Couzens
17c6fb1054 ath79: image: don't depend on other COMPILE targets
A device COMPILE target should not depend on another COMPILE.
Otherwise race condition may happen.
The loader is very small. Compiling it twice shouldn't
have a huge impact.

Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2022-12-19 12:27:35 +00:00
Davide Fioravanti
d9566d059c ath79: add support for KuWFi C910
KuWFi C910 is an 802.11n (300N) indoor router with LTE support.

I can't find anywhere the OEM firmware. So if you want to restore the
original firmware you must do a dump before the OpenWrt flash.

According to the U-Boot, the board name is Iyunlink MINI_V2.

Hardware
--------
SoC:   Qualcomm QCA9533 650/400/200/25/25 MHz (CPU/RAM/AHB/SPI/REF)
RAM:   128 MB DDR2 16-bit CL3-4-4-10 (Nanya NT5TU64M16HG-AC)
FLASH: 16 MB Winbond W25Q128
ETH:
  - 2x 100M LAN (QCA9533 internal AR8229 switch, eth0)
  - 1x 100M WAN (QCA9533 internal PHY, eth1)
WIFI:
  - 2.4GHz: 1x QCA9533 2T2R (b/g/n)
  - 2 external non detachable antennas (near the power barrel side)
LTE:
  - Quectel EC200T-EU (or -CN or -AU depending on markets)
  - 2 external non detachable antennas (near the sim slot side)
BTN:
  - 1x Reset button
LEDS:
  - 5x White leds (Power, Wifi, Wan, Lan1, Lan2)
  - 1x RGB led (Internet)
UART: 115200-8-N-1 (Starting from lan ports in order: GND, RX, TX, VCC)

Everything works correctly.

MAC Addresses
-------------
LAN XX:XX:XX:XX:XX:48 (art@0x1002)
WAN XX:XX:XX:XX:XX:49 (art@0x1002 + 1)
WIFI XX:XX:XX:XX:XX:48

LABEL XX:XX:XX:XX:XX:48

Installation
------------
Turn the router on while pressing the reset button for 4 seconds.
You can simply count the flashes of the first lan led. (See notes)
If done correctly you should see the first lan led glowing slowly and
you should be able to enter the U-Boot web interface.

Click on the second tab ("固件") and select the -factory.bin firmware
then click "Update firmware".

A screen "Update in progress" should appear.

After few minutes the flash should be completed.

This procedure can be used also to recover the router in case of soft
brick.

Backup the original firmware
----------------------------
The following steps are intended for a linux pc. However using the
right software this guide should also work for Windows and MacOS.

1) Install a tftp server on your pc. For example tftpd-hpa.

2) Create two empty files in your tftp folder called:
	kuwfi_c910_all_nor.bin
	kuwfi_c910_firmware_only.bin

3) Give global write permissions to these files:
	chmod 666 kuwfi_c910_all_nor.bin
	chmod 666 kuwfi_c910_firmware_only.bin

4) Start a netcat session on your pc with this command:
	nc -u -p 6666 192.168.1.1 6666

5) Set the static address on your pc: 192.168.1.2. Connect the router
	to your pc.

6) Turn the router on while pressing the reset button for 8-9 seconds.
	You can simply count the flashes of the first lan led. If you
	press the reset button for too many seconds it will continue
	the normal boot, so you have to restart the router. (See notes)

7) If done correctly you should see the U-Boot network console and you
	should see the following lines on the netcat session:
Version and build date:
  U-Boot 1.1.4-55f1bca8-dirty, 2020-05-07

Modification by:
  Piotr Dymacz <piotr@dymacz.pl>
  https://github.com/pepe2k/u-boot_mod

u-boot>

8) Start the transfer of the whole NOR:
	tftpput 0x9f000000 0x1000000 kuwfi_c910_all_nor.bin

9) The router should start the transfer and it should end with a
	message like this (pay attention to the bytes transferred):
TFTP transfer complete!

Bytes transferred: 16777216 (0x1000000)

10) Repeat the same transfer for the firmware:
	tftpput 0x9f050000 0xfa0000 kuwfi_c910_firmware_only.bin

11) The router should start the transfer and it should end with a
	message like this (pay attention to the bytes transferred):
TFTP transfer complete!

Bytes transferred: 16384000 (0xfa0000)

12) Now you have the backup for the whole nor and for the firmware
	partition. If you want to restore the OEM firmware from OpenWrt
	you have to flash the kuwfi_c910_firmware_only.bin from the
	U-Boot web interface.

	WARNING: Don't use the kuwfi_c910_all_nor.bin file. This file
	is only useful if you manage to	hard brick the router or you
	damage the art partition (ask on the forum)

Notes
-----
This router (or at least my unit) has the pepe2k's U-Boot. It's a
modded U-Boot version with a lot of cool features. You can read more
here: https://github.com/pepe2k/u-boot_mod

With this version of U-Boot, pushing the reset button while turning on
the router starts different tools:
 - 3-5 seconds: U-Boot web interface that can be used to replace the
 	firmware, the art or the U-Boot itself
 - 5-7 seconds: U-Boot uart console
 - 7-10 seconds: U-Boot network console
 - 11+ seconds: Normal boot

The LTE modem can be used in cdc_ether (ECM) or RNDIS mode.
The default mode is ECM and in this commit only the ECM software is
included. In order to set RNDIS mode you must use this AT command:
	AT+QCFG="usbnet",3
In order to use again the ECM mode you must use this AT command:
	AT+QCFG="usbnet",1

Look for "Quectel_EC200T_Linux_USB_Driver_User_Guide_V1.0.pdf" for
other AT commands

Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
2022-12-17 22:28:10 +01:00
Nick Hainke
af5306ba70 ath79: convert WiFis based on ar7241_ubnt_unifi.dtsi to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

While working on it remove stale uboot partition label and merge art
into partition node.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-17 20:48:57 +01:00
Nick Hainke
b7ad3c5c5d ath79: convert Buffalo WZR-HP-G302H A1A0 WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Merge art into partition node.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-17 20:48:57 +01:00
Nick Hainke
d4ec4f9d0b ath79: convert OpenMesh OM2P v1 WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Merge art into partition node.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-17 20:40:30 +01:00
Nick Hainke
f6ca84bf02 ath79: convert OpenMesh OM5P-AN WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Merge art into partition node.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-17 20:40:30 +01:00
Nick Hainke
46077860c2 ath79: convert boards based on ar9344_openmesh_mr600.dtsi to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Merge art into partition node.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-17 20:40:29 +01:00
Christian Lamparter
d8da5002a2 ath79: fix dtc warnings in ruckus zf7372
|:69.4-14: Warning (reg_format): beamforming-2g-gpio@0:reg: property has invalid length (4 bytes)
|:85.4-14: Warning (reg_format): beamforming-5g-gpio@0:reg: property has invalid length (4 bytes)

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-12-15 15:45:47 +01:00
Christian Lamparter
0dacf14495 ath79: fix dtc warnings in eap1750h
|109.3-19: Warning (reg_format): macaddr@0:reg:property has invalid length (8 bytes)
|113.3-24: Warning (reg_format): calibration@1000:reg: property has invalid length (8 bytes)
|117.3-24: Warning (reg_format): calibration@5000:reg: property has invalid length (8 bytes)

also integrate the art-nodes nodes back into the partition-subnode
and change the calibration labels to match what everyone else is
doing.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-12-15 15:45:47 +01:00
Christian Lamparter
0f227720f9 ath79: fix dtc warnings in eap1200h
|109.3-19: Warning (reg_format): macaddr@0:reg:property has invalid length (8 bytes)
|113.3-24: Warning (reg_format): calibration@1000:reg: property has invalid length (8 bytes)
|117.3-24: Warning (reg_format): calibration@5000:reg: property has invalid length (8 bytes)

also integrate the art-nodes nodes back into the partition-subnode
and change the calibration labels to match what everyone else is
doing.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-12-15 15:45:47 +01:00
Nick Hainke
4146701469 ath79: replace reference to legacy qca,disable-2ghz in WatchGuard AP100
Commit 4c8dd973ef ("ath9k: OF: qca,disable-(2|5)ghz => ieee80211-freq-limit")
removed "qca,disable-5ghz" and "qca,disable-2ghz".

