The new 'conditional' method simplifies the typical use case for
'Constructible' objects where the constructed/destructed state depends
on a configuration parameter. The method alleviates the need to
re-implement the logic again and again.
The patch also removes the 'Reconstructible' constructor arguments
because they are unused.
Fixes#3006
Previously, the trace control of a thread was initialized in its
constructor (which is generic for all components). This has the
disadvantage that the CPU-session-pointer member of the thread might not
be valid at this point. And it cannot be replaced by using the
"deprecated_env" CPU session neither as constructing the deprecated
environment in causes troubles in Core. But as the trace control
shouldn't be needed in Core anyway, the initialization can be moved to
the Thread::start implementation of non-core components. This code
already takes care of the CPU session pointer.
Fixes#2901
The sinfo API now also exports PCI devices without logical IRQs.
Therefore, explicitly check interrupt count in get_msi_params() function
and ignore such devices.
- Use latest Muen version
- Sync VirtualBox Muen subject state
- Drop unneccessary subject IP patch
- Adapt Muen RUN_OPTs
- Update documentation
Note: the GPL 2017 toolchain is now required and as the debug output
format has changed the mulog-subject.py script must be updated on
autopilot instances.
AVL trees can't be copied with the default copy constructor as the
parent pointer of the first item of both of the resulting trees would
point to the original tree. Copying an AVL node, however, generally
violates the integrity of the corresponding tree. The copy constructor
of Avl_tree is used in some places but in those places it can be
replaced easily. So, this commit deletes the copy constructor of
Avl_node_base which makes Avl_node and Avl_tree non-copyable.
Issue #2654
The patch adjust the code of the base, base-<kernel>, and os repository.
To adapt existing components to fix violations of the best practices
suggested by "Effective C++" as reported by the -Weffc++ compiler
argument. The changes follow the patterns outlined below:
* A class with virtual functions can no longer publicly inherit base
classed without a vtable. The inherited object may either be moved
to a member variable, or inherited privately. The latter would be
used for classes that inherit 'List::Element' or 'Avl_node'. In order
to enable the 'List' and 'Avl_tree' to access the meta data, the
'List' must become a friend.
* Instead of adding a virtual destructor to abstract base classes,
we inherit the new 'Interface' class, which contains a virtual
destructor. This way, single-line abstract base classes can stay
as compact as they are now. The 'Interface' utility resides in
base/include/util/interface.h.
* With the new warnings enabled, all member variables must be explicitly
initialized. Basic types may be initialized with '='. All other types
are initialized with braces '{ ... }' or as class initializers. If
basic types and non-basic types appear in a row, it is nice to only
use the brace syntax (also for basic types) and align the braces.
* If a class contains pointers as members, it must now also provide a
copy constructor and assignment operator. In the most cases, one
would make them private, effectively disallowing the objects to be
copied. Unfortunately, this warning cannot be fixed be inheriting
our existing 'Noncopyable' class (the compiler fails to detect that
the inheriting class cannot be copied and still gives the error).
For now, we have to manually add declarations for both the copy
constructor and assignment operator as private class members. Those
declarations should be prepended with a comment like this:
/*
* Noncopyable
*/
Thread(Thread const &);
Thread &operator = (Thread const &);
In the future, we should revisit these places and try to replace
the pointers with references. In the presence of at least one
reference member, the compiler would no longer implicitly generate
a copy constructor. So we could remove the manual declaration.
Issue #465
This is necessary because in contrast to the zynq boards (see specs in genode-world), only zynq_qemu uses UART_0.
These files should thus fall under the zynq_qemu spec.
Fixes#2615
Instead of changing the attributes (e.g., Xd bit) of the top-level page-tables,
set them to allow everything. Only leafs of the paging hierarchy are set
according to the paging attributes given by core. Otherwise, top-level page-
table attributes are changed during lifetime, which requires a TLB flush
operation (not intended in the semantic of the kernel/core).
This led to problems when using the non-executable features introduced by
issue #1723 in the recent past.
Recent work related to issue 1723 showed that there is potential
to get rid of code duplication in MMU fault handling especially
with regard to ARM cpus.
