2021-02-03 14:39:58 +00:00
// Author: Xianjun Jiao, Michael Mehari, Wei Liu
// SPDX-FileCopyrightText: 2019 UGent
2021-01-20 12:30:12 +00:00
// SPDX-License-Identifier: AGPL-3.0-or-later
2019-12-10 13:03:47 +00:00
# include <linux/bitops.h>
# include <linux/dmapool.h>
# include <linux/io.h>
# include <linux/iopoll.h>
# include <linux/of_address.h>
# include <linux/of_platform.h>
# include <linux/of_irq.h>
# include <linux/slab.h>
# include <linux/clk.h>
# include <linux/io-64-nonatomic-lo-hi.h>
# include <linux/delay.h>
# include <linux/interrupt.h>
# include <linux/dmaengine.h>
# include <linux/slab.h>
# include <linux/delay.h>
# include <linux/etherdevice.h>
# include <linux/init.h>
# include <linux/kthread.h>
# include <linux/module.h>
# include <linux/of_dma.h>
# include <linux/platform_device.h>
# include <linux/random.h>
# include <linux/slab.h>
# include <linux/wait.h>
# include <linux/sched/task.h>
# include <linux/dma/xilinx_dma.h>
# include <linux/spi/spi.h>
# include <net/mac80211.h>
# include <linux/clk.h>
# include <linux/clkdev.h>
# include <linux/clk-provider.h>
# include <linux/iio/iio.h>
# include <linux/iio/sysfs.h>
# include <linux/gpio.h>
# include <linux/leds.h>
# define IIO_AD9361_USE_PRIVATE_H_
2021-05-05 14:44:39 +00:00
# include <../../drivers/iio/adc/ad9361_regs.h>
# include <../../drivers/iio/adc/ad9361.h>
# include <../../drivers/iio/adc/ad9361_private.h>
2019-12-10 13:03:47 +00:00
# include <../../drivers/iio/frequency/cf_axi_dds.h>
2021-05-05 14:44:39 +00:00
extern int ad9361_get_tx_atten ( struct ad9361_rf_phy * phy , u32 tx_num ) ;
extern int ad9361_set_tx_atten ( struct ad9361_rf_phy * phy , u32 atten_mdb ,
bool tx1 , bool tx2 , bool immed ) ;
extern int ad9361_ctrl_outs_setup ( struct ad9361_rf_phy * phy ,
struct ctrl_outs_control * ctrl ) ;
2019-12-10 13:03:47 +00:00
# include "../user_space/sdrctl_src/nl80211_testmode_def.h"
# include "hw_def.h"
# include "sdr.h"
2020-09-04 08:57:04 +00:00
# include "git_rev.h"
2019-12-10 13:03:47 +00:00
// driver API of component driver
extern struct tx_intf_driver_api * tx_intf_api ;
extern struct rx_intf_driver_api * rx_intf_api ;
extern struct openofdm_tx_driver_api * openofdm_tx_api ;
extern struct openofdm_rx_driver_api * openofdm_rx_api ;
extern struct xpu_driver_api * xpu_api ;
static int test_mode = 0 ; // 0 normal; 1 rx test
MODULE_AUTHOR ( " Xianjun Jiao " ) ;
MODULE_DESCRIPTION ( " SDR driver " ) ;
MODULE_LICENSE ( " GPL v2 " ) ;
module_param ( test_mode , int , 0 ) ;
MODULE_PARM_DESC ( myint , " test_mode. 0 normal; 1 rx test " ) ;
// ---------------rfkill---------------------------------------
static bool openwifi_is_radio_enabled ( struct openwifi_priv * priv )
{
int reg ;
if ( priv - > tx_intf_cfg = = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1 )
reg = ad9361_get_tx_atten ( priv - > ad9361_phy , 2 ) ;
else
reg = ad9361_get_tx_atten ( priv - > ad9361_phy , 1 ) ;
if ( reg = = AD9361_RADIO_ON_TX_ATT )
return true ; // 0 off, 1 on
return false ;
}
void openwifi_rfkill_init ( struct ieee80211_hw * hw )
{
struct openwifi_priv * priv = hw - > priv ;
priv - > rfkill_off = openwifi_is_radio_enabled ( priv ) ;
printk ( " %s openwifi_rfkill_init: wireless switch is %s \n " , sdr_compatible_str , priv - > rfkill_off ? " on " : " off " ) ;
wiphy_rfkill_set_hw_state ( hw - > wiphy , ! priv - > rfkill_off ) ;
wiphy_rfkill_start_polling ( hw - > wiphy ) ;
}
void openwifi_rfkill_poll ( struct ieee80211_hw * hw )
{
bool enabled ;
struct openwifi_priv * priv = hw - > priv ;
enabled = openwifi_is_radio_enabled ( priv ) ;
2020-06-12 08:50:34 +00:00
// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
2019-12-10 13:03:47 +00:00
if ( unlikely ( enabled ! = priv - > rfkill_off ) ) {
priv - > rfkill_off = enabled ;
printk ( " %s openwifi_rfkill_poll: WARNING wireless radio switch turned %s \n " , sdr_compatible_str , enabled ? " on " : " off " ) ;
wiphy_rfkill_set_hw_state ( hw - > wiphy , ! enabled ) ;
}
}
void openwifi_rfkill_exit ( struct ieee80211_hw * hw )
{
printk ( " %s openwifi_rfkill_exit \n " , sdr_compatible_str ) ;
wiphy_rfkill_stop_polling ( hw - > wiphy ) ;
}
//----------------rfkill end-----------------------------------
//static void ad9361_rf_init(void);
//static void ad9361_rf_stop(void);
//static void ad9361_rf_calc_rssi(void);
static void ad9361_rf_set_channel ( struct ieee80211_hw * dev ,
struct ieee80211_conf * conf )
{
struct openwifi_priv * priv = dev - > priv ;
2020-10-08 13:07:57 +00:00
u32 actual_rx_lo = conf - > chandef . chan - > center_freq - priv - > rx_freq_offset_to_lo_MHz + priv - > drv_rx_reg_val [ DRV_RX_REG_IDX_EXTRA_FO ] ;
2021-04-05 19:49:59 +00:00
u32 actual_tx_lo ;
2019-12-10 13:03:47 +00:00
bool change_flag = ( actual_rx_lo ! = priv - > actual_rx_lo ) ;
if ( change_flag ) {
priv - > actual_rx_lo = actual_rx_lo ;
actual_tx_lo = conf - > chandef . chan - > center_freq - priv - > tx_freq_offset_to_lo_MHz ;
2021-05-05 14:44:39 +00:00
clk_set_rate ( priv - > ad9361_phy - > clks [ RX_RFPLL ] , ( ( ( u64 ) 1000000ull ) * ( ( u64 ) actual_rx_lo ) > > 1 ) ) ;
clk_set_rate ( priv - > ad9361_phy - > clks [ TX_RFPLL ] , ( ( ( u64 ) 1000000ull ) * ( ( u64 ) actual_tx_lo ) > > 1 ) ) ;
2019-12-10 13:03:47 +00:00
if ( actual_rx_lo < 2412 ) {
priv - > rssi_correction = 153 ;
} else if ( actual_rx_lo < = 2484 ) {
priv - > rssi_correction = 153 ;
} else if ( actual_rx_lo < 5160 ) {
priv - > rssi_correction = 153 ;
} else if ( actual_rx_lo < = 5240 ) {
priv - > rssi_correction = 145 ;
} else if ( actual_rx_lo < = 5320 ) {
priv - > rssi_correction = 148 ;
} else {
priv - > rssi_correction = 148 ;
}
2020-12-14 12:32:15 +00:00
2020-12-17 15:48:56 +00:00
// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
2021-04-05 19:49:59 +00:00
xpu_api - > XPU_REG_LBT_TH_write ( ( priv - > rssi_correction - 62 - 16 ) < < 1 ) ; // wei's magic value is 135, here is 134 @ ch 44
2019-12-10 13:03:47 +00:00
if ( actual_rx_lo < 2500 ) {
//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
if ( priv - > band ! = BAND_2_4GHZ ) {
priv - > band = BAND_2_4GHZ ;
xpu_api - > XPU_REG_BAND_CHANNEL_write ( ( priv - > use_short_slot < < 24 ) | ( priv - > band < < 16 ) ) ;
}
2020-04-27 07:37:04 +00:00
// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time. let's add 2us for those device that is really "slow"!
// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
2019-12-10 13:03:47 +00:00
// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
2020-04-27 07:37:04 +00:00
// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
2019-12-10 13:03:47 +00:00
}
else {
//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
if ( priv - > band ! = BAND_5_8GHZ ) {
priv - > band = BAND_5_8GHZ ;
xpu_api - > XPU_REG_BAND_CHANNEL_write ( ( priv - > use_short_slot < < 24 ) | ( priv - > band < < 16 ) ) ;
}
2020-04-27 07:37:04 +00:00
// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting. let's add 2us for those device that is really "slow"!
// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
2019-12-10 13:03:47 +00:00
}
//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
// //-- use less
//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
}
printk ( " %s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) \n " , sdr_compatible_str , conf - > chandef . chan - > center_freq , priv - > rssi_correction , change_flag ) ;
}
const struct openwifi_rf_ops ad9361_rf_ops = {
. name = " ad9361 " ,
// .init = ad9361_rf_init,
// .stop = ad9361_rf_stop,
. set_chan = ad9361_rf_set_channel ,
// .calc_rssi = ad9361_rf_calc_rssi,
} ;
u16 reverse16 ( u16 d ) {
union u16_byte2 tmp0 , tmp1 ;
tmp0 . a = d ;
tmp1 . c [ 0 ] = tmp0 . c [ 1 ] ;
tmp1 . c [ 1 ] = tmp0 . c [ 0 ] ;
return ( tmp1 . a ) ;
}
u32 reverse32 ( u32 d ) {
union u32_byte4 tmp0 , tmp1 ;
tmp0 . a = d ;
tmp1 . c [ 0 ] = tmp0 . c [ 3 ] ;
tmp1 . c [ 1 ] = tmp0 . c [ 2 ] ;
tmp1 . c [ 2 ] = tmp0 . c [ 1 ] ;
tmp1 . c [ 3 ] = tmp0 . c [ 0 ] ;
return ( tmp1 . a ) ;
}
2020-06-12 08:50:34 +00:00
static int openwifi_init_tx_ring ( struct openwifi_priv * priv , int ring_idx )
2019-12-10 13:03:47 +00:00
{
2020-06-12 08:50:34 +00:00
struct openwifi_ring * ring = & ( priv - > tx_ring [ ring_idx ] ) ;
2019-12-10 13:03:47 +00:00
int i ;
2020-06-12 08:50:34 +00:00
ring - > stop_flag = 0 ;
2019-12-10 13:03:47 +00:00
ring - > bd_wr_idx = 0 ;
ring - > bd_rd_idx = 0 ;
ring - > bds = kmalloc ( sizeof ( struct openwifi_buffer_descriptor ) * NUM_TX_BD , GFP_KERNEL ) ;
if ( ring - > bds = = NULL ) {
printk ( " %s openwifi_init_tx_ring: WARNING Cannot allocate TX ring \n " , sdr_compatible_str ) ;
return - ENOMEM ;
}
for ( i = 0 ; i < NUM_TX_BD ; i + + ) {
ring - > bds [ i ] . skb_linked = 0 ; // for tx, skb is from upper layer
2021-02-04 08:54:47 +00:00
//at first right after skb allocated, head, data, tail are the same.
2021-02-04 09:16:34 +00:00
ring - > bds [ i ] . dma_mapping_addr = 0 ; // for tx, mapping is done after skb is received from upper layer in tx routine
2019-12-10 13:03:47 +00:00
}
return 0 ;
}
2020-06-12 08:50:34 +00:00
static void openwifi_free_tx_ring ( struct openwifi_priv * priv , int ring_idx )
2019-12-10 13:03:47 +00:00
{
2020-06-12 08:50:34 +00:00
struct openwifi_ring * ring = & ( priv - > tx_ring [ ring_idx ] ) ;
2019-12-10 13:03:47 +00:00
int i ;
2020-06-12 08:50:34 +00:00
ring - > stop_flag = 0 ;
2019-12-10 13:03:47 +00:00
ring - > bd_wr_idx = 0 ;
ring - > bd_rd_idx = 0 ;
for ( i = 0 ; i < NUM_TX_BD ; i + + ) {
if ( ring - > bds [ i ] . skb_linked = = 0 & & ring - > bds [ i ] . dma_mapping_addr = = 0 )
continue ;
if ( ring - > bds [ i ] . dma_mapping_addr ! = 0 )
2020-06-12 08:50:34 +00:00
dma_unmap_single ( priv - > tx_chan - > device - > dev , ring - > bds [ i ] . dma_mapping_addr , ring - > bds [ i ] . skb_linked - > len , DMA_MEM_TO_DEV ) ;
2019-12-10 13:03:47 +00:00
// if (ring->bds[i].skb_linked!=NULL)
2020-06-12 08:50:34 +00:00
// dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
2019-12-10 13:03:47 +00:00
if ( ( ring - > bds [ i ] . dma_mapping_addr ! = 0 & & ring - > bds [ i ] . skb_linked = = 0 ) | |
( ring - > bds [ i ] . dma_mapping_addr = = 0 & & ring - > bds [ i ] . skb_linked ! = 0 ) )
2021-04-05 19:42:46 +00:00
printk ( " %s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x \n " , sdr_compatible_str ,
2020-06-12 08:50:34 +00:00
ring_idx , i , ( void * ) ( ring - > bds [ i ] . skb_linked ) , ring - > bds [ i ] . dma_mapping_addr ) ;
2019-12-10 13:03:47 +00:00
ring - > bds [ i ] . skb_linked = 0 ;
ring - > bds [ i ] . dma_mapping_addr = 0 ;
}
if ( ring - > bds )
kfree ( ring - > bds ) ;
ring - > bds = NULL ;
}
static int openwifi_init_rx_ring ( struct openwifi_priv * priv )
{
2021-03-22 22:59:41 +00:00
int i ;
u8 * pdata_tmp ;
2019-12-10 13:03:47 +00:00
priv - > rx_cyclic_buf = dma_alloc_coherent ( priv - > rx_chan - > device - > dev , RX_BD_BUF_SIZE * NUM_RX_BD , & priv - > rx_cyclic_buf_dma_mapping_addr , GFP_KERNEL ) ;
if ( ! priv - > rx_cyclic_buf ) {
printk ( " %s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed! \n " , sdr_compatible_str ) ;
dma_free_coherent ( priv - > rx_chan - > device - > dev , RX_BD_BUF_SIZE * NUM_RX_BD , priv - > rx_cyclic_buf , priv - > rx_cyclic_buf_dma_mapping_addr ) ;
return ( - 1 ) ;
}
2021-03-22 22:59:41 +00:00
// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
for ( i = 0 ; i < NUM_RX_BD ; i + + ) {
pdata_tmp = priv - > rx_cyclic_buf + i * RX_BD_BUF_SIZE ; // our header insertion is at the beginning
( * ( ( u32 * ) ( pdata_tmp + 0 ) ) ) = 0 ;
( * ( ( u32 * ) ( pdata_tmp + 4 ) ) ) = 0 ;
}
printk ( " %s openwifi_init_rx_ring: tsft_low and tsft_high are cleared! \n " , sdr_compatible_str ) ;
2019-12-10 13:03:47 +00:00
return 0 ;
}
static void openwifi_free_rx_ring ( struct openwifi_priv * priv )
{
if ( priv - > rx_cyclic_buf )
dma_free_coherent ( priv - > rx_chan - > device - > dev , RX_BD_BUF_SIZE * NUM_RX_BD , priv - > rx_cyclic_buf , priv - > rx_cyclic_buf_dma_mapping_addr ) ;
priv - > rx_cyclic_buf_dma_mapping_addr = 0 ;
priv - > rx_cyclic_buf = 0 ;
}
static int rx_dma_setup ( struct ieee80211_hw * dev ) {
struct openwifi_priv * priv = dev - > priv ;
struct dma_device * rx_dev = priv - > rx_chan - > device ;
priv - > rxd = rx_dev - > device_prep_dma_cyclic ( priv - > rx_chan , priv - > rx_cyclic_buf_dma_mapping_addr , RX_BD_BUF_SIZE * NUM_RX_BD , RX_BD_BUF_SIZE , DMA_DEV_TO_MEM , DMA_CTRL_ACK | DMA_PREP_INTERRUPT ) ;