Signed-off-by: Nick Hainke <vincent@systemli.org>
(converted patch to remove the ieee80211-freq-limit property instead)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-12-15 15:45:47 +01:00
Nick Hainke
ae5cb164cd ath79: switch to upstream ieee80211-freq-limit for Araknis AN-300-AP-I-N
Commit 4c8dd973ef ("ath9k: OF: qca,disable-(2|5)ghz => ieee80211-freq-limit")
removed "qca,disable-5ghz" and "qca,disable-2ghz". Switch to upstream
ieee80211-freq-limit.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-15 15:45:47 +01:00
Nick Hainke
08c114ee16 ath79: convert Winchannel WB2000 WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Signed-off-by: Nick Hainke <vincent@systemli.org>
(removed mtd-cal-data property, merged art + addr nodes back into
partition)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-12-15 15:45:47 +01:00
Nick Hainke
fd456106aa ath79: convert Ubiquiti UniFi AP Pro WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Signed-off-by: Nick Hainke <vincent@systemli.org>
(merged art node back into partition-node)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-12-15 15:45:47 +01:00
Nick Hainke
f63cf33aa7 ath79: convert OCEDO Raccoon WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Signed-off-by: Nick Hainke <vincent@systemli.org>
(merged art into partition node, removed stale uboot label)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-12-15 15:45:47 +01:00
Nick Hainke
783936c1f7 ath79: Mercury MW4530R v1 already uses nvmem-cells
Remove the caldata extraction in userspace. The board already uses
nvmem-cells since
commit e354b01baf ("ath79: calibrate all ar9344 tl-WDRxxxx with nvmem")

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-15 15:45:35 +01:00
Nick Hainke
4845b60525 ath79: convert boards based on senao_ap-dual.dtsi WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-15 15:08:09 +01:00
Nick Hainke
21495c92dc ath79: convert Atheros DB120 WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Signed-off-by: Nick Hainke <vincent@systemli.org>
(merged art-node back into partition-node)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-12-15 15:08:09 +01:00
Nick Hainke
1b125aabf4 ath79: convert Araknis AN-300-AP-I-N WiFis to nvmem-cells
Pull the calibration data from the nvmem subsystem. This allows us to
move userspace caldata extraction into the device-tree definition.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-12-15 15:08:08 +01:00
Andrew Cameron
550e5b2184 ath79: add support for TP-Link CPE605-v1
TP-Link CPE605-v1 is an outdoor wireless CPE for 5 GHz with
one Ethernet port based on Atheros AR9344

Specifications:
 - 560/450/225 MHz (CPU/DDR/AHB)
 - 1x 10/100 Mbps Ethernet
 - 64 MB of DDR2 RAM
 - 8 MB of SPI-NOR Flash
 - 23dBi high-gain directional antenna and a dedicated metal reflector
 - Power, LAN, WLAN5G green LEDs
 - 3x green RSSI LEDs

Flashing instructions:
 Flash factory image through stock firmware WEB UI or through TFTP
 To get to TFTP recovery just hold reset button while powering on for
 around 4-5 seconds and release.
 Rename factory image to recovery.bin
 Stock TFTP server IP:192.168.0.100
 Stock device TFTP adress:192.168.0.254

Signed-off-by: Andrew Cameron <apcameron@softhome.net>
2022-12-13 23:17:27 +01:00
John Audia
7b7d8fe60d kernel: bump 5.10 to 5.10.157
Manually rebased:
	backport-5.10/610-v5.13-32-net-ethernet-mtk_eth_soc-add-support-for-initializin.patch
	hack-5.10/645-netfilter-connmark-introduce-set-dscpmark.patch

Removed upstreamed:
	pending-5.10/706-netfilter-nf_flow_table-add-missing-locking.patch[1]

All other patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.10.157&id=b8e494240e69f91517256adcd6fda62d0671772d

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-12-11 02:43:28 +01:00
John Audia
424210b7be kernel: bump 5.15 to 5.15.81
Manually rebased:
	backport-5.15/715-v6.0-net-ethernet-mtk_eth_soc-add-the-capability-to-run-m.patch
	hack-5.15/645-netfilter-connmark-introduce-set-dscpmark.patch[1]

Removed upstreamed:
	pending-5.15/701-netfilter-nf_flow_table-add-missing-locking.patch[2]

All other patches automatically rebased

1. Rebase by Kevin 'ldir' Darbyshire-Bryant<ldir@darbyshire-bryant.me.uk>
2. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.81&id=8db9e60cdfdae5b049e32e82323da8f0f989066a

Build system: x86_64
Build-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-stock
Run-tested: bcm2711/RPi4B, filogic/xiaomi_redmi-router-ax6000-stock

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-12-11 02:42:52 +01:00
David Bauer
4c0919839d ath79: fix Teltonika RUT230 v1 MAC assignment
The MAC-Address setup for the Teltonika RUT230 v1 was swapped for the
LAN / WAN ports. Also the Label-MAC was assigned incorrect, as the WiFi
MAC is printed on the case as part of the SSID, however only the LAN
MAC-Address is designated as a MAC-Address.

Signed-off-by: David Bauer <mail@david-bauer.net>
2022-12-09 01:59:47 +01:00
Shiji Yang
3c1512a25d ath79: optimize the firmware recipe for Netgear NAND devices
1. Drop useless character '0xff' before fake filesystem header.
2. Reduce useless padding to shrink the size of the sysupgrade image.
3. Do not check the size of sysupgrade image. It does not make sense to
   check the size of a compressed package.
4. Do not take the size of netgear header into account because it will
   not be written to Flash.
5. Use the default lzma compression dictionary parameter '-d24' to get
   better performance.

Tested on Netgear R6100
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2022-12-06 23:11:23 +01:00
Shiji Yang
58088ff457 ath79: convert Netgear R6100 radio calibration to nvmem-cells
use nvmem-cells implementation to avoid copying art calibration data
to rootfs.

Tested on Netgear R6100
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2022-12-06 23:11:23 +01:00
Will Moss
a58146d452 ath79: D-Link DIR-825 B1 add factory.bin recipe
- Bring back factory.bin image which was missing after porting device to ath79 target
- Use default sysupgrade.bin image recipe
- Adjust max image size according to new firmware partition size after
"ath79: expand rootfs for DIR-825-B1 with unused space (aca8bb5)" changes
- Remove support of upgrading from version 19.07, because partition size changes mentioned above

Signed-off-by: Will Moss <willormos@gmail.com>
2022-11-27 13:18:29 +01:00
Michael Pratt
6de9287abd ath79: add support for Senao Engenius EAP1750H
FCC ID: A8J-EAP1750H

Engenius EAP1750H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

**Specification:**

  - QCA9558 SOC
  - QCA9880 WLAN	PCI card, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16FG
  - UART at J10		populated
  - 4 internal antenna plates (5 dbi, omni-directional)
  - 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)

**MAC addresses:**

  MAC addresses are labeled as ETH, 2.4G, and 5GHz
  Only one Vendor MAC address in flash

  eth0 ETH  *:fb art 0x0
  phy1 2.4G *:fc ---
  phy0 5GHz *:fd ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  2 ways to flash factory.bin from OEM:

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot
  execute tftpboot and bootm 0x81000000

  NOTE: TFTP is not reliable due to bugged bootloader
  set MTU to 600 and try many times
  if your TFTP server supports setting block size
  higher block size is better.

**Format of OEM firmware image:**

  The OEM software of EAP1750H is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-generic-eap1750h-uImage-lzma.bin
    openwrt-ar71xx-generic-eap1750h-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-11-27 13:18:29 +01:00
Michael Pratt
128947db42 ath79: use nvmem-cells for radio calibration of EAP1200H
Transition from userscript to DTS for all of ART.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-11-27 13:18:29 +01:00
Edward Chow
2c33fd39a5 ath79: calibrate TP-LINK TL-WR2543ND with nvmem
Driver for and pci wlan card now pull the calibration data from the nvmem
subsystem.

This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.

The wifi mac address remains correct after these changes, because When both
"mac-address" and "calibration" are defined, the effective mac address
comes from the cell corresponding to "mac-address" and
mac-address-increment.

Test passed on my tplink tl-wr2543nd.

Signed-off-by: Edward Chow <equu@openmail.cc>
2022-11-27 13:18:29 +01:00
John Audia
acb10faa35 kernel: bump 5.10 to 5.10.156
Manually rebased: ath79/patches-5.10/910-unaligned_access_hacks.patch

All other patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-11-27 13:18:29 +01:00
John Audia
590aa0ca51 kernel: bump 5.15 to 5.15.80
Manually rebase:
   pending-5.15/330-MIPS-kexec-Accept-command-line-parameters-from-users.patch
   ath79/patches-5.15/910-unaligned_access_hacks.patch

All other patches automatically rebased

Build system: x86_64
Build-tested: bcm2711/RPi4B
Run-tested: bcm2711/RPi4B

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-11-27 13:18:29 +01:00
Will Moss
288b0004bf ath79: fix MAC address assigment for TP-Link TL-WR740N/TL-WR741ND v4
On TP-Link TL-WR740N/TL-WR741ND v4 LAN MAC address (eth1 in DTS) is main
device MAC address, so do not increment it. WAN MAC is LAN MAC + 1.

Signed-off-by: Will Moss <willormos@gmail.com>
2022-11-20 16:30:27 +01:00
Roger Pueyo Centelles
5a1d7d8c1b ath79: disable image building for Ubiquiti EdgeSwitch 8XP
The downstream OpenWrt driver for the BCM53128 switch ceased to work,
rendering the 8 LAN ports of the device unusable. This commit disables
image building while the problem is being solved.

See issue #10374 for more details.

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
2022-11-20 16:24:24 +01:00
Edward Chow
3d343ca713 ath79: calibrate nand netgear wndrxxxx with nvmem
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.

This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.

wmac's nodes are also changed over to use nvmem-cells over OpenWrt's
custom mtd-cal-data property.