* Instead of always re-load page-tables when a thread context is switched
only do this when another user PD's thread is the next target,
core-threads are always executed within the last PD's page-table set
* remove the concept of the mode transition
* instead map the exception vector once in bootstrap code into kernel's
memory segment
* when a new page directory is constructed for a user PD, copy over the
top-level kernel segment entries on RISCV and X86, on ARM we use a designated
page directory register for the kernel segment
* transfer the current CPU id from bootstrap to core/kernel in a register
to ease first stack address calculation
* align cpu context member of threads and vms, because of x86 constraints
regarding the stack-pointer loading
* introduce Align_at template for members with alignment constraints
* let the x86 hardware do part of the context saving in ISS, by passing
the thread context into the TSS before leaving to user-land
* use one exception vector for all ARM platforms including Arm_v6
Fix#2091
* introduce new syscall (core-only) to create privileged threads
* take the privilege level of the thread into account
when doing a context switch
* map kernel segment as accessable for privileged code only
Ref #2091
Always switch to the "exception stack" instead of having a hardware initiated
stack switch during exceptions/interrupts when the privilege level changes only.
Moreover, this commit increases the exception stack slightly.
Ref #2091
* introduces central memory map for core/kernel
* on 32-bit platforms the kernel/core starts at 0x80000000
* on 64-bit platforms the kernel/core starts at 0xffffffc000000000
* mark kernel/core mappings as global ones (tagged TLB)
* move the exception vector to begin of core's binary,
thereby bootstrap knows from where to map it appropriately
* do not map boot modules into core anymore
* constrain core's virtual heap memory area
* differentiate in between user's and core's main thread's UTCB,
which now resides inside the kernel segment
Ref #2091
In the past, a signal context, that was chosen for handling by
'Signal_receiver::pending_signal and always triggered again before
the next call of 'pending_signal', caused all other contexts behind
in the list to starve. This was the case because 'pending_signal'
always took the first pending context in its context list.
We avoid this problem now by handling pending signals in a round-robin
fashion instead.
Ref #2532
Some x86 machines do have a LAPIC speed < 1000 ticks per millisecond
when configured to use the maximum divider (as it was always the case).
But we need microseconds precision for the timeout framework. Thus,
reduce the divider dynamically until the frequency fullfills our
requirements.
Ref #2400
There are hardware timers whose frequency can't be expressed as
ticks-per-microsecond integer-value because only a ticks-per-millisecond
integer-value is precise enough. We don't want to use expensive
floating-point values here but nonetheless want to translate from ticks
to time with microseconds precision. Thus, we split the input in two and
translate both parts separately. This way, we can raise precision by
shifting the values to their optimal bit position. Afterwards, the results
are shifted back and merged together again.
As this algorithm is not so trivial anymore and used by at least three
timer drivers (base-hw/x86_64, base-hw/cortex_a9, timer/pit), move it to a
generic header to avoid redundancy.
Ref #2400
Due to the simplicity of the algorithm that translated from timer ticks
to time, we lost microseconds precision although the timer allows for it.
Ref #2400
When running core as the kernel inside every component, a separate
stack area for core is needed that is different from the user-land
component's one.
Ref #2091
For most base platforms (except linux and sel4), the initialization of
boot modules is the same. Thus, merge this default implementation in the
new unit base/src/core/platform_rom_modules.cc.
Ref #2490
The kernel timer on RPI is able to measure time microseconds-precise.
Howeer, due to a bug, we dropped precision during the ticks-to-time
translation and return only milliseconds-precise time.
Ref #2400
rm_fault.run triggers write on read-only ROM provided by core, which
fails without this patch:
arm - "raised unhandled data abort"
x86 - (silent/invisible) busy loop because write fault gets never resolved
A bug in the timer-ticks-to-microseconds translation of the kernel timer
caused the user time to periodically get stuck for about 32 milliseconds
and then jump forward to the normal level again.
Ref #2400
The recently implemented capability resource trading scheme unfortunately
broke the automated capability memory upgrade mechanism needed by base-hw
kernel/core. This commit splits the capability memory upgrade mechanism
from the PD session ram_quota upgrade, and moves that functionality
into a separate Pd_session::Native_pd interface.
