mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-03-21 11:35:16 +00:00
ggml : build backends as libraries (llama/10256)
* ggml : build backends as libraries --------- Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: R0CKSTAR <xiaodong.ye@mthreads.com>
This commit is contained in:
parent
5f7e094ccb
commit
746bf2596f
@ -116,6 +116,7 @@ endif()
|
||||
|
||||
# ggml core
|
||||
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
|
||||
option(GGML_CPU "ggml: enable CPU backend" ON)
|
||||
|
||||
# 3rd party libs / backends
|
||||
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
|
||||
@ -141,7 +142,7 @@ option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM"
|
||||
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
|
||||
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
|
||||
|
||||
option(GGML_HIPBLAS "ggml: use hipBLAS" OFF)
|
||||
option(GGML_HIP "ggml: use HIP" OFF)
|
||||
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
@ -238,12 +239,15 @@ set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
install(TARGETS ggml PUBLIC_HEADER)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
install(TARGETS ggml LIBRARY)
|
||||
install(TARGETS ggml LIBRARY)
|
||||
install(TARGETS ggml-base LIBRARY)
|
||||
endif()
|
||||
|
||||
# FIXME: this should be done in the backend cmake files
|
||||
if (GGML_METAL)
|
||||
# FIXME: does this need to be installed with GGML_METAL_EMBED_LIBRARY?
|
||||
install(
|
||||
FILES src/ggml-metal.metal
|
||||
FILES ggml/src/ggml-metal/ggml-metal.metal
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
|
@ -9,16 +9,16 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
// buffer_type API
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_amx(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_amx(ggml_backend_t backend);
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_amx_init(void);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_amx_init(void);
|
||||
|
||||
GGML_API void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads);
|
||||
GGML_BACKEND_API void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_amx_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_amx_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -3,6 +3,20 @@
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#ifdef GGML_BACKEND_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef GGML_BACKEND_BUILD
|
||||
# define GGML_BACKEND_API __declspec(dllexport) extern
|
||||
# else
|
||||
# define GGML_BACKEND_API __declspec(dllimport) extern
|
||||
# endif
|
||||
# else
|
||||
# define GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
|
||||
# endif
|
||||
#else
|
||||
# define GGML_BACKEND_API extern
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
@ -9,15 +9,15 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_blas_init(void);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_blas_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_blas(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_blas(ggml_backend_t backend);
|
||||
|
||||
// number of threads used for conversion to float
|
||||
// for openblas and blis, this will also set the number of threads used for blas operations
|
||||
GGML_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
||||
GGML_BACKEND_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_blas_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_blas_reg(void);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
@ -34,7 +34,7 @@ extern "C" {
|
||||
*/
|
||||
#define GGML_CANN_MAX_DEVICES 16
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_cann_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cann_reg(void);
|
||||
|
||||
/**
|
||||
* @brief Initializes the CANN backend for a specified device.
|
||||
@ -46,7 +46,7 @@ GGML_API ggml_backend_reg_t ggml_backend_cann_reg(void);
|
||||
* @param device The index of the device to initialize.
|
||||
* @return A pointer to the initialized backend instance, or nullptr on failure.
|
||||
*/
|
||||
GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
|
||||
/**
|
||||
* @brief Checks if a given backend is a CANN backend.
|
||||
@ -57,7 +57,7 @@ GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
* @param backend The backend instance to check.
|
||||
* @return True if the backend is a CANN backend, false otherwise.
|
||||
*/
|
||||
GGML_API bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the CANN buffer type for a specified device.
|
||||
@ -69,7 +69,7 @@ GGML_API bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
* @return A pointer to the buffer type interface for the specified device, or
|
||||
* nullptr if the device index is out of range.
|
||||
*/
|
||||
GGML_API ggml_backend_buffer_type_t
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t
|
||||
ggml_backend_cann_buffer_type(int32_t device);
|
||||
|
||||
/**
|
||||
@ -80,14 +80,14 @@ ggml_backend_cann_buffer_type(int32_t device);
|
||||
*
|
||||
* @return The number of CANN devices available.
|
||||
*/
|
||||
GGML_API int32_t ggml_backend_cann_get_device_count(void);
|
||||
GGML_BACKEND_API int32_t ggml_backend_cann_get_device_count(void);
|
||||
|
||||
/**
|
||||
* @brief pinned host buffer for use with the CPU backend for faster copies between CPU and NPU.
|
||||
*
|
||||
* @return A pointer to the host buffer type interface.
|
||||
*/
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the description of a specific CANN device.
|
||||
@ -99,7 +99,7 @@ GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||
* @param description Pointer to a buffer where the description will be written.
|
||||
* @param description_size Size of the description buffer.
|
||||
*/
|
||||
GGML_API void ggml_backend_cann_get_device_description(
|
||||
GGML_BACKEND_API void ggml_backend_cann_get_device_description(
|
||||
int32_t device, char* description, size_t description_size);
|
||||
|
||||
/**
|
||||
@ -114,7 +114,7 @@ GGML_API void ggml_backend_cann_get_device_description(
|
||||
* @param total Pointer to a variable where the total memory size will be
|
||||
* stored.