The wifi mac address remains correct after these changes, because When both
"mac-address" and "calibration" are defined, the effective mac address
comes from the cell corresponding to "mac-address" and
mac-address-increment.

Test passed on my wndr3700v4 and wndr4500v3.
Signed-off-by: Edward Chow <equu@openmail.cc>
2022-11-20 16:13:48 +01:00
Edward Chow
e354b01baf ath79: calibrate all ar9344 tl-WDRxxxx with nvmem
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.

This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.

wmac's nodes are also changed over to use nvmem-cells over OpenWrt's
custom mtd-cal-data property.

The wifi mac address remains correct after these changes, because When both
"mac-address" and "calibration" are defined, the effective mac address
comes from the cell corresponding to "mac-address" and
mac-address-increment.

Test passed on my tplink tl-wdr4310.

Signed-off-by: Edward Chow <equu@openmail.cc>
2022-11-18 20:27:52 +01:00
Moritz Warning
dc7d431b60 treewide: uniform vendor name for devolo
The company name is lower case on the website
(https://www.devolo.de) and in product names.

Signed-off-by: Moritz Warning <moritzwarning@web.de>
2022-11-18 20:27:52 +01:00
Lech Perczak
6fdeb48c1e ath79: support Ruckus ZoneFlex 7025
Ruckus ZoneFlex 7025 is a single 2.4GHz radio 802.11n 1x1 enterprise
access point with built-in Ethernet switch, in an electrical outlet form factor.

Hardware highligts:
- CPU: Atheros AR7240 SoC at 400 MHz
- RAM: 64MB DDR2
- Flash: 16MB SPI-NOR
- Wi-Fi: AR9285 built-in 2.4GHz 1x1 radio
- Ethernet: single Fast Ethernet port inside the electrical enclosure,
  coupled with internal LSA connector for direct wiring,
  four external Fast Ethernet ports on the lower side of the device.
- PoE: 802.3af PD input inside the electrical box.
  802.3af PSE output on the LAN4 port, capable of sourcing
  class 0 or class 2 devices, depending on power supply capacity.
- External 8P8C pass-through connectors on the back and right side of the device
- Standalone 48V power input on the side, through 2/1mm micro DC barrel jack

Serial console: 115200-8-N-1 on internal JP1 header.
Pinout:

---------- JP1
|5|4|3|2|1|
----------

Pin 1 is near the "H1" marking.
1 - RX
2 - n/c
3 - VCC (3.3V)
4 - GND
5 - TX

Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server,  and removing a single T10 screw,
  but with much less manual steps, and is generally recommended, being
  safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
  work on some rare versions of stock firmware. A more involved, and
  requires installing `mkenvimage` from u-boot-tools package if you
  choose to rebuild your own environment, but can be used without
  disassembly or removal from installation point, if you have the
  credentials.
  If for some reason, size of your sysupgrade image exceeds 13312kB,
  proceed with method [1]. For official images this is not likely to
  happen ever.

[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0x9f040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7025-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7025_fw1_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin

[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
   it boots, hold the reset button near Ethernet connectors for 5
   seconds.

1. Connect the device to the network. It will acquire address over DHCP,
   so either find its address using list of DHCP leases by looking for
   label MAC address, or try finding it by scanning for SSH port:

   $ nmap 10.42.0.0/24 -p22

   From now on, we assume your computer has address 10.42.0.1 and the device
   has address 10.42.0.254.

2. Set up a TFTP server on your computer. We assume that TFTP server
   root is at /srv/tftp.

3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
   frmware is pretty ancient and requires enabling HMAC-MD5.

   $ ssh 10.42.0.254 \
   -o UserKnownHostsFile=/dev/null \
   -o StrictHostKeyCheking=no \
   -o MACs=hmac-md5

   Login. User is "super", password is "sp-admin".
   Now execute a hidden command:

   Ruckus

   It is case-sensitive. Copy and paste the following string,
   including quotes. There will be no output on the console for that.

   ";/bin/sh;"

   Hit "enter". The AP will respond with:

   grrrr
   OK

   Now execute another hidden command:

   !v54!

   At "What's your chow?" prompt just hit "enter".
   Congratulations, you should now be dropped to Busybox shell with root
   permissions.

4. Optional, but highly recommended: backup the flash contents before
   installation. At your PC ensure the device can write the firmware
   over TFTP:

   $ sudo touch /srv/tftp/ruckus_zf7025_firmware{1,2}.bin
   $ sudo chmod 666 /srv/tftp/ruckus_zf7025_firmware{1,2}.bin

   Locate partitions for primary and secondary firmware image.
   NEVER blindly copy over MTD nodes, because MTD indices change
   depending on the currently active firmware, and all partitions are
   writable!

   # grep rcks_wlan /proc/mtd

   Copy over both images using TFTP, this will be useful in case you'd
   like to return to stock FW in future. Make sure to backup both, as
   OpenWrt uses bot firmwre partitions for storage!

   # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7025_firmware1.bin -p 10.42.0.1
   # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7025_firmware2.bin -p 10.42.0.1

   When the command finishes, copy over the dump to a safe place for
   storage.

   $ cp /srv/tftp/ruckus_zf7025_firmware{1,2}.bin ~/

5. Ensure the system is running from the BACKUP image, i.e. from
   rcks_wlan.bkup partition or "image 2". Otherwise the installation
   WILL fail, and you will need to access mtd0 device to write image
   which risks overwriting the bootloader, and so is not covered here
   and not supported.

   Switching to backup firmware can be achieved by executing a few
   consecutive reboots of the device, or by updating the stock firmware. The
   system will boot from the image it was not running from previously.
   Stock firmware available to update was conveniently dumped in point 4 :-)

6. Prepare U-boot environment image.
   Install u-boot-tools package. Alternatively, if you build your own
   images, OpenWrt provides mkenvimage in host staging directory as well.
   It is recommended to extract environment from the device, and modify
   it, rather then relying on defaults:

   $ sudo touch /srv/tftp/u-boot-env.bin
   $ sudo chmod 666 /srv/tftp/u-boot-env.bin

   On the device, find the MTD partition on which environment resides.
   Beware, it may change depending on currently active firmware image!

   # grep u-boot-env /proc/mtd

   Now, copy over the partition

   # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1

   Store the stock environment in a safe place:

   $ cp /srv/tftp/u-boot-env.bin ~/

   Extract the values from the dump:

   $ strings u-boot-env.bin | tee u-boot-env.txt

   Now clean up the debris at the end of output, you should end up with
   each variable defined once. After that, set the bootcmd variable like
   this:

   bootcmd=bootm 0x9f040000

   You should end up with something like this:

bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),7168k(rcks_wlan.main),7168k(rcks_wlan.bkup),1280k(datafs),256k(u-boot-env)
mtdids=nor0=ar7100-nor0
bootdelay=2
filesize=52e000
fileaddr=81000000
ethact=eth0
stdin=serial
stdout=serial
stderr=serial
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=192.168.0.1
serverip=192.168.0.2
stderr=serial
ethact=eth0

   These are the defaults, you can use most likely just this as input to
   mkenvimage.

   Now, create environment image and copy it over to TFTP root:

   $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
   $ sudo cp u-boot-env.bin /srv/tftp

   This is the same image, gzipped and base64-encoded:

H4sICOLMEGMAA3UtYm9vdC1lbnYtbmV3LmJpbgDt0E1u00AUAGDfgm2XDUrTsUV/pTkFSxZoEk+o
lcQJtlNaLsURwU4FikDiBN+3eDNvLL/3Zt5/+vFuud8Pq10dp3V3EV4e1uFDGBXTQeq+9HG1b/v9
NsdheP0Y5mV5U4Vw0Y1f1/3wesix/3pM/dO6v2jaZojX/bJpr6dtsUzHuktDjm//FHl4SnXdxfAS
wmN4SWkMy+UYVqsx1PUYci52Q31I3dDHP5vU3ZUhXLX7LjxWN7eby+PVNNxsflfe3m8uu9Wm//xt
m9rFLjXtv6fLzfEwm5fVfdhc1mlI6342Pytzldvn2dS1qfs49Tjvd3qFOm/Ta6yKdbPNffM9x5sq
Ty805acL3Zfh5HTD1RDHJRT9WLGNfe6atJ2S/XE4y3LX/c6mSzZDs29P3edhmqXOz+1xF//s0y7H
t3GL5nDqWT5Ui/Gii7Aoi7HQ81jrcHZY/dXkfLLiJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8
xy8jb4zOAAAEAA==

7. Perform actual installation. Copy over OpenWrt sysupgrade image to
   TFTP root:

   $ sudo cp openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin /srv/tftp

   Now load both to the device over TFTP:

   # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
   # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin -g 10.42.0.1

   Verify checksums of both images to ensure the transfer over TFTP
   was completed:

   # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin

   And compare it against source images:

   $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7025-squashfs-sysupgrade.bin

   Locate MTD partition of the primary image:

   # grep rcks_wlan.main /proc/mtd

   Now, write the images in place. Write U-boot environment last, so
   unit still can boot from backup image, should power failure occur during
   this. Replace MTD placeholders with real MTD nodes:

   # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
   # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>

   Finally, reboot the device. The device should directly boot into
   OpenWrt. Look for the characteristic power LED blinking pattern.