if ( ! ( priv - > rxd ) ) {
openwifi_free_rx_ring ( priv ) ;
2020-04-27 07:37:04 +00:00
printk ( " %s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p \n " , sdr_compatible_str , ( void * ) ( priv - > rxd ) ) ;
2019-12-10 13:03:47 +00:00
return ( - 1 ) ;
}
priv - > rxd - > callback = 0 ;
priv - > rxd - > callback_param = 0 ;
priv - > rx_cookie = priv - > rxd - > tx_submit ( priv - > rxd ) ;
if ( dma_submit_error ( priv - > rx_cookie ) ) {
printk ( " %s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d \n " , sdr_compatible_str , ( u32 ) ( priv - > rx_cookie ) ) ;
return ( - 1 ) ;
}
dma_async_issue_pending ( priv - > rx_chan ) ;
return ( 0 ) ;
}
static irqreturn_t openwifi_rx_interrupt ( int irq , void * dev_id )
{
struct ieee80211_hw * dev = dev_id ;
struct openwifi_priv * priv = dev - > priv ;
struct ieee80211_rx_status rx_status = { 0 } ;
struct sk_buff * skb ;
struct ieee80211_hdr * hdr ;
2020-11-05 17:22:24 +00:00
u32 addr1_low32 = 0 , addr2_low32 = 0 , addr3_low32 = 0 , len , rate_idx , tsft_low , tsft_high , loop_count = 0 , ht_flag , short_gi ; //, fc_di;
2020-06-12 08:50:34 +00:00
// u32 dma_driver_buf_idx_mod;
2021-03-22 22:59:41 +00:00
u8 * pdata_tmp , fcs_ok ; //, target_buf_idx;//, phy_rx_sn_hw;
2019-12-10 13:03:47 +00:00
s8 signal ;
u16 rssi_val , addr1_high16 = 0 , addr2_high16 = 0 , addr3_high16 = 0 , sc = 0 ;
2020-01-07 13:17:08 +00:00
bool content_ok = false , len_overflow = false ;
2021-03-22 22:59:41 +00:00
static u8 target_buf_idx_old = 0 ;
2019-12-10 13:03:47 +00:00
spin_lock ( & priv - > lock ) ;
2021-03-22 22:59:41 +00:00
while ( 1 ) { // loop all rx buffers that have new rx packets
2020-06-12 08:50:34 +00:00
pdata_tmp = priv - > rx_cyclic_buf + target_buf_idx_old * RX_BD_BUF_SIZE ; // our header insertion is at the beginning
tsft_low = ( * ( ( u32 * ) ( pdata_tmp + 0 ) ) ) ;
tsft_high = ( * ( ( u32 * ) ( pdata_tmp + 4 ) ) ) ;
2021-03-22 22:59:41 +00:00
if ( tsft_low = = 0 & & tsft_high = = 0 ) // no packet in the buffer
break ;
2020-06-12 08:50:34 +00:00
rssi_val = ( * ( ( u16 * ) ( pdata_tmp + 8 ) ) ) ;
len = ( * ( ( u16 * ) ( pdata_tmp + 12 ) ) ) ;
2019-12-10 13:03:47 +00:00
2020-06-12 08:50:34 +00:00
len_overflow = ( len > ( RX_BD_BUF_SIZE - 16 ) ? true : false ) ;
2019-12-10 13:03:47 +00:00
2020-06-12 08:50:34 +00:00
rate_idx = ( * ( ( u16 * ) ( pdata_tmp + 14 ) ) ) ;
2020-11-05 17:22:24 +00:00
short_gi = ( ( rate_idx & 0x20 ) ! = 0 ) ;
rate_idx = ( rate_idx & 0xDF ) ;
2019-12-10 13:03:47 +00:00
2020-06-12 08:50:34 +00:00
fcs_ok = ( len_overflow ? 0 : ( * ( ( u8 * ) ( pdata_tmp + 16 + len - 1 ) ) ) ) ;
//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
// dma_driver_buf_idx_mod = (state.residue&0x7f);
fcs_ok = ( ( fcs_ok & 0x80 ) ! = 0 ) ;
2020-09-04 08:57:04 +00:00
ht_flag = ( ( rate_idx & 0x10 ) ! = 0 ) ;
2020-06-12 08:50:34 +00:00
2020-11-05 17:22:24 +00:00
if ( ( len > = 14 & & ( ! len_overflow ) ) & & ( rate_idx > = 8 & & rate_idx < = 23 ) ) {
2020-06-12 08:50:34 +00:00
// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
// printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
// }
content_ok = true ;
} else {
printk ( " %s openwifi_rx_interrupt: WARNING content! \n " , sdr_compatible_str ) ;
content_ok = false ;
}
rssi_val = ( rssi_val > > 1 ) ;
if ( ( rssi_val + 128 ) < priv - > rssi_correction )
signal = - 128 ;
else
signal = rssi_val - priv - > rssi_correction ;
// fc_di = (*((u32*)(pdata_tmp+16)));
// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
// addr1_low32 = (*((u32*)(pdata_tmp+16+4+2)));
// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
// addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2)));
// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
// addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2)));
if ( ( priv - > drv_rx_reg_val [ DRV_RX_REG_IDX_PRINT_CFG ] & 2 ) | | ( ( priv - > drv_rx_reg_val [ DRV_RX_REG_IDX_PRINT_CFG ] & 1 ) & & fcs_ok = = 0 ) ) {
hdr = ( struct ieee80211_hdr * ) ( pdata_tmp + 16 ) ;
addr1_low32 = * ( ( u32 * ) ( hdr - > addr1 + 2 ) ) ;
addr1_high16 = * ( ( u16 * ) ( hdr - > addr1 ) ) ;
if ( len > = 20 ) {
addr2_low32 = * ( ( u32 * ) ( hdr - > addr2 + 2 ) ) ;
addr2_high16 = * ( ( u16 * ) ( hdr - > addr2 ) ) ;
}
if ( len > = 26 ) {
addr3_low32 = * ( ( u32 * ) ( hdr - > addr3 + 2 ) ) ;
addr3_high16 = * ( ( u16 * ) ( hdr - > addr3 ) ) ;
}
if ( len > = 28 )
sc = hdr - > seq_ctrl ;
if ( addr1_low32 ! = 0xffffffff | | addr1_high16 ! = 0xffff )
2020-11-05 17:22:24 +00:00
printk ( " %s openwifi_rx_interrupt:%4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm \n " , sdr_compatible_str ,
2020-09-04 08:57:04 +00:00
len , ht_flag , wifi_rate_table [ rate_idx ] , hdr - > frame_control , hdr - > duration_id ,
2020-06-12 08:50:34 +00:00
reverse16 ( addr1_high16 ) , reverse32 ( addr1_low32 ) , reverse16 ( addr2_high16 ) , reverse32 ( addr2_low32 ) , reverse16 ( addr3_high16 ) , reverse32 ( addr3_low32 ) ,
sc , fcs_ok , target_buf_idx_old , signal ) ;
}
// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
if ( content_ok ) {
skb = dev_alloc_skb ( len ) ;
if ( skb ) {
skb_put_data ( skb , pdata_tmp + 16 , len ) ;
rx_status . antenna = 0 ;
// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
rx_status . rate_idx = wifi_rate_table_mapping [ rate_idx ] ;
rx_status . signal = signal ;
rx_status . freq = dev - > conf . chandef . chan - > center_freq ;
rx_status . band = dev - > conf . chandef . chan - > band ;
rx_status . mactime = ( ( ( u64 ) tsft_low ) | ( ( ( u64 ) tsft_high ) < < 32 ) ) ;
rx_status . flag | = RX_FLAG_MACTIME_START ;
if ( ! fcs_ok )
rx_status . flag | = RX_FLAG_FAILED_FCS_CRC ;
2020-11-05 17:22:24 +00:00
if ( rate_idx < = 15 )
rx_status . encoding = RX_ENC_LEGACY ;
else
rx_status . encoding = RX_ENC_HT ;
2020-06-12 08:50:34 +00:00
rx_status . bw = RATE_INFO_BW_20 ;
2020-11-05 17:22:24 +00:00
if ( short_gi )
rx_status . enc_flags | = RX_ENC_FLAG_SHORT_GI ;
2020-06-12 08:50:34 +00:00
memcpy ( IEEE80211_SKB_RXCB ( skb ) , & rx_status , sizeof ( rx_status ) ) ; // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
ieee80211_rx_irqsafe ( dev , skb ) ; // call mac80211 function
} else
printk ( " %s openwifi_rx_interrupt: WARNING dev_alloc_skb failed! \n " , sdr_compatible_str ) ;
}
2021-03-22 22:59:41 +00:00
( * ( ( u32 * ) ( pdata_tmp + 0 ) ) ) = 0 ;
( * ( ( u32 * ) ( pdata_tmp + 4 ) ) ) = 0 ; // clear the tsft_low and tsft_high to indicate the packet has been processed
2020-06-12 08:50:34 +00:00
loop_count + + ;
2021-03-22 22:59:41 +00:00
target_buf_idx_old = ( ( target_buf_idx_old + 1 ) & ( NUM_RX_BD - 1 ) ) ;
2019-12-10 13:03:47 +00:00
}
2020-06-12 08:50:34 +00:00
if ( loop_count ! = 1 & & ( priv - > drv_rx_reg_val [ DRV_RX_REG_IDX_PRINT_CFG ] & 1 ) )
printk ( " %s openwifi_rx_interrupt: WARNING loop_count %d \n " , sdr_compatible_str , loop_count ) ;
// openwifi_rx_interrupt_out:
2019-12-10 13:03:47 +00:00
spin_unlock ( & priv - > lock ) ;
return IRQ_HANDLED ;
}
static irqreturn_t openwifi_tx_interrupt ( int irq , void * dev_id )
{
struct ieee80211_hw * dev = dev_id ;
struct openwifi_priv * priv = dev - > priv ;
2020-06-12 08:50:34 +00:00
struct openwifi_ring * ring ;
2019-12-10 13:03:47 +00:00
struct sk_buff * skb ;
struct ieee80211_tx_info * info ;
2021-01-28 13:15:29 +00:00
u32 reg_val , hw_queue_len , prio , queue_idx , dma_fifo_no_room_flag , num_slot_random , cw , loop_count = 0 ; //, i;
2020-06-12 08:50:34 +00:00
u8 tx_result_report ;
// u16 prio_rd_idx_store[64]={0};
2019-12-10 13:03:47 +00:00
spin_lock ( & priv - > lock ) ;
2020-06-12 08:50:34 +00:00
while ( 1 ) { // loop all packets that have been sent by FPGA
reg_val = tx_intf_api - > TX_INTF_REG_PKT_INFO_read ( ) ;
2021-01-28 13:15:29 +00:00
if ( reg_val ! = 0xFFFFFFFF ) {
2020-12-28 15:03:51 +00:00
prio = ( ( 0x7FFFF & reg_val ) > > ( 5 + NUM_BIT_MAX_PHY_TX_SN + NUM_BIT_MAX_NUM_HW_QUEUE ) ) ;
2021-01-28 13:15:29 +00:00
cw = ( ( 0xF0000000 & reg_val ) > > 28 ) ;
num_slot_random = ( ( 0xFF80000 & reg_val ) > > ( 2 + 5 + NUM_BIT_MAX_PHY_TX_SN + NUM_BIT_MAX_NUM_HW_QUEUE ) ) ;
if ( cw > 10 ) {
cw = 10 ;
num_slot_random + = 512 ;
}
2020-06-12 08:50:34 +00:00
ring = & ( priv - > tx_ring [ prio ] ) ;
ring - > bd_rd_idx = ( ( reg_val > > 5 ) & MAX_PHY_TX_SN ) ;
skb = ring - > bds [ ring - > bd_rd_idx ] . skb_linked ;
dma_unmap_single ( priv - > tx_chan - > device - > dev , ring - > bds [ ring - > bd_rd_idx ] . dma_mapping_addr ,
skb - > len , DMA_MEM_TO_DEV ) ;
if ( ring - > stop_flag = = 1 ) {
// Wake up Linux queue if FPGA and driver ring have room
queue_idx = ( ( reg_val > > ( 5 + NUM_BIT_MAX_PHY_TX_SN ) ) & ( MAX_NUM_HW_QUEUE - 1 ) ) ;
dma_fifo_no_room_flag = tx_intf_api - > TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read ( ) ;
hw_queue_len = tx_intf_api - > TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read ( ) ;
// printk("%s openwifi_tx_interrupt: WARNING loop %d prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d call %d\n", sdr_compatible_str,
// loop_count, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, priv->call_counter);
if ( ( ( dma_fifo_no_room_flag > > queue_idx ) & 1 ) = = 0 & & ( NUM_TX_BD - ( ( hw_queue_len > > ( queue_idx * 8 ) ) & 0xFF ) ) > = RING_ROOM_THRESHOLD ) {
// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
printk ( " %s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d \n " , sdr_compatible_str ,
prio , queue_idx , dma_fifo_no_room_flag , hw_queue_len , ring - > bd_wr_idx , ring - > bd_rd_idx ) ;
ieee80211_wake_queue ( dev , prio ) ;
ring - > stop_flag = 0 ;
}
}
2019-12-10 13:03:47 +00:00
2020-11-05 17:22:24 +00:00
if ( ( * ( u32 * ) ( & ( skb - > data [ 4 ] ) ) ) | | ( ( * ( u32 * ) ( & ( skb - > data [ 12 ] ) ) ) & 0xFFFF0000 ) ) {
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx_interrupt: WARNING %08x %08x %08x %08x \n " , sdr_compatible_str , * ( u32 * ) ( & ( skb - > data [ 12 ] ) ) , * ( u32 * ) ( & ( skb - > data [ 8 ] ) ) , * ( u32 * ) ( & ( skb - > data [ 4 ] ) ) , * ( u32 * ) ( & ( skb - > data [ 0 ] ) ) ) ;
2019-12-10 13:03:47 +00:00
continue ;
2020-06-12 08:50:34 +00:00
}
2019-12-10 13:03:47 +00:00
2020-06-12 08:50:34 +00:00
skb_pull ( skb , LEN_PHY_HEADER ) ;
//skb_trim(skb, num_byte_pad_skb);
info = IEEE80211_SKB_CB ( skb ) ;
ieee80211_tx_info_clear_status ( info ) ;
tx_result_report = ( reg_val & 0x1F ) ;
if ( ! ( info - > flags & IEEE80211_TX_CTL_NO_ACK ) ) {
if ( ( tx_result_report & 0x10 ) = = 0 )
info - > flags | = IEEE80211_TX_STAT_ACK ;
// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
// info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
// info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
// info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
// info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
}
2019-12-10 13:03:47 +00:00
2020-06-12 08:50:34 +00:00
info - > status . rates [ 0 ] . count = ( tx_result_report & 0xF ) + 1 ; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
info - > status . rates [ 1 ] . idx = - 1 ;
info - > status . rates [ 2 ] . idx = - 1 ;
info - > status . rates [ 3 ] . idx = - 1 ; //in mac80211.h: #define IEEE80211_TX_MAX_RATES 4
if ( ( tx_result_report & 0x10 ) & & ( ( priv - > drv_tx_reg_val [ DRV_TX_REG_IDX_PRINT_CFG ] ) & 1 ) )
printk ( " %s openwifi_tx_interrupt: WARNING tx_result %02x prio%d wr%d rd%d \n " , sdr_compatible_str , tx_result_report , prio , ring - > bd_wr_idx , ring - > bd_rd_idx ) ;
2021-03-22 22:59:41 +00:00
if ( ( ! ( info - > flags & IEEE80211_TX_CTL_NO_ACK ) ) & & ( ( priv - > drv_tx_reg_val [ DRV_TX_REG_IDX_PRINT_CFG ] ) & 2 ) )
2021-01-28 13:15:29 +00:00
printk ( " %s openwifi_tx_interrupt: tx_result %02x prio%d wr%d rd%d num_rand_slot %d cw %d \n " , sdr_compatible_str , tx_result_report , prio , ring - > bd_wr_idx , ring - > bd_rd_idx , num_slot_random , cw ) ;
2019-12-10 13:03:47 +00:00
2020-06-12 08:50:34 +00:00
ieee80211_tx_status_irqsafe ( dev , skb ) ;
loop_count + + ;
// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
2019-12-10 13:03:47 +00:00
2020-06-12 08:50:34 +00:00
} else
break ;
2019-12-10 13:03:47 +00:00
}
2020-06-12 08:50:34 +00:00
if ( loop_count ! = 1 & & ( ( priv - > drv_tx_reg_val [ DRV_TX_REG_IDX_PRINT_CFG ] ) & 1 ) )