Ref #2398
On ARM, we do not have a component-local hardware time-source. The ARM
performance counter has no reliable frequency as the ARM idle command
halts the counter. Thus, we do not do local time interpolation on ARM.
Except we're on the HW kernel. In this case we can read out the kernel
time instead.
Ref #2435
By separating the session-interface concerns from the mechanics of the
dataspace creation, the code becomes simpler to follow, and the RAM
session can be more easily merged with the PD session in a subsequent
step.
Issue #2407
This patch allows core's 'Signal_transmitter' implementation to sidestep
the 'Env::Pd' interface and thereby adhere to a stricter layering within
core. The 'Signal_transmitter' now uses - on kernels that depend on it -
a dedicated (and fairly freestanding) RPC proxy mechanism for signal
deliver, instead of channeling signals through the 'Pd_session::submit'
RPC function.
Previously, the Genode::Timer::curr_time always used the
Timer_session::elapsed_ms RPC as back end. Now, Genode::Timer reads
this remote time only in a periodic fashion independently from the calls
to Genode::Timer::curr_time. If now one calls Genode::Timer::curr_time,
the function takes the last read remote time value and adapts it using
the timestamp difference since the remote-time read. The conversion
factor from timestamps to time is estimated on every remote-time read
using the last read remote-time value and the timestamp difference since
the last remote time read.
This commit also re-works the timeout test. The test now has two stages.
In the first stage, it tests fast polling of the
Genode::Timer::curr_time. This stage checks the error between locally
interpolated and timer-driver time as well as wether the locally
interpolated time is monotone and sufficiently homogeneous. In the
second stage several periodic and one-shot timeouts are scheduled at
once. This stage checks if the timeouts trigger sufficiently precise.
This commit adds the new Kernel::time syscall to base-hw. The syscall is
solely used by the Genode::Timer on base-hw as substitute for the
timestamp. This is because on ARM, the timestamp function uses the ARM
performance counter that stops counting when the WFI (wait for
interrupt) instruction is active. This instruction, however is used by
the base-hw idle contexts that get active when no user thread needs to
be scheduled. Thus, the ARM performance counter is not a good choice for
time interpolation and we use the kernel internal time instead.
With this commit, the timeout library becomes a basic library. That means
that it is linked against the LDSO which then provides it to the program it
serves. Furthermore, you can't use the timeout library anymore without the
LDSO because through the kernel-dependent LDSO make-files we can achieve a
kernel-dependent timeout implementation.
This commit introduces a structured Duration type that shall successively
replace the use of Microseconds, Milliseconds, and integer types for duration
values.
Open issues:
* The timeout test fails on Raspberry PI because of precision errors in the
first stage. However, this does not render the framework unusable in general
on the RPI but merely is an issue when speaking of microseconds precision.
* If we run on ARM with another Kernel than HW the timestamp speed may
continuously vary from almost 0 up to CPU speed. The Timer, however,
only uses interpolation if the timestamp speed remained stable (12.5%
tolerance) for at least 3 observation periods. Currently, one period is
100ms, so its 300ms. As long as this is not the case,
Timer_session::elapsed_ms is called instead.
Anyway, it might happen that the CPU load was stable for some time so
interpolation becomes active and now the timestamp speed drops. In the
worst case, we would now have 100ms of slowed down time. The bad thing
about it would be, that this also affects the timeout of the period.
Thus, it might "freeze" the local time for more than 100ms.
On the other hand, if the timestamp speed suddenly raises after some
stable time, interpolated time can get too fast. This would shorten the
period but nonetheless may result in drifting away into the far future.
Now we would have the problem that we can't deliver the real time
anymore until it has caught up because the output of Timer::curr_time
shall be monotone. So, effectively local time might "freeze" again for
more than 100ms.
It would be a solution to not use the Trace::timestamp on ARM w/o HW but
a function whose return value causes the Timer to never use
interpolation because of its stability policy.
Fixes#2400
With this, we get rid of platform specific timer interfaces. The new
Timer class does the same as the old Clock class and has a generic
interface. The old Timer class was merely used by the old Clock class.
Also, we get rid of having only one timer instance which we tell with
each method call for which CPU it shall be done. Instead now each Cpu
object has its own Timer member that knows the CPU it works for.
Also, rename all "tics" to "ticks".