|
||||
*/
|
||||
GGML_API void ggml_backend_cann_get_device_memory(int32_t device,
|
||||
GGML_BACKEND_API void ggml_backend_cann_get_device_memory(int32_t device,
|
||||
size_t* free,
|
||||
size_t* total);
|
||||
|
||||
|
@ -54,54 +54,77 @@ extern "C" {
|
||||
GGML_NUMA_STRATEGY_COUNT
|
||||
};
|
||||
|
||||
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
||||
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
||||
GGML_BACKEND_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
||||
GGML_BACKEND_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
||||
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||||
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||||
|
||||
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
||||
GGML_BACKEND_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_BACKEND_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
||||
|
||||
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
||||
GGML_BACKEND_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_BACKEND_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
||||
|
||||
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||||
GGML_BACKEND_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_BACKEND_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||||
|
||||
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
||||
GGML_BACKEND_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_BACKEND_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
||||
|
||||
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
||||
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
||||
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
||||
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
||||
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
||||
GGML_BACKEND_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
||||
GGML_BACKEND_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
||||
GGML_BACKEND_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||
GGML_BACKEND_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
GGML_API struct ggml_cplan ggml_graph_plan(
|
||||
GGML_BACKEND_API struct ggml_cplan ggml_graph_plan(
|
||||
const struct ggml_cgraph * cgraph,
|
||||
int n_threads, /* = GGML_DEFAULT_N_THREADS */
|
||||
struct ggml_threadpool * threadpool /* = NULL */ );
|
||||
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
GGML_BACKEND_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
|
||||
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||||
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||||
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||||
GGML_BACKEND_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||||
|
||||
// TODO: move to backend interface
|
||||
GGML_API int ggml_cpu_has_neon (void);
|
||||
GGML_API int ggml_cpu_has_sve (void);
|
||||
GGML_API int ggml_cpu_has_matmul_int8(void);
|
||||
// get the sve vector length in bytes
|
||||
GGML_API int ggml_cpu_get_sve_cnt(void);
|
||||
//
|
||||
// system info
|
||||
//
|
||||
|
||||
// x86
|
||||
GGML_BACKEND_API int ggml_cpu_has_sse3 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_ssse3 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx2 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_f16c (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_vbmi(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_vnni(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_bf16(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_amx_int8 (void);
|
||||
// ARM
|
||||
GGML_BACKEND_API int ggml_cpu_has_neon (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_arm_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fp16_va (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_sve (void);
|
||||
GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
|
||||
// other
|
||||
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
// Internal types and functions exposed for tests and benchmarks
|
||||
|
||||
@ -115,6 +138,7 @@ extern "C" {
|
||||
const void * GGML_RESTRICT y, int nr, int nc);
|
||||
|
||||
struct ggml_type_traits_cpu {
|
||||
ggml_from_float_t from_float;
|
||||
ggml_from_float_to_mat_t from_float_to_mat;
|
||||
ggml_vec_dot_t vec_dot;
|
||||
enum ggml_type vec_dot_type;
|
||||
@ -124,25 +148,25 @@ extern "C" {
|
||||
ggml_gemm_t gemm;
|
||||
};
|
||||
|
||||
GGML_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
|
||||
GGML_BACKEND_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
|
||||
|
||||
GGML_API void ggml_cpu_init(void);
|
||||
GGML_BACKEND_API void ggml_cpu_init(void);
|
||||
|
||||
//
|
||||
// CPU backend
|
||||
//
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
GGML_BACKEND_API bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
@ -7,7 +7,7 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_HIPBLAS
|
||||
#ifdef GGML_USE_HIP
|
||||
#define GGML_CUDA_NAME "ROCm"
|
||||
#define GGML_CUBLAS_NAME "hipBLAS"
|
||||
#elif defined(GGML_USE_MUSA)
|
||||
@ -20,27 +20,27 @@ extern "C" {
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
|
||||
// device buffer
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
|
||||
GGML_API int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
GGML_BACKEND_API int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_BACKEND_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_BACKEND_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||
GGML_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||
GGML_BACKEND_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||
GGML_BACKEND_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -37,13 +37,13 @@ struct ggml_vk_device ggml_vk_current_device(void);
|
||||
// forward declaration
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_kompute_init(int device);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_kompute_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -39,27 +39,27 @@ extern "C" {
|
||||
// user-code should use only these functions
|
||||
//
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_metal_init(void);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_metal_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||
|
||||
GGML_DEPRECATED(
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
|
||||
GGML_BACKEND_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
|
||||
"obsoleted by the new device interface - https://github.com/ggerganov/llama.cpp/pull/9713");
|
||||
|
||||
GGML_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
|
||||
GGML_BACKEND_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
|
||||
// helper to check if the device supports a specific family
|
||||
// ideally, the user code should be doing these checks
|
||||
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
GGML_BACKEND_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
|
||||
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
|
||||
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
||||
GGML_BACKEND_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_metal_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_metal_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -10,18 +10,18 @@ extern "C" {
|
||||
#define GGML_RPC_MAX_SERVERS 16
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||
GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||
GGML_BACKEND_API bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||
|
||||
GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
|
||||
GGML_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
||||
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
|
||||
|
||||
GGML_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
|
||||
GGML_BACKEND_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -17,32 +17,32 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_sycl(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_sycl(ggml_backend_t backend);
|
||||
|
||||
// devide buffer
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||
|
||||
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_API void ggml_backend_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_API void ggml_backend_sycl_get_device_description(int device,
|
||||
GGML_BACKEND_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_BACKEND_API void ggml_backend_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_BACKEND_API void ggml_backend_sycl_get_device_description(int device,
|
||||
char *description,
|
||||
size_t description_size);
|
||||
GGML_API int ggml_backend_sycl_get_device_count();
|
||||
GGML_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
GGML_BACKEND_API int ggml_backend_sycl_get_device_count();
|
||||
GGML_BACKEND_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
|
||||
// SYCL doesn't support registering host memory, keep here for reference
|
||||
// GGML_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||
// GGML_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
||||
// GGML_BACKEND_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||
// GGML_BACKEND_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_sycl_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_sycl_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -10,21 +10,21 @@ extern "C" {
|
||||
#define GGML_VK_NAME "Vulkan"
|
||||
#define GGML_VK_MAX_DEVICES 16
|
||||
|
||||
GGML_API void ggml_vk_instance_init(void);
|
||||
GGML_BACKEND_API void ggml_vk_instance_init(void);
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
|
||||
GGML_API bool ggml_backend_is_vk(ggml_backend_t backend);
|
||||
GGML_API int ggml_backend_vk_get_device_count(void);
|
||||
GGML_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
||||
GGML_BACKEND_API bool ggml_backend_is_vk(ggml_backend_t backend);
|
||||
GGML_BACKEND_API int ggml_backend_vk_get_device_count(void);
|
||||
GGML_BACKEND_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_BACKEND_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_vk_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_vk_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -176,15 +176,15 @@
|
||||
#ifdef GGML_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef GGML_BUILD
|
||||
# define GGML_API __declspec(dllexport)
|
||||
# define GGML_API __declspec(dllexport) extern
|
||||
# else
|
||||
# define GGML_API __declspec(dllimport)
|
||||
# define GGML_API __declspec(dllimport) extern
|
||||
# endif
|
||||
# else
|
||||
# define GGML_API __attribute__ ((visibility ("default")))
|
||||
# define GGML_API __attribute__ ((visibility ("default"))) extern
|
||||
# endif
|
||||
#else
|
||||
# define GGML_API
|
||||
# define GGML_API extern
|
||||
#endif
|
||||
|
||||
// TODO: support for clang
|
||||
@ -1490,7 +1490,7 @@ extern "C" {
|
||||
"use ggml_rope_ext_inplace instead");
|
||||
|
||||
// compute correction dims for YaRN RoPE scaling
|
||||
void ggml_rope_yarn_corr_dims(
|
||||
GGML_API void ggml_rope_yarn_corr_dims(
|
||||
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
||||
|
||||
// rotary position embedding backward, i.e compute dx from dy
|
||||
@ -2384,38 +2384,6 @@ extern "C" {
|
||||
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
||||
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
||||
|
||||
//
|
||||
// system info
|
||||
//
|
||||
|
||||
GGML_API int ggml_cpu_has_avx (void);
|
||||
GGML_API int ggml_cpu_has_avx_vnni (void);
|
||||
GGML_API int ggml_cpu_has_avx2 (void);
|
||||
GGML_API int ggml_cpu_has_avx512 (void);
|
||||
GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
||||
GGML_API int ggml_cpu_has_avx512_vnni(void);
|
||||
GGML_API int ggml_cpu_has_avx512_bf16(void);
|
||||
GGML_API int ggml_cpu_has_amx_int8 (void);
|
||||
GGML_API int ggml_cpu_has_fma (void);
|
||||
GGML_API int ggml_cpu_has_arm_fma (void);
|
||||
GGML_API int ggml_cpu_has_metal (void);
|
||||
GGML_API int ggml_cpu_has_f16c (void);
|
||||
GGML_API int ggml_cpu_has_fp16_va (void);
|
||||
GGML_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_API int ggml_cpu_has_blas (void);
|
||||
GGML_API int ggml_cpu_has_cuda (void);
|
||||
GGML_API int ggml_cpu_has_vulkan (void);
|
||||
GGML_API int ggml_cpu_has_kompute (void);
|
||||
GGML_API int ggml_cpu_has_gpublas (void);
|
||||
GGML_API int ggml_cpu_has_sse3 (void);
|
||||
GGML_API int ggml_cpu_has_ssse3 (void);
|
||||
GGML_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_API int ggml_cpu_has_sycl (void);
|
||||
GGML_API int ggml_cpu_has_rpc (void);
|
||||
GGML_API int ggml_cpu_has_vsx (void);
|
||||
GGML_API int ggml_cpu_has_cann (void);
|
||||
GGML_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
// restrict not standard in C++
|
||||
#define GGML_RESTRICT
|
||||
@ -2432,7 +2400,6 @@ extern "C" {
|
||||
size_t type_size;
|
||||
bool is_quantized;
|
||||
ggml_to_float_t to_float;
|
||||
ggml_from_float_t from_float;
|
||||
ggml_from_float_t from_float_ref;
|
||||
};
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,9 +1,5 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Arm Ltd.
