Compare commits

..

420 Commits

Author SHA1 Message Date
552419f2c0 ggml : aligned malloc -> malloc 2024-10-31 21:40:11 +02:00
987f3145d0 ggml : allocate contexts on the heap (v2) 2024-10-31 21:29:48 +02:00
3689d49b81 whisper : reduce ggml_context usage 2024-10-30 13:39:14 +02:00
55e422109b scripts : add turbo-q8_0 to the benchmark 2024-10-29 19:37:24 +02:00
3f020fac9d whisper : minor compile warning 2024-10-29 19:30:26 +02:00
1626b73b03 whisper : move new-segment callback after DTW step (#2515) 2024-10-29 08:47:21 +02:00
850f7b19d3 ruby : fix installation test (#2519) 2024-10-29 08:45:37 +02:00
d4bc413505 ruby : add more APIs (#2518)
* Add test for built package existence

* Add more tests for Whisper::Params

* Add more Whisper::Params attributes

* Add tests for callbacks

* Add progress and abort callback features

* [skip ci] Add prompt usage in README

* Change prompt text in example
2024-10-28 19:23:23 +02:00
fc49ee4479 ruby : support new-segment callback (#2506)
* Add Params#new_segment_callback= method

* Add tests for Params#new_segment_callback=

* Group tests for #transcribe

* Don't use static for thread-safety

* Set new_segment_callback only when necessary

* Remove redundant check

* [skip ci] Add Ruby version README

* Revert "Group tests for #transcribe"

This reverts commit 71b65b00cc.

* Revert "Add tests for Params#new_segment_callback="

This reverts commit 81e6df3bab.

* Add test for Context#full_n_segments

* Add Context#full_n_segments

* Add tests for lang API

* Add lang API

* Add tests for Context#full_lang_id API

* Add Context#full_lang_id

* Add abnormal test cases for lang

* Raise appropriate errors from lang APIs

* Add tests for Context#full_get_segment_t{0,1} API

* Add Context#full_get_segment_t{0,1}

* Add tests for Context#full_get_segment_speaker_turn_next API

* Add Context#full_get_segment_speaker_turn_next

* Add tests for Context#full_get_segment_text

* Add Context#full_get_setgment_text

* Add tests for Params#new_segment_callback=

* Run new segment callback

* Split tests to multiple files

* Use container struct for new segment callback

* Add tests for Params#new_segment_callback_user_data=

* Add Whisper::Params#new_user_callback_user_data=

* Add GC-related test for new segment callback

* Protect new segment callback related structs from GC

* Add meaningful test for build

* Rename: new_segment_callback_user_data -> new_segment_callback_container

* Add tests for Whisper::Segment

* Add Whisper::Segment and Whisper::Context#each_segment

* Extract c_ruby_whisper_callback_container_allocate()

* Add test for Whisper::Params#on_new_segment

* Add Whisper::Params#on_new_egment

* Assign symbol IDs to variables

* Make extsources.yaml simpler

* Update README

* Add document comments

* Add test for calling Whisper::Params#on_new_segment multiple times

* Add file dependencies to GitHub actions config and .gitignore

* Add more files to ext/.gitignore
2024-10-28 15:43:27 +02:00
c0ea41f6b2 ruby : add Metal support (#2516) 2024-10-28 13:08:09 +02:00
0fbaac9c89 whisper : fix index overflow in token-level timestamp logic (#2505) 2024-10-23 15:14:03 +03:00
a5abfe6a90 readme : update links and make commands (#2489)
* Update links to headers in README.md

* Add link to Vulkan section in README.md

* Add "-j" for parallelism for "make" in README.md

* Update README.md
2024-10-17 13:25:18 +03:00
d3f7137cc9 ruby : fix bindings (#2484)
* Improve Rakefile

* Remove intermediate files

* Remove unnecessary manipulations from extconf.rb

* Add README and LINCENSE to source files

* Manage ext source files using YAML file

* Use extsources.yaml to include files into gem package file

* Add git-managed source files to build dependency

* Add test task

* Download model for test if not exists

* Add test for build

* Ignore gem package directory

* Enable GitHub action for Ruby binding

* Fix model name

* Build lib file for test

* Use extension for each platform

* Use extension for each platform on testing

* Move built lib file rather than copy

* Add intermediate files to clean targets
2024-10-16 18:44:04 +03:00
f7c99e49b3 readme : add Vulkan notice (#2488)
* Add Vulkan notice in README.md

* Fix formatting for Vulkan section in README.md

* Fix formatting in README.md
2024-10-16 18:43:26 +03:00
1d5752fa42 make : fix GGML_VULKAN=1 build (#2485) 2024-10-16 18:42:47 +03:00
b6049060dd whisper : add dtw preset for large-v3-turbo (#2481) 2024-10-15 21:00:21 +03:00
06a1da9daf convert : handle max_target_positions (#2477)
as needed eg for
https://huggingface.co/primeline/whisper-large-v3-turbo-german/blob/main/config.json
2024-10-14 10:46:33 +03:00
746d173592 readme : update the Quick Start section (#2475)
navigating into the directory
2024-10-14 10:44:57 +03:00
fdbfb460ed whisper : add OpenVINO init with state (#2464)
* Fixed OpenVino init on state

* Removed an empty line

* Fixed typo

* Replaced tabs with spaces

---------

Co-authored-by: Sandro Hanea <sandrohanea@users.noreply.github.com>
2024-10-08 20:08:00 +03:00
ebca09a3d1 release : v1.7.1 2024-10-07 13:06:48 +03:00
9f346d0084 vulkan : retry allocation with fallback flags (#2451)
Co-authored-by: Samuel Morris <samuel.morris@artlist.io>
2024-10-06 10:34:20 +03:00
6a94163b91 release : v1.7.0 2024-10-05 16:43:26 +03:00
8a35b58c4f scripts : bench v3-turbo 2024-10-05 16:22:53 +03:00
1789abca84 whisper : remove mel leftover constants (396089f) 2024-10-05 16:13:03 +03:00
847f94fdeb whisper : zero-out the KV cache upon clear (#2445) 2024-10-05 15:23:51 +03:00
6e40108a59 objc : fix build 2024-10-05 15:23:51 +03:00
1ba185f4af metal : zero-init buffer contexts (#0) 2024-10-05 15:23:51 +03:00
396089f3cf whisper : revert mel-related changes (#0)
too much extra logic and complexity for small benefit
2024-10-05 15:23:51 +03:00
941912467d whisper : adapt to latest ggml (skip) (#0) 2024-10-05 15:23:51 +03:00
0b1b094a67 ggml : fix typo in example usage ggml_gallocr_new (ggml/984) 2024-10-05 15:23:51 +03:00
40e52a76b9 ggml : fixes after sync (ggml/983)
ggml : remove test-backend-buffer

ggml : fix CUDA build warnings
2024-10-05 15:23:51 +03:00
cf977670e6 ggml-backend : add device and backend reg interfaces (llama/9707)
Also:

- metal : fix compute pass descriptor autorelease crash
- ggml-backend : add device description to CPU backend
- ggml: unify backend logging mechanism
2024-10-05 15:23:51 +03:00
df2c364de7 Fixed dequant precision issues in Q4_1 and Q5_1 (llama/9711) 2024-10-05 15:23:51 +03:00
1acfadb721 ggml-backend : add device and backend reg interfaces (llama/9707)
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-10-05 15:23:51 +03:00
ea642144d2 Initial cmake support of SYCL for AMD GPUs (llama/9658)
sycl: initial cmake support of SYCL for AMD GPUs
2024-10-05 15:23:51 +03:00
282a8654c4 vulkan : do not use tensor->extra (llama/9407)
* vulkan : do not use tensor->extra

This patch allows using the Vulkan backend with the RPC backend as
tensor->extra is no longer used.

Ref: #8536

* Adapt GGML_VULKAN_CHECK_RESULTS to extra removal (llama/2)

---------

Co-authored-by: 0cc4m <picard12@live.de>
2024-10-05 15:23:51 +03:00
936cf3beb7 ggml/ex: calculate accuracy in graph, adapt MNIST (ggml/980) 2024-10-05 15:23:51 +03:00
bc92c2f8f0 ggml: refactor cross entropy loss CPU impl. (ggml/976) 2024-10-05 15:23:51 +03:00
f7d55e0614 scripts : sync ggml-backend.cpp 2024-10-05 15:23:51 +03:00
f62a546e03 whisper : fix excessive memory usage (#2443)
* whisper : fix KV cache allocation

* whisper : reduce memory overhead from unused input tensors
2024-10-05 12:36:40 +03:00
2944cb72d9 examples : update dr_wav.h to newer version (#2449) 2024-10-04 11:04:51 +03:00
ccc2547210 talk-llama : sync llama.cpp 2024-10-03 12:22:17 +03:00
162a455402 metal : reduce command encoding overhead (llama/9698) 2024-10-03 12:22:17 +03:00
ff2cb0811f sync : ggml 2024-10-03 12:22:17 +03:00
5e9d6baa48 test: fix OPT_STEP_ADAMW for test-backend-ops (ggml/974) 2024-10-03 12:22:17 +03:00
845f8d663e vulkan : mul_mat: fix UB with small warps (ggml/952)
When the device's warp size is less than 16,
it is possible for loadstride_a (mul_mm.comp:114)
and loadstride_b (mul_mm.comp:115) to be set to 0.
Because they are calculated as: the workgroup size,
multiplied by LOAD_VEC_* (which can be 1) and divided by 16.
And the workgroup size is set to be the same as the
warp/subgroup size.

The loadstride_* variables are used as increments in the
loops that populate the buffers used for the multiplication.

When they are 0 they cause an infinite loop.
But infinite loops without side-effects are UB and the
values of loadstride_* are known at compile time.
So, the compiler quietly optimizes all the loops away.
As a consequence, the buffers are not populated and
the multiplication result is just a matrix with all elements
set to 0.

We prevent the UB by making sure that the workgroup size
will never be less than 16, even if our device has a
smaller warp size (e.g. 8).

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-10-03 12:22:17 +03:00
31fdf05fda ggml : fix ggml_cast (ggml/973) 2024-10-03 12:22:17 +03:00
0ac6666cd2 ggml: fix gradient allocation logic (ggml/966)
* ggml: fix gradient allocation logic

* gradient allocation in ggml_build_backward_expand

* fixup

* fix test-backend-ops grad

* suggestions by slaren

* fix test1.c

* fix legacy opt API

* fix test-grad0

* remove keep arg
2024-10-03 12:22:17 +03:00
6c91da80b8 ggml : define missing HWCAP flags (llama/9684)
ggml-ci

Co-authored-by: Willy Tarreau <w@1wt.eu>
2024-10-03 12:22:17 +03:00
c245168ba3 ggml : add run-time detection of neon, i8mm and sve (llama/9331)
* ggml: Added run-time detection of neon, i8mm and sve

Adds run-time detection of the Arm instructions set features
neon, i8mm and sve for Linux and Apple build targets.

* ggml: Extend feature detection to include non aarch64 Arm arch

* ggml: Move definition of ggml_arm_arch_features to the global data section
2024-10-03 12:22:17 +03:00
280fee8fa0 Enable use to the rebar feature to upload buffers to the device. (llama/9251) 2024-10-03 12:22:17 +03:00
78b4c1c25f mtgpu: enable VMM (llama/9597)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-10-03 12:22:17 +03:00
1edea2eb4b ggml : remove assert for AArch64 GEMV and GEMM Q4 kernels (llama/9217)
* ggml : remove assert for AArch64 GEMV and GEMM Q4 kernels

* added fallback mechanism when the offline re-quantized model is not
optimized for the underlying target.

* fix for build errors

* remove prints from the low-level code

* Rebase to the latest upstream
2024-10-03 12:22:17 +03:00
96808786b7 cann: fix crash when llama-bench is running on multiple cann devices (llama/9627) 2024-10-03 12:22:17 +03:00
bb57ecb85e CUDA: remove bad assert (ggml/972) 2024-10-03 12:22:17 +03:00
abdb73c7cc vulkan : multithread pipeline creation (ggml/963) 2024-10-03 12:22:17 +03:00
391e548a43 vulkan : fix build for GGML_VULKAN_RUN_TESTS, add TFLOPS to log (ggml/961) 2024-10-03 12:22:17 +03:00
2a29afd4c6 vulkan : argsort barriers must be under uniform control flow (ggml/951)
a return before a barrier (that happens only in some threads in
a workgroup) leads to UB.
While the old code actually works on some devices,
it fails on some others (i.e. "smaller" GPUs).

BTW, I think it would be better to set specialization constants
when the graph is built, in that way the local workgroup
could be sized appropriately.
But it would take a lot of work.

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-10-03 12:22:17 +03:00
5963004ff9 ggml : fix GGML_MAX_N_THREADS + improve formatting (ggml/969) 2024-10-03 12:22:17 +03:00
ede1718f6d server : ffmpeg overwrite leftover temp file (#2431)
* Remove possible leftover ffmpeg temp file from a previous failed conversion

* Revert "Remove possible leftover ffmpeg temp file from a previous failed conversion"

This reverts commit 00797403bd.

* Flag to force ffmpeg to overwrite output file if it exists
2024-10-02 15:06:40 +03:00
2ef717b293 whisper : add large-v3-turbo (#2440) 2024-10-01 15:57:06 +03:00
8feb375fbd tests : remove test-backend-ops (#2434) 2024-09-27 11:49:01 +03:00
69339af2d1 ci : disable failing CUDA and Java builds 2024-09-25 10:05:04 +03:00
0d2e2aed80 readme : fix references to download-ggml-model.sh (#2427)
The script itself has a hashbang indicating that it is a shell script,
but the README indicates that it must be executed with `bash`.

I checked the script itself, and it seems to be valid POSIX shell. I can
confirm that it works with busybox sh.

Clarify the reference on the README, so it is clear that bash is not
actually a dependency for this script.
2024-09-24 21:07:51 +03:00
451e9ee92c make : remove "talk" target until updated 2024-09-24 19:45:08 +03:00
1133ac98a8 ggml : add ggml-cpu-impl.h (skip) (#0) 2024-09-24 19:45:08 +03:00
76d27eec9a sync : ggml 2024-09-24 19:45:08 +03:00
fe18c29ab8 talk-llama : sync llama.cpp 2024-09-24 19:45:08 +03:00
234f9bd320 ggml : add AVX512DQ requirement for AVX512 builds (llama/9622) 2024-09-24 19:45:08 +03:00
3b183cfae7 log : add CONT level for continuing previous log entry (llama/9610) 2024-09-24 19:45:08 +03:00
02285dff81 threads: fix msvc build without openmp (llama/9615)
We're missing atomic_thread_fence() in MSVC builds when openmp is disabled.
2024-09-24 19:45:08 +03:00
2fc1d20f9e cuda: add q8_0->f32 cpy operation (llama/9571)
llama: enable K-shift for quantized KV cache
It will fail on unsupported backends or quant types.
2024-09-24 19:45:08 +03:00
08e8414f27 threads: improve ggml_barrier scaling with large number of threads (llama/9598)
Make sure n_barrier and n_barrier_passed do not share the cache line to avoid cache line bouncing.
This optimization shows performance improvements even for n_threads <= 8 cases.

Resurect TSAN (Thread Sanitizer) check so that we can avoid doing expensive read-modify-write
in the normal case and just use thread-fence as originally intended.
2024-09-24 19:45:08 +03:00
05c6139625 ggml : AVX512 gemm for Q4_0_8_8 (llama/9532)
* AVX512 version of ggml_gemm_q4_0_8x8_q8_0

* Remove zero vector parameter passing

* Rename functions and rearrange order of macros

* Edit commments

* style : minor adjustments

* Update x to start from 0

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-24 19:45:08 +03:00
896c41ef30 metal : use F32 prec for K*Q in vec FA (llama/9595)
ggml-ci
2024-09-24 19:45:08 +03:00
c36ddc43c6 Revert "[SYCL] fallback mmvq (ggml/9088)" (llama/9579)
This reverts commit 50addec9a532a6518146ab837a85504850627316.
2024-09-24 19:45:08 +03:00
13f41af43e musa: enable building fat binaries, enable unified memory, and disable Flash Attention on QY1 (MTT S80) (llama/9526)
* mtgpu: add mp_21 support

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* mtgpu: disable flash attention on qy1 (MTT S80); disable q3_k and mul_mat_batched_cublas

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* mtgpu: enable unified memory

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* mtgpu: map cublasOperation_t to mublasOperation_t (sync code to latest)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-09-24 19:45:08 +03:00
3fc5306b82 Fix merge error in #9454 (llama/9589)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-09-24 19:45:08 +03:00
adf2474b10 CUDA: enable Gemma FA for HIP/Pascal (llama/9581) 2024-09-24 19:45:08 +03:00
008816a257 RWKV v6: RWKV_WKV op CUDA implementation (llama/9454)
* ggml: CUDA unary op EXP

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: rwkv_wkv op CUDA impl

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-09-24 19:45:08 +03:00
33e5a6612e ggml-alloc : fix list of allocated tensors with GGML_ALLOCATOR_DEBUG (llama/9573) 2024-09-24 19:45:08 +03:00
f0a7d65b3d Update CUDA graph on scale change plus clear nodes/params (llama/9550)
* Avoid using saved CUDA graph if scale changes and reset nodes/params on update

Fixes https://github.com/ggerganov/llama.cpp/issues/9451

* clear before resize
2024-09-24 19:45:08 +03:00
54e5095765 examples : adapt to ggml.h changes (ggml/0)
ggml-ci
2024-09-24 19:45:08 +03:00
34291099fb ggml : refactoring (llama/#0)
- d6a04f87
- 23e0d70b
2024-09-24 19:45:08 +03:00
d245d7aec7 ggml : fix builds (llama/0)
ggml-ci
2024-09-24 19:45:08 +03:00
d661283e68 ggml : fix trailing whitespace (llama/0)
ggml-ci
2024-09-24 19:45:08 +03:00
c0761c95f5 CUDA: fix sum.cu compilation for CUDA < 11.7 (llama/9562) 2024-09-24 19:45:08 +03:00
138e20b697 ggml : fix n_threads_cur initialization with one thread (llama/9538)
* ggml : fix n_threads_cur initialization with one thread

* Update ggml/src/ggml.c

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2024-09-24 19:45:08 +03:00
a8d9abfa22 threadpool : skip polling for unused threads (llama/9461)
* threadpool: skip polling for unused threads

Currently all threads do N polling rounds even if only 1 thread is active (n_threads_cur == 1).
This commit adds a check to skip the polling for unused threads (ith >= n_threads_cur).

n_threads_cur is now an atomic_int to explicitly tell thread sanitizer that it is written
from one thread and read from other threads (not a race conditions).

* threadpool: further simplify and improve ggml_barrier

Avoid using strict memory order while polling, yet make sure that all threads go through
full memory barrier (memory fence) on ggml_barrier entrace and exit.

* threads: add simple barrier test

This test does lots of small, parallel matmul ops where the barriers in between dominate the overhead.

* threadpool: improve thread sync for new-graphs

Using the same tricks as ggml_barrier. All the polling is done with relaxed memory order
to keep it efficient, once the new graph is detected we do full fence using read-modify-write
with strict memory order.

* threadpool: improve abort handling

Do not use threadpool->ec (exit code) to decide whether to exit the compute loop.
threadpool->ec is not atomic which makes thread-sanitizer rightfully unhappy about it.

Instead introduce atomic threadpool->abort flag used for this. This is consistent with
how we handle threadpool->stop or pause.

While at it add an explicit atomic_load for n_threads_cur for consistency.

* test-barrier: release threadpool before releasing the context

fixes use-after-free detected by gcc thread-sanitizer on x86-64
for some reason llvm sanitizer is not detecting this issue.
2024-09-24 19:45:08 +03:00
195afd6dc1 ggml : link MATH_LIBRARY not by its full path (llama/9339) 2024-09-24 19:45:08 +03:00
1fd78999e8 cmake : do not hide GGML options + rename option (llama/9465)
* cmake : do not hide GGML options

ggml-ci

* build : rename flag GGML_CUDA_USE_GRAPHS -> GGML_CUDA_GRAPHS

for consistency

ggml-ci
2024-09-24 19:45:08 +03:00
Eve
374e9e0c5e ggml : IQ4_NL sgemm + Q4_0 AVX optimization (llama/9422)
* squashed

readd my iq4_nl sgemm PR https://github.com/ggerganov/llama.cpp/pull/8049

have ggml_vec_dot_q4_0 do two blocks per loop for avx

try out f16c ggml_vec_dot_iq4_nl, but it's not really faster. as per https://github.com/ggerganov/llama.cpp/pull/8549 we can calculate several blocks at a time with no issue

* shuffle

* remove f16c iq4_nl as i cant make it faster than before
2024-09-24 19:45:08 +03:00
a2cb5b4183 metal : handle zero-sized allocs (llama/9466) 2024-09-24 19:45:08 +03:00
288ae5176e common : reimplement logging (llama/9418)
https://github.com/ggerganov/llama.cpp/pull/9418
2024-09-24 19:45:08 +03:00
d868122a5a cmake : correct order of sycl flags (llama/9497) 2024-09-24 19:45:08 +03:00
2ba25fb122 cmake : try to fix sycl+intel build (llama/9487) 2024-09-24 19:45:08 +03:00
4f4687cb74 ggml : ggml_type_name return "NONE" for invalid values (llama/9458)
When running on Windows, the quantization utility attempts to print the types that are not set which leads to a crash.
2024-09-24 19:45:08 +03:00
66b00fad0d cmake : use list(APPEND ...) instead of set() + dedup linker (llama/9463)
* cmake : use list(APPEND ...) instead of set() + dedup linker

ggml-ci

* cmake : try fix sycl

* cmake : try to fix sycl 2

* cmake : fix sycl build (llama/9469)

* try fix sycl build

* use CMAKE_CXX_FLAGS as a string variable

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* one more CMAKE_CXX_FLAGS fix (llama/9471)

---------

Co-authored-by: Michael Podvitskiy <podvitskiymichael@gmail.com>
2024-09-24 19:45:08 +03:00
c6cc8d16c3 cann: Add host buffer type for Ascend NPU (llama/9406)
* feat: Add host buffer type for Ascend NPU(CANN backend)

* fix some checking errors

* Add a few comments
2024-09-24 19:45:08 +03:00
3f8f8a78a2 riscv : modify Makefile and add a RISCV_VECT to print log info (llama/9442)
- Added ggml_cpu_has_riscv_v() in GGML to print system info in log
- Modified Makefile to only use flag when cross compiling for RISC-V
2024-09-24 19:45:08 +03:00
3e47686919 cann: Fix error when running a non-exist op (llama/9424) 2024-09-24 19:45:08 +03:00
a53b69a003 CUDA: fix --split-mode row race condition (llama/9413) 2024-09-24 19:45:08 +03:00
d1c9b47360 musa: remove Clang builtins mapping (llama/9421)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-09-24 19:45:08 +03:00
32f659861a sycl : update support conditions (llama/9394)
* sycl : update support condition to im2col

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>

* Added TODO to remind supporting FP32 im2col

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>
2024-09-24 19:45:08 +03:00
a785232bf9 metal : fix compile warning with GGML_METAL_NDEBUG (llama/0) 2024-09-24 19:45:08 +03:00
0677293503 rpc : fix segfault with nkvo (llama/9389)
* rpc : fix nkvo

* rpc : buf_size must not be static

ref: #9337

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
1fbdb813c0 ggml : vector length agnostic SVE support (llama/9290)
* Implemented vector length agnostic SVE using switch case for 512-bit, 256-bit, 128-bit vector lengths

* Implemented vector length agnostic SVE using switch case for 512-bit, 256-bit, 128-bit vector lengths

* Removed WhiteSpaces

* ggml : style changes + fix 512-bit nb loop check

- fix local scope in switch cases
- consistent predicate names
- empty lines when necessary
- opening braces, spaces
- const-correctness
- add asserts

* Update ggml/src/ggml-quants.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-24 19:45:08 +03:00
67725ac8f3 CUDA: fix variable name conflict for Windows build (llama/9382) 2024-09-24 19:45:08 +03:00
dac89af357 Overlap cmdbuffer creation and cmdbuffer execution in Vulkan backend by submitting smaller cmdbuffers early. (llama/9118)
* Overlap cmdbuffer creation and cmdbuffer execution in Vulkan backend by submitting smaller cmdbuffers early.

* fix compile issues

* Fix issues where the last submit wasn't executed or handled properly.

* remove trailing whitespace

* Repair GGML_VULKAN_CHECK_RESULTS

* Increase submit counter only if actual work has been submitted and increase submit count to 100.

* Fix some nodes are not checked with GGML_VULKAN_CHECK_RESULTS enabled.
2024-09-24 19:45:08 +03:00
26225f1fb0 cuda : fix FA Q src index (1 -> 0) (llama/9374) 2024-09-24 19:45:08 +03:00
3468983315 add check malloc result on device (llama/9346)
* add check malloc result on device

* update for review comments, check all malloc_device() result

---------

Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2024-09-24 19:45:08 +03:00
c7515b0995 ggml/examples: add backend support for numerical optimization (ggml/949)
* CUDA eval works

* stochastic gradient descent op

* Adam except decay

* CUDA CROSS_ENTROPY_LOSS_BACK

* CUDA mnist-fc training works

* backend CLI arg

* refactor gguf load

* remove sched from opt_step_adam

* implement l1 regularization (weight decay)

* extra call to add optimizer

* initialize gradients with ggml_graph_reset

* gradient accumulation

* increment iter per eval instead of epoch

* adjust backend interfaces

* fix ggml_graph_reset without backend

* fix ggml graph export/import

* fixup

* rename

* revert ggml_opt changes

* more general CUDA repeat_back

* update documentation, fix CNN

* validation split

* add clarifying comment

* optimize PyTorch training

* adjust buffer size, thread count

* fix 0.0f validation split

* Update examples/mnist/mnist-common.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix gradient accumulation

* tensor flag for accumulators -> tensor hash set

* Update include/ggml.h

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* fix test prints

* Update src/ggml-backend.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* better CUDA support for noncontiguous out_prod

* add comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
253ce30004 examples : add null threadpool args where needed (ggml/0)
ggml-ci
2024-09-24 19:45:08 +03:00
03a6fae484 metal : update support condition for im2col + fix warning (llama/0) 2024-09-24 19:45:08 +03:00
d37fd275fd ggml : always check bounds on get_rows operations (llama/9354) 2024-09-24 19:45:08 +03:00
195877fd72 ggml : fix missing cpu_set_t on emscripten (llama/9336)
* ggml : fix missing cpu_set_t on emscripten

* better version

* bring back android part
2024-09-24 19:45:08 +03:00
9e715e1b96 Improve Vulkan shader build system (llama/9239)
* Improve Vulkan shader builds system

- Add dependency to vulkan-shaders-gen to rebuild shaders when changing the shader compilation utility.
- Add option to generate debug info for Vulkan shaders to provide shader source to Vulkan shader profiling tools

* remove not required self dependency
2024-09-24 19:45:08 +03:00
6f5514b6e2 ggml-quants : ternary packing for TriLMs and BitNet b1.58 (llama/8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-24 19:45:08 +03:00
709a22b92d cuda : fix defrag with quantized KV (llama/9319) 2024-09-24 19:45:08 +03:00
01e214a1d7 ggml : AVX2 support for Q4_0_8_8 (llama/8713)
* Add AVX2 based implementations for quantize_q8_0_4x8, ggml_gemv_q4_0_8x8_q8_0 and ggml_gemm_q4_0_8x8_q8_0 functions

* Update code to fix issues occuring due to non alignment of elements to be processed as multiple of 16 in MSVC

* Update comments and indentation

* Make updates to reduce number of load instructions
2024-09-24 19:45:08 +03:00
1cecfe6a02 Fix DMMV dequantization (llama/9279)
Fixed dmmv dequant for ncols== GGML_SYCL_DMMV_X
2024-09-24 19:45:08 +03:00
3764bc974c ggml : add pthread includes on FreeBSD (llama/9258) 2024-09-24 19:45:08 +03:00
fcffc912a9 llama : support RWKV v6 models (llama/8980)
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-24 19:45:08 +03:00
38d40b9972 Threadpool: take 2 (llama/8672)
* Introduce ggml_compute_threadpool

- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems

* Minor fixes

* fixed use after release bug

* fixed a harmless race condition

* Fix Android bulid issue

* fix more race conditions

* fix deadlock for cases where cgraph.n_nodes == 1

and fix --poll case

* threadpool: use cpu_get_num_math to set the default number of threadpool threads

This way we avoid using E-Cores and Hyperthreaded siblings.

* bench: create fresh threadpool for each test

For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).

* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier

This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.

* threadpool: make polling the default to match openmp behavior

All command line args now allow for setting poll to 0 (false).

* threadpool: do not wakeup threads in already paused threadpool

* fix potential race condition in check_for_work

* threadpool: do not create two threadpools if their params are identical

* threadpool: reduce pause/resume/wakeup overhead in common cases

We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.

* threadpool: add support for hybrid polling

poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...

The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.

* threadpool: reduce the number of barrier required

New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.

* threadpool: remove special-casing for disposable threadpools

With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.

Include n_threads in debug print for disposable threadpool.

Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.

* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)

This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.

* threadpool: use relaxed order for chunk sync

Full memory barrier is an overkill for this since each thread works on different chunk

* threadpool: remove abort_callback from threadpool state

* threadpool: better naming for thread/cpumask releated functions

* threadpool: consistent use of int type for n_threads params

* threadpool: add support for ggml_threadpool_params_default/init

Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.

* threadpool: move typedef into ggml.h

* threadpool: fix apply_priority() function name

* threadpool: fix swift wrapper errors due to n_threads int type cleanup

* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled

* threadpool: replace checks for compute_thread ret code with proper status check

* threadpool: simplify threadpool init logic and fix main thread affinity application

Most of the init code is now exactly the same between threadpool and openmp.

* threadpool: update threadpool resume/pause function names

* threadpool: enable openmp by default for now

* threadpool: don't forget to free workers state when omp is enabled

* threadpool: avoid updating process priority on the platforms that do not require it

On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.

* threadpool: update calling thread prio and affinity only at start/resume

This avoids extra syscalls for each graph_compute()

* llama-bench: turn threadpool params into vectors, add output headers, etc

* llama-bench: add support for cool off between tests --delay

This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.

* threadpool: move process priority setting into the apps (bench and cli)

This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.

* threadpool: move all pause/resume logic into ggml

* threadpool: futher api cleanup and prep for future refactoring

All threadpool related functions and structs use ggml_threadpool prefix.

* threadpool: minor indent fixes

* threadpool: improve setprioty error message

* Update examples/llama-bench/llama-bench.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* threadpool: fix indent in set_threadpool call

* use int32_t for n_thread type in public llama.cpp API

* threadpool: use _new and _free instead of _create and _release

* fix two more public APIs to use int32_t for n_threads

* build: set _GNU_SOURCE for Adroid

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
09149ee0ae vulkan: fix compilation with GGML_VULKAN_DEBUG=ON (ggml/948)
the old code was trying to print a non-existent field (size)
and the struct as a whole (which doesn't have a operator<<
override defined).
Probably a typo happened during refactoring.

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-09-24 19:45:08 +03:00
6b7f37dd5c vulkan: add dryrun support to sin and cos ops (ggml/947)
sin and cos failed test-backend-ops because they
tried to dereference a context pointer that is null
on dry runs.

This commit prevents that segfault.

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-09-24 19:45:08 +03:00
791812fb54 vulkan: correctly report support for OP_CONT (ggml/946)
test-backend-ops fails because ggml_cont aborts
when invoked passing an unsupported type.

This commit makes ggml_cont tests pass

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-09-24 19:45:08 +03:00
5d6dc19f04 tests: add gradient tests for all backends (ggml/932)
* tests: add gradient checking to test-backend-ops

* remove old comment

* reorder includes

* adjust SIN/COS parameters

* add documentation, use supports_op if possible
2024-09-24 19:45:08 +03:00
34972dbe22 go : add temperature options (#2417)
* Fixed go cuda bindings building

* Added note to go bindings Readme to build using cuda support

* Added temperature bindings for Go

---------

Co-authored-by: Binozo <entwickler@binozoworks.de>
2024-09-20 15:45:36 +03:00
bea43e0c64 docker : add libsdl2-dev for container builds (#2424)
* Added libsdl2-dev for SDL samples

Building talk-llama seems to fail here as there is no sdl.h.

* Adding libsdl2-dev for sdl.h

* Adding libsdl2-dev for sdl.h
2024-09-20 15:36:43 +03:00
3853d83d73 go : add tests and update bindings (#2425)
Update Go version to ^1.23, the actions/setup-go
to v5, actions/checkout to v4 and
github.com/stretchr/testify to v1.9.0.

Add test cases for the following model
struct methods:
 - New
 - Close
 - NewContext
 - IsMultilingual
 - Languages

Add test cases for the following context
struct methods:
 - SetLanguage
 - IsMultilingual
 - Language
 - Process
2024-09-20 15:36:12 +03:00
5b1ce40fa8 server : use OS-generated temp file name for converted files (#2419) 2024-09-17 15:56:32 +03:00
049b3a0e53 go : fix CUDA build (#2416)
* Fixed go cuda bindings building

* Added note to go bindings Readme to build using cuda support

---------

Co-authored-by: Binozo <entwickler@binozoworks.de>
2024-09-15 12:23:56 +03:00
a551933542 cann : add Ascend NPU instructions (#2410) 2024-09-11 15:59:24 +03:00
5caa19240d cmake: Fix libdir value in pkgconfig file (#2407)
Depending on the OS the lib dir can vary, on Fedora for instance it is
"${prefix}/lib64". Instead of hard-coding the directory name, let CMake fill
this variable for us.
2024-09-07 11:18:17 +03:00
5236f02784 revert : cmake : set MSVC to use UTF-8 on source files (#2346)
This reverts commit c96906d84d.
2024-09-02 15:24:50 +03:00
2abaf19e0d sync : ggml 2024-09-02 15:24:50 +03:00
6eb7a0ffbd ggml: fix ggml_graph_cpy undefined behavior (ggml/943) 2024-09-02 15:24:50 +03:00
e8f0f9b5f0 cann : fix doxy (ggml/0) 2024-09-02 15:24:50 +03:00
d8e24b877d vulkan : fix build (llama/0)
ggml-ci
2024-09-02 15:24:50 +03:00
cc68f31577 cuda : mark BF16 CONT as unsupported 2024-09-02 15:24:50 +03:00
4a4a52bf98 ggml : fix cont with transposed tensors when one dimension is 1 (ggml/934)
* ggml_cont: fix issue with transposed tensors when one dimension is 1

when using multiple threads, it is not enough
to check for the tensors to be contiguous for
ggml_compute_forward_dup_same_cont to work correctly.
The tensors strides also need to match.

