loops with bounds not known at compile time can not be unrolled.
when ncols_template == 0, the bounds of the loop are not constexpr, thus llvm cant unroll the loops here.
This disables the workaround on rocblas fixed versions (>=4.0.0) to eliminate the runtime cost and unnecessary VRAM allocation of loading all tensile objects.
* Refactor: Moves cuda graph executable update step to separate function.
* Refactor: Moves cuda graph update check to separate function.
* Refactor: Moves cuda graph maintenance (update or adjusting copy parameters) to separate function for improved readability.
* Fix: Adds missing reference to maintain_cuda_graph() definition.
* Refactor: Improves structure and abstractions by moving CUDA graph evaluation and capture to its own function.
* Refactor: Moves node graph checks and copy ops into individual function for improved readability.
* Refactor: Removes code permanently excluded from compilation to increase readability.
* Style: Adds missing newline
* Style: Consolidates several neighboring '#ifdef USE_CUDA_GRAPH' into a single one
* Refactor: Makes 'cuda_graph_update_required' a local variable
* remove double lines between functions
---------
Co-authored-by: slaren <slarengh@gmail.com>
* faster uncontiguous concat
* Use a lambda to avoid code duplication
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* Update ggml/src/ggml-cuda/concat.cu
* add constexpr and static assert
---------
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* Renames NVIDIA GPU-architecture flags to avoid name clashes with WinAPI. (e.g. CC_PASCAL, GPU architecture or WinAPI pascal compiler flag?)
* Reverts erroneous rename in SYCL-code.
* Renames GGML_CUDA_MIN_CC_DP4A to GGML_CUDA_CC_DP4A.
* Renames the rest of the compute capability macros for consistency.
* rename ggml-cpu-aarch64.c to .cpp
* reformat extra cpu backend.
- clean Q4_0_N_M and IQ4_0_N_M
- remove from "file" tensor type
- allow only with dynamic repack
- extract cpu extra bufts and convert to C++
- hbm
- "aarch64"
- more generic use of extra buffer
- generalise extra_supports_op
- new API for "cpu-accel":
- amx
- aarch64
* clang-format
* Clean Q4_0_N_M ref
Enable restrict on C++
* add op GGML_OP_MUL_MAT_ID for Q4_0_N_M with runtime repack
* added/corrected control on tensor size for Q4 repacking.
* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add debug logs on repacks.
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* kqmax_new_j in every thread within warp is same after operate at line 199,this reduce can be omit
* same problem in vec32
---------
Co-authored-by: ZhaoXiaoYu <zhao.xiaoyu@zte.com.cn>
* ggml: new optimization interface
remove test2.c, test3.c
store adamw params in tensor
move grads from tensor to graph
* avoid segfault upon API misuse
* add ggml-opt.h to public headers
* remove dependence of ggml-opt.cpp on ggml-cpu.h
* ggml : add ggml_flash_attn_ext_get_prec
* metal : use F16 precision in FA kernels
ggml-ci
* metal : minor clean-up
* metal : compile-guard bf16 FA kernels
ggml-ci
* build : remove obsolete compile flag [no ci]
* metal : prevent int overflows [no ci]
* cuda : disable BF16 FA
ggml-ci
* metal : fix BF16 requirement for FA kernels
ggml-ci
* make : clean-up [no ci]
* rwkv6: rename to wkv6
* rwkv6: support avx2 avx512 armv8 armv9
* rwkv6: update cuda file name
* rwkv6: rename params
* wkv on sycl
* sycl: add some ops
* sycl: Enhance OP support judgment
* wkv6: drop armv9 and tranfer to GGML style
ggml-ci
* sync : ggml
* update the function to use appropriate types
* fix define error
* Update ggml/src/ggml-cpu.c
* add appropriate asserts
* move element-wise functions outside
* put the declaration outside the loop
* rewrite to be more inline with the common pattern for distributing threads
* use recommended way GGML_TENSOR_LOCALS
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Plamen Minev <pacominev@gmail.com>
Co-authored-by: Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Co-authored-by: Meng, Hengyu <airdldl@163.com>
* Vectorize load instructions in dmmv f16 CUDA kernel
Replaces scalar with vector load instructions, which substantially
improves performance on NVIDIA HBM GPUs, e.g. gives a 1.27X overall
speedup for Meta-Llama-3-8B-Instruct-F16 BS1 inference evaluation on
H100 SXM 80GB HBM3. On GDDR GPUs, there is a slight (1.01X) speedup.
* addressed comment
* Update ggml/src/ggml-cuda/dmmv.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>