|
||||
#pragma once
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
@ -12,27 +8,11 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t blck_size_interleave);
|
||||
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
size_t quantize_q4_0_4x4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0_4x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0_8x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
// GEMV
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// GEMM
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
107
ggml/src/ggml-amx/CMakeLists.txt
Normal file
107
ggml/src/ggml-amx/CMakeLists.txt
Normal file
@ -0,0 +1,107 @@
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$") AND
|
||||
CMAKE_COMPILER_IS_GNUCC AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 11.0)
|
||||
message(STATUS "Using AMX")
|
||||
|
||||
file(GLOB GGML_HEADERS_AMX "*.h")
|
||||
list(APPEND GGML_HEADERS_AMX "../../include/ggml-amx.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_AMX "*.cpp")
|
||||
|
||||
add_library(ggml-amx
|
||||
${GGML_HEADERS_AMX}
|
||||
${GGML_SOURCES_AMX})
|
||||
|
||||
target_link_libraries(ggml-amx PRIVATE ggml-base)
|
||||
target_include_directories(ggml-amx PRIVATE . ..)
|
||||
|
||||
# this is duplicated from the CPU backend, since the AMX backend also depends on the architecture flags
|
||||
# TODO: integrate AMX backend into the CPU backend
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
# TODO: improve, should not reference files from the parent folder
|
||||
include(../ggml-cpu/cmake/FindSIMD.cmake)
|
||||
endif ()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX512)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (GGML_AVX512_VBMI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_TILE__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_TILE__>)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_INT8__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_INT8__>)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_BF16__>)
|
||||
endif()
|
||||
elseif (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX2)
|
||||
elseif (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX)
|
||||
endif()
|
||||
else()
|
||||
if (GGML_NATIVE)
|
||||
list(APPEND ARCH_FLAGS -march=native)
|
||||
endif()
|
||||
if (GGML_F16C)
|
||||
list(APPEND ARCH_FLAGS -mf16c)
|
||||
endif()
|
||||
if (GGML_FMA)
|
||||
list(APPEND ARCH_FLAGS -mfma)
|
||||
endif()
|
||||
if (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS -mavx)
|
||||
endif()
|
||||
if (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS -mavx2)
|
||||
endif()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS -mavx512f)
|
||||
list(APPEND ARCH_FLAGS -mavx512dq)
|
||||
list(APPEND ARCH_FLAGS -mavx512bw)
|
||||
endif()
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_FLAGS -mamx-tile)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_FLAGS -mamx-int8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_FLAGS -mamx-bf16)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
target_compile_options(ggml-amx PRIVATE ${ARCH_FLAGS})
|
||||
else()
|
||||
set(GGML_AMX OFF PARENT_SCOPE)
|
||||
message(WARNING "AMX requires x86 and gcc version > 11.0. Turning off GGML_AMX.")
|
||||
endif()
|
@ -1,7 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-impl.h" // <immintrin.h>
|
||||
// hack until AMX is moved into the CPU backend
|
||||
#include "../ggml-cpu/ggml-cpu-impl.h" // <immintrin.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
|
449
ggml/src/ggml-amx/ggml-amx.cpp
Normal file
449
ggml/src/ggml-amx/ggml-amx.cpp
Normal file
@ -0,0 +1,449 @@
|
||||
#include "ggml-amx.h"
|
||||
#include "ggml-amx/common.h"
|
||||
#include "ggml-amx/mmq.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#include <sys/syscall.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
|
||||
#if defined(__AMX_INT8__)
|
||||
|
||||
// AMX buffer interface
|
||||
static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
free(buffer->context);
|
||||
}
|
||||
|
||||
static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *)(buffer->context);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
if (qtype_has_amx_kernels(tensor->type)) {
|
||||
ggml_backend_amx_convert_weight(tensor, data, offset, size);
|
||||
} else {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(!qtype_has_amx_kernels(tensor->type));
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
if (qtype_has_amx_kernels(src->type)) {
|
||||
ggml_backend_amx_convert_weight(dst, src->data, 0, ggml_backend_amx_get_alloc_size(dst));
|
||||
} else {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
memset(buffer->context, value, buffer->size);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_amx_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_amx_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .memset_tensor = */ ggml_backend_amx_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_amx_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_amx_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_amx_buffer_cpy_tensor,
|
||||
/* .clear = */ ggml_backend_amx_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_amx_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * data = aligned_alloc(TENSOR_ALIGNMENT, size);
|
||||
if (data == NULL) {
|
||||
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(buft, ggml_backend_amx_buffer_interface, data, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
|
||||
return ggml_backend_amx_get_alloc_size(tensor);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_amx_buffer_type_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_amx_reg(), 0),
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_buffer_type_amx;
|
||||
}
|
||||
|
||||
// backend interface
|
||||
|
||||
static const char * ggml_backend_amx_name(ggml_backend_t backend) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_free(ggml_backend_t backend) {
|
||||
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend->context;
|
||||
delete ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_amx_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend->context;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_amx_mul_mat(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i ggml_backend_amx_i = {
|
||||
/* .get_name = */ ggml_backend_amx_name,
|
||||
/* .free = */ ggml_backend_amx_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_amx_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_amx_guid() {
|
||||
static ggml_guid guid = { 0x13, 0xb8, 0xa4, 0xc4, 0xba, 0xfe, 0x51, 0x67, 0x87, 0x44, 0x55, 0x15, 0xb2, 0x35, 0x62, 0x3e };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