printk ( " %s openwifi_tx_interrupt: WARNING loop_count %d \n " , sdr_compatible_str , loop_count ) ;
2019-12-10 13:03:47 +00:00
spin_unlock ( & priv - > lock ) ;
return IRQ_HANDLED ;
}
u32 gen_parity ( u32 v ) {
v ^ = v > > 1 ;
v ^ = v > > 2 ;
v = ( v & 0x11111111U ) * 0x11111111U ;
return ( v > > 28 ) & 1 ;
}
2020-11-05 17:22:24 +00:00
u8 gen_ht_sig_crc ( u64 m )
{
u8 i , temp , c [ 8 ] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 } , ht_sig_crc ;
for ( i = 0 ; i < 34 ; i + + )
{
temp = c [ 7 ] ^ ( ( m > > i ) & 0x01 ) ;
c [ 7 ] = c [ 6 ] ;
c [ 6 ] = c [ 5 ] ;
c [ 5 ] = c [ 4 ] ;
c [ 4 ] = c [ 3 ] ;
c [ 3 ] = c [ 2 ] ;
c [ 2 ] = c [ 1 ] ^ temp ;
c [ 1 ] = c [ 0 ] ^ temp ;
c [ 0 ] = temp ;
}
ht_sig_crc = ( ( ~ c [ 7 ] & 0x01 ) < < 0 ) | ( ( ~ c [ 6 ] & 0x01 ) < < 1 ) | ( ( ~ c [ 5 ] & 0x01 ) < < 2 ) | ( ( ~ c [ 4 ] & 0x01 ) < < 3 ) | ( ( ~ c [ 3 ] & 0x01 ) < < 4 ) | ( ( ~ c [ 2 ] & 0x01 ) < < 5 ) | ( ( ~ c [ 1 ] & 0x01 ) < < 6 ) | ( ( ~ c [ 0 ] & 0x01 ) < < 7 ) ;
return ht_sig_crc ;
}
u32 calc_phy_header ( u8 rate_hw_value , bool use_ht_rate , bool use_short_gi , u32 len , u8 * bytes ) {
2019-12-10 13:03:47 +00:00
//u32 signal_word = 0 ;
2020-11-05 17:22:24 +00:00
u8 SIG_RATE = 0 , HT_SIG_RATE ;
2019-12-10 13:03:47 +00:00
u8 len_2to0 , len_10to3 , len_msb , b0 , b1 , b2 , header_parity ;
2020-11-05 17:22:24 +00:00
u32 l_len , ht_len , ht_sig1 , ht_sig2 ;
2019-12-10 13:03:47 +00:00
2020-11-05 17:22:24 +00:00
// printk("rate_hw_value=%u\tuse_ht_rate=%u\tuse_short_gi=%u\tlen=%u\n", rate_hw_value, use_ht_rate, use_short_gi, len);
2019-12-10 13:03:47 +00:00
2020-11-05 17:22:24 +00:00
// HT-mixed mode ht signal
if ( use_ht_rate )
{
SIG_RATE = wifi_mcs_table_11b_force_up [ 4 ] ;
HT_SIG_RATE = rate_hw_value ;
l_len = 24 * len / wifi_n_dbps_ht_table [ rate_hw_value ] ;
ht_len = len ;
}
else
{
// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
SIG_RATE = wifi_mcs_table_11b_force_up [ rate_hw_value ] ;
l_len = len ;
}
len_2to0 = l_len & 0x07 ;
len_10to3 = ( l_len > > 3 ) & 0xFF ;
len_msb = ( l_len > > 11 ) & 0x01 ;
2019-12-10 13:03:47 +00:00
b0 = SIG_RATE | ( len_2to0 < < 5 ) ;
b1 = len_10to3 ;
header_parity = gen_parity ( ( len_msb < < 16 ) | ( b1 < < 8 ) | b0 ) ;
b2 = ( len_msb | ( header_parity < < 1 ) ) ;
memset ( bytes , 0 , 16 ) ;
bytes [ 0 ] = b0 ;
bytes [ 1 ] = b1 ;
bytes [ 2 ] = b2 ;
2020-11-05 17:22:24 +00:00
// HT-mixed mode signal
if ( use_ht_rate )
{
ht_sig1 = ( HT_SIG_RATE & 0x7F ) | ( ( ht_len < < 8 ) & 0xFFFF00 ) ;
ht_sig2 = 0x04 | ( use_short_gi < < 7 ) ;
ht_sig2 = ht_sig2 | ( gen_ht_sig_crc ( ht_sig1 | ht_sig2 < < 24 ) < < 10 ) ;
bytes [ 3 ] = 1 ;
bytes [ 8 ] = ( ht_sig1 & 0xFF ) ;
bytes [ 9 ] = ( ht_sig1 > > 8 ) & 0xFF ;
bytes [ 10 ] = ( ht_sig1 > > 16 ) & 0xFF ;
bytes [ 11 ] = ( ht_sig2 & 0xFF ) ;
bytes [ 12 ] = ( ht_sig2 > > 8 ) & 0xFF ;
bytes [ 13 ] = ( ht_sig2 > > 16 ) & 0xFF ;
return ( HT_SIG_RATE ) ;
}
else
{
//signal_word = b0+(b1<<8)+(b2<<16) ;
//return signal_word;
return ( SIG_RATE ) ;
}
2019-12-10 13:03:47 +00:00
}
static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
cdev_to_gpio_led_data ( struct led_classdev * led_cdev )
{
return container_of ( led_cdev , struct gpio_led_data , cdev ) ;
}
static void openwifi_tx ( struct ieee80211_hw * dev ,
struct ieee80211_tx_control * control ,
struct sk_buff * skb )
{
2020-06-12 08:50:34 +00:00
struct openwifi_priv * priv = dev - > priv ;
unsigned long flags ;
2019-12-10 13:03:47 +00:00
struct ieee80211_tx_info * info = IEEE80211_SKB_CB ( skb ) ;
struct ieee80211_hdr * hdr = ( struct ieee80211_hdr * ) skb - > data ;
2020-06-12 08:50:34 +00:00
struct openwifi_ring * ring ;
2019-12-10 13:03:47 +00:00
dma_addr_t dma_mapping_addr ;
unsigned int prio , i ;
u32 num_dma_symbol , len_mac_pdu , num_dma_byte , len_phy_packet , num_byte_pad ;
u32 rate_signal_value , rate_hw_value , ack_flag ;
2020-06-12 08:50:34 +00:00
u32 pkt_need_ack , addr1_low32 = 0 , addr2_low32 = 0 , addr3_low32 = 0 , queue_idx = 2 , dma_reg , cts_reg ; //, openofdm_state_history;
2019-12-10 13:03:47 +00:00
u16 addr1_high16 = 0 , addr2_high16 = 0 , addr3_high16 = 0 , sc = 0 , cts_duration = 0 , cts_rate_hw_value = 0 , cts_rate_signal_value = 0 , sifs , ack_duration = 0 , traffic_pkt_duration ;
u8 fc_flag , fc_type , fc_subtype , retry_limit_raw , * dma_buf , retry_limit_hw_value , rc_flags ;
2020-11-05 17:22:24 +00:00
bool use_rts_cts , use_cts_protect , use_ht_rate = false , use_short_gi , addr_flag , cts_use_traffic_rate = false , force_use_cts_protect = false ;
2019-12-10 13:03:47 +00:00
__le16 frame_control , duration_id ;
2020-06-12 08:50:34 +00:00
u32 dma_fifo_no_room_flag , hw_queue_len ;
enum dma_status status ;
2019-12-10 13:03:47 +00:00
// static bool led_status=0;
// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
// if ( (priv->phy_tx_sn&7) ==0 ) {
// openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
// if (openofdm_state_history!=openofdm_state_history_old){
// led_status = (~led_status);
// openofdm_state_history_old = openofdm_state_history;
// gpiod_set_value(led_dat->gpiod, led_status);
// }
// }
if ( test_mode = = 1 ) {
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx: WARNING test_mode==1 \n " , sdr_compatible_str ) ;
2019-12-10 13:03:47 +00:00
goto openwifi_tx_early_out ;
}
2020-06-12 08:50:34 +00:00
if ( skb - > data_len > 0 ) { // more data are not in linear data area skb->data
printk ( " %s openwifi_tx: WARNING skb->data_len>0 \n " , sdr_compatible_str ) ;
2019-12-10 13:03:47 +00:00
goto openwifi_tx_early_out ;
2020-06-12 08:50:34 +00:00
}
2019-12-10 13:03:47 +00:00
len_mac_pdu = skb - > len ;
len_phy_packet = len_mac_pdu + LEN_PHY_HEADER ;
num_dma_symbol = ( len_phy_packet > > TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS ) + ( ( len_phy_packet & ( TX_INTF_NUM_BYTE_PER_DMA_SYMBOL - 1 ) ) ! = 0 ) ;
2020-06-12 08:50:34 +00:00
// get Linux priority/queue setting info and target mac address
prio = skb_get_queue_mapping ( skb ) ;
addr1_low32 = * ( ( u32 * ) ( hdr - > addr1 + 2 ) ) ;
ring = & ( priv - > tx_ring [ prio ] ) ;
// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
if ( priv - > slice_idx = = 0xFFFFFFFF ) { // use Linux default prio setting, if there isn't any slice config
queue_idx = prio ;
} else { // customized prio to queue_idx mapping
//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
// check current packet belonging to which slice/hw-queue
for ( i = 0 ; i < MAX_NUM_HW_QUEUE ; i + + ) {
if ( priv - > dest_mac_addr_queue_map [ i ] = = addr1_low32 ) {
break ;
}
}
//}
2021-02-04 08:54:47 +00:00
queue_idx = ( i > = MAX_NUM_HW_QUEUE ? 2 : i ) ; // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
2020-06-12 08:50:34 +00:00
}
// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
// check whether the packet is bigger than DMA buffer size
2019-12-10 13:03:47 +00:00
num_dma_byte = ( num_dma_symbol < < TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS ) ;
if ( num_dma_byte > TX_BD_BUF_SIZE ) {
2020-06-12 08:50:34 +00:00
// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
printk ( " %s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE \n " , sdr_compatible_str , ring - > bd_wr_idx ) ;
2019-12-10 13:03:47 +00:00
goto openwifi_tx_early_out ;
}
num_byte_pad = num_dma_byte - len_phy_packet ;
2020-06-12 08:50:34 +00:00
// get other info from packet header
2019-12-10 13:03:47 +00:00
addr1_high16 = * ( ( u16 * ) ( hdr - > addr1 ) ) ;
if ( len_mac_pdu > = 20 ) {
addr2_low32 = * ( ( u32 * ) ( hdr - > addr2 + 2 ) ) ;
addr2_high16 = * ( ( u16 * ) ( hdr - > addr2 ) ) ;
}
if ( len_mac_pdu > = 26 ) {
addr3_low32 = * ( ( u32 * ) ( hdr - > addr3 + 2 ) ) ;
addr3_high16 = * ( ( u16 * ) ( hdr - > addr3 ) ) ;
}
duration_id = hdr - > duration_id ;
frame_control = hdr - > frame_control ;
ack_flag = ( info - > flags & IEEE80211_TX_CTL_NO_ACK ) ;
fc_type = ( ( frame_control ) > > 2 ) & 3 ;
fc_subtype = ( ( frame_control ) > > 4 ) & 0xf ;
fc_flag = ( fc_type = = 2 | | fc_type = = 0 | | ( fc_type = = 1 & & ( fc_subtype = = 8 | | fc_subtype = = 9 | | fc_subtype = = 10 ) ) ) ;
//if it is broadcasting or multicasting addr
addr_flag = ( ( addr1_low32 = = 0 & & addr1_high16 = = 0 ) | |
( addr1_low32 = = 0xFFFFFFFF & & addr1_high16 = = 0xFFFF ) | |
( addr1_high16 = = 0x3333 ) | |
( addr1_high16 = = 0x0001 & & hdr - > addr1 [ 2 ] = = 0x5E ) ) ;
if ( fc_flag & & ( ! addr_flag ) & & ( ! ack_flag ) ) { // unicast data frame
pkt_need_ack = 1 ; //FPGA need to wait ACK after this pkt sent
} else {
pkt_need_ack = 0 ;
}
2020-06-12 08:50:34 +00:00
// get Linux rate (MCS) setting
rate_hw_value = ieee80211_get_tx_rate ( dev , info ) - > hw_value ;
2019-12-10 13:03:47 +00:00
//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
2020-06-12 08:50:34 +00:00
if ( priv - > drv_tx_reg_val [ DRV_TX_REG_IDX_RATE ] > 0 & & fc_type = = 2 & & ( ! addr_flag ) ) //rate override command
rate_hw_value = priv - > drv_tx_reg_val [ DRV_TX_REG_IDX_RATE ] ;
2019-12-10 13:03:47 +00:00
retry_limit_raw = info - > control . rates [ 0 ] . count ;
rc_flags = info - > control . rates [ 0 ] . flags ;
use_rts_cts = ( ( rc_flags & IEEE80211_TX_RC_USE_RTS_CTS ) ! = 0 ) ;
use_cts_protect = ( ( rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT ) ! = 0 ) ;
2020-11-05 17:22:24 +00:00
use_ht_rate = ( ( rc_flags & IEEE80211_TX_RC_MCS ) ! = 0 ) ;
use_short_gi = ( ( rc_flags & IEEE80211_TX_RC_SHORT_GI ) ! = 0 ) ;
2019-12-10 13:03:47 +00:00
if ( use_rts_cts )
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx: WARNING sn %d use_rts_cts is not supported! \n " , sdr_compatible_str , ring - > bd_wr_idx ) ;
2019-12-10 13:03:47 +00:00
if ( use_cts_protect ) {
cts_rate_hw_value = ieee80211_get_rts_cts_rate ( dev , info ) - > hw_value ;
cts_duration = le16_to_cpu ( ieee80211_ctstoself_duration ( dev , info - > control . vif , len_mac_pdu , info ) ) ;
} else if ( force_use_cts_protect ) { // could override mac80211 setting here.
cts_rate_hw_value = 4 ; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
sifs = ( priv - > actual_rx_lo < 2500 ? 10 : 16 ) ;
if ( pkt_need_ack )
ack_duration = 44 ; //assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
traffic_pkt_duration = 20 + 4 * ( ( ( 22 + len_mac_pdu * 8 ) / wifi_n_dbps_table [ rate_hw_value ] ) + 1 ) ;
cts_duration = traffic_pkt_duration + sifs + pkt_need_ack * ( sifs + ack_duration ) ;
}
2020-09-04 08:57:04 +00:00
// this is 11b stuff
// if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
// printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
if ( len_mac_pdu > = 28 ) {
if ( info - > flags & IEEE80211_TX_CTL_ASSIGN_SEQ ) {
if ( info - > flags & IEEE80211_TX_CTL_FIRST_FRAGMENT )
priv - > seqno + = 0x10 ;
hdr - > seq_ctrl & = cpu_to_le16 ( IEEE80211_SCTL_FRAG ) ;
hdr - > seq_ctrl | = cpu_to_le16 ( priv - > seqno ) ;
}
sc = hdr - > seq_ctrl ;
}
2020-06-12 08:50:34 +00:00
if ( ( ! addr_flag ) & & ( priv - > drv_tx_reg_val [ DRV_TX_REG_IDX_PRINT_CFG ] & 2 ) )
2020-11-05 17:22:24 +00:00
printk ( " %s openwifi_tx: %4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d \n " , sdr_compatible_str ,
len_mac_pdu , ( use_ht_rate = = false ? 0 : 1 ) , ( use_ht_rate = = false ? wifi_rate_all [ rate_hw_value ] : wifi_rate_all [ rate_hw_value + 12 ] ) , frame_control , duration_id ,
2019-12-10 13:03:47 +00:00
reverse16 ( addr1_high16 ) , reverse32 ( addr1_low32 ) , reverse16 ( addr2_high16 ) , reverse32 ( addr2_low32 ) , reverse16 ( addr3_high16 ) , reverse32 ( addr3_low32 ) ,
2020-06-12 08:50:34 +00:00
sc , info - > flags , retry_limit_raw , pkt_need_ack , prio , queue_idx ,
// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
2019-12-10 13:03:47 +00:00
ring - > bd_wr_idx , ring - > bd_rd_idx ) ;
2020-04-27 07:37:04 +00:00
2019-12-10 13:03:47 +00:00
// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
// info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
// info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
// info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
// info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
// -----------end of preprocess some info from header and skb----------------
// /* HW will perform RTS-CTS when only RTS flags is set.
// * HW will perform CTS-to-self when both RTS and CTS flags are set.
// * RTS rate and RTS duration will be used also for CTS-to-self.
