mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-04-24 04:56:03 +00:00
yolo : add backend support (ggml/924)
* yolo : add backend support * metal : add sub and sqrt kernels --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
52c80cac00
commit
b6c05ce82f
@ -2181,6 +2181,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_ADD:
|
||||
ggml_cuda_op_add(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SUB:
|
||||
ggml_cuda_op_sub(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ACC:
|
||||
ggml_cuda_op_acc(ctx, dst);
|
||||
break;
|
||||
@ -2859,6 +2862,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_RMS_NORM:
|
||||
|
@ -9,6 +9,10 @@ static __device__ __forceinline__ float op_add(const float a, const float b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_sub(const float a, const float b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_mul(const float a, const float b) {
|
||||
return a * b;
|
||||
}
|
||||
@ -271,6 +275,10 @@ void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_sub>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
@ -2,5 +2,6 @@
|
||||
|
||||
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
@ -31,6 +31,8 @@ struct ggml_metal_kernel {
|
||||
enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_ADD,
|
||||
GGML_METAL_KERNEL_TYPE_ADD_ROW,
|
||||
GGML_METAL_KERNEL_TYPE_SUB,
|
||||
GGML_METAL_KERNEL_TYPE_SUB_ROW,
|
||||
GGML_METAL_KERNEL_TYPE_MUL,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_ROW,
|
||||
GGML_METAL_KERNEL_TYPE_DIV,
|
||||
@ -205,6 +207,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,
|
||||
GGML_METAL_KERNEL_TYPE_CONCAT,
|
||||
GGML_METAL_KERNEL_TYPE_SQR,
|
||||
GGML_METAL_KERNEL_TYPE_SQRT,
|
||||
GGML_METAL_KERNEL_TYPE_SIN,
|
||||
GGML_METAL_KERNEL_TYPE_COS,
|
||||
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
|
||||
@ -493,6 +496,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
|
||||
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB, sub, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB_ROW, sub_row, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
|
||||
@ -667,6 +672,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
|
||||
@ -769,6 +775,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
@ -777,6 +784,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
|
||||
case GGML_OP_CLAMP:
|
||||
return true;
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_SIN:
|
||||
case GGML_OP_COS:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
@ -1057,6 +1065,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
{
|
||||
@ -1080,6 +1089,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
nb = ne00 / 4;
|
||||
switch (dst->op) {
|
||||
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break;
|
||||
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB_ROW].pipeline; break;
|
||||
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break;
|
||||
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break;
|
||||
default: GGML_ABORT("fatal error");
|
||||
@ -1089,6 +1099,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
} else {
|
||||
switch (dst->op) {
|
||||
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break;
|
||||
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB].pipeline; break;
|
||||
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
|
||||
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
|
||||
default: GGML_ABORT("fatal error");
|
||||
@ -1416,6 +1427,20 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_SQRT:
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQRT].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_SIN:
|
||||
|
@ -17,7 +17,7 @@ enum ggml_sort_order {
|
||||
GGML_SORT_ORDER_DESC,
|
||||
};
|
||||
|
||||
// general-purpose kernel for addition, multiplication and division of two tensors
|
||||
// general-purpose kernel for addition, subtraction, multiplication and division of two tensors
|
||||
// pros: works for non-contiguous tensors, supports broadcast across all dims
|
||||
// cons: not very efficient
|
||||
kernel void kernel_add(
|
||||
@ -70,6 +70,56 @@ kernel void kernel_add(
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_sub(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne13,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant uint64_t & nb13,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
constant int64_t & offs,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i03 = tgpig.z;
|
||||
const int64_t i02 = tgpig.y;
|
||||
const int64_t i01 = tgpig.x;
|
||||
|
||||
const int64_t i13 = i03 % ne13;
|
||||
const int64_t i12 = i02 % ne12;
|
||||
const int64_t i11 = i01 % ne11;
|
||||
|
||||
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
|
||||
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
||||
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
|
||||
|
||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
const int i10 = i0 % ne10;
|
||||
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) - *((device float *)(src1_ptr + i10*nb10));
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_mul(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
@ -226,6 +276,15 @@ kernel void kernel_add_row(
|
||||
dst[tpig] = src0[tpig] + src1[tpig % nb];
|
||||
}
|
||||
|
||||
kernel void kernel_sub_row(
|
||||
device const float4 * src0,
|
||||
device const float4 * src1,
|
||||
device float4 * dst,
|
||||
constant uint64_t & nb [[buffer(28)]],
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = src0[tpig] - src1[tpig % nb];
|
||||
}
|
||||
|
||||
kernel void kernel_mul_row(
|
||||
device const float4 * src0,
|
||||
device const float4 * src1,
|
||||
@ -358,6 +417,13 @@ kernel void kernel_sqr(
|
||||
dst[tpig] = src0[tpig] * src0[tpig];
|
||||
}
|
||||
|
||||
kernel void kernel_sqrt(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = sqrt(src0[tpig]);
|
||||
}
|
||||
|
||||
kernel void kernel_sin(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
|
Loading…
x
Reference in New Issue
Block a user