This device is very similar, if not identical, to the TP-Link AX23 v1
but is targeted at service providers and features a completely different
flash layout.
Hardware
--------
CPU: MediaTek MT7621 DAT
RAM: 128MB DDR3 (integrated)
FLASH: 16MB SPI-NOR
WiFi: MediaTek MT7905 + MT7975 (2.4 / 5 DBDC) 802.11ax
SERIAL: 115200 8N1
LEDs - (3V3 - GND - RX - TX) - ETH ports
Installation
------------
Flashing is only possible via a serial connection using the sysupgrade
image; the factory image must be signed. You can flash the sysupgrade
image directly through the U-Boot console, or preferably, by booting the
initramfs image and flashing with the sysupgrade command. Follow these
steps for sysupgrade flashing:
1. Establish a UART serial connection.
2. Set up a TFTP server at 192.168.0.2 and copy the initramfs image
there.
3. Power on the device and press any key to interrupt normal boot.
4. Load the initramfs image using tftpboot.
5. Boot with bootm.
6. If you haven't done so already, back up all stock mtd partitions.
7. Copy the sysupgrade image to the router.
8. Flash OpenWrt through either LuCI or the sysupgrade command. Remember
not to attempt saving settings.
Revert to stock firmware
------------------------
Flash stock firmware via OEM web-recovery mode. If you don't have access
to the stock firmware image, you will need to restore the firmware
partition backed up earlier.
Web-Recovery
------------
The router supports an HTTP recovery mode:
1. Turn off the router.
2. Press the reset button and power on the device.
3. When all LEDs start flashing, release reset and quickly press it
again.
The interface is reachable at 192.168.0.1 and supports installation of
the OEM factory image. Note that flashing OpenWrt this way is not
possible, as mentioned above.
Signed-off-by: Darlan Pedro de Campos <darlanpedro@gmail.com>
(cherry picked from commit 2a0c9cc8cd)
The COVR-X1860 are MT7621-based AX1800 devices (similar to DAP-X1860, but
with two Ethernet ports and external power supply) that are sold in sets
of two (COVR-X1862) and three (COVR-X1863).
Specification:
- MT7621
- MT7915 + MT7975 2x2 802.11ax (DBDC)
- 256MB RAM
- 128 MB flash
- 3 LEDs (red, orange, white), routed to one indicator in the top of the device
- 2 buttons (WPS in the back and Reset at the bottom of the device)
MAC addresses:
- LAN MAC (printed on the device) is stored in config2 partition as ASCII (entry factory_mac=xx:xx:xx:xx:xx:xx)
- WAN MAC: LAN MAC + 3
- 2.4G MAC: LAN MAC + 1
- 5G MAC: LAN MAC + 2
The pins for the serial console are already labeled on the board (VCC, TX, RX, GND). Serial settings: 3.3V, 115200,8n1
Flashing via OEM Web Interface:
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-factory.bin via the OEM web interface firmware update
- The configuration wizard can be skipped by directly going to http://192.168.0.1/UpdateFirmware_Simple.html
Flashing via Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-recovery.bin
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.25
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/openwrt/firmware-utils/blob/master/src/dlink-sge-image.c and https://raw.githubusercontent.com/openwrt/firmware-utils/master/src/dlink-sge-image.h
- Compile a binary from the downloaded file, e.g. gcc dlink-sge-image.c -lcrypto -o dlink-sge-image
- Run ./dlink-sge-image COVR-X1860 <OriginalFirmware> <OutputFile> -d
- Example for firmware 102b01: ./dlink-sge-image COVR-X1860 COVR-X1860_RevA_Firmware_102b01.bin COVR-X1860_RevA_Firmware_102b01_Decrypted.bin -d
The pull request is based on the discussion in https://forum.openwrt.org/t/add-support-for-d-link-covr-x1860
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
(cherry picked from commit 0a18259e4a)
Signed-off-by: Florian Maurer <f.maurer@outlook.de>
Rostelecom RT-FE-1A is a wireless WiFi 5 router manufactured by Sercomm
company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: No
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Power (green, unmanaged)
- 1x Status (green, gpio)
- 1x 2.4G (green, hardware, mt76-phy0)
- 1x 2.4G (blue, gpio)
- 1x 5G (green, hardware, mt76-phy1)
- 1x 5G (blue, gpio)
- 5x Ethernet (green, hardware, 4x LAN & WAN)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface (default http://192.168.0.1/)
under "admin" account
2. Navigate to Settings -> Configuration -> Save to Computer
3. Decode the configuration. For example, using cfgtool.py tool (see
related section):
cfgtool.py -u configurationBackup.cfg
4. Open configurationBackup.xml and find the following block:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="<some value>" writable="1" encryption="1" password="1" />
</OBJECT>
5. Replace <some value> by a new superadmin password and add a line
which enabling superadmin login after. For example, the block after
the changes:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="s0meP@ss" writable="1" encryption="1" password="1" />
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
</OBJECT>
6. Encode the configuration. For example, using cfgtool.py tool:
cfgtool.py -p configurationBackup.xml
7. Upload the changed configuration (configurationBackup_changed.cfg) to
the router
8. Login to the router web interface (superadmin:xxxxxxxxxx, where
xxxxxxxxxx is a new password from the p.5)
9. Enable SSH access to the router (Settings -> Access control -> SSH)
10. Connect to the router using SSH shell using superadmin account
11. Run in SSH shell:
sh
12. Make a mtd backup (optional, see related section)
13. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
14. Login to the router web interface under admin account
15. Remove dots from the OpenWrt factory image filename
16. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 192.168.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 192.168.0.2
MAC Addresses
-------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | f4:*:66 |
| WAN | label + 11 | f4:*:71 |
| 2g | label + 2 | f4:*:68 |
| 5g | label + 3 | f4:*:69 |
+-----+------------+---------+
The label MAC address was found in Factory, 0x21000
cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit f3cdc9f988)
Hardware:
- SoC: Mediatek MT7621 (MT7621AT)
- Flash: 32 MiB SPI-NOR (Macronix MX25L25635E)
- RAM: 128 MiB
- Ethernet: Built-in, 2 x 1GbE
- 3G/4G Modem: MEIG SLM828 (currently only supported with ModemManager)
- SLIC: Si32185 (unsupported)
- Power: 12V via barrel connector
- Wifi 2.4GHz: Mediatek MT7603BE 802.11b/g/b
- Wifi 5GHz: Mediatek MT7613BE 802.11ac/n/a
- LEDs: 8x (7 controllable)
- Buttons: 2x (RESET, WPS)
Installing OpenWrt:
- sysupgrade image is compatible with vendor firmware.
Recovery:
- Connect to any of the Ethernet ports, configure local IP:
10.10.10.3/24 (or 192.168.10.19/24, depending on OEM)
- Provide firmware file named 'mt7621.img' on TFTP server.
- Hold down both, RESET and WPS, then power on the board.
- Watch network traffic using tcpdump or wireshark in realtime to
observe progress of device requesting firmware. Once download has
completed, release both buttons and wait until firmware comes up.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit bc335f2967)
Add support for COMFAST CF-EW72 V2
Hardware:
- SoC: Mediatek MT7621 (MT7621DAT or MT7621AT)
- Flash: 16 MiB NOR
- RAM: 128 MiB
- Ethernet: Built-in, 2 x 1GbE
- Power: only 802.3af PD on any port, injector supplied in the box
- PoE passthrough: No
- Wifi 2.4GHz: Mediatek MT7603BE 802.11b/g/b
- Wifi 5GHz: Mediatek MT7613BEN 802.11ac/n/a
- LEDs: 8x (only 1 is both visible and controllable, see below)
- Buttons: 1x (RESET)
Installing OpenWrt:
Flashing is done using Mediatek U-Boot System Recovery Mode
- make wired connection with 2 cables like this:
- - PC (LAN) <-> PoE Injector (LAN)
- - PoE Injector (POE) <-> CF-EW72 V2 (LAN). Leave unconnected to CF-EW72 V2 yet.