#define ARCH_GET_XCOMP_PERM 0x1022
|
||||
#define ARCH_REQ_XCOMP_PERM 0x1023
|
||||
#define XFEATURE_XTILECFG 17
|
||||
#define XFEATURE_XTILEDATA 18
|
||||
|
||||
static bool ggml_amx_init() {
|
||||
#if defined(__gnu_linux__)
|
||||
if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) {
|
||||
fprintf(stderr, "AMX is not ready to be used!\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#elif defined(_WIN32)
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_amx_init() {
|
||||
|
||||
// invoke a Linux system call to request access to AMX features
|
||||
ggml_amx_init();
|
||||
|
||||
// backend context
|
||||
ggml_backend_amx_context * ctx = new ggml_backend_amx_context;
|
||||
|
||||
// ggml amx backend
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_amx_guid(),
|
||||
/* .interface = */ ggml_backend_amx_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_amx_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_amx(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_amx_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_amx(backend_amx));
|
||||
|
||||
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend_amx->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
// device interface
|
||||
|
||||
static const char * ggml_backend_amx_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_amx_device_get_description(ggml_backend_dev_t dev) {
|
||||
return "Intel Advanced Matrix Extensions";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_amx_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_amx_device_get_name(dev);
|
||||
props->description = ggml_backend_amx_device_get_description(dev);
|
||||
props->type = ggml_backend_amx_device_get_type(dev);
|
||||
ggml_backend_amx_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
|
||||
// `buffer_from_host_ptr` is intended to be used in mmap, when memory layout unchanged
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ false,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_amx_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
return ggml_backend_amx_init();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_amx_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_amx_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
|
||||
// handle only 2d gemm for now
|
||||
auto is_contiguous_2d = [](const struct ggml_tensor * t) {
|
||||
return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1;
|
||||
};
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
return true;
|
||||
|
||||
case GGML_OP_MUL_MAT: {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
const int64_t ne0 = op->ne[0];
|
||||
|
||||
bool is_training = src0->grad || src1->grad;
|
||||
|
||||
// amx kernels enables for Q4_0, Q4_1, Q8_0, F16
|
||||
// Q4_K, Q5_K, Q6_K, IQ4_XS enabled for QK_K = 256
|
||||
bool has_amx_kernels = qtype_has_amx_kernels(type) || (type == GGML_TYPE_F16);
|
||||
|
||||
bool can_use_amx =
|
||||
is_contiguous_2d(src0) && // src0 must be contiguous
|
||||
is_contiguous_2d(src1) && // src1 must be contiguous
|
||||
!is_training && // inference only
|
||||
src1->type == GGML_TYPE_F32 && // src1 must be float32
|
||||
has_amx_kernels && // with amx kernel impls
|
||||
ne0 % (TILE_N * 2) == 0; // out_features is 32x
|
||||
|
||||
return can_use_amx;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_amx_buffer_type_get_name;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_amx_device_i = {
|
||||
/* .get_name = */ ggml_backend_amx_device_get_name,
|
||||
/* .get_description = */ ggml_backend_amx_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_amx_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_amx_device_get_type,
|
||||
/* .get_props = */ ggml_backend_amx_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_amx_device_init,
|
||||
/* .get_buffer_type = */ ggml_backend_amx_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ NULL,
|
||||
/* .supports_op = */ ggml_backend_amx_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_amx_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
// backend reg interface
|
||||
|
||||
static const char * ggml_backend_amx_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_amx_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
static ggml_backend_device ggml_backend_amx_device = {
|
||||
/* .iface = */ ggml_backend_amx_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return &ggml_backend_amx_device;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
}
|
||||
|
||||
static void * ggml_backend_amx_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
||||
return (void *)ggml_backend_amx_set_n_threads;
|
||||
}
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(name);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_amx_reg_i = {
|
||||
/* .get_name = */ ggml_backend_amx_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_amx_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_amx_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_amx_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_amx_reg(void) {
|
||||
static struct ggml_backend_reg ggml_backend_amx_reg = {
|
||||
/* .iface = */ ggml_backend_amx_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_amx_reg;
|
||||
}
|
||||
|
||||
#else // if defined(__AMX_INT8__)
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_amx(ggml_backend_t backend) {
|
||||
GGML_UNUSED(backend);
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_amx_init(void) {
|
||||
fprintf(stderr, "GGML is not compiled with AMX support!\n");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads) {
|
||||
fprintf(stderr, "GGML is not compiled with AMX support!\n");
|
||||
|
||||
GGML_UNUSED(backend_amx);
|
||||
GGML_UNUSED(n_threads);
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_amx_reg(void) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#endif
|
@ -496,19 +496,20 @@ inline void from_float(const float * x, char * vy, int64_t k);
|
||||
|
||||
template <>
|
||||
inline void from_float<block_q8_0>(const float * x, char * vy, int64_t k) {
|
||||
quantize_row_q8_0(x, vy, k);
|
||||
// FIXME: using unoptimized reference impl until moved to CPU backend
|
||||
quantize_row_q8_0_ref(x, (block_q8_0 *)vy, k);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void from_float<block_q8_1>(const float * x, char * vy, int64_t k) {
|
||||
quantize_row_q8_1(x, vy, k);
|
||||
quantize_row_q8_1_ref(x, (block_q8_1 *)vy, k);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void from_float<block_q8_K>(const float * x, char * vy, int64_t k) {
|
||||
#if 1
|
||||
// TODO: this is reference impl!