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Add ggml_cont tests

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Remove dead code

it isn't possible to reach this code because
all these functions are invoked by ggml_compute_forward_dup
if and only if src0->type != dst->type

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Make ggml_compute_forward_dup_same_cont work with contiguous tensors

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

---------

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-02 15:24:50 +03:00
c96906d84d cmake : set MSVC to use UTF-8 on source files (#2346) 2024-08-30 14:04:04 +03:00
9600fc3eb1 readme : remove invalid flag from Python example (#2396)
* Update README.md

Fix broken C-style API link

* Update whisper_processor.py

Update examples/python/whisper_processor.py to remove nonexistent flag "-np" from subprocess.Popen call.

* Add pywhispercpp to the Pybind11 Python wrapper list

abdeladim-s/pywhispercpp wasn't added to the list / was removed at some point (?)

It was referenced in issue #9, so I feel like it's worthy of being added as it's the first if not one of the first Python wrappers for whisper.cpp
2024-08-30 14:00:38 +03:00
e2e55a6fed readme : fix link (#2394) 2024-08-30 13:58:22 +03:00
c4e1861d2c go : add beamsize/entropythold/maxcontext to context interface (#2350)
* feat(go binding): add beamsize/entropythold/maxcontext to context interface

fixes: #2349

* fix go building build

* fix dynamic link .so and header.h

* remove LD_LIBRARY_PATH

* remove ggml obj from whisper dynamic lib

* drop LIB_GGML
2024-08-28 17:09:01 +03:00
da9809f243 talk-llama : sync llama.cpp 2024-08-28 13:22:20 +03:00
9d754a56cf whisper : update FA call 2024-08-28 13:22:20 +03:00
8cc90a0e80 sync : ggml 2024-08-28 13:22:20 +03:00
82b5c56f63 sync : vulkan (skip) (llama/0) 2024-08-28 13:22:20 +03:00
b2ad484c89 ggml : do not crash when quantizing q4_x_x with an imatrix (llama/9192) 2024-08-28 13:22:20 +03:00
d96a17848f metal : separate scale and mask from QKT in FA kernel (llama/9189)
* metal : separate scale and mask from QKT in FA kernel

* metal : ne01 check no longer necessary

* metal : keep data in local memory
2024-08-28 13:22:20 +03:00
0e7798677a ggml : add SSM Metal kernels (llama/8546)
* ggml : add ggml_ssm_conv metal impl

* ggml : add ssm_scan metal impl

ggml-ci
2024-08-28 13:22:20 +03:00
58a36d2e3b metal : gemma2 flash attention support (llama/9159) 2024-08-28 13:22:20 +03:00
24d8534bd8 CPU/CUDA: Gemma 2 FlashAttention support (llama/8542)
* CPU/CUDA: Gemma 2 FlashAttention support

* apply logit_softcap to scale in kernel

* disable logit softcapping tests on Metal

* remove metal check
2024-08-28 13:22:20 +03:00
9b16ddd3a5 Add a space to supress a cmake warning (llama/9133) 2024-08-28 13:22:20 +03:00
32f88af17b Add oneDNN primitive support (llama/9091)
* add onednn

* add sycl_f16

* add dnnl stream

* add engine map

* use dnnl for intel only

* use fp16fp16fp16

* update doc
2024-08-28 13:22:20 +03:00
9bf7250bf9 llama : simplify Mamba with advanced batch splits (llama/8526)
* llama : advanced batch splits

This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.

* llama : always make recurrent state slots contiguous

* ggml : simplify mamba operators

* llama : fix integer signedness mixing

* llama : logits_all has priority over batch->logits

Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.

* llama : apply suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix t5 segfault

* llama : fix Mamba session save and restore

* llama : minor cosmetic changes

* llama : rename llama_reorder_outputs to llama_output_reorder

Also move it closer to llama_output_reserve.

* llama : fix pooled embeddings when using batches with equal_seqs

* minor : add struct members for clarity

ggml-ci

* llama : fix T5 segfault again

* llama : fix Mamba pooled embeddings with multiple sequences

Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.

* llama : add llama_model_is_recurrent to simplify figuring that out

This will make it easier to more cleanly support RWKV-v6 and Mamba-2.

* llama : fix simple splits when the batch contains embeddings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-28 13:22:20 +03:00
17e49d3ab2 fallback mmvq (llama/9088)
* fallback mmvq to mul_mat

* mmvq in cuda path

* Update ggml/src/ggml-sycl.cpp

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>

---------

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
2024-08-28 13:22:20 +03:00
58b725282a Fix SYCL im2col and convert Overflow with Large Dims (llama/9052)
* sycl: fix im2col overflow and sync with cuda

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: fix convert overflow

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: fix convert and dequantize

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: fix ib in dmmv

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl:refine convert

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* sycl: move downsample global_range into common

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* test: add im2col and convert test cases

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* test: make new cases only in sycl

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* test: comment new test_cases for only local testing

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

---------

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>
2024-08-28 13:22:20 +03:00
7e59afa1e0 rpc : print error message when failed to connect endpoint (llama/9042) 2024-08-28 13:22:20 +03:00
5ac022140e rpc : prevent crashes on invalid input (llama/9040)
Add more checks which prevent RPC server from crashing if invalid input
is received from client
2024-08-28 13:22:20 +03:00
0eaa67280c ggml : dynamic ggml_sched_max_splits based on graph_size (llama/9047)
* ggml : Dynamic ggml_sched_max_splits based on graph_size

* Fixed and readded debug code for causes
2024-08-28 13:22:20 +03:00
5a62fdb735 cmake : remove unused option GGML_CURL (llama/9011) 2024-08-28 13:22:20 +03:00
60098d6204 ggml : move rope type enum to ggml.h (llama/8949)
* ggml : move rope type enum to ggml.h

This commit moves the `llama_rope_type` enum from `llama.h` to
`ggml.h` and changes its name to `ggml_rope_type`.

The motivation for this change is to address the TODO in `llama.h` and
use the enum in ggml.

Note: This commit does not change the `mode` parameter to be of type
`enum ggml_rope_type`. The name `mode` and its usage suggest that it
might be more generic and possibly used as a bit field for multiple
flags. Further investigation/discussion may be needed to determine
if `mode` should be restricted to RoPE types.

* squash! ggml : move rope type enum to ggml.h

This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from
ggml.h, and back the llama_rope_type enum.

I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is
safe to remove it yet.

* squash! ggml : move rope type enum to ggml.h

This commit removes the enum ggml_rope_type from ggml.h and replaces it
with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to
check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has
been updated to reflect this change.

* squash! ggml : move rope type enum to ggml.h

This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX
macro/define to be passed to the shader compiler.

* squash! ggml : move rope type enum to ggml.h

This commit fixes the editorconfig-checker warnings.

* squash! ggml : move rope type enum to ggml.h

Update comment for ggml_rope function.

* Revert "squash! ggml : move rope type enum to ggml.h"

This reverts commit 6261222bd0dc0efd51f0fb0435ad3f16a5b52fd6.

* squash! ggml : move rope type enum to ggml.h

Add GGML_ROPE_TYPE_NEOX to rope_common.comp.

* remove extra line

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-08-28 13:22:20 +03:00
317293e6a7 ggml: fix div-by-zero (llama/9003)
Fixes: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=70724

In order to access the above bug you need to login using one of the
emails in
https://github.com/google/oss-fuzz/blob/master/projects/llamacpp/project.yaml#L3-L5

Signed-off-by: David Korczynski <david@adalogics.com>
2024-08-28 13:22:20 +03:00
488a966c07 Optimize Vulkan backend for better CPU performance and less GPU synchronization overhead. (llama/8943)
* Optimize Vulkan backend for better CPU performance and less GPU synchronization overhead.

- Allocation overhead for the temporary std::vectors was easily detectable with a sampling profiler and simple to remove.
- ggml_vk_sync_buffer introduce a full pipeline sync which has a significant cost on the GPU side, sometimes larger than the actual kernel execution. Adding only barriers for shader read/writes and transfers seems to be sufficient looking at the code which either launches compute kernels or copies tensors.

* Fix small typo

---------

Co-authored-by: 0cc4m <picard12@live.de>
2024-08-28 13:22:20 +03:00
8954769aa2 feat: ref. cross entropy, add CUDA, fix grad test (ggml/929) 2024-08-28 13:22:20 +03:00
df06468d9e ggml: remove bad assert (ggml/928) 2024-08-28 13:22:20 +03:00
1fbd828a5d examples: add MNIST training + missing ops 2024-08-28 13:22:20 +03:00
d2986f8b07 models : add support for wget2 for fedora (#2387) 2024-08-28 11:46:01 +03:00
8bfa8574e2 readme : update the path to bench.py (#2386) 2024-08-28 11:45:05 +03:00
376567bf4f readme : fix typo (#2383) 2024-08-28 11:42:18 +03:00
c0fd64a9c0 readme : fix broken links in implementation details section (#2382) 2024-08-28 11:41:51 +03:00
6e9596f6de whisper : fix compile warning for unused params 2024-08-28 11:40:11 +03:00
9e3c5345cd sync : ggml vulkan (ggml/0)
ggml-ci
2024-08-21 11:07:13 +03:00
b6c05ce82f yolo : add backend support (ggml/924)
* yolo : add backend support

* metal : add sub and sqrt kernels

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-21 11:07:13 +03:00
52c80cac00 ggml : fix typo in ggml-quants.c comment (ggml/922) 2024-08-21 11:07:13 +03:00
3643120690 feat: add new sin and cos operators (ggml/919)
* ggml : add sin/cos operators

* ggml-cuda : add sin/cos operators

* ggml : add corresponding tests for sin/cos

* ggml : add backward computation for sin/cos operators

* ggml-vulkan : add sin/cos operators

* ggml-vulkan : add sin/cos shader source

* metal : add sin, cos

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-21 11:07:13 +03:00
d65786ea54 readme : fix broken links (#2358)
For whisper.cpp and whisper.h files
2024-08-20 10:57:45 +03:00
7f78675008 examples : use colorblind friendly TTY color scheme (#2360)
This change updates the -pc flag, so that a new xterm256 color scheme is
used. This color scheme is believed to be better for three reasons:

1. It should be friendlier to the colorblind. The scheme was designed by
   Paul Tol (see: https://personal.sron.nl/~pault/). TensorBoard uses it
   since 2017, so it's already popular in the machine learning community

2. It should appear to be the same colors as before to people who aren't
   i.e. it's still a red-green spectrum like before but lightly modified

3. It is readable in both white and black background terminals. The neon
   colors before were probably a bit too intense for white backgrounds.
2024-08-20 10:49:10 +03:00
22fcd5fd11 sync : ggml 2024-08-12 11:59:15 +03:00
993f0df419 ggml : support forward pass broadcasting in ggml_sub (ggml/914)
* ggml: support forward pass broadcasting in ggml_sub

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Use assert instead of GGML_ASSERT in ggml_compute_forward_sub_f32

The check is already performed in ggml_sub_impl

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

---------

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-08-12 11:58:49 +03:00
9b1788483c metal : fix uninitialized abort_callback (llama/8968) 2024-08-12 11:58:49 +03:00
ad37d26983 rpc : sanitize tensor data + warnings (llama/0)
Co-authored-by: slaren <slarengh@gmail.com>
2024-08-12 11:58:46 +03:00
81c999fe0a cann : add Ascend NPU support (#2336)
* enable Ascend NPU in src/whisper.cpp
  * sync test-backend-ops with llama.cpp
2024-08-09 15:21:56 +03:00
4b7de08bfd whisper : fix compile warning (#0) 2024-08-09 09:58:16 +03:00
4b9c4de1ad sync : ggml 2024-08-09 09:58:16 +03:00
be88ee1d75 ggml : add CANN backend (llama/0)
ggml-ci
2024-08-09 09:58:16 +03:00
3ab19c744e scripts : sync cann 2024-08-09 09:58:16 +03:00
6eac06759b ci : disable ruby workflow (#0) 2024-08-08 22:48:46 +03:00
2e9a5bd2c4 ci : try to fix FreeBSD (#0) 2024-08-08 22:48:46 +03:00
58323bf8ed build : fix aarch64 (#0) 2024-08-08 22:48:46 +03:00
22058f2dbc talk-llama : sync llama.cpp 2024-08-08 22:48:46 +03:00
5b7979a1e6 sync : ggml 2024-08-08 22:48:46 +03:00
ee14c02365 ggml-backend : fix async copy from CPU (llama/8897)
* ggml-backend : fix async copy from CPU

* cuda : more reliable async copy, fix stream used when the devices are the same
2024-08-08 22:48:46 +03:00
ab39dd34e1 Updated SYCL device filtering (llama/8901)
* Updated device filter to depend on default_selector (fixes non-intel device issues)
* Small related update to example/sycl Readme
2024-08-08 22:48:46 +03:00
b1348d3530 CUDA/HIP: fix tests/test-backend-ops (llama/8896) 2024-08-08 22:48:46 +03:00
90641b5cf4 CUDA: fix padding logic for FP16/FP32 (llama/8884) 2024-08-08 22:48:46 +03:00
4160b930f1 ggml : add epsilon as a parameter for group_norm (llama/8818)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-08-08 22:48:46 +03:00
7a96e661e4 ggml : fix overflows in elu function (llama/8866)
It's helpful to use expm1f(x), because expf(x)-1 will result in overflow
for 25% of single-precision floating point numbers.
2024-08-08 22:48:46 +03:00
a902fb4ab2 ggml : reading the runtime sve config of the cpu (llama/8709)
* ggml : reading the runtime sve config of the cpu

* change to one time init to prevent performance drop

* prefix variable to avoid possible conflicts

* revert xxhash fix and add brackets

---------

Co-authored-by: domke <673751-domke@users.noreply.gitlab.com>
2024-08-08 22:48:46 +03:00
6cb38c3673 Fix conversion of unnormalized BF16->BF16 weights (llama/7843)
* add truncate_bf16

* truncate intermediate fp32 if converting bf16 to bf16

* fix masking in __compute_fp32_to_bf16

* np.int16 no longer used

* missing cast and additional numpy 2.x fix

* ggml-impl : do not flush bf16 subnormals to zero

* ggml : add reference fp32 to bf16 conversion

The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.

* gguf-py : remove flush to zero for bf16 subnormals

* gguf-py : remove float32 truncation to bf16

Rounding achieves the same thing in the cases where this was used.

* missed prototype update in merge

* merge cleanup

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-08-08 22:48:46 +03:00
9cf14ebcbc Fixing wrong VDR iq4nl value (llama/8812) 2024-08-08 22:48:46 +03:00
8e39ee171f ggml-cuda: Adding support for unified memory (llama/8035)
* Adding support for unified memory

* adding again the documentation about unified memory

* refactoring: Moved the unified memory code in the correct location.

* Fixed compilation error when using hipblas

* cleaning up the documentation

* Updating the documentation

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* adding one more case where the PR should not be enabled

---------

Co-authored-by: matteo serva <matteo.serva@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-08-08 22:48:46 +03:00
d26250f78c Build: Only include execinfo.h on linux systems that support it (llama/8783)
* Only enable backtrace on GLIBC linux systems

* fix missing file from copy

* use glibc macro instead of defining a custom one
2024-08-08 22:48:46 +03:00
5218ea21b8 cuda : fix dmmv cols requirement to 2*GGML_CUDA_DMMV_X (llama/8800)
* cuda : fix dmmv cols requirement to 2*GGML_CUDA_DMMV_X

* update asserts

* only use dmmv for supported types

* add test
2024-08-08 22:48:46 +03:00
e60be821ce added android implementation of ggml_print_backtrace_symbols (llama/8751)
* added android implementation of ggml_print_backtrace_symbols

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-08-08 22:48:46 +03:00
19708df884 cann: update cmake (llama/8765) 2024-08-08 22:48:46 +03:00
3f190addda Add TIMESTEP_EMBEDDING OP (llama/8707)
Signed-off-by: zhentaoyu <zhentao.yu@intel.com>
2024-08-08 22:48:46 +03:00
b355ee7cfa ggml: bugfix: fix the inactive elements is agnostic for risc-v vector (llama/8748)
In these codes, we want to retain the value that they previously held
when mask[i] is false. So we should use undisturbed. With the default
agnostic policy of rvv intrinsic, these values can be held or be
written with 1s.

Co-authored-by: carter.li <carter.li@starfivetech.com>
2024-08-08 22:48:46 +03:00
49ac8872b4 cuda : organize vendor-specific headers into vendors directory (llama/8746)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-08-08 22:48:46 +03:00
8ef98ae7e3 add conv support (llama/8688) 2024-08-08 22:48:46 +03:00
e471adcfa5 feat: Support Moore Threads GPU (llama/8383)
* Update doc for MUSA

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Add GGML_MUSA in Makefile

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Add GGML_MUSA in CMake

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* CUDA => MUSA

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* MUSA adds support for __vsubss4

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix CI build failure

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-08-08 22:48:46 +03:00
aa816c922c ggml : ignore more msvc warnings (ggml/906) 2024-08-08 22:48:46 +03:00
b3264eb266 metal : fix struct name (ggml/912)
ggml-ci
2024-08-08 22:48:46 +03:00
eb2eb87a58 metal : add abort callback (ggml/905) 2024-08-08 22:48:46 +03:00
83fcb0e486 vulkan : implement Stable Diffusion operators (ggml/904)
* Fix Vulkan repeat op

* Implement Vulkan concat op

* Delete old Vulkan shader generator

* Implement Vulkan im2col op

* Implement Vulkan unary gelu_quick op

* Implement Vulkan group_norm op

* Implement Vulkan timestep_embedding op

* Implement Vulkan upscale op

* Fix Vulkan vk_context tensor extra index issue

* Fix Vulkan matmul shader parameter bug

* Properly fix Vulkan matmul shader parameter bug

* Add Vulkan ADD f16 + f32 -> f16 operator support

* Implement Vulkan tanh op

* Fix Vulkan group count too large Validation error on non-Nvidia GPUs

* Throw error when too much memory is requested

* Fix another Vulkan group count too large Validation error on non-Nvidia GPUs

* Fix matmul MMQ condition

* Implement Vulkan pad op

* Fix Vulkan crash when tensor is used multiple times in a compute graph

* Add Vulkan CONCAT f16 + f16 -> f16 op

* Add Vulkan LEAKY_RELU op
2024-08-08 22:48:46 +03:00
f7bb412878 ggml : move c parameter comment to ggml_rope_ext (ggml/901)
This commit moves the comment for the c parameter from ggml_rope to
ggml_rope_ext. The comment is currently incorrect as ggml_rope does not
have a c parameter (freq_factors tensor).

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-08-08 22:48:46 +03:00
ef6dcf0d0c ggml : resolve sync conflicst (ggml/0)
ggml-ci
2024-08-08 22:48:46 +03:00
c7ea4fd235 common : handle new quant types (ggml/0) 2024-08-08 22:48:46 +03:00
525f190917 ggml : add ggml-aarch64 (ggml/0) 2024-08-08 22:48:46 +03:00
dd916a2852 ggml : reduce hash table reset cost (llama/8698)
* ggml : reduce hash table reset cost

* fix unreachable code warnings after GGML_ASSERT(false)

* GGML_ASSERT(false) -> GGML_ABORT("fatal error")

* GGML_ABORT use format string
2024-08-08 22:48:46 +03:00
0620fe00ec ggml: handle ggml_init failure to fix NULL pointer deref (llama/8692)
`ggml_init` can fail if no unused context is found. In that case, a NULL-pointer deref will happen later in the code during a call to `ggml_set_on_alloc`.

This fixes it by bailing out if no context is found.
2024-08-08 22:48:46 +03:00
31d0a9a14f fix multi-gpu issue on sycl (llama/8554)
---------

Signed-off-by: Chen Xi <xi2chen@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
2024-08-08 22:48:46 +03:00
c06970dd72 ggml : add and use ggml_cpu_has_llamafile() (llama/8664) 2024-08-08 22:48:46 +03:00
7598acf525 Re-add erroneously removed -fsycl from GGML_EXTRA_LIBS (llama/8667) 2024-08-08 22:48:46 +03:00
43ddfce969 sycl : Add support for non-release DPC++ & oneMKL (llama/8644)
* Update cmake to support nvidia hardware & open-source compiler
---------
Signed-off-by: Joe Todd <joe.todd@codeplay.com>
2024-08-08 22:48:46 +03:00
a7e6d2cd9c Vulkan IQ4_NL Support (llama/8613)
* Fix Vulkan matmul tests compile errors

* Add Vulkan IQ4_NL support

* Fix Vulkan DeepSeek-Coder-V2-Lite MoE support
2024-08-08 22:48:46 +03:00
86506b0c5c Allow all RDNA2 archs to use sdot4 intrinsic (llama/8629)
The check gating the use of `__builtin_amdgc_sdot4` specifically checks for gfx1030. This causes a severe perf regression for anything gfx103? that's not gfx1030 and not using `HSA_OVERRIDE_GFX_VERSION` (if you've built ROCm to support it). We already have a generic RDNA2 define, let's use it.
2024-08-08 22:48:46 +03:00
11182fae34 fix scratch size of softmax (llama/8642) 2024-08-08 22:48:46 +03:00
0bc8bffe1d ggml: fix compile error for RISC-V (llama/8623) 2024-08-08 22:48:46 +03:00
8c4f30497a CUDA: MMQ code deduplication + iquant support (llama/8495)
* CUDA: MMQ code deduplication + iquant support

* 1 less parallel job for CI build
2024-08-08 22:48:46 +03:00
b1ee3a8444 gguf : handle null name during init (llama/8587) 2024-08-08 22:48:46 +03:00
be9a16fd3f ggml : fix quant dot product with odd number of blocks (llama/8549)
* ggml : fix iq4_nl dot product with odd number of blocks

* ggml : fix odd blocks for ARM_NEON (llama/8556)

* ggml : fix iq4_nl dot product with odd number of blocks

* ggml : fix q4_1

* ggml : fix q5_0

* ggml : fix q5_1

* ggml : fix iq4_nl metal

ggml-ci

* ggml : fix q4_0

* ggml : fix q8_0

ggml-ci

* ggml : remove special Q4_0 code for first 2 blocks

* ggml : fix sumf redefinition

---------

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-08 22:48:46 +03:00
f4d9a95b0f ggml : add friendlier error message to fopen errors (llama/8575)
* Add additional error information when model files fail to load.

* Adding additional error information to most instances of fopen.
2024-08-08 22:48:46 +03:00
a8ab3abe09 CUDA: fix partial offloading for ne0 % 256 != 0 (llama/8572) 2024-08-08 22:48:46 +03:00
65a
fb6a835938 cmake : install all ggml public headers (llama/8480)
Co-authored-by: 65a <65a@65a.invalid>
2024-08-08 22:48:46 +03:00
8923bb4292 Add Ascend NPU backend (llama/6035)
* [CANN] Add Ascend NPU backend

Ascend is a full-stack AI computing infrastructure for industry
applications and services based on Huawei Ascend processors and
software.

CANN (Compute Architecture of Neural Networks), developped by
Huawei, is a heterogeneous computing architecture for AI.

Co-authored-by: wangshuai09 <391746016@qq.com>

* delete trailing whitespaces

* Modify the code based on review comment

* Rename LLAMA_CANN to GGML_CANN

* Make ggml-common.h private

* add ggml_cann prefix for acl funcs

* Add logging for CANN backend

* Delete Trailing whitespace

---------

Co-authored-by: wangshuai09 <391746016@qq.com>
2024-08-08 22:48:46 +03:00
fcba6aa352 make/cmake: add missing force MMQ/cuBLAS for HIP (llama/8515) 2024-08-08 22:48:46 +03:00
8807fe608b Refactor lora adapter support (llama/8332)
* lora: load to devide buft

* add patch tensor function

* correct tensor patch

* llama_lora_adapter_apply

* correct ggml_backend_tensor_copy

* add llm_build_mm

* fix auto merge

* update based on review comments

* add convert script

* no more transpose A

* add f16 convert

* add metadata check

* add sanity check

* fix ftype

* add requirements

* fix requirements

* fix outfile

* conversion: only allow selected models

* fix types

* cuda : do not use dmmv if the tensor does not have enough cols

* llama : lora fixes

* do not disable mmap with lora

Co-authored-by: slaren <slarengh@gmail.com>

* llm_build_lora_mm_id

* convert_lora : MoE LoRA conversion support

* convert_lora : prefer safetensors, similarly to convert_hf

* convert_hf : simplify modify_tensors for InternLM2

* convert_lora : lazy conversion

* llama : load and use alpha from LoRA adapters

* llama : use llm_build_lora_mm in most model graphs

* auto scale

* Revert "auto scale"

This reverts commit 42415a4874e0f963e4aca6796ea5dfb97cd17464.

* remove redundant params

* Apply suggestions from code review

Co-authored-by: slaren <slarengh@gmail.com>

* change kv metadata

* move add_type to __init__

* convert_hf : move add_type to main()

* convert_lora : use the GGUFWriter from Model instead of overwriting it

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-08-08 22:48:46 +03:00
3e94c7a81d add concat through dim 1/2 (llama/8483)
* add concat through dim 1/2
2024-08-08 22:48:46 +03:00
77af3254e1 Vulkan MMQ Fix (llama/8479)
* Fix incoherence by adding missing LOAD_VEC_A parameter

* Fix Vulkan op result checker build error
2024-08-08 22:48:46 +03:00
d4b3cffec4 vulkan : cmake integration (llama/8119)
* Add Vulkan to CMake pkg

* Add Sycl to CMake pkg

* Add OpenMP to CMake pkg

* Split generated shader file into separate translation unit

* Add CMake target for Vulkan shaders

* Update README.md

* Add make target for Vulkan shaders

* Use pkg-config to locate vulkan library

* Add vulkan SDK dep to ubuntu-22-cmake-vulkan workflow

* Clean up tabs

* Move sudo to apt-key invocation

* Forward GGML_EXTRA_LIBS to CMake config pkg

* Update vulkan obj file paths

* Add shaderc to nix pkg

* Add python3 to Vulkan nix build

* Link against ggml in cmake pkg

* Remove Python dependency from Vulkan build

* code review changes

* Remove trailing newline

* Add cflags from pkg-config to fix w64devkit build

* Update README.md

* Remove trailing whitespace

* Update README.md

* Remove trailing whitespace

* Fix doc heading

* Make glslc required Vulkan component

* remove clblast from nix pkg
2024-08-08 22:48:46 +03:00
b852a4c5ca metal : template-ify some of the kernels (llama/8447)
ggml-ci
2024-08-08 22:48:46 +03:00
2157abaab4 ggml : minor naming changes (llama/8433)
* ggml : minor naming changes

ggml-ci

* ggml : use PRId64 [no ci]

* ggml : revert FA K/Q names
2024-08-08 22:48:46 +03:00
68d609a12c fix the mul_mat_id ut issues (llama/8427)
* fix part of mul_mat_id

* skip the bfloat 16 sycl ut

Signed-off-by: Chen Xi <xi2chen@intel.com>

---------

Signed-off-by: Chen Xi <xi2chen@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Chen Xi <xi2chen@intel.com>
2024-08-08 22:48:46 +03:00
5a8ae474f0 ggml : add NVPL BLAS support (ggml/8329) (llama/8425)
* ggml : add NVPL BLAS support

* ggml : replace `<BLASLIB>_ENABLE_CBLAS` with `GGML_BLAS_USE_<BLASLIB>`

---------

Co-authored-by: ntukanov <ntukanov@nvidia.com>
2024-08-08 22:48:46 +03:00
84493d7f3e cuda : suppress 'noreturn' warn in no_device_code (llama/8414)
* cuda : suppress 'noreturn' warn in no_device_code

This commit adds a while(true) loop to the no_device_code function in
common.cuh. This is done to suppress the warning:

```console
/src/ggml-cuda/template-instances/../common.cuh:346:1: warning:
function declared 'noreturn' should not return [-Winvalid-noreturn]
  346 | }
      | ^
```

The motivation for this is to reduce the number of warnings when
compilng with GGML_HIPBLAS=ON.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! cuda : suppress 'noreturn' warn in no_device_code

Update __trap macro instead of using a while loop to suppress the
warning.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-08-08 22:48:46 +03:00
15d71189e9 CUDA: optimize and refactor MMQ (llama/8416)
* CUDA: optimize and refactor MMQ

* explicit q8_1 memory layouts, add documentation
2024-08-08 22:48:46 +03:00
37e962580f Use multi_ptr to clean up deprecated warnings (llama/8256) 2024-08-08 22:48:46 +03:00
db0ea7a2f2 ggml : move sgemm sources to llamafile subfolder (llama/8394)
ggml-ci
2024-08-08 22:48:46 +03:00
5498b0e6c0 ggml : add AArch64 optimized GEMV and GEMM Q4 kernels (llama/5780)
* Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files

* Arm AArch64: minor code refactoring for rebase

* Arm AArch64: minor code refactoring for resolving a build issue with cmake

* Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8

* Arm AArch64: minor code change for resolving a build issue with server-windows

* retrigger checks

* Arm AArch64: minor code changes for rebase

* Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits

* Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig

* Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8

* Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8

* Arm AArch64: minor code refactoring

* Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat

* Arm AArch64: minimize changes in ggml_compute_forward_mul_mat

* Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types

* Arm AArch64: minor code refactoring

* Arm AArch64: minor code refactoring

* Arm AArch64: minor code refactoring

* rebase on the latest master commit 3fd62a6 and adapt to the new directory structure

* Arm AArch64: remove a redundant comment

* Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off

* Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels

* Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type
2024-08-08 22:48:46 +03:00
2af4a52c39 sycl : Reenabled mmvq path for the SYCL Nvidia Backend (llama/8372)
* SYCL : Reenabled mmvq path for the SYCL Nvidia Backend

* Reduced verbosity of comment
2024-08-08 22:48:46 +03:00
eee2fe882e sycl : fix powf call in device code (llama/8368) 2024-08-08 22:48:46 +03:00
0d1a11e5e2 ggml : loop tiling optimizations for scalar path (ggml/898)
Apply a loop tiling technique to the generic path, which provides
performance upside for ISAs with enough registers to take advantage
of it. Also helps the compiler optimize this path.
2024-08-08 22:48:46 +03:00
b2ead7d6f4 ggml: add support for float16 input tensors in pooling operations (ggml/895)
* Add support for float16 tensors in 1d pooling operations

* Add support for float16 input tensors in 2d pooling operations

* code cleanup

remove unnecessary casting during srow ptr initialization

---------

Co-authored-by: vanaka11 <vanaka1189@gmail.com>
2024-08-08 22:48:46 +03:00
8da6fd4dff vulkan : initialize vk_buffer_struct members to VK_NULL_HANDLE (ggml/893)
This prevents invalid frees when destroying a partially initialized
vk_buffer_struct. For example, this could happen in ggml_vk_create_buffer
when running out of device memory.