- configure 192.168.1.(2-254)/24 static ip address on your PC LAN
- press and keep pressed RESET button on device
- power the device by plugging PoE Injector (POE) <-> CF-EW72 V2 (LAN) cable
- wait for about 10 seconds until wifi led stops blinking and release RESET button
- navigate from your PC to http://192.168.1.1 and upload OpenWrt *-factory.bin firmware file
- proceed until router starts blinking with wifi led again (flashing) and stops (rebooting to OpenWrt)
MAC addresses as verified by OEM firmware:
vendor OpenWrt address
LAN lan\eth0 label
WAN wan label + 1
2g phy0 label + 2
5g phy1 label + 3
The label MAC address was found in 0xe000.
LEDs detailed:
The only both visible and controllable indicator is blue:wlan LED.
It is not bound by default to indicate activity of any wireless interfaces.
Place (WAN->ANT) | Num | GPIO | LED name (LuCI) | Note
-----------------|-----|-----------------------------------------------------------------------------------------
power | 1 | | | POWER LED. Not controlled with GPIO.
hidden_led_2 | 2 | 13 | blue:hidden_led_2 | This LED does not have proper hole in shell.
wan | 3 | | | WAN LED. Not controlled with GPIO.
hidden_led_4 | 4 | 16 | blue:hidden_led_4 | This LED does not have proper hole in shell.
lan | 5 | | | LAN LED. Not controlled with GPIO.
noconn_led_6 | 6 | | | Not controlled with GPIO, possibly not connected
wlan | 7 | 15 | blue:wlan | WLAN LED. Wireless indicator.
noconn_led_8 | 8 | | | Not controlled with GPIO, possibly not connected
mt76-phy0 and mt76-phy1 leds also exist in OpenWrt, but do not exist on board.
Signed-off-by: Alexey D. Filimonov <alexey@filimonic.net>
(cherry picked from commit ff95f859eb)
Add support for ComFast CF-E390AX. It is a 802.11 wifi6 cieling AP, based on MediaTek MT7261AT.
Specifications:
SoC: MediaTek MT7621AT
RAM: 128 MiB
Flash: 16 MiB NOR (Macronix mx25l12805d)
Wireless: MT7915E (2.4G) 802.11ax/b/g/n MT7915E (5G) 802.11ac/ax/n
Ethernet: 2 x 1Gbs
Button: 1 x "Reset" button
LED: 1x Blue LED + 1x Red LED + 1x green LED
Power: PoE
Manufacturer Page:
http://en.comfast.com.cn/index.php?m=content&c=index&a=show&catid=84&id=75
Flash Layout:
0x000000000000-0x000000030000 : "bootloader"
0x000000030000-0x000000040000 : "config"
0x000000050000-0x000000060000 : "factory"
0x000000090000-0x000001000000 : "firmware"
First install:
1. Set device into http firmware fail safe upload mode by pressing the reset button for 10 seconds while powering
it on. Once the LED stops flashing, safe mode will be running.
2. Set PC IP address to 192.168.1.2
3. Browse to 192.168.1.1 and upload the factory image using the web interface.
Signed-off-by: Usama Nassir <usama.nassir@gmail.com>
(cherry picked from commit f24c9b9d86)
Set correct GPIO (10) for the WPS button. This matches GPIO settings in
vendor GPL sources. Note that GPL sources also mention a USB indicator
LED (GPIO 13) but the device has neither an external USB port nor a USB LED.
In addition, prefixes (button-, led-) are added to relevant DT entries,
as well as color and function specifications for LEDs.
Closes: #13736
Reported-by: Waldemar Czabaj <kaball@wp.pl>
Signed-off-by: Rani Hod <rani.hod@gmail.com>
(added led mitigations for wifi leds)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
(cherry picked from commit fe5e498777)
A typo snuck in with the addition of Cudy M1800, changing
"nr7101" to "nt7101". The result is a default network config
for NR7101 without the only ethernet interface on the NR7101,
thereby soft bricking it.
Fixes: f6d394e9f2 ("ramips: add support for Cudy M1800")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
(cherry picked from commit 2e57028424)
A bug report in the forum found that the MR70X lists four LAN ports in LuCI
while it has only three. This adds the device to the network setup file
to fix the issue.
Identified-by: Forum User "Lexeyko"
Signed-off-by: Andreas Böhler <dev@aboehler.at>
ALFA Network AX1800RM (FCC ID: 2AB877621) is a dual-band Wi-Fi 6
(AX1800) router, based on MediaTek MT7621A + MT79x5D platform.
Specifications:
- SOC: MT7621A (880 MHz)
- DRAM: DDR3 256 MiB (Nanya NT5CC128M16JR-EK)
- Flash: 16 MiB SPI NOR (EN25QH128A-104HIP)
- Ethernet: 4x 10/100/1000 Mbps (SOC's built-in switch)
- Wi-Fi: 2x2:2 2.4/5 GHz (MT7905DAN + MT7975DN)
(MT7905DAN doesn't support background DFS scan/BT)
- LED: 6x green, 1x green/red
- Buttons: 2x (reset, WPS)
- Antenna: 4x external, non-detachable omnidirectional
- UART: 1x 4-pin (2.54 mm pitch, J4, not populated)
- Power: 12 V DC/1 A (DC jack)
MAC addresses:
LAN: 00:c0:ca:xx:xx:4e (factory 0x4, +2)
WAN: 00:c0:ca:xx:xx:4f (factory 0x4, +3)
2.4 GHz: 00:c0:ca:xx:xx:4c (factory 0x4, device's label)
5 GHz: 00:c0:ca:xx:xx:4c (factory 0xa)
Flash instructions for web-based U-Boot recovery:
1. Power the device with WPS button pressed and wait around 10 seconds.
2. Setup static IP 192.168.1.2/24 on your PC.
3. Go to 192.168.1.1 in browser and upload 'recovery' image.
The device runs LEDE 17.01 (kernel 4.4.x) based firmware with 'failsafe'
mode available which allows alternative upgrade method:
1. Run device in 'failsafe' mode and change password for default user.
2. SSH to the device, transfer 'sysupgrade' image and perform upgrade
in forced mode, without preserving settings: 'sysupgrade -n -F ...'.
Other notes:
If you own early version of this device, the vendor firmware might
refuse OpenWrt image because of missing custom header. In that case,
ask vendor's customer support for stock firmware without custom header
support/requirement.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(backported from commit f1aaa267f0)
The TP-Link EAP613 v1 is a ceiling-mount 802.11ax access point. It can
be powered via PoE or a DC barrel connector (12V). Connecting to the
UART requires fine soldering and careful manipulation of any soldered
wires.
Device details:
* SoC: MT7621AT
* Flash: 16 MiB SPI NOR
* RAM: 256 MiB DDR3L
* Wi-Fi:
* MT7905DA + MT7975D: 2.4 GHz + 5 GHz (DBDC), 2x2:2
* Two stamped metal antennas (ANT1, ANT2)
* One PCB antenna (ANT3)
* One unpopulated antenna (ANT4)
* Ethernet:
* 1× 10/100/1000 Mbps port with PoE
* LEDs:
* Array of four blue LEDs with one control line
* Buttons:
* Reset
* Board test points:
* UART: next to CPU RF-shield and power circuits
* JTAG: under CPU RF-shield (untested)
* Watchdog: 3PEAK TPV706 (not implemented)
Althought three antennas are populated, the MT7905DA does not support
the additional Rx chain for background DFS detection (or Bluetooth)
according to commit 6cbcc34f50 ("ramips: disable unsupported
background radar detection").
MAC addresses:
* LAN: 48:22:54:xx:xx:a2 (device label)
* WLAN 2.4 GHz: 48:22:54:xx:xx:a2
* WLAN 5 GHz: 48:22:54:xx:xx:a3
The radio calibration blob stored in flash also contains valid MAC
addresses for both radio bands (OUI 00:0c:43).