Fixes#2347
Previously we did write the SPSR via an MSR instruction without
additional flags. Unfortunately, this tells the CPU to write the
register only partially. This often isn't a problem as the users PSR
reset value normally is conform to our expectations but in some cases
(e.g. PSR endianess bit on WandBoard core #4) the reset value is bad.
Thus, we have to add the CXSF flags (access Control + eXtension + Status
+ Flags) so the CPU overwrites the entire register.
Fixes#2254
This patch reduces the number of exception types by facilitating
globally defined exceptions for common usage patterns shared by most
services. In particular, RPC functions that demand a session-resource
upgrade not longer reflect this condition via a session-specific
exception but via the 'Out_of_ram' or 'Out_of_caps' types.
Furthermore, the 'Parent::Service_denied', 'Parent::Unavailable',
'Root::Invalid_args', 'Root::Unavailable', 'Service::Invalid_args',
'Service::Unavailable', and 'Local_service::Factory::Denied' types have
been replaced by the single 'Service_denied' exception type defined in
'session/session.h'.
This consolidation eases the error handling (there are fewer exceptions
to handle), alleviates the need to convert exceptions along the
session-creation call chain, and avoids possible aliasing problems
(catching the wrong type with the same name but living in a different
scope).
This patch mirrors the accounting and trading scheme that Genode employs
for physical memory to the accounting of capability allocations.
Capability quotas must now be explicitly assigned to subsystems by
specifying a 'caps=<amount>' attribute to init's start nodes.
Analogously to RAM quotas, cap quotas can be traded between clients and
servers as part of the session protocol. The capability budget of each
component is maintained by the component's corresponding PD session at
core.
At the current stage, the accounting is applied to RPC capabilities,
signal-context capabilities, and dataspace capabilities. Capabilities
that are dynamically allocated via core's CPU and TRACE service are not
yet covered. Also, the capabilities allocated by resource multiplexers
outside of core (like nitpicker) must be accounted by the respective
servers, which is not covered yet.
If a component runs out of capabilities, core's PD service prints a
warning to the log. To observe the consumption of capabilities per
component in detail, the PD service is equipped with a diagnostic
mode, which can be enabled via the 'diag' attribute in the target
node of init's routing rules. E.g., the following route enables the
diagnostic mode for the PD session of the "timer" component:
<default-route>
<service name="PD" unscoped_label="timer">
<parent diag="yes"/>
</service>
...
</default-route>
For subsystems based on a sub-init instance, init can be configured
to report the capability-quota information of its subsystems by
adding the attribute 'child_caps="yes"' to init's '<report>'
config node. Init's own capability quota can be reported by adding
the attribute 'init_caps="yes"'.
Fixes#2398
This patch replaces the 'Parent::Quota_exceeded',
'Service::Quota_exceeded', and 'Root::Quota_exceeded' exceptions
by the single 'Insufficient_ram_quota' exception type.
Furthermore, the 'Parent' interface distinguished now between
'Out_of_ram' (the child's RAM is exhausted) from
'Insufficient_ram_quota' (the child's RAM donation does not suffice to
establish the session).
This eliminates ambiguities and removes the need to convert exception
types along the path of the session creation.
Issue #2398
This patch upgrades the cap-space slab only if the kernel runs out of
entries, instead of consuming as much PD-session quota as possible.
Until now, the behavior worked well because the cap-space slab was the
only consumer of PD-session quota. However, once we start accounting all
PD session meta data - and eventually merging the PD and RAM services -
the aggressive scheme stands in the way.
Issue #2398
This commit moves the headers residing in `repos/base/include/spec/*/drivers`
to `repos/base/include/drivers/defs` or repos/base/include/drivers/uart`
respectively. The first one contains definitions about board-specific MMIO
iand RAM addresses, or IRQ lines. While the latter contains device driver
code for UART devices. Those definitions are used by driver implementations
in `repos/base-hw`, `repos/os`, and `repos/dde-linux`, which now need to
include them more explicitely.
This work is a step in the direction of reducing 'SPEC' identifiers overall.
Ref #2403
In order to deliver base-hw as a binary archive, we need to install the
bootstap.o file to bin/. Since bin/ is a global name space shared by all
kernels, this patch renames the object file to bootstap-hw.o and thereby
clarifies the association of the file with base-hw.