   # reboot -f

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Boot into OpenWrt initramfs as for initial installation. To do that
   without disassembly, you can write an initramfs image to the device
   using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Concatenate the firmware backups, if you took them during installation using method 2:

   $ cat ruckus_zf7025_fw1_backup.bin ruckus_zf7025_fw2_backup.bin > ruckus_zf7025_backup.bin

3. Write factory images downloaded from manufacturer website into
   fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
   before installation:

   # mtd write ruckus_zf7025_backup.bin /dev/mtd1

4. Reboot the system, it should load into factory firmware again.

Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
- The 2.4 GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid   the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-11-13 22:36:06 +01:00
Will Moss
5a1af6ed62 ath79: fix MAC address assignment for TP-Link ar7241 devices
On TP-Link ar7241 devices LAN and WAN interfaces are swapped. Keeping
that in mind fix MAC address assignment as used in vendor firmware:
LAN MAC - main MAC stored in u-boot and printed on label
WAN MAC - LAN MAC + 1

Signed-off-by: Will Moss <willormos@gmail.com>
2022-11-12 17:10:12 +01:00
Shiji Yang
4778f6e959 ath79: move usb led trigger node to SoC dtsi
These frequently used usb led triggers are universal. They should be
moved to SoC dtsi.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2022-11-12 17:10:12 +01:00
Daniel Golle
e586de8dbf
ath79: add support for Teltonika RUT300
Add support for the Teltonika RUT300 rugged industrial Ethernet router

Hardware
--------
SoC:    Qualcomm Atheros QCA9531
RAM:    64M DDR2 (EtronTech EM68B16CWQK-25IH)
FLASH:  16M SPI-NOR (Winbond W25Q128)
ETH:    4x 100M LAN (QCA9533 internal AR8229 switch, eth0)
        1x 100M WAN (QCA9533 internal PHY, eth1)
UART:   115200 8n1, same debug port as other Teltonika devices
USB:    1 single USB 2.0 host port
BUTTON: Reset
LED:    1x green power LED (always on)
        5x yellow Ethernet port LED (controlled by Linux)
        WAN port LED is used as boot status and upgrade indicator as
        the power LED cannot be controlled in software.

Use the *-factory.bin file to intially flash the device using the
vendor firmware's Web-UI.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-11-10 21:35:34 +00:00
Edward Chow
79107116d1 ath79: calibrate TL-WDR4900 v2 with nvmem-cells
Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration
data from the nvmem subsystem.

This allows us to move the userspace caldata extraction for the pci-e ath9k
supported wifi into the device-tree definition of the device.

wmac's nodes are also changed over to use nvmem-cells over OpenWrt's
custom mtd-cal-data property.

Signed-off-by: Edward Chow <equu@openmail.cc>
2022-11-09 22:55:33 +01:00
Shiji Yang
8d4c22a956 ath79: add missing clock name strings in SoC dtsi
For all SoC in the ath79 target, the PLL controller provides 3 main
clocks "cpu", "ddr" and "ahb" through the input clock "ref".

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2022-11-09 22:55:33 +01:00
Shiji Yang
520c90854c ath79: move reference clock node to SoC dtsi
AR7161, AR724x, AR9132 and QCA95xx only support fixed frequency external
crystal oscillator, so move reference clock node to SoC dtsi files.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2022-11-09 22:55:33 +01:00
Rafał Miłecki
d33e49857e kernel: backport support for "linux,rootfs" in DT
This DT property allows marking flash partition that Linux should use as
a root device. It's useful for devices that don't use U-Boot and cmdline
parser for partitioning. It may be used with "fixed-partitions" or some
dynamic partitioning based on flash content.

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-11-08 09:12:16 +01:00
Alan Luck
aca8bb5cc3 ath79: expand rootfs for DIR-825-B1 with unused space
Expand currently unused flash space to roofs for DIR-825-B1 by using the same
flash space as the old ar71xx big image without moving the caldata.

With some testing this partition is use by the OEM firmware
but if changed is regenerated which allows reverting to OEM firmware

Signed-off-by: Alan Luck <luckyhome2008@gmail.com>
2022-11-06 01:03:16 +01:00
Korey Caro
12cee86989 ath79: add support to TrendNet TEW-673GRU
Add support for the TrendNet TEW-673GRU to ath79.
This device was supported in 19.07.9 but was deprecated with ar71xx.
This is mostly a copy of D-Link DIR-825 B1.
Updates have been completed to enable factory.bin and sysupgrade.bin both.
Code improvements to DTS file and makefile.

Architecture   |  MIPS
Vendor         |  Qualcomm Atheros
bootloader     |  U-Boot
System-On-Chip |  AR7161 rev 2 (MIPS 24Kc V7.4)
CPU/Speed      |  24Kc V7.4 680 MHz
Flash-Chip     |  Macronix MX25L6405D
Flash size     |  8192 KiB
RAM Chip:      |  ProMOS V58C2256164SCI5 × 2
RAM size       |  64 MiB
Wireless       |  2 x Atheros AR922X 2.4GHz/5.0GHz 802.11abgn
Ethernet       |  RealTek RTL8366S Gigabit w/ port based vlan support
USB            |  Yes 2 x 2.0

Initial Flashing Process:
	1) Download 22.03 tew-673gru factory bin
	2) Flash 22.03 using TrendNet GUI

OpenWRT Upgrade Process
	3) Download 22.03 tew-673gru sysupgrade.bin
	4) Flash 22.03 using OpenWRT GUI

Signed-off-by: Korey Caro <korey.caro@gmail.com>
2022-11-06 00:51:58 +01:00
John Audia
1eebe72a80 kernel: bump 5.15 to 5.15.77
Manually rebased:
   bcm27xx/patches-5.15/950-0600-xhci-quirks-add-link-TRB-quirk-for-VL805.patch
   bcm27xx/patches-5.15/950-0606-usb-xhci-add-VLI_TRB_CACHE_BUG-quirk.patch
   bcm27xx/patches-5.15/950-0717-usb-xhci-add-a-quirk-for-Superspeed-bulk-OUT-transfe.patch
   bcm53xx/patches-5.15/180-usb-xhci-add-support-for-performing-fake-doorbell.patch
   lantiq/patches-5.15/0028-NET-lantiq-various-etop-fixes.patch

All other patches automatically rebased

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200
Run-tested: bcm2711/RPi4B, mt7622/RT3200

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-11-05 16:26:38 +01:00
John Audia
87edb650c7 kernel: bump 5.10 to 5.10.153
Manually rebased:
  bcm53xx/patches-5.10/180-usb-xhci-add-support-for-performing-fake-doorbell.patch
  lantiq/patches-5.10/0028-NET-lantiq-various-etop-fixes.patch

All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-11-05 16:26:00 +01:00
Edward Chow
50f727b773 ath79: add support for Linksys EA4500 v3
Add support for the Linksys EA4500 v3 wireless router

Hardware
--------
SoC:    Qualcomm Atheros QCA9558
RAM:    128M DDR2 (Winbond W971GG6KB-25)
FLASH:  128M SPI-NAND (Spansion S34ML01G100TFI00)
WLAN:   QCA9558 3T3R 802.11 bgn
        QCA9580 3T3R 802.11 an
ETH:    Qualcomm Atheros QCA8337
UART:   115200 8n1, same as ea4500 v2
USB:	1 single USB 2.0 host port
BUTTON: Reset - WPS
LED:    1x system-LED
        LEDs besides the ethernet ports are controlled
        by the ethernet switch

MAC Address:
 use        address(sample 1)    source
 label      94:10:3e:xx:xx:6f   caldata@cal_macaddr
 lan        94:10:3e:xx:xx:6f   $label
 wan        94:10:3e:xx:xx:6f   $label
 WiFi4_2G   94:10:3e:xx:xx:70   caldata@cal_ath9k_soc
 WiFi4_5G   94:10:3e:xx:xx:71   caldata@cal_ath9k_pci

Installation from Serial Console
------------

1. Connect to the serial console. Power up the device and interrupt
   autoboot when prompted

2. Connect a TFTP server reachable at 192.168.1.0/24
   (e.g. 192.168.1.66) to the ethernet port. Serve the OpenWrt
   initramfs image as "openwrt.bin"

3. To test OpenWrt only, go to step 4 and never execute step 5;
   To install, auto_recovery should be disabled first, and boot_part
   should be set to 1 if its current value is not.

   ath> setenv auto_recovery no
   ath> setenv boot_part 1
   ath> saveenv

4. Boot the initramfs image using U-Boot

   ath> setenv serverip 192.168.1.66
   ath> tftpboot 0x84000000 openwrt.bin
   ath> bootm

5. Copy the OpenWrt sysupgrade image to the device using scp and
   install it like a normal upgrade (with no need to keeping config
   since no config from "previous OpenWRT installation" could be kept
   at all)

   # sysupgrade -n /path/to/openwrt/sysupgrade.bin

Note: Like many other routers produced by Linksys, it has a dual
      firmware flash layout, but because I do not know how to handle
      it, I decide to disable it for more usable space. (That is why
      the "auto_recovery" above should be disabled before installing
      OpenWRT.) If someone is interested in generating factory
      firmware image capable to flash from stock firmware, as well as
      restoring the dual firmware layout, commented-out layout for the
      original secondary partitions left in the device tree may be a
      useful hint.