Factory install:
1. Enable SSH on the device via web interface
2. Log in with SSH, and run `cliclientd stopcs`
3. Upload -factory.bin image via web interface. It may be necessary to
shorten the filename of the image to e.g. 'factory.bin'.
Recovery:
1. Open the device by unscrewing four screws from the backside
2. Carefully remove board from the housing
3. Connect to UART (3.3V):
* Find test points labelled "VCC", "GND", "UART_TX", "UART_RX"
* Solder wires to test points or connect otherwise. Be careful not
to damage the PCB e.g. by pulling on soldered wires.
* Open console with 115200n8 settings
4. Interrupt bootloader and use tftpboot to start an initramfs:
setenv ipaddr $DEVICE_IP
setenv serverip $SERVER_IP
tftpboot 84000000 openwrt-initramfs-kernel.bin
bootm
DO NOT use saveenv to store modified u-boot environment variables. The
environment is saved at flash offset 0x30000, which erases part of the
(secondary) bootloader.
The device uses two bootloader stages. The first stage will load the
second stage from a uImage stored at flash offset 0x10000. In case of
a damaged second stage, the first stage should allow uploading a new
image via y-modem (untested).
Signed-off-by: Sander Vanheule <sander@svanheule.net>
(cherry picked from commit 11588c52b4)
This commit adds support for following wireless routers:
- Beeline SmartBox PRO (Serсomm S1500 AWI)
- WiFire S1500.NBN (Serсomm S1500 BUC)
This commit is based on this PR:
- Link: https://github.com/openwrt/openwrt/pull/4770
- Author: Maximilian Weinmann <x1@disroot.org>
The opening of this PR was agreed with author.
My changes:
- Sorting, minor changes and some movings between dts and dtsi
- Move leds to dts when possible
- Recipes for the factory image
- Update of the installation/recovery/return to stock guides
- Add reset GPIO for the pcie1
Common specification
--------------------
SoC: MediaTek MT7621AT (880 MHz, 2 cores)
Switch: MediaTek MT7530 (via SoC MT7621AT)
Wireless: 2.4 GHz, MT7602EN, b/g/n, 2x2
Wireless: 5 GHz, MT7612EN, a/n/ac, 2x2
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
Mini PCIe: via J2 on PCB, not soldered on the board
UART: J4 -> GND[], TX, VCC(3.3V), RX
BootLoader: U-Boot SerComm/Mediatek
Beeline SmartBox PRO specification
----------------------------------
RAM (Nanya NT5CB128M16FP): 256 MiB
NAND-Flash (ESMT F59L2G81A): 256 MiB
USB ports: 2xUSB2.0
LEDs: Status (white), WPS (blue), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (reset, wps), 1 switch button (ROUT<->REP)
Power: 12 VDC, 1.5 A
PCB Sticker: 970AWI0QW00N256SMT Ver. 1.0
CSN: SG15********
MAC LAN: 94:4A:0C:**:**:**
Manufacturer's code: 0AWI0500QW1
WiFire S1500.NBN specification
------------------------------
RAM (Nanya NT5CC64M16GP): 128 MiB
NAND-Flash (ESMT F59L1G81MA): 128 MiB
USB ports: 1xUSB2.0
LEDs: Status (white), WPS (white), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (RESET, WPS)
Power: 12 VDC, 1.0 A
PCB Sticker: 970BUC0RW00N128SMT Ver. 1.0
CSN: MH16********
MAC WAN: E0:60:66:**:**:**
Manufacturer's code: 0BUC0500RW1
MAC address table (PRO)
-----------------------
use address source
LAN *:23 factory 0x1000 (label)
WAN *:24 factory $label +1
2g *:23 factory $label
5g *:25 factory $label +2
MAC addresses (NBN)
-------------------
use address source
LAN *:0e factory 0x1000
WAN *:0f LAN +1 (label)
2g *:0f LAN +1
5g *:10 LAN +2
OEM easy installation
---------------------
1. Remove all dots from the factory image filename (except the dot
before file extension)
2. Upload and update the firmware via the original web interface
3. Two options are possible after the reboot:
a. OpenWrt - that's OK, the mission accomplished
b. Stock firmware - install Stock firmware (to switch booflag from
Sercomm0 to Sercomm1) and then OpenWrt factory image.
Return to Stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock2
reboot
2. Install stock firmware via the web OEM firmware interface
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
Tested-by: Pavel Ivanov <pi635v@gmail.com>
Tested-by: Denis Myshaev <denis.myshaev@gmail.com>
Tested-by: Oleg Galeev <olegingaleev@gmail.com>
Tested-By: Ivan Pavlov <AuthorReflex@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit 2d6784a033)
This adds support for Beeline Smart Box TURBO+ (Serсomm S3 CQR) router.
Device specification
--------------------
SoC Type: MediaTek MT7621AT (880 MHz, 2 cores)
RAM (Nanya NT5CC64M16GP): 128 MiB
Flash (Macronix MX30LF1G18AC): 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615N): a/n/ac, 4x4
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
USB ports: 1xUSB3.0
Buttons: 2 button (reset, wps)
LEDs: Red, Green, Blue
Zigbee (EFR32MG1B232GG): 3.0
Stock bootloader: U-Boot 1.1.3
Power: 12 VDC, 1.5 A
Installation (fw 2.0.9)
-----------------------
1. Login to the web interface under SuperUser (root) credentials.
Password: SDXXXXXXXXXX, where SDXXXXXXXXXX is serial number of the
device written on the backplate stick.
2. Navigate to Setting -> WAN. Add:
Name - WAN1
Connection Type - Static
IP Address - 172.16.0.1
Netmask - 255.255.255.0
Save -> Apply. Set default: WAN1
3. Enable SSH and HTTP on WAN. Setting -> Remote control. Add:
Protocol - SSH
Port - 22
IP Address - 172.16.0.1
Netmask - 255.255.255.0
WAN Interface - WAN1
Save ->Apply
Add:
Protocol - HTTP
Port - 80
IP Address - 172.16.0.1
Netmask - 255.255.255.0
WAN interface - WAN1
Save -> Apply
4. Set up your PC ethernet:
Connection Type - Static
IP Address - 172.16.0.2
Netmask - 255.255.255.0
Gateway - 172.16.0.1
5. Connect PC using ethernet cable to the WAN port of the router
6. Connect to the router using SSH shell under SuperUser account
7. Make a mtd backup (optional, see related section)
8. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
9. Login to the router web interface under admin account
10. Remove dots from the OpenWrt factory image filename
11. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 172.16.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 171.16.0.2
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
MAC Addresses (fw 2.0.9)
------------------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | *:e8 |
| WAN | label + 1 | *:e9 |
| 2g | label + 4 | *:ec |
| 5g | label + 5 | *:ed |
+-----+------------+---------+
The label MAC address was found in Factory 0x21000
Factory image format
--------------------
+---+-------------------+-------------+--------------------+
| # | Offset | Size | Description |
+---+-------------------+-------------+--------------------+
| 1 | 0x0 | 0x200 | Tag Header Factory |
| 2 | 0x200 | 0x100 | Tag Header Kernel1 |
| 3 | 0x300 | 0x100 | Tag Header Kernel2 |
| 4 | 0x400 | SIZE_KERNEL | Kernel |
| 5 | 0x400+SIZE_KERNEL | SIZE_ROOTFS | RootFS(UBI) |
+---+-------------------+-------------+--------------------+
Co-authored-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
(cherry picked from commit 8fcfb21b16)
The network configuration at first boot for TOZED ZLT S12 PRO lacks setting
up the LAN and WAN network interfaces. Address this. The WAN port is
advertised as WAN/LAN on the device and is put on LAN on stock firmware so
put it on LAN here as well.