Co-authored-by: Tony Wasserka <neobrain@users.noreply.github.com>
2024-08-08 22:48:46 +03:00
ab8ec9e940 cmake : only enable GGML_NATIVE and x86 flags if not crosscompiling (ggml/885) 2024-08-08 22:48:46 +03:00
701265bf38 scripts : sync new files (#0) 2024-08-08 22:48:46 +03:00
fe36c90971 cmake : fix compile in xcode (#2311) 2024-08-05 09:48:26 +03:00
6739eb83c3 whisper : handle empty mel (#2324) 2024-07-27 20:35:04 +03:00
f68298ce06 whisper : use vulkan as gpu backend when available (#2302)
* ggml: use vulkan as gpu backend when available

Signed-off-by: Matt Stephenson <mstephenson6@users.noreply.github.com>

* whisper: enable using vk as default buffer type

Signed-off-by: Matt Stephenson <mstephenson6@users.noreply.github.com>

---------

Signed-off-by: Matt Stephenson <mstephenson6@users.noreply.github.com>
2024-07-16 10:21:09 +03:00
7ae885c1ef whisper : fix DTW assert (#2299) 2024-07-15 15:50:36 +03:00
d207c68822 cmake : use WHISPER_EXTRA_FLAGS (#2294) 2024-07-09 18:54:18 +03:00
16d72504fe cmake : allow external ggml 2024-07-09 11:38:15 +03:00
1c31f9d4a8 cmake : try to fix openvino build (#2281) 2024-07-08 15:36:51 +03:00
8ecb2f1f68 cmake : remove install of llama convert script [no ci] (#2266) 2024-07-08 14:53:55 +03:00
5226c3d45c make : remove llama prints [no ci] (#2265) 2024-07-08 14:53:55 +03:00
dbf9c15e30 talk-llama : sync llama.cpp 2024-07-08 14:53:55 +03:00
d3f6c34976 examples : fix compile warnings [no ci] (#0) 2024-07-08 14:53:55 +03:00
425e2910a3 sync : ggml 2024-07-08 14:53:55 +03:00
49868aa851 ggml : sync sycl (skip) (#0) 2024-07-08 14:53:55 +03:00
ff08e30ab5 scripts : fix sync scripts 2024-07-08 14:53:55 +03:00
95f2a191c0 ggml : remove unnecessary UNUSED macro call (ggml/880)
This commit removes an UNUSED macro call that is not needed as the
variable n0 is used in the code and will not produce a warning.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-07-08 14:53:55 +03:00
00422ec3cf cmake : add GGML_BUILD and GGML_SHARED macro definitions (llama/8281) 2024-07-08 14:53:55 +03:00
c5b05321e9 Enabled more data types for oneMKL gemm_batch (llama/8236) 2024-07-08 14:53:55 +03:00
5dc636a65a CUDA: MMQ support for iq4_nl, iq4_xs (llama/8278) 2024-07-08 14:53:55 +03:00
73703a144f CUDA: revert part of the RDNA1 optimizations (llama/8309)
The change on the launch_bounds was causing a small performance drop in perplexity of 25 t/s
2024-07-08 14:53:55 +03:00
e89fdceec2 CUDA: fix MMQ stream-k rounding if ne00 % 128 != 0 (llama/8311) 2024-07-08 14:53:55 +03:00
29a2739d27 Fix WARP_SIZE=16 bug of Intel GPU (llama/8266)
* fix group_norm ut

* split softmax

* fix softmax

* add concat support condition

* revert debug code

* move QK_WARP_SIZE to presets.hpp
2024-07-08 14:53:55 +03:00
ee6d17f6b4 rm get_work_group_size() by local cache for performance (llama/8286)
Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2024-07-08 14:53:55 +03:00
95e90823d9 Define and optimize RDNA1 (llama/8085) 2024-07-08 14:53:55 +03:00
005cc45df3 fix typo (llama/8267)
Co-authored-by: Judd <foldl@boxvest.com>
2024-07-08 14:53:55 +03:00
c2c60dc9ba Removes multiple newlines at the end of files that is breaking the editorconfig step of CI. (llama/8258) 2024-07-08 14:53:55 +03:00
4af3194b7c cuda : update supports_op for matrix multiplication (llama/8245) 2024-07-08 14:53:55 +03:00
4a2ba1a065 Fix win build conflict of math library (llama/8230)
* fix win build conflict of math library

* fix the condition: !(win32 & SYCL)

* revert warp_size=16
2024-07-08 14:53:55 +03:00
f096cc6807 Fix the sub group size of Intel (llama/8106)
* use warp_size macro for all sycl kernels

* fix mask of permute_sub_group_by_xor

* fix rms_norm with correct warp number

* fix rms_norm_f32/group_norm_f32

* move norm to norm.cpp file

* fix quantize bug

* fix mmvq's batch size
2024-07-08 14:53:55 +03:00
e4bc83ab47 CUDA: refactor and optimize IQ MMVQ (llama/8215)
* CUDA: refactor and optimize IQ MMVQ

* uint -> uint32_t

* __dp4a -> ggml_cuda_dp4a

* remove MIN_CC_DP4A checks

* change default

* try CI fix
2024-07-08 14:53:55 +03:00
db7e0dbe6e Update SYCL-Rope op and Refactor (llama/8157)
* align with rope.cu and move sycl-op to a single file
2024-07-08 14:53:55 +03:00
bf88c94da9 CUDA: fix MMQ stream-k for --split-mode row (llama/8167) 2024-07-08 14:53:55 +03:00
3eea171cab feat: cuda implementation for ggml_conv_transpose_1d (ggml/854)
* conv transpose 1d passing test for 1d input and kernel

* working for different input and output channel counts, added test for variable stride

* initial draft appears to work with stride other than 1

* working with all old and new conv1d  tests

* added a test for large tensors

* removed use cuda hardcoding

* restored test-conv-transpose.c

* removed unused arugments, and fixed bug where test failure would cause subsequent tests to fail

* fixed accumulator bug

* added test to test-backend-ops

* fixed mistake

* addressed review

* fixed includes

* removed blank lines

* style and warning fixes

* return failure when test fails

* fix supports_op

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-07-08 14:53:55 +03:00
64a56ebf13 ci : disable java build 2024-07-08 14:26:59 +03:00
bec9836849 server : add inference path to make OAI API compatible (#2270) 2024-07-08 14:24:58 +03:00
c118733a29 sync : ggml + fix sync script 2024-06-26 23:20:19 +03:00
bb3dd45524 make : disable CUDA graphs 2024-06-26 23:20:13 +03:00
04e7fa6f4f ggml : add GGML_CUDA_USE_GRAPHS option, restore GGML_CUDA_FORCE_CUBLAS (cmake) (llama/8140) 2024-06-26 23:18:11 +03:00
9f7f36d4c9 make : disable CUDA mel build 2024-06-26 22:25:25 +03:00
4a62efbb95 cmake : minor fixes 2024-06-26 21:42:39 +03:00
0a55a70b9b make : fix missing -O3
same as https://github.com/ggerganov/llama.cpp/pull/8143
2024-06-26 21:21:12 +03:00
dc8cc2dd6f whisper : disable CUDA mel + fix FFMPEG 2024-06-26 20:11:38 +03:00
3efedb9511 sync : ggml 2024-06-26 19:40:23 +03:00
e30c679928 whisper : reorganize source code + improve CMake (#2256)
* scripts : update sync [no ci]

* files : reorganize [no ci]

* sync : llama.cpp

* cmake : link math library

* cmake : build normal ggml library

* files : move headers to include

* objc : fix path to ggml-metal.h

* ci : fix WHISPER_CUDA -> GGML_CUDA

* scripts : sync LICENSE [no ci]
2024-06-26 19:34:09 +03:00
bf4cb4abad whisper : optimize fft() function (#2242)
Co-authored-by: Mike Fan <60965742+mike-fzy@users.noreply.github.com>
2024-06-18 18:10:33 +03:00
e293f17d34 talk-llama : sync llama.cpp 2024-06-18 09:45:37 +03:00
5d950c4b8d whisper : use ggml_backend_sched (#2239)
* whisper : use ggml_backend_sched (wip)

* use sched in whisper_allocr

* whisper : single backend in whisper_context

* whisper : remove whisper_state->backends_used

* whisper : remove whisper_context->backend

* whisper : reset scheduler after init

* whisper : fix external encoder (e.g. CoreML)

* whisper : cleanup

* whisper : handle null GPU buffer types + fix sycl

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-18 09:39:40 +03:00
820446e230 fix : remove extra files 2024-06-18 09:39:40 +03:00
54d5823ebe scripts : sync ggml-blas 2024-06-18 09:39:40 +03:00
5181494e9f build : update make / cmake 2024-06-18 09:39:40 +03:00
4a6e6e8b30 sync : ggml 2024-06-18 09:39:40 +03:00
de29b193f6 move BLAS to a separate backend (cont) (llama/6210)
ggml-ci
2024-06-18 09:39:40 +03:00
922971041b Vulkan Shader Refactor, Memory Debugging Option (llama/7947)
* Refactor shaders, extract GLSL code from ggml_vk_generate_shaders.py into vulkan-shaders directory

* Improve debug log code

* Add memory debug output option

* Fix flake8

* Fix unnecessary high llama-3 VRAM use
2024-06-18 09:39:40 +03:00
63a767a134 scripts : stop sync whisper example from ggml 2024-06-18 09:39:40 +03:00
30841fa786 cmake : fix sycl build (#0) 2024-06-16 18:19:48 +03:00
3b1ac03828 ggml : remove OpenCL (#0) 2024-06-16 18:19:48 +03:00
990de617b5 sycl : sync (#0) 2024-06-16 18:19:48 +03:00
6975600b4b cuda : enable CUDA graphs (#0) 2024-06-16 18:19:48 +03:00
061eeb9f61 talk-llama : sync llama.cpp 2024-06-16 18:19:48 +03:00
4942b1b428 cmake : fix CUDA build (#0) 2024-06-16 18:19:48 +03:00
3c7cc5c437 sync : ggml
ggml-ci
2024-06-16 18:19:48 +03:00
5cd42ee2cc ggml : fix and optimize ppc64le (ggml/849)
* fix compile issues introduced by loongarch_asx

* restore quant changes to merge

* fix compile issues introduced by loongarch_asx

* further optimize by using vec_msum & vec_sum4s on ppc64le
2024-06-16 18:19:48 +03:00
ee718f3da6 ggml : remove duplicate include of ggml-common.h (ggml/853)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-06-16 18:19:48 +03:00
63eac1f608 remove global variables (llama/7710)
* separate DPCT helpers outside

* replace global variables with context

* remove useless extra

* update mul_mat condition

* remove duplicate buft initialization

* remove duplicate extra and global work group size

* remove useless backend check

* remove duplicated extras

* use macro for group_size and remove cuda-related
2024-06-16 18:19:48 +03:00
b17ba2815b CUDA: faster q2_K, q3_K MMQ + int8 tensor cores (llama/7921)
* CUDA: faster q2_K, q3_K MMQ + int8 tensor cores

* try CI fix

* try CI fix

* try CI fix

* fix data race

* rever q2_K precision related changes
2024-06-16 18:19:48 +03:00
7a489af2f3 metal : utilize max shared memory for mul_mat_id (llama/7935) 2024-06-16 18:19:48 +03:00
4a4ea13d6d rpc : fix ggml_backend_rpc_supports_buft() (llama/7918) 2024-06-16 18:19:48 +03:00
174a461fc6 move BLAS to a separate backend (llama/6210)
* move BLAS to a separate backend

* rename GGML_USE_OPENBLAS to GGML_USE_BLAS

* alloc : reuse same buffer when the same buffer type if used multiple times

* set number of threads automatically for openblas and blis

* sched : print assignments when GGML_SCHED_DEBUG env variable is set

* sched : allow ops with weights on an incompatible buffer type

This will cause the weight to be copied to a backend that supports the
op, which is very costly. The weight should have been stored in a buffer
of a backend that can run the op, but llama.cpp cannot do this
automatically at the moment.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
d8b7a24bc9 CUDA: fix broken oob check for FA vec f32 kernel (llama/7904) 2024-06-16 18:19:48 +03:00
acf3832c9c tests : add non-cont unary tests (llama/7857)
* tests : add non-cont unary tests

* ggml : update unary asserts and "supports_op"

ggml-ci
2024-06-16 18:19:48 +03:00
d29ac44303 ggml : improve ggml_is_contiguous logic (llama/7856)
* ggml : improve ggml_is_contiguous logic

ggml-ci

* ggml : support more contiguous cases

ggml-ci
2024-06-16 18:19:48 +03:00
12638dfef0 vulkan: select only one device for single gpu with multiple drivers (llama/7582) 2024-06-16 18:19:48 +03:00
f100b3b523 Update Vulkan RoPE implementation (llama/7818)
* Update Vulkan RoPE implementation

* Return nullptr on alloc_buffer when allocation fails, instead of throwing an exception

Minor fixes

* Fix segfault when running out of VRAM

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-16 18:19:48 +03:00
a99e213a82 CUDA: int8 tensor cores for MMQ (q4_K, q5_K, q6_K) (llama/7860) 2024-06-16 18:19:48 +03:00
7483d2b61c CUDA: use tensor cores for MMQ (llama/7676)
* CUDA: int8 tensor cores for MMQ (legacy quants)

* fix out-of-bounds writes

* __builtin_assume -> GGML_CUDA_ASSUME

* fix writeback returning too early
2024-06-16 18:19:48 +03:00
1fe5948227 use the correct SYCL context for host USM allocations (llama/7777)
Signed-off-by: Ben Ashbaugh <ben.ashbaugh@intel.com>
2024-06-16 18:19:48 +03:00
760497e1ab CUDA: revise q8_1 data layout for mul_mat_q (llama/7824) 2024-06-16 18:19:48 +03:00
b172e7714c vulkan : reuse parent extra for views (llama/7806)
* vulkan : reuse parent extra for views

* Fix validation error when multiple compute contexts are used in a graph

---------

Co-authored-by: 0cc4m <picard12@live.de>
2024-06-16 18:19:48 +03:00
dc01aadb18 fix softmax r2r result wrong issue (llama/7811) 2024-06-16 18:19:48 +03:00
e08c62149b CUDA: refactor mmq, dmmv, mmvq (llama/7716)
* CUDA: refactor mmq, dmmv, mmvq

* fix out-of-bounds write

* struct for qk, qr, qi

* fix cmake build

* mmq_type_traits
2024-06-16 18:19:48 +03:00
abab4500fa ggml : refactor rope norm/neox (llama/7634)
* ggml : unify rope norm/neox (CPU)

* ggml : fix compile warning

* ggml : remove GLM rope mode

ggml-ci

* metal : better rope implementation

ggml-ci

* cuda : better rope implementation

ggml-ci

* naming : n_orig_ctx -> n_ctx_orig

ggml-ci

* dev : add reminders to update backends

ggml-ci

* vulkan : fix ggml_rope_ext() usage

* cuda : fix array size + indents

ggml-ci
2024-06-16 18:19:48 +03:00
e666315fa8 Allow number of nodes in CUDA graph to change (llama/7738)
Previously the code would have failed to cope in the case that the
number of nodes changes in an existing CUDA graph. This fixes the
issue by removing an unnecessary conditional.
2024-06-16 18:19:48 +03:00
3f869af14c ggml : remove OpenCL (llama/7735)
ggml-ci
2024-06-16 18:19:48 +03:00
cbacb7634c ggml : prevent builds with -ffinite-math-only (llama/7726)
This enforces a check that -fno-finite-math-only was set and that the operating
compiling mode is not in finite maths mode. This is because during rewriting of
silu and softmax for cpu #7154 there emerged an issue where the result that was
observed when >1 slot was nondeterministic as found by @JohannesGaessler.

@LostRuins narrowed the problem down to -ffinite-math-only which was theorised
to be due to SiLU, instead of flushing small values to 0, returns NaN or some
other garbage. @jart proposed a fix that @ggerganov then implemented in this fix

ref https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2145661825
2024-06-16 18:19:48 +03:00
6cc3b022ee llama : offload to RPC in addition to other backends (llama/7640)
* llama : offload to RPC in addition to other backends

* - fix copy_tensor being called on the src buffer instead of the dst buffer

- always initialize views in the view_src buffer

- add RPC backend to Makefile build

- add endpoint to all RPC object names

* add rpc-server to Makefile

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-16 18:19:48 +03:00
e5e38d4920 ggml : use OpenMP as a thread pool (llama/7606)
* ggml: Added OpenMP for multi-threads processing

* ggml : Limit the number of threads used to avoid deadlock

* update shared state n_threads in parallel region

* clear numa affinity for main thread even with openmp

* enable openmp by default

* fix msvc build

* disable openmp on macos

* ci : disable openmp with thread sanitizer

* Update ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
2a6bab5655 Vulkan Mixture of Experts (MoE) support (llama/7628)
* Finish Vulkan mul_mat_id implementation

* Add Vulkan sum_rows and div ops

* Fix MUL_MAT_ID matrix matrix shader

* Fix MUL_MAT_ID matrix vector shader dispatch size

* Fix MUL_MAT_ID matrix vector shader and dispatch code

* Update Vulkan CPU offload for MUL_MAT_ID

* Fix crash when using split mode none and setting a main GPU
2024-06-16 18:19:48 +03:00
8c01c9b85c kompute : implement op_getrows_f32 (llama/6403)
op_getrows_f32 is required since https://github.com/ggerganov/llama.cpp/pull/6122
for the Vulkan w/ Kompute backend to be functional.

As such, implement this op to make this backend functional again.
2024-06-16 18:19:48 +03:00
d1123d795e fix bug introduced in using calloc (llama/7701)
compilade pointed this out on the previous MR
2024-06-16 18:19:48 +03:00
9b3d784020 Fix FlashAttention debug test, FP32 assert (llama/7684) 2024-06-16 18:19:48 +03:00
a16137d13d CUDA: fix Pascal FA, deq. KV to FP16 for batch > 8 (llama/7681) 2024-06-16 18:19:48 +03:00
5582039d0a CUDA: quantized KV support for FA vec (llama/7527)
* CUDA: quantized KV support for FA vec

* try CI fix

* fix commented-out kernel variants

* add q8_0 q4_0 tests

* fix nwarps > batch size

* split fattn compile via extern templates

* fix flake8

* fix metal tests

* fix cmake

* make generate_cu_files.py executable

* add autogenerated .cu files

* fix AMD

* error if type_v != FP16 and not flash_attn

* remove obsolete code
2024-06-16 18:19:48 +03:00
9a16c643e2 ggml : fix loongson compile warnings (llama/7537)
* ggml : fix loongson compile warnings

ggml-ci

* Fix loongarch quantize test fail.

Fix unexpected error introduced during rebase code.

* tests : disable json test due to lack of python on the CI node

ggml-ci

---------

Co-authored-by: junchao-loongson <zhaojunchao@loongson.cn>
2024-06-16 18:19:48 +03:00
10a8a23100 faster avx512 exp implementation (llama/7551)
* faster avx512 exp implementation

* x->r

* improve accuracy, handle special cases

* remove `e`
2024-06-16 18:19:48 +03:00
29cfeef77f ggml : fix loongarch build (O2 issue) (llama/7636) 2024-06-16 18:19:48 +03:00
e66e9ea25b metal : remove invalid asserts (llama/7617) 2024-06-16 18:19:48 +03:00
276779a849 metal : add missing asserts (llama/7617) 2024-06-16 18:19:48 +03:00
1f35ce61c1 ggml : fix YARN + add tests + add asserts (llama/7617)
* tests : add rope tests

ggml-ci

* ggml : fixes (hopefully)

ggml-ci

* tests : add non-cont tests

ggml-ci

* cuda : add asserts for rope/norm + fix DS2

ggml-ci

* ggml : assert contiguousness

* tests : reduce RoPE tests

ggml-ci
2024-06-16 18:19:48 +03:00
4b19cc3ed4 cuda : non-cont concat support (llama/7610)
* tests : add non-cont concat tests

* cuda : non-cont concat support

ggml-ci
2024-06-16 18:19:48 +03:00
a535d348dd llama-bench : add support for the RPC backend (llama/7435) 2024-06-16 18:19:48 +03:00
8f5dc729d9 ggml : use atomic_flag for critical section (llama/7598)
* ggml : use atomic_flag for critical section

* add windows shims
2024-06-16 18:19:48 +03:00
02fc147a0b examples : adapt to new ggml_concat (ggml/0) 2024-06-16 18:19:48 +03:00
109148ac84 ggml : fix typo in ggml.c (llama/7603) 2024-06-16 18:19:48 +03:00
3563473d2c Align GEMM dispatch (llama/7566)
* align GEMM dispatch
2024-06-16 18:19:48 +03:00
046834198d sycl : fix assert (llama/7563) 2024-06-16 18:19:48 +03:00
0a2ad9de06 vulkan: properly initialize vulkan devices for LLAMA_SPLIT_MODE_NONE (llama/7552) 2024-06-16 18:19:48 +03:00
39b0640b09 rpc : resource management rework (llama/7562)
* rpc : resource management rework

* address review comments
2024-06-16 18:19:48 +03:00
8dca71de64 fix ggml_sycl_mul_mat_id() to match the change of api (llama/7436)
* fix mul_mat_id to match the change of api

* rm comment

* rm unused or duplicated code, rename as review comment
2024-06-16 18:19:48 +03:00
812787cbc5 ggml : generalize GGML_OP_CONCAT (llama/7563)
* ggml : generalize GGML_OP_CONCAT (WIP)

ggml-ci

* tests : add dim != 2 tests

* metal : generalize concat kernel

* tests : naming

* cuda : generalize concat kernel

ggml-ci

* sycl : add warning and assert

* ggml : fix op params handling

* metal : bugfix kernel

ggml-ci

* ggml : reimplement CPU and Metal

* cuda : add asserts

ggml-ci

* ggml : fix ptrs

ggml-ci
2024-06-16 18:19:48 +03:00
68ef10805e update HIP_UMA #7399 (llama/7414)
* update HIP_UMA #7399

add use of hipMemAdviseSetCoarseGrain when LLAMA_HIP_UMA is enable.
- get x2 on prompte eval and x1.5 on token gen with rocm6.0 on ryzen 7940HX iGPU (780M/gfx1103)

* simplify code, more consistent style

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-16 18:19:48 +03:00
96fdb90f5f Allow multiple copy function pointers for CUDA graph kernel param updates (llama/7565)
CUDA graphs require parameter updates to kernels associated with
GGML_OP_CPY nodes. Previously the implementation only checked for a
single CUDA kernel in such nodes, but this caused a bug in cases where
2 such kernels exist. This fixes the issue by using a vector to allow
multiple function pointers to be stored and checked against.

Fixes #7942
2024-06-16 18:19:48 +03:00
e98f9ac554 Fix q_xxs using mul_mat_q (llama/7459) 2024-06-16 18:19:48 +03:00
02d481595b Add freq factors (llama/7495) 2024-06-16 18:19:48 +03:00
7091c7ab5a metal : add GGML_OP_REPEAT kernels (llama/7557)
ggml-ci
2024-06-16 18:19:48 +03:00
d70ccb75f5 metal : disable FA kernel for HS=256 (llama/7556)
ggml-ci
2024-06-16 18:19:48 +03:00
5ee048eb67 ggml : restore ggml_rope_xpos_inplace (ggml/0)
ggml-ci
2024-06-16 18:19:48 +03:00
37ed71c964 ggml: aarch64: SVE kernels for q8_0_q8_0, q4_0_q8_0 vector dot (llama/7433)
* Add SVE support for q4_0_q8_0 q8_0_q8_0

* remove ifdef
2024-06-16 18:19:48 +03:00
8cd7a3df37 ggml : silence UB sanitizer error during iq2_xxs quantization (llama/0) 2024-06-16 18:19:48 +03:00
04a3279320 ggml : remove ggml_flash_attn and ggml_flash_ff (llama/7463)
ggml-ci
2024-06-16 18:19:48 +03:00
45ddda8e0c ggml : drop support for QK_K=64 (llama/7473)
* ggml : drop support for QK_K=64

ggml-ci

* opencl : restore QK_K=256 define
2024-06-16 18:19:48 +03:00
c41317fd66 Update vulkan rope implementation to support frequency factors (llama/7475) 2024-06-16 18:19:48 +03:00
96b8419b27 CUDA: fix FA out-of-bounds reads (llama/7479) 2024-06-16 18:19:48 +03:00
3c63f4cf35 CUDA: fix FA out-of-bounds writes (llama/7465) 2024-06-16 18:19:48 +03:00
5848dfd9c8 cuda : fix compile warning (llama/7454) 2024-06-16 18:19:48 +03:00
29ab5d0326 CUDA: remove incorrect precision check (llama/7454) 2024-06-16 18:19:48 +03:00
c4d6958b3e cuda : fix rope + add tests (llama/7452)
* cuda : fix rope pos data

ggml-ci

* ggml : drop mode & 1 == 1 support for ggml_rope

ggml-ci

* ggml : support freq_factors for f16 rope (CPU)

ggml-ci

* tests : add rope tests using frequency factors

ggml-ci
2024-06-16 18:19:48 +03:00
c9dcb75118 llama : add phi3 128K model support (llama/7225)
* add phi3 128k support in convert-hf-to-gguf

* add phi3 128k support in cuda

* address build warnings on llama.cpp

* adjust index value in cuda long rope freq factors

* add long rope support in ggml cpu backend

* make freq factors only depend on ctx size

* remove unused rope scaling type 'su' frin gguf converter

* fix flint warnings on convert-hf-to-gguf.py

* set to the short freq factor when context size is small than trained context size

* add one line of comments

* metal : support rope freq_factors

* ggml : update ggml_rope_ext API to support freq. factors

* backends : add dev messages to support rope freq. factors

* minor : style

* tests : update to use new rope API

* backends : fix pragma semicolons

* minor : cleanup

* llama : move rope factors from KV header to tensors

* llama : remove tmp assert

* cuda : fix compile warning

* convert : read/write n_head_kv

* llama : fix uninitialized tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
bbdbc3fc62 metal : handle F16 inf values, fix FA partial offload (llama/7434)
ggml-ci
2024-06-16 18:19:48 +03:00
28c207a541 CUDA: fix unused warning in mmq.cu (llama/7442) 2024-06-16 18:19:48 +03:00
c23f830983 CUDA: deduplicate mmq code (llama/7397) 2024-06-16 18:19:48 +03:00
caeeb32b41 rpc : track allocated buffers (llama/7411)
* rpc : track allocated buffers

ref: #7407

* rpc : pack rpc_tensor tightly
2024-06-16 18:19:48 +03:00
584cc1177a Update SYCL upscale operation (llama/7321)
* Update SYCL upscale operation

* Formatting

* Remove messages
2024-06-16 18:19:48 +03:00
cc1ae10989 ggml-opencl, llama: using reserve() if count already known (llama/7272) 2024-06-16 18:19:48 +03:00
eb26f55b40 ggml : add loongarch lsx and lasx support (llama/6454)
* add loongarch lsx and lasx optimize code

* Add loongarch compilation support to makefile

* revert stb_image.h

* opt bytes_from_nibbles_32 and sum_i16_pairs_float

* fix undeclared

* format code

* update

* update 2

---------

Co-authored-by: Jinyang He <hejinyang@loongson.cn>
2024-06-16 18:19:48 +03:00
eb2b086584 Add provisions for windows support for BF16 code including CMake provision for enabling AVX512_BF16 (llama/7258) 2024-06-16 18:19:48 +03:00
67919cfe11 Vulkan Embedding Fix (llama/7360)
* Fix empty Vulkan host buffers

Add fp32 fp16 matmul shader

Fix matmul shader alignment

* Remove deprecated tensor->backend uses

* Fix Vulkan validation errors on embedding models with no offloaded layers

* Fix Vulkan llava segfault when not offloading layers
2024-06-16 18:19:48 +03:00
bf5fc81a8a ggml : fix another case of quants nans (llama/7387) 2024-06-16 18:19:48 +03:00
2b07dc3186 ggml: implement quantized KV cache for FA (llama/7372) 2024-06-16 18:19:48 +03:00
951c463d39 cuda : clear error after buffer allocation failure (llama/7376) 2024-06-16 18:19:48 +03:00
7f257b210f Capture CUDA logging output (llama/7298)
* logging: output capture in cuda module

* fix compile error

* fix: vsnprintf terminates with 0, string use not correct

* post review

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-16 18:19:48 +03:00
705fe30a02 android : use "ci-android" branch for CI (llama/7341)
* android : use "ci-android" branch for CI

* ggml : disable SIMD exp and silu for 32-bit ARM

ggml-ci

* android : do not fetch, use add_subdirectory instead

* cmake : provide binary dir
2024-06-16 18:19:48 +03:00
45b5b95e29 CUDA: deduplicate FlashAttention code (llama/7352) 2024-06-16 18:19:48 +03:00
f2c47d1e6a cuda : add half2 __shfl_xor() for ROCm 5.5 (llama/7263) 2024-06-16 18:19:48 +03:00
b4bb9b9036 Update and fix Vulkan soft_max and argsort implementations (llama/7237)
* Update and fix Vulkan softmax implementation

* Update and fix Vulkan argsort implementation
2024-06-16 18:19:48 +03:00
2bc6483299 ggml : fix quants nans when all the group weights are very close to zero (llama/7313) 2024-06-16 18:19:48 +03:00
ec52f900e4 CUDA: faster large batch FA without tensor cores (llama/7314) 2024-06-16 18:19:48 +03:00
77d708fabb rpc : set SO_REUSEADDR for the server socket (llama/7320)
ref: #7293
2024-06-16 18:19:48 +03:00
c00149c861 ggml-quants, llama : removed excess checks (llama/7274) 2024-06-16 18:19:48 +03:00
574661f2e6 ggml : rewrite silu and softmax for cpu (llama/7154)
This change upstreams llamafile's vectorized expf() functions. This lets
us compute softmax and silu more accurately than the short[65536] lookup
table that GGML previously used to make this operation go faster. We can
support aarch64 and sse2+ with the worst case rounding error of 2ulp. It
makes make -j8 tests && ./tests/test-backend-ops -o SOFT_MAX -b CPU perf
go 1.5x faster for SSE2+FMA, 1.9x faster for AVX2+FMA and 2.1x on AVX512
2024-06-16 18:19:48 +03:00
7bd69349bf rpc : add command line arg for specifying backend memory
ref: #7293
2024-06-16 18:19:48 +03:00
488ad99c13 Add support for properly optimized Windows ARM64 builds with LLVM and MSVC (llama/7191)
* logging: add proper checks for clang to avoid errors and warnings with VA_ARGS

* build: add CMake Presets and toolchian files for Windows ARM64

* matmul-int8: enable matmul-int8 with MSVC and fix Clang warnings

* ci: add support for optimized Windows ARM64 builds with MSVC and LLVM

* matmul-int8: fixed typos in q8_0_q8_0 matmuls

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* matmul-int8: remove unnecessary casts in q8_0_q8_0

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
7178cceeaa ggml : use dynamic thread scheduling for matrix multiplication (llama/6915)
* Just reordering some structs.

* Adding in the calls to mm_pause

* Passing around the state

* Renaming and moving a bunch of variables around.

* Extracting the logic to it's own function.

* Moving some variable definitions into the chunk function.

* Moving some variables around

* moving src1_cont inside

* Moving row_size

* adding the current_chunk

* Reorg the code.

* Formatting to match the orig patch

* starting to setup the chunking variables

* Starting the buildup of the loop

* The yield shouldn't be necessary.

* adding the looping structure based on the chunk configuration.

* Add in the re-chunking code.

* Making it much more likely to rechunk.

* disable resizing if numa is enabled.

* Updating comments with what we've learned.

* Fix formatting

* Couple more formatting fixes.

* More style fixes.

* Fix Warnings

* Going with unused because there's conditional logic that needs it.