|
||||
quantize_row_q8_K(x, vy, k);
|
||||
quantize_row_q8_K_ref(x, (block_q8_K *)vy, k);
|
||||
#else
|
||||
quantize_row_q8_K_vnni(x, vy, k);
|
||||
#endif
|
||||
|
195
ggml/src/ggml-backend-reg.cpp
Normal file
195
ggml/src/ggml-backend-reg.cpp
Normal file
@ -0,0 +1,195 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
|
||||
// Backend registry
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_SYCL
|
||||
#include "ggml-sycl.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_BLAS
|
||||
#include "ggml-blas.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_RPC
|
||||
#include "ggml-rpc.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_AMX
|
||||
# include "ggml-amx.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
#include "ggml-kompute.h"
|
||||
#endif
|
||||
|
||||
struct ggml_backend_registry {
|
||||
std::vector<ggml_backend_reg_t> backends;
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
|
||||
ggml_backend_registry() {
|
||||
#ifdef GGML_USE_CUDA
|
||||
register_backend(ggml_backend_cuda_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_METAL
|
||||
register_backend(ggml_backend_metal_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_SYCL
|
||||
register_backend(ggml_backend_sycl_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_VULKAN
|
||||
register_backend(ggml_backend_vk_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_CANN
|
||||
register_backend(ggml_backend_cann_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_BLAS
|
||||
register_backend(ggml_backend_blas_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_RPC
|
||||
register_backend(ggml_backend_rpc_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_AMX
|
||||
register_backend(ggml_backend_amx_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
register_backend(ggml_backend_kompute_reg());
|
||||
#endif
|
||||
|
||||
register_backend(ggml_backend_cpu_reg());
|
||||
}
|
||||
|
||||
void register_backend(ggml_backend_reg_t reg) {
|
||||
if (!reg) {
|
||||
return;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: registered backend %s (%zu devices)\n",
|
||||
__func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
|
||||
#endif
|
||||
backends.push_back(reg);
|
||||
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
|
||||
register_device(ggml_backend_reg_dev_get(reg, i));
|
||||
}
|
||||
}
|
||||
|
||||
void register_device(ggml_backend_dev_t device) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
|
||||
#endif
|
||||
devices.push_back(device);
|
||||
}
|
||||
};
|
||||
|
||||
static ggml_backend_registry & get_reg() {
|
||||
static ggml_backend_registry reg;
|
||||
return reg;
|
||||
}
|
||||
|
||||
// Internal API
|
||||
void ggml_backend_register(ggml_backend_reg_t reg) {
|
||||
get_reg().register_backend(reg);
|
||||
}
|
||||
|
||||
void ggml_backend_device_register(ggml_backend_dev_t device) {
|
||||
get_reg().register_device(device);
|
||||
}
|
||||
|
||||
// Backend (reg) enumeration
|
||||
size_t ggml_backend_reg_count() {
|
||||
return get_reg().backends.size();
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
|
||||
GGML_ASSERT(index < ggml_backend_reg_count());
|
||||
return get_reg().backends[index];
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
|
||||
ggml_backend_reg_t reg = ggml_backend_reg_get(i);
|
||||
if (std::strcmp(ggml_backend_reg_name(reg), name) == 0) {
|
||||
return reg;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Device enumeration
|
||||
size_t ggml_backend_dev_count() {
|
||||
return get_reg().devices.size();
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
|
||||
GGML_ASSERT(index < ggml_backend_dev_count());
|
||||
return get_reg().devices[index];
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
if (ggml_backend_dev_type(dev) == type) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Convenience functions
|
||||
ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
|
||||
if (!dev) {
|
||||
return NULL;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, params);
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
|
||||
if (!dev) {
|
||||
return NULL;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, params);
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_init_best(void) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
|
||||
if (!dev) {
|
||||
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
}
|
||||
if (!dev) {
|
||||
return NULL;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, NULL);
|
||||
}
|
91
ggml/src/ggml-blas/CMakeLists.txt
Normal file
91
ggml/src/ggml-blas/CMakeLists.txt
Normal file
@ -0,0 +1,91 @@
|
||||
if (GGML_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
endif()
|
||||
#if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
|
||||
# set(BLA_SIZEOF_INTEGER 8)
|
||||
#endif()
|
||||
|
||||
set(BLA_VENDOR ${GGML_BLAS_VENDOR})
|
||||
find_package(BLAS)
|
||||
|
||||
if (BLAS_FOUND)
|
||||
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
|
||||
|
||||
add_library(ggml-blas
|
||||
ggml-blas.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-blas PRIVATE ggml-base)
|
||||
target_include_directories(ggml-blas PRIVATE . ..)
|
||||
|
||||
if (${GGML_BLAS_VENDOR} MATCHES "Apple")
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
|
||||
add_compile_definitions(GGML_BLAS_USE_ACCELERATE)
|
||||
elseif ("${BLAS_INCLUDE_DIRS}" STREQUAL "")
|
||||
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
|
||||
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
|
||||
find_package(PkgConfig REQUIRED)
|
||||
if (${GGML_BLAS_VENDOR} MATCHES "Generic")
|
||||
pkg_check_modules(DepBLAS blas)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "OpenBLAS")
|
||||
# As of openblas v0.3.22, the 64-bit is named openblas64.pc
|
||||
pkg_check_modules(DepBLAS openblas64)
|
||||
if (NOT DepBLAS_FOUND)
|
||||
pkg_check_modules(DepBLAS openblas)
|
||||
endif()
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "FLAME")
|
||||
add_compile_definitions(GGML_BLAS_USE_BLIS)
|
||||
pkg_check_modules(DepBLAS blis)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "ATLAS")
|
||||
pkg_check_modules(DepBLAS blas-atlas)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "FlexiBLAS")
|
||||
pkg_check_modules(DepBLAS flexiblas_api)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "Intel")
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
# all Intel* libraries share the same include path
|
||||
pkg_check_modules(DepBLAS mkl-sdl)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "NVHPC")
|
||||
# this doesn't provide pkg-config
|
||||
# suggest to assign BLAS_INCLUDE_DIRS on your own
|
||||
if ("${NVHPC_VERSION}" STREQUAL "")
|
||||
message(WARNING "Better to set NVHPC_VERSION")
|
||||
else()
|
||||
set(DepBLAS_FOUND ON)
|
||||
set(DepBLAS_INCLUDE_DIRS "/opt/nvidia/hpc_sdk/${CMAKE_SYSTEM_NAME}_${CMAKE_SYSTEM_PROCESSOR}/${NVHPC_VERSION}/math_libs/include")
|
||||
endif()
|
||||
endif()
|
||||
if (DepBLAS_FOUND)
|
||||
set(BLAS_INCLUDE_DIRS ${DepBLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(WARNING "BLAS_INCLUDE_DIRS neither been provided nor been automatically"
|
||||
" detected by pkgconfig, trying to find cblas.h from possible paths...")