Fixes: ce1f9fa625 ("ramips: add support for TOZED ZLT S12 PRO")
Reported-by: Andre Cruz <me@1conan.com>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
(cherry picked from commit b61253f92a)
The device already has LED push button (KEY_LIGHTS_TOGGLE)
and exported GPIO control "led-light". This commit adds
button handler script for switching on/off all device LEDs.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
(cherry picked from commit d955b41275)
The TOZED ZLT S12 PRO is an AC1200 router featuring 4 Ethernet ports with a
TOZED TL70-C cellular modem which supports the NCM mode.
The stock firmware does SIM locking on the modem by stopping dialing when a
different PLMN is detected. This is not the case on OpenWrt.
Specifications:
- CPU: MediaTek MT7621AT
- RAM: 256MB DDR3
- NOR Flash: MX25L12833FM2I 16MB SPI Flash
- Wi-Fi 2.4Ghz: MT7603E
- Wi-Fi 5Ghz: MT7612E
- Switch: MT7530 4x 1Gbit Ports
- WWAN: Unisoc SL8563 based TOZED TL70-C LTE CAT6 cellular modem
- USB: 1x optional USB2.0 external port
- Switches/Buttons: WPS, Reset, Power Switch
- LEDs: Power, Wi-Fi, Data, Signal 1-5, Phone
Installation and TFTP Recovery:
- Connect to serial console.
- Boot initramfs image by choosing option 1 when U-Boot prompts.
- Install sysupgrade image via OpenWrt.
Serial Pins:
Located at the bottom right when looking from the front, right under the
Reset/WPS buttons. The pinout from the left is:
- RX
- GND
- TX
Baudrate is 115200.
When connecting from a powered off state, disconnect RX as it blocks the
boot process.
Link: http://www.sztozed.com/en/contents/58/84.html
Co-developed-by: Andre Cruz <me@1conan.com>
Signed-off-by: Andre Cruz <me@1conan.com>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Hardware specification:
- SoC: MediaTek MT7621AT (880 MHz)
- Flash: 16 MB (Macronix MX25L12835FM2I-10G)
- RAM: 128 MB (Nanya NT5CC64M16GP-DI)
- WLAN 2.4 GHz: 2x2 MediaTek MT7603EN
- WLAN 5 GHz: 2x2 MediaTek MT7615N
- Ethernet: 1x 10/100/1000 Mbps
- LED: Power, Wifi, WPS
- Button: Reset, WPS
- UART: 1:VCC, 2:GND, 3:TX, 4:RX (from LAN port)
Serial console @ 57600,8n1
Flash instructions:
Connect to serial console and start up the device. As the bootloader got
locked you need to type in a password to unlock U-Boot access.
When you see the following output on the console:
relocate_code Pointer at: 87f1c000
type in the super secure password:
1234567890
Then select TFTP boot from RAM by selecting option 1 in the boot menu.
As Linksys decided to leave out a basic TFTP configuration you need to
set server- & client ip as well as the image filename the device will
search for. You need to use the initramfs openwrt image for the TFTP
boot process.
Once openwrt has booted up, upload the sysupgrade image via scp and run
sysupgrade as normal.
Signed-off-by: Christoph Krapp <achterin@gmail.com>
Rename existing device to v1 and create common .dtsi
Difference to v1: 16MB Flash
Specifications:
SoC: MediaTek MT7621
RAM: 256 MB
Flash: 16 MB (SPI NOR, XM25QH128C on my device)
WiFi: MediaTek MT7915E
Switch: 1 WAN, 4 LAN (Gigabit)
Buttons: Reset, WPS
LEDs: Two Power LEDs (blue and red; together they form purple)
Power: DC 12V 1A center positive
Serial: 115200 8N1
C440 - (3V3 - GND - RX - TX) - C41 | v1 and v2
(P - G - R - T) | v2 labels them on the board
Installation:
Download and flash the manufacturer's built OpenWrt image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWrt image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings.
Recovery:
Loads only signed manufacture firmware due to bootloader RSA verification
Serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
Connect to any lan ethernet port
Power on the device while holding the reset button
Wait at least 8 seconds before releasing reset button for image to
download
MAC addresses as verified by OEM firmware:
use address source
LAN f4:a4:54:86:75:a2 label
WAN f4:a4:54:86:75:a3 label + 1
2g f4:a4:54:86:75:a2 label
5g f6:a4:54:b6:75:a2 label + LA-Bit set + 4th oktet increased
The label MAC address is found in bdinfo 0xde00.
Signed-off-by: Felix Baumann <felix.bau@gmx.de>
The TP-Link EC330-G5u v1 router has MAC address that stored in factory mtd
in ascii format. This commit makes the router use of "mac-address-ascii"
in dts.
After the change:
1. All MAC addresses are explicitly assigned in dts (the workarounds in
network scripts are no longer needed);
2. gmac0 (eth0) MAC address is no longer random.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
The ZyXEL WSM20 aka Multy M1 is a cheap mesh router system by ZyXEL
based on the MT7621 CPU.
Specifications
==============
SoC: MediaTek MT7621AT (880MHz)
RAM: 256MiB
Flash: 128MiB NAND
Wireless: 802.11ax (2x2 MT7915E DBDC)
Ethernet: 4x 10/100/1000 (MT7530)
Button: 1x WPS, 1x Reset, 1x LED On/Off
LED: 7 LEDs (3x white, 2x red, 2x green)
MAC address assignment
======================
The MAC address assignment follows stock: The label MAC address is the LAN
MAC address, the WAN address is read from flash.
The WiFi MAC addresses are set in userspace to label MAC + 1 and label MAC
+ 2.
Installation (web interface)
============================
The device is cloud-managed, but there is a hidden local firmware upgrade
page in the OEM web interface. The device has to be registered in the
cloud in order to be able to access this page.
The system has a dual firmware design, there is no way to tell which
firmware is currently booted. Therefore, an -initramfs version is flashed
first.
1. Log into the OEM web GUI
2. Access the hidden upgrade page by navigating to
https://192.168.212.1/gui/#/main/debug/firmwareupgrade
3. Upload the -initramfs-kernel.bin file and flash it
4. Wait for OpenWrt to boot and log in via SSH
5. Transfer the sysupgrade file via SCP
6. Run sysupgrade to install the image
7. Reboot and enjoy
NB: If the initramfs version was installed in RAS2, the sysupgrade script
sets the boot number to the first partition. A backup has to be performed
manually in case the OEM firwmare should be kept.
Installation (UART method)
==========================
The UART method is more difficult, as the boot loader does not have a
timeout set. A semi-working stock firmware is required to configure it:
1. Attach UART
2. Boot the stock firmware until the message about failsafe mode appears
3. Enter failsafe mode by pressing "f" and "Enter"
4. Type "mount_root"
5. Run "fw_setenv bootmenu_delay 3"
6. Reboot, U-Boot now presents a menu
7. The -initramfs-kernel.bin image can be flashed using the menu
8. Run the regular sysupgrade for a permanent installation
Changing the partition to boot is a bit cumbersome in U-Boot, as there is
no menu to select it. It can only be checked using mstc_bootnum. To change
it, issue the following commands in U-Boot:
nand read 1800000 53c0000 800
mw.b 1800004 1 1
nand erase 53c0000 800
nand write 1800000 53c0000 800
This selects FW1. Replace "mw.b 1800004 1 1" by "mw.b 1800004 2 1" to
change to the second slot.
Back to stock
=============
It is possible to flash back to stock, but a OEM firmware upgrade is
required. ZyXEL does not provide the link on its website, but the link
can be acquired from the OEM web GUI by analyzing the transferred JSON
objects.