By installing the core object to bin/, we follow the same convention as
for regular binaries. This, in turn, enables us to ship core in a
regular binary archive. The patch also adjusts the run tool to pick up
the core object from bin/ for the final linking stage.
The size of the whole table and table entries were exchanged for PML4,
leading to out-of-bound accesses for addesses >= 2^39. Some constants
were lacking type suffixes causing integer overflows.
Added assertions to catch out-of-bound accesses early on.
Fixes#2210Fixes#2211
If we do the tics-to-us translation with one division and multiplication
over the whole argument, like before, we loose microseconds granularity
although the timer frequency allows for such granularity. Thus, we treat
the most significant half and the least significant half of the tics
value separate. Each half is shifted to the best bit position for the
translation, then translated, and then shifted back.
Ref #2347
Previously we pre-calculated the translation errors for the session
quota to make a discret check in the test. But since the order, in which
init childs get their CPU quota isn't always the same anymore (we should
have never made assumptions about that) the translation errors differ
from trial to trial. However, the errors are below 0.01% of the super
period. We now tolerate them in the run script.
Ref #2304
* Acknowledge receive of page-fault signal with ack_signal,
but restart thread execution separately
* use kill_signal_context when disolving a pager_object to prevent race
* Remove bureaucracy in form of Thread_event and Signal_ack_handler
* remove dead code in riscv, namely Thread_base definition
* translation_table_insertions function for ARM drops out,
which was overcautious
There was a race when the component entrypoint wanted to do
'wait_and_dispatch_one_signal'. In this function it raises a flag for
the signal proxy thread to notice that the entrypoint also wants to
block for signals. When the flag is set and the signal proxy wakes up
with a new signal, it tried to cancel the blocking of the entrypoint.
However, if the entrypoint had not reached the signal blocking at this
point, the cancel blocking failed without a solution. Now, the new
Kernel::cancel_next_signal_blocking call solves the problem by storing a
request to cancel the next signal blocking of a thread immediately
without blocking itself.
Ref #2284
There existed a race when 'wait_and_dispatch_one_signal' is called form
a RPC context, because the 'signal_proxy' or 'main' will block and the
signal semaphore, when the EP then calls 'wait_and_dispatch_one_signal',
the signal proxy is woken up ands sends an RPC to the EP, leading to a
dead lock if no further signal arrive, because the EP will then remain
blocked in the signal semaphore.
Therefore, for this case, the signal proxy will now perform a semaphore
up operation and does not perform an RPC if the EP is within
'wait_and_dispatch_one_signal'.
Put the initialization of the cpu cores, setup of page-tables, enabling of
MMU and caches into a separate component that is only used to bootstrap
the kernel resp. core.
Ref #2092
This patch enables warnings if one of the deprecate functions that rely
in the implicit use of the global Genode::env() accessor are called.
For the time being, some places within the base framework continue
to rely on the global function while omitting the warning by calling
'env_deprecated' instead of 'env'.
Issue #1987
This aspect was always enabled when creating a build directory for hw,
but is not enabled anymore due to recent build directory unifications.
On the other hand it is needed for jitter entropy anyway.
Ref #2190
This commit mostly removes the globally visible NR_OF_CPUS define
from the global makefile specifiers defined in the base-hw repository.
Whereever necessary it adds platform specific makefiles to the base
repository when they were missing.
Ref #2190
This patch make the ABI mechanism available to shared libraries other
than Genode's dynamic linker. It thereby allows us to introduce
intermediate ABIs at the granularity of shared libraries. This is useful
for slow-moving ABIs such as the libc's interface but it will also
become handy for the package management.
To implement the feature, the build system had to be streamlined a bit.
In particular, archive dependencies and shared-lib dependencies are now
handled separately, and the global list of 'SHARED_LIBS' is no more.
Now, the variable with the same name holds the per-target list of shared
libraries used by the target.
This patch removes the component_entry_point library, which used to
proved a hook for the libc to intercept the call of the
'Component::construct' function. The mechansim has several shortcomings
(see the discussion in the associated issue) and was complex. So we
eventually discarded the approach in favor of the explicit handling of
the startup.