* Update ggml.c

* Update ggml.c

---------
2024-06-16 18:19:48 +03:00
8d55ccdb8c Avoid unnecessarily disabling CUDA graphs (llama/7302)
As discussed in PR #6766, CUDA graphs were being disabled in the presence of long prompts.
This fixes the issue by avoiding the consective update counter from incrementing unnecessarily
for tokens in which cuda graphs are disabled due to batch size > 1.
2024-06-16 18:19:48 +03:00
37a72cb170 ggml : tag ggml_tensor::backend as deprecated (llama/7290) 2024-06-16 18:19:48 +03:00
bf9b69284f Add missing " (llama/7303) 2024-06-16 18:19:48 +03:00
c4de1e19df ggml : add ggml_upscale_ext (ggml/814)
* initial commit with CPU implementation of upscale to shape and test, cuda implementation next

* experimental commit to see if dst shape is correct

* test version

* test

* removed unnecessary params

* refactor

* fixed tests

* ggml : metal impl + cleanup + sycl dev warnings

* patched ggml_upscale cuda op to handle non-contiguous tensors, added test for non-contiguous behavior

* metal : fix upsacle op to support nb00 + style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
5b7073cae1 scripts : update sync 2024-06-16 12:41:42 +03:00
b29b3b2924 whisper : use ggml-cuda in mel calc, set appropriate device (#2236)
* whisper : use ggml-cuda in mel calc, set appropriate device

* whisper : forbid cuda mel calc on devices with compute < 600, workaround for #2230
2024-06-13 13:16:07 +03:00
420b6abc54 cuda : fix HIPBLAS build (#2234) 2024-06-11 19:14:38 +03:00
99804b0f3e cuda : fix bounds check for src0 rows in MMVQ kernel (#2231)
* cuda : fix bounds check for src0 rows in MMVQ kernel

* Update ggml-cuda/mmvq.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-06-11 17:39:01 +03:00
c55964c956 ci : fix CUDA builds (#2232) 2024-06-11 17:21:30 +03:00
543 changed files with 106776 additions and 77093 deletions

View File

@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential git cmake
apt-get install -y build-essential git cmake libsdl2-dev
WORKDIR /app
@ -21,7 +21,7 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV WHISPER_CUBLAS=1
ENV GGML_CUDA=1
RUN make

View File

@ -14,10 +14,10 @@ ARG CUDA_DOCKER_ARCH=all
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV WHISPER_CUBLAS=1
ENV GGML_CUDA=1
RUN apt-get update && \
apt-get install -y build-essential \
apt-get install -y build-essential libsdl2-dev \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
# Ref: https://stackoverflow.com/a/53464012

View File

@ -12,7 +12,7 @@ FROM ubuntu:22.04 AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y curl ffmpeg \
apt-get install -y curl ffmpeg libsdl2-dev \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app

View File

@ -13,10 +13,10 @@ jobs:
ubuntu-latest:
runs-on: ubuntu-latest
steps:
- uses: actions/setup-go@v3
- uses: actions/setup-go@v5
with:
go-version: '^1.19'
- uses: actions/checkout@v1
go-version: '^1.23'
- uses: actions/checkout@v4
- run: |
cd bindings/go
make test

View File

@ -3,20 +3,73 @@ on:
push:
paths:
- bindings/ruby/**
- whisper.h
- src/whisper.cpp
- include/whisper.h
- ggml/src/ggml.c
- ggml/src/ggml-impl.h
- ggml/src/ggml-aarch64.h
- ggml/src/ggml-aarch64.c
- ggml/src/ggml-alloc.c
- ggml/src/ggml-backend-impl.h
- ggml/src/ggml-backend.cpp
- ggml/src/ggml-common.h
- ggml/src/ggml-quants.h
- ggml/src/ggml-quants.c
- ggml/src/ggml-cpu-impl.h
- ggml/src/ggml-metal.m
- ggml/src/ggml-metal.metal
- ggml/src/ggml-blas.cpp
- ggml/include/ggml.h
- ggml/include/ggml-alloc.h
- ggml/include/ggml-backend.h
- ggml/include/ggml-cuda.h
- ggml/include/ggml-kompute.h
- ggml/include/ggml-metal.h
- ggml/include/ggml-sycl.h
- ggml/include/ggml-vulkan.h
- ggml/include/ggml-blas.h
- scripts/get-flags.mk
- examples/dr_wav.h
pull_request:
paths:
- bindings/ruby/**
- whisper.h
- src/whisper.cpp
- include/whisper.h
- ggml/src/ggml.c
- ggml/src/ggml-impl.h
- ggml/src/ggml-aarch64.h
- ggml/src/ggml-aarch64.c
- ggml/src/ggml-alloc.c
- ggml/src/ggml-backend-impl.h
- ggml/src/ggml-backend.cpp
- ggml/src/ggml-common.h
- ggml/src/ggml-quants.h
- ggml/src/ggml-quants.c
- ggml/src/ggml-cpu-impl.h
- ggml/src/ggml-metal.m
- ggml/src/ggml-metal.metal
- ggml/src/ggml-blas.cpp
- ggml/include/ggml.h
- ggml/include/ggml-alloc.h
- ggml/include/ggml-backend.h
- ggml/include/ggml-cuda.h
- ggml/include/ggml-kompute.h
- ggml/include/ggml-metal.h
- ggml/include/ggml-sycl.h
- ggml/include/ggml-vulkan.h
- ggml/include/ggml-blas.h
- scripts/get-flags.mk
- examples/dr_wav.h
jobs:
ubuntu-latest:
runs-on: ubuntu-latest
defaults:
run:
working-directory: bindings/ruby
steps:
- uses: ruby/setup-ruby@v1
with:
ruby-version: '3.0'
- uses: actions/checkout@v1
- run: |
cd bindings/ruby/ext
ruby extconf.rb && make
- uses: actions/checkout@v4
- run: rake test

View File

@ -59,7 +59,7 @@ jobs:
uses: cross-platform-actions/action@v0.24.0
with:
operating_system: freebsd
version: '13.2'
version: '13.3'
run: |
sudo pkg update
sudo pkg install -y gmake sdl2
@ -101,7 +101,10 @@ jobs:
fail-fast: false
matrix:
build: [Debug, Release]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
#arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
# TODO: arm/v7 disabled due to clang bug
# https://github.com/ggerganov/whisper.cpp/actions/runs/9657764109/job/26637633042?pr=2256#step:4:1990
arch: [linux/amd64, linux/arm64, linux/ppc64le]
steps:
- name: Clone
@ -197,7 +200,7 @@ jobs:
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl-fp16:
@ -247,7 +250,7 @@ jobs:
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake -DGGML_SYCL_F16=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
windows-msys2:
@ -289,7 +292,7 @@ jobs:
- name: Build using make w/ OpenBLAS
shell: msys2 {0}
run: |
make WHISPER_OPENBLAS=1 -j $(nproc)
make GGML_OPENBLAS=1 -j $(nproc)
- name: Build using CMake
shell: msys2 {0}
@ -305,7 +308,7 @@ jobs:
- name: Build using CMake w/ OpenBLAS
shell: msys2 {0}
run: |
cmake -B build -DWHISPER_OPENBLAS=ON
cmake -B build -DGGML_OPENBLAS=ON
cmake --build build --config ${{ matrix.build }} -j $(nproc)
windows:
@ -381,12 +384,9 @@ jobs:
- arch: Win32
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x86.zip
s2arc: x86
clblast: OFF
- arch: x64
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x64.zip
s2arc: x64
clblast: ON
clver: 1.6.1
- sdl2: ON
s2ver: 2.28.5
@ -413,26 +413,13 @@ jobs:
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Install OpenCL
if: matrix.clblast == 'ON'
run: vcpkg.exe --triplet=${{ matrix.arch }}-windows install opencl
- name: Fetch CLBlast and set CLBlast_DIR
if: matrix.clblast == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO clblast.zip https://github.com/CNugteren/CLBlast/releases/download/${{ matrix.clver }}/CLBlast-${{ matrix.clver }}-windows-x64.zip
7z x clblast.zip
7z x CLBlast-${{ matrix.clver }}-windows-x64.7z
echo "CLBlast_DIR=$env:GITHUB_WORKSPACE/CLBlast-${{ matrix.clver }}-windows-x64/lib/cmake/CLBlast" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_OPENBLAS=${{ matrix.blas }}
-DGGML_OPENBLAS=${{ matrix.blas }}
-DCMAKE_LIBRARY_PATH="$env:OPENBLAS_PATH/lib"
-DWHISPER_SDL2=${{ matrix.sdl2 }}
-DWHISPER_CLBLAST=${{ matrix.clblast }}
- name: Build
run: |
@ -447,19 +434,15 @@ jobs:
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Copy clblast.dll
if: matrix.clblast == 'ON'
run: copy "$env:CLBlast_DIR/../../clblast.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.blas == 'ON' && matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v4
with:
name: whisper-blas${{ matrix.clblast == 'ON' && '-clblast' || ''}}-bin-${{ matrix.arch }}
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
windows-cublas:
runs-on: windows-latest
runs-on: windows-2019
strategy:
matrix:
@ -498,7 +481,7 @@ jobs:
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_CUDA=${{ matrix.cublas }}
-DGGML_CUDA=${{ matrix.cublas }}
-DWHISPER_SDL2=${{ matrix.sdl2 }}
- name: Build ${{ matrix.cuda-toolkit }}
@ -603,73 +586,75 @@ jobs:
cd whisper/examples/whisper.android
./gradlew assembleRelease --no-daemon -PGGML_HOME=$PATH_TO_GGML
android_java:
runs-on: ubuntu-latest
# TODO: disable because of following fail: https://github.com/ggerganov/whisper.cpp/actions/runs/11019444420/job/30627193602
# android_java:
# runs-on: ubuntu-latest
#
# steps:
# - name: Clone
# uses: actions/checkout@v4
#
# - name: set up JDK 11
# uses: actions/setup-java@v4
# with:
# java-version: '11'
# distribution: 'temurin'
# cache: gradle
#
# - name: Setup Android SDK
# uses: android-actions/setup-android@v3
# with:
# cmdline-tools-version: 9.0
#
# - name: Build
# run: |
# cd examples/whisper.android.java
# chmod +x ./gradlew
# ./gradlew assembleRelease
steps:
- name: Clone
uses: actions/checkout@v4
- name: set up JDK 11
uses: actions/setup-java@v4
with:
java-version: '11'
distribution: 'temurin'
cache: gradle
- name: Setup Android SDK
uses: android-actions/setup-android@v3
with:
cmdline-tools-version: 9.0
- name: Build
run: |
cd examples/whisper.android.java
chmod +x ./gradlew
./gradlew assembleRelease
java:
needs: [ 'windows' ]
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
- name: Install Java
uses: actions/setup-java@v4
with:
distribution: zulu
java-version: 20
- name: Download Windows lib
uses: actions/download-artifact@v4
with:
name: win32-x86-64_whisper.dll
path: bindings/java/build/generated/resources/main/win32-x86-64
- name: Build
run: |
models\download-ggml-model.cmd tiny.en
cd bindings/java
chmod +x ./gradlew
./gradlew build
- name: Upload jar
uses: actions/upload-artifact@v4
with:
name: whispercpp.jar
path: bindings/java/build/libs/whispercpp-*.jar
- name: Publish package
if: ${{ github.ref == 'refs/heads/master' }}
uses: gradle/gradle-build-action@v2.4.2
with:
arguments: publish
build-root-directory: bindings/java
env:
MAVEN_USERNAME: ${{ secrets.JIRA_USER }}
MAVEN_PASSWORD: ${{ secrets.JIRA_PASS }}
PGP_SECRET: ${{ secrets.GPG_PRIVATE_KEY }}
PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
# TODO: disabled because of following fail: https://github.com/ggerganov/whisper.cpp/actions/runs/9686220096/job/26735899598
# java:
# needs: [ 'windows' ]
# runs-on: windows-latest
# steps:
# - uses: actions/checkout@v4
#
# - name: Install Java
# uses: actions/setup-java@v4
# with:
# distribution: zulu
# java-version: 20
#
# - name: Download Windows lib
# uses: actions/download-artifact@v4
# with:
# name: win32-x86-64_whisper.dll
# path: bindings/java/build/generated/resources/main/win32-x86-64
#
# - name: Build
# run: |
# models\download-ggml-model.cmd tiny.en
# cd bindings/java
# chmod +x ./gradlew
# ./gradlew build
#
# - name: Upload jar
# uses: actions/upload-artifact@v4
# with:
# name: whispercpp.jar
# path: bindings/java/build/libs/whispercpp-*.jar
#
# - name: Publish package
# if: ${{ github.ref == 'refs/heads/master' }}
# uses: gradle/gradle-build-action@v2.4.2
# with:
# arguments: publish
# build-root-directory: bindings/java
# env:
# MAVEN_USERNAME: ${{ secrets.JIRA_USER }}
# MAVEN_PASSWORD: ${{ secrets.JIRA_PASS }}
# PGP_SECRET: ${{ secrets.GPG_PRIVATE_KEY }}
# PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
quantize:
runs-on: ubuntu-latest

View File

@ -18,7 +18,9 @@ jobs:
matrix:
config:
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64,linux/arm64" }
- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }
#TODO: the cuda image keeps failing - disable for now
# https://github.com/ggerganov/whisper.cpp/actions/runs/11019444428/job/30602020339
#- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }
steps:
- name: Check out the repo

13
.gitignore vendored
View File

@ -3,23 +3,16 @@
.cache/
.coreml/
.test/
.venv/
.vs/
.vscode/
.DS_Store
.vimspector.json
/CMakeSettings.json
/talk-llama.dSYM/
build/
build-coreml/
build-em/
build-debug/
build-release/
build-rwdi/
build-static/
build-cublas/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
build-*/
# SPM
.build/

3
.gitmodules vendored
View File

@ -1,3 +0,0 @@
[submodule "bindings/ios"]
path = bindings/ios
url = https://github.com/ggerganov/whisper.spm

View File

@ -1,25 +1,31 @@
cmake_minimum_required (VERSION 3.5)
cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories.
project("whisper.cpp" C CXX)
project("whisper.cpp" VERSION 1.7.1)
include(CheckIncludeFileCXX)
# Allow for the creation of solution folders.
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
project(whisper.cpp VERSION 1.6.2)
set(SOVERSION 1)
#set(CMAKE_WARN_DEPRECATED YES)
set(CMAKE_WARN_UNUSED_CLI YES)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(WHISPER_STANDALONE ON)
include(GitVars)
include(BuildTypes)
include(git-vars)
# configure project version
if (EXISTS "${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl")
configure_file(${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl ${CMAKE_SOURCE_DIR}/bindings/ios/Makefile @ONLY)
endif()
configure_file(${CMAKE_SOURCE_DIR}/bindings/javascript/package-tmpl.json ${CMAKE_SOURCE_DIR}/bindings/javascript/package.json @ONLY)
else()
set(WHISPER_STANDALONE OFF)
@ -29,6 +35,11 @@ if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(WHISPER_WASM_SINGLE_FILE "whisper: embed WASM inside the generated whisper.js" ON)
# TODO: without these, we get the following error:
# wasm-ld: error: --shared-memory is disallowed by whisper.cpp.o because it was not compiled with 'atomics' or 'bulk-memory' features.
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread -s TOTAL_STACK=5242880")
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@ -37,756 +48,136 @@ else()
endif()
endif()
# options
option(BUILD_SHARED_LIBS "build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
if (APPLE)
set(WHISPER_METAL_DEFAULT ON)
else()
set(WHISPER_METAL_DEFAULT OFF)
endif()
#
# option list
#
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
# general
option(WHISPER_CCACHE "whisper: use ccache if available" ON)
# debug
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
option(WHISPER_FFMPEG "whisper: support building and linking with ffmpeg libs (avcodec, swresample, ...)" OFF)
endif()
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_AVX512 "whisper: disable AVX512" ON)
option(WHISPER_NO_AVX512_VBMI "whisper: disable AVX512-VBMI" ON)
option(WHISPER_NO_AVX512_VNNI "whisper: disable AVX512-VNNI" ON)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
if (APPLE)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_METAL "whisper: use Metal" ${WHISPER_METAL_DEFAULT})
option(WHISPER_METAL_NDEBUG "whisper: disable Metal debugging" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
option(WHISPER_METAL_EMBED_LIBRARY "whisper: embed Metal library" OFF)
else()
option(WHISPER_BLAS "whisper: use BLAS libraries" OFF)
option(WHISPER_BLAS_VENDOR "whisper: BLAS library vendor" Generic)
option(WHISPER_OPENBLAS "whisper: prefer OpenBLAS" OFF)
option(WHISPER_OPENBLAS_INTERFACE64 "whisper: use OpenBLAS w/ 64-bit interface" OFF)
option(WHISPER_CUDA "whisper: support for CUDA" OFF)
option(WHISPER_CUBLAS "whisper: support for CUDA (deprecated)" OFF)
option(WHISPER_HIPBLAS "whisper: support for hipBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
option(WHISPER_MKL "whisper: use Intel Math Kernel Library (MKL)" OFF)
option(WHISPER_SYCL "whisper: use SYCL" OFF)
option(WHISPER_SYCL_F16 "whisper: use 16 bit floats for sycl calculations" OFF)
endif()
option(WHISPER_PERF "whisper: enable perf timings" OFF)
# build
option(WHISPER_FATAL_WARNINGS "whisper: enable -Werror flag" OFF)
# sanitizers
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
if (NOT MSVC)
if (WHISPER_SANITIZE_THREAD)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=thread")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
endif()
# extra artifacts
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_SERVER "whisper: build server example" ${WHISPER_STANDALONE})
if (WHISPER_SANITIZE_ADDRESS)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
endif()
# 3rd party libs
option(WHISPER_CURL "whisper: use libcurl to download model from an URL" OFF)
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
if (WHISPER_SANITIZE_UNDEFINED)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=undefined")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
endif()
endif()
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -ffast-math")
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=native")
# dependencies
find_package(Threads REQUIRED)
#compile flag sycl
if (WHISPER_SYCL)
set(CMAKE_CXX_STANDARD 17)
else()
set(CMAKE_CXX_STANDARD 11)
endif()
if (WHISPER_FFMPEG)
# As of cmake 3.27, there is no official cmake support for FindFFmpeg.
# Consequnelty we added a FindFFmpeg.cmake script the cmake subfolder:
# whisper.cpp does not need the full ffmpeg libs, just AVFORMAT AVCODEC AVUTIL SWRESAMPLE
# libswresample performs highly optimized audio resampling, rematrixing and sample format conversion operations
# libavcodec provides a generic encoding/decoding framework and contains multiple decoders and encoders for audio, video and subtitle streams, and several bitstream filters.
# libavformat provides a generic framework for multiplexing and demultiplexing (muxing and demuxing) audio, video and subtitle streams.
find_package(FFmpeg REQUIRED)
if (NOT ${FFMPEG_FOUND})
message(FATAL_ERROR "Cannot find ffmpeg libs/headers")
endif()
message(STATUS "Found ffmpeg libs: ${FFMPEG_LIBRARIES}")
message(STATUS "Found ffmpeg headers in: ${FFMPEG_INCLUDE_DIRS}")
message(STATUS "ffmpeg definitions: ${FFMPEG_DEFINITIONS}")
message(STATUS "Found avformat ${AVFORMAT_VERSION}")
include_directories(${FFMPEG_INCLUDE_DIRS})
add_compile_definitions(WHISPER_FFMPEG)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${FFMPEG_LIBRARIES})
endif()
# on APPLE
if (APPLE)
# include Accelerate framework
if (NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64)
else()
message(FATAL_ERROR "Accelerate framework not found")
endif()
endif()
if (WHISPER_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
if (METAL_FRAMEWORK)
message(STATUS "Metal framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_METAL)
if (WHISPER_METAL_NDEBUG)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_NDEBUG)
endif()
else()
message(FATAL_ERROR "Metal framework not found")
endif()
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
# copy ggml-common.h and ggml-metal.metal to bin directory
configure_file(ggml-common.h bin/ggml-common.h COPYONLY)
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
if (WHISPER_METAL_EMBED_LIBRARY)
enable_language(ASM)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_EMBED_LIBRARY)
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
set(COMMON_HEADER "${CMAKE_CURRENT_SOURCE_DIR}/ggml-common.h")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
set(EMBED_METALLIB_SOURCE "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-combined.metal")
add_custom_command(
OUTPUT ${EMBED_METALLIB_SOURCE}
COMMAND sed -e "/^#include \\\"ggml-common.h\\\"/r ${COMMON_HEADER}" -e "/^#include \\\"ggml-common.h\\\"/d" ${METALLIB_SOURCE} > ${EMBED_METALLIB_SOURCE}
DEPENDS ${METALLIB_SOURCE} ${COMMON_HEADER}
COMMENT "Generating combined Metal library for embedding"
)
add_custom_command(
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".incbin \\\"${EMBED_METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
DEPENDS ${EMBED_METALLIB_SOURCE}
COMMENT "Generate assembly for embedded Metal library"
)
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY})
endif()
endif()
if (WHISPER_COREML)
find_library(FOUNDATION_FRAMEWORK Foundation)
find_library(COREML_FRAMEWORK CoreML)
if (COREML_FRAMEWORK)
message(STATUS "CoreML framework found")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
else()
message(FATAL_ERROR "CoreML framework not found")
endif()
if (WHISPER_COREML_ALLOW_FALLBACK)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_COREML_ALLOW_FALLBACK)
endif()
endif()
endif()
if (WHISPER_OPENBLAS)
set(WHISPER_BLAS_VENDOR "OpenBLAS")
set(WHISPER_BLAS ON)
# BLA_PKGCONFIG_BLAS is supported since CMake 3.25.
# FindBLAS.cmake pkg-config logic seems incomplete, because when
# BLA_SIZEOF_INTEGER is 8, then it should search for blas64 instead of blas.
# blas.pc/blas64.pc are not always provided, so let's be more specific
# and go with openblas.pc/openblas64.pc if WHISPER_OPENBLAS is on.
if (WHISPER_OPENBLAS_INTERFACE64)
set(WHISPER_BLAS_LIB "openblas64")
else ()
set(WHISPER_BLAS_LIB "openblas")
endif ()
set(BLA_PKGCONFIG_BLAS ${WHISPER_BLAS_LIB})
# OpenBLAS prebuilt libraries for Windows do not have "64" suffix in filename.
# (But .pc file has "64" suffix in filename for USE_64BITINT=1 Windows build.)
if (MSVC)
set(WHISPER_BLAS_LIB "openblas")
endif ()
endif()
if (WHISPER_BLAS)
if (NOT "$ENV{OPENBLAS_PATH}" STREQUAL "")
if (WHISPER_STATIC)
set(WHISPER_BLAS_LIB_PREFIX ${CMAKE_STATIC_LIBRARY_PREFIX})
set(WHISPER_BLAS_LIB_SUFFIX ${CMAKE_STATIC_LIBRARY_SUFFIX})
else ()
if (CMAKE_IMPORT_LIBRARY_SUFFIX)
set(WHISPER_BLAS_LIB_PREFIX ${CMAKE_IMPORT_LIBRARY_PREFIX})
set(WHISPER_BLAS_LIB_SUFFIX ${CMAKE_IMPORT_LIBRARY_SUFFIX})
else ()
set(WHISPER_BLAS_LIB_PREFIX ${CMAKE_SHARED_LIBRARY_PREFIX})
set(WHISPER_BLAS_LIB_SUFFIX ${CMAKE_SHARED_LIBRARY_SUFFIX})
endif ()
endif ()
# OpenBLAS prebuilt libraries hardcode "lib" prefix in filename even on Windows
if (WHISPER_OPENBLAS)
set(WHISPER_BLAS_LIB_PREFIX "lib")
endif ()
message(STATUS "BLAS compatible library path provided")
set(BLAS_LIBRARIES "$ENV{OPENBLAS_PATH}/lib/${WHISPER_BLAS_LIB_PREFIX}${WHISPER_BLAS_LIB}${WHISPER_BLAS_LIB_SUFFIX}")
message(STATUS "Libraries ${BLAS_LIBRARIES}")
set(BLAS_INCLUDE_DIRS "$ENV{OPENBLAS_PATH}/include")
message(STATUS "Include dirs ${BLAS_INCLUDE_DIRS}")
if (NOT EXISTS "${BLAS_LIBRARIES}")
message(FATAL_ERROR "BLAS library was not found. Environment variable OPENBLAS_PATH misdefined.")
endif ()
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories(${BLAS_INCLUDE_DIRS})
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else ()
if (WHISPER_STATIC)
# FindBLAS.cmake pkg-config logic seems incomplete, because when
# BLA_STATIC is on, then it should use pkg_check_modules_static
# instead of pkg_check_modules.
# Some manual variable overriding may be necessary if you don't
# achieve desired results.
set(BLA_STATIC 1)
endif ()
set(BLA_VENDOR ${WHISPER_BLAS_VENDOR})
if (WHISPER_OPENBLAS_INTERFACE64)
set(BLA_SIZEOF_INTEGER 8)
else ()
set(BLA_SIZEOF_INTEGER 4)
endif()
set(BLA_PREFER_PKGCONFIG 1)
find_package(BLAS)
if(BLAS_FOUND)
message(STATUS "BLAS compatible library found")
message(STATUS "Libraries ${BLAS_LIBRARIES}")
if (NOT DEFINED BLAS_INCLUDE_DIRS)
if (PKGC_BLAS_FOUND)
set(BLAS_INCLUDE_DIRS "${PKGC_BLAS_INCLUDE_DIRS}")
else ()
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include/openblas)
endif()
endif()
message(STATUS "Include dirs ${BLAS_INCLUDE_DIRS}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
include_directories(${BLAS_INCLUDE_DIRS})
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${BLAS_LIBRARIES})
else()
message(FATAL_ERROR "BLAS library was not found")
endif()
endif ()
endif ()
if (WHISPER_MKL)
find_package(MKL CONFIG REQUIRED PATHS $ENV{MKLROOT})
message(STATUS "Imported oneMKL targets: ${MKL_IMPORTED_TARGETS}")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_OPENBLAS)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_BLAS_USE_MKL)
endif()
if (WHISPER_CUBLAS)
message(WARNING "WHISPER_CUBLAS is deprecated and will be removed in the future.\nUse WHISPER_CUDA instead")
set(WHISPER_CUDA ON)
endif()
if (WHISPER_CUDA)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found")
enable_language(CUDA)
file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_CUDA ggml-cuda.h)
list(APPEND GGML_SOURCES_CUDA ggml-cuda.cu)
add_compile_definitions(GGML_USE_CUDA)
if (WHISPER_STATIC)
if (WIN32)
# As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt CUDA::cufft)
else ()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static CUDA::cufft_static)
endif()
else()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt CUDA::cufft)
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cuda_driver)
else()
message(FATAL_ERROR "cuBLAS not found")
endif()
endif()
if (WHISPER_HIPBLAS)
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
endif()
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
endif()
find_package(hip)
find_package(hipblas)
find_package(rocblas)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
set(GGML_HEADERS_ROCM "ggml-cuda.h")
file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
if (WHISPER_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
else()
message(FATAL_ERROR "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
endif()
endif()
if (WHISPER_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h)
add_compile_definitions(GGML_USE_CLBLAST)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} clblast)
else()
message(FATAL_ERROR "CLBlast not found")
endif()
endif()
if( WHISPER_OPENVINO )
find_package(OpenVINO REQUIRED COMPONENTS Runtime)
endif()
if (WHISPER_SYCL)
if ( NOT DEFINED ENV{ONEAPI_ROOT})
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
endif()
#todo: AOT
find_package(IntelSYCL REQUIRED)
if (WHISPER_SYCL_F16)
add_compile_definitions(GGML_SYCL_F16)
endif()
add_compile_definitions(GGML_USE_SYCL)
add_compile_options(-I./) #include DPCT
add_compile_options(-I/${SYCL_INCLUDE_DIR})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
set(GGML_HEADERS_SYCL ggml-sycl.h)
set(GGML_SOURCES_SYCL ggml-sycl.cpp)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
endif()
# compiler flags
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "RelWithDebInfo")
endif ()
if (WHISPER_ALL_WARNINGS)
if (NOT MSVC)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} \
-Wall \
-Wextra \
-Wpedantic \
-Wshadow \
-Wcast-qual \
-Wstrict-prototypes \
-Wpointer-arith \
-Wno-unused-function \
")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} \
-Wall \
-Wextra \
-Wpedantic \
-Wcast-qual \
")
else()
# todo : msvc
endif()
endif()
if (NOT MSVC)
# TODO: temporary disabled until we figure out ggml-metal.m
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-math-errno -ffinite-math-only -funsafe-math-optimizations")
endif()
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
message(STATUS "ARM detected")
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
message(STATUS "PowerPC detected")
else()
message(STATUS "x86 detected")
if (MSVC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /utf-8")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /utf-8")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /utf-8")
if(NOT WHISPER_NO_AVX512)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX512")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX512")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX512")
# MSVC has no compile-time flags enabling specific
# AVX512 extensions, neither it defines the
# macros corresponding to the extensions.
# Do it manually.
if (NOT WHISPER_NO_AVX512_VBMI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
endif()
if (NOT WHISPER_NO_AVX512_VNNI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
endif()
elseif(NOT WHISPER_NO_AVX2)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
elseif(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
else()
if (EMSCRIPTEN)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread -s TOTAL_STACK=5242880")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread -s TOTAL_STACK=5242880")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx")
endif()
if(NOT WHISPER_NO_AVX2)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
endif()
if(NOT WHISPER_NO_AVX512)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw")
if(NOT WHISPER_NO_AVX512_VBMI)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx512vbmi")
endif()
if(NOT WHISPER_NO_AVX512_VNNI)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx512vnni")
endif()
endif()
if(NOT WHISPER_NO_FMA)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
endif()
if(NOT WHISPER_NO_F16C)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
endif()
endif()
endif()
endif()
#
# POSIX conformance
#
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
add_compile_definitions(_XOPEN_SOURCE=600)
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
remove_definitions(-D_XOPEN_SOURCE=600)
add_compile_definitions(_XOPEN_SOURCE=700)
endif()
# Data types, macros and functions related to controlling CPU affinity
# are available on Linux through GNU extensions in libc
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions(_GNU_SOURCE)
option(WHISPER_FFMPEG "whisper: support building and linking with ffmpeg libs (avcodec, swresample, ...)" OFF)
endif()
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
if (CMAKE_SYSTEM_NAME MATCHES "Darwin")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "DragonFly")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
add_compile_definitions(__BSD_VISIBLE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
add_compile_definitions(_NETBSD_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
add_compile_definitions(_BSD_SOURCE)
endif()
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
if (WHISPER_PERF)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
endif()
# override ggml options
set(GGML_CCACHE ${WHISPER_CCACHE})
set(GGML_SANITIZE_THREAD ${WHISPER_SANITIZE_THREAD})
set(GGML_SANITIZE_ADDRESS ${WHISPER_SANITIZE_ADDRESS})
set(GGML_SANITIZE_UNDEFINED ${WHISPER_SANITIZE_UNDEFINED})
set(GGML_ALL_WARNINGS ${WHISPER_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${WHISPER_FATAL_WARNINGS})
#
# whisper.coreml - Core ML support
#
if (WHISPER_COREML)
set(TARGET whisper.coreml)
add_library(${TARGET}
coreml/whisper-encoder.h
coreml/whisper-encoder.mm
coreml/whisper-encoder-impl.h
coreml/whisper-encoder-impl.m
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
set_target_properties(${TARGET} PROPERTIES
COMPILE_FLAGS "-fobjc-arc"
)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
endif()
if (WHISPER_OPENVINO)
set(TARGET whisper.openvino)
add_library(${TARGET} OBJECT
openvino/whisper-openvino-encoder.h
openvino/whisper-openvino-encoder.cpp
)
target_include_directories(${TARGET} PUBLIC
.
)
set_property(TARGET ${TARGET} PROPERTY POSITION_INDEPENDENT_CODE ON)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
endif()
#
# whisper - this is the main library of the project
#
set(TARGET whisper)
add_library(${TARGET}
ggml.h
ggml.c
ggml-alloc.h
ggml-alloc.c
ggml-backend.h
ggml-backend.c
ggml-quants.h
ggml-quants.c
${GGML_SOURCES_METAL}
${GGML_SOURCES_CUDA}
${GGML_SOURCES_OPENCL}
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
whisper.h
whisper.cpp
)
if (WHISPER_CUDA)
target_sources(${TARGET} PRIVATE whisper-mel-cuda.cu)
endif()
include_directories (
.
)
# Set the version numbers
set_target_properties(whisper PROPERTIES
VERSION ${PROJECT_VERSION}
SOVERSION ${SOVERSION}
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
if (WHISPER_COREML)
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
endif()
if (WHISPER_OPENVINO)
target_link_libraries(${TARGET} PRIVATE whisper.openvino)
endif()
if (WHISPER_MKL)
target_link_libraries(${TARGET} PUBLIC MKL::MKL)
endif()
if (MSVC)
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -D_CRT_SECURE_NO_WARNINGS)
else()
target_link_libraries(${TARGET} PRIVATE m ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
endif()
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${TARGET} PUBLIC
${CMAKE_DL_LIBS}
)
target_compile_definitions(${TARGET} PUBLIC
WHISPER_SHARED
GGML_SHARED
)
target_compile_definitions(${TARGET} PRIVATE
WHISPER_BUILD
GGML_BUILD
)
if (WHISPER_METAL)
# TODO: I think this should make ggml-metal.m "see" the ggml-metal.metal file from the "bin" directory
# but for some reason it does not work here like it does in llama.cpp
set_target_properties(${TARGET} PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
# transition helpers
function (whisper_option_depr TYPE OLD NEW)
if (${OLD})
message(${TYPE} "${OLD} is deprecated and will be removed in the future.\nUse ${NEW} instead\n")
set(${NEW} ON)
endif()
endfunction()
whisper_option_depr(FATAL_ERROR WHISPER_CUBLAS GGML_CUDA)
whisper_option_depr(WARNING WHISPER_CUDA GGML_CUDA)
whisper_option_depr(WARNING WHISPER_KOMPUTE GGML_KOMPUTE)
whisper_option_depr(WARNING WHISPER_METAL GGML_METAL)
whisper_option_depr(WARNING WHISPER_METAL_EMBED_LIBRARY GGML_METAL_EMBED_LIBRARY)
whisper_option_depr(WARNING WHISPER_NATIVE GGML_NATIVE)
whisper_option_depr(WARNING WHISPER_OPENMP GGML_OPENMP)
whisper_option_depr(WARNING WHISPER_RPC GGML_RPC)
whisper_option_depr(WARNING WHISPER_SYCL GGML_SYCL)
whisper_option_depr(WARNING WHISPER_SYCL_F16 GGML_SYCL_F16)
#
# build the library
#
if (NOT TARGET ggml)
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
add_subdirectory(src)
if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
# Only configure gmml CUDA architectures is not globally set
if (NOT DEFINED GGML_CUDA_ARCHITECTURES)
# Not overriden by user, so set defaults
set(GGML_CUDA_ARCHITECTURES 52 61 70)
endif()
message(STATUS "GGML Configuring CUDA architectures ${GGML_CUDA_ARCHITECTURES}")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES ${GGML_CUDA_ARCHITECTURES})
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
endif()
if (EMSCRIPTEN)
set_target_properties(${TARGET} PROPERTIES COMPILE_FLAGS "-msimd128")
endif()
target_compile_definitions(${TARGET} PUBLIC
${WHISPER_EXTRA_FLAGS}
)
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "ggml.h;whisper.h")
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
#
# install
#
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
install(TARGETS ${TARGET}
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib/static
RUNTIME DESTINATION bin
RESOURCE DESTINATION bin
PUBLIC_HEADER DESTINATION include
)
set(WHISPER_BUILD_NUMBER ${BUILD_NUMBER})
set(WHISPER_BUILD_COMMIT ${BUILD_COMMIT})
set(WHISPER_INSTALL_VERSION ${CMAKE_PROJECT_VERSION})
#
# bindings
#
set(WHISPER_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
set(WHISPER_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(WHISPER_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
add_subdirectory(bindings)
get_directory_property(WHISPER_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
set_target_properties(whisper PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/whisper.h)
install(TARGETS whisper LIBRARY PUBLIC_HEADER)
configure_package_config_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/whisper-config.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/whisper-config.cmake
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/whisper
PATH_VARS
WHISPER_INCLUDE_INSTALL_DIR
WHISPER_LIB_INSTALL_DIR
WHISPER_BIN_INSTALL_DIR )
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/whisper-version.cmake
VERSION ${WHISPER_INSTALL_VERSION}
COMPATIBILITY SameMajorVersion)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/whisper-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/whisper-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/whisper)
configure_file(cmake/whisper.pc.in
"${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
@ONLY)
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/whisper.pc"
DESTINATION lib/pkgconfig)
#
# programs, examples and tests
#
if (WHISPER_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
enable_testing()
add_subdirectory(tests)
#include(CTest)
#add_subdirectory(tests)
endif ()
if (WHISPER_BUILD_EXAMPLES)

1292
Makefile

File diff suppressed because it is too large Load Diff

View File

@ -27,17 +27,16 @@ let package = Package(
"samples",
"tests",
"CMakeLists.txt",
"ggml-cuda.cu",
"ggml-cuda.h",
"Makefile"
],
sources: [
"ggml.c",
"whisper.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"ggml-metal.m"
"ggml/src/ggml.c",
"src/whisper.cpp",
"ggml/src/ggml-aarch64.c",
"ggml/src/ggml-alloc.c",
"ggml/src/ggml-backend.cpp",
"ggml/src/ggml-quants.c",
"ggml/src/ggml-metal.m"
],
resources: [.process("ggml-metal.metal")],
publicHeadersPath: "spm-headers",