It is then a matter of writing the firmware to Kernel2 and setting the
boot partition to FW2:
mtd write zyxel.bin Kernel2
echo -ne "\x02" | dd of=/dev/mtdblock7 count=1 bs=1 seek=4 conv=notrunc
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Credits to forum users Annick and SirLouen for their initial work on this
device
- Correct WiFi MACs, they didn't match oem firmware
- Move nvmem-cells to bdinfo partition and remove &bdinfo reference
- Add OEM device model name R13 to SUPPORTED_DEVICES
This allows sysupgrading from Cudy's OpenWrt fork without force
- Label red_led and use it during failsafe mode and upgrades
MAC addresses as verified by OEM firmware:
use address source
LAN b4:4b:d6:2d:c8:4a label
WAN b4:4b:d6:2d:c8:4b label + 1
2g b4:4b:d6:2d:c8:4a label
5g b6:4b:d6:3d:c8:4a label + LA-Bit set + 4th oktet increased
The label MAC address is found in bdinfo 0xde00.
Signed-off-by: Felix Baumann <felix.bau@gmx.de>
[read wifi mac from flash offset]
Signed-off-by: David Bauer <mail@david-bauer.net>
The Config partition of some machines is special, and the openwrt script
cannot read the protest_lan_mac correctly. This problem can be solved by
reading the mac address (ascii) in dts.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
PCI paths of the WLAN devices have changed between kernel 5.10 and 5.15;
migrate config so existing wifi-iface definitions don't break.
This is implemented as a hotplug handler rather than a uci-defaults script
as the migration script must run before the 10-wifi-detect hotplug handler.
based on b452af23a8
migration was forgotten when device trees were adjusted in
688697889cc77913be5bfixes#9374
affected devices:
Netgear R6220
Netgear WAC104
Netgear WNDR3700 v5
Zbtlink ZBT-WE1326
Wiflyer WF3526-P
Arcadyan WE420223-99
Beeline Smartbox Flash (Arcadyan WG443223)
MTS WG430223 (Arcadyan WG430223)
Tested-by: Maximilian Baumgartner <aufhaxer@googlemail.com>
Tested-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Felix Baumann <felix.bau@gmx.de>
From https://github.com/openwrt/openwrt/pull/12280#issuecomment-1489279860
On Ethernet and WLAN, NAPI is threaded for all queues. This means that the
processing work is not stuck on the CPU that fired the IRQ. Under heavy
load, IRQs get disabled anyway, so it should not matter at all which CPUs
the IRQs fire on.
Basic testing indicates this to be true. There's no speedup or slowdown.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
There's no valid mac address for the second band in the eeprom.
The vendor fw uses 2.4G mac + 4 as the mac for 5G radio.
Do the same in our firmware.
Fixes: 23be410b3d ("ramips: add support for TOTOLINK X5000R")
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Hardware
========
- SoC: MediaTek MT7621AT (880MHz, Duel-Core)
- RAM: DDR3 128MB
- Flash: Winbond W25Q128JV (SPI-NOR 16MB)
- WiFi: MediaTek MT7915D (2.4GHz, 5GHz, DBDC)
- Ethernet: MediaTek MT7530 (WAN x1, LAN x3, SoC)
- UART: >TX RX GND 3v3 (115200 8N1, J1)
Do not connect 3v3. TX is marked with an arrow.
Installation
============
Flash factory image. This can be done using stock web ui.
Revert to stock firmware
========================
Flash stock firmware via OEM Web UI Recovery mode.
Web UI Recovery method
======================
1. Unplug the router
2. Plug in and hold reset button 5~10 secs
3. Set your computer IP address manually to 192.168.1.x / 255.255.255.0
4. Flash image with web browser to 192.168.1.1
Co-authored-by: Robert Senderek <robert.senderek@10g.pl>
Co-authored-by: Yoonji Park <koreapyj@dcmys.kr>
Signed-off-by: David Bauer <mail@david-bauer.net>
The original claim about conflicting MAC addresses is wrong. mac80211
does increment the first octet and sets the LA bit.
This means our "workaround" actually leads to the issue while
incrementing the last octet is safe.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware
--------
CPU: MediaTek MT7621 DAT
RAM: 128MB DDR3 (integrated)
FLASH: 16MB SPI-NOR ()
WiFi: MediaTek MT7905 + MT7975 (2.4 / 5 DBDC) 802.11ax
SERIAL: 115200 8N1
LEDs - (3V3 - GND - RX - TX) - ETH ports
Installation
------------
Upload the factory image using the Web-UI.
Web-Recovery
------------
The router supports a HTTP recovery mode by holding the reset-button
when powering on. The interface is reachable at 192.168.0.1 and supports
installation using the factory image.
Signed-off-by: David Bauer <mail@david-bauer.net>
Add the missing definitions for the PoE passthrough functionality.
The relevant pin is already being exported, but it is missing from
the initial board configuration file. With this change, the user is
now able to toggle the PoE passthorough functionality via the uci cli
Signed-off-by: André Fonseca <mail@andrefonseca.pt>
Specifications:
* SoC: MT7621AT
* RAM: 256MB (NT5CC64M16GP-DI)
* Flash: 16MB NOR SPI flash (GD25Q127CSIG, using GD25Q128C driver)
* WiFi: MT7615DN (2.4GHz+5Ghz) with DBDC
* Ethernet: 4x1000M LAN, 1x 1000M WAN
* LEDs: Power Blue+Orange,Wan Blue+Orange,WPS Blue,"2.4G"Blue, "5G" Blue,
USB Blue
* Buttons: Reset,WPS, Wifi
* Serial interface: on board but not populated, pinout (from the DC jack
side to the WAN port side) is "3.3V Input Output Gnd". Baud rate is 57600,
settings are 8 data bits, no parity bit, one stop bit, and no flow control.
Stock flash layout:
```
GD25Q128C(c8 40180000) (16384 Kbytes)
mtd .name = raspi, .size = 0x01000000 (16M) .erasesize = 0x00010000 (64K)
.numeraseregions = 0
Creating 7 MTD partitions on "raspi":
0x000000000000-0x000001000000 : "ALL"
0x000000000000-0x000000030000 : "Bootloader"
0x000000030000-0x000000040000 : "Config"
0x000000040000-0x000000050000 : "Factory"
0x000000050000-0x000000060000 : "Config2"
0x000000060000-0x000000fb0000 : "Kernel"
0x000000fb0000-0x000001000000 : "Private"
```
The kernel partition will be replaced with the OpenWrt image, the other
partitions are left untouched.
"Config2" seems to be the config storage used by the stock firmware.
"Private" is a 320kB empty JFFS2 partition that comes with the stock
firmware. One can get a larger space for OpenWrt by merging it with
"Kernel".
OpenWrt flash layout:
```
0x000000000000-0x000000030000 : "u-boot"
0x000000030000-0x000000040000 : "u-boot-env"
0x000000040000-0x000000050000 : "factory"
0x000000050000-0x000000060000 : "config2_stock"
0x000000060000-0x000000fb0000 : "firmware"
0x000000fb0000-0x000001000000 : "private_stock"
```
The OpenWrt image must have 96 bytes of padding in the header.
MAC addresses on OEM firmware:
| | location on the flash | notes |
|------ |----------------------- |---------- |
| lan (eth2) | factory + 0xe000 | on label |
| wan (eth3) | factory + 0xe006 | |
| 2.4g (rax0) | not on flash | lan + 1 |
| 5g (ra0) | not on flash | lan + 2 |
Mac addresses of the 2.4g and 5g interface are stored as ASCII strings in
the u-boot-env partition, but they are not used. OpenWrt calculates
Wifi Mac addresses based on the LAN Mac.
Flash and test instructions:
Flash the encrypted image (available in the OpenWrt forum) through the
stock D-Dink web interface.
1. Open the case, and solder the 4-pin header near the WAN port.
2. Connect it to a USB-UART TTL (3.3V) adapter, no need to connect VCC.
3. Open a terminal emulator (e.g. `screen /dev/ttyUSB0` on linux) with
the settings mentioned above.
4. Setup a TFTP server on your PC that can serve
`xxx-ramips-mt7621-dlink_dir-853-a1-initramfs-kernel.bin`.
5. Connect any LAN port to your PC and set a static IPv4 address to
192.168.0.101 (netmask 255.255.255.0).