|
||||
find_path(BLAS_INCLUDE_DIRS
|
||||
NAMES cblas.h
|
||||
HINTS
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
/usr/include/openblas
|
||||
/opt/homebrew/opt/openblas/include
|
||||
/usr/local/opt/openblas/include
|
||||
/usr/include/x86_64-linux-gnu/openblas/include
|
||||
)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
|
||||
|
||||
#add_compile_options(${BLAS_LINKER_FLAGS})
|
||||
target_compile_options(ggml-blas PRIVATE ${BLAS_LINKER_FLAGS})
|
||||
|
||||
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
|
||||
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
|
||||
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(ERROR "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
" to set correct GGML_BLAS_VENDOR")
|
||||
endif()
|
514
ggml/src/ggml-blas/ggml-blas.cpp
Normal file
514
ggml/src/ggml-blas/ggml-blas.cpp
Normal file
@ -0,0 +1,514 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-blas.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include <future>
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
|
||||
#if defined(GGML_BLAS_USE_ACCELERATE)
|
||||
# include <Accelerate/Accelerate.h>
|
||||
#elif defined(GGML_BLAS_USE_MKL)
|
||||
# include <mkl.h>
|
||||
#elif defined(GGML_BLAS_USE_BLIS)
|
||||
# include <blis.h>
|
||||
#elif defined(GGML_BLAS_USE_NVPL)
|
||||
# include <nvpl_blas.h>
|
||||
#else
|
||||
# include <cblas.h>
|
||||
#endif
|
||||
|
||||
struct ggml_backend_blas_context {
|
||||
int n_threads = GGML_DEFAULT_N_THREADS;
|
||||
std::unique_ptr<char[]> work_data;
|
||||
size_t work_size = 0;
|
||||
#ifndef GGML_USE_OPENMP
|
||||
std::vector<std::future<void>> tasks;
|
||||
#endif
|
||||
};
|
||||
|
||||
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
GGML_ASSERT(ne1 == ne11);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12/ne02;
|
||||
const int64_t r3 = ne13/ne03;
|
||||
|
||||
const int64_t ne_plane = ne01*ne00;
|
||||
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
|
||||
|
||||
if (ctx->work_size < desired_wsize) {
|
||||
ctx->work_data.reset(new char[desired_wsize]);
|
||||
ctx->work_size = desired_wsize;
|
||||
}
|
||||
void * wdata = ctx->work_data.get();
|
||||
|
||||
// convert src0 to float
|
||||
if (type != GGML_TYPE_F32) {
|
||||
const auto * type_traits = ggml_get_type_traits(type);
|
||||
ggml_to_float_t const to_float = type_traits->to_float;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
|
||||
const int min_cols_per_thread = 4096;
|
||||
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
|
||||
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
|
||||
|
||||
#ifdef GGML_USE_OPENMP
|
||||
#pragma omp parallel for num_threads(n_threads)
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
#else
|
||||
for (int i = 1; i < n_threads; i++) {
|
||||
const int64_t start = i*ne01/n_threads;
|
||||
const int64_t end = (i + 1)*ne01/n_threads;
|
||||
if (start < end) {
|
||||
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}));
|
||||
}
|
||||
}
|
||||
{
|
||||
// reuse the current thread for the first task
|
||||
const int64_t start = 0;
|
||||
const int64_t end = ne01/n_threads;
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef GGML_USE_OPENMP
|
||||
// wait for all tasks to finish
|
||||
for (auto & task : ctx->tasks) {
|
||||
task.get();
|
||||
}
|
||||
ctx->tasks.clear();
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(OPENBLAS_VERSION)
|
||||
openblas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(GGML_BLAS_USE_BLIS)
|
||||
bli_thread_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(GGML_BLAS_USE_NVPL)
|
||||
nvpl_blas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
||||
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne1, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
GGML_ASSERT(ne2 == ne02);
|
||||
GGML_ASSERT(ne02 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
GGML_ASSERT(ne03 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
// GGML_ASSERT(nb0 <= nb1);
|
||||
// GGML_ASSERT(nb1 <= nb2);
|
||||
// GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
||||
// src0: (k,n)
|
||||
// src1: (k,m)
|
||||
// dst: (m,n)
|
||||
//
|
||||
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
||||
// Also expressed as (major,minor)
|
||||
// a: (m,k): so src1 transposed
|
||||
// b: (k,n): so src0
|
||||
// c: (m,n)
|
||||
//
|
||||
// However, if ggml_is_transposed(src1) is true, then
|
||||
// src1->data already contains a transposed version, so sgemm mustn't
|
||||
// transpose it further.
|
||||
|
||||
int n = src0->ne[0];
|
||||
int k = src0->ne[1];
|
||||
int m = src1->ne[0];
|
||||
|
||||
CBLAS_TRANSPOSE transposeA;
|
||||
int lda;
|
||||
|
||||
if (!ggml_is_transposed(src1)) {
|
||||
transposeA = CblasTrans;
|
||||
lda = m;
|
||||
} else {
|
||||
transposeA = CblasNoTrans;
|
||||
lda = k;
|
||||
}
|
||||
|
||||
float * a = (float *) ((char *) src1->data);
|
||||
float * b = (float *) ((char *) src0->data);
|
||||
float * c = (float *) ((char *) dst->data);
|
||||
|
||||
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
||||
|
||||
GGML_UNUSED(ctx);
|
||||
}
|
||||
|
||||
// backend interface
|
||||
|
||||
static const char * ggml_backend_blas_get_name(ggml_backend_t backend) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_free(ggml_backend_t backend) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
delete ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_blas_mul_mat(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_OUT_PROD:
|
||||
ggml_backend_blas_out_prod(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
break;
|
||||
|
||||
default:
|
||||
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i blas_backend_i = {
|
||||
/* .get_name = */ ggml_backend_blas_get_name,
|
||||
/* .free = */ ggml_backend_blas_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_blas_guid(void) {
|
||||
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_blas_init(void) {
|
||||
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
|
||||
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_blas_guid(),
|
||||
/* .interface = */ blas_backend_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
#if defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
|
||||
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
|
||||
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
|
||||
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
|
||||
#endif
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_blas(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
|
||||
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
// device interface
|
||||
|
||||
static const char * ggml_backend_blas_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_blas_device_get_description(ggml_backend_dev_t dev) {
|
||||
#if defined(GGML_BLAS_USE_ACCELERATE)
|
||||
return "Accelerate";
|
||||
#elif defined(GGML_BLAS_USE_MKL)
|
||||
return "MKL";
|
||||
#elif defined(GGML_BLAS_USE_BLIS)
|
||||
return "BLIS";
|
||||
#elif defined(GGML_BLAS_USE_NVPL)
|
||||
return "NVPL";
|
||||
#elif defined(OPENBLAS_VERSION)
|
||||
return "OpenBLAS";
|
||||
#else
|
||||
return "BLAS";
|
||||
#endif
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_blas_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_blas_device_get_name(dev);
|
||||
props->description = ggml_backend_blas_device_get_description(dev);
|
||||
props->type = ggml_backend_blas_device_get_type(dev);
|
||||
ggml_backend_blas_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_blas_device_init_backend(ggml_backend_dev_t dev, const char * params) {
|
||||
return ggml_backend_blas_init();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_blas_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_blas_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(max_tensor_size);
|
||||
}
|
||||
|
||||
static bool ggml_backend_blas_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
return true;
|
||||
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
// BLAS usually is only faster for large matrices
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = op->ne[0];
|
||||
const int64_t ne1 = op->ne[1];
|
||||
|
||||
// TODO: find the optimal value
|
||||
const int64_t min_batch = 32;
|
||||
|
||||
return ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= min_batch && ne1 >= min_batch && ne10 >= min_batch) &&
|
||||
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
|
||||
}
|
||||
|
||||
case GGML_OP_OUT_PROD:
|
||||
return op->src[0]->type == GGML_TYPE_F32 &&
|
||||
op->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_is_matrix(src0) &&
|
||||
ggml_is_matrix(src1) &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)) &&
|
||||
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
|
||||
|
||||
default:
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_blas_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_blas_device_i = {
|
||||
/* .get_name = */ ggml_backend_blas_device_get_name,
|
||||
/* .get_description = */ ggml_backend_blas_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_blas_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_blas_device_get_type,
|
||||
/* .get_props = */ ggml_backend_blas_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_blas_device_init_backend,
|
||||
/* .get_buffer_type = */ ggml_backend_blas_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_blas_device_buffer_from_host_ptr,
|
||||
/* .supports_op = */ ggml_backend_blas_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_blas_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
// backend reg interface
|
||||
|
||||
static const char * ggml_backend_blas_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_blas_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_blas_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
static ggml_backend_device ggml_backend_blas_device = {
|
||||
/* .iface = */ ggml_backend_blas_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return &ggml_backend_blas_device;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
}
|
||||
|
||||
static void * ggml_backend_blas_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
||||
return (void *)ggml_backend_blas_set_n_threads;
|
||||
}
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(name);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_blas_reg_i = {
|
||||
/* .get_name = */ ggml_backend_blas_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_blas_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_blas_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_blas_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_blas_reg(void) {
|
||||
static struct ggml_backend_reg ggml_backend_blas_reg = {
|
||||
/* .iface = */ ggml_backend_blas_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_blas_reg;
|
||||
}
|
46
ggml/src/ggml-cann/CMakeLists.txt
Normal file
46
ggml/src/ggml-cann/CMakeLists.txt
Normal file
@ -0,0 +1,46 @@
|
||||
if ("cann${CANN_INSTALL_DIR}" STREQUAL "cann" AND DEFINED ENV{ASCEND_TOOLKIT_HOME})
|
||||
set(CANN_INSTALL_DIR $ENV{ASCEND_TOOLKIT_HOME})
|
||||
message(STATUS "CANN: updated CANN_INSTALL_DIR from ASCEND_TOOLKIT_HOME=$ENV{ASCEND_TOOLKIT_HOME}")
|
||||
endif()
|
||||
|
||||
if (CANN_INSTALL_DIR)