Installation from Web Interface
------------

1. Login to the router via its web interface (default password: admin)

2. Find the firmware update interface under "Connectivity/Basic"

3. Choose the OpenWrt factory image and click "Start"

4. If the router still boots into the stock firmware, it means that
   the OpenWrt factory image has been installed to the secondary
   partitions and failed to boot (since OpenWrt on EA4500 v3 does not
   support dual boot yet), and the router switched back to the stock
   firmware on the primary partitions. You have to install a stock
   firmware (e.g. 3.1.6.172023, downloadable from
   https://www.linksys.com/support-article?articleNum=148385 ) first
   (to the secondary partitions) , and after that, install OpenWrt
   factory image (to the primary partitions). After successful
   installation of OpenWrt, auto_recovery will be automatically
   disabled and router will only boot from the primary partitions.

Signed-off-by: Edward Chow <equu@openmail.cc>
2022-10-30 23:14:45 +01:00
John Audia
a34255b795 kernel: bump 5.15 to 5.15.75
Removed upstreamed:
   bcm27xx/patches-5.15/950-0446-drm-vc4-Fix-timings-for-VEC-modes.patch[1]

Manually rebased:
   patches-5.15/950-0600-xhci-quirks-add-link-TRB-quirk-for-VL805.patch
   bcm27xx/patches-5.15/950-0606-usb-xhci-add-VLI_TRB_CACHE_BUG-quirk.patch
   bcm27xx/patches-5.15/950-0717-usb-xhci-add-a-quirk-for-Superspeed-bulk-OUT-transfe.patch
   bcm53xx/patches-5.15/180-usb-xhci-add-support-for-performing-fake-doorbell.patch

All other patches automatically rebased

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.75&id=2810061452f9b748b096ad023d318690ca519aa3

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200
Run-tested: bcm2711/RPi4B, mt7622/RT3200

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-10-30 17:54:59 +01:00
John Audia
aa2fa2eb76 kernel: bump 5.10 to 5.10.150
Manually rebased:
  bcm53xx/patches-5.10/180-usb-xhci-add-support-for-performing-fake-doorbell.patch

All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
[Move gro_skip in 680-NET-skip-GRO-for-foreign-MAC-addresses.patch to old position]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2022-10-30 17:52:42 +01:00
Pavel Kamaev
a716ac5564 ath79: fix reference clock for RouterBoard 912UAG
This fixes reference clock frequency of RB912. 25 MHz frequency leads
to system clock running too fast, uptime incrementing too fast and
delays (like `sleep 10`) returning too early.

Board has quartz with NSK 3KHAA Z 40 000 marking.

Signed-off-by: Pavel Kamaev <pavel@kamaev.me>
2022-10-23 01:45:52 +02:00
Chukun Pan
7b863af180 kernel: move mac-address-ascii patches to generic
This enables other targets to use the mac-address-ascii
feature.

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2022-10-23 01:45:52 +02:00
Petr Štetiar
329b583aad ath79: refresh kernel patches
Refresh dirty patches after commit 711f1a8bcb ("kernel: mtd: backport
SafeLoader parser").

Fixes: 711f1a8bcb ("kernel: mtd: backport SafeLoader parser")
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2022-10-20 09:53:23 +02:00
INAGAKI Hiroshi
48bb71ff28 ath79: improve MAC address configuration of ELECOM devices
Get MAC address of WAN from HW.WAN.MAC.Address in hwconfig partition
instead of calculated one from wlan's address.
And added label_mac.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2022-10-19 22:58:12 +02:00
INAGAKI Hiroshi
961d4230f4 ath79: use NVMEM for wlan caldata on ELECOM devices
Use NVMEM "calibration" implementation for ath9k/ath10k(-ct) on ELECOM
WRC-300GHBK2-I and WRC-1750GHBK2-I/C instead of mtd-cal-data property
or user-space script.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2022-10-19 22:58:12 +02:00
INAGAKI Hiroshi
2e1ffc3412 ath79: use ARTIFACTS for initramfs-factory of ELECOM devices
Use ARTIFACTS to generate factory image of the following ELECOM devices
instead of redundant recipe which generate on KERNEL_INITRAMFS.

- ELECOM WRC-300GHBK2-I
- ELECOM WRC-1750GHBK2-I/C

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2022-10-19 22:58:12 +02:00
Rafał Miłecki
711f1a8bcb kernel: mtd: backport SafeLoader parser
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-10-19 07:07:14 +02:00
John Audia
9110126620 kernel: bump 5.15 to 5.15.72
Removed upstreamed:
  generic/pending-5.15/722-net-mt7531-only-do-PLL-once-after-the-reset.patch[1]
  bcm53xx/patches-5.15/082-v6.0-clk-iproc-Do-not-rely-on-node-name-for-correct-PLL-s.patch[2]

All other patches automatically rebased

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200, mvebu/cortexa72
Run-tested: bcm2711/RPi4B, mt7622/RT3200, mvebu/cortexa72 (RB5009UG+S+IN)

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.72&id=5de02ab84aeca765da0e4d8e999af35325ac67c2
2. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.72&id=ab5c5787ab5ecdc4a7ea20b4ef542579e1beb49d

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-10-09 22:26:16 +02:00
John Audia
e2da6a0a59 kernel: bump 5.10 to 5.10.147
Removed upstreamed:
  bcm53xx/patches-5.10/083-v6.0-clk-iproc-Do-not-rely-on-node-name-for-correct-PLL-s.patch[1]

All other patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.10.147&id=a8e6cde5062fb2aff81f86cc0770591714bee545

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-10-09 22:18:24 +02:00
Tom Herbers
7d6032f310 ath79: fix model name of Extreme Networks WS-AP3805i
Everywhere else the device is referred to as WS-AP3805i,
only the model name wrongly only said AP3805i.

Signed-off-by: Tom Herbers <mail@tomherbers.de>
2022-10-08 01:34:28 +02:00
Robert Meijer
c3b9f00aaa
ath79: increase max tx ring buffer for ag71xx
This allows the user to specify a larger tx ring buffer size via ethtool.
Having symmetrical ring buffer sizes increases throughput on high bandwidth
(1 gbps tested) network connections.

The default value is not changed so the same behaviour is saved.

Signed-off-by: Robert Meijer <robert.s.meijer@gmail.com>
[ improve title, commit description and wrap to 80 columns ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-10-06 16:45:43 +02:00
Santiago Piccinini
2ad949b11d ath79: fix LibreRouter-v1 watchdog and poe_pass
Watchdog and poe_passthrough gpios require the jtag disabled.

Signed-off-by: Santiago Piccinini <spiccinini@altermundi.net>
2022-10-02 11:39:13 +02:00
Olliver Schinagl
ba6096d04b
ath79: Convert incorrect 5.10 and 5.15 patches
OpenWRT's developer guide prefers having actual patches so they an be
sent upstream more easily.

However, in this case, Adding proper fields also allows for `git am` to
properly function. Some of these patches are quite old, and lack much
traceable history.

This commit tries to rectify that, by digging in the history to find
where and how it was first added.

It is by no means perfect and also shows some patches that should have
been long gone.

Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>
2022-10-01 02:47:56 +02:00
Felix Fietkau
36f2ab4bfd kernel: move kernel image cmdline hack to the octeon target
It is the only remaining user of this hack

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2022-09-30 13:13:51 +02:00
Felix Fietkau
4363faef8a kernel: move ubnt ledbar driver to a separate package
Simplifies the tree by removing a non-upstream kernel patch and related kconfig
symbols

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2022-09-30 11:28:51 +02:00
Nick Hainke
579703f38c ath79: switch to 5.15 as default kernel
The 5.15 kernel has new interesting features like MGLRU. Most of the
targets already have added support for testing kernel 5.15 since April
2022. Set 5.15 as default for all subtargets.

Testing support was added here:
- ae6bfb7d67 ("ath79: tiny: add 5.15 support for tiny subtarget")
- 9a0155bc4f ("ath79: add 5.15 support for generic subtarget")
- 5af9aafabb ("ath79: mikrotik: add 5.15 support for mikrotik subtarget")
- f3fa68e515 ("ath79: nand: add 5.15 support for nand subtarget")

Tested on:
- Nanostation M5 XM (tiny)
- TP-Link EAP-225 Outdoor (generic)
- TP-Link CPE210 (generic)

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-09-24 13:04:24 +02:00
Sungbo Eo
deb6f378bf ath79: specify factory.bin recipe for ASUS RP-AC51
Currently factory.bin image recipe of ASUS RP-AC51 is not specified
explicitly and is thus set to the leaked one from the device recipe
right above, i.e. ASUS PL-AC56. Fix it to avoid potential breakage.