6. Power on the device and keeps pressing 1 until you see the prompt.
7. Use default IP addresses and enter the file name accordingly, then hit
enter.
8. Wait until it boots to OpenWrt, the default IP address is 192.168.1.1,
you need to change your PC network adapter to use DHCP in order to access
LUCI.
9. So far, the OpenWrt runs in RAM and the flash contents are not touched.
You can try OpenWrt without having to overwrite the stock firmware, a
reboot clears all changes.
10. Optionally, backup the stock firmware (the "firmware" partition) in
Luci.
11. To permantly install OpenWrt to the device , click
on "System -> Backup/Flash Firmware" in Luci and flash
`xxx-ramips-mt7621-dlink_dir-853-a1-squashfs-sysupgrade.bin`
Known problems:
* WLAN0 defaults to 5G after a fresh installation, to enable 2.4G network,
you need to config it manually in LUCI.
* If you see jffs2 related warnings/errors after updating from the stock
web interface, you need to do a reset in LUCI. The error will be gone after
a cold reboot.
Signed-off-by: Hang Zhou <929513338qq@gmail.com>
Specifications:
- Device: ASUS RT-AX54 (AX1800S/HP,AX54HP)
- SoC: MT7621AT
- Flash: 128MB
- RAM: 256MB
- Switch: 1 WAN, 4 LAN (10/100/1000 Mbps)
- WiFi: MT7905 2x2 2.4G + MT7975 2x2 5G
- LEDs: 1x POWER (blue, configurable)
1x LAN (blue, configurable)
1x WAN (blue, configurable)
1x 2.4G (blue, not configurable)
1x 5G (blue, not configurable)
Flash by U-Boot TFTP method:
- Configure your PC with IP 192.168.1.2
- Set up TFTP server and put the factory.bin image on your PC
- Connect serial port(rate:115200) and turn on AP, then interrupt "U-Boot Boot Menu" by hitting any key
Select "2. Upgrade firmware"
Press enter when show "Run firmware after upgrading? (Y/n):"
Select 0 for TFTP method
Input U-Boot's IP address: 192.168.1.1
Input TFTP server's IP address: 192.168.1.2
Input IP netmask: 255.255.255.0
Input file name: openwrt-ramips-mt7621-asus_rt-ax1800hp-squashfs-factory.bin
- Restart AP aftre see the log "Firmware upgrade completed!"
Signed-off-by: Karl Chan <exkc@exkc.moe>
This commit adds support for the V4 hardware revision of the Deco M4R.
V4 is a complete overhaul of the hardware compared to V1 and V2,
and is much more similar to the Archer C6 V3 and C6U V1.
Specifications:
SoC: MediaTek MT7621AT (2 cores at 880 MHz, 4 threads)
RAM: Kingston D1216ECMDXGJD (256 MB)
Wireless 2.4 GHz: MediaTek MT7603EN
Wireless 5 GHz: MediaTek MT7613BEN
Flash: 16 MB SPI NOR
Installation:
Flash the *-factory.bin image in the U-Boot recovery webserver.
You can trigger this webserver by holding the reset button until the LED
flashes yellow, or by hooking up to serial pads on the board (clearly
labeled GND, RX and TX) and pressing `x` early in boot.
Once the factory image has been flashed, you can use the regular upgrade
procedure with sysupgrade images for subsequent flashes.
Signed-off-by: Mark Ceeha <hi@shiz.me>
Tested-by: Mark Ceeha <hi@shiz.me>
Device is the same as Xiaomi Mi Router 4A Gigabit, except of:
- 5G WiFi is MT7663
- addresses of leds, wifi and eth ports are slightly changed
Specs:
SoC: MT7621
CPU: 2 x 880 MHz
ROM: 16 MB
RAM: 128 MB
WLAN: MT7603, MT7663
MAC addresses:
WAN **** factory 0xe006 (label)
LAN *:f7 factory 0xe000
2.4 GHz *:f8 factory 0x0000+0x4 (mtd-eeprom+0x4)
5 GHz *:f9 factory 0x8000+0x4 (mtd-eeprom+0x4)
Installation:
Factory firmware is based on a custom OpenWrt 17.x.
Installation is the same as for Xiaomi Mi Router 4A Gigabit.
Probably the easiest way to install is to use the script from
this repository: https://github.com/acecilia/OpenWRTInvasion/pull/155
In a more advanced case, you can do everything yourself:
- gain access to the device through one of the exploits described
in the link above
- upload sysupgrade image to /tmp
- overwrite stock firmware:
# mtd -e OS1 -r write /tmp/sysupgrade.bin OS1
Recovery:
Recovery procedure is the same as for Xiaomi Mi Router 4A Gigabit.
Possible options can be found here:
https://openwrt.org/inbox/toh/xiaomi/xiaomi_mi_router_4a_gigabit_edition
One of the ways is to use another router with OpenWrt:
- connect both routers by their LAN ports
- download stock firmware from [1]
- place it inside /tmp/test.bin on the main router
- configure PXE/TFTP on the main router
- power off 4Av2, hold Reset button, power on
- as soon as image download via TFTP starts, Reset can be released
- blinking blue wan LED will indicate the end of the flashing process,
now router can be rebooted
[1] http://cdn.cnbj1.fds.api.mi-img.com/xiaoqiang/rom/r4av2/miwifi_r4av2_firmware_release_2.30.28.bin
Signed-off-by: Dmitry Sokolov <e323w@proton.me>
The Arcadyan WE420223-99 is a WiFi AC simultaneous dual-band access
point distributed as Experia WiFi by KPN in the Netherlands. It features
two ethernet ports and 2 internal antennas.
Specifications
--------------
SOC : Mediatek MT7621AT
ETH : Two 1 gigabit ports, built into the SOC
WIFI : MT7615DN
BUTTON: Reset
BUTTON: WPS
LED : Power (green+red)
LED : WiFi (green+blue)
LED : WPS (green+red)
LED : Followme (green+red)
Power : 12 VDC, 1A barrel plug
Winbond variant:
RAM : Winbond W631GG6MB12J, 1GBIT DDR3 SDRAM
Flash : Winbond W25Q256JVFQ, 256Mb SPI
U-Boot: 1.1.3 (Nov 23 2017 - 16:40:17), Ralink 5.0.0.1
Macronix variant:
RAM : Nanya NT5CC64M16GP-DI, 1GBIT DDR3 SDRAM
Flash : MX25l25635FMI-10G, 256Mb SPI
U-Boot: 1.1.3 (Dec 4 2017 - 11:37:57), Ralink 5.0.0.1
Serial
------
The serial port needs a TTL/RS-232 3V3 level converter! The Serial
setting is 57600-8-N-1. The board has an unpopulated 2.54mm straight pin
header.
The pinout is: VCC (the square), RX, TX, GND.
Installation
------------
See the Wiki page [1] for more details, it comes down to:
1. Open the device, take off the heat sink
2. Connect the SPI flash chip to a flasher, e.g. a Raspberry Pi. Also
connect the RESET pin for stability (thanks @FPSUsername for reporting)
3. Make a backup in case you want to revert to stock later
4. Flash the squashfs-factory.trx file to offset 0x50000 of the flash
5. Ensure the bootpartition variable is set to 0 in the U-Boot
environment located at 0x30000
Note that the U-Boot is password protected, this can optionally be
removed. See the forum [2] for more details.
MAC Addresses(stock)
--------------------
+----------+------------------+-------------------+
| use | address | example |
+----------+------------------+-------------------+
| Device | label | 00:00:00:11:00:00 |
| Ethernet | + 3 | 00:00:00:11:00:03 |
| 2g | + 0x020000f00001 | 02:00:00:01:00:01 |
| 5g | + 1 | 00:00:00:11:00:01 |
+----------+------------------+-------------------+
The label address is stored in ASCII in the board_data partition
Notes
-----
- This device has a dual-boot partition scheme, but OpenWRT will claim
both partitions for more storage space.