// */
// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
// tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
// rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
// len_mac_pdu, info);
// printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
// tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
// rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
// len_mac_pdu, info);
// printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
// }
// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
if ( skb_headroom ( skb ) < LEN_PHY_HEADER ) {
struct sk_buff * skb_new ; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_PHY_HEADER \n " , sdr_compatible_str , ring - > bd_wr_idx ) ;
2019-12-10 13:03:47 +00:00
if ( ( skb_new = skb_realloc_headroom ( skb , LEN_PHY_HEADER ) ) = = NULL ) {
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx: WARNING sn %d skb_realloc_headroom failed! \n " , sdr_compatible_str , ring - > bd_wr_idx ) ;
2019-12-10 13:03:47 +00:00
goto openwifi_tx_early_out ;
}
if ( skb - > sk ! = NULL )
skb_set_owner_w ( skb_new , skb - > sk ) ;
dev_kfree_skb ( skb ) ;
skb = skb_new ;
}
skb_push ( skb , LEN_PHY_HEADER ) ;
2020-11-05 17:22:24 +00:00
rate_signal_value = calc_phy_header ( rate_hw_value , use_ht_rate , use_short_gi , len_mac_pdu + LEN_PHY_CRC , skb - > data ) ; //fill the phy header
2019-12-10 13:03:47 +00:00
//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
if ( skb_tailroom ( skb ) < num_byte_pad ) {
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad! \n " , sdr_compatible_str , ring - > bd_wr_idx ) ;
// skb_pull(skb, LEN_PHY_HEADER);
2019-12-10 13:03:47 +00:00
goto openwifi_tx_early_out ;
}
skb_put ( skb , num_byte_pad ) ;
2021-04-05 19:53:29 +00:00
retry_limit_hw_value = ( retry_limit_raw = = 0 ? 0 : ( ( retry_limit_raw - 1 ) & 0xF ) ) ;
2019-12-10 13:03:47 +00:00
dma_buf = skb - > data ;
cts_rate_signal_value = wifi_mcs_table_11b_force_up [ cts_rate_hw_value ] ;
cts_reg = ( ( ( use_cts_protect | force_use_cts_protect ) < < 31 ) | ( cts_use_traffic_rate < < 30 ) | ( cts_duration < < 8 ) | ( cts_rate_signal_value < < 4 ) | rate_signal_value ) ;
2020-06-12 08:50:34 +00:00
dma_reg = ( ( ( ( ( prio < < ( NUM_BIT_MAX_NUM_HW_QUEUE + NUM_BIT_MAX_PHY_TX_SN ) ) | ( ring - > bd_wr_idx < < NUM_BIT_MAX_NUM_HW_QUEUE ) | queue_idx ) ) < < 18 ) | ( retry_limit_hw_value < < 14 ) | ( pkt_need_ack < < 13 ) | num_dma_symbol ) ;
2019-12-10 13:03:47 +00:00
/* We must be sure that tx_flags is written last because the HW
* looks at it to check if the rest of data is valid or not
*/
//wmb();
// entry->flags = cpu_to_le32(tx_flags);
2021-02-04 08:54:47 +00:00
/* We must be sure this has been written before following HW
* register write , because this write will make the HW attempts
2019-12-10 13:03:47 +00:00
* to DMA the just - written data
*/
//wmb();
2020-06-12 08:50:34 +00:00
spin_lock_irqsave ( & priv - > lock , flags ) ; // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
dma_fifo_no_room_flag = tx_intf_api - > TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read ( ) ;
hw_queue_len = tx_intf_api - > TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read ( ) ;
if ( ( ( dma_fifo_no_room_flag > > queue_idx ) & 1 ) | | ( ( NUM_TX_BD - ( ( hw_queue_len > > ( queue_idx * 8 ) ) & 0xFF ) ) < RING_ROOM_THRESHOLD ) | | ring - > stop_flag = = 1 ) {
ieee80211_stop_queue ( dev , prio ) ; // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
printk ( " %s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d \n " , sdr_compatible_str ,
prio , queue_idx , dma_fifo_no_room_flag , hw_queue_len , num_dma_symbol , ring - > bd_wr_idx , ring - > bd_rd_idx ) ;
ring - > stop_flag = 1 ;
goto openwifi_tx_early_out_after_lock ;
}
// --------end of check whether FPGA fifo (queue_idx) has enough room------------
status = dma_async_is_tx_complete ( priv - > tx_chan , priv - > tx_cookie , NULL , NULL ) ;
if ( status ! = DMA_COMPLETE ) {
printk ( " %s openwifi_tx: WARNING status!=DMA_COMPLETE \n " , sdr_compatible_str ) ;
goto openwifi_tx_early_out_after_lock ;
}
2020-11-05 17:22:24 +00:00
if ( ( * ( u32 * ) ( & ( skb - > data [ 4 ] ) ) ) | | ( ( * ( u32 * ) ( & ( skb - > data [ 12 ] ) ) ) & 0xFFFF0000 ) ) {
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx: WARNING 1 %d %08x %08x %08x %08x \n " , sdr_compatible_str , num_byte_pad , * ( u32 * ) ( & ( skb - > data [ 12 ] ) ) , * ( u32 * ) ( & ( skb - > data [ 8 ] ) ) , * ( u32 * ) ( & ( skb - > data [ 4 ] ) ) , * ( u32 * ) ( & ( skb - > data [ 0 ] ) ) ) ;
goto openwifi_tx_early_out_after_lock ;
}
2019-12-10 13:03:47 +00:00
//-------------------------fire skb DMA to hardware----------------------------------
dma_mapping_addr = dma_map_single ( priv - > tx_chan - > device - > dev , dma_buf ,
num_dma_byte , DMA_MEM_TO_DEV ) ;
if ( dma_mapping_error ( priv - > tx_chan - > device - > dev , dma_mapping_addr ) ) {
2020-06-12 08:50:34 +00:00
// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
printk ( " %s openwifi_tx: WARNING sn %d TX DMA mapping error \n " , sdr_compatible_str , ring - > bd_wr_idx ) ;
goto openwifi_tx_early_out_after_lock ;
2019-12-10 13:03:47 +00:00
}
2020-10-08 13:07:57 +00:00
sg_init_table ( & ( priv - > tx_sg ) , 1 ) ; // only need to be initialized once in openwifi_start
2019-12-10 13:03:47 +00:00
sg_dma_address ( & ( priv - > tx_sg ) ) = dma_mapping_addr ;
sg_dma_len ( & ( priv - > tx_sg ) ) = num_dma_byte ;
tx_intf_api - > TX_INTF_REG_CTS_TOSELF_CONFIG_write ( cts_reg ) ;
tx_intf_api - > TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write ( dma_reg ) ;
priv - > txd = priv - > tx_chan - > device - > device_prep_slave_sg ( priv - > tx_chan , & ( priv - > tx_sg ) , 1 , DMA_MEM_TO_DEV , DMA_CTRL_ACK | DMA_PREP_INTERRUPT , NULL ) ;
if ( ! ( priv - > txd ) ) {
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx: WARNING sn %d device_prep_slave_sg %p \n " , sdr_compatible_str , ring - > bd_wr_idx , ( void * ) ( priv - > txd ) ) ;
2019-12-10 13:03:47 +00:00
goto openwifi_tx_after_dma_mapping ;
}
priv - > tx_cookie = priv - > txd - > tx_submit ( priv - > txd ) ;
if ( dma_submit_error ( priv - > tx_cookie ) ) {
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d \n " , sdr_compatible_str , ring - > bd_wr_idx , ( u32 ) ( priv - > tx_cookie ) ) ;
2019-12-10 13:03:47 +00:00
goto openwifi_tx_after_dma_mapping ;
}
2021-02-04 08:54:47 +00:00
// seems everything is ok. let's mark this pkt in bd descriptor ring
2019-12-10 13:03:47 +00:00
ring - > bds [ ring - > bd_wr_idx ] . skb_linked = skb ;
ring - > bds [ ring - > bd_wr_idx ] . dma_mapping_addr = dma_mapping_addr ;
ring - > bd_wr_idx = ( ( ring - > bd_wr_idx + 1 ) & ( NUM_TX_BD - 1 ) ) ;
dma_async_issue_pending ( priv - > tx_chan ) ;
2020-11-05 17:22:24 +00:00
if ( ( * ( u32 * ) ( & ( skb - > data [ 4 ] ) ) ) | | ( ( * ( u32 * ) ( & ( skb - > data [ 12 ] ) ) ) & 0xFFFF0000 ) )
2020-06-12 08:50:34 +00:00
printk ( " %s openwifi_tx: WARNING 2 %08x %08x %08x %08x \n " , sdr_compatible_str , * ( u32 * ) ( & ( skb - > data [ 12 ] ) ) , * ( u32 * ) ( & ( skb - > data [ 8 ] ) ) , * ( u32 * ) ( & ( skb - > data [ 4 ] ) ) , * ( u32 * ) ( & ( skb - > data [ 0 ] ) ) ) ;
2019-12-10 13:03:47 +00:00
spin_unlock_irqrestore ( & priv - > lock , flags ) ;
return ;
openwifi_tx_after_dma_mapping :
dma_unmap_single ( priv - > tx_chan - > device - > dev , dma_mapping_addr , num_dma_byte , DMA_MEM_TO_DEV ) ;
2020-06-12 08:50:34 +00:00
openwifi_tx_early_out_after_lock :
// skb_pull(skb, LEN_PHY_HEADER);
dev_kfree_skb ( skb ) ;
2019-12-10 13:03:47 +00:00
spin_unlock_irqrestore ( & priv - > lock , flags ) ;
2020-06-12 08:50:34 +00:00
// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
return ;
2019-12-10 13:03:47 +00:00
openwifi_tx_early_out :
dev_kfree_skb ( skb ) ;
2020-06-12 08:50:34 +00:00
// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
2019-12-10 13:03:47 +00:00
}
static int openwifi_start ( struct ieee80211_hw * dev )
{
struct openwifi_priv * priv = dev - > priv ;
int ret , i , rssi_half_db_offset , agc_gain_delay ; //rssi_half_db_th,
u32 reg ;
for ( i = 0 ; i < MAX_NUM_VIF ; i + + ) {
priv - > vif [ i ] = NULL ;
}
2020-06-12 08:50:34 +00:00
memset ( priv - > drv_tx_reg_val , 0 , sizeof ( priv - > drv_tx_reg_val ) ) ;
memset ( priv - > drv_rx_reg_val , 0 , sizeof ( priv - > drv_rx_reg_val ) ) ;
memset ( priv - > drv_xpu_reg_val , 0 , sizeof ( priv - > drv_xpu_reg_val ) ) ;
2020-09-04 08:57:04 +00:00
priv - > drv_xpu_reg_val [ DRV_XPU_REG_IDX_GIT_REV ] = GIT_REV ;
2020-06-12 08:50:34 +00:00
2019-12-10 13:03:47 +00:00
//turn on radio
if ( priv - > tx_intf_cfg = = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1 ) {
ad9361_set_tx_atten ( priv - > ad9361_phy , AD9361_RADIO_ON_TX_ATT , false , true , true ) ; // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten ( priv - > ad9361_phy , 2 ) ;
} else {
ad9361_set_tx_atten ( priv - > ad9361_phy , AD9361_RADIO_ON_TX_ATT , true , false , true ) ; // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten ( priv - > ad9361_phy , 1 ) ;
}
if ( reg = = AD9361_RADIO_ON_TX_ATT ) {
priv - > rfkill_off = 1 ; // 0 off, 1 on
printk ( " %s openwifi_start: rfkill radio on \n " , sdr_compatible_str ) ;
}
else
printk ( " %s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d \n " , sdr_compatible_str , reg , AD9361_RADIO_ON_TX_ATT ) ;
if ( priv - > rx_intf_cfg = = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0 )
priv - > ctrl_out . index = 0x16 ;
else
priv - > ctrl_out . index = 0x17 ;
ret = ad9361_ctrl_outs_setup ( priv - > ad9361_phy , & ( priv - > ctrl_out ) ) ;
if ( ret < 0 ) {
printk ( " %s openwifi_start: WARNING ad9361_ctrl_outs_setup %d \n " , sdr_compatible_str , ret ) ;
} else {
printk ( " %s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x \n " , sdr_compatible_str , priv - > ctrl_out . en_mask , priv - > ctrl_out . index ) ;
}
priv - > rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping [ priv - > rx_intf_cfg ] ;
priv - > tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping [ priv - > tx_intf_cfg ] ;
rx_intf_api - > hw_init ( priv - > rx_intf_cfg , 8 , 8 ) ;
2020-12-29 20:33:36 +00:00
tx_intf_api - > hw_init ( priv - > tx_intf_cfg , 8 , 8 , priv - > fpga_type ) ;
2019-12-10 13:03:47 +00:00
openofdm_tx_api - > hw_init ( priv - > openofdm_tx_cfg ) ;
openofdm_rx_api - > hw_init ( priv - > openofdm_rx_cfg ) ;
xpu_api - > hw_init ( priv - > xpu_cfg ) ;
agc_gain_delay = 50 ; //samples
2021-01-19 15:49:27 +00:00
rssi_half_db_offset = 150 ; // to be consistent
2019-12-10 13:03:47 +00:00
xpu_api - > XPU_REG_RSSI_DB_CFG_write ( 0x80000000 | ( ( rssi_half_db_offset < < 16 ) | agc_gain_delay ) ) ;
xpu_api - > XPU_REG_RSSI_DB_CFG_write ( ( ~ 0x80000000 ) & ( ( rssi_half_db_offset < < 16 ) | agc_gain_delay ) ) ;
openofdm_rx_api - > OPENOFDM_RX_REG_POWER_THRES_write ( 0 ) ;
2021-02-04 08:54:47 +00:00
// rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel
2019-12-10 13:03:47 +00:00
// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
2021-04-05 19:49:59 +00:00
xpu_api - > XPU_REG_FORCE_IDLE_MISC_write ( 75 ) ; //control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
2019-12-10 13:03:47 +00:00
2020-04-27 07:37:04 +00:00
//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
xpu_api - > XPU_REG_SEND_ACK_WAIT_TOP_write ( ( ( 51 + 23 ) < < 16 ) | ( 0 + 23 ) ) ; //we have more time when we use FIR in AD9361
2019-12-10 13:03:47 +00:00
2021-01-28 13:15:29 +00:00
xpu_api - > XPU_REG_RECV_ACK_COUNT_TOP0_write ( ( 1 < < 31 ) | ( ( ( 45 + 2 + 2 ) * 10 + 15 ) < < 16 ) | 10 ) ; //2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
xpu_api - > XPU_REG_RECV_ACK_COUNT_TOP1_write ( ( 1 < < 31 ) | ( ( ( 51 + 2 + 2 ) * 10 + 15 ) < < 16 ) | 10 ) ; //5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
2019-12-10 13:03:47 +00:00
2020-04-27 07:37:04 +00:00
tx_intf_api - > TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write ( ( ( 16 * 10 ) < < 16 ) | ( 10 * 10 ) ) ; //high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
2019-12-10 13:03:47 +00:00
2020-12-14 12:32:15 +00:00
// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
2019-12-10 13:03:47 +00:00
xpu_api - > XPU_REG_MAC_ADDR_write ( priv - > mac_addr ) ;
2020-06-12 08:50:34 +00:00
// setup time schedule of 4 slices
// slice 0
xpu_api - > XPU_REG_SLICE_COUNT_TOTAL_write ( 50000 - 1 ) ; // total 50ms
xpu_api - > XPU_REG_SLICE_COUNT_START_write ( 0 ) ; //start 0ms
xpu_api - > XPU_REG_SLICE_COUNT_END_write ( 50000 - 1 ) ; //end 50ms
// slice 1
xpu_api - > XPU_REG_SLICE_COUNT_TOTAL_write ( ( 1 < < 20 ) | ( 50000 - 1 ) ) ; // total 50ms
xpu_api - > XPU_REG_SLICE_COUNT_START_write ( ( 1 < < 20 ) | ( 0 ) ) ; //start 0ms
//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
xpu_api - > XPU_REG_SLICE_COUNT_END_write ( ( 1 < < 20 ) | ( 50000 - 1 ) ) ; //end 20ms
// slice 2
xpu_api - > XPU_REG_SLICE_COUNT_TOTAL_write ( ( 2 < < 20 ) | ( 50000 - 1 ) ) ; // total 50ms
//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
xpu_api - > XPU_REG_SLICE_COUNT_START_write ( ( 2 < < 20 ) | ( 0 ) ) ; //start 20ms
//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
xpu_api - > XPU_REG_SLICE_COUNT_END_write ( ( 2 < < 20 ) | ( 50000 - 1 ) ) ; //end 20ms
// slice 3
xpu_api - > XPU_REG_SLICE_COUNT_TOTAL_write ( ( 3 < < 20 ) | ( 50000 - 1 ) ) ; // total 50ms