Fixes: 416d4483e8 ("ath79: add support for ASUS RP-AC51")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2022-09-18 03:09:19 +09:00
John Audia
b77217d916 kernel: bump 5.10 to 5.10.143
All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-09-17 14:16:37 +02:00
John Audia
fe209fa47d kernel: bump 5.15 to 5.15.68
All patches automatically rebased

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200
Run-tested: bcm2711/RPi4B, mt7622/RT3200

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-09-17 14:16:37 +02:00
Hauke Mehrtens
76fc277917 ath79: Make patches apply again
The patch adding support for LEDs connected to a reset controller did
not apply any more, refresh it on top of current master.

Fixes: 53fc987b25 ("generic: move ledbar driver from mediatek target")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2022-09-11 22:17:47 +02:00
Will Moss
e22ca21daa ath79: add support for TP-Link TL-WR941ND v5
Specifications:
- SoC: ar9341
- RAM: 32M
- Flash: 4M
- Ethernet: 5x FE ports
- WiFi: ar9341-wmac

Flash instruction:
Upload generated factory firmware on vendor's web interface.

This device is very similar to the TL-WR841N v8, only two LED GPIOs are
different.
Buttons configuration is similar to TL-WR842ND v2 but both buttons are
active low.

Signed-off-by: Will Moss <willormos@gmail.com>
2022-09-11 22:00:22 +02:00
Nick French
20581ee8b5 ath79: add support for TP-Link Deco S4
Add support for TP-Link Deco S4 wifi router

The label refers to the device as S4R and the TP-Link firmware
site calls it the Deco S4 v2. (There does not appear to be a v1)

Hardware (and FCC id) are identical to the Deco M4R v2 but the
flash layout is ordered differently and the OEM firmware encrypts
some config parameters (including the label mac address) in flash

In order to set the encrypted mac address, the wlan's caldata
node is removed from the DTS so the mac can be decrypted with
the help of the uencrypt tool and patched into the wlan fw
via hotplug

Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR

UART serial access (115200N1) on board via solder pads:
RX = TP1 pad
TX = TP2 pad
GND = C201 (pad nearest board edge)

The device's bootloader and web gui will only accept images that
were signed using TP-Link's RSA key, however a memory safety bug
in the bootloader can be leveraged to install openwrt without
accessing the serial console. See developer forum S4 support page
for link to a "firmware" file that starts a tftp client, or you
may generate one on your own like this:
```
python - > deco_s4_faux_fw_tftp.bin <<EOF
import sys
from struct import pack

b = pack('>I', 0x00008000) + b'X'*16 + b"fw-type:" \
  + b'x'*256 + b"S000S001S002" + pack('>I', 0x80060200) \

b += b"\x00"*(0x200-len(b)) \
  + pack(">33I", *[0x3c0887fc, 0x35083ddc, 0xad000000, 0x24050000,
                   0x3c048006, 0x348402a0, 0x3c1987f9, 0x373947f4,
                   0x0320f809, 0x00000000, 0x24050000, 0x3c048006,
                   0x348402d0, 0x3c1987f9, 0x373947f4, 0x0320f809,
                   0x00000000, 0x24050000, 0x3c048006, 0x34840300,
                   0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000,
                   0x24050000, 0x3c048006, 0x34840400, 0x3c1987f9,
                   0x373947f4, 0x0320f809, 0x00000000, 0x1000fff1,
                   0x00000000])

b += b"\xff"*(0x2A0-len(b)) + b"setenv serverip 192.168.0.2\x00"
b += b"\xff"*(0x2D0-len(b)) + b"setenv ipaddr 192.168.0.1\x00"
b += b"\xff"*(0x300-len(b)) + b"tftpboot 0x81000000 initramfs-kernel.bin\x00"
b += b"\xff"*(0x400-len(b)) + b"bootm 0x81000000\x00"
b += b"\xff"*(0x8000-len(b))

sys.stdout.buffer.write(b)
EOF
```

Installation:
1. Run tftp server on pc with static ip 192.168.0.2
2. Place openwrt "initramfs-kernel.bin" image in tftp root dir
3. Connect pc to router ethernet port1
4. While holding in reset button on bottom of router, power on router
5. From pc access router webgui at http://192.168.0.1
6. Upload deco_s4_faux_fw_tftp.bin
7. Router will load and execture in-memory openwrt
8. Switch pc back to dhcp or static 192.168.1.x
9. Flash openwrt sysupgrade image via luci/ssh at 192.168.1.1

Revert to stock:
Press and hold reset button while powering device to start the
bootloader's recovery mode, where stock firmware can be uploaded
via web gui at 192.168.0.1

Please note that one additional non-github commits is also needed:
firmware-utils: add tplink-safeloader support for Deco S4

Signed-off-by: Nick French <nickfrench@gmail.com>
2022-09-11 21:54:00 +02:00
Michael Pratt
5df1b33298 ath79: add support for Senao Watchguard AP100
FCC ID: U2M-CAP2100AG

WatchGuard AP100 is an indoor wireless access point with
1 Gb ethernet port, dual-band but single-radio wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP300 v2
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC          MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2
  - AR8035-A EPHY       RGMII GbE with PoE+ IN
  - 25 MHz clock
  - 16 MB FLASH         mx25l12805d
  - 2x 64 MB RAM
  - UART console        J11, populated
  - GPIO watchdog       GPIO 16, 20 sec toggle
  - 2 antennas          5 dBi, internal omni-directional plates
  - 5 LEDs              power, eth0 link/data, 2G, 5G
  - 1 button            reset

**MAC addresses:**

  Label has no MAC
  Only one Vendor MAC address in flash at art 0x0

  eth0 ---- *:e5 art 0x0 -2
  phy0 ---- *:e5 art 0x0 -2

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell

    It may be necessary to use a Watchguard router to flash the image to the AP
    and / or to downgrade the software on the AP to access SSH
    For some Watchguard devices, serial console over UART is disabled.

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  reset button has no function at boot time
  only possible with modified uboot environment,
  (see commit message for Watchguard AP300)

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM reliably

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For AR934x series, the PLL registers for eth0
  can be see in the DTSI as 0x2c.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Steve Wheeler <stephenw10@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
9f6e247854 ath79: add support for Senao WatchGuard AP200
FCC ID: U2M-CAP4200AG

WatchGuard AP200 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP600
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - AR9382 WLAN		PCI card 168c:0030, 5 GHz, 2x2, 26dBm
  - AR8035-A EPHY	RGMII GbE with PoE+ IN
  - 25 MHz clock
  - 16 MB FLASH		mx25l12805d
  - 2x 64 MB RAM
  - UART console        J11, populated
  - GPIO watchdog       GPIO 16, 20 sec toggle
  - 4 antennas          5 dBi, internal omni-directional plates
  - 5 LEDs              power, eth0 link/data, 2G, 5G
  - 1 button            reset

**MAC addresses:**

  Label has no MAC
  Only one Vendor MAC address in flash at art 0x0

  eth0 ---- *:be art 0x0 -2
  phy1 ---- *:bf art 0x0 -1
  phy0 ---- *:be art 0x0 -2

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell

    It may be necessary to use a Watchguard router to flash the image to the AP
    and / or to downgrade the software on the AP to access SSH
    For some Watchguard devices, serial console over UART is disabled.

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  reset button has no function at boot time
  only possible with modified uboot environment,
  (see commit message for Watchguard AP300)

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM reliably

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For AR934x series, the PLL registers for eth0
  can be see in the DTSI as 0x2c.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Steve Wheeler <stephenw10@gmail.com>
Tested-by: John Delaney <johnd@ankco.net>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
146aaeafb7 ath79: add support for Senao WatchGuard AP300
FCC ID: Q6G-AP300

WatchGuard AP300 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9558 SOC		MIPS 74kc, 2.4 GHz WMAC, 3x3
  - QCA9880 WLAN	PCI card 168c:003c, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 32 MB FLASH		S25FL512S
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated
  - GPIO watchdog	GPIO 16, 20 sec toggle
  - 6 antennas		5 dBi, internal omni-directional plates
  - 5 LEDs		power, eth0 link/data, 2G, 5G
  - 1 button		reset

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:3c art 0x0
  phy1 ---- *:3d ---
  phy0 ---- *:3e ---

**Serial console access:**

  For this board, its not certain whether UART is possible
  it is likely that software is blocking console access

  the RX line on the board for UART is shorted to ground by resistor R176
  the resistors R175 and R176 are next to the UART RX pin at J10

  however console output is garbage even after this fix

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell access

    downgrade XTM firewall to v2.0.0.1
    downgrade AP300 firmware: v1.0.1
    remove / unpair AP from controller
    perform factory reset with reset button
    connect ethernet to a computer
    login to OEM webpage with default address / pass: wgwap
    enable SSHD in OEM webpage settings
    access root shell with SSH as user 'root'
    modify uboot environment to automatically try TFTP at boot time
    (see command below)

    rename initramfs-kernel.bin to test.bin
    load test.bin over TFTP (see TFTP recovery)
    (optionally backup all mtdblocks to have flash backup)
    perform a sysupgrade with sysupgrade.bin

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  server ip: 192.168.1.101

  reset button seems to do nothing at boot time...
  only possible with modified uboot environment,
  running this command in the root shell:

  fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi'

  and verify that it is correct with

  fw_printenv

  then, before boot, the device will attempt TFTP from 192.168.1.101
  looking for file 'test.bin'

  to return uboot environment to normal:

  fw_setenv bootcmd 'bootm 0x9f0a0000'

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM
  (see installation method 2)

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Alessandro Kornowski <ak@wski.org>
Tested-by: John Wagner <john@wagner.us.org>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
c107506883 ath79: fix RGMII delay for ar9344 Senao APs
after some trial and error, it was discovered
that by setting TX only delay on the AR8035 PHY
that setting GMAC registers is no longer necessary.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
513f9855e9 ath79: rename an engenius DTSI to generic senao name
Other vendors can use this DTSI, for example, WatchGuard
there are likely several brands that use the same board design
because of outsourcing hardware from Senao.