|
||||
# Only Support Linux.
|
||||
if (NOT UNIX)
|
||||
message(FATAL_ERROR "CANN: CANN toolkit supports unix but not ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
|
||||
# Supported platforms: x86-64, arm64
|
||||
if (CMAKE_SYSTEM_PROCESSOR STREQUAL "aarch64")
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64" OR CMAKE_SYSTEM_PROCESSOR STREQUAL "amd64")
|
||||
else()
|
||||
message(FATAL_ERROR "CANN: CANN toolkit supports x86-64 and arm64 but not ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
endif()
|
||||
|
||||
# Set header and libs
|
||||
set(CANN_INCLUDE_DIRS
|
||||
${CANN_INSTALL_DIR}/include
|
||||
${CANN_INSTALL_DIR}/include/aclnn
|
||||
${CANN_INSTALL_DIR}/acllib/include
|
||||
)
|
||||
|
||||
add_subdirectory(kernels)
|
||||
list(APPEND CANN_LIBRARIES
|
||||
ascendcl
|
||||
nnopbase
|
||||
opapi
|
||||
acl_op_compiler
|
||||
ascendc_kernels
|
||||
)
|
||||
|
||||
file(GLOB GGML_SOURCES_CANN "*.cpp")
|
||||
|
||||
add_library(ggml-cann ${GGML_SOURCES_CANN})
|
||||
target_link_libraries(ggml-cann PRIVATE ggml-base ${CANN_LIBRARIES})
|
||||
target_include_directories(ggml-cann PRIVATE . .. ${CANN_INCLUDE_DIRS})
|
||||
target_link_directories(ggml-cann PRIVATE ${CANN_INSTALL_DIR}/lib64)
|
||||
|
||||
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
|
||||
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
|
||||
else()
|
||||
message(FATAL_ERROR "CANN: Can't find CANN_INSTALL_DIR, did you forget to source set_var.sh?")
|
||||
endif()
|
2128
ggml/src/ggml-cann/ggml-cann.cpp
Normal file
2128
ggml/src/ggml-cann/ggml-cann.cpp
Normal file
File diff suppressed because it is too large
Load Diff
244
ggml/src/ggml-cpu/CMakeLists.txt
Normal file
244
ggml/src/ggml-cpu/CMakeLists.txt
Normal file
@ -0,0 +1,244 @@
|
||||
add_library(ggml-cpu
|
||||
ggml-cpu.c
|
||||
ggml-cpu.cpp
|
||||
ggml-cpu-aarch64.c
|
||||
ggml-cpu-aarch64.h
|
||||
ggml-cpu-quants.c
|
||||
ggml-cpu-quants.h
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-cpu PRIVATE ggml-base)
|
||||
target_include_directories(ggml-cpu PRIVATE . ..)
|
||||
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
add_compile_definitions(GGML_USE_ACCELERATE)
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
|
||||
|
||||
target_link_libraries(ggml-cpu PRIVATE ${ACCELERATE_FRAMEWORK})
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP)
|
||||
if (OpenMP_FOUND)
|
||||
message(STATUS "OpenMP found")
|
||||
|
||||
add_compile_definitions(GGML_USE_OPENMP)
|
||||
|
||||
target_link_libraries(ggml-cpu PRIVATE OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
|
||||
# FIXME: should be replaced with a compiler id check
|
||||
#if (GGML_MUSA)
|
||||
# list(APPEND GGML_CPU_EXTRA_INCLUDES "/usr/lib/llvm-14/lib/clang/14.0.0/include")
|
||||
# list(APPEND GGML_CPU_EXTRA_LIBS_PRIVATE "/usr/lib/llvm-14/lib/libomp.so")
|
||||
#endif()
|
||||
else()
|
||||
message(WARNING "OpenMP not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_LLAMAFILE)
|
||||
message(STATUS "Using llamafile")
|
||||
|
||||
add_compile_definitions(GGML_USE_LLAMAFILE)
|
||||
|
||||
target_sources(ggml-cpu PRIVATE
|
||||
llamafile/sgemm.cpp
|
||||
llamafile/sgemm.h)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
|
||||
message(STATUS "Using memkind for CPU HBM")
|
||||
|
||||
add_compile_definitions(GGML_USE_CPU_HBM)
|
||||
|
||||
target_link_libraries(ggml-cpu PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND
|
||||
NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
|
||||
message(STATUS "ARM detected")
|
||||
|
||||
if (MSVC)
|
||||
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
|
||||
add_compile_definitions(__ARM_NEON)
|
||||
add_compile_definitions(__ARM_FEATURE_FMA)
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS_PREV ${CMAKE_REQUIRED_FLAGS})
|
||||
string(JOIN " " CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "/arch:armv8.2")
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
if (GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
||||
endif ()
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
|
||||
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
add_compile_definitions(__ARM_FEATURE_MATMUL_INT8)
|
||||
endif ()
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
endif ()
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_PREV})
|
||||
else()
|
||||
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
|
||||
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
|
||||
list(APPEND ARCH_FLAGS -mfp16-format=ieee)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
|
||||
# Raspberry Pi 1, Zero
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
|
||||
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
|
||||
# Android armeabi-v7a
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
else()
|
||||
# Raspberry Pi 2
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
endif()
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
|
||||
# Android arm64-v8a
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
list(APPEND ARCH_FLAGS -mno-unaligned-access)
|
||||
endif()
|
||||
if (GGML_SVE)
|
||||
list(APPEND ARCH_FLAGS -march=armv8.6-a+sve)
|
||||
endif()
|
||||
endif()
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
# TODO: improve, should not reference files from the parent folder
|
||||
include(cmake/FindSIMD.cmake)
|
||||
endif ()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX512)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (GGML_AVX512_VBMI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_TILE__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_TILE__>)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_INT8__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_INT8__>)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_BF16__>)
|
||||
endif()
|
||||
elseif (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX2)
|
||||
elseif (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX)
|
||||
endif()
|
||||
else()
|
||||
if (GGML_NATIVE)
|
||||
list(APPEND ARCH_FLAGS -march=native)
|
||||
endif()
|
||||
if (GGML_F16C)
|
||||
list(APPEND ARCH_FLAGS -mf16c)
|
||||
endif()