Known issues
------------
- 2g MAC address does not match stock due to missing support for that in
macaddr_add
- Only the power LED is configured by default
References
----------
[1] https://openwrt.org/inbox/toh/arcadyan/astoria/we420223-99
[2] https://forum.openwrt.org/t/adding-openwrt-support-for-arcadyan-we420223-99-kpn-experia-wifi/132653
Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Signed-off-by: Harm Berntsen <git@harmberntsen.nl>
Add support for D-Link DIR-1935 A1 based on similarities to DIR-882 A1,
DIR-867 A1 and other DIR-8xx A1 models. Existing DIR-882 A1 openwrt
"factory" firmware installs without modificaitons via the D-Link
Recovery GUI and has no known incompatibilities with the DIR-1935 A1.
Changes to be committed:
new file: target/linux/ramips/dts/mt7621_dlink_dir-1935-a1.dts
modified: target/linux/ramips/image/mt7621.mk
modified: target/linux/ramips/mt7621/base-files/etc/board.d/01_leds
Specifications:
* Board: Not known
* SoC: MediaTek MT7621 Family
* RAM: 128 MB (DDR3)
* Flash: 16 MB (SPI NOR)
* WiFi: MediaTek MT7615 Family (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 3.0
* Buttons: Reset, WiFi Toggle, WPS
* LEDs: Power (green/orange), Internet (green/orange), WiFi 2.4G (green),
WiFi 5G (green)
Notes:
* 160MHz 5GHz is available in LuCi but does not appear to work (i.e. no
SSID is visible in wifi scanning apps on other devices) with either
official DIR-882 A1 firmware or a test build for the DIR-1935 A1 based
on the 22.03.2 branch. 80 MHz 5GHz works.
Serial port:
* Untested (potential user damage/error)
* Expected to be identical to other DIR-8xx A1 models:
* Parameters: 57600, 8N1
* Location: J1 header (close to the Reset, WiFi and WPS buttons)
* Pinout: 1 - VCC
2 - RXD
3 - TXD
4 - GND
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
Signed-off-by: Keith Harrison <keithh@protonmail.com>
This adds basic support for TP-Link EC330-G5u Ver:1.0 router (also known
as TP-Link Archer C9ERT).
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 128 MiB, Nanya NT5CC64M16GP-DI
Flash: 128 MiB NAND, ESMT F59L1G81MA-25T
Wireless 2.4 GHz (MediaTek MT7615N): b/g/n, 4x4
Wireless 5 GHz (MediaTek MT7615N): a/n/ac, 4x4
Ethernet: 5xGbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1xUSB3.0
Button: 4 (Led, WiFi On/Off, Reset, WPS)
LEDs: 7 blue LEDs, 1 orange(amber) LED, 1 white(non-gpio) LED
Power: 12 VDC, 2 A
Connector type: Barrel
Bootloader: First U-Boot (1.1.3), Main U-Boot (1.1.3). Additionally,
original TP-Link firmware contains Image U-Boot (1.1.3).
Serial console (UART)
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
| J2
|
+--- Don't connect
Installation
------------
1. Rename OpenWrt initramfs image to test.bin and place it on tftp server
with IP 192.168.0.5
2. Attach UART, switch on the router and interrupt the boot process by
pressing 't'
3. Load and run OpenWrt initramfs image:
tftpboot
bootm
4. Once inside OpenWrt, switch to the first boot image:
fw_setenv BootImage 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Back to Stock
-------------
1. Run in the OpenWrt shell:
fw_setenv BootImage 1
reboot
Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.0.1/) and upload
the OEM firmware
MAC addresses
-------------
+---------+-------------------+-------------------+-------------+
| | MAC example 1 | MAC example 2 | Algorithm |
+---------+-------------------+-------------------+-------------+
| label | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label |
| LAN | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label |
| WAN | 72:ff:7b:xx:xx:f5 | 54:d4:f7:xx:xx:db | label+1 [1] |
| WLAN 2g | 68:ff:7b:xx:xx:f4 | 50:d4:f7:xx:xx:da | label |
| WLAN 5g | 68:ff:7b:xx:xx:f6 | 50:d4:f7:xx:xx:dc | label+2 |
+---------+-------------------+-------------------+-------------+
label MAC address was found in factory at 0x165 (text format
xx:xx:xx:xx:xx:xx).
Notes
-----
[1] WAN MAC address:
a. First octet of WAN MAC is differ than others and OUI is not related
to TP-Link company. This probably should be fixed.
b. Flipping bits in first octet and hex delta are different for the
different MAC examples:
+-----------------+----------------+----------------+
| | Example 1 | Example 2 |
+-----------------+----------------+----------------+
| LAN | 68 = 0110 1000 | 50 = 0101 0000 |
| MAC (1st octet) | ^ ^ ^ | |
+-----------------+----------------+----------------+
| WAN | 72 = 0111 0010 | 54 = 0101 0100 |
| MAC (1st octet) | ^ ^ ^ | ^ |
+-----------------+----------------+----------------+
| HEX delta | 0xa | 0x4 |
+-----------------+----------------+----------------+
| DEC delta | 4 | 4 |
+-----------------+----------------+----------------+
c. DEC delta is a constant (4). This looks like a mistake in OEM
firmware and probably should be fixed.
Based on the above, I decided to keep correct OUI and make WAN MAC =
label + 1.
[2] Bootloaders
The device contains 3 bootloaders:
- First U-Boot: U-Boot 1.1.3 (Mar 18 2019 - 12:50:24). The First U-Boot
located on NAND Flash to load next full-feature Uboot.
- Main U-Boot + its backup: U-Boot 1.1.3 (Mar 18 2019 - 12:50:29). This
bootloader includes recovery webserver. Requires special uImages to
continue the boot process:
0x00 (os0, os1) - firmware uImage
0x40 (os0, os1) - standalone uImage (OpenWrt kernel is here)
- Additionally, both slots of the original TP-Link firmware contains
Image U-Boot: U-Boot 1.1.3 (Oct 16 2019 - 08:14:45). It checks image
magics and CRCs. We don't use this U-Boot with OpenWrt.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
The pins of the MT7530 switch that translate to GPIO 0, 3, 6, 9 and 12 has
got a function, by default, which does the same thing as the netdev
trigger. Because of bridge offloading on DSA, the netdev trigger won't see
the frames between the switch ports whilst the default function will.
Do not use the GPIO function on switch pins on devices that fall under this
category.
Keep it for:
mt7621_belkin_rt1800.dts: There's only one LED which is for the wan
interface and there's no bridge offloading between the "wan" interface and
other interfaces.
mt7621_yuncore_ax820.dts: There's no bridge offloading between the "wan"
and "lan" interfaces.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
The DAP-X1860 is a wall-plug AX1800 repeater.
Specifications:
- MT7621, 256 MiB RAM, 128 MiB SPI NAND
- MT7915 + MT7975 2x2 802.11ax (DBDC)
- Ethernet: 1 port 10/100/1000
- LED RSSI bargraph (2x green, 1x red/orange), status
and RSSI LEDs are incorrectly populated red/orange
(should be red/green according to documentation)
Installation:
- Keep reset button pressed during plug-in
- Web Recovery Updater is at 192.168.0.50
- Upload factory.bin, confirm flashing
(seems to work best with Chromium-based browsers)
Revert to OEM firmware:
- tar -xvf DAP-X1860_RevA_Firmware_101b94.bin
- openssl enc -d -md md5 -aes-256-cbc -in FWImage.st2 \
-out FWImage.st1 -k MB0dBx62oXJXDvt12lETWQ==
- tar -xvf FWImage.st1
- flash kernel_DAP-X1860.bin via Recovery
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications
SoC: MT7621
CPU: 880 MHz
Flash: 32 MiB
RAM: 256 MiB
WLAN: MT7915 WiFi 6 (2.4/5 GHz)
Ethernet: 2x Gbit ports
MAC
LAN b4:4b:d6:2e:c7:b0 (label)
WAN b4:4b:d6:2e:c7:b1
WiFi 2.4 00:0c:43:26:46:08
WiFi 5 00:0c:43:26:59:97
Installation
There are two known options:
1) The Luci-based UI.