//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
xpu_api - > XPU_REG_SLICE_COUNT_START_write ( ( 3 < < 20 ) | ( 0 ) ) ; //start 40ms
//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
xpu_api - > XPU_REG_SLICE_COUNT_END_write ( ( 3 < < 20 ) | ( 50000 - 1 ) ) ; //end 20ms
// all slice sync rest
xpu_api - > XPU_REG_MULTI_RST_write ( 1 < < 7 ) ; //bit7 reset the counter for all queues at the same time
xpu_api - > XPU_REG_MULTI_RST_write ( 0 < < 7 ) ;
2019-12-10 13:03:47 +00:00
//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
printk ( " %s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d \n " , sdr_compatible_str , priv - > rx_intf_cfg , priv - > openofdm_rx_cfg , priv - > tx_intf_cfg , priv - > openofdm_tx_cfg ) ;
printk ( " %s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d \n " , sdr_compatible_str , priv - > rx_freq_offset_to_lo_MHz , priv - > tx_freq_offset_to_lo_MHz ) ;
2020-10-08 13:07:57 +00:00
tx_intf_api - > TX_INTF_REG_INTERRUPT_SEL_write ( 0x30004 ) ; //disable tx interrupt
2019-12-10 13:03:47 +00:00
rx_intf_api - > RX_INTF_REG_INTERRUPT_TEST_write ( 0x100 ) ; // disable rx interrupt by interrupt test mode
rx_intf_api - > RX_INTF_REG_M_AXIS_RST_write ( 1 ) ; // hold M AXIS in reset status
if ( test_mode = = 1 ) {
printk ( " %s openwifi_start: test_mode==1 \n " , sdr_compatible_str ) ;
goto normal_out ;
}
priv - > rx_chan = dma_request_slave_channel ( & ( priv - > pdev - > dev ) , " rx_dma_s2mm " ) ;
2021-05-05 14:46:28 +00:00
if ( IS_ERR ( priv - > rx_chan ) | | priv - > rx_chan = = NULL ) {
2019-12-10 13:03:47 +00:00
ret = PTR_ERR ( priv - > rx_chan ) ;
2021-05-05 14:46:28 +00:00
pr_err ( " %s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p \n " , sdr_compatible_str , ret , priv - > rx_chan ) ;
2019-12-10 13:03:47 +00:00
goto err_dma ;
}
priv - > tx_chan = dma_request_slave_channel ( & ( priv - > pdev - > dev ) , " tx_dma_mm2s " ) ;
2021-05-05 14:46:28 +00:00
if ( IS_ERR ( priv - > tx_chan ) | | priv - > tx_chan = = NULL ) {
2019-12-10 13:03:47 +00:00
ret = PTR_ERR ( priv - > tx_chan ) ;
2021-05-05 14:46:28 +00:00
pr_err ( " %s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p \n " , sdr_compatible_str , ret , priv - > tx_chan ) ;
2019-12-10 13:03:47 +00:00
goto err_dma ;
}
2021-05-05 14:46:28 +00:00
printk ( " %s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p \n " , sdr_compatible_str , priv - > rx_chan , priv - > tx_chan ) ;
2019-12-10 13:03:47 +00:00
ret = openwifi_init_rx_ring ( priv ) ;
if ( ret ) {
printk ( " %s openwifi_start: openwifi_init_rx_ring ret %d \n " , sdr_compatible_str , ret ) ;
goto err_free_rings ;
}
priv - > seqno = 0 ;
2020-06-12 08:50:34 +00:00
for ( i = 0 ; i < MAX_NUM_SW_QUEUE ; i + + ) {
if ( ( ret = openwifi_init_tx_ring ( priv , i ) ) ) {
printk ( " %s openwifi_start: openwifi_init_tx_ring %d ret %d \n " , sdr_compatible_str , i , ret ) ;
goto err_free_rings ;
}
2019-12-10 13:03:47 +00:00
}
if ( ( ret = rx_dma_setup ( dev ) ) ) {
printk ( " %s openwifi_start: rx_dma_setup ret %d \n " , sdr_compatible_str , ret ) ;
goto err_free_rings ;
}
priv - > irq_rx = irq_of_parse_and_map ( priv - > pdev - > dev . of_node , 1 ) ;
ret = request_irq ( priv - > irq_rx , openwifi_rx_interrupt ,
IRQF_SHARED , " sdr,rx_pkt_intr " , dev ) ;
if ( ret ) {
wiphy_err ( dev - > wiphy , " openwifi_start:failed to register IRQ handler openwifi_rx_interrupt \n " ) ;
goto err_free_rings ;
} else {
printk ( " %s openwifi_start: irq_rx %d \n " , sdr_compatible_str , priv - > irq_rx ) ;
}
priv - > irq_tx = irq_of_parse_and_map ( priv - > pdev - > dev . of_node , 3 ) ;
ret = request_irq ( priv - > irq_tx , openwifi_tx_interrupt ,
2021-05-05 14:53:15 +00:00
IRQF_SHARED , " sdr,tx_itrpt " , dev ) ;
2019-12-10 13:03:47 +00:00
if ( ret ) {
wiphy_err ( dev - > wiphy , " openwifi_start: failed to register IRQ handler openwifi_tx_interrupt \n " ) ;
goto err_free_rings ;
} else {
printk ( " %s openwifi_start: irq_tx %d \n " , sdr_compatible_str , priv - > irq_tx ) ;
}
rx_intf_api - > RX_INTF_REG_INTERRUPT_TEST_write ( 0x000 ) ; // enable rx interrupt get normal fcs valid pass through ddc to ARM
2020-10-08 13:07:57 +00:00
tx_intf_api - > TX_INTF_REG_INTERRUPT_SEL_write ( 0x4 ) ; //enable tx interrupt
2019-12-10 13:03:47 +00:00
rx_intf_api - > RX_INTF_REG_M_AXIS_RST_write ( 0 ) ; // release M AXIS
xpu_api - > XPU_REG_TSF_LOAD_VAL_write ( 0 , 0 ) ; // reset tsf timer
//ieee80211_wake_queue(dev, 0);
normal_out :
printk ( " %s openwifi_start: normal end \n " , sdr_compatible_str ) ;
return 0 ;
err_free_rings :
openwifi_free_rx_ring ( priv ) ;
2020-06-12 08:50:34 +00:00
for ( i = 0 ; i < MAX_NUM_SW_QUEUE ; i + + )
openwifi_free_tx_ring ( priv , i ) ;
2019-12-10 13:03:47 +00:00
err_dma :
ret = - 1 ;
printk ( " %s openwifi_start: abnormal end ret %d \n " , sdr_compatible_str , ret ) ;
return ret ;
}
static void openwifi_stop ( struct ieee80211_hw * dev )
{
struct openwifi_priv * priv = dev - > priv ;
u32 reg , reg1 ;
int i ;
if ( test_mode = = 1 ) {
pr_info ( " %s openwifi_stop: test_mode==1 \n " , sdr_compatible_str ) ;
goto normal_out ;
}
//turn off radio
# if 1
ad9361_tx_mute ( priv - > ad9361_phy , 1 ) ;
reg = ad9361_get_tx_atten ( priv - > ad9361_phy , 2 ) ;
reg1 = ad9361_get_tx_atten ( priv - > ad9361_phy , 1 ) ;
if ( reg = = AD9361_RADIO_OFF_TX_ATT & & reg1 = = AD9361_RADIO_OFF_TX_ATT ) {
priv - > rfkill_off = 0 ; // 0 off, 1 on
printk ( " %s openwifi_stop: rfkill radio off \n " , sdr_compatible_str ) ;
}
else
printk ( " %s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d \n " , sdr_compatible_str , reg , reg1 , AD9361_RADIO_OFF_TX_ATT ) ;
# endif
//ieee80211_stop_queue(dev, 0);
2020-10-08 13:07:57 +00:00
tx_intf_api - > TX_INTF_REG_INTERRUPT_SEL_write ( 0x30004 ) ; //disable tx interrupt
2019-12-10 13:03:47 +00:00
rx_intf_api - > RX_INTF_REG_INTERRUPT_TEST_write ( 0x100 ) ; // disable fcs_valid by interrupt test mode
rx_intf_api - > RX_INTF_REG_M_AXIS_RST_write ( 1 ) ; // hold M AXIS in reset status
for ( i = 0 ; i < MAX_NUM_VIF ; i + + ) {
priv - > vif [ i ] = NULL ;
}
openwifi_free_rx_ring ( priv ) ;
2020-06-12 08:50:34 +00:00
for ( i = 0 ; i < MAX_NUM_SW_QUEUE ; i + + )
openwifi_free_tx_ring ( priv , i ) ;
2019-12-10 13:03:47 +00:00
pr_info ( " %s openwifi_stop: dropped channel %s \n " , sdr_compatible_str , dma_chan_name ( priv - > rx_chan ) ) ;
dmaengine_terminate_all ( priv - > rx_chan ) ;
dma_release_channel ( priv - > rx_chan ) ;
pr_info ( " %s openwifi_stop: dropped channel %s \n " , sdr_compatible_str , dma_chan_name ( priv - > tx_chan ) ) ;
dmaengine_terminate_all ( priv - > tx_chan ) ;
dma_release_channel ( priv - > tx_chan ) ;
//priv->rf->stop(dev);
free_irq ( priv - > irq_rx , dev ) ;
free_irq ( priv - > irq_tx , dev ) ;
normal_out :
printk ( " %s openwifi_stop \n " , sdr_compatible_str ) ;
}
static u64 openwifi_get_tsf ( struct ieee80211_hw * dev ,
struct ieee80211_vif * vif )
{
u32 tsft_low , tsft_high ;
tsft_low = xpu_api - > XPU_REG_TSF_RUNTIME_VAL_LOW_read ( ) ;
tsft_high = xpu_api - > XPU_REG_TSF_RUNTIME_VAL_HIGH_read ( ) ;
//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
return ( ( ( u64 ) tsft_low ) | ( ( ( u64 ) tsft_high ) < < 32 ) ) ;
}
static void openwifi_set_tsf ( struct ieee80211_hw * hw , struct ieee80211_vif * vif , u64 tsf )
{
u32 tsft_high = ( ( tsf > > 32 ) & 0xffffffff ) ;
u32 tsft_low = ( tsf & 0xffffffff ) ;
xpu_api - > XPU_REG_TSF_LOAD_VAL_write ( tsft_high , tsft_low ) ;
printk ( " %s openwifi_set_tsf: %08x%08x \n " , sdr_compatible_str , tsft_high , tsft_low ) ;
}
static void openwifi_reset_tsf ( struct ieee80211_hw * hw , struct ieee80211_vif * vif )
{
xpu_api - > XPU_REG_TSF_LOAD_VAL_write ( 0 , 0 ) ;
printk ( " %s openwifi_reset_tsf \n " , sdr_compatible_str ) ;
}
static int openwifi_set_rts_threshold ( struct ieee80211_hw * hw , u32 value )
{
printk ( " %s openwifi_set_rts_threshold WARNING value %d \n " , sdr_compatible_str , value ) ;
return ( 0 ) ;
}
static void openwifi_beacon_work ( struct work_struct * work )
{
struct openwifi_vif * vif_priv =
container_of ( work , struct openwifi_vif , beacon_work . work ) ;
struct ieee80211_vif * vif =
container_of ( ( void * ) vif_priv , struct ieee80211_vif , drv_priv ) ;
struct ieee80211_hw * dev = vif_priv - > dev ;
struct ieee80211_mgmt * mgmt ;
struct sk_buff * skb ;
/* don't overflow the tx ring */
if ( ieee80211_queue_stopped ( dev , 0 ) )
goto resched ;
/* grab a fresh beacon */
skb = ieee80211_beacon_get ( dev , vif ) ;
if ( ! skb )
goto resched ;
/*
* update beacon timestamp w / TSF value
* TODO : make hardware update beacon timestamp
*/
mgmt = ( struct ieee80211_mgmt * ) skb - > data ;
mgmt - > u . beacon . timestamp = cpu_to_le64 ( openwifi_get_tsf ( dev , vif ) ) ;
/* TODO: use actual beacon queue */
skb_set_queue_mapping ( skb , 0 ) ;
openwifi_tx ( dev , NULL , skb ) ;
resched :
/*
* schedule next beacon
* TODO : use hardware support for beacon timing
*/
schedule_delayed_work ( & vif_priv - > beacon_work ,
usecs_to_jiffies ( 1024 * vif - > bss_conf . beacon_int ) ) ;
}
static int openwifi_add_interface ( struct ieee80211_hw * dev ,
struct ieee80211_vif * vif )
{
int i ;
struct openwifi_priv * priv = dev - > priv ;
struct openwifi_vif * vif_priv ;
switch ( vif - > type ) {
case NL80211_IFTYPE_AP :
case NL80211_IFTYPE_STATION :
case NL80211_IFTYPE_ADHOC :
case NL80211_IFTYPE_MONITOR :
case NL80211_IFTYPE_MESH_POINT :
break ;
default :
return - EOPNOTSUPP ;
}
// let's support more than 1 interface
for ( i = 0 ; i < MAX_NUM_VIF ; i + + ) {
if ( priv - > vif [ i ] = = NULL )
break ;
}
printk ( " %s openwifi_add_interface start. vif for loop result %d \n " , sdr_compatible_str , i ) ;
if ( i = = MAX_NUM_VIF )
return - EBUSY ;
priv - > vif [ i ] = vif ;
/* Initialize driver private area */
vif_priv = ( struct openwifi_vif * ) & vif - > drv_priv ;
vif_priv - > idx = i ;
vif_priv - > dev = dev ;
INIT_DELAYED_WORK ( & vif_priv - > beacon_work , openwifi_beacon_work ) ;
vif_priv - > enable_beacon = false ;
printk ( " %s openwifi_add_interface end with vif idx %d \n " , sdr_compatible_str , vif_priv - > idx ) ;
return 0 ;
}
static void openwifi_remove_interface ( struct ieee80211_hw * dev ,
struct ieee80211_vif * vif )
{
struct openwifi_vif * vif_priv ;
struct openwifi_priv * priv = dev - > priv ;
vif_priv = ( struct openwifi_vif * ) & vif - > drv_priv ;
priv - > vif [ vif_priv - > idx ] = NULL ;
printk ( " %s openwifi_remove_interface vif idx %d \n " , sdr_compatible_str , vif_priv - > idx ) ;
}
static int openwifi_config ( struct ieee80211_hw * dev , u32 changed )
{
struct openwifi_priv * priv = dev - > priv ;
struct ieee80211_conf * conf = & dev - > conf ;
if ( changed & IEEE80211_CONF_CHANGE_CHANNEL )
priv - > rf - > set_chan ( dev , conf ) ;
else
printk ( " %s openwifi_config changed flag %08x \n " , sdr_compatible_str , changed ) ;
return 0 ;
}
static void openwifi_bss_info_changed ( struct ieee80211_hw * dev ,
struct ieee80211_vif * vif ,
struct ieee80211_bss_conf * info ,
u32 changed )
{
struct openwifi_priv * priv = dev - > priv ;
struct openwifi_vif * vif_priv ;
u32 bssid_low , bssid_high ;
vif_priv = ( struct openwifi_vif * ) & vif - > drv_priv ;
//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
if ( changed & BSS_CHANGED_BSSID ) {
printk ( " %s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x \n " , sdr_compatible_str , info - > bssid [ 0 ] , info - > bssid [ 1 ] , info - > bssid [ 2 ] , info - > bssid [ 3 ] , info - > bssid [ 4 ] , info - > bssid [ 5 ] ) ;
// write new bssid to our HW, and do not change bssid filter
//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
bssid_low = ( * ( ( u32 * ) ( info - > bssid ) ) ) ;
bssid_high = ( * ( ( u16 * ) ( info - > bssid + 4 ) ) ) ;
//bssid_filter_high = (bssid_filter_high&0x80000000);
//bssid_high = (bssid_high|bssid_filter_high);
xpu_api - > XPU_REG_BSSID_FILTER_LOW_write ( bssid_low ) ;
xpu_api - > XPU_REG_BSSID_FILTER_HIGH_write ( bssid_high ) ;
}
if ( changed & BSS_CHANGED_BEACON_INT ) {
printk ( " %s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x \n " , sdr_compatible_str , info - > beacon_int ) ;
}
if ( changed & BSS_CHANGED_TXPOWER )
printk ( " %s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x \n " , sdr_compatible_str , info - > txpower ) ;
if ( changed & BSS_CHANGED_ERP_CTS_PROT )
printk ( " %s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x \n " , sdr_compatible_str , info - > use_cts_prot ) ;
if ( changed & BSS_CHANGED_BASIC_RATES )
printk ( " %s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x \n " , sdr_compatible_str , info - > basic_rates ) ;
if ( changed & ( BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE ) ) {
printk ( " %s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d \n " , sdr_compatible_str ,
changed & BSS_CHANGED_ERP_SLOT , changed & BSS_CHANGED_ERP_PREAMBLE , info - > use_short_slot ) ;
if ( info - > use_short_slot & & priv - > use_short_slot = = false ) {
priv - > use_short_slot = true ;
xpu_api - > XPU_REG_BAND_CHANNEL_write ( ( priv - > use_short_slot < < 24 ) | ( priv - > band < < 16 ) ) ;
} else if ( ( ! info - > use_short_slot ) & & priv - > use_short_slot = = true ) {
priv - > use_short_slot = false ;
xpu_api - > XPU_REG_BAND_CHANNEL_write ( ( priv - > use_short_slot < < 24 ) | ( priv - > band < < 16 ) ) ;
}
}
if ( changed & BSS_CHANGED_BEACON_ENABLED ) {