128
README.md
View File

@ -7,22 +7,23 @@
[![Conan Center](https://shields.io/conan/v/whisper-cpp)](https://conan.io/center/whisper-cpp)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.6.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.6.0) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.7.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
- Plain C/C++ implementation without dependencies
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](#core-ml-support)
- AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
- [4-bit and 5-bit integer quantization support](#quantization)
- Zero memory allocations at runtime
- [Vulkan support](#vulkan-gpu-support)
- Support for CPU-only inference
- [Efficient GPU support for NVIDIA](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
- [OpenVINO Support](https://github.com/ggerganov/whisper.cpp#openvino-support)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
- [Efficient GPU support for NVIDIA](#nvidia-gpu-support)
- [OpenVINO Support](#openvino-support)
- [Ascend NPU Support](#ascend-npu-support)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/include/whisper.h)
Supported platforms:
@ -34,9 +35,9 @@ Supported platforms:
- [x] [WebAssembly](examples/whisper.wasm)
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
- [x] [Raspberry Pi](https://github.com/ggerganov/whisper.cpp/discussions/166)
- [x] [docker](https://github.com/ggerganov/whisper.cpp/pkgs/container/whisper.cpp)
- [x] [Docker](https://github.com/ggerganov/whisper.cpp/pkgs/container/whisper.cpp)
The entire high-level implementation of the model is contained in [whisper.h](whisper.h) and [whisper.cpp](whisper.cpp).
The entire high-level implementation of the model is contained in [whisper.h](include/whisper.h) and [whisper.cpp](src/whisper.cpp).
The rest of the code is part of the [`ggml`](https://github.com/ggerganov/ggml) machine learning library.
Having such a lightweight implementation of the model allows to easily integrate it in different platforms and applications.
@ -56,8 +57,8 @@ Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
## Implementation details
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
- The core tensor operations are implemented in C ([ggml.h](ggml/include/ggml.h) / [ggml.c](ggml/src/ggml.c))
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](include/whisper.h) / [whisper.cpp](src/whisper.cpp))
- Sample usage is demonstrated in [main.cpp](examples/main)
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
- Various other examples are available in the [examples](examples) folder
@ -72,17 +73,23 @@ First clone the repository:
git clone https://github.com/ggerganov/whisper.cpp.git
```
Navigate into the directory:
```
cd whisper.cpp
```
Then, download one of the Whisper [models](models/README.md) converted in [`ggml` format](#ggml-format). For example:
```bash
bash ./models/download-ggml-model.sh base.en
sh ./models/download-ggml-model.sh base.en
```
Now build the [main](examples/main) example and transcribe an audio file like this:
```bash
# build the main example
make
make -j
# transcribe an audio file
./main -f samples/jfk.wav
@ -93,7 +100,7 @@ make
For a quick demo, simply run `make base.en`:
```text
$ make base.en
$ make -j base.en
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp -o whisper.o
@ -146,7 +153,7 @@ options:
-ng, --no-gpu [false ] disable GPU
bash ./models/download-ggml-model.sh base.en
sh ./models/download-ggml-model.sh base.en
Downloading ggml model base.en ...
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
@ -217,7 +224,7 @@ ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
If you want some extra audio samples to play with, simply run:
```
make samples
make -j samples
```
This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`.
@ -225,17 +232,18 @@ This will download a few more audio files from Wikipedia and convert them to 16-
You can download and run the other models as follows:
```
make tiny.en
make tiny
make base.en
make base
make small.en
make small
make medium.en
make medium
make large-v1
make large-v2
make large-v3
make -j tiny.en
make -j tiny
make -j base.en
make -j base
make -j small.en
make -j small
make -j medium.en
make -j medium
make -j large-v1
make -j large-v2
make -j large-v3
make -j large-v3-turbo
```
## Memory usage
@ -257,7 +265,7 @@ Here are the steps for creating and using a quantized model:
```bash
# quantize a model with Q5_0 method
make quantize
make -j quantize
./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
# run the examples as usual, specifying the quantized model file
@ -419,31 +427,19 @@ Now build `whisper.cpp` with CUDA support:
```
make clean
WHISPER_CUDA=1 make -j
GGML_CUDA=1 make -j
```
## OpenCL GPU support via CLBlast
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APUs or low end devices for up to ~2x speedup.
First, make sure you have installed `CLBlast` for your OS or Distribution: https://github.com/CNugteren/CLBlast
Now build `whisper.cpp` with CLBlast support:
## Vulkan GPU support
Cross-vendor solution which allows you to accelerate workload on your GPU.
First, make sure your graphics card driver provides support for Vulkan API.
Now build `whisper.cpp` with Vulkan support:
```
Makefile:
cd whisper.cpp
make clean
WHISPER_CLBLAST=1 make -j
CMake:
cd whisper.cpp
cmake -B build -DWHISPER_CLBLAST=ON
cmake --build build -j --config Release
make GGML_VULKAN=1 -j
```
Run all the examples as usual.
## BLAS CPU support via OpenBLAS
Encoder processing can be accelerated on the CPU via OpenBLAS.
@ -453,7 +449,7 @@ Now build `whisper.cpp` with OpenBLAS support:
```
make clean
WHISPER_OPENBLAS=1 make -j
GGML_OPENBLAS=1 make -j
```
## BLAS CPU support via Intel MKL
@ -471,6 +467,39 @@ cmake -DWHISPER_MKL=ON ..
WHISPER_MKL=1 make -j
```
## Ascend NPU support
Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores.
First, check if your Ascend NPU device is supported:
**Verified devices**
| Ascend NPU | Status |
|:-----------------------------:|:-------:|
| Atlas 300T A2 | Support |
Then, make sure you have installed [`CANN toolkit`](https://www.hiascend.com/en/software/cann/community) . The lasted version of CANN is recommanded.
Now build `whisper.cpp` with CANN support:
```
mkdir build
cd build
cmake .. -D GGML_CANN=on
make -j
```
Run the inference examples as usual, for example:
```
./build/bin/main -f samples/jfk.wav -m models/ggml-base.en.bin -t 8
```
*Notes:*
- If you have trouble with Ascend NPU device, please create a issue with **[CANN]** prefix/tag.
- If you run successfully with your Ascend NPU device, please help update the table `Verified devices`.
## Docker
### Prerequisites
@ -607,7 +636,7 @@ The [stream](examples/stream) tool samples the audio every half a second and run
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
```bash
make stream
make stream -j
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
```
@ -774,7 +803,7 @@ took to execute it. The results are summarized in the following Github issue:
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
Additionally a script to run whisper.cpp with different models and audio files is provided [bench.py](bench.py).
Additionally a script to run whisper.cpp with different models and audio files is provided [bench.py](scripts/bench.py).
You can run it with the following command, by default it will run against any standard model in the models folder.
@ -821,6 +850,7 @@ For more details, see the conversion script [models/convert-pt-to-ggml.py](model
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [AIWintermuteAI/whispercpp](https://github.com/AIWintermuteAI/whispercpp) (Updated fork of aarnphm/whispercpp)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
- [abdeladim-s/pywhispercpp](https://github.com/abdeladim-s/pywhispercpp) (Pybind11)
- [x] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [x] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)

View File

@ -14,9 +14,14 @@ GGML_METAL_PATH_RESOURCES := $(abspath ../..)
BUILD_DIR := build
MODELS_DIR := models
EXAMPLES_DIR := $(wildcard examples/*)
INCLUDE_PATH := $(abspath ../..)
INCLUDE_PATH := $(abspath ../../include):$(abspath ../../ggml/include)
LIBRARY_PATH := $(abspath ../..)
ifeq ($(GGML_CUDA),1)
LIBRARY_PATH := $(LIBRARY_PATH):$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib/
BUILD_FLAGS := -ldflags "-extldflags '-lcudart -lcuda -lcublas'"
endif
ifeq ($(UNAME_S),Darwin)
EXT_LDFLAGS := -framework Foundation -framework Metal -framework MetalKit
endif

View File

@ -62,6 +62,12 @@ This will compile a static `libwhisper.a` in a `build` folder, download a model
make examples
```
To build using cuda support add `GGML_CUDA=1`:
```bash
GGML_CUDA=1 make examples
```
The examples are placed in the `build` directory. Once built, you can download all the models with the following command:
```bash

View File

@ -24,7 +24,7 @@ const (
var (
// The models which will be downloaded, if no model is specified as an argument
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large-v2", "ggml-large-v3"}
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large-v2", "ggml-large-v3", "large-v3-turbo"}
)
var (

View File

@ -1,10 +1,10 @@
module github.com/ggerganov/whisper.cpp/bindings/go
go 1.19
go 1.23
require (
github.com/go-audio/wav v1.1.0
github.com/stretchr/testify v1.8.1
github.com/stretchr/testify v1.9.0
)
require (

View File

@ -1,4 +1,3 @@
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/go-audio/audio v1.0.0 h1:zS9vebldgbQqktK4H0lUqWrG8P0NxCJVqcj7ZpNnwd4=
@ -9,15 +8,9 @@ github.com/go-audio/wav v1.1.0 h1:jQgLtbqBzY7G+BM8fXF7AHUk1uHUviWS4X39d5rsL2g=
github.com/go-audio/wav v1.1.0/go.mod h1:mpe9qfwbScEbkd8uybLuIpTgHyrISw/OTuvjUW2iGtE=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/objx v0.4.0/go.mod h1:YvHI0jy2hoMjB+UWwv71VJQ9isScKT/TqJzVSSt89Yw=
github.com/stretchr/objx v0.5.0/go.mod h1:Yh+to48EsGEfYuaHDzXPcE3xhTkx73EhmCGUpEOglKo=
github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
github.com/stretchr/testify v1.8.1 h1:w7B6lhMri9wdJUVmEZPGGhZzrYTPvgJArz7wNPgYKsk=
github.com/stretchr/testify v1.8.1/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
github.com/stretchr/testify v1.9.0 h1:HtqpIVDClZ4nwg75+f6Lvsy/wHu+3BoSGCbBAcpTsTg=
github.com/stretchr/testify v1.9.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=

View File

@ -119,6 +119,28 @@ func (p *Params) SetAudioCtx(n int) {
p.audio_ctx = C.int(n)
}
func (p *Params) SetMaxContext(n int) {
p.n_max_text_ctx = C.int(n)
}
func (p *Params) SetBeamSize(n int) {
p.beam_search.beam_size = C.int(n)
}
func (p *Params) SetEntropyThold(t float32) {
p.entropy_thold = C.float(t)
}
func (p *Params) SetTemperature(t float32) {
p.temperature = C.float(t)
}
// Sets the fallback temperature incrementation
// Pass -1.0 to disable this feature
func (p *Params) SetTemperatureFallback(t float32) {
p.temperature_inc = C.float(t)
}
// Set initial prompt
func (p *Params) SetInitialPrompt(prompt string) {
p.initial_prompt = C.CString(prompt)
@ -149,6 +171,10 @@ func (p *Params) String() string {
str += fmt.Sprintf(" duration_ms=%d", p.duration_ms)
str += fmt.Sprintf(" audio_ctx=%d", p.audio_ctx)
str += fmt.Sprintf(" initial_prompt=%s", C.GoString(p.initial_prompt))
str += fmt.Sprintf(" entropy_thold=%f", p.entropy_thold)
str += fmt.Sprintf(" temperature=%f", p.temperature)
str += fmt.Sprintf(" temperature_inc=%f", p.temperature_inc)
str += fmt.Sprintf(" beam_size=%d", p.beam_search.beam_size)
if p.translate {
str += " translate"
}

View File

@ -125,6 +125,32 @@ func (context *context) SetAudioCtx(n uint) {
context.params.SetAudioCtx(int(n))
}
// Set maximum number of text context tokens to store
func (context *context) SetMaxContext(n int) {
context.params.SetMaxContext(n)
}
// Set Beam Size
func (context *context) SetBeamSize(n int) {
context.params.SetBeamSize(n)
}
// Set Entropy threshold
func (context *context) SetEntropyThold(t float32) {
context.params.SetEntropyThold(t)
}
// Set Temperature
func (context *context) SetTemperature(t float32) {
context.params.SetTemperature(t)
}
// Set the fallback temperature incrementation
// Pass -1.0 to disable this feature
func (context *context) SetTemperatureFallback(t float32) {
context.params.SetTemperatureFallback(t)
}
// Set initial prompt
func (context *context) SetInitialPrompt(prompt string) {
context.params.SetInitialPrompt(prompt)

View File

@ -4,52 +4,90 @@ import (
"os"
"testing"
// Packages
whisper "github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
assert "github.com/stretchr/testify/assert"
)
const (
ModelPath = "../../models/ggml-tiny.bin"
SamplePath = "../../samples/jfk.wav"
)
func Test_Whisper_000(t *testing.T) {
func TestSetLanguage(t *testing.T) {
assert := assert.New(t)
if _, err := os.Stat(ModelPath); os.IsNotExist(err) {
t.Skip("Skipping test, model not found:", ModelPath)
}
if _, err := os.Stat(SamplePath); os.IsNotExist(err) {
t.Skip("Skipping test, sample not found:", SamplePath)
}
// Load model
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
assert.NoError(model.Close())
t.Log("languages=", model.Languages())
}
func Test_Whisper_001(t *testing.T) {
assert := assert.New(t)
if _, err := os.Stat(ModelPath); os.IsNotExist(err) {
t.Skip("Skipping test, model not found:", ModelPath)
}
if _, err := os.Stat(SamplePath); os.IsNotExist(err) {
t.Skip("Skipping test, sample not found:", SamplePath)
}
// Load model
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
// Get context for decoding
ctx, err := model.NewContext()
context, err := model.NewContext()
assert.NoError(err)
assert.NotNil(ctx)
// This returns an error since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
err = context.SetLanguage("en")
assert.Error(err)
}
func TestContextModelIsMultilingual(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
isMultilingual := context.IsMultilingual()
// This returns false since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
assert.False(isMultilingual)
}
func TestLanguage(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
// This always returns en since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
expectedLanguage := "en"
actualLanguage := context.Language()
assert.Equal(expectedLanguage, actualLanguage)
}
func TestProcess(t *testing.T) {
assert := assert.New(t)
fh, err := os.Open(SamplePath)
assert.NoError(err)
defer fh.Close()
// Decode the WAV file - load the full buffer
dec := wav.NewDecoder(fh)
buf, err := dec.FullPCMBuffer()
assert.NoError(err)
assert.Equal(uint16(1), dec.NumChans)
data := buf.AsFloat32Buffer().Data
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
err = context.Process(data, nil, nil)
assert.NoError(err)
}

View File

@ -38,17 +38,22 @@ type Context interface {
IsMultilingual() bool // Return true if the model is multilingual.
Language() string // Get language
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
SetAudioCtx(uint) // Set audio encoder context
SetInitialPrompt(prompt string) // Set initial prompt
SetOffset(time.Duration) // Set offset
SetDuration(time.Duration) // Set duration
SetThreads(uint) // Set number of threads to use
SetSplitOnWord(bool) // Set split on word flag
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
SetAudioCtx(uint) // Set audio encoder context
SetMaxContext(n int) // Set maximum number of text context tokens to store
SetBeamSize(n int) // Set Beam Size
SetEntropyThold(t float32) // Set Entropy threshold
SetInitialPrompt(prompt string) // Set initial prompt
SetTemperature(t float32) // Set temperature
SetTemperatureFallback(t float32) // Set temperature incrementation
// Process mono audio data and return any errors.
// If defined, newly generated segments are passed to the

View File

@ -0,0 +1,91 @@
package whisper_test
import (
"testing"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
assert "github.com/stretchr/testify/assert"
)
func TestNew(t *testing.T) {
assert := assert.New(t)
t.Run("valid model path", func(t *testing.T) {
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
})
t.Run("invalid model path", func(t *testing.T) {
invalidModelPath := "invalid-model-path.bin"
model, err := whisper.New(invalidModelPath)
assert.Error(err)
assert.Nil(model)
})
}
func TestClose(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
err = model.Close()
assert.NoError(err)
}
func TestNewContext(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
context, err := model.NewContext()
assert.NoError(err)
assert.NotNil(context)
}
func TestIsMultilingual(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
isMultilingual := model.IsMultilingual()
// This returns false since
// the model 'models/ggml-small.en.bin'
// that is loaded is not multilingual
assert.False(isMultilingual)
}
func TestLanguages(t *testing.T) {
assert := assert.New(t)
model, err := whisper.New(ModelPath)
assert.NoError(err)
assert.NotNil(model)
defer model.Close()
expectedLanguages := []string{
"en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl",
"ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk",
"el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr",
"bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn",
"sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne",
"mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn",
"yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi",
"lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my",
"bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su",
}
actualLanguages := model.Languages()
assert.Equal(expectedLanguages, actualLanguages)
}

View File

@ -0,0 +1,6 @@
package whisper_test
const (
ModelPath = "../../models/ggml-small.en.bin"
SamplePath = "../../samples/jfk.wav"
)

View File

@ -9,7 +9,7 @@ import (
// CGO
/*
#cgo LDFLAGS: -lwhisper -lm -lstdc++
#cgo LDFLAGS: -lwhisper -lm -lstdc++ -fopenmp
#cgo darwin LDFLAGS: -framework Accelerate -framework Metal -framework Foundation -framework CoreGraphics
#include <whisper.h>
#include <stdlib.h>

Submodule bindings/ios deleted from a2085436c2

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.6.2",
"version": "1.7.1",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

3
bindings/ruby/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
LICENSE
pkg/
lib/whisper.*

111
bindings/ruby/README.md Normal file
View File

@ -0,0 +1,111 @@
whispercpp
==========
![whisper.cpp](https://user-images.githubusercontent.com/1991296/235238348-05d0f6a4-da44-4900-a1de-d0707e75b763.jpeg)
Ruby bindings for [whisper.cpp][], an interface of automatic speech recognition model.
Installation
------------
Install the gem and add to the application's Gemfile by executing:
$ bundle add whispercpp
If bundler is not being used to manage dependencies, install the gem by executing:
$ gem install whispercpp
Usage
-----
```ruby
require "whisper"
whisper = Whisper::Context.new("path/to/model.bin")
params = Whisper::Params.new
params.language = "en"
params.offset = 10_000
params.duration = 60_000
params.max_text_tokens = 300
params.translate = true
params.print_timestamps = false
params.prompt = "Initial prompt here."
whisper.transcribe("path/to/audio.wav", params) do |whole_text|
puts whole_text
end
```
### Preparing model ###
Use script to download model file(s):
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp
sh ./models/download-ggml-model.sh base.en
```
There are some types of models. See [models][] page for details.
### Preparing audio file ###
Currently, whisper.cpp accepts only 16-bit WAV files.
### API ###
Once `Whisper::Context#transcribe` called, you can retrieve segments by `#each_segment`:
```ruby
def format_time(time_ms)
sec, decimal_part = time_ms.divmod(1000)
min, sec = sec.divmod(60)
hour, min = min.divmod(60)
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end
whisper.transcribe("path/to/audio.wav", params)
whisper.each_segment.with_index do |segment, index|
line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
nth: index + 1,
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_next_turn?
puts line
end
```
You can also add hook to params called on new segment:
```ruby
def format_time(time_ms)
sec, decimal_part = time_ms.divmod(1000)
min, sec = sec.divmod(60)
hour, min = min.divmod(60)
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end
# Add hook before calling #transcribe
params.on_new_segment do |segment|
line = "[%{st} --> %{ed}] %{text}" % {
st: format_time(segment.start_time),
ed: format_time(segment.end_time),
text: segment.text
}
line << " (speaker turned)" if segment.speaker_next_turn?
puts line
end
whisper.transcribe("path/to/audio.wav", params)
```
[whisper.cpp]: https://github.com/ggerganov/whisper.cpp
[models]: https://github.com/ggerganov/whisper.cpp/tree/master/models

View File

@ -1,12 +1,59 @@
require 'rake/clean'
require 'rubygems/package'
require "bundler/gem_tasks"
require "pathname"
require "yaml"
require "rake/testtask"
desc 'Build gem'
task :package do
spec_source = File.read File.join(File.dirname(__FILE__),'whispercpp.gemspec')
spec = nil
# see: http://gist.github.com/16215
Thread.new { spec = eval("#{spec_source}") }.join
spec.validate
Gem::Package.build(spec)
extsources = YAML.load_file("extsources.yaml")
SOURCES = FileList[]
extsources.each do |src|
basename = src.pathmap("%f")
dest = basename == "LICENSE" ? basename : basename.pathmap("ext/%f")
file src
file dest => src do |t|
cp t.source, t.name
end
SOURCES.include dest
end
CLEAN.include SOURCES
CLEAN.include FileList[
"ext/*.o",
"ext/*.metal",
"ext/whisper.{so,bundle,dll}",
"ext/depend"
]
task build: SOURCES + FileList[
"ext/extconf.rb",
"ext/ruby_whisper.h",
"ext/ruby_whisper.cpp",
"whispercpp.gemspec",
]
directory "pkg"
CLOBBER.include "pkg"
TEST_MODEL = "../../models/ggml-base.en.bin"
LIB_NAME = "whisper".ext(RbConfig::CONFIG["DLEXT"])
LIB_FILE = File.join("lib", LIB_NAME)
directory "lib"
task LIB_FILE => SOURCES + ["lib"] do |t|
Dir.chdir "ext" do
sh "ruby extconf.rb"
sh "make"
end
mv "ext/#{LIB_NAME}", t.name
end
CLEAN.include LIB_FILE
Rake::TestTask.new do |t|
t.test_files = FileList["tests/test_*.rb"]
end
task test: [TEST_MODEL, LIB_FILE]
file TEST_MODEL do
Dir.chdir "../.." do
sh "./models/download-ggml-model.sh base.en"
end
end

View File

@ -3,7 +3,33 @@ ggml.c
ggml.h
ggml-alloc.c
ggml-alloc.h
whisper.bundle
ggml-aarch64.c
ggml-aarch64.h
ggml-backend.cpp
ggml-backend-impl.h
ggml-backend.c
ggml-backend.h
ggml-common.h
ggml-cpu-impl.h
ggml-metal.m
ggml-metal.metal
ggml-metal-embed.metal
ggml-blas.cpp
ggml-cuda.h
ggml-impl.h
ggml-kompute.h
ggml-metal.h
ggml-opencl.h
ggml-quants.c
ggml-quants.h
ggml-sycl.h
ggml-vulkan.h
ggml-blas.h
get-flags.mk
whisper.cpp
whisper.h
dr_wav.h
depend
whisper.bundle
whisper.so
whisper.dll

View File

@ -1,20 +1,4 @@
require 'mkmf'
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper-mel.hpp')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-impl.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-alloc.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend-impl.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-backend.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-common.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.h')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-quants.c')} .")
system("cp #{File.join(File.dirname(__FILE__),'..','..','..','examples','dr_wav.h')} .")
# need to use c++ compiler flags
$CXXFLAGS << ' -std=c++11'
@ -28,4 +12,219 @@ if enable_config('march-tune-native', false)
$CXXFLAGS << ' -march=native -mtune=native'
end
create_makefile('whisper')
def with_disabling_unsupported_files
disabled_files = []
unless $GGML_METAL
disabled_files << 'ggml-metal.h' << 'ggml-metal.m'
end
unless $GGML_METAL_EMBED_LIBRARY
disabled_files << 'ggml-metal.metal'
end
unless $OBJ_ALL&.include? 'ggml-blas.o'
disabled_files << 'ggml-blas.h' << 'ggml-blas.cpp'
end
disabled_files.filter! {|file| File.exist? file}
disabled_files.each do |file|
File.rename file, "#{file}.disabled"
end
yield
disabled_files.each do |file|
File.rename "#{file}.disabled", file
end
end
if ENV['WHISPER_METAL']
$GGML_METAL ||= true
$DEPRECATE_WARNING ||= true
end
$UNAME_S = `uname -s`.chomp
$UNAME_P = `uname -p`.chomp
$UNAME_M = `uname -m`.chomp
if $UNAME_S == 'Darwin'
unless ENV['GGML_NO_METAL']
$GGML_METAL ||= true
end
$GGML_NO_OPENMP ||= true
end
if $GGML_METAL
$GGML_METAL_EMBED_LIBRARY = true
end
$MK_CPPFLAGS = ''
$MK_CFLAGS = '-std=c11 -fPIC'
$MK_CXXFLAGS = '-std=c++11 -fPIC'
$MK_NVCCFLAGS = '-std=c++11'
$MK_LDFLAGS = ''
$OBJ_GGML = ''
$OBJ_WHISPER = ''
$OBJ_COMMON = ''
$OBJ_SDL = ''
$MK_CPPFLAGS << ' -D_XOPEN_SOURCE=600'
if $UNAME_S == 'Linux'
$MK_CPPFLAGS << ' -D_GNU_SOURCE'
end
if $UNAME_S == 'Darwin'
$MK_CPPFLAGS << ' -D_DARWIN_C_SOURCE'
end
if ENV['WHISPER_DEBUG']
$MK_CFLAGS << ' -O0 -g'
$MK_CXXFLAGS << ' -O0 -g'
$MK_LDFLAGS << ' -g'
$MK_NVCCFLAGS << ' -O0 -g'
else
$MK_CPPFLAGS << ' -DNDEBUG'
$MK_CFLAGS << ' -O3'
$MK_CXXFLAGS << ' -O3'
$MK_NVCCFLAGS << ' -O3'
end
$WARN_FLAGS =
' -Wall' <<
' -Wextra' <<
' -Wpedantic' <<
' -Wcast-qual' <<
' -Wno-unused-function'
$MK_CFLAGS <<
$WARN_FLAGS <<
' -Wshadow' <<
' -Wstrict-prototypes' <<
' -Wpointer-arith' <<
' -Wmissing-prototypes' <<
' -Werror=implicit-int' <<
' -Werror=implicit-function-declaration'
$MK_CXXFLAGS <<
$WARN_FLAGS <<
' -Wmissing-declarations' <<
' -Wmissing-noreturn'
unless `#{cc_command} #{$LDFLAGS} -Wl,-v 2>&1`.chomp.include? 'dyld-1015.7'
$MK_CPPFLAGS << ' -DHAVE_BUGGY_APPLE_LINKER'
end
if %w[Linux Darwin FreeBSD NetBSD OpenBSD Haiku].include? $UNAME_S
$MK_CFLAGS << ' -pthread'
$MK_CXXFLAGS << ' -pthread'
end
unless $_WIN32
$DSO_EXT = '.so'
else
$DSO_EXT = '.dll'
end
unless ENV['RISCV']
if %w[x86_64 i686 amd64].include? $UNAME_M
$HOST_CXXFLAGS ||= ''
$MK_CFLAGS << ' -march=native -mtune=native'
$HOST_CXXFLAGS << ' -march=native -mtune=native'
end
if $UNAME_M.match? /aarch64.*/
$MK_CFLAGS << ' -mcpu=native'
$MK_CXXFLAGS << ' -mcpu=native'
end
else
$MK_CFLAGS << ' -march=rv64gcv -mabi=lp64d'
$MK_CXXFLAGS << ' -march=rv64gcv -mabi=lp64d'
end
unless ENV['GGML_NO_ACCELERATE']
if $UNAME_S == 'Darwin'
$MK_CPPFLAGS << ' -DGGML_USE_ACCELERATE -DGGML_USE_BLAS'
$MK_CPPFLAGS << ' -DACCELERATE_NEW_LAPACK'
$MK_CPPFLAGS << ' -DACCELERATE_LAPACK_ILP64'
$MK_LDFLAGS << ' -framework Accelerate'
$OBJ_GGML << ' ggml-blas.o'
end
end
if ENV['GGML_OPENBLAS']
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas`.chomp}"
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas)`.chomp}"
$MK_LDFLAGS << " #{`pkg-config --libs openblas`}"
$OBJ_GGML << ' ggml-blas.o'
end
if ENV['GGML_OPENBLAS64']
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas64`.chomp}"
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas64)`.chomp}"
$MK_LDFLAGS << " #{`pkg-config --libs openblas64`}"
$OBJ_GGML << ' ggml-blas.o'
end
if $GGML_METAL
$MK_CPPFLAGS << ' -DGGML_USE_METAL'
$MK_LDFLAGS << ' -framework Foundation -framework Metal -framework MetalKit'
$OBJ_GGML << ' ggml-metal.o'
if ENV['GGML_METAL_NDEBUG']
$MK_CPPFLAGS << ' -DGGML_METAL_NDEBUG'
end
if $GGML_METAL_EMBED_LIBRARY
$MK_CPPFLAGS << ' -DGGML_METAL_EMBED_LIBRARY'
$OBJ_GGML << ' ggml-metal-embed.o'
end
end
$OBJ_GGML <<
' ggml.o' <<
' ggml-alloc.o' <<
' ggml-backend.o' <<
' ggml-quants.o' <<
' ggml-aarch64.o'
$OBJ_WHISPER <<
' whisper.o'
$OBJ_ALL = "#{$OBJ_GGML} #{$OBJ_WHISPER} #{$OBJ_COMMON} #{$OBJ_SDL}"
$CPPFLAGS = "#{$MK_CPPFLAGS} #{$CPPFLAGS}"
$CFLAGS = "#{$CPPFLAGS} #{$MK_CFLAGS} #{$GF_CFLAGS} #{$CFLAGS}"
$BASE_CXXFLAGS = "#{$MK_CXXFLAGS} #{$CXXFLAGS}"
$CXXFLAGS = "#{$BASE_CXXFLAGS} #{$HOST_CXXFLAGS} #{$GF_CXXFLAGS} #{$CPPFLAGS}"
$NVCCFLAGS = "#{$MK_NVCCFLAGS} #{$NVCCFLAGS}"
$LDFLAGS = "#{$MK_LDFLAGS} #{$LDFLAGS}"
if $GGML_METAL_EMBED_LIBRARY
File.write 'depend', "$(OBJS): $(OBJS) ggml-metal-embed.o\n"
end
with_disabling_unsupported_files do
create_makefile('whisper')
end
File.open 'Makefile', 'a' do |file|
file.puts 'include get-flags.mk'
if $GGML_METAL
if $GGML_METAL_EMBED_LIBRARY
# mkmf determines object files to compile dependent on existing *.{c,cpp,m} files
# but ggml-metal-embed.c doesn't exist on creating Makefile.
file.puts "objs := $(OBJS)"
file.puts "OBJS = $(objs) 'ggml-metal-embed.o'"
file.puts 'include metal-embed.mk'
end
end
end

View File

@ -1,141 +0,0 @@
#pragma once
// ggml-backend internal header
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
// buffer type
typedef void * ggml_backend_buffer_type_context_t;
struct ggml_backend_buffer_type_i {
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
// check if tensor data is in host memory
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
};
struct ggml_backend_buffer_type {
struct ggml_backend_buffer_type_i iface;
ggml_backend_buffer_type_context_t context;
};
// buffer
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_buffer_type_t buft;
ggml_backend_buffer_context_t context;
size_t size;
enum ggml_backend_buffer_usage usage;
};
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
ggml_backend_buffer_type_t buft,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
// do not use directly, use ggml_backend_tensor_copy instead
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
// buffer that contains a collection of buffers
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
//
// Backend
//
typedef void * ggml_backend_context_t;
struct ggml_backend_i {
const char * (*GGML_CALL get_name)(ggml_backend_t backend);
void (*GGML_CALL free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
// (optional) asynchronous tensor data access
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) complete all pending operations
void (*GGML_CALL synchronize)(ggml_backend_t backend);
// compute graph with a plan (not used currently)
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph with a plan
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan (async)
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
// these should be expensive operations with large batch sizes that may benefit from running on this backend
// even if the weight has to be copied from the CPU temporarily
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
void (*GGML_CALL event_free) (ggml_backend_event_t event);
void (*GGML_CALL event_record) (ggml_backend_event_t event);
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
};
struct ggml_backend {
ggml_guid_t guid;
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
struct ggml_backend_event {
ggml_backend_t backend;
void * context;
};
//
// Backend registry
//
typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,233 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-alloc.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend_event * ggml_backend_event_t;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
//
// Backend buffer
//
// buffer type
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
// buffer
enum ggml_backend_buffer_usage {
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
};
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
//
// Backend
//
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
GGML_API void ggml_backend_free(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend);
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
// asynchronous copy
// the copy is performed after all the currently queued operations in backend_src
// backend_dst will wait for the copy to complete before performing other operations
// automatic fallback to sync copy if async is not supported
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
// events
GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend);
GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
// Create a backend buffer from an existing pointer
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
//
// Backend registry
//
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
GGML_API size_t ggml_backend_reg_get_count(void);
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
GGML_API const char * ggml_backend_reg_get_name(size_t i);
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
//
// Backend scheduler
//
// The backend scheduler allows for multiple backends to be used together
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
// The backends are selected based on:
// - the backend that supports the operation
// - the location of the pre-allocated tensors (e.g. the weights)
/*
Example usage:
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
// preferrably to run on the same backend as the buffer
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
// initialize buffers from a max size graph (optional)
reserve_graph = build_graph(sched, max_batch_size);
// manually assign nodes to a backend (optional, should not be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
ggml_backend_sched_reserve(sched, reserve_graph);
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
// if there are graph inputs:
ggml_backend_sched_reset(sched);
ggml_backend_sched_alloc_graph(sched, graph);
ggml_backend_tensor_set(input_tensor, ...);
ggml_backend_sched_graph_compute(sched, graph);
}
*/
struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
// when ask == true, the scheduler wants to know if the user wants to observe this node
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
//
// when ask == false, the scheduler is passing the node tensor to the user for observation
// if the user returns false, the scheduler will cancel the graph compute
//
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
// Get the number of splits of the last graph
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Allocate and compute graph on the backend scheduler
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched);
// Reset all assignments and allocators - must be called before changing the node backends
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
// Set a callback to be called for each resulting node during graph compute
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
//
// Utils
//
struct ggml_backend_graph_copy {
ggml_backend_buffer_t buffer;
struct ggml_context * ctx_allocated;
struct ggml_context * ctx_unallocated;
struct ggml_cgraph * graph;
};
// Copy a graph to a different backend
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
// Tensor initialization
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
#ifdef __cplusplus
}
#endif

View File

@ -1,43 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef GGML_USE_HIPBLAS
#define GGML_CUDA_NAME "ROCm"
#define GGML_CUBLAS_NAME "hipBLAS"
#else
#define GGML_CUDA_NAME "CUDA"
#define GGML_CUBLAS_NAME "cuBLAS"
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_CUDA_MAX_DEVICES 16
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
// device buffer
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif

View File

@ -1,272 +0,0 @@
#pragma once
#include "ggml.h"
// GGML internal header
#include <assert.h>
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
// static_assert should be a #define, but if it's not,
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef __cplusplus
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#endif
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
#ifndef __SSE3__
#define __SSE3__
#endif
#ifndef __SSSE3__
#define __SSSE3__
#endif
#endif
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON) && !defined(_MSC_VER)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
typedef __fp16 ggml_fp16_internal_t;
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
ggml_fp16_internal_t tmp;
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
return (float)tmp;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
ggml_fp16_internal_t tmp = f;
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
return res;
}
#else
typedef uint16_t ggml_fp16_internal_t;
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // __ARM_NEON
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#endif
#if !defined(GGML_FP32_TO_FP16)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
struct ggml_hash_set ggml_hash_set_new(size_t size);
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
#ifdef __cplusplus
}
#endif