2) Press and hold the reset button during power up.
The router will request 'recovery.bin' from a TFTP server at
192.168.1.88.
Both options require a signed firmware binary.
The openwrt image supplied by cudy is signed and can be used to
install unsigned images.
Signed-off-by: Leon M. Busch-George <leon@georgemail.eu>
This is a MT7621-based device with 128MB NAND flash, 256MB RAM, and a USB port.
The board has headers to attach console. In order for them to work two solder
bridges near those pads need to be made.
The defice has the following partition table:
```
0x000000000000-0x000000080000 : "u-boot"
0x000000080000-0x000000100000 : "u-boot-env"
0x000000100000-0x000000140000 : "factory"
0x000000140000-0x000007e00000 : "firmware"
0x000007e00000-0x000008000000 : "panic-ops"
```
`firmware` partition contains UBI volumes. Unfortunately I accidentally wiped
partition and I no longer have access to it.
`firmware` partition contains 'secondary' U-Boot which is run by 'first' u-boot.
It also contains various configuration partitions that include device info and
MAC address. There also seems to be 'primary' and 'backup' set of 'main' volumes.
U-boot has `mtkupgrade` command that just overrides data on firmware partitions.
Firmware file provided by TP-Link cannot be used with that command.
U-boot also has 'recovery' http server. Unfortunately I was not able to make it
work with manufacturer's firmware.
Manufacturer's firmware essentially contains multiple UBI volumes along with
'partition table'. Unfortunately I no longer can properly run manufacturer's
firmware so I cannot at the moment try to a support for building 'factory' images.
This patch adds support for initramfs image as well as sysupgrade image.
This seems to be pretty standard MT7621 board otherwise.
Things that work:
* network
* leds
* usb
* factory MAC detection
Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com>
This patch adds the missing LEDs to Asus RT-AX53U.
Based on PR #10400 and patch provided in #11068
- enable the two LEDs controlled by mt7915e for wireless;
- add label to power LED so it works properly and fix formatting;
- add the USB LED;
- switch LEDs are best left to be controlled by hardware for now.
Co-Authored-By: Ivan Rozhuk <rozhuk.im@gmail.com>
Co-Authored-By: Shiji Yang <yangshiji66@qq.com>
Co-Authored-By: Hartmut Birr <e9hack@gmail.com>
Tested-by: Felix Baumann <felix.bau@gmx.de>
Tested-by: Marian Sarcinschi <znevna@gmail.com>
Signed-off-by: Marian Sarcinschi <znevna@gmail.com>
Etisalat S3 is a wireless WiFi 5 router manufactured by Sercomm company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: 1x USB3.0
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Status (RGB)
- 1x 2.4G (blue, hardware, mt76-phy0)
- 1x 5G (blue, hardware, mt76-phy1)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface under admin account
2. Navigate to Settings -> Configuration -> Save to Computer
3. Decode the configuration. For example, using cfgtool.py tool (see
related section):
cfgtool.py -u configurationBackup.cfg
4. Open configurationBackup.xml and find the following line:
<PARAMETER name="Password" type="string" value="<your router serial \
is here>" writable="1" encryption="1" password="1"/>
5. Insert the following line after and save:
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
6. Encode the configuration. For example, using cfgtool.py tool:
cfgtool.py -p configurationBackup.xml
7. Upload the changed configuration (configurationBackup_changed.cfg) to
the router
8. Login to the router web interface (SuperUser:ETxxxxxxxxxx, where
ETxxxxxxxxxx is the serial number from the backplate label)
9. Navigate to Settings -> WAN -> Add static IP interface (e.g.
10.0.0.1/255.255.255.0)
10. Navigate to Settings -> Remote cotrol -> Add SSH, port 22,
10.0.0.0/255.255.255.0 and interface created before
11. Change IP of your client to 10.0.0.2/255.255.255.0 and connect the
ethernet cable to the WAN port of the router
12. Connect to the router using SSH shell under SuperUser account
13. Run in SSH shell:
sh
14. Make a mtd backup (optional, see related section)
15. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
16. Login to the router web interface under admin account
17. Remove dots from the OpenWrt factory image filename
18. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 10.0.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 10.0.0.2
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
MAC Addresses
-------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | *:50 |
| WAN | label + 11 | *:5b |
| 2g | label + 2 | *:52 |
| 5g | label + 3 | *:53 |
+-----+------------+---------+
The label MAC address was found in Factory 0x21000
cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker
Co-authored-by: Karim Dehouche <karimdplay@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Wavlink WS-WN572HP3 4G is an 802.11ac
dual-band outdoor router with LTE support.
Specifications;
* Soc: MT7621DAT
* RAM: 128MiB
* Flash: NOR 16MiB GD-25Q128ESIG3
* Wi-Fi:
* MT7613BEN: 5GHz
* MT7603EN: 2.4GHz
* Ethernet: 2x 1GbE
* USB: None - only used internally
* LTE Modem: Quectel EC200T-EU
* UART: 115200 baud
* LEDs:
* 7 blue at the front
* 1 Power
* 2 LAN / WAN
* 1 Status
* 3 RSSI (annotated 4G)
* 1 green at the bottom (4G LED)
* Buttons: 1 reset button
Installation:
* press and hold the reset button while powering on the device
* keep it pressed for ten seconds
* connect to 192.168.10.1 via webbrowser (chromium/chrome works, at
least Firefox 106.0.3 does not)
* upload the sysupgrade image, confirm the checksum, wait 2 minutes
until the device reboots
Revert to stock firmware:
* same as installation but use the recovery image for WL-WN572HP3
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Keenetic KN-3010 is a 2.4/5 Ghz band 11ac (Wi-Fi 5) router, based on MT7621DAT.
Specification:
- System-On-Chip: MT7621DAT
- CPU/Speed: 880 MHz
- Flash-Chip: Winbond w25q256
- Flash size: 32768 KiB
- RAM: 128 MiB
- 5x 10/100/1000 Mbps Ethernet
- 4x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- Wireless No1 (2T2R): MT7603E 2.4 GHz 802.11bgn
- Wireless No2 (2T2R): MT7613BE 5 GHz 802.11ac
- 4x LED, 2x button, 1x mode switch
Notes:
- The device supports dual boot mode
- The firmware partitions were concatinated into one
- The FN button led indicator has been reassigned as the 2.4GHz
wifi indicator.
Flash instruction:
The only way to flash OpenWrt image is to use tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24 and tftp server.
2. Rename "openwrt-ramips-mt7621-keenetic_kn-3010-squashfs-factory.bin"
to "KN-3010_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed until power led start blinking.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Hardware specification:
SoC: MediaTek MT7621AT
Flash: Winbond W29N01HVSINA 128MB
RAM: Micron MT41K128M16JT-125 256MB
Ethernet: 4x 10/100/1000 Mbps
WiFi1: MT7615DN 2.4GHz N 2x2:2
WiFi2: MT7615DN 5GHz AC 2x2:2
WiFi3: MT7615N 5GHz AC 4x4:4
Button: WPS, Reset
Flash instructions:
OpenWrt can be installed via D-Link Recovery GUI:
Push and hold reset button (on the bottom of the device) until power led starts flashing (about 10 secs or so) while plugging in the power cable.
Give it ~30 seconds, to boot the recovery mode GUI
Connect your client computer to LAN1 of the device
Set your client IP address manually to 192.168.0.2 / 255.255.255.0.
Call the recovery page for the device at http://192.168.0.1/
Use the provided emergency web GUI to upload and flash a new firmware to the device
Signed-off-by: Ivaylo Ivanov <iivailo@mail.bg>