printk ( " %s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED \n " , sdr_compatible_str ) ;
vif_priv - > enable_beacon = info - > enable_beacon ;
}
if ( changed & ( BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON ) ) {
cancel_delayed_work_sync ( & vif_priv - > beacon_work ) ;
if ( vif_priv - > enable_beacon )
schedule_work ( & vif_priv - > beacon_work . work ) ;
printk ( " %s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d \n " , sdr_compatible_str ,
changed & BSS_CHANGED_BEACON_ENABLED , changed & BSS_CHANGED_BEACON ) ;
}
}
2021-01-28 13:15:29 +00:00
// helper function
u32 log2val ( u32 val ) {
u32 ret_val = 0 ;
while ( val > 1 ) {
val = val > > 1 ;
ret_val + + ;
}
return ret_val ;
}
2019-12-10 13:03:47 +00:00
static int openwifi_conf_tx ( struct ieee80211_hw * hw , struct ieee80211_vif * vif , u16 queue ,
const struct ieee80211_tx_queue_params * params )
{
2021-04-05 19:49:59 +00:00
u32 reg_val , cw_min_exp , cw_max_exp ;
2021-03-22 22:59:41 +00:00
2021-04-05 19:49:59 +00:00
printk ( " %s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored \n " ,
2019-12-10 13:03:47 +00:00
sdr_compatible_str , queue , params - > aifs , params - > cw_min , params - > cw_max , params - > txop ) ;
2021-03-22 22:59:41 +00:00
2021-04-05 19:49:59 +00:00
reg_val = xpu_api - > XPU_REG_CSMA_CFG_read ( ) ;
2021-01-28 13:15:29 +00:00
cw_min_exp = ( log2val ( params - > cw_min + 1 ) & 0x0F ) ;
cw_max_exp = ( log2val ( params - > cw_max + 1 ) & 0x0F ) ;
switch ( queue ) {
2021-04-05 19:49:59 +00:00
case 0 : reg_val = ( ( reg_val & 0xFFFFFF00 ) | ( ( cw_min_exp | ( cw_max_exp < < 4 ) ) < < 0 ) ) ; break ;
case 1 : reg_val = ( ( reg_val & 0xFFFF00FF ) | ( ( cw_min_exp | ( cw_max_exp < < 4 ) ) < < 8 ) ) ; break ;
case 2 : reg_val = ( ( reg_val & 0xFF00FFFF ) | ( ( cw_min_exp | ( cw_max_exp < < 4 ) ) < < 16 ) ) ; break ;
case 3 : reg_val = ( ( reg_val & 0x00FFFFFF ) | ( ( cw_min_exp | ( cw_max_exp < < 4 ) ) < < 24 ) ) ; break ;
2021-01-28 13:15:29 +00:00
default : printk ( " %s openwifi_conf_tx: WARNING queue %d does not exist " , sdr_compatible_str , queue ) ; return ( 0 ) ;
}
2021-04-05 19:49:59 +00:00
xpu_api - > XPU_REG_CSMA_CFG_write ( reg_val ) ;
2019-12-10 13:03:47 +00:00
return ( 0 ) ;
2021-01-28 13:15:29 +00:00
}
2019-12-10 13:03:47 +00:00
static u64 openwifi_prepare_multicast ( struct ieee80211_hw * dev ,
struct netdev_hw_addr_list * mc_list )
{
printk ( " %s openwifi_prepare_multicast \n " , sdr_compatible_str ) ;
return netdev_hw_addr_list_count ( mc_list ) ;
}
static void openwifi_configure_filter ( struct ieee80211_hw * dev ,
unsigned int changed_flags ,
unsigned int * total_flags ,
u64 multicast )
{
u32 filter_flag ;
( * total_flags ) & = SDR_SUPPORTED_FILTERS ;
2020-12-14 12:32:15 +00:00
( * total_flags ) | = FIF_ALLMULTI ; //because we need to pass all multicast (no matter it is for us or not) to upper layer
2019-12-10 13:03:47 +00:00
filter_flag = ( * total_flags ) ;
filter_flag = ( filter_flag | UNICAST_FOR_US | BROADCAST_ALL_ONE | BROADCAST_ALL_ZERO ) ;
//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
2020-01-03 17:53:21 +00:00
//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
if ( ( filter_flag & 0xf0 ) = = 0xf0 ) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
2019-12-10 13:03:47 +00:00
filter_flag = ( filter_flag | MONITOR_ALL ) ;
2020-01-03 17:53:21 +00:00
else
filter_flag = ( filter_flag & ( ~ MONITOR_ALL ) ) ;
2019-12-10 13:03:47 +00:00
2020-01-03 17:53:21 +00:00
if ( ! ( filter_flag & FIF_BCN_PRBRESP_PROMISC ) )
2019-12-10 13:03:47 +00:00
filter_flag = ( filter_flag | MY_BEACON ) ;
2020-01-03 17:53:21 +00:00
filter_flag = ( filter_flag | FIF_PSPOLL ) ;
2019-12-10 13:03:47 +00:00
xpu_api - > XPU_REG_FILTER_FLAG_write ( filter_flag | HIGH_PRIORITY_DISCARD_FLAG ) ;
//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
printk ( " %s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d \n " , sdr_compatible_str ,
( filter_flag > > 13 ) & 1 , ( filter_flag > > 12 ) & 1 , ( filter_flag > > 11 ) & 1 , ( filter_flag > > 10 ) & 1 , ( filter_flag > > 9 ) & 1 , ( filter_flag > > 8 ) & 1 , ( filter_flag > > 7 ) & 1 , ( filter_flag > > 6 ) & 1 , ( filter_flag > > 5 ) & 1 , ( filter_flag > > 4 ) & 1 , ( filter_flag > > 3 ) & 1 , ( filter_flag > > 2 ) & 1 , ( filter_flag > > 1 ) & 1 ) ;
}
static int openwifi_testmode_cmd ( struct ieee80211_hw * hw , struct ieee80211_vif * vif , void * data , int len )
{
struct openwifi_priv * priv = hw - > priv ;
struct nlattr * tb [ OPENWIFI_ATTR_MAX + 1 ] ;
struct sk_buff * skb ;
int err ;
2020-03-06 13:05:47 +00:00
u32 tmp = - 1 , reg_cat , reg_addr , reg_val , reg_addr_idx , tsft_high , tsft_low ;
2019-12-10 13:03:47 +00:00
err = nla_parse ( tb , OPENWIFI_ATTR_MAX , data , len , openwifi_testmode_policy , NULL ) ;
if ( err )
return err ;
if ( ! tb [ OPENWIFI_ATTR_CMD ] )
return - EINVAL ;
switch ( nla_get_u32 ( tb [ OPENWIFI_ATTR_CMD ] ) ) {
case OPENWIFI_CMD_SET_GAP :
if ( ! tb [ OPENWIFI_ATTR_GAP ] )
return - EINVAL ;
tmp = nla_get_u32 ( tb [ OPENWIFI_ATTR_GAP ] ) ;
printk ( " %s openwifi radio inter frame gap set to %d usec \n " , sdr_compatible_str , tmp ) ;
xpu_api - > XPU_REG_CSMA_CFG_write ( tmp ) ; // unit us
return 0 ;
case OPENWIFI_CMD_GET_GAP :
skb = cfg80211_testmode_alloc_reply_skb ( hw - > wiphy , nla_total_size ( sizeof ( u32 ) ) ) ;
if ( ! skb )
return - ENOMEM ;
tmp = xpu_api - > XPU_REG_CSMA_CFG_read ( ) ;
if ( nla_put_u32 ( skb , OPENWIFI_ATTR_GAP , tmp ) )
goto nla_put_failure ;
return cfg80211_testmode_reply ( skb ) ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_SET_SLICE_IDX :
if ( ! tb [ OPENWIFI_ATTR_SLICE_IDX ] )
2019-12-10 13:03:47 +00:00
return - EINVAL ;
2020-06-12 08:50:34 +00:00
tmp = nla_get_u32 ( tb [ OPENWIFI_ATTR_SLICE_IDX ] ) ;
printk ( " %s set openwifi slice_idx in hex: %08x \n " , sdr_compatible_str , tmp ) ;
if ( tmp = = MAX_NUM_HW_QUEUE ) {
printk ( " %s set openwifi slice_idx reset all queue counter. \n " , sdr_compatible_str ) ;
xpu_api - > XPU_REG_MULTI_RST_write ( 1 < < 7 ) ; //bit7 reset the counter for all queues at the same time
xpu_api - > XPU_REG_MULTI_RST_write ( 0 < < 7 ) ;
} else {
priv - > slice_idx = tmp ;
}
2019-12-10 13:03:47 +00:00
return 0 ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_GET_SLICE_IDX :
2019-12-10 13:03:47 +00:00
skb = cfg80211_testmode_alloc_reply_skb ( hw - > wiphy , nla_total_size ( sizeof ( u32 ) ) ) ;
if ( ! skb )
return - ENOMEM ;
2020-06-12 08:50:34 +00:00
tmp = priv - > slice_idx ;
if ( nla_put_u32 ( skb , OPENWIFI_ATTR_SLICE_IDX , tmp ) )
2019-12-10 13:03:47 +00:00
goto nla_put_failure ;
2020-06-12 08:50:34 +00:00
printk ( " %s get openwifi slice_idx in hex: %08x \n " , sdr_compatible_str , tmp ) ;
2019-12-10 13:03:47 +00:00
return cfg80211_testmode_reply ( skb ) ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_SET_ADDR :
if ( ! tb [ OPENWIFI_ATTR_ADDR ] )
2019-12-10 13:03:47 +00:00
return - EINVAL ;
2020-06-12 08:50:34 +00:00
tmp = nla_get_u32 ( tb [ OPENWIFI_ATTR_ADDR ] ) ;
if ( priv - > slice_idx > = MAX_NUM_HW_QUEUE ) {
printk ( " %s set openwifi slice_target_mac_addr(low32) WARNING: current slice idx %d is invalid! \n " , sdr_compatible_str , priv - > slice_idx ) ;
} else {
printk ( " %s set openwifi slice_target_mac_addr(low32) in hex: %08x to slice %d \n " , sdr_compatible_str , tmp , priv - > slice_idx ) ;
priv - > dest_mac_addr_queue_map [ priv - > slice_idx ] = reverse32 ( tmp ) ;
}
2019-12-10 13:03:47 +00:00
return 0 ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_GET_ADDR :
2019-12-10 13:03:47 +00:00
skb = cfg80211_testmode_alloc_reply_skb ( hw - > wiphy , nla_total_size ( sizeof ( u32 ) ) ) ;
if ( ! skb )
return - ENOMEM ;
2020-06-12 08:50:34 +00:00
if ( priv - > slice_idx > = MAX_NUM_HW_QUEUE ) {
tmp = - 1 ;
} else {
tmp = reverse32 ( priv - > dest_mac_addr_queue_map [ priv - > slice_idx ] ) ;
}
if ( nla_put_u32 ( skb , OPENWIFI_ATTR_ADDR , tmp ) )
2019-12-10 13:03:47 +00:00
goto nla_put_failure ;
2020-06-12 08:50:34 +00:00
printk ( " %s get openwifi slice_target_mac_addr(low32) in hex: %08x of slice %d \n " , sdr_compatible_str , tmp , priv - > slice_idx ) ;
2019-12-10 13:03:47 +00:00
return cfg80211_testmode_reply ( skb ) ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_SET_SLICE_TOTAL :
if ( ! tb [ OPENWIFI_ATTR_SLICE_TOTAL ] )
2019-12-10 13:03:47 +00:00
return - EINVAL ;
2020-06-12 08:50:34 +00:00
tmp = nla_get_u32 ( tb [ OPENWIFI_ATTR_SLICE_TOTAL ] ) ;
if ( priv - > slice_idx > = MAX_NUM_HW_QUEUE ) {
printk ( " %s set SLICE_TOTAL(duration) WARNING: current slice idx %d is invalid! \n " , sdr_compatible_str , priv - > slice_idx ) ;
} else {
printk ( " %s set SLICE_TOTAL(duration) %d usec to slice %d \n " , sdr_compatible_str , tmp , priv - > slice_idx ) ;
xpu_api - > XPU_REG_SLICE_COUNT_TOTAL_write ( ( priv - > slice_idx < < 20 ) | tmp ) ;
}
2019-12-10 13:03:47 +00:00
return 0 ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_GET_SLICE_TOTAL :
2019-12-10 13:03:47 +00:00
skb = cfg80211_testmode_alloc_reply_skb ( hw - > wiphy , nla_total_size ( sizeof ( u32 ) ) ) ;
if ( ! skb )
return - ENOMEM ;
2020-06-12 08:50:34 +00:00
tmp = ( xpu_api - > XPU_REG_SLICE_COUNT_TOTAL_read ( ) ) ;
printk ( " %s get SLICE_TOTAL(duration) %d usec of slice %d \n " , sdr_compatible_str , tmp & 0xFFFFF , tmp > > 20 ) ;
if ( nla_put_u32 ( skb , OPENWIFI_ATTR_SLICE_TOTAL , tmp ) )
2019-12-10 13:03:47 +00:00
goto nla_put_failure ;
return cfg80211_testmode_reply ( skb ) ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_SET_SLICE_START :
if ( ! tb [ OPENWIFI_ATTR_SLICE_START ] )
2019-12-10 13:03:47 +00:00
return - EINVAL ;
2020-06-12 08:50:34 +00:00
tmp = nla_get_u32 ( tb [ OPENWIFI_ATTR_SLICE_START ] ) ;
if ( priv - > slice_idx > = MAX_NUM_HW_QUEUE ) {
printk ( " %s set SLICE_START(duration) WARNING: current slice idx %d is invalid! \n " , sdr_compatible_str , priv - > slice_idx ) ;
} else {
printk ( " %s set SLICE_START(duration) %d usec to slice %d \n " , sdr_compatible_str , tmp , priv - > slice_idx ) ;
xpu_api - > XPU_REG_SLICE_COUNT_START_write ( ( priv - > slice_idx < < 20 ) | tmp ) ;
}
2019-12-10 13:03:47 +00:00
return 0 ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_GET_SLICE_START :
2019-12-10 13:03:47 +00:00
skb = cfg80211_testmode_alloc_reply_skb ( hw - > wiphy , nla_total_size ( sizeof ( u32 ) ) ) ;
if ( ! skb )
return - ENOMEM ;
2020-06-12 08:50:34 +00:00
tmp = ( xpu_api - > XPU_REG_SLICE_COUNT_START_read ( ) ) ;
printk ( " %s get SLICE_START(duration) %d usec of slice %d \n " , sdr_compatible_str , tmp & 0xFFFFF , tmp > > 20 ) ;
if ( nla_put_u32 ( skb , OPENWIFI_ATTR_SLICE_START , tmp ) )
2019-12-10 13:03:47 +00:00
goto nla_put_failure ;
return cfg80211_testmode_reply ( skb ) ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_SET_SLICE_END :
if ( ! tb [ OPENWIFI_ATTR_SLICE_END ] )
2019-12-10 13:03:47 +00:00
return - EINVAL ;
2020-06-12 08:50:34 +00:00
tmp = nla_get_u32 ( tb [ OPENWIFI_ATTR_SLICE_END ] ) ;
if ( priv - > slice_idx > = MAX_NUM_HW_QUEUE ) {
printk ( " %s set SLICE_END(duration) WARNING: current slice idx %d is invalid! \n " , sdr_compatible_str , priv - > slice_idx ) ;
} else {
printk ( " %s set SLICE_END(duration) %d usec to slice %d \n " , sdr_compatible_str , tmp , priv - > slice_idx ) ;
xpu_api - > XPU_REG_SLICE_COUNT_END_write ( ( priv - > slice_idx < < 20 ) | tmp ) ;
}
2019-12-10 13:03:47 +00:00
return 0 ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_GET_SLICE_END :
2019-12-10 13:03:47 +00:00
skb = cfg80211_testmode_alloc_reply_skb ( hw - > wiphy , nla_total_size ( sizeof ( u32 ) ) ) ;
if ( ! skb )
return - ENOMEM ;
2020-06-12 08:50:34 +00:00
tmp = ( xpu_api - > XPU_REG_SLICE_COUNT_END_read ( ) ) ;
printk ( " %s get SLICE_END(duration) %d usec of slice %d \n " , sdr_compatible_str , tmp & 0xFFFFF , tmp > > 20 ) ;
if ( nla_put_u32 ( skb , OPENWIFI_ATTR_SLICE_END , tmp ) )
2019-12-10 13:03:47 +00:00
goto nla_put_failure ;
return cfg80211_testmode_reply ( skb ) ;
2020-06-12 08:50:34 +00:00
// case OPENWIFI_CMD_SET_SLICE_TOTAL1:
// if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
// return -EINVAL;
// tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
// printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
// // xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
// return 0;
// case OPENWIFI_CMD_GET_SLICE_TOTAL1:
// skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
// if (!skb)
// return -ENOMEM;
// // tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
// if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
// goto nla_put_failure;
// return cfg80211_testmode_reply(skb);
// case OPENWIFI_CMD_SET_SLICE_START1:
// if (!tb[OPENWIFI_ATTR_SLICE_START1])
// return -EINVAL;
// tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
// printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
// // xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
// return 0;
// case OPENWIFI_CMD_GET_SLICE_START1:
// skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
// if (!skb)
// return -ENOMEM;
// // tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
// if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
// goto nla_put_failure;
// return cfg80211_testmode_reply(skb);
// case OPENWIFI_CMD_SET_SLICE_END1:
// if (!tb[OPENWIFI_ATTR_SLICE_END1])
// return -EINVAL;
// tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
// printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
// // xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
// return 0;
// case OPENWIFI_CMD_GET_SLICE_END1:
// skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
// if (!skb)
// return -ENOMEM;
// // tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
// if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
// goto nla_put_failure;
// return cfg80211_testmode_reply(skb);
2019-12-10 13:03:47 +00:00
case OPENWIFI_CMD_SET_RSSI_TH :
if ( ! tb [ OPENWIFI_ATTR_RSSI_TH ] )
return - EINVAL ;
tmp = nla_get_u32 ( tb [ OPENWIFI_ATTR_RSSI_TH ] ) ;
printk ( " %s set RSSI_TH to %d \n " , sdr_compatible_str , tmp ) ;
xpu_api - > XPU_REG_LBT_TH_write ( tmp ) ;
return 0 ;
case OPENWIFI_CMD_GET_RSSI_TH :
skb = cfg80211_testmode_alloc_reply_skb ( hw - > wiphy , nla_total_size ( sizeof ( u32 ) ) ) ;
if ( ! skb )
return - ENOMEM ;
tmp = xpu_api - > XPU_REG_LBT_TH_read ( ) ;
if ( nla_put_u32 ( skb , OPENWIFI_ATTR_RSSI_TH , tmp ) )
goto nla_put_failure ;
return cfg80211_testmode_reply ( skb ) ;
2020-06-12 08:50:34 +00:00
case OPENWIFI_CMD_SET_TSF :
printk ( " openwifi_set_tsf_1 " ) ;
if ( ( ! tb [ OPENWIFI_ATTR_HIGH_TSF ] ) | | ( ! tb [ OPENWIFI_ATTR_LOW_TSF ] ) )
return - EINVAL ;
printk ( " openwifi_set_tsf_2 " ) ;
tsft_high = nla_get_u32 ( tb [ OPENWIFI_ATTR_HIGH_TSF ] ) ;
tsft_low = nla_get_u32 ( tb [ OPENWIFI_ATTR_LOW_TSF ] ) ;
xpu_api - > XPU_REG_TSF_LOAD_VAL_write ( tsft_high , tsft_low ) ;
printk ( " %s openwifi_set_tsf: %08x%08x \n " , sdr_compatible_str , tsft_high , tsft_low ) ;
return 0 ;
2019-12-10 13:03:47 +00:00
case REG_CMD_SET :
if ( ( ! tb [ REG_ATTR_ADDR ] ) | | ( ! tb [ REG_ATTR_VAL ] ) )
return - EINVAL ;
reg_addr = nla_get_u32 ( tb [ REG_ATTR_ADDR ] ) ;
reg_val = nla_get_u32 ( tb [ REG_ATTR_VAL ] ) ;
reg_cat = ( ( reg_addr > > 16 ) & 0xFFFF ) ;
reg_addr = ( reg_addr & 0xFFFF ) ;
reg_addr_idx = ( reg_addr > > 2 ) ;
printk ( " %s recv set cmd reg cat %d addr %08x val %08x idx %d \n " , sdr_compatible_str , reg_cat , reg_addr , reg_val , reg_addr_idx ) ;
if ( reg_cat = = 1 )
printk ( " %s reg cat 1 (rf) is not supported yet! \n " , sdr_compatible_str ) ;
else if ( reg_cat = = 2 )
rx_intf_api - > reg_write ( reg_addr , reg_val ) ;
else if ( reg_cat = = 3 )
tx_intf_api - > reg_write ( reg_addr , reg_val ) ;
else if ( reg_cat = = 4 )
openofdm_rx_api - > reg_write ( reg_addr , reg_val ) ;
else if ( reg_cat = = 5 )
openofdm_tx_api - > reg_write ( reg_addr , reg_val ) ;
else if ( reg_cat = = 6 )
xpu_api - > reg_write ( reg_addr , reg_val ) ;
else if ( reg_cat = = 7 ) {
2020-06-12 08:50:34 +00:00
if ( reg_addr_idx > = 0 & & reg_addr_idx < MAX_NUM_DRV_REG ) {
priv - > drv_rx_reg_val [ reg_addr_idx ] = reg_val ;
if ( reg_addr_idx = = DRV_RX_REG_IDX_FREQ_BW_CFG ) {
if ( reg_val = = 0 )
priv - > rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0 ;
else
priv - > rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1 ;
priv - > rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping [ priv - > rx_intf_cfg ] ;
//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
}
} else
printk ( " %s reg_addr_idx %d is out of range! \n " , sdr_compatible_str , reg_addr_idx ) ;
2019-12-10 13:03:47 +00:00
}
else if ( reg_cat = = 8 ) {
2020-06-12 08:50:34 +00:00
if ( reg_addr_idx > = 0 & & reg_addr_idx < MAX_NUM_DRV_REG ) {
priv - > drv_tx_reg_val [ reg_addr_idx ] = reg_val ;
if ( reg_addr_idx = = DRV_TX_REG_IDX_FREQ_BW_CFG ) {
if ( reg_val = = 0 ) {
priv - > tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 ;
ad9361_set_tx_atten ( priv - > ad9361_phy , AD9361_RADIO_ON_TX_ATT , true , false , true ) ;
} else {
priv - > tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1 ;
ad9361_set_tx_atten ( priv - > ad9361_phy , AD9361_RADIO_ON_TX_ATT , false , true , true ) ;
}
//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv - > tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping [ priv - > tx_intf_cfg ] ;
2019-12-10 13:03:47 +00:00
}
2020-06-12 08:50:34 +00:00
} else
printk ( " %s reg_addr_idx %d is out of range! \n " , sdr_compatible_str , reg_addr_idx ) ;
2019-12-10 13:03:47 +00:00
}
else if ( reg_cat = = 9 ) {
2020-06-12 08:50:34 +00:00
if ( reg_addr_idx > = 0 & & reg_addr_idx < MAX_NUM_DRV_REG )
priv - > drv_xpu_reg_val [ reg_addr_idx ] = reg_val ;
else
printk ( " %s reg_addr_idx %d is out of range! \n " , sdr_compatible_str , reg_addr_idx ) ;
2019-12-10 13:03:47 +00:00
}
else
printk ( " %s reg cat %d is not supported yet! \n " , sdr_compatible_str , reg_cat ) ;
return 0 ;
case REG_CMD_GET :
skb = cfg80211_testmode_alloc_reply_skb ( hw - > wiphy , nla_total_size ( sizeof ( u32 ) ) ) ;
if ( ! skb )
return - ENOMEM ;
reg_addr = nla_get_u32 ( tb [ REG_ATTR_ADDR ] ) ;
reg_cat = ( ( reg_addr > > 16 ) & 0xFFFF ) ;
reg_addr = ( reg_addr & 0xFFFF ) ;
reg_addr_idx = ( reg_addr > > 2 ) ;
printk ( " %s recv get cmd reg cat %d addr %08x idx %d \n " , sdr_compatible_str , reg_cat , reg_addr , reg_addr_idx ) ;
if ( reg_cat = = 1 ) {
printk ( " %s reg cat 1 (rf) is not supported yet! \n " , sdr_compatible_str ) ;
tmp = 0xFFFFFFFF ;
}
else if ( reg_cat = = 2 )
tmp = rx_intf_api - > reg_read ( reg_addr ) ;
else if ( reg_cat = = 3 )
tmp = tx_intf_api - > reg_read ( reg_addr ) ;
else if ( reg_cat = = 4 )
tmp = openofdm_rx_api - > reg_read ( reg_addr ) ;
else if ( reg_cat = = 5 )
tmp = openofdm_tx_api - > reg_read ( reg_addr ) ;
else if ( reg_cat = = 6 )
tmp = xpu_api - > reg_read ( reg_addr ) ;
else if ( reg_cat = = 7 ) {
2020-06-12 08:50:34 +00:00
if ( reg_addr_idx > = 0 & & reg_addr_idx < MAX_NUM_DRV_REG ) {
if ( reg_addr_idx = = DRV_RX_REG_IDX_FREQ_BW_CFG ) {
priv - > rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping [ priv - > rx_intf_cfg ] ;
//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
if ( priv - > rx_intf_cfg = = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0 )
priv - > drv_rx_reg_val [ reg_addr_idx ] = 0 ;
else if ( priv - > rx_intf_cfg = = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1 )
priv - > drv_rx_reg_val [ reg_addr_idx ] = 1 ;
}
tmp = priv - > drv_rx_reg_val [ reg_addr_idx ] ;
} else
printk ( " %s reg_addr_idx %d is out of range! \n " , sdr_compatible_str , reg_addr_idx ) ;
2019-12-10 13:03:47 +00:00
}
else if ( reg_cat = = 8 ) {
2020-06-12 08:50:34 +00:00
if ( reg_addr_idx > = 0 & & reg_addr_idx < MAX_NUM_DRV_REG ) {
if ( reg_addr_idx = = DRV_TX_REG_IDX_FREQ_BW_CFG ) {
//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv - > tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping [ priv - > tx_intf_cfg ] ;
if ( priv - > tx_intf_cfg = = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 )
priv - > drv_tx_reg_val [ reg_addr_idx ] = 0 ;
else if ( priv - > tx_intf_cfg = = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1 )
priv - > drv_tx_reg_val [ reg_addr_idx ] = 1 ;
}
tmp = priv - > drv_tx_reg_val [ reg_addr_idx ] ;
} else
printk ( " %s reg_addr_idx %d is out of range! \n " , sdr_compatible_str , reg_addr_idx ) ;
2019-12-10 13:03:47 +00:00
}
else if ( reg_cat = = 9 ) {
2020-06-12 08:50:34 +00:00
if ( reg_addr_idx > = 0 & & reg_addr_idx < MAX_NUM_DRV_REG )
tmp = priv - > drv_xpu_reg_val [ reg_addr_idx ] ;
else
printk ( " %s reg_addr_idx %d is out of range! \n " , sdr_compatible_str , reg_addr_idx ) ;
2019-12-10 13:03:47 +00:00
}
else
printk ( " %s reg cat %d is not supported yet! \n " , sdr_compatible_str , reg_cat ) ;
if ( nla_put_u32 ( skb , REG_ATTR_VAL , tmp ) )
goto nla_put_failure ;
return cfg80211_testmode_reply ( skb ) ;
default :
return - EOPNOTSUPP ;
}
nla_put_failure :
dev_kfree_skb ( skb ) ;
return - ENOBUFS ;
}
static const struct ieee80211_ops openwifi_ops = {
. tx = openwifi_tx ,
. start = openwifi_start ,
. stop = openwifi_stop ,
. add_interface = openwifi_add_interface ,
. remove_interface = openwifi_remove_interface ,
. config = openwifi_config ,
. bss_info_changed = openwifi_bss_info_changed ,
. conf_tx = openwifi_conf_tx ,
. prepare_multicast = openwifi_prepare_multicast ,
. configure_filter = openwifi_configure_filter ,
. rfkill_poll = openwifi_rfkill_poll ,
. get_tsf = openwifi_get_tsf ,
. set_tsf = openwifi_set_tsf ,
. reset_tsf = openwifi_reset_tsf ,
. set_rts_threshold = openwifi_set_rts_threshold ,
. testmode_cmd = openwifi_testmode_cmd ,
} ;
static const struct of_device_id openwifi_dev_of_ids [ ] = {
{ . compatible = " sdr,sdr " , } ,
{ }
} ;
MODULE_DEVICE_TABLE ( of , openwifi_dev_of_ids ) ;
static int custom_match_spi_dev ( struct device * dev , void * data )
{
const char * name = data ;
bool ret = sysfs_streq ( name , dev - > of_node - > name ) ;
printk ( " %s custom_match_spi_dev %s %s %d \n " , sdr_compatible_str , name , dev - > of_node - > name , ret ) ;
return ret ;
}
static int custom_match_platform_dev ( struct device * dev , void * data )
{
struct platform_device * plat_dev = to_platform_device ( dev ) ;
const char * name = data ;
char * name_in_sys_bus_platform_devices = strstr ( plat_dev - > name , name ) ;
bool match_flag = ( name_in_sys_bus_platform_devices ! = NULL ) ;
if ( match_flag ) {
printk ( " %s custom_match_platform_dev %s \n " , sdr_compatible_str , plat_dev - > name ) ;
}
return ( match_flag ) ;
}
static int openwifi_dev_probe ( struct platform_device * pdev )
{
struct ieee80211_hw * dev ;
struct openwifi_priv * priv ;
int err = 1 , rand_val ;
2020-12-29 20:33:36 +00:00
const char * chip_name , * fpga_model ;
2019-12-10 13:03:47 +00:00
u32 reg ; //, reg1;
struct device_node * np = pdev - > dev . of_node ;
struct device * tmp_dev ;
struct platform_device * tmp_pdev ;
struct iio_dev * tmp_indio_dev ;
// struct gpio_leds_priv *tmp_led_priv;
printk ( " \n " ) ;
if ( np ) {
const struct of_device_id * match ;
match = of_match_node ( openwifi_dev_of_ids , np ) ;
if ( match ) {
printk ( " %s openwifi_dev_probe: match! \n " , sdr_compatible_str ) ;
err = 0 ;
}
}
if ( err )
return err ;
dev = ieee80211_alloc_hw ( sizeof ( * priv ) , & openwifi_ops ) ;
if ( ! dev ) {
printk ( KERN_ERR " %s openwifi_dev_probe: ieee80211 alloc failed \n " , sdr_compatible_str ) ;
err = - ENOMEM ;
goto err_free_dev ;
}
priv = dev - > priv ;
priv - > pdev = pdev ;
2020-12-29 20:33:36 +00:00
err = of_property_read_string ( of_find_node_by_path ( " / " ) , " model " , & fpga_model ) ;
if ( err < 0 ) {
printk ( " %s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d \n " , sdr_compatible_str , err ) ;
priv - > fpga_type = SMALL_FPGA ;
} else {
// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
if ( strstr ( fpga_model , " ZCU102 " ) ! = NULL | | strstr ( fpga_model , " Z7035 " ) ! = NULL | | strstr ( fpga_model , " ZC706 " ) ! = NULL )
priv - > fpga_type = LARGE_FPGA ;
// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
else if ( strstr ( fpga_model , " ZED " ) ! = NULL | | strstr ( fpga_model , " ZC702 " ) ! = NULL | | strstr ( fpga_model , " Z7020 " ) ! = NULL )
priv - > fpga_type = SMALL_FPGA ;
}
2019-12-10 13:03:47 +00:00
// //-------------find ad9361-phy driver for lo/channel control---------------
priv - > actual_rx_lo = 0 ;
tmp_dev = bus_find_device ( & spi_bus_type , NULL , " ad9361-phy " , custom_match_spi_dev ) ;
2020-04-27 07:37:04 +00:00
if ( tmp_dev = = NULL ) {
2019-12-10 13:03:47 +00:00
printk ( KERN_ERR " %s find_dev ad9361-phy failed \n " , sdr_compatible_str ) ;
err = - ENOMEM ;
goto err_free_dev ;
}
2020-04-27 07:37:04 +00:00
printk ( " %s bus_find_device ad9361-phy: %s. driver_data pointer %p \n " , sdr_compatible_str , ( ( struct spi_device * ) tmp_dev ) - > modalias , ( void * ) ( ( ( struct spi_device * ) tmp_dev ) - > dev . driver_data ) ) ;
if ( ( ( struct spi_device * ) tmp_dev ) - > dev . driver_data = = NULL ) {
printk ( KERN_ERR " %s find_dev ad9361-phy failed. dev.driver_data == NULL \n " , sdr_compatible_str ) ;
err = - ENOMEM ;
goto err_free_dev ;
}
2019-12-10 13:03:47 +00:00
priv - > ad9361_phy = ad9361_spi_to_phy ( ( struct spi_device * ) tmp_dev ) ;
if ( ! ( priv - > ad9361_phy ) ) {
printk ( KERN_ERR " %s ad9361_spi_to_phy failed \n " , sdr_compatible_str ) ;
err = - ENOMEM ;
goto err_free_dev ;
}
2020-03-04 18:39:12 +00:00
printk ( " %s ad9361_spi_to_phy ad9361-phy: %s \n " , sdr_compatible_str , priv - > ad9361_phy - > spi - > modalias ) ;
2019-12-10 13:03:47 +00:00
priv - > ctrl_out . en_mask = 0xFF ;
priv - > ctrl_out . index = 0x16 ;
err = ad9361_ctrl_outs_setup ( priv - > ad9361_phy , & ( priv - > ctrl_out ) ) ;
if ( err < 0 ) {
printk ( " %s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d \n " , sdr_compatible_str , err ) ;
} else {
printk ( " %s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x \n " , sdr_compatible_str , priv - > ctrl_out . en_mask , priv - > ctrl_out . index ) ;
}
reg = ad9361_spi_read ( priv - > ad9361_phy - > spi , REG_CTRL_OUTPUT_POINTER ) ;
printk ( " %s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x \n " , sdr_compatible_str , reg ) ;
reg = ad9361_spi_read ( priv - > ad9361_phy - > spi , REG_CTRL_OUTPUT_ENABLE ) ;
printk ( " %s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x \n " , sdr_compatible_str , reg ) ;
// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
tmp_dev = bus_find_device ( & platform_bus_type , NULL , " cf-ad9361-dds-core-lpc " , custom_match_platform_dev ) ;
if ( ! tmp_dev ) {
printk ( KERN_ERR " %s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed \n " , sdr_compatible_str ) ;