For example, Watchguard AP300
has the same hardware as Engenius EAP600
so we use ar9344_engenius_exx600.dtsi for that

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Lech Perczak
f1d112ee5a ath79: support Ruckus ZoneFlex 7321
Ruckus ZoneFlex 7321 is a dual-band, single radio 802.11n 2x2 MIMO enterprise
access point. It is very similar to its bigger brother, ZoneFlex 7372.

Hardware highligts:
- CPU: Atheros AR9342 SoC at 533 MHz
- RAM: 64MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi: AR9342 built-in dual-band 2x2 MIMO radio
- Ethernet: single Gigabit Ethernet port through AR8035 gigabit PHY
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7321-U variant.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1 ----------
   |1|x3|4|5|
   ----------

Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

JTAG: Connector H5, unpopulated, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:

------- H5
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------

3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected

Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server,  and removing a single T10 screw,
  but with much less manual steps, and is generally recommended, being
  safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
  work on some rare versions of stock firmware. A more involved, and
  requires installing `mkenvimage` from u-boot-tools package if you
  choose to rebuild your own environment, but can be used without
  disassembly or removal from installation point, if you have the
  credentials.
  If for some reason, size of your sysupgrade image exceeds 13312kB,
  proceed with method [1]. For official images this is not likely to
  happen ever.

[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0x9f040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7321-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7321_fw1_backup.bin
   $ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7321_fw2_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin

[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
   it boots, hold the reset button near Ethernet connectors for 5
   seconds.

1. Connect the device to the network. It will acquire address over DHCP,
   so either find its address using list of DHCP leases by looking for
   label MAC address, or try finding it by scanning for SSH port:

   $ nmap 10.42.0.0/24 -p22

   From now on, we assume your computer has address 10.42.0.1 and the device
   has address 10.42.0.254.

2. Set up a TFTP server on your computer. We assume that TFTP server
   root is at /srv/tftp.

3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
   frmware is pretty ancient and requires enabling HMAC-MD5.

   $ ssh 10.42.0.254 \
   -o UserKnownHostsFile=/dev/null \
   -o StrictHostKeyCheking=no \
   -o MACs=hmac-md5

   Login. User is "super", password is "sp-admin".
   Now execute a hidden command:

   Ruckus

   It is case-sensitive. Copy and paste the following string,
   including quotes. There will be no output on the console for that.

   ";/bin/sh;"

   Hit "enter". The AP will respond with:

   grrrr
   OK

   Now execute another hidden command:

   !v54!

   At "What's your chow?" prompt just hit "enter".
   Congratulations, you should now be dropped to Busybox shell with root
   permissions.

4. Optional, but highly recommended: backup the flash contents before
   installation. At your PC ensure the device can write the firmware
   over TFTP:

   $ sudo touch /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
   $ sudo chmod 666 /srv/tftp/ruckus_zf7321_firmware{1,2}.bin

   Locate partitions for primary and secondary firmware image.
   NEVER blindly copy over MTD nodes, because MTD indices change
   depending on the currently active firmware, and all partitions are
   writable!

   # grep rcks_wlan /proc/mtd

   Copy over both images using TFTP, this will be useful in case you'd
   like to return to stock FW in future. Make sure to backup both, as
   OpenWrt uses bot firmwre partitions for storage!

   # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7321_firmware1.bin -p 10.42.0.1
   # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7321_firmware2.bin -p 10.42.0.1

   When the command finishes, copy over the dump to a safe place for
   storage.

   $ cp /srv/tftp/ruckus_zf7321_firmware{1,2}.bin ~/

5. Ensure the system is running from the BACKUP image, i.e. from
   rcks_wlan.bkup partition or "image 2". Otherwise the installation
   WILL fail, and you will need to access mtd0 device to write image
   which risks overwriting the bootloader, and so is not covered here
   and not supported.

   Switching to backup firmware can be achieved by executing a few
   consecutive reboots of the device, or by updating the stock firmware. The
   system will boot from the image it was not running from previously.
   Stock firmware available to update was conveniently dumped in point 4 :-)

6. Prepare U-boot environment image.
   Install u-boot-tools package. Alternatively, if you build your own
   images, OpenWrt provides mkenvimage in host staging directory as well.
   It is recommended to extract environment from the device, and modify
   it, rather then relying on defaults:

   $ sudo touch /srv/tftp/u-boot-env.bin
   $ sudo chmod 666 /srv/tftp/u-boot-env.bin

   On the device, find the MTD partition on which environment resides.
   Beware, it may change depending on currently active firmware image!

   # grep u-boot-env /proc/mtd

   Now, copy over the partition

   # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1

   Store the stock environment in a safe place:

   $ cp /srv/tftp/u-boot-env.bin ~/

   Extract the values from the dump:

   $ strings u-boot-env.bin | tee u-boot-env.txt

   Now clean up the debris at the end of output, you should end up with
   each variable defined once. After that, set the bootcmd variable like
   this:

   bootcmd=bootm 0x9f040000

   You should end up with something like this:

bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
mtdids=nor0=ar7100-nor0
bootdelay=2
ethact=eth0
filesize=78a000
fileaddr=81000000
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=10.0.0.1
serverip=10.0.0.5
stdin=serial
stdout=serial
stderr=serial

   These are the defaults, you can use most likely just this as input to
   mkenvimage.

   Now, create environment image and copy it over to TFTP root:

   $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
   $ sudo cp u-boot-env.bin /srv/tftp

   This is the same image, gzipped and base64-encoded:

H4sIAAAAAAAAA+3QQW7TQBQAUF8EKRtQI6XtJDS0VJoN4gYcAE3iCbWS2MF2Sss1ORDYqVq6YMEB3rP0
Z/7Yf+aP3/56827VNP16X8Zx3E/Cw8dNuAqDYlxI7bcurpu6a3Y59v3jlzCbz5eLECbt8HbT9Y+HHLvv
x9TdbbpJVVd9vOxWVX05TotVOpZt6nN8qilyf5fKso3hIYTb8JDSEFarIazXQyjLIeRc7PvykNq+iy+T
1F7PQzivmzbcLpYftmfH87G56Wz+/v18sT1r19vu649dqi/2qaqns0W4utmelalPm27I/lac5/p+OluO
NZ+a1JaTz8M3/9hmtT0epmMjVdnF8djXLZx+TJl36TEuTlda93EYQrGpdrmrfuZ4fZPGHzjmp/vezMNJ
MV6n6qumPm06C+MRZb6vj/v4Mk/7HJ+6LarDqXweLsZnXnS5vc9tdXheWRbd0GIdh/Uq7cakOfavsty2
z1nxGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAD+1x9eTkHLAAAEAA==

7. Perform actual installation. Copy over OpenWrt sysupgrade image to
   TFTP root:

   $ sudo cp openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin /srv/tftp

   Now load both to the device over TFTP:

   # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
   # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin -g 10.42.0.1

   Vverify checksums of both images to ensure the transfer over TFTP
   was completed:

   # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin

   And compare it against source images:

   $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin

   Locate MTD partition of the primary image:

   # grep rcks_wlan.main /proc/mtd

   Now, write the images in place. Write U-boot environment last, so
   unit still can boot from backup image, should power failure occur during
   this. Replace MTD placeholders with real MTD nodes:

   # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
   # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>

   Finally, reboot the device. The device should directly boot into
   OpenWrt. Look for the characteristic power LED blinking pattern.

   # reboot -f

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Boot into OpenWrt initramfs as for initial installation. To do that
   without disassembly, you can write an initramfs image to the device
   using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
   fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
   before installation:
   mtd write ruckus_zf7321_fw1_backup.bin /dev/mtd1
   mtd write ruckus_zf7321_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.

Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
- The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid   the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
  execute the following command before booting:
  mw.l 1804006c 40
  And also you need to disable the reset button in device tree if you
  intend to debug Linux, because reset button on GPIO0 shares the TCK
  pin.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-09-11 01:36:25 +02:00
Lech Perczak
59cb4dc91d ath79: support Ruckus ZoneFlex 7372
Ruckus ZoneFlex 7372 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.