View File

@ -1,66 +0,0 @@
// An interface allowing to compute ggml_cgraph with Metal
//
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
//
// How it works?
//
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
//
// You only need to make sure that all memory buffers that you used during the graph creation
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
// used during the graph evaluation to determine the arguments of the compute kernels.
//
// Synchronization between device and host memory (for example for input and output tensors)
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
//
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#include <stddef.h>
#include <stdbool.h>
// max memory buffers that can be mapped to the device
#define GGML_METAL_MAX_BUFFERS 64
struct ggml_tensor;
struct ggml_cgraph;
#ifdef __cplusplus
extern "C" {
#endif
//
// backend API
// user-code should use only these functions
//
GGML_API void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
GGML_API ggml_backend_t ggml_backend_metal_init(void);
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family
// ideally, the user code should be doing these checks
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
#ifdef __cplusplus
}
#endif

View File

@ -1,36 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
GGML_API void ggml_cl_init(void);
GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst);
GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
// GGML_API void * ggml_cl_host_malloc(size_t size);
// GGML_API void ggml_cl_host_free(void * ptr);
GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor);
GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
// backend API
// GGML_API ggml_backend_t ggml_backend_opencl_init(void);
// GGML_API bool ggml_backend_is_opencl(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
// GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,49 +0,0 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_SYCL_MAX_DEVICES 48
#define GGML_SYCL_NAME "SYCL"
// backend API
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
// devide buffer
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
// TODO: these are temporary
// ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
// SYCL doesn't support registering host memory, keep here for reference
// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif

View File

@ -1,29 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_VK_NAME "Vulkan"
#define GGML_VK_MAX_DEVICES 16
GGML_API void ggml_vk_instance_init(void);
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void);
GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,14 @@
ggml-metal-embed.o: \
ggml-metal.metal \
ggml-common.h
@echo "Embedding Metal library"
@sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal
$(eval TEMP_ASSEMBLY=$(shell mktemp))
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
@echo ".incbin \"ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
@$(AS) $(TEMP_ASSEMBLY) -o $@
@rm -f ${TEMP_ASSEMBLY}

File diff suppressed because it is too large Load Diff

View File

@ -3,6 +3,13 @@
#include "whisper.h"
typedef struct {
VALUE *context;
VALUE user_data;
VALUE callback;
VALUE callbacks;
} ruby_whisper_callback_container;
typedef struct {
struct whisper_context *context;
} ruby_whisper;
@ -10,6 +17,9 @@ typedef struct {
typedef struct {
struct whisper_full_params params;
bool diarize;
ruby_whisper_callback_container *new_segment_callback_container;
ruby_whisper_callback_container *progress_callback_container;
ruby_whisper_callback_container *abort_callback_container;
} ruby_whisper_params;
#endif

View File

@ -0,0 +1,29 @@
---
- ../../src/whisper.cpp
- ../../include/whisper.h
- ../../ggml/src/ggml.c
- ../../ggml/src/ggml-impl.h
- ../../ggml/src/ggml-aarch64.h
- ../../ggml/src/ggml-aarch64.c
- ../../ggml/src/ggml-alloc.c
- ../../ggml/src/ggml-backend-impl.h
- ../../ggml/src/ggml-backend.cpp
- ../../ggml/src/ggml-common.h
- ../../ggml/src/ggml-quants.h
- ../../ggml/src/ggml-quants.c
- ../../ggml/src/ggml-cpu-impl.h
- ../../ggml/src/ggml-metal.m
- ../../ggml/src/ggml-metal.metal
- ../../ggml/src/ggml-blas.cpp
- ../../ggml/include/ggml.h
- ../../ggml/include/ggml-alloc.h
- ../../ggml/include/ggml-backend.h
- ../../ggml/include/ggml-cuda.h
- ../../ggml/include/ggml-kompute.h
- ../../ggml/include/ggml-metal.h
- ../../ggml/include/ggml-sycl.h
- ../../ggml/include/ggml-vulkan.h
- ../../ggml/include/ggml-blas.h
- ../../scripts/get-flags.mk
- ../../examples/dr_wav.h
- ../../LICENSE

View File

@ -0,0 +1,163 @@
require "test/unit"
require "whisper"
class TestCallback < Test::Unit::TestCase
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
def setup
GC.start
@params = Whisper::Params.new
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
@audio = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
end
def test_new_segment_callback
@params.new_segment_callback = ->(context, state, n_new, user_data) {
assert_kind_of Integer, n_new
assert n_new > 0
assert_same @whisper, context
n_segments = context.full_n_segments
n_new.times do |i|
i_segment = n_segments - 1 + i
start_time = context.full_get_segment_t0(i_segment) * 10
end_time = context.full_get_segment_t1(i_segment) * 10
text = context.full_get_segment_text(i_segment)
assert_kind_of Integer, start_time
assert start_time >= 0
assert_kind_of Integer, end_time
assert end_time > 0
assert_match /ask not what your country can do for you, ask what you can do for your country/, text if i_segment == 0
end
}
@whisper.transcribe(@audio, @params)
end
def test_new_segment_callback_closure
search_word = "what"
@params.new_segment_callback = ->(context, state, n_new, user_data) {
n_segments = context.full_n_segments
n_new.times do |i|
i_segment = n_segments - 1 + i
text = context.full_get_segment_text(i_segment)
if text.include?(search_word)
t0 = context.full_get_segment_t0(i_segment)
t1 = context.full_get_segment_t1(i_segment)
raise "search word '#{search_word}' found at between #{t0} and #{t1}"
end
end
}
assert_raise RuntimeError do
@whisper.transcribe(@audio, @params)
end
end
def test_new_segment_callback_user_data
udata = Object.new
@params.new_segment_callback_user_data = udata
@params.new_segment_callback = ->(context, state, n_new, user_data) {
assert_same udata, user_data
}
@whisper.transcribe(@audio, @params)
end
def test_new_segment_callback_user_data_gc
@params.new_segment_callback_user_data = "My user data"
@params.new_segment_callback = ->(context, state, n_new, user_data) {
assert_equal "My user data", user_data
}
GC.start
assert_same @whisper, @whisper.transcribe(@audio, @params)
end
def test_progress_callback
first = nil
last = nil
@params.progress_callback = ->(context, state, progress, user_data) {
assert_kind_of Integer, progress
assert 0 <= progress && progress <= 100
assert_same @whisper, context
first = progress if first.nil?
last = progress
}
@whisper.transcribe(@audio, @params)
assert_equal 0, first
assert_equal 100, last
end
def test_progress_callback_user_data
udata = Object.new
@params.progress_callback_user_data = udata
@params.progress_callback = ->(context, state, n_new, user_data) {
assert_same udata, user_data
}
@whisper.transcribe(@audio, @params)
end
def test_on_progress
first = nil
last = nil
@params.on_progress do |progress|
assert_kind_of Integer, progress
assert 0 <= progress && progress <= 100
first = progress if first.nil?
last = progress
end
@whisper.transcribe(@audio, @params)
assert_equal 0, first
assert_equal 100, last
end
def test_abort_callback
i = 0
@params.abort_callback = ->(user_data) {
assert_nil user_data
i += 1
return false
}
@whisper.transcribe(@audio, @params)
assert i > 0
end
def test_abort_callback_abort
i = 0
@params.abort_callback = ->(user_data) {
i += 1
return i == 3
}
@whisper.transcribe(@audio, @params)
assert_equal 3, i
end
def test_abort_callback_user_data
udata = Object.new
@params.abort_callback_user_data = udata
yielded = nil
@params.abort_callback = ->(user_data) {
yielded = user_data
}
@whisper.transcribe(@audio, @params)
assert_same udata, yielded
end
def test_abort_on
do_abort = false
aborted_from_callback = false
@params.on_new_segment do |segment|
do_abort = true if segment.text.match? /ask/
end
i = 0
@params.abort_on do
i += 1
do_abort
end
@whisper.transcribe(@audio, @params)
assert i > 0
end
end

View File

@ -0,0 +1,31 @@
require 'test/unit'
require 'tempfile'
require 'tmpdir'
require 'shellwords'
class TestPackage < Test::Unit::TestCase
def test_build
Tempfile.create do |file|
assert system("gem", "build", "whispercpp.gemspec", "--output", file.to_path.shellescape, exception: true)
assert file.size > 0
assert_path_exist file.to_path
end
end
sub_test_case "Building binary on installation" do
def setup
system "rake", "build", exception: true
end
def test_install
match_data = `rake -Tbuild`.match(/(whispercpp-(.+)\.gem)/)
filename = match_data[1]
version = match_data[2]
basename = "whisper.#{RbConfig::CONFIG["DLEXT"]}"
Dir.mktmpdir do |dir|
system "gem", "install", "--install-dir", dir.shellescape, "pkg/#{filename.shellescape}", exception: true
assert_path_exist File.join(dir, "gems/whispercpp-#{version}/lib", basename)
end
end
end
end

View File

@ -0,0 +1,155 @@
require 'test/unit'
require 'whisper'
class TestParams < Test::Unit::TestCase
def setup
@params = Whisper::Params.new
end
def test_language
@params.language = "en"
assert_equal @params.language, "en"
@params.language = "auto"
assert_equal @params.language, "auto"
end
def test_offset
@params.offset = 10_000
assert_equal @params.offset, 10_000
@params.offset = 0
assert_equal @params.offset, 0
end
def test_duration
@params.duration = 60_000
assert_equal @params.duration, 60_000
@params.duration = 0
assert_equal @params.duration, 0
end
def test_max_text_tokens
@params.max_text_tokens = 300
assert_equal @params.max_text_tokens, 300
@params.max_text_tokens = 0
assert_equal @params.max_text_tokens, 0
end
def test_translate
@params.translate = true
assert @params.translate
@params.translate = false
assert !@params.translate
end
def test_no_context
@params.no_context = true
assert @params.no_context
@params.no_context = false
assert !@params.no_context
end
def test_single_segment
@params.single_segment = true
assert @params.single_segment
@params.single_segment = false
assert !@params.single_segment
end
def test_print_special
@params.print_special = true
assert @params.print_special
@params.print_special = false
assert !@params.print_special
end
def test_print_progress
@params.print_progress = true
assert @params.print_progress
@params.print_progress = false
assert !@params.print_progress
end
def test_print_realtime
@params.print_realtime = true
assert @params.print_realtime
@params.print_realtime = false
assert !@params.print_realtime
end
def test_print_timestamps
@params.print_timestamps = true
assert @params.print_timestamps
@params.print_timestamps = false
assert !@params.print_timestamps
end
def test_suppress_blank
@params.suppress_blank = true
assert @params.suppress_blank
@params.suppress_blank = false
assert !@params.suppress_blank
end
def test_suppress_non_speech_tokens
@params.suppress_non_speech_tokens = true
assert @params.suppress_non_speech_tokens
@params.suppress_non_speech_tokens = false
assert !@params.suppress_non_speech_tokens
end
def test_token_timestamps
@params.token_timestamps = true
assert @params.token_timestamps
@params.token_timestamps = false
assert !@params.token_timestamps
end
def test_split_on_word
@params.split_on_word = true
assert @params.split_on_word
@params.split_on_word = false
assert !@params.split_on_word
end
def test_initial_prompt
assert_nil @params.initial_prompt
@params.initial_prompt = "You are a polite person."
assert_equal "You are a polite person.", @params.initial_prompt
end
def test_temperature
assert_equal 0.0, @params.temperature
@params.temperature = 0.5
assert_equal 0.5, @params.temperature
end
def test_max_initial_ts
assert_equal 1.0, @params.max_initial_ts
@params.max_initial_ts = 600.0
assert_equal 600.0, @params.max_initial_ts
end
def test_length_penalty
assert_equal -1.0, @params.length_penalty
@params.length_penalty = 0.5
assert_equal 0.5, @params.length_penalty
end
def test_temperature_inc
assert_in_delta 0.2, @params.temperature_inc
@params.temperature_inc = 0.5
assert_in_delta 0.5, @params.temperature_inc
end
def test_entropy_thold
assert_in_delta 2.4, @params.entropy_thold
@params.entropy_thold = 3.0
assert_in_delta 3.0, @params.entropy_thold
end
def test_logprob_thold
assert_in_delta -1.0, @params.logprob_thold
@params.logprob_thold = -0.5
assert_in_delta -0.5, @params.logprob_thold
end
end

View File

@ -0,0 +1,87 @@
require "test/unit"
require "whisper"
class TestSegment < Test::Unit::TestCase
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
class << self
attr_reader :whisper
def startup
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
params = Whisper::Params.new
params.print_timestamps = false
jfk = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
@whisper.transcribe(jfk, params)
end
end
def test_iteration
whisper.each_segment do |segment|
assert_instance_of Whisper::Segment, segment
end
end
def test_enumerator
enum = whisper.each_segment
assert_instance_of Enumerator, enum
enum.to_a.each_with_index do |segment, index|
assert_instance_of Whisper::Segment, segment
assert_kind_of Integer, index
end
end
def test_start_time
i = 0
whisper.each_segment do |segment|
assert_equal 0, segment.start_time if i == 0
i += 1
end
end
def test_end_time
i = 0
whisper.each_segment do |segment|
assert_equal whisper.full_get_segment_t1(i) * 10, segment.end_time
i += 1
end
end
def test_on_new_segment
params = Whisper::Params.new
seg = nil
index = 0
params.on_new_segment do |segment|
assert_instance_of Whisper::Segment, segment
if index == 0
seg = segment
assert_equal 0, segment.start_time
assert_match /ask not what your country can do for you, ask what you can do for your country/, segment.text
end
index += 1
end
whisper.transcribe(File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav'), params)
assert_equal 0, seg.start_time
assert_match /ask not what your country can do for you, ask what you can do for your country/, seg.text
end
def test_on_new_segment_twice
params = Whisper::Params.new
seg = nil
params.on_new_segment do |segment|
seg = segment
return
end
params.on_new_segment do |segment|
assert_same seg, segment
return
end
whisper.transcribe(File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav'), params)
end
private
def whisper
self.class.whisper
end
end

View File

@ -1,122 +1,13 @@
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
EXTDIR = File.join(TOPDIR, 'ext')
#$LIBDIR = File.join(TOPDIR, 'lib')
#$:.unshift(LIBDIR)
$:.unshift(EXTDIR)
require 'whisper'
require 'test/unit'
class TestWhisper < Test::Unit::TestCase
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
def setup
@params = Whisper::Params.new
end
def test_language
@params.language = "en"
assert_equal @params.language, "en"
@params.language = "auto"
assert_equal @params.language, "auto"
end
def test_offset
@params.offset = 10_000
assert_equal @params.offset, 10_000
@params.offset = 0
assert_equal @params.offset, 0
end
def test_duration
@params.duration = 60_000
assert_equal @params.duration, 60_000
@params.duration = 0
assert_equal @params.duration, 0
end
def test_max_text_tokens
@params.max_text_tokens = 300
assert_equal @params.max_text_tokens, 300
@params.max_text_tokens = 0
assert_equal @params.max_text_tokens, 0
end
def test_translate
@params.translate = true
assert @params.translate
@params.translate = false
assert !@params.translate
end
def test_no_context
@params.no_context = true
assert @params.no_context
@params.no_context = false
assert !@params.no_context
end
def test_single_segment
@params.single_segment = true
assert @params.single_segment
@params.single_segment = false
assert !@params.single_segment
end
def test_print_special
@params.print_special = true
assert @params.print_special
@params.print_special = false
assert !@params.print_special
end
def test_print_progress
@params.print_progress = true
assert @params.print_progress
@params.print_progress = false
assert !@params.print_progress
end
def test_print_realtime
@params.print_realtime = true
assert @params.print_realtime
@params.print_realtime = false
assert !@params.print_realtime
end
def test_print_timestamps
@params.print_timestamps = true
assert @params.print_timestamps
@params.print_timestamps = false
assert !@params.print_timestamps
end
def test_suppress_blank
@params.suppress_blank = true
assert @params.suppress_blank
@params.suppress_blank = false
assert !@params.suppress_blank
end
def test_suppress_non_speech_tokens
@params.suppress_non_speech_tokens = true
assert @params.suppress_non_speech_tokens
@params.suppress_non_speech_tokens = false
assert !@params.suppress_non_speech_tokens
end
def test_token_timestamps
@params.token_timestamps = true
assert @params.token_timestamps
@params.token_timestamps = false
assert !@params.token_timestamps
end
def test_split_on_word
@params.split_on_word = true
assert @params.split_on_word
@params.split_on_word = false
assert !@params.split_on_word
end
def test_whisper
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
params = Whisper::Params.new
@ -128,4 +19,81 @@ class TestWhisper < Test::Unit::TestCase
}
end
sub_test_case "After transcription" do
class << self
attr_reader :whisper
def startup
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
params = Whisper::Params.new
params.print_timestamps = false
jfk = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
@whisper.transcribe(jfk, params)
end
end
def whisper
self.class.whisper
end
def test_full_n_segments
assert_equal 1, whisper.full_n_segments
end
def test_full_lang_id
assert_equal 0, whisper.full_lang_id
end
def test_full_get_segment_t0
assert_equal 0, whisper.full_get_segment_t0(0)
assert_raise IndexError do
whisper.full_get_segment_t0(whisper.full_n_segments)
end
assert_raise IndexError do
whisper.full_get_segment_t0(-1)
end
end
def test_full_get_segment_t1
t1 = whisper.full_get_segment_t1(0)
assert_kind_of Integer, t1
assert t1 > 0
assert_raise IndexError do
whisper.full_get_segment_t1(whisper.full_n_segments)
end
end
def test_full_get_segment_speaker_turn_next
assert_false whisper.full_get_segment_speaker_turn_next(0)
end
def test_full_get_segment_text
assert_match /ask not what your country can do for you, ask what you can do for your country/, whisper.full_get_segment_text(0)
end
end
def test_lang_max_id
assert_kind_of Integer, Whisper.lang_max_id
end
def test_lang_id
assert_equal 0, Whisper.lang_id("en")
assert_raise ArgumentError do
Whisper.lang_id("non existing language")
end
end
def test_lang_str
assert_equal "en", Whisper.lang_str(0)
assert_raise IndexError do
Whisper.lang_str(Whisper.lang_max_id + 1)
end
end
def test_lang_str_full
assert_equal "english", Whisper.lang_str_full(0)
assert_raise IndexError do
Whisper.lang_str_full(Whisper.lang_max_id + 1)
end
end
end

View File

@ -1,3 +1,5 @@
require "yaml"
Gem::Specification.new do |s|
s.name = "whispercpp"
s.authors = ["Georgi Gerganov", "Todd A. Fisher"]
@ -7,10 +9,16 @@ Gem::Specification.new do |s|
s.email = 'todd.fisher@gmail.com'
s.extra_rdoc_files = ['LICENSE', 'README.md']
s.files = ["LICENSE", "README.md", "Rakefile", "ext/extconf.rb", "ext/ggml.c", "ext/ruby_whisper.cpp", "ext/whisper.cpp", "ext/dr_wav.h", "ext/ggml.h", "ext/ruby_whisper.h", "ext/whisper.h"]
s.files = `git ls-files . -z`.split("\x0") +
YAML.load_file("extsources.yaml").collect {|file|
basename = File.basename(file)
if s.extra_rdoc_files.include?(basename)
basename
else
File.join("ext", basename)
end
}
#### Load-time details
s.require_paths = ['lib','ext']
s.summary = %q{Ruby whisper.cpp bindings}
s.test_files = ["tests/test_whisper.rb"]

View File

@ -1,54 +0,0 @@
# Add new build types
# ReleaseGG - Release with enabled asserts
SET(CMAKE_CXX_FLAGS_RELEASEGG
"-O3"
CACHE STRING "Flags used by the c++ compiler during release builds with enabled asserts."
FORCE )
SET(CMAKE_C_FLAGS_RELEASEGG
"-O3"
CACHE STRING "Flags used by the compiler during release builds with enabled asserts."
FORCE )
SET(CMAKE_EXE_LINKER_FLAGS_RELEASEGG
""
CACHE STRING "Flags used for linking binaries during release builds with enabled asserts."
FORCE )
SET(CMAKE_SHARED_LINKER_FLAGS_RELEASEGG
""
CACHE STRING "Flags used by the shared libraries linker during release builds with enabled asserts."
FORCE )
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_RELEASEGG
CMAKE_C_FLAGS_RELEASEGG
CMAKE_EXE_LINKER_FLAGS_RELEASEGG
CMAKE_SHARED_LINKER_FLAGS_RELEASEGG )
# RelWithDebInfoGG - RelWithDebInfo with enabled asserts
SET(CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
"-O2 -g"
CACHE STRING "Flags used by the c++ compiler during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_C_FLAGS_RELWITHDEBINFOGG
"-O2 -g"
CACHE STRING "Flags used by the compiler during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
""
CACHE STRING "Flags used for linking binaries during release builds with debug symbols and enabled asserts."
FORCE )
SET(CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG
""
CACHE STRING "Flags used by the shared libraries linker during release builds with debug symbols and enabled asserts."
FORCE )
MARK_AS_ADVANCED(
CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
CMAKE_C_FLAGS_RELWITHDEBINFOGG
CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG )
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo" "ReleaseGG" "RelWithDebInfoGG")
endif()

View File

@ -13,5 +13,5 @@ set_target_properties(${TARGET}
PROPERTIES
EXPORT_COMPILE_COMMANDS ON
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib"
INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib"
)

View File

@ -36,7 +36,7 @@ include(FindPackageHandleStandardArgs)
# The default components were taken from a survey over other FindFFMPEG.cmake files
if (NOT FFmpeg_FIND_COMPONENTS)
set(FFmpeg_FIND_COMPONENTS AVFORMAT AVCODEC AVUTIL SWRESAMPLE)
set(FFmpeg_FIND_COMPONENTS AVFORMAT AVCODEC AVUTIL SWRESAMPLE)
endif()
#
@ -84,7 +84,7 @@ macro(find_component _component _pkgconfig _library _header)
# CMake's default is to search first for shared libraries and then for static libraries.
# Todo later: add option to prefer static libs over dynamic:
find_library(${_component}_LIBRARIES NAMES ${_library} lib${_library}.a
find_library(${_component}_LIBRARIES NAMES ${_library} lib${_library}.a
HINTS
${PC_${_component}_LIBDIR}
${PC_${_component}_LIBRARY_DIRS}

58
cmake/build-info.cmake Normal file
View File

@ -0,0 +1,58 @@
set(BUILD_NUMBER 0)
set(BUILD_COMMIT "unknown")
set(BUILD_COMPILER "unknown")
set(BUILD_TARGET "unknown")
# Look for git
find_package(Git)
if(NOT Git_FOUND)
find_program(GIT_EXECUTABLE NAMES git git.exe)
if(GIT_EXECUTABLE)
set(Git_FOUND TRUE)
message(STATUS "Found Git: ${GIT_EXECUTABLE}")
else()
message(WARNING "Git not found. Build info will not be accurate.")
endif()
endif()
# Get the commit count and hash
if(Git_FOUND)
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-parse --short HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE HEAD
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE RES
)
if (RES EQUAL 0)
set(BUILD_COMMIT ${HEAD})
endif()
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-list --count HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE COUNT
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE RES
)
if (RES EQUAL 0)
set(BUILD_NUMBER ${COUNT})
endif()
endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_COMPILER ${OUT})
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_TARGET ${OUT})
endif()

View File

@ -0,0 +1,65 @@
set(WHISPER_VERSION @WHISPER_INSTALL_VERSION@)
set(WHISPER_BUILD_COMMIT @WHISPER_BUILD_COMMIT@)
set(WHISPER_BUILD_NUMBER @WHISPER_BUILD_NUMBER@)
set(WHISPER_SHARED_LIB @BUILD_SHARED_LIBS@)
set(GGML_BLAS @GGML_BLAS@)
set(GGML_CUDA @GGML_CUDA@)
set(GGML_METAL @GGML_METAL@)
set(GGML_HIPBLAS @GGML_HIPBLAS@)
set(GGML_ACCELERATE @GGML_ACCELERATE@)
@PACKAGE_INIT@
set_and_check(WHISPER_INCLUDE_DIR "@PACKAGE_WHISPER_INCLUDE_INSTALL_DIR@")
set_and_check(WHISPER_LIB_DIR "@PACKAGE_WHISPER_LIB_INSTALL_DIR@")
set_and_check(WHISPER_BIN_DIR "@PACKAGE_WHISPER_BIN_INSTALL_DIR@")
# Ensure transient dependencies satisfied
find_package(Threads REQUIRED)
if (APPLE AND GGML_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
endif()
if (GGML_BLAS)
find_package(BLAS REQUIRED)
endif()
if (GGML_CUDA)
find_package(CUDAToolkit REQUIRED)
endif()
if (GGML_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
endif()
if (GGML_HIPBLAS)
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
endif()
find_library(whisper_LIBRARY whisper
REQUIRED
HINTS ${WHISPER_LIB_DIR})
set(_whisper_link_deps "Threads::Threads" "@WHISPER_EXTRA_LIBS@")
set(_whisper_transient_defines "@WHISPER_TRANSIENT_DEFINES@")
add_library(whisper UNKNOWN IMPORTED)
set_target_properties(whisper
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${WHISPER_INCLUDE_DIR}"
INTERFACE_LINK_LIBRARIES "${_whisper_link_deps}"
INTERFACE_COMPILE_DEFINITIONS "${_whisper_transient_defines}"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${whisper_LIBRARY}"
INTERFACE_COMPILE_FEATURES cxx_std_11
POSITION_INDEPENDENT_CODE ON )
check_required_components(whisper)

10
cmake/whisper.pc.in Normal file
View File

@ -0,0 +1,10 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix}
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
includedir=${prefix}/include
Name: whisper
Description: Port of OpenAI's Whisper model in C/C++
Version: @PROJECT_VERSION@
Libs: -L${libdir} -lwhisper
Cflags: -I${includedir}

View File

@ -11,7 +11,7 @@ if (WHISPER_SDL2)
string(STRIP "${SDL2_LIBRARIES}" SDL2_LIBRARIES)
message(STATUS "SDL2_INCLUDE_DIRS = ${SDL2_INCLUDE_DIRS}")
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
message(STATUS "SDL2_LIBRARIES = ${SDL2_LIBRARIES}")
endif()
if (WHISPER_CLBLAST)
@ -22,10 +22,35 @@ endif()
set(TARGET common)
unset(COMMON_EXTRA_LIBS)
if (WHISPER_FFMPEG)
# As of cmake 3.27, there is no official cmake support for FindFFmpeg.
# Consequnelty we added a FindFFmpeg.cmake script the cmake subfolder:
# whisper.cpp does not need the full ffmpeg libs, just AVFORMAT AVCODEC AVUTIL SWRESAMPLE
# libswresample performs highly optimized audio resampling, rematrixing and sample format conversion operations
# libavcodec provides a generic encoding/decoding framework and contains multiple decoders and encoders for audio, video and subtitle streams, and several bitstream filters.
# libavformat provides a generic framework for multiplexing and demultiplexing (muxing and demuxing) audio, video and subtitle streams.
find_package(FFmpeg REQUIRED)
if (NOT ${FFMPEG_FOUND})
message(FATAL_ERROR "Cannot find ffmpeg libs/headers")
endif()
message(STATUS "Found ffmpeg libs: ${FFMPEG_LIBRARIES}")
message(STATUS "Found ffmpeg headers in: ${FFMPEG_INCLUDE_DIRS}")
message(STATUS "ffmpeg definitions: ${FFMPEG_DEFINITIONS}")
message(STATUS "Found avformat ${AVFORMAT_VERSION}")
include_directories(${FFMPEG_INCLUDE_DIRS})
add_compile_definitions(WHISPER_FFMPEG)
list(APPEND COMMON_EXTRA_LIBS ${FFMPEG_LIBRARIES})
set(COMMON_SOURCES_FFMPEG ffmpeg-transcode.cpp)
endif()
add_library(${TARGET} STATIC
common.h
common.cpp
@ -38,7 +63,7 @@ add_library(${TARGET} STATIC
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE whisper)
target_link_libraries(${TARGET} PRIVATE whisper ${COMMON_EXTRA_LIBS})
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
@ -55,8 +80,8 @@ if (WHISPER_SDL2)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC ${SDL2_INCLUDE_DIRS})
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES})
target_include_directories(${TARGET} PUBLIC ${SDL2_INCLUDE_DIRS})
target_link_libraries (${TARGET} PRIVATE ${SDL2_LIBRARIES})
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
@ -77,8 +102,8 @@ if (EMSCRIPTEN)
set_target_properties(libstream PROPERTIES FOLDER "libs")
add_subdirectory(command.wasm)
set_target_properties(libcommand PROPERTIES FOLDER "libs")
add_subdirectory(talk.wasm)
set_target_properties(libtalk PROPERTIES FOLDER "libs")
#add_subdirectory(talk.wasm)
#set_target_properties(libtalk PROPERTIES FOLDER "libs")
add_subdirectory(bench.wasm)
set_target_properties(libbench PROPERTIES FOLDER "libs")
elseif(CMAKE_JS_VERSION)
@ -102,13 +127,15 @@ endif (WHISPER_SDL2)
add_subdirectory(quantize)
set_target_properties(quantize PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(talk)
set_target_properties(talk PROPERTIES FOLDER "examples")
# TODO: disabled until update
# https://github.com/ggerganov/whisper.cpp/issues/1818
#add_subdirectory(talk)
#set_target_properties(talk PROPERTIES FOLDER "examples")
add_subdirectory(talk-llama)
set_target_properties(talk-llama PROPERTIES FOLDER "examples")
add_subdirectory(lsp)
set_target_properties(lsp PROPERTIES FOLDER "examples")
if (LLAMA_SYCL)
if (GGML_SYCL)
add_subdirectory(sycl)
set_target_properties(sycl PROPERTIES FOLDER "examples")
endif()

View File

@ -18,7 +18,7 @@ struct whisper_params {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -58,7 +58,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "\n");
}
int whisper_bench_full(const whisper_params & params) {
static int whisper_bench_full(const whisper_params & params) {
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();

View File

@ -59,7 +59,7 @@ struct whisper_params {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -130,7 +130,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "\n");
}
std::string transcribe(
static std::string transcribe(
whisper_context * ctx,
const whisper_params & params,
const std::vector<float> & pcmf32,
@ -216,7 +216,7 @@ std::string transcribe(
return result;
}
std::vector<std::string> read_allowed_commands(const std::string & fname) {
static std::vector<std::string> read_allowed_commands(const std::string & fname) {
std::vector<std::string> allowed_commands;
std::ifstream ifs(fname);
@ -238,7 +238,7 @@ std::vector<std::string> read_allowed_commands(const std::string & fname) {
return allowed_commands;
}
std::vector<std::string> get_words(const std::string &txt) {
static std::vector<std::string> get_words(const std::string &txt) {
std::vector<std::string> words;
std::istringstream iss(txt);
@ -252,7 +252,7 @@ std::vector<std::string> get_words(const std::string &txt) {
// command-list mode
// guide the transcription to match the most likely command from a provided list
int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
static int process_command_list(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: guided mode\n", __func__);
@ -463,7 +463,7 @@ int process_command_list(struct whisper_context * ctx, audio_async &audio, const
// always-prompt mode
// transcribe the voice into text after valid prompt
int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
static int always_prompt_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
bool is_running = true;
bool ask_prompt = true;
@ -543,7 +543,7 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
// general-purpose mode
// freely transcribe the voice into text
int process_general_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
static int process_general_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
bool is_running = true;
bool have_prompt = false;
bool ask_prompt = true;

View File

@ -72,6 +72,9 @@ bool ggml_common_quantize_0(
case GGML_FTYPE_MOSTLY_IQ4_XS:
case GGML_FTYPE_MOSTLY_IQ1_M:
case GGML_FTYPE_MOSTLY_BF16:
case GGML_FTYPE_MOSTLY_Q4_0_4_4:
case GGML_FTYPE_MOSTLY_Q4_0_4_8:
case GGML_FTYPE_MOSTLY_Q4_0_8_8:
{
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
return false;
@ -209,6 +212,11 @@ bool ggml_common_quantize_0(
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
case GGML_TYPE_COUNT:
{
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));

View File

@ -219,7 +219,7 @@ bool sdl_poll_events() {
case SDL_QUIT:
{
return false;
} break;
}
default:
break;
}

View File

@ -30,7 +30,7 @@ extern bool ffmpeg_decode_audio(const std::string & ifname, std::vector<uint8_t>
#endif
// Function to check if the next argument exists
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
static std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
if (i + 1 < argc && argv[i + 1][0] != '-') {
return argv[++i];
} else {
@ -147,7 +147,6 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
case 7: return "He";
case 8: return "She";
case 9: return "They";
default: return "To";
}
return "The";
@ -346,7 +345,7 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
return tokens;
}
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
static std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
std::vector<gpt_vocab::id> output;
std::stringstream ss(input);
std::string token;
@ -358,7 +357,7 @@ std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, ch
return output;
}
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
static std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
if (fpath_test.empty()){
fprintf(stderr, "%s : No test file found.\n", __func__);
return std::map<std::string, std::vector<gpt_vocab::id>>();