err = - ENOMEM ;
goto err_free_dev ;
}
tmp_pdev = to_platform_device ( tmp_dev ) ;
if ( ! tmp_pdev ) {
printk ( KERN_ERR " %s to_platform_device failed \n " , sdr_compatible_str ) ;
err = - ENOMEM ;
goto err_free_dev ;
}
tmp_indio_dev = platform_get_drvdata ( tmp_pdev ) ;
if ( ! tmp_indio_dev ) {
printk ( KERN_ERR " %s platform_get_drvdata failed \n " , sdr_compatible_str ) ;
err = - ENOMEM ;
goto err_free_dev ;
}
priv - > dds_st = iio_priv ( tmp_indio_dev ) ;
if ( ! ( priv - > dds_st ) ) {
printk ( KERN_ERR " %s iio_priv failed \n " , sdr_compatible_str ) ;
err = - ENOMEM ;
goto err_free_dev ;
}
printk ( " %s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s \n " , sdr_compatible_str , priv - > dds_st - > version , priv - > dds_st - > chip_info - > name ) ;
cf_axi_dds_datasel ( priv - > dds_st , - 1 , DATA_SEL_DMA ) ;
printk ( " %s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA \n " , sdr_compatible_str ) ;
// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
// turn off radio by muting tx
// ad9361_tx_mute(priv->ad9361_phy, 1);
// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
// priv->rfkill_off = 0;// 0 off, 1 on
// printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
// }
// else
// printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
priv - > rssi_correction = 43 ; //this will be set in real-time by _rf_set_channel()
//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
priv - > rf_bw = 40000000 ; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
priv - > xpu_cfg = XPU_NORMAL ;
priv - > openofdm_tx_cfg = OPENOFDM_TX_NORMAL ;
priv - > openofdm_rx_cfg = OPENOFDM_RX_NORMAL ;
printk ( " %s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d \n " , sdr_compatible_str , priv - > rf_bw , ( priv - > rf_bw = = 20000000 ) , ( priv - > rf_bw = = 40000000 ) ) ;
if ( priv - > rf_bw = = 20000000 ) {
priv - > rx_intf_cfg = RX_INTF_BYPASS ;
priv - > tx_intf_cfg = TX_INTF_BYPASS ;
//priv->rx_freq_offset_to_lo_MHz = 0;
//priv->tx_freq_offset_to_lo_MHz = 0;
} else if ( priv - > rf_bw = = 40000000 ) {
//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
priv - > rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0 ;
2020-03-04 18:39:12 +00:00
priv - > tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 ; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2019-12-10 13:03:47 +00:00
// // try another antenna option
//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
#if 0
if ( priv - > rx_intf_cfg = = DDC_BW_20MHZ_AT_N_10MHZ ) {
priv - > rx_freq_offset_to_lo_MHz = - 10 ;
} else if ( priv - > rx_intf_cfg = = DDC_BW_20MHZ_AT_P_10MHZ ) {
priv - > rx_freq_offset_to_lo_MHz = 10 ;
} else if ( priv - > rx_intf_cfg = = DDC_BW_20MHZ_AT_0MHZ ) {
priv - > rx_freq_offset_to_lo_MHz = 0 ;
} else {
printk ( " %s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d \n " , sdr_compatible_str , priv - > rx_intf_cfg ) ;
}
# endif
} else {
printk ( " %s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000) \n " , sdr_compatible_str , priv - > rf_bw ) ;
}
priv - > rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping [ priv - > rx_intf_cfg ] ;
priv - > tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping [ priv - > tx_intf_cfg ] ;
printk ( " %s openwifi_dev_probe: test_mode %d \n " , sdr_compatible_str , test_mode ) ;
//let's by default turn radio on when probing
if ( priv - > tx_intf_cfg = = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1 ) {
ad9361_set_tx_atten ( priv - > ad9361_phy , AD9361_RADIO_ON_TX_ATT , false , true , true ) ; // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten ( priv - > ad9361_phy , 2 ) ;
} else {
ad9361_set_tx_atten ( priv - > ad9361_phy , AD9361_RADIO_ON_TX_ATT , true , false , true ) ; // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten ( priv - > ad9361_phy , 1 ) ;
}
if ( reg = = AD9361_RADIO_ON_TX_ATT ) {
priv - > rfkill_off = 1 ; // 0 off, 1 on
printk ( " %s openwifi_dev_probe: rfkill radio on \n " , sdr_compatible_str ) ;
}
else
printk ( " %s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d \n " , sdr_compatible_str , reg , AD9361_RADIO_ON_TX_ATT ) ;
memset ( priv - > drv_rx_reg_val , 0 , sizeof ( priv - > drv_rx_reg_val ) ) ;
memset ( priv - > drv_tx_reg_val , 0 , sizeof ( priv - > drv_tx_reg_val ) ) ;
memset ( priv - > drv_xpu_reg_val , 0 , sizeof ( priv - > drv_xpu_reg_val ) ) ;
// //set ad9361 in certain mode
#if 0
err = ad9361_set_trx_clock_chain_freq ( priv - > ad9361_phy , priv - > rf_bw ) ;
printk ( " %s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d \n " , sdr_compatible_str , priv - > rf_bw , err ) ;
err = ad9361_update_rf_bandwidth ( priv - > ad9361_phy , priv - > rf_bw , priv - > rf_bw ) ;
printk ( " %s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d \n " , sdr_compatible_str , priv - > rf_bw , err ) ;
rx_intf_api - > hw_init ( priv - > rx_intf_cfg , 8 , 8 ) ;
2020-12-29 20:33:36 +00:00
tx_intf_api - > hw_init ( priv - > tx_intf_cfg , 8 , 8 , priv - > fpga_type ) ;
2019-12-10 13:03:47 +00:00
openofdm_tx_api - > hw_init ( priv - > openofdm_tx_cfg ) ;
openofdm_rx_api - > hw_init ( priv - > openofdm_rx_cfg ) ;
printk ( " %s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d \n " , sdr_compatible_str , priv - > rx_intf_cfg , priv - > openofdm_rx_cfg , priv - > tx_intf_cfg , priv - > openofdm_tx_cfg ) ;
printk ( " %s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d \n " , sdr_compatible_str , priv - > rx_freq_offset_to_lo_MHz , priv - > tx_freq_offset_to_lo_MHz ) ;
# endif
dev - > max_rates = 1 ; //maximum number of alternate rate retry stages the hw can handle.
SET_IEEE80211_DEV ( dev , & pdev - > dev ) ;
platform_set_drvdata ( pdev , dev ) ;
BUILD_BUG_ON ( sizeof ( priv - > rates_2GHz ) ! = sizeof ( openwifi_2GHz_rates ) ) ;
BUILD_BUG_ON ( sizeof ( priv - > rates_5GHz ) ! = sizeof ( openwifi_5GHz_rates ) ) ;
BUILD_BUG_ON ( sizeof ( priv - > channels_2GHz ) ! = sizeof ( openwifi_2GHz_channels ) ) ;
BUILD_BUG_ON ( sizeof ( priv - > channels_5GHz ) ! = sizeof ( openwifi_5GHz_channels ) ) ;
memcpy ( priv - > rates_2GHz , openwifi_2GHz_rates , sizeof ( openwifi_2GHz_rates ) ) ;
memcpy ( priv - > rates_5GHz , openwifi_5GHz_rates , sizeof ( openwifi_5GHz_rates ) ) ;
memcpy ( priv - > channels_2GHz , openwifi_2GHz_channels , sizeof ( openwifi_2GHz_channels ) ) ;
memcpy ( priv - > channels_5GHz , openwifi_5GHz_channels , sizeof ( openwifi_5GHz_channels ) ) ;
priv - > band = BAND_5_8GHZ ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
priv - > channel = 44 ; //currently useless. this can be changed by band _rf_set_channel()
priv - > use_short_slot = false ; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
priv - > band_2GHz . band = NL80211_BAND_2GHZ ;
priv - > band_2GHz . channels = priv - > channels_2GHz ;
priv - > band_2GHz . n_channels = ARRAY_SIZE ( priv - > channels_2GHz ) ;
priv - > band_2GHz . bitrates = priv - > rates_2GHz ;
priv - > band_2GHz . n_bitrates = ARRAY_SIZE ( priv - > rates_2GHz ) ;
2020-11-05 17:22:24 +00:00
priv - > band_2GHz . ht_cap . ht_supported = true ;
priv - > band_2GHz . ht_cap . cap = IEEE80211_HT_CAP_SGI_20 ;
memset ( & priv - > band_2GHz . ht_cap . mcs , 0 , sizeof ( priv - > band_2GHz . ht_cap . mcs ) ) ;
priv - > band_2GHz . ht_cap . mcs . rx_mask [ 0 ] = 0xff ;
priv - > band_2GHz . ht_cap . mcs . tx_params = IEEE80211_HT_MCS_TX_DEFINED ;
2019-12-10 13:03:47 +00:00
dev - > wiphy - > bands [ NL80211_BAND_2GHZ ] = & ( priv - > band_2GHz ) ;
priv - > band_5GHz . band = NL80211_BAND_5GHZ ;
priv - > band_5GHz . channels = priv - > channels_5GHz ;
priv - > band_5GHz . n_channels = ARRAY_SIZE ( priv - > channels_5GHz ) ;
priv - > band_5GHz . bitrates = priv - > rates_5GHz ;
priv - > band_5GHz . n_bitrates = ARRAY_SIZE ( priv - > rates_5GHz ) ;
2020-11-05 17:22:24 +00:00
priv - > band_5GHz . ht_cap . ht_supported = true ;
priv - > band_5GHz . ht_cap . cap = IEEE80211_HT_CAP_SGI_20 ;
memset ( & priv - > band_5GHz . ht_cap . mcs , 0 , sizeof ( priv - > band_5GHz . ht_cap . mcs ) ) ;
priv - > band_5GHz . ht_cap . mcs . rx_mask [ 0 ] = 0xff ;
priv - > band_5GHz . ht_cap . mcs . tx_params = IEEE80211_HT_MCS_TX_DEFINED ;
2019-12-10 13:03:47 +00:00
dev - > wiphy - > bands [ NL80211_BAND_5GHZ ] = & ( priv - > band_5GHz ) ;
printk ( " %s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d \n " , sdr_compatible_str ,
priv - > band_2GHz . n_channels , priv - > band_2GHz . n_bitrates , priv - > band_5GHz . n_channels , priv - > band_5GHz . n_bitrates ) ;
ieee80211_hw_set ( dev , HOST_BROADCAST_PS_BUFFERING ) ;
ieee80211_hw_set ( dev , RX_INCLUDES_FCS ) ;
ieee80211_hw_set ( dev , BEACON_TX_STATUS ) ;
dev - > vif_data_size = sizeof ( struct openwifi_vif ) ;
dev - > wiphy - > interface_modes =
BIT ( NL80211_IFTYPE_MONITOR ) |
BIT ( NL80211_IFTYPE_P2P_GO ) |
BIT ( NL80211_IFTYPE_P2P_CLIENT ) |
BIT ( NL80211_IFTYPE_AP ) |
BIT ( NL80211_IFTYPE_STATION ) |
BIT ( NL80211_IFTYPE_ADHOC ) |
BIT ( NL80211_IFTYPE_MESH_POINT ) |
BIT ( NL80211_IFTYPE_OCB ) ;
dev - > wiphy - > iface_combinations = & openwifi_if_comb ;
dev - > wiphy - > n_iface_combinations = 1 ;
dev - > wiphy - > regulatory_flags = ( REGULATORY_STRICT_REG | REGULATORY_CUSTOM_REG ) ; // use our own config within strict regulation
//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
wiphy_apply_custom_regulatory ( dev - > wiphy , & sdr_regd ) ;
chip_name = " ZYNQ " ;
/* we declare to MAC80211 all the queues except for beacon queue
* that will be eventually handled by DRV .
* TX rings are arranged in such a way that lower is the IDX ,
* higher is the priority , in order to achieve direct mapping
* with mac80211 , however the beacon queue is an exception and it
* is mapped on the highst tx ring IDX .
*/
2020-06-12 08:50:34 +00:00
dev - > queues = MAX_NUM_HW_QUEUE ;
//dev->queues = 1;
2019-12-10 13:03:47 +00:00
ieee80211_hw_set ( dev , SIGNAL_DBM ) ;
wiphy_ext_feature_set ( dev - > wiphy , NL80211_EXT_FEATURE_CQM_RSSI_LIST ) ;
priv - > rf = & ad9361_rf_ops ;
memset ( priv - > dest_mac_addr_queue_map , 0 , sizeof ( priv - > dest_mac_addr_queue_map ) ) ;
2020-06-12 08:50:34 +00:00
priv - > slice_idx = 0xFFFFFFFF ;
sg_init_table ( & ( priv - > tx_sg ) , 1 ) ;
2019-12-10 13:03:47 +00:00
get_random_bytes ( & rand_val , sizeof ( rand_val ) ) ;
rand_val % = 250 ;
priv - > mac_addr [ 0 ] = 0x66 ; priv - > mac_addr [ 1 ] = 0x55 ; priv - > mac_addr [ 2 ] = 0x44 ; priv - > mac_addr [ 3 ] = 0x33 ; priv - > mac_addr [ 4 ] = 0x22 ;
priv - > mac_addr [ 5 ] = rand_val + 1 ;
//priv->mac_addr[5]=0x11;
if ( ! is_valid_ether_addr ( priv - > mac_addr ) ) {
printk ( KERN_WARNING " %s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr \n " , sdr_compatible_str ) ;
eth_random_addr ( priv - > mac_addr ) ;
} else {
printk ( " %s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x \n " , sdr_compatible_str , priv - > mac_addr [ 0 ] , priv - > mac_addr [ 1 ] , priv - > mac_addr [ 2 ] , priv - > mac_addr [ 3 ] , priv - > mac_addr [ 4 ] , priv - > mac_addr [ 5 ] ) ;
}
SET_IEEE80211_PERM_ADDR ( dev , priv - > mac_addr ) ;
spin_lock_init ( & priv - > lock ) ;
err = ieee80211_register_hw ( dev ) ;
if ( err ) {
pr_err ( KERN_ERR " %s openwifi_dev_probe: WARNING Cannot register device \n " , sdr_compatible_str ) ;
goto err_free_dev ;
} else {
printk ( " %s openwifi_dev_probe: ieee80211_register_hw %d \n " , sdr_compatible_str , err ) ;
}
// // //--------------------hook leds (not complete yet)--------------------------------
2021-02-04 08:54:47 +00:00
// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2019-12-10 13:03:47 +00:00
// if (!tmp_dev) {
// printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
// err = -ENOMEM;
// goto err_free_dev;
// }
// tmp_pdev = to_platform_device(tmp_dev);
// if (!tmp_pdev) {
// printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
// err = -ENOMEM;
// goto err_free_dev;
// }
// tmp_led_priv = platform_get_drvdata(tmp_pdev);
// if (!tmp_led_priv) {
// printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
// err = -ENOMEM;
// goto err_free_dev;
// }
// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
// if (tmp_led_priv->num_leds!=4){
// printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
// err = -ENOMEM;
// goto err_free_dev;
// }
// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
// priv->num_led = tmp_led_priv->num_leds;
// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
wiphy_info ( dev - > wiphy , " hwaddr %pm, %s + %s \n " ,
priv - > mac_addr , chip_name , priv - > rf - > name ) ;
openwifi_rfkill_init ( dev ) ;
return 0 ;
err_free_dev :
ieee80211_free_hw ( dev ) ;
return err ;
}
static int openwifi_dev_remove ( struct platform_device * pdev )
{
struct ieee80211_hw * dev = platform_get_drvdata ( pdev ) ;
if ( ! dev ) {
2020-04-27 07:37:04 +00:00
pr_info ( " %s openwifi_dev_remove: dev %p \n " , sdr_compatible_str , ( void * ) dev ) ;
2019-12-10 13:03:47 +00:00
return ( - 1 ) ;
}
openwifi_rfkill_exit ( dev ) ;
ieee80211_unregister_hw ( dev ) ;
ieee80211_free_hw ( dev ) ;
return ( 0 ) ;
}
static struct platform_driver openwifi_dev_driver = {
. driver = {
. name = " sdr,sdr " ,
. owner = THIS_MODULE ,
. of_match_table = openwifi_dev_of_ids ,
} ,
. probe = openwifi_dev_probe ,
. remove = openwifi_dev_remove ,
} ;
module_platform_driver ( openwifi_dev_driver ) ;