A regular Genode component provides a 'Component::construct' function,
which is determined by the dynamic linker via a symbol lookup.
For the time being, the dynamic linker falls back to looking up a 'main'
function if no 'Component::construct' function could be found.
The libc provides an implementation of 'Component::construct', which
sets up the libc's task handling and finally call the function
'Libc::Component::construct' from the context of the appllication task.
This function is expected to be provided by the libc-using application.
Consequently, Genode components that use the libc have to implement the
'Libc::Component::construct' function.
The new 'posix' library provides an implementation of
'Libc::Component::construct' that calls a main function. Hence, POSIX
programs that merely use the POSIX API merely have to add 'posix' to the
'LIBS' declaration in their 'target.mk' file. Their execution starts at
'main'.
Issue #2199
This patch removes possible ambiguities with respect to the naming of
kernel-dependent binaries and libraries. It also removes the use of
kernel-specific global side effects from the build system. The reach of
kernel-specific peculiarities has thereby become limited to the actual
users of the respective 'syscall-<kernel>' libraries.
Kernel-specific build artifacts are no longer generated at magic places
within the build directory (like okl4's includes, or the L4 build
directories of L4/Fiasco and Fiasco.OC, or the build directories of
various kernels). Instead, such artifacts have been largely moved to the
libcache. E.g., the former '<build-dir>/l4/' build directory for the L4
build system resides at '<build-dir>/var/libcache/syscall-foc/build/'.
This way, the location is unique to the kernel. Note that various tools
are still generated somewhat arbitrarily under '<build-dir>/tool/' as
there is no proper formalism for building host tools yet.
As the result of this work, it has become possible to use a joint Genode
build directory that is usable with all kernels of a given hardware
platform. E.g., on x86_32, one can now seamlessly switch between linux,
nova, sel4, okl4, fiasco, foc, and pistachio without rebuilding any
components except for core, the kernel, the dynamic linker, and the timer
driver. At the current stage, such a build directory must still be
created manually. A change of the 'create_builddir' tool will follow to
make this feature easily available.
This patch also simplifies various 'run/boot_dir' plugins by removing
the option for an externally hosted kernel. This option remained unused
for many years now.
Issue #2190
This patch decouples the kernel-specific implementation of the dynamic
linker from its kernel-agnostic binary interface. The name of the
kernel-specific dynamic linker binary now corresponds to the kernel,
e.g., 'ld-linux.lib.so' or 'ld-nova.lib.so'. Applications are no longer
linked directly against a concrete instance of the dynamic linker but
against a shallow stub called 'ld.lib.so'. This stub contains nothing
but the symbols provided by the dynamic linker. It thereby represents
the Genode ABI.
At system-integration time, the kernel-specific run/boot_dir back ends
integrate the matching the kernel-specific variant of the dynamic linker
as 'ld.lib.so' into the boot image.
The ABI symbol file for the dynamic linker is located at
'base/lib/symbols/ld'. It contains the joint ABI of all supported
architectures. The new utility 'tool/abi_symbols' eases the creation of
such an ABI symbol file for a given shared library. Its result should be
manually inspected and edited as needed.
The patch removes the 'syscall' library from 'base_libs.mk' to avoid
polluting the kernel-agnostic ABI with kernel-specific interfaces.
Issue #2190
Issue #2195
This cleans up the syscalls that are mainly used to control the
scheduling readiness of a thread. The different use cases and
requirements were somehow mixed together in the previous interface. The
new syscall set is:
1) pause_thread and resume_thread
They don't affect the state of the thread (IPC, signalling, etc.) but
merely decide wether the thread is allowed for scheduling or not, the
so-called pause state. The pause state is orthogonal to the thread state
and masks it when it comes to scheduling. In contrast to the stopped
state, which is described in "stop_thread and restart_thread", the
thread state and the UTCB content of a thread may change while in the
paused state. However, the register state of a thread doesn't change
while paused. The "pause" and "resume" syscalls are both core-restricted
and may target any thread. They are used as back end for the CPU session
calls "pause" and "resume". The "pause/resume" feature is made for
applications like the GDB monitor that transparently want to stop and
continue the execution of a thread no matter what state the thread is
in.