View File

@ -9,6 +9,7 @@
#include <thread>
#include <ctime>
#include <fstream>
#include <sstream>
#define COMMON_SAMPLE_RATE 16000
@ -21,7 +22,7 @@ struct gpt_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_parallel = 1; // number of parallel streams
int32_t n_batch = 8; // batch size for prompt processing
int32_t n_batch = 32; // batch size for prompt processing
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
@ -286,12 +287,43 @@ void sam_print_usage(int argc, char ** argv, const sam_params & params);
// Terminal utils
//
#define SQR(X) ((X) * (X))
#define UNCUBE(x) x < 48 ? 0 : x < 115 ? 1 : (x - 35) / 40
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
// Lowest is red, middle is yellow, highest is green.
/**
* Quantizes 24-bit RGB to xterm256 code range [16,256).
*/
static int rgb2xterm256(int r, int g, int b) {
unsigned char cube[] = {0, 0137, 0207, 0257, 0327, 0377};
int av, ir, ig, ib, il, qr, qg, qb, ql;
av = r * .299 + g * .587 + b * .114 + .5;
ql = (il = av > 238 ? 23 : (av - 3) / 10) * 10 + 8;
qr = cube[(ir = UNCUBE(r))];
qg = cube[(ig = UNCUBE(g))];
qb = cube[(ib = UNCUBE(b))];
if (SQR(qr - r) + SQR(qg - g) + SQR(qb - b) <=
SQR(ql - r) + SQR(ql - g) + SQR(ql - b))
return ir * 36 + ig * 6 + ib + 020;
return il + 0350;
}
static std::string set_xterm256_foreground(int r, int g, int b) {
int x = rgb2xterm256(r, g, b);
std::ostringstream oss;
oss << "\033[38;5;" << x << "m";
return oss.str();
}
// Lowest is red, middle is yellow, highest is green. Color scheme from
// Paul Tol; it is colorblind friendly https://personal.sron.nl/~pault/
const std::vector<std::string> k_colors = {
"\033[38;5;196m", "\033[38;5;202m", "\033[38;5;208m", "\033[38;5;214m", "\033[38;5;220m",
"\033[38;5;226m", "\033[38;5;190m", "\033[38;5;154m", "\033[38;5;118m", "\033[38;5;82m",
set_xterm256_foreground(220, 5, 12),
set_xterm256_foreground(232, 96, 28),
set_xterm256_foreground(241, 147, 45),
set_xterm256_foreground(246, 193, 65),
set_xterm256_foreground(247, 240, 86),
set_xterm256_foreground(144, 201, 135),
set_xterm256_foreground( 78, 178, 101),
};
//

File diff suppressed because it is too large Load Diff

View File

@ -321,7 +321,7 @@ int ffmpeg_decode_audio(const std::string &ifname, std::vector<uint8_t>& owav_da
LOG("Couldn't map input file %s\n", ifname.c_str());
return err;
}
LOG("Mapped input file: %x size: %d\n", ibuf, ibuf_size);
LOG("Mapped input file: %s size: %d\n", ibuf, (int) ibuf_size);
struct audio_buffer inaudio_buf;
inaudio_buf.ptr = ibuf;
inaudio_buf.size = ibuf_size;

View File

@ -9,7 +9,7 @@
namespace grammar_parser {
// NOTE: assumes valid utf8 (but checks for overrun)
// copied from whisper.cpp
std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t first_byte = static_cast<uint8_t>(*src);
uint8_t highbits = first_byte >> 4;
@ -24,19 +24,19 @@ namespace grammar_parser {
return std::make_pair(value, pos);
}
uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
return result.first->second;
}
uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
return next_id;
}
void add_rule(
static void add_rule(
parse_state & state,
uint32_t rule_id,
const std::vector<whisper_grammar_element> & rule) {
@ -46,11 +46,11 @@ namespace grammar_parser {
state.rules[rule_id] = rule;
}
bool is_word_char(char c) {
static bool is_word_char(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
}
std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
const char * pos = src;
const char * end = src + size;
uint32_t value = 0;
@ -73,7 +73,7 @@ namespace grammar_parser {
return std::make_pair(value, pos);
}
const char * parse_space(const char * src, bool newline_ok) {
static const char * parse_space(const char * src, bool newline_ok) {
const char * pos = src;
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
@ -88,7 +88,7 @@ namespace grammar_parser {
return pos;
}
const char * parse_name(const char * src) {
static const char * parse_name(const char * src) {
const char * pos = src;
while (is_word_char(*pos)) {
pos++;
@ -99,7 +99,7 @@ namespace grammar_parser {
return pos;
}
std::pair<uint32_t, const char *> parse_char(const char * src) {
static std::pair<uint32_t, const char *> parse_char(const char * src) {
if (*src == '\\') {
switch (src[1]) {
case 'x': return parse_hex(src + 2, 2);
@ -122,14 +122,14 @@ namespace grammar_parser {
throw std::runtime_error("unexpected end of input");
}
const char * parse_alternates(
static const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested);
const char * parse_sequence(
static const char * parse_sequence(
parse_state & state,
const char * src,
const std::string & rule_name,
@ -229,7 +229,7 @@ namespace grammar_parser {
return pos;
}
const char * parse_alternates(
static const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
@ -247,7 +247,7 @@ namespace grammar_parser {
return pos;
}
const char * parse_rule(parse_state & state, const char * src) {
static const char * parse_rule(parse_state & state, const char * src) {
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
@ -285,7 +285,7 @@ namespace grammar_parser {
}
}
void print_grammar_char(FILE * file, uint32_t c) {
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
} else {
@ -294,7 +294,7 @@ namespace grammar_parser {
}
}
bool is_char_element(whisper_grammar_element elem) {
static bool is_char_element(whisper_grammar_element elem) {
switch (elem.type) {
case WHISPER_GRETYPE_CHAR: return true;
case WHISPER_GRETYPE_CHAR_NOT: return true;
@ -304,7 +304,7 @@ namespace grammar_parser {
}
}
void print_rule_binary(FILE * file, const std::vector<whisper_grammar_element> & rule) {
static void print_rule_binary(FILE * file, const std::vector<whisper_grammar_element> & rule) {
for (auto elem : rule) {
switch (elem.type) {
case WHISPER_GRETYPE_END: fprintf(file, "END"); break;
@ -334,7 +334,7 @@ namespace grammar_parser {
fprintf(file, "\n");
}
void print_rule(
static void print_rule(
FILE * file,
uint32_t rule_id,
const std::vector<whisper_grammar_element> & rule,
@ -413,7 +413,7 @@ namespace grammar_parser {
}
}
std::vector<const whisper_grammar_element *> parse_state::c_rules() const{
std::vector<const whisper_grammar_element *> parse_state::c_rules() const {
std::vector<const whisper_grammar_element *> ret;
for (const auto & rule : rules) {
ret.push_back(rule.data());

View File

@ -48,7 +48,7 @@ if [ -n "$3" ]; then
fi
# Whisper models
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" )
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large-v3" "large-v3-turbo" )
# list available models
function list_models {

View File

@ -53,7 +53,7 @@ struct commandset {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -109,7 +109,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, "\n");
}
uint64_t wait_for_vad(audio_async & audio, json jparams, const whisper_params & params, uint64_t maxlength_ms, std::vector<float> & pcmf32) {
static uint64_t wait_for_vad(audio_async & audio, json jparams, const whisper_params & params, uint64_t maxlength_ms, std::vector<float> & pcmf32) {
using namespace std::chrono;
uint64_t time_now = time_point_cast<milliseconds>(system_clock::now()).time_since_epoch().count();
uint64_t start_time = time_now;
@ -153,7 +153,7 @@ uint64_t wait_for_vad(audio_async & audio, json jparams, const whisper_params &
return time_now;
}
json unguided_transcription(struct whisper_context * ctx, audio_async &audio, json jparams, const whisper_params &params) {
static json unguided_transcription(struct whisper_context * ctx, audio_async &audio, json jparams, const whisper_params &params) {
std::vector<whisper_token> prompt_tokens;
std::vector<float> pcmf32;
uint64_t unprocessed_audio_timestamp = wait_for_vad(audio, jparams, params, 10000U, pcmf32);
@ -199,7 +199,7 @@ json unguided_transcription(struct whisper_context * ctx, audio_async &audio, js
// command-list mode
// guide the transcription to match the most likely command from a provided list
json guided_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params &params, json jparams, std::vector<struct commandset> commandset_list) {
static json guided_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params &params, json jparams, std::vector<struct commandset> commandset_list) {
struct commandset cs = commandset_list[jparams.value("commandset_index", commandset_list.size()-1)];
std::vector<float> pcmf32;
uint64_t unprocessed_audio_timestamp = wait_for_vad(audio, jparams, params, 2000U, pcmf32);
@ -285,7 +285,7 @@ json guided_transcription(struct whisper_context * ctx, audio_async &audio, cons
}
}
json register_commandset(struct whisper_context * ctx, json jparams, std::vector<struct commandset> &commandset_list) {
static json register_commandset(struct whisper_context * ctx, json jparams, std::vector<struct commandset> &commandset_list) {
// TODO: check for token collision
struct commandset cs;
@ -325,7 +325,8 @@ json register_commandset(struct whisper_context * ctx, json jparams, std::vector
commandset_list.push_back(cs);
return json{{"index",index}};
}
json seek(struct whisper_context * /*ctx*/, audio_async & /*audio*/, json /*params*/) {
static json seek(struct whisper_context * /*ctx*/, audio_async & /*audio*/, json /*params*/) {
// whisper_state has the pertinent offsets, but there also seem to be a large
// number of scratch buffers that would prevent rewinding context in a manner similar to llama
// I'll give this a another pass once everything else is implemented,
@ -335,7 +336,8 @@ json seek(struct whisper_context * /*ctx*/, audio_async & /*audio*/, json /*para
{"message", "Seeking is not yet supported."}
};
}
json parse_job(const json &body, struct whisper_context * ctx, audio_async &audio, const whisper_params &params, std::vector<struct commandset> &commandset_list) {
static json parse_job(const json &body, struct whisper_context * ctx, audio_async &audio, const whisper_params &params, std::vector<struct commandset> &commandset_list) {
// See: https://www.jsonrpc.org/specification
json id = body.at("id");
try {
@ -375,7 +377,7 @@ json parse_job(const json &body, struct whisper_context * ctx, audio_async &audi
}
}
void process_loop(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
static void process_loop(struct whisper_context * ctx, audio_async &audio, const whisper_params &params) {
std::deque<json> jobqueue;
std::vector<struct commandset> commandset_list;
while (true) {

View File

@ -17,7 +17,7 @@
#endif
// helper function to replace substrings
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
for (size_t pos = 0; ; pos += replace.length()) {
pos = s.find(search, pos);
if (pos == std::string::npos) break;
@ -94,17 +94,17 @@ struct whisper_params {
grammar_parser::parse_state grammar_parsed;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
static void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
char* whisper_param_turn_lowercase(char* in){
static char * whisper_param_turn_lowercase(char * in){
int string_len = strlen(in);
for(int i = 0; i < string_len; i++){
for (int i = 0; i < string_len; i++){
*(in+i) = tolower((unsigned char)*(in+i));
}
return in;
}
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -182,7 +182,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
return true;
}
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options] file0.wav file1.wav ...\n", argv[0]);
fprintf(stderr, "\n");
@ -248,7 +248,7 @@ struct whisper_print_user_data {
int progress_prev;
};
std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s, int64_t t0, int64_t t1, bool id_only = false) {
static std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s, int64_t t0, int64_t t1, bool id_only = false) {
std::string speaker = "";
const int64_t n_samples = pcmf32s[0].size();
@ -280,7 +280,8 @@ std::string estimate_diarization_speaker(std::vector<std::vector<float>> pcmf32s
return speaker;
}
void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) {
static void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) {
int progress_step = ((whisper_print_user_data *) user_data)->params->progress_step;
int * progress_prev = &(((whisper_print_user_data *) user_data)->progress_prev);
if (progress >= *progress_prev + progress_step) {
@ -289,7 +290,7 @@ void whisper_print_progress_callback(struct whisper_context * /*ctx*/, struct wh
}
}
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
static void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
const auto & params = *((whisper_print_user_data *) user_data)->params;
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
@ -358,7 +359,7 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
}
}
bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
static bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -385,7 +386,7 @@ bool output_txt(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
static bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -417,7 +418,7 @@ bool output_vtt(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
static bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -446,7 +447,7 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
char *escape_double_quotes_and_backslashes(const char *str) {
static char * escape_double_quotes_and_backslashes(const char * str) {
if (str == NULL) {
return NULL;
}
@ -459,7 +460,7 @@ char *escape_double_quotes_and_backslashes(const char *str) {
}
}
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
char * escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
if (escaped == NULL) {
return NULL;
}
@ -478,7 +479,7 @@ char *escape_double_quotes_and_backslashes(const char *str) {
}
// double quote should be escaped by another double quote. (rfc4180)
char *escape_double_quotes_in_csv(const char *str) {
static char * escape_double_quotes_in_csv(const char * str) {
if (str == NULL) {
return NULL;
}
@ -509,7 +510,7 @@ char *escape_double_quotes_in_csv(const char *str) {
return escaped;
}
bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
static bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -544,7 +545,7 @@ bool output_csv(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
bool output_score(struct whisper_context * ctx, const char * fname, const whisper_params & /*params*/, std::vector<std::vector<float>> /*pcmf32s*/) {
static bool output_score(struct whisper_context * ctx, const char * fname, const whisper_params & /*params*/, std::vector<std::vector<float>> /*pcmf32s*/) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
@ -563,7 +564,7 @@ bool output_score(struct whisper_context * ctx, const char * fname, const whispe
return true;
}
bool output_json(
static bool output_json(
struct whisper_context * ctx,
const char * fname,
const whisper_params & params,
@ -734,7 +735,7 @@ bool output_json(
// karaoke video generation
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
// TODO: font parameter adjustments
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec, std::vector<std::vector<float>> pcmf32s) {
static bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
@ -859,7 +860,7 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
return true;
}
bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
static bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_params & params, std::vector<std::vector<float>> pcmf32s) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
@ -900,7 +901,7 @@ bool output_lrc(struct whisper_context * ctx, const char * fname, const whisper_
}
void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
static void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
int main(int argc, char ** argv) {
whisper_params params;
@ -996,6 +997,7 @@ int main(int argc, char ** argv) {
if (params.dtw == "large.v1") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V1;
if (params.dtw == "large.v2") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V2;
if (params.dtw == "large.v3") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V3;
if (params.dtw == "large.v3.turbo") cparams.dtw_aheads_preset = WHISPER_AHEADS_LARGE_V3_TURBO;
if (cparams.dtw_aheads_preset == WHISPER_AHEADS_NONE) {
fprintf(stderr, "error: unknown DTW preset '%s'\n", params.dtw.c_str());

View File

@ -21,7 +21,7 @@ def process_audio(wav_file, model_name="base.en"):
if not os.path.exists(wav_file):
raise FileNotFoundError(f"WAV file not found: {wav_file}")
full_command = f"./main -m {model} -f {wav_file} -np -nt"
full_command = f"./main -m {model} -f {wav_file} -nt"
# Execute the command
process = subprocess.Popen(full_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

View File

@ -36,7 +36,7 @@ struct whisper_filters {
};
// quantize a model
bool whisper_model_quantize(const std::string & fname_inp, const std::string & fname_out, ggml_ftype ftype) {
static bool whisper_model_quantize(const std::string & fname_inp, const std::string & fname_out, ggml_ftype ftype) {
gpt_vocab vocab;
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());

View File

@ -34,6 +34,7 @@ struct server_params
std::string hostname = "127.0.0.1";
std::string public_path = "examples/server/public";
std::string request_path = "";
std::string inference_path = "/inference";
int32_t port = 8080;
int32_t read_timeout = 600;
@ -132,6 +133,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " --port PORT, [%-7d] Port number for the server\n", sparams.port);
fprintf(stderr, " --public PATH, [%-7s] Path to the public folder\n", sparams.public_path.c_str());
fprintf(stderr, " --request-path PATH, [%-7s] Request path for all requests\n", sparams.request_path.c_str());
fprintf(stderr, " --inference-path PATH, [%-7s] Inference path for all requests\n", sparams.inference_path.c_str());
fprintf(stderr, " --convert, [%-7s] Convert audio to WAV, requires ffmpeg on the server", sparams.ffmpeg_converter ? "true" : "false");
fprintf(stderr, "\n");
}
@ -182,6 +184,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params, serve
else if ( arg == "--host") { sparams.hostname = argv[++i]; }
else if ( arg == "--public") { sparams.public_path = argv[++i]; }
else if ( arg == "--request-path") { sparams.request_path = argv[++i]; }
else if ( arg == "--inference-path") { sparams.inference_path = argv[++i]; }
else if ( arg == "--convert") { sparams.ffmpeg_converter = true; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
@ -216,7 +219,7 @@ void check_ffmpeg_availibility() {
bool convert_to_wav(const std::string & temp_filename, std::string & error_resp) {
std::ostringstream cmd_stream;
std::string converted_filename_temp = temp_filename + "_temp.wav";
cmd_stream << "ffmpeg -i \"" << temp_filename << "\" -ar 16000 -ac 1 -c:a pcm_s16le \"" << converted_filename_temp << "\" 2>&1";
cmd_stream << "ffmpeg -i \"" << temp_filename << "\" -y -ar 16000 -ac 1 -c:a pcm_s16le \"" << converted_filename_temp << "\" 2>&1";
std::string cmd = cmd_stream.str();
int status = std::system(cmd.c_str());
@ -644,10 +647,10 @@ int main(int argc, char ** argv) {
return false;
});
svr.Options(sparams.request_path + "/inference", [&](const Request &, Response &){
svr.Options(sparams.request_path + sparams.inference_path, [&](const Request &, Response &){
});
svr.Post(sparams.request_path + "/inference", [&](const Request &req, Response &res){
svr.Post(sparams.request_path + sparams.inference_path, [&](const Request &req, Response &res){
// acquire whisper model mutex lock
std::lock_guard<std::mutex> lock(whisper_mutex);
@ -674,7 +677,8 @@ int main(int argc, char ** argv) {
if (sparams.ffmpeg_converter) {
// if file is not wav, convert to wav
// write to temporary file
const std::string temp_filename = "whisper_server_temp_file.wav";
const std::string temp_filename_base = std::tmpnam(nullptr);
const std::string temp_filename = temp_filename_base + ".wav";
std::ofstream temp_file{temp_filename, std::ios::binary};
temp_file << audio_file.content;
temp_file.close();

View File

@ -44,7 +44,7 @@ struct whisper_params {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];

View File

@ -1,7 +1,13 @@
if (WHISPER_SDL2)
# talk-llama
set(TARGET talk-llama)
add_executable(${TARGET} talk-llama.cpp llama.cpp unicode.cpp unicode-data.cpp)
add_executable(${TARGET} talk-llama.cpp
llama.cpp
llama-vocab.cpp
llama-grammar.cpp
llama-sampling.cpp
unicode.cpp
unicode-data.cpp)
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
if (WHISPER_CLBLAST)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,144 @@
#pragma once
#include "llama-impl.h"
#include <map>
struct llama_vocab;
// grammar element type
enum llama_gretype {
// end of rule definition
LLAMA_GRETYPE_END = 0,
// start of alternate definition for rule
LLAMA_GRETYPE_ALT = 1,
// non-terminal element: reference to rule
LLAMA_GRETYPE_RULE_REF = 2,
// terminal element: character (code point)
LLAMA_GRETYPE_CHAR = 3,
// inverse char(s) ([^a], [^a-b] [^abc])
LLAMA_GRETYPE_CHAR_NOT = 4,
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
// be an inclusive range ([a-z])
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
// modifies a preceding LLAMA_GRETYPE_CHAR or
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
LLAMA_GRETYPE_CHAR_ALT = 6,
// any character (.)
LLAMA_GRETYPE_CHAR_ANY = 7,
};
typedef struct llama_grammar_element {
enum llama_gretype type;
uint32_t value; // Unicode code point or rule ID
} llama_grammar_element;
struct llama_partial_utf8 {
uint32_t value; // bit value so far (unshifted)
int n_remain; // num bytes remaining; -1 indicates invalid sequence
};
struct llama_grammar_candidate {
size_t index;
const uint32_t * code_points;
llama_partial_utf8 partial_utf8;
};
using llama_grammar_rule = std::vector< llama_grammar_element>;
using llama_grammar_stack = std::vector<const llama_grammar_element *>;
using llama_grammar_rules = std::vector<llama_grammar_rule>;
using llama_grammar_stacks = std::vector<llama_grammar_stack>;
using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
// takes a set of possible pushdown stacks on a grammar, which are required to
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
void llama_grammar_accept(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
uint32_t chr,
llama_grammar_stacks & stacks_new);
std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
const llama_grammar_rules & rules,
const llama_grammar_stack & stack,
const llama_grammar_candidates & candidates);
struct llama_grammar_parser {
std::map<std::string, uint32_t> symbol_ids;
llama_grammar_rules rules;
llama_grammar_stack c_rules() const;
uint32_t get_symbol_id(const char * src, size_t len);
uint32_t generate_symbol_id(const std::string & base_name);
void add_rule(uint32_t rule_id, const llama_grammar_rule & rule);
const char * parse_alternates(
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested);
const char * parse_sequence(
const char * src,
const std::string & rule_name,
llama_grammar_rule & rule,
bool is_nested);
const char * parse_rule(const char * src);
bool parse(const char * src);
void print(FILE * file);
};
struct llama_grammar {
// note: allow null vocab for testing (not great)
const llama_vocab * vocab;
const llama_grammar_rules rules; // TODO: shared ptr
llama_grammar_stacks stacks;
// buffer for partially generated UTF-8 sequence from accepted tokens
llama_partial_utf8 partial_utf8;
};
//
// internal API
//
// note: needed for tests (not great)
struct llama_grammar * llama_grammar_init_impl(
const struct llama_vocab * vocab,
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index);
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root);
void llama_grammar_free_impl(struct llama_grammar * grammar);
struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & grammar);
// TODO: move the API below as member functions of llama_grammar
void llama_grammar_apply_impl(
const struct llama_grammar & grammar,
llama_token_data_array * cur_p);
void llama_grammar_accept_impl(
struct llama_grammar & grammar,
llama_token token);

View File

@ -0,0 +1,181 @@
#pragma once
#include "llama.h"
#include <string>
#include <vector>
#include <stdexcept>
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_ATTRIBUTE_FORMAT(...)
#endif
//
// logging
//
LLAMA_ATTRIBUTE_FORMAT(2, 3)
void llama_log_internal (ggml_log_level level, const char * format, ...);
void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
#define LLAMA_LOG(...) llama_log_internal(GGML_LOG_LEVEL_NONE , __VA_ARGS__)
#define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
#define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
#define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
#define LLAMA_LOG_DEBUG(...) llama_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LLAMA_LOG_CONT(...) llama_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__)
//
// helpers
//
struct time_meas {
time_meas(int64_t & t_acc, bool disable = false) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
~time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
const int64_t t_start_us;
int64_t & t_acc;
};
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
);
// the ring buffer works similarly to std::deque, but with a fixed capacity
template<typename T>
struct ring_buffer {
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
T & front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
const T & front() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
T & back() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
const T & back() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
void push_back(const T & value) {
if (capacity == 0) {
throw std::runtime_error("ring buffer: capacity is zero");
}
if (sz == capacity) {
// advance the start when buffer is full
first = (first + 1) % capacity;
} else {
sz++;
}
data[pos] = value;
pos = (pos + 1) % capacity;
}
T pop_front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
T value = data[first];
first = (first + 1) % capacity;
sz--;
return value;
}
//T & operator[](size_t i) {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
//const T & at(size_t i) const {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
const T & rat(size_t i) const {
if (i >= sz) {
throw std::runtime_error("ring buffer: index out of bounds");
}
return data[(first + sz - i - 1) % capacity];
}
std::vector<T> to_vector() const {
std::vector<T> result;
result.reserve(sz);
for (size_t i = 0; i < sz; i++) {
result.push_back(data[(first + i) % capacity]);
}
return result;
}
void clear() {
// here only reset the status of the buffer
sz = 0;
first = 0;
pos = 0;
}
bool empty() const {
return sz == 0;
}
size_t size() const {
return sz;
}
size_t capacity = 0;
size_t sz = 0;
size_t first = 0;
size_t pos = 0;
std::vector<T> data;
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,29 @@
#pragma once
// TODO: rename llama-sampling.h/.cpp to llama-sampler.h/.cpp ?
#include "llama-grammar.h"
#include <unordered_map>
struct llama_vocab;
struct llama_grammar;
// sampler chain
struct llama_sampler_chain {
llama_sampler_chain_params params;
std::vector<struct llama_sampler *> samplers;
// timing
mutable int64_t t_sample_us;
mutable int32_t n_sample;
};
struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab & vocab,
const char * grammar_str,
const char * grammar_root);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,146 @@
#pragma once
#include "llama-impl.h"
#include <string>
#include <vector>
#include <unordered_map>
#include <map>
#include <set>
struct llm_tokenizer;
struct llama_vocab {
using id = llama_token;
using token = std::string;
using tattr = llama_token_attr;
struct token_data {
token text;
float score;
tattr attr;
};
uint32_t n_vocab = 0; // TODO: not great because has to keep in sync with hparams.n_vocab
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
int max_token_len = 0; // used for optimizing longest token search
std::unordered_map<token, id> token_to_id;
std::vector<token_data> id_to_token;
std::vector<id> cache_special_tokens;
std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
// default LLaMA special tokens
id special_bos_id = 1;
id special_eos_id = 2;
id special_unk_id = 0;
id special_sep_id = -1;
id special_pad_id = -1;
id special_cls_id = -1;
id special_mask_id = -1;
id linefeed_id = 13;
id special_prefix_id = -1;
id special_suffix_id = -1;
id special_middle_id = -1;
id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
id special_eom_id = -1;
// set of all tokens that cause "end of generation"
std::set<id> special_eog_ids;
// tokenizer flags
bool tokenizer_add_space_prefix = false;
bool tokenizer_add_bos = false;
bool tokenizer_add_eos = false;
bool tokenizer_ignore_merges = false;
bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
bool tokenizer_remove_extra_whitespaces = false;
bool tokenizer_escape_whitespaces = true;
bool tokenizer_treat_whitespace_as_suffix = false;
std::vector<char> precompiled_charsmap;
llm_tokenizer * tokenizer = nullptr;
llama_vocab() = default;
~llama_vocab();
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
void init_tokenizer();
};
//
// internal API
//
// TODO: rename to llama_tokenize_impl
// TODO: This should probably be in llama.h
std::vector<llama_vocab::id> llama_tokenize_internal(
const llama_vocab & vocab,
std::string raw_text,
bool add_special,
bool parse_special = false);
// TODO: move the API below as member functions of llama_vocab
llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch);
const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token);
float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token);
llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token);
bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token);
bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token);
llama_token llama_token_bos_impl(const struct llama_vocab & vocab);
llama_token llama_token_eos_impl(const struct llama_vocab & vocab);
llama_token llama_token_cls_impl(const struct llama_vocab & vocab);
llama_token llama_token_sep_impl(const struct llama_vocab & vocab);
llama_token llama_token_nl_impl (const struct llama_vocab & vocab);
llama_token llama_token_pad_impl(const struct llama_vocab & vocab);
bool llama_add_bos_token_impl(const struct llama_vocab & vocab);
bool llama_add_eos_token_impl(const struct llama_vocab & vocab);
llama_token llama_token_prefix_impl(const struct llama_vocab & vocab);
llama_token llama_token_middle_impl(const struct llama_vocab & vocab);
llama_token llama_token_suffix_impl(const struct llama_vocab & vocab);
llama_token llama_token_eot_impl (const struct llama_vocab & vocab);
llama_token llama_token_eom_impl (const struct llama_vocab & vocab);
int32_t llama_tokenize_impl(
const struct llama_vocab & vocab,
const char * text,
int32_t text_len,
llama_token * tokens,
int32_t n_tokens_max,
bool add_special,
bool parse_special);
// does not write null-terminator to buf
int32_t llama_token_to_piece_impl(
const struct llama_vocab & vocab,
llama_token token,
char * buf,
int32_t length,
int32_t lstrip,
bool special);
int32_t llama_detokenize_impl(
const struct llama_vocab & vocab,
const llama_token * tokens,
int32_t n_tokens,
char * text,
int32_t text_len_max,
bool remove_special,
bool unparse_special);

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -16,7 +16,7 @@
#include <regex>
#include <sstream>
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
static std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
auto * model = llama_get_model(ctx);
// upper limit for the number of tokens
@ -33,12 +33,12 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
return result;
}
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), 0, false);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), 0, false);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
@ -83,7 +83,7 @@ struct whisper_params {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -168,7 +168,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "\n");
}
std::string transcribe(
static std::string transcribe(
whisper_context * ctx,
const whisper_params & params,
const std::vector<float> & pcmf32,
@ -235,7 +235,7 @@ std::string transcribe(
return result;
}
std::vector<std::string> get_words(const std::string &txt) {
static std::vector<std::string> get_words(const std::string &txt) {
std::vector<std::string> words;
std::istringstream iss(txt);
@ -314,7 +314,6 @@ int main(int argc, char ** argv) {
// tune these to your liking
lcparams.n_ctx = 2048;
lcparams.seed = 1;
lcparams.n_threads = params.n_threads;
lcparams.flash_attn = params.flash_attn;
@ -402,6 +401,26 @@ int main(int argc, char ** argv) {
llama_batch batch = llama_batch_init(llama_n_ctx(ctx_llama), 0, 1);
// init sampler
const float top_k = 5;
const float top_p = 0.80f;
const float temp = 0.30f;
const int seed = 0;
auto sparams = llama_sampler_chain_default_params();
llama_sampler * smpl = llama_sampler_chain_init(sparams);
if (temp > 0.0f) {
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(top_k));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(top_p, 1));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (temp));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (seed));
} else {
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
}
// init session
std::string path_session = params.path_session;
std::vector<llama_token> session_tokens;
@ -417,7 +436,7 @@ int main(int argc, char ** argv) {
session_tokens.resize(llama_n_ctx(ctx_llama));
size_t n_token_count_out = 0;
if (!llama_load_session_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
if (!llama_state_load_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
@ -700,54 +719,13 @@ int main(int argc, char ** argv) {
{
// out of user input, sample next token
const float top_k = 5;
const float top_p = 0.80f;
const float temp = 0.30f;
const float repeat_penalty = 1.1764f;
const int repeat_last_n = 256;
if (!path_session.empty() && need_to_save_session) {
need_to_save_session = false;
llama_save_session_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.size());
llama_state_save_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
auto n_vocab = llama_n_vocab(model_llama);
logits[llama_token_eos(model_llama)] = 0;
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// apply repeat penalty
const float nl_logit = logits[llama_token_nl(model_llama)];
llama_sample_repetition_penalties(ctx_llama, &candidates_p,
embd_inp.data() + std::max(0, n_past - repeat_last_n),
repeat_last_n, repeat_penalty, 0.0, 0.0f);
logits[llama_token_nl(model_llama)] = nl_logit;
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
} else {
// Temperature sampling
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
llama_sample_temp (ctx_llama, &candidates_p, temp);
id = llama_sample_token(ctx_llama, &candidates_p);
}
}
const llama_token id = llama_sampler_sample(smpl, ctx_llama, -1);
if (id != llama_token_eos(model_llama)) {
// add it to the context
@ -797,8 +775,14 @@ int main(int argc, char ** argv) {
whisper_print_timings(ctx_wsp);
whisper_free(ctx_wsp);
llama_print_timings(ctx_llama);
llama_perf_sampler_print(smpl);
llama_perf_context_print(ctx_llama);
llama_sampler_free(smpl);
llama_batch_free(batch);
llama_free(ctx_llama);
llama_backend_free();
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +1,20 @@
#pragma once
#include <cstdint>
#include <map>
#include <utility>
#include <vector>
#include <unordered_map>
#include <unordered_set>
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_number;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_separator;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_symbol;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_control;
extern const std::multimap<uint32_t, uint32_t> unicode_map_nfd;
extern const std::map<char32_t, char32_t> unicode_map_lowercase;
struct range_nfd {
uint32_t first;
uint32_t last;
uint32_t nfd;
};
static const uint32_t MAX_CODEPOINTS = 0x110000;
extern const std::initializer_list<std::pair<uint32_t, uint16_t>> unicode_ranges_flags;
extern const std::unordered_set<uint32_t> unicode_set_whitespace;
extern const std::initializer_list<std::pair<uint32_t, uint32_t>> unicode_map_lowercase;
extern const std::initializer_list<std::pair<uint32_t, uint32_t>> unicode_map_uppercase;
extern const std::initializer_list<range_nfd> unicode_ranges_nfd;