Ruckus ZoneFlex 7352 is also supported, lacking the 5GHz radio part.

Hardware highligts:
- CPU: Atheros AR9344 SoC at 560 MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344 built-in 2x2 MIMO radio
- Wi-Fi 5Ghz: AR9582 2x2 MIMO radio (Only in ZF7372)
- Antennas:
  - Separate internal active antennas with beamforming support on both
    bands with 7 elements per band, each controlled by 74LV164 GPIO
    expanders, attached to GPIOs of each radio.
  - Two dual-band external RP-SMA antenna connections on "7372-E"
    variant.
- Ethernet 1: single Gigabit Ethernet port through AR8035 gigabit PHY
- Ethernet 2: single Fast Ethernet port through AR9344 built-in switch
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on "-U" variants.

The same image should support:
- ZoneFlex 7372E (variant with external antennas, without beamforming
  capability)
- ZoneFlex 7352 (single-band, 2.4GHz-only variant).

which are based on same baseboard (codename St. Bernard),
with different populated components.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1
---
|5|
---
|4|
---
|3|
---
|x|
---
|1|
---

Pin 5 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

JTAG: Connector H2, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:

------- H2
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------

3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected

Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server,  and removing a single T10 screw,
  but with much less manual steps, and is generally recommended, being
  safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
  work on some rare versions of stock firmware. A more involved, and
  requires installing `mkenvimage` from u-boot-tools package if you
  choose to rebuild your own environment, but can be used without
  disassembly or removal from installation point, if you have the
  credentials.
  If for some reason, size of your sysupgrade image exceeds 13312kB,
  proceed with method [1]. For official images this is not likely to
  happen ever.

[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0x9f040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7372-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7372_fw1_backup.bin
   $ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7372_fw2_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin

[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
   it boots, hold the reset button near Ethernet connectors for 5
   seconds.

1. Connect the device to the network. It will acquire address over DHCP,
   so either find its address using list of DHCP leases by looking for
   label MAC address, or try finding it by scanning for SSH port:

   $ nmap 10.42.0.0/24 -p22

   From now on, we assume your computer has address 10.42.0.1 and the device
   has address 10.42.0.254.

2. Set up a TFTP server on your computer. We assume that TFTP server
   root is at /srv/tftp.

3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
   frmware is pretty ancient and requires enabling HMAC-MD5.

   $ ssh 10.42.0.254 \
   -o UserKnownHostsFile=/dev/null \
   -o StrictHostKeyCheking=no \
   -o MACs=hmac-md5

   Login. User is "super", password is "sp-admin".
   Now execute a hidden command:

   Ruckus

   It is case-sensitive. Copy and paste the following string,
   including quotes. There will be no output on the console for that.

   ";/bin/sh;"

   Hit "enter". The AP will respond with:

   grrrr
   OK

   Now execute another hidden command:

   !v54!

   At "What's your chow?" prompt just hit "enter".
   Congratulations, you should now be dropped to Busybox shell with root
   permissions.

4. Optional, but highly recommended: backup the flash contents before
   installation. At your PC ensure the device can write the firmware
   over TFTP:

   $ sudo touch /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
   $ sudo chmod 666 /srv/tftp/ruckus_zf7372_firmware{1,2}.bin

   Locate partitions for primary and secondary firmware image.
   NEVER blindly copy over MTD nodes, because MTD indices change
   depending on the currently active firmware, and all partitions are
   writable!

   # grep rcks_wlan /proc/mtd

   Copy over both images using TFTP, this will be useful in case you'd
   like to return to stock FW in future. Make sure to backup both, as
   OpenWrt uses bot firmwre partitions for storage!

   # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7372_firmware1.bin -p 10.42.0.1
   # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7372_firmware2.bin -p 10.42.0.1

   When the command finishes, copy over the dump to a safe place for
   storage.

   $ cp /srv/tftp/ruckus_zf7372_firmware{1,2}.bin ~/

5. Ensure the system is running from the BACKUP image, i.e. from
   rcks_wlan.bkup partition or "image 2". Otherwise the installation
   WILL fail, and you will need to access mtd0 device to write image
   which risks overwriting the bootloader, and so is not covered here
   and not supported.

   Switching to backup firmware can be achieved by executing a few
   consecutive reboots of the device, or by updating the stock firmware. The
   system will boot from the image it was not running from previously.
   Stock firmware available to update was conveniently dumped in point 4 :-)

6. Prepare U-boot environment image.
   Install u-boot-tools package. Alternatively, if you build your own
   images, OpenWrt provides mkenvimage in host staging directory as well.
   It is recommended to extract environment from the device, and modify
   it, rather then relying on defaults:

   $ sudo touch /srv/tftp/u-boot-env.bin
   $ sudo chmod 666 /srv/tftp/u-boot-env.bin

   On the device, find the MTD partition on which environment resides.
   Beware, it may change depending on currently active firmware image!

   # grep u-boot-env /proc/mtd

   Now, copy over the partition

   # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1

   Store the stock environment in a safe place:

   $ cp /srv/tftp/u-boot-env.bin ~/

   Extract the values from the dump:

   $ strings u-boot-env.bin | tee u-boot-env.txt

   Now clean up the debris at the end of output, you should end up with
   each variable defined once. After that, set the bootcmd variable like
   this:

   bootcmd=bootm 0x9f040000

   You should end up with something like this:

bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
bootdelay=2
mtdids=nor0=ar7100-nor0
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
ethact=eth0
filesize=1000000
fileaddr=81000000
ipaddr=192.168.0.7
serverip=192.168.0.51
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
stdin=serial
stdout=serial
stderr=serial

   These are the defaults, you can use most likely just this as input to
   mkenvimage.

   Now, create environment image and copy it over to TFTP root:

   $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
   $ sudo cp u-boot-env.bin /srv/tftp

   This is the same image, gzipped and base64-encoded:

H4sIAAAAAAAAA+3QTW7TQBQAYB+AQ2TZSGk6Tpv+SbNBrNhyADSJHWolsYPtlJaDcAWOCXaqQhdIXOD7
Fm/ee+MZ+/nHu58fV03Tr/dFHNf9JDzdbcJVGGRjI7Vfurhu6q7ZlbHvnz+FWZ4vFyFM2mF30/XPhzJ2
X4+pe9h0k6qu+njRrar6YkyzVToWberL+HImK/uHVBRtDE8h3IenlIawWg1hvR5CUQyhLE/vLcpdeo6L
bN8XVdHFumlDTO1NHsL5mI/9Q2r7Lv5J3uzeL5bX27Pj+XjRdJZfXuaL7Vm73nafv+1SPd+nqp7OFuHq
dntWpD5tuqH6e+K8rB+ns+V45n2T2mLyYXjmH9estsfD9DTSuo/DErJNtSu76vswbjg5NU4D3752qsOp
zu8W8/z6dh7mN1lXto9lWx3eNJd5Ng5V9VVTn2afnSYuysf6uI9/8rQv48s3Z93wn+o4XFWl3Vg0x/5N
Vbbta5X9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAID/+Q2Z/B7cAAAEAA==

7. Perform actual installation. Copy over OpenWrt sysupgrade image to
   TFTP root:

   $ sudo cp openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin /srv/tftp

   Now load both to the device over TFTP:

   # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
   # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin -g 10.42.0.1

   Verify checksums of both images to ensure the transfer over TFTP
   was completed:

   # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin

   And compare it against source images:

   $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin

   Locate MTD partition of the primary image:

   # grep rcks_wlan.main /proc/mtd

   Now, write the images in place. Write U-boot environment last, so
   unit still can boot from backup image, should power failure occur during
   this. Replace MTD placeholders with real MTD nodes:

   # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
   # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>

   Finally, reboot the device. The device should directly boot into
   OpenWrt. Look for the characteristic power LED blinking pattern.

   # reboot -f

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Boot into OpenWrt initramfs as for initial installation. To do that
   without disassembly, you can write an initramfs image to the device
   using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
   fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
   before installation:
   mtd write ruckus_zf7372_fw1_backup.bin /dev/mtd1
   mtd write ruckus_zf7372_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.

Quirks and known issues:
- This is first device in ath79 target to support link state reporting
  on FE port attached trough the built-in switch.
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
  The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid   the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
  execute the following command before booting:
  mw.l 1804006c 40
  And also you need to disable the reset button in device tree if you
  intend to debug Linux, because reset button on GPIO0 shares the TCK
  pin.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014
- Stock firmware has beamforming functionality, known as BeamFlex,
  using active multi-segment antennas on both bands - controlled by
  RF analog switches, driven by a pair of 74LV164 shift registers.
  Shift registers used for each radio are connected to GPIO14 (clock)
  and GPIO15 of the respective chip.
  They are mapped as generic GPIOs in OpenWrt - in stock firmware,
  they were most likely handled directly by radio firmware,
  given the real-time nature of their control.
  Lack of this support in OpenWrt causes the antennas to behave as
  ordinary omnidirectional antennas, and does not affect throughput in
  normal conditions, but GPIOs are available to tinker with nonetheless.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-09-11 01:36:25 +02:00