2) stop_thread and restart_thread
The stop syscall can only be used on a thread in the non-blocking
("active") thread state. The thread then switches to the "stopped"
thread state in wich it explicitely waits for a restart. The restart
syscall can only be used on a thread in the "stopped" or the "active"
thread state. The thread then switches back to the "active" thread state
and the syscall returns whether the thread was stopped. Both syscalls
are not core-restricted. "Stop" always targets the calling thread while
"restart" may target any thread in the same PD as the caller. Thread
state and UTCB content of a thread don't change while in the stopped
state. The "stop/restart" feature is used when an active thread wants to
wait for an event that is not known to the kernel. Actually the syscalls
are used when waiting for locks and on thread exit.
3) cancel_thread_blocking
Does cleanly cancel a cancelable blocking thread state (IPC, signalling,
stopped). The thread whose blocking was cancelled goes back to the
"active" thread state. It may receive a syscall return value that
reflects the cancellation. This syscall doesn't affect the pause state
of the thread which means that it may still not get scheduled. The
syscall is core-restricted and may target any thread.
4) yield_thread
Does its best that a thread is scheduled as few as possible in the
current scheduling super-period without touching the thread or pause
state. In the next superperiod, however, the thread is scheduled
"normal" again. The syscall is not core-restricted and always targets
the caller.
Fixes#2104
The initial stack is solely used to initialize the Genode environment
along with the application stack located in the stack area. It never
executes application code. Hence, we can make it small. To check that it
is not dimensioned too small, the patch introduces a sanity check right
before switching to the application stack.
This is a redesign of the root and parent interfaces to eliminate
blocking RPC calls.
- New session representation at the parent (base/session_state.h)
- base-internal root proxy mechanism as migration path
- Redesign of base/service.h
- Removes ancient 'Connection::KEEP_OPEN' feature
- Interface change of 'Child', 'Child_policy', 'Slave', 'Slave_policy'
- New 'Slave::Connection'
- Changed child-construction procedure to be compatible with the
non-blocking parent interface and to be easier to use
- The child's initial LOG session, its binary ROM session, and the
linker ROM session have become part of the child's envirenment.
- Session upgrading must now be performed via 'env.upgrade' instead
of performing a sole RPC call the parent. To make RAM upgrades
easier, the 'Connection' provides a new 'upgrade_ram' method.
Issue #2120
Replace 'dump()' debug utilities within Allocator_avl with Output::print
equivalents, and use the new Avl_tree::for_each utility to simplify
the implementation.
Ref #2159
Instead of solving the problem to deliver ROM modules to core while booting
differently for the several kernels (multi-boot, elfweaver, core re-linking),
this commit unifies the approaches. It always builds core as a library, and
after all binaries are built from a run-script, the run-tool will link an
ELF image out of the core-library and all boot modules. Thereby, core can
access its ROM modules directly.
This approach now works for all kernels except Linux.
With this solution, there is no [build_dir]/bin/core binary available anymore.
For debugging purposes you will find a core binary without boot modules, but
with debug symbols under [run_dir].core.
Fix#2095
base generic code:
* Remove unused verbosity code from mmio framework
* Remove escape sequence end heuristic from LOG
* replace Core_console with Core_log (no format specifiers)
* move test/printf to test/log
* remove `printf()` tests from the log test
* check for exact match of the log test output
base-fiasco:
* remove unused Fiasco::print_l4_threadid function
base-nova:
* remove unused hexdump utility from core
base-hw:
* remove unused Kernel::Thread::_print_* debug utilities
* always print resource summary of core during startup
* remove Kernel::Ipc_node::pd_label (not used anymore)
base*:
* Turn `printf`,`PWRN`, etc. calls into their log equivalents
Ref #1987Fix#2119
* Remove 'test' routine from kernel/core
* Move 'cpu_scheduler' and 'double_list' test to user-land
* Remove 'hw_info' target at all (can be recycled in a topic branch)
Besides adapting the components to the use of base/log.h, the patch
cleans up a few base headers, i.e., it removes unused includes from
root/component.h, specifically base/heap.h and
ram_session/ram_session.h. Hence, components that relied on the implicit
inclusion of those headers have to manually include those headers now.