View File

@ -1,6 +1,11 @@
#include "unicode.h"
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "unicode.h"
#include "unicode-data.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
@ -15,6 +20,12 @@
#include <locale>
#include <codecvt>
size_t unicode_len_utf8(char src) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
return lookup[highbits];
}
static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
std::string result;
for (size_t i = 0; i < cps.size(); ++i) {
@ -23,7 +34,7 @@ static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
return result;
}
static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
assert(offset < utf8.size());
if (!(utf8[offset + 0] & 0x80)) {
auto result = utf8[offset + 0];
@ -109,57 +120,49 @@ static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset)
// return result;
//}
static std::unordered_map<uint32_t, int> unicode_cpt_type_map() {
std::unordered_map<uint32_t, int> cpt_types;
for (auto p : unicode_ranges_number) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_NUMBER;
static std::vector<codepoint_flags> unicode_cpt_flags_array() {
std::vector<codepoint_flags> cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED);
assert (unicode_ranges_flags.begin()[0].first == 0);
assert (unicode_ranges_flags.begin()[unicode_ranges_flags.size()-1].first == MAX_CODEPOINTS);
for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) {
const auto range_ini = unicode_ranges_flags.begin()[i-1]; // codepoint_ini, flags
const auto range_end = unicode_ranges_flags.begin()[i]; // codepoint_end, flags
for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) {
cpt_flags[cpt] = range_ini.second;
}
}
for (auto p : unicode_ranges_letter) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_LETTER;
}
for (auto cpt : unicode_set_whitespace) {
cpt_flags[cpt].is_whitespace = true;
}
for (auto p : unicode_ranges_separator) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_SEPARATOR;
}
for (auto p : unicode_map_lowercase) {
cpt_flags[p.second].is_lowercase = true;
}
for (auto p : unicode_ranges_accent_mark) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_ACCENT_MARK;
}
for (auto p : unicode_map_uppercase) {
cpt_flags[p.second].is_uppercase = true;
}
for (auto p : unicode_ranges_punctuation) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_PUNCTUATION;
}
for (auto &range : unicode_ranges_nfd) { // start, last, nfd
cpt_flags[range.nfd].is_nfd = true;
}
for (auto p : unicode_ranges_symbol) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_SYMBOL;
}
}
for (auto p : unicode_ranges_control) {
for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_CONTROL;
}
}
return cpt_types;
return cpt_flags;
}
static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() {
std::unordered_map<uint8_t, std::string> map;
for (int ch = u'!'; ch <= u'~'; ++ch) {
for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
@ -175,15 +178,15 @@ static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() {
static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
std::unordered_map<std::string, uint8_t> map;
for (int ch = u'!'; ch <= u'~'; ++ch) {
for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
@ -234,12 +237,13 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
assert(offset_end <= cpts.size());
start = offset_end;
auto _get_cpt = [&] (const size_t pos) -> char32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
auto _get_cpt_type = [&] (const size_t pos) -> int {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_type(cpts[pos]) : CODEPOINT_TYPE_UNIDENTIFIED;
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
};
size_t _prev_end = offset_ini;
@ -260,18 +264,18 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const char32_t cpt = _get_cpt(pos);
const int cpt_type = _get_cpt_type(pos);
const uint32_t cpt = _get_cpt(pos);
const auto flags = _get_flags(pos);
// regex: 's|'t|'re|'ve|'m|'ll|'d
if (cpt == '\'' && pos+1 < offset_end) {
char32_t cpt_next = _get_cpt(pos+1);
uint32_t cpt_next = _get_cpt(pos+1);
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
char32_t cpt_next_next = _get_cpt(pos+2);
uint32_t cpt_next_next = _get_cpt(pos+2);
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
@ -281,44 +285,42 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
}
}
char32_t cpt2 = (cpt == ' ' ? _get_cpt(pos+1) : cpt);
int cpt2_type = (cpt == ' ' ? _get_cpt_type(pos+1) : cpt_type);
auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
// regex: <space>?\p{L}+
if (cpt2_type == CODEPOINT_TYPE_LETTER) {
if (flags2.is_letter) {
pos += (cpt == ' ');
while (cpt2_type == CODEPOINT_TYPE_LETTER) {
cpt2_type = _get_cpt_type(++pos);
while (flags2.is_letter) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?\p{N}+
if (cpt2_type == CODEPOINT_TYPE_NUMBER) {
if (flags2.is_number) {
pos += (cpt == ' ');
while (cpt2_type == CODEPOINT_TYPE_NUMBER) {
cpt2_type = _get_cpt_type(++pos);
while (flags2.is_number) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?[^\s\p{L}\p{N}]+
if (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
pos += (cpt == ' ');
while (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
cpt2_type = _get_cpt_type(++pos);
cpt2 = _get_cpt(pos);
while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
continue;
}
size_t num_whitespaces = 0;
while (unicode_cpt_is_whitespace(_get_cpt(pos+num_whitespaces))) {
while (_get_flags(pos+num_whitespaces).is_whitespace) {
num_whitespaces++;
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
@ -353,12 +355,13 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
assert(offset_end <= cpts.size());
start = offset_end;
auto _get_cpt = [&] (const size_t pos) -> char32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
auto _get_cpt_type = [&] (const size_t pos) -> int {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_type(cpts[pos]) : CODEPOINT_TYPE_UNIDENTIFIED;
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
};
size_t _prev_end = offset_ini;
@ -379,18 +382,18 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const char32_t cpt = _get_cpt(pos);
const int cpt_type = _get_cpt_type(pos);
const uint32_t cpt = _get_cpt(pos);
const auto flags = _get_flags(pos);
// regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
if (cpt == '\'' && pos+1 < offset_end) {
char32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
char32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
@ -400,11 +403,11 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
}
}
// regex: [^\r\n\p{L}\p{N}]?\p{L}+ //####FIXME: the first \p{L} is correct?
if (cpt != '\r' && cpt != '\n' && /*cpt_type != CODEPOINT_TYPE_LETTER &&*/ cpt_type != CODEPOINT_TYPE_NUMBER) {
if (cpt_type == CODEPOINT_TYPE_LETTER || _get_cpt_type(pos+1) == CODEPOINT_TYPE_LETTER) { // one or more letters
// regex: [^\r\n\p{L}\p{N}]?\p{L}+
if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) {
if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters
pos++;
while (_get_cpt_type(pos) == CODEPOINT_TYPE_LETTER) {
while (_get_flags(pos).is_letter) {
pos++;
}
_add_token(pos);
@ -413,9 +416,9 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
}
// regex: \p{N}{1,3}
if (cpt_type == CODEPOINT_TYPE_NUMBER) {
if (flags.is_number) {
size_t ini = pos;
while (_get_cpt_type(pos) == CODEPOINT_TYPE_NUMBER) {
while (_get_flags(pos).is_number) {
if (++pos - ini >= 3 ) {
_add_token(pos);
ini = pos;
@ -426,14 +429,13 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
}
// regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
char32_t cpt2 = (cpt == ' ' ? _get_cpt(pos+1) : cpt);
int cpt2_type = (cpt == ' ' ? _get_cpt_type(pos+1) : cpt_type);
if (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) {
pos += (cpt == ' ');
while (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
cpt2_type = _get_cpt_type(++pos);
cpt2 = _get_cpt(pos);
while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos);
}
uint32_t cpt2 = _get_cpt(pos);
while (cpt2 == '\r' || cpt2 == '\n') {
cpt2 = _get_cpt(++pos);
}
@ -443,8 +445,8 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
size_t num_whitespaces = 0;
size_t last_end_r_or_n = 0;
while (unicode_cpt_is_whitespace(_get_cpt(pos+num_whitespaces))) {
char32_t cpt2 = _get_cpt(pos+num_whitespaces);
while (_get_flags(pos+num_whitespaces).is_whitespace) {
uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
if (cpt2 == '\r' || cpt2 == '\n') {
last_end_r_or_n = pos + num_whitespaces + 1;
}
@ -459,7 +461,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
@ -589,21 +591,21 @@ std::string unicode_cpt_to_utf8(uint32_t cp) {
}
std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) {
std::vector<uint32_t> result;
result.reserve(cpts.size());
auto comp = [] (const uint32_t cpt, const range_nfd & range) {
return cpt < range.first;
};
std::vector<uint32_t> result(cpts.size());
for (size_t i = 0; i < cpts.size(); ++i) {
auto it = unicode_map_nfd.find(cpts[i]);
if (it == unicode_map_nfd.end()) {
result.push_back(cpts[i]);
} else {
result.push_back(it->second);
}
const uint32_t cpt = cpts[i];
auto it = std::upper_bound(unicode_ranges_nfd.begin(), unicode_ranges_nfd.end(), cpt, comp) - 1;
result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt;
}
return result;
}
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
std::vector<uint32_t> result;
result.reserve(utf8.size());
size_t offset = 0;
while (offset < utf8.size()) {
result.push_back(unicode_cpt_from_utf8(utf8, offset));
@ -611,31 +613,19 @@ std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
return result;
}
int unicode_cpt_type(uint32_t cp) {
static std::unordered_map<uint32_t, int> cpt_types = unicode_cpt_type_map();
const auto it = cpt_types.find(cp);
return it == cpt_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : it->second;
codepoint_flags unicode_cpt_flags(const uint32_t cp) {
static const codepoint_flags undef(codepoint_flags::UNDEFINED);
static const auto cpt_flags = unicode_cpt_flags_array();
return cp < cpt_flags.size() ? cpt_flags[cp] : undef;
}
int unicode_cpt_type(const std::string & utf8) {
if (utf8.length() == 0) {
return CODEPOINT_TYPE_UNIDENTIFIED;
codepoint_flags unicode_cpt_flags(const std::string & utf8) {
static const codepoint_flags undef(codepoint_flags::UNDEFINED);
if (utf8.empty()) {
return undef; // undefined
}
size_t offset = 0;
return unicode_cpt_type(unicode_cpt_from_utf8(utf8, offset));
}
bool unicode_cpt_is_whitespace(uint32_t cp) {
static const std::unordered_set<uint32_t> is_whitespace = [] {
std::unordered_set<uint32_t> is_whitespace;
for (auto p : unicode_ranges_whitespace) {
for (auto i = p.first; i <= p.second; ++i) {
is_whitespace.insert(i);
}
}
return is_whitespace;
}();
return (bool)is_whitespace.count(cp);
return unicode_cpt_flags(unicode_cpt_from_utf8(utf8, offset));
}
std::string unicode_byte_to_utf8(uint8_t byte) {
@ -648,29 +638,36 @@ uint8_t unicode_utf8_to_byte(const std::string & utf8) {
return map.at(utf8);
}
char32_t unicode_tolower(char32_t cp) {
auto it = unicode_map_lowercase.find(cp);
return it == unicode_map_lowercase.end() ? cp : it->second;
uint32_t unicode_tolower(uint32_t cp) {
// binary search
auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cp,
[](const std::pair<uint32_t, uint32_t> & pair, uint32_t value) {
return pair.first < value;
});
if (it != unicode_map_lowercase.end() && it->first == cp) {
return it->second;
}
return cp; // Return the original code point if no lowercase mapping is found
}
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
// unicode categories
static const std::map<std::string, int> k_ucat_enum = {
{ "\\p{N}", CODEPOINT_TYPE_NUMBER },
{ "\\p{L}", CODEPOINT_TYPE_LETTER },
{ "\\p{P}", CODEPOINT_TYPE_PUNCTUATION },
{ "\\p{N}", codepoint_flags::NUMBER },
{ "\\p{L}", codepoint_flags::LETTER },
{ "\\p{P}", codepoint_flags::PUNCTUATION },
};
static const std::map<int, int> k_ucat_cpt = {
{ CODEPOINT_TYPE_NUMBER, 0xD1 },
{ CODEPOINT_TYPE_LETTER, 0xD2 },
{ CODEPOINT_TYPE_PUNCTUATION, 0xD3 },
{ codepoint_flags::NUMBER, 0xD1 },
{ codepoint_flags::LETTER, 0xD2 },
{ codepoint_flags::PUNCTUATION, 0xD3 },
};
static const std::map<int, std::string> k_ucat_map = {
{ CODEPOINT_TYPE_NUMBER, "\x30-\x39" }, // 0-9
{ CODEPOINT_TYPE_LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
{ CODEPOINT_TYPE_PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
{ codepoint_flags::NUMBER, "\x30-\x39" }, // 0-9
{ codepoint_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
{ codepoint_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
};
// compute collapsed codepoints only if needed by at least one regex
@ -701,10 +698,14 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
continue;
}
const int cpt_type = unicode_cpt_type(cpts[i]);
const auto flags = unicode_cpt_flags(cpts[i]);
if (k_ucat_cpt.find(cpt_type) != k_ucat_cpt.end()) {
text_collapsed[i] = k_ucat_cpt.at(cpt_type);
if (flags.is_whitespace) {
//NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
//text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback
text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback
} else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) {
text_collapsed[i] = k_ucat_cpt.at(flags.category_flag());
} else {
text_collapsed[i] = (char) 0xD0; // fallback
}
@ -788,9 +789,16 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
} else {
// no unicode category used, we can use std::wregex directly
const std::wstring wtext = unicode_wstring_from_utf8(text);
const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
// std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
std::wstring wtext(cpts.begin(), cpts.end());
for (size_t i = 0; i < wtext.size(); ++i) {
if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) {
wtext[i] = 0x0B;
}
}
//printf("text: %s\n", text.c_str());
//printf("regex_expr: %s\n", regex_expr.c_str());
bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);

View File

@ -4,28 +4,64 @@
#include <string>
#include <vector>
#define CODEPOINT_TYPE_UNIDENTIFIED 0
#define CODEPOINT_TYPE_NUMBER 1
#define CODEPOINT_TYPE_LETTER 2
#define CODEPOINT_TYPE_SEPARATOR 3
#define CODEPOINT_TYPE_ACCENT_MARK 4
#define CODEPOINT_TYPE_PUNCTUATION 5
#define CODEPOINT_TYPE_SYMBOL 6
#define CODEPOINT_TYPE_CONTROL 7
// TODO: prefix all symbols with "llama_"
struct codepoint_flags {
enum {
UNDEFINED = 0x0001,
NUMBER = 0x0002, // regex: \p{N}
LETTER = 0x0004, // regex: \p{L}
SEPARATOR = 0x0008, // regex: \p{Z}
ACCENT_MARK = 0x0010, // regex: \p{M}
PUNCTUATION = 0x0020, // regex: \p{P}
SYMBOL = 0x0040, // regex: \p{S}
CONTROL = 0x0080, // regex: \p{C}
MASK_CATEGORIES = 0x00FF,
};
// codepoint type
uint16_t is_undefined : 1;
uint16_t is_number : 1; // regex: \p{N}
uint16_t is_letter : 1; // regex: \p{L}
uint16_t is_separator : 1; // regex: \p{Z}
uint16_t is_accent_mark : 1; // regex: \p{M}
uint16_t is_punctuation : 1; // regex: \p{P}
uint16_t is_symbol : 1; // regex: \p{S}
uint16_t is_control : 1; // regex: \p{C}
// helper flags
uint16_t is_whitespace : 1; // regex: \s
uint16_t is_lowercase : 1;
uint16_t is_uppercase : 1;
uint16_t is_nfd : 1;
// decode from uint16
inline codepoint_flags(const uint16_t flags=0) {
*reinterpret_cast<uint16_t*>(this) = flags;
}
inline uint16_t as_uint() const {
return *reinterpret_cast<const uint16_t*>(this);
}
inline uint16_t category_flag() const {
return this->as_uint() & MASK_CATEGORIES;
}
};
size_t unicode_len_utf8(char src);
std::string unicode_cpt_to_utf8(uint32_t cp);
uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset);
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8);
std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts);
int unicode_cpt_type(uint32_t cp);
int unicode_cpt_type(const std::string & utf8);
bool unicode_cpt_is_whitespace(uint32_t cp);
codepoint_flags unicode_cpt_flags(const uint32_t cp);
codepoint_flags unicode_cpt_flags(const std::string & utf8);
std::string unicode_byte_to_utf8(uint8_t byte);
uint8_t unicode_utf8_to_byte(const std::string & utf8);
char32_t unicode_tolower(char32_t cp);
uint32_t unicode_tolower(uint32_t cp);
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs);

View File

@ -72,7 +72,7 @@ struct gpt2_model {
};
// load the model's weights from a file
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
static bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
@ -380,7 +380,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
// - embd_w: the predicted logits for the next token
//
// TODO: sync latest version from ggml repo
bool gpt2_eval(
static bool gpt2_eval(
const gpt2_model & model,
const int n_threads,
const int n_past,

View File

@ -44,7 +44,7 @@ struct whisper_params {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -109,7 +109,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "\n");
}
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
static std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
prob = 0.0f;

View File

@ -21,7 +21,7 @@ help()
echo "Usage: ./twitch.sh -s [step] -m [model] -t [threads] [url]"
echo "options:"
echo "-s Step in seconds (default is $step)."
echo "-m Choose model, options are: 'tiny.en' 'tiny' 'base.en' 'base' 'small.en' 'small' 'medium.en' 'medium' 'large-v1' 'large-v2' 'large-v3' (default is '$model')."
echo "-m Choose model, options are: 'tiny.en' 'tiny' 'base.en' 'base' 'small.en' 'small' 'medium.en' 'medium' 'large-v1' 'large-v2' 'large-v3' 'large-v3-turbo' (default is '$model')."
echo "-t Number of threads to use."
echo "-h Print this help page."
echo

View File

@ -5,15 +5,15 @@ project(whisper.cpp)
set(CMAKE_CXX_STANDARD 11)
set(WHISPER_LIB_DIR ${CMAKE_SOURCE_DIR}/../../../../../../../)
set(
SOURCE_FILES
${WHISPER_LIB_DIR}/ggml.c
${WHISPER_LIB_DIR}/ggml-alloc.c
${WHISPER_LIB_DIR}/ggml-backend.c
${WHISPER_LIB_DIR}/ggml-quants.c
${WHISPER_LIB_DIR}/whisper.cpp
${CMAKE_SOURCE_DIR}/jni.c
)
set(SOURCE_FILES
${WHISPER_LIB_DIR}/ggml/src/ggml.c
${WHISPER_LIB_DIR}/ggml/src/ggml-aarch64.c
${WHISPER_LIB_DIR}/ggml/src/ggml-alloc.c
${WHISPER_LIB_DIR}/ggml/src/ggml-backend.cpp
${WHISPER_LIB_DIR}/ggml/src/ggml-quants.c
${WHISPER_LIB_DIR}/src/whisper.cpp
${CMAKE_SOURCE_DIR}/jni.c
)
find_library(LOG_LIB log)
@ -41,7 +41,6 @@ function(build_library target_name)
#target_link_options(${target_name} PRIVATE -Wl,--gc-sections)
#target_link_options(${target_name} PRIVATE -Wl,--exclude-libs,ALL)
#target_link_options(${target_name} PRIVATE -flto)
endif ()
endfunction()
@ -54,3 +53,7 @@ elseif (${ANDROID_ABI} STREQUAL "armeabi-v7a")
endif ()
include_directories(${WHISPER_LIB_DIR})
include_directories(${WHISPER_LIB_DIR}/src)
include_directories(${WHISPER_LIB_DIR}/include)
include_directories(${WHISPER_LIB_DIR}/ggml/include)
include_directories(${WHISPER_LIB_DIR}/ggml/src)

View File

@ -12,47 +12,3 @@ To use:
(PS: Do not move this android project folder individually to other folders, because this android project folder depends on the files of the whole project.)
<img width="300" alt="image" src="https://user-images.githubusercontent.com/1670775/221613663-a17bf770-27ef-45ab-9a46-a5f99ba65d2a.jpg">
## CLBlast
> [!NOTE]
> - OpenCL does not have the same level of support as CUDA or Metal.
> - Turning on CLBlast may degrade OpenCL performance if your device isn't already tuned. See [tuning.md](https://github.com/CNugteren/CLBlast/blob/162783a414969464ce3aa5adf5c2554afa5ee93e/doc/tuning.md#already-tuned-for-devices) for a list of devices that are already tuned and what to do if yours is missing.
Build CLBlast.
```
# In path/to/CLBlast (we assume OpenCL-Headers relative location)
$ANDROID_SDK_PATH/cmake/3.22.1/bin/cmake .. \
-DCMAKE_SYSTEM_NAME=Android \
-DCMAKE_SYSTEM_VERSION=33 \
-DCMAKE_ANDROID_ARCH_ABI=arm64-v8a \
-DCMAKE_ANDROID_NDK=$ANDROID_NDK_PATH \
-DCMAKE_ANDROID_STL_TYPE=c++_static \
-DOPENCL_ROOT=$(readlink -f ../../OpenCL-Headers) \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=BOTH \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# Build libclblast.so
make -j4
```
Pull `libGLES_mali.so` to `libOpenCL.so`.
```bash
# In path/to/whisper.android
mkdir lib/src/main/jniLibs/arm64-v8a
adb pull /system/vendor/lib64/egl/libGLES_mali.so lib/src/main/jniLibs/arm64-v8a/libOpenCL.so
```
In gradle.properties, set `GGML_HOME` to the location of GGML, as well as
required options for turning on CLBlast.
```
GGML_HOME=/path/to/ggml
GGML_CLBLAST=ON
CLBLAST_HOME=/path/to/CLBlast
OPENCL_LIB=/path/to/libOpenCL.so
OPENCL_ROOT=/path/to/OpenCL-Headers
```

View File

@ -10,7 +10,7 @@ option(GGML_HOME "whisper: Path to external GGML source" OFF)
set(
SOURCE_FILES
${WHISPER_LIB_DIR}/whisper.cpp
${WHISPER_LIB_DIR}/src/whisper.cpp
${CMAKE_SOURCE_DIR}/jni.c
)
@ -18,10 +18,11 @@ if (NOT GGML_HOME)
set(
SOURCE_FILES
${SOURCE_FILES}
${WHISPER_LIB_DIR}/ggml.c
${WHISPER_LIB_DIR}/ggml-alloc.c
${WHISPER_LIB_DIR}/ggml-backend.c
${WHISPER_LIB_DIR}/ggml-quants.c
${WHISPER_LIB_DIR}/ggml/src/ggml.c
${WHISPER_LIB_DIR}/ggml/src/ggml-aarch64.c
${WHISPER_LIB_DIR}/ggml/src/ggml-alloc.c
${WHISPER_LIB_DIR}/ggml/src/ggml-backend.cpp
${WHISPER_LIB_DIR}/ggml/src/ggml-quants.c
)
endif()
@ -75,3 +76,7 @@ endif ()
build_library("whisper") # Default target
include_directories(${WHISPER_LIB_DIR})
include_directories(${WHISPER_LIB_DIR}/src)
include_directories(${WHISPER_LIB_DIR}/include)
include_directories(${WHISPER_LIB_DIR}/ggml/include)
include_directories(${WHISPER_LIB_DIR}/ggml/src)

View File

@ -7,9 +7,9 @@
objects = {
/* Begin PBXBuildFile section */
18133C802C64E342005CEAAC /* ggml-aarch64.c in Sources */ = {isa = PBXBuildFile; fileRef = 18133C7F2C64E342005CEAAC /* ggml-aarch64.c */; };
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 184447182AB211A2007D6BFE /* ggml-alloc.c */; };
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 1844471B2AB21655007D6BFE /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-framework Foundation -framework Metal -framework MetalKit -fno-objc-arc"; }; };
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7A29052BDF00BD2A04 /* AppDelegate.m */; };
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7D29052BDF00BD2A04 /* SceneDelegate.m */; };
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8029052BDF00BD2A04 /* ViewController.m */; };
@ -20,7 +20,9 @@
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK -DGGML_USE_METAL"; }; };
18627C9629052C5800BD2A04 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9529052C5800BD2A04 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -DGGML_USE_METAL"; }; };
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */ = {isa = PBXBuildFile; fileRef = 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */; };
18ABE15A2AF556340044A204 /* ggml-backend.c in Sources */ = {isa = PBXBuildFile; fileRef = 18ABE1572AF556340044A204 /* ggml-backend.c */; };
18A276062C2A98A5001C8D37 /* ggml-metal.metal in Copy Files */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
18A2760B2C2A9B43001C8D37 /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
18ABE15A2AF556340044A204 /* ggml-backend.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18ABE1572AF556340044A204 /* ggml-backend.cpp */; };
18ABE15B2AF556340044A204 /* ggml-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 18ABE1592AF556340044A204 /* ggml-quants.c */; };
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */; };
7FE3424C2A0C3FA20015A058 /* whisper-encoder.mm in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342472A0C3FA20015A058 /* whisper-encoder.mm */; };
@ -29,23 +31,26 @@
/* End PBXBuildFile section */
/* Begin PBXCopyFilesBuildPhase section */
184447202AB21B25007D6BFE /* CopyFiles */ = {
184447202AB21B25007D6BFE /* Copy Files */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 2147483647;
dstPath = "";
dstSubfolderSpec = 7;
files = (
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */,
18A276062C2A98A5001C8D37 /* ggml-metal.metal in Copy Files */,
);
name = "Copy Files";
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
184447182AB211A2007D6BFE /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../../ggml-alloc.c"; sourceTree = "<group>"; };
184447192AB211A2007D6BFE /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../../ggml-alloc.h"; sourceTree = "<group>"; };
1844471B2AB21655007D6BFE /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../../ggml-metal.m"; sourceTree = "<group>"; };
1844471D2AB2195F007D6BFE /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../../ggml-metal.metal"; sourceTree = "<group>"; };
18133C7E2C64E342005CEAAC /* ggml-aarch64.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-aarch64.h"; path = "../../../ggml/src/ggml-aarch64.h"; sourceTree = "<group>"; };
18133C7F2C64E342005CEAAC /* ggml-aarch64.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-aarch64.c"; path = "../../../ggml/src/ggml-aarch64.c"; sourceTree = "<group>"; };
184447182AB211A2007D6BFE /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../../ggml/src/ggml-alloc.c"; sourceTree = "<group>"; };
184447192AB211A2007D6BFE /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../../ggml/include/ggml-alloc.h"; sourceTree = "<group>"; };
1844471B2AB21655007D6BFE /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../../ggml/src/ggml-metal.m"; sourceTree = "<group>"; };
1844471D2AB2195F007D6BFE /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../../ggml/src/ggml-metal.metal"; sourceTree = "<group>"; };
18627C7629052BDF00BD2A04 /* whisper.objc.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = whisper.objc.app; sourceTree = BUILT_PRODUCTS_DIR; };
18627C7929052BDF00BD2A04 /* AppDelegate.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = AppDelegate.h; sourceTree = "<group>"; };
18627C7A29052BDF00BD2A04 /* AppDelegate.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = AppDelegate.m; sourceTree = "<group>"; };
@ -58,17 +63,19 @@
18627C8829052BE000BD2A04 /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.storyboard; name = Base; path = Base.lproj/LaunchScreen.storyboard; sourceTree = "<group>"; };
18627C8A29052BE000BD2A04 /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
18627C8B29052BE000BD2A04 /* main.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = main.m; sourceTree = "<group>"; };
18627C9229052C2B00BD2A04 /* whisper.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = whisper.h; path = ../../../whisper.h; sourceTree = "<group>"; };
18627C9329052C4900BD2A04 /* whisper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = whisper.cpp; path = ../../../whisper.cpp; sourceTree = "<group>"; };
18627C9529052C5800BD2A04 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../../ggml.c; sourceTree = "<group>"; };
18627C9729052C6600BD2A04 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../../ggml.h; sourceTree = "<group>"; };
18627C9229052C2B00BD2A04 /* whisper.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = whisper.h; path = ../../../include/whisper.h; sourceTree = "<group>"; };
18627C9329052C4900BD2A04 /* whisper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = whisper.cpp; path = ../../../src/whisper.cpp; sourceTree = "<group>"; };
18627C9529052C5800BD2A04 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../../ggml/src/ggml.c; sourceTree = "<group>"; };
18627C9729052C6600BD2A04 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../../ggml/include/ggml.h; sourceTree = "<group>"; };
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */ = {isa = PBXFileReference; lastKnownFileType = archive.macbinary; name = "ggml-base.en.bin"; path = "../../../models/ggml-base.en.bin"; sourceTree = "<group>"; };
18ABE1542AF556340044A204 /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../../ggml-quants.h"; sourceTree = "<group>"; };
18ABE1552AF556340044A204 /* ggml-backend.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../../ggml-backend.h"; sourceTree = "<group>"; };
18ABE1562AF556340044A204 /* ggml-backend-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-backend-impl.h"; path = "../../../ggml-backend-impl.h"; sourceTree = "<group>"; };
18ABE1572AF556340044A204 /* ggml-backend.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-backend.c"; path = "../../../ggml-backend.c"; sourceTree = "<group>"; };
18ABE1582AF556340044A204 /* ggml-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-impl.h"; path = "../../../ggml-impl.h"; sourceTree = "<group>"; };
18ABE1592AF556340044A204 /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../../ggml-quants.c"; sourceTree = "<group>"; };
18A275FE2C2A94DE001C8D37 /* ggml-metal.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-metal.h"; path = "../../../ggml/include/ggml-metal.h"; sourceTree = "<group>"; };
18A275FF2C2A9563001C8D37 /* ggml-common.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-common.h"; path = "../../../ggml/src/ggml-common.h"; sourceTree = "<group>"; };
18ABE1542AF556340044A204 /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../../ggml/src/ggml-quants.h"; sourceTree = "<group>"; };
18ABE1552AF556340044A204 /* ggml-backend.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../../ggml/include/ggml-backend.h"; sourceTree = "<group>"; };
18ABE1562AF556340044A204 /* ggml-backend-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-backend-impl.h"; path = "../../../ggml/src/ggml-backend-impl.h"; sourceTree = "<group>"; };
18ABE1572AF556340044A204 /* ggml-backend.cpp */ = {isa = PBXFileReference; explicitFileType = sourcecode.cpp.cpp; fileEncoding = 4; name = "ggml-backend.cpp"; path = "../../../ggml/src/ggml-backend.cpp"; sourceTree = "<group>"; };
18ABE1582AF556340044A204 /* ggml-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-impl.h"; path = "../../../ggml/src/ggml-impl.h"; sourceTree = "<group>"; };
18ABE1592AF556340044A204 /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../../ggml/src/ggml-quants.c"; sourceTree = "<group>"; };
7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = "whisper-encoder-impl.m"; sourceTree = "<group>"; };
7FE342462A0C3FA20015A058 /* whisper-encoder.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "whisper-encoder.h"; sourceTree = "<group>"; };
7FE342472A0C3FA20015A058 /* whisper-encoder.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; path = "whisper-encoder.mm"; sourceTree = "<group>"; };
@ -108,8 +115,12 @@
18627C7829052BDF00BD2A04 /* whisper.objc */ = {
isa = PBXGroup;
children = (
18133C7F2C64E342005CEAAC /* ggml-aarch64.c */,
18133C7E2C64E342005CEAAC /* ggml-aarch64.h */,
18A275FF2C2A9563001C8D37 /* ggml-common.h */,
18A275FE2C2A94DE001C8D37 /* ggml-metal.h */,
18ABE1562AF556340044A204 /* ggml-backend-impl.h */,
18ABE1572AF556340044A204 /* ggml-backend.c */,
18ABE1572AF556340044A204 /* ggml-backend.cpp */,
18ABE1552AF556340044A204 /* ggml-backend.h */,
18ABE1582AF556340044A204 /* ggml-impl.h */,
18ABE1592AF556340044A204 /* ggml-quants.c */,
@ -151,7 +162,7 @@
7FE3424A2A0C3FA20015A058 /* whisper-decoder-impl.m */,
);
name = coreml;
path = ../../../coreml;
path = ../../../src/coreml;
sourceTree = "<group>";
};
/* End PBXGroup section */
@ -164,7 +175,7 @@
18627C7229052BDF00BD2A04 /* Sources */,
18627C7329052BDF00BD2A04 /* Frameworks */,
18627C7429052BDF00BD2A04 /* Resources */,
184447202AB21B25007D6BFE /* CopyFiles */,
184447202AB21B25007D6BFE /* Copy Files */,
);
buildRules = (
);
@ -182,7 +193,7 @@
isa = PBXProject;
attributes = {
BuildIndependentTargetsInParallel = 1;
LastUpgradeCheck = 1400;
LastUpgradeCheck = 1540;
TargetAttributes = {
18627C7529052BDF00BD2A04 = {
CreatedOnToolsVersion = 14.0.1;
@ -212,6 +223,7 @@
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
18A2760B2C2A9B43001C8D37 /* ggml-metal.metal in Resources */,
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */,
7FE3424F2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc in Resources */,
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */,
@ -229,13 +241,14 @@
files = (
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */,
18ABE15B2AF556340044A204 /* ggml-quants.c in Sources */,
18133C802C64E342005CEAAC /* ggml-aarch64.c in Sources */,
7FE3424C2A0C3FA20015A058 /* whisper-encoder.mm in Sources */,
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */,
18627C9629052C5800BD2A04 /* ggml.c in Sources */,
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */,
7FE3424D2A0C3FA20015A058 /* whisper-decoder-impl.m in Sources */,
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */,
18ABE15A2AF556340044A204 /* ggml-backend.c in Sources */,
18ABE15A2AF556340044A204 /* ggml-backend.cpp in Sources */,
18627C8C29052BE000BD2A04 /* main.m in Sources */,
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */,
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */,
@ -301,6 +314,7 @@
DEBUG_INFORMATION_FORMAT = dwarf;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu11;
GCC_DYNAMIC_NO_PIC = NO;
GCC_NO_COMMON_BLOCKS = YES;
@ -359,6 +373,7 @@
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu11;
GCC_NO_COMMON_BLOCKS = YES;
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
@ -400,6 +415,7 @@
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
MTL_HEADER_SEARCH_PATHS = "";
PRODUCT_BUNDLE_IDENTIFIER = "com.ggerganov.whisper-objc";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
@ -428,6 +444,7 @@
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
MTL_HEADER_SEARCH_PATHS = "";
PRODUCT_BUNDLE_IDENTIFIER = "com.ggerganov.whisper-objc";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;

View File

@ -15,7 +15,7 @@ class WhisperState: NSObject, ObservableObject, AVAudioRecorderDelegate {
private var audioPlayer: AVAudioPlayer?
private var modelUrl: URL? {
Bundle.main.url(forResource: "ggml-tiny.en", withExtension: "bin", subdirectory: "models")
Bundle.main.url(forResource: "ggml-base.en", withExtension: "bin", subdirectory: "models")
}
private var sampleUrl: URL? {

View File

@ -1,141 +0,0 @@
#pragma once
// ggml-backend internal header
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
// buffer type
typedef void * ggml_backend_buffer_type_context_t;
struct ggml_backend_buffer_type_i {
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
// check if tensor data is in host memory
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
};
struct ggml_backend_buffer_type {
struct ggml_backend_buffer_type_i iface;
ggml_backend_buffer_type_context_t context;
};
// buffer
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_buffer_type_t buft;
ggml_backend_buffer_context_t context;
size_t size;
enum ggml_backend_buffer_usage usage;
};
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
ggml_backend_buffer_type_t buft,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
// do not use directly, use ggml_backend_tensor_copy instead
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
// buffer that contains a collection of buffers
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
//
// Backend
//
typedef void * ggml_backend_context_t;
struct ggml_backend_i {
const char * (*GGML_CALL get_name)(ggml_backend_t backend);
void (*GGML_CALL free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
// (optional) asynchronous tensor data access
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) complete all pending operations
void (*GGML_CALL synchronize)(ggml_backend_t backend);
// compute graph with a plan (not used currently)
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph with a plan
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan (async)
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
// these should be expensive operations with large batch sizes that may benefit from running on this backend
// even if the weight has to be copied from the CPU temporarily
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
void (*GGML_CALL event_free) (ggml_backend_event_t event);
void (*GGML_CALL event_record) (ggml_backend_event_t event);
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
};
struct ggml_backend {
ggml_guid_t guid;
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
struct ggml_backend_event {
ggml_backend_t backend;
void * context;
};
//
// Backend registry
//
typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
#ifdef __cplusplus
}
#endif

Some files were not shown because too many files have changed in this diff Show More