While adjusting the log messages, I repeatedly stumbled over the problem
that printing char * arguments is ambiguous. It is unclear whether to
print the argument as pointer or null-terminated string. To overcome
this problem, the patch introduces a new type 'Cstring' that allows the
caller to express that the argument should be handled as null-terminated
string. As a nice side effect, with this type in place, the optional len
argument of the 'String' class could be removed. Instead of supplying a
pair of (char const *, size_t), the constructor accepts a 'Cstring'.
This, in turn, clears the way let the 'String' constructor use the new
output mechanism to assemble a string from multiple arguments (and
thereby getting rid of snprintf within Genode in the near future).
To enforce the explicit resolution of the char * ambiguity, the 'char *'
overload of the 'print' function is marked as deleted.
Issue #1987
When running the same kernel in a VM as on the host system and the
kernel boot message from the VM appears on the log output, the run tool
assumes that the host machine has rebooted unexpectedly. With this
commit, an unexpected reboot is assumed only if the kernel boot message
appears at the beginning of a line. On base-hw, we enforce a line feed
at the beginning of the boot message as the SPIKE emulator log starts
with the first message of the kernel lacking a line feed.
Fixes#2041
This patch establishes the sole use of generic headers across all
kernels. The common 'native_capability.h' is based on the version of
base-sel4. All traditional L4 kernels and Linux use the same
implementation of the capability-lifetime management. On base-hw, NOVA,
Fiasco.OC, and seL4, custom implementations (based on their original
mechanisms) are used, with the potential to unify them further in the
future.
This change achieves binary compatibility of dynamically linked programs
across all kernels.
Furthermore, the patch introduces a Native_capability::print method,
which allows the easy output of the kernel-specific capability
representation using the base/log.h API.
Issue #1993
This patch alleviates the need for a Native_capability::Dst at the API
level. The former use case of this type as argument to
Deprecated_env::reinit uses the opaque Native_capability::Raw type
instead. The 'Raw' type contains the portion of the capability that is
transferred as-is when delegating the capability (i.e., when installing
the parent capability into a new component, or when installing a new
parent capability into a new forked Noux process). This information can
be retrieved via the new Native_capability::raw method.
Furthermore, this patch moves the functions for retriving the parent
capability to base/internal/parent_cap.h, which is meant to be
implemented in platform-specific ways. It replaces the former set of
startup/internal/_main_parent_cap.h headers.
Issue #1993
Write tick count of next kernel timer to the guest timed events page if
present. This causes the guest VM to be preempted at the requested tick
count and ensures that the guest VM can not monopolize the CPU if no
traps occur.
The base-hw kernel expects a configured switch-event from the guest VM
to base-hw with ID 30 and target vector 32 to be present in the system
policy.
Issue #2016
Switch kernel timer driver to timed event interface. The base-hw kernel
expects a configured self-event with ID 31 and target vector 32 to be
present in the system policy.
ssue #2016
* The Vm thread is always paused and on exception to make sure that guest VM
execution is suspended whenever we handle an interrupt. Also signal the Vm
session to poke waiting threads (e.g. Virtualbox EMT).
* Implement Vm::proceed
Switch to the mode transition assembly code declared at the _vt_vm_entry
label.
Issue #2016
The entry enables interrupts and initiates a handover to the guest VM by
invoking event number one. The sti instruction is placed at the start to
allow exits to Muen before handing off to the VM if window exiting is
requested.
Issue #2016
This patch introduces the Genode::raw function that prints output
directly via a low-level kernel mechanism, if available.
On base-linux, it replaces the former 'raw_write_str' function.
On base-hw, it replaces the former kernel/log.h interface.
Fixes#2012
The sinfo function declared in sinfo_instance.h creates a static sinfo
object instance and returns a pointer to the caller.
- kernel timer and platform support to use sinfo() function to
instantiate sinfo object
- address and size of the base-hw RAM region via the sinfo API
- log_status() function in sinfo API
Instead of introducing a $(BASE_HW_DIR) variable that has to be defined in each
core makefile for the different base-hw targets, this commit replaces the
$(REP_DIR) variable usage in core.inc files with $(BASE_DIR)/../base-hw.
Ref #1955