|
||||
if (GGML_FMA)
|
||||
list(APPEND ARCH_FLAGS -mfma)
|
||||
endif()
|
||||
if (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS -mavx)
|
||||
endif()
|
||||
if (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS -mavx2)
|
||||
endif()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS -mavx512f)
|
||||
list(APPEND ARCH_FLAGS -mavx512dq)
|
||||
list(APPEND ARCH_FLAGS -mavx512bw)
|
||||
endif()
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_FLAGS -mamx-tile)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_FLAGS -mamx-int8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_FLAGS -mamx-bf16)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
message(STATUS "PowerPC detected")
|
||||
execute_process(COMMAND bash -c "grep POWER10 /proc/cpuinfo | head -n 1"
|
||||
OUTPUT_VARIABLE POWER10_M)
|
||||
string(FIND ${POWER10_M} "POWER10" substring_index)
|
||||
if(${substring_index} GREATER_EQUAL 0)
|
||||
list(APPEND ARCH_FLAGS -mcpu=power10)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
|
||||
list(APPEND ARCH_FLAGS -mcpu=powerpc64le)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
|
||||
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
|
||||
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||
if (GGML_LASX)
|
||||
list(APPEND ARCH_FLAGS -mlasx)
|
||||
endif()
|
||||
if (GGML_LSX)
|
||||
list(APPEND ARCH_FLAGS -mlsx)
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
|
||||
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set_target_properties(ggml-cpu PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
100
ggml/src/ggml-cpu/cmake/FindSIMD.cmake
Normal file
100
ggml/src/ggml-cpu/cmake/FindSIMD.cmake
Normal file
@ -0,0 +1,100 @@
|
||||
include(CheckCSourceRuns)
|
||||
|
||||
set(AVX_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m256 a;
|
||||
a = _mm256_set1_ps(0);
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
set(AVX512_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m512i a = _mm512_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0);
|
||||
__m512i b = a;
|
||||
__mmask64 equality_mask = _mm512_cmp_epi8_mask(a, b, _MM_CMPINT_EQ);
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
set(AVX2_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m256i a = {0};
|
||||
a = _mm256_abs_epi16(a);
|
||||
__m256i x;
|
||||
_mm256_extract_epi64(x, 0); // we rely on this in our AVX2 code
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
set(FMA_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
const __m256 d = _mm256_setzero_ps();
|
||||
const __m256 p = _mm256_setzero_ps();
|
||||
acc = _mm256_fmadd_ps( d, p, acc );
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
macro(check_sse type flags)
|
||||
set(__FLAG_I 1)
|
||||
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
|
||||
foreach (__FLAG ${flags})
|
||||
if (NOT ${type}_FOUND)
|
||||
set(CMAKE_REQUIRED_FLAGS ${__FLAG})
|
||||
check_c_source_runs("${${type}_CODE}" HAS_${type}_${__FLAG_I})
|
||||
if (HAS_${type}_${__FLAG_I})
|
||||
set(${type}_FOUND TRUE CACHE BOOL "${type} support")
|
||||
set(${type}_FLAGS "${__FLAG}" CACHE STRING "${type} flags")
|
||||
endif()
|
||||
math(EXPR __FLAG_I "${__FLAG_I}+1")
|
||||
endif()
|
||||
endforeach()
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
|
||||
|
||||
if (NOT ${type}_FOUND)
|
||||
set(${type}_FOUND FALSE CACHE BOOL "${type} support")
|
||||
set(${type}_FLAGS "" CACHE STRING "${type} flags")
|
||||
endif()
|
||||
|
||||
mark_as_advanced(${type}_FOUND ${type}_FLAGS)
|
||||
endmacro()
|
||||
|
||||
# flags are for MSVC only!
|
||||
check_sse("AVX" " ;/arch:AVX")
|
||||
if (NOT ${AVX_FOUND})
|
||||
set(GGML_AVX OFF)
|
||||
else()
|
||||
set(GGML_AVX ON)
|
||||
endif()
|
||||
|
||||
check_sse("AVX2" " ;/arch:AVX2")
|
||||
check_sse("FMA" " ;/arch:AVX2")
|
||||
if ((NOT ${AVX2_FOUND}) OR (NOT ${FMA_FOUND}))
|
||||
set(GGML_AVX2 OFF)
|
||||
else()
|
||||
set(GGML_AVX2 ON)
|
||||
endif()
|
||||
|
||||
check_sse("AVX512" " ;/arch:AVX512")
|
||||
if (NOT ${AVX512_FOUND})
|
||||
set(GGML_AVX512 OFF)
|
||||
else()
|
||||
set(GGML_AVX512 ON)
|
||||
endif()
|
3387
ggml/src/ggml-cpu/ggml-cpu-aarch64.c
Normal file
3387
ggml/src/ggml-cpu/ggml-cpu-aarch64.c
Normal file
File diff suppressed because it is too large
Load Diff
27
ggml/src/ggml-cpu/ggml-cpu-aarch64.h
Normal file
27
ggml/src/ggml-cpu/ggml-cpu-aarch64.h
Normal file
@ -0,0 +1,27 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t blck_size_interleave);
|
||||
|
||||
// GEMV
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// GEMM
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
371
ggml/src/ggml-cpu/ggml-cpu-impl.h
Normal file
371
ggml/src/ggml-cpu/ggml-cpu-impl.h
Normal file
@ -0,0 +1,371 @@
|
||||
#pragma once
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
||||
//#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h> // memcpy
|
||||
#include <math.h> // fabsf
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define m512bh(p) p
|
||||
#define m512i(p) p
|
||||
|
||||
#else
|
||||
|
||||
#define m512bh(p) (__m512bh)(p)
|
||||
#define m512i(p) (__m512i)(p)
|
||||
|
||||
#endif
|
||||
|
||||
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
||||
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __FMA__
|
||||
#define __FMA__
|
||||
#endif
|
||||
#ifndef __F16C__
|
||||
#define __F16C__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
|
||||
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __SSE3__
|
||||
#define __SSE3__
|
||||
#endif
|
||||
#ifndef __SSSE3__
|
||||
#define __SSSE3__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <arm_sve.h>
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
|
||||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
// on x86, we use uint16_t
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
|
||||
|
||||
#else
|
||||
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
|
||||
|
||||
#endif // _MSC_VER
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
// 32-bit ARM compatibility
|
||||
|
||||
// vaddlvq_s16
|
||||
// vpaddq_s16
|
||||
// vpaddq_s32
|
||||
// vaddvq_s32
|
||||
// vaddvq_f32
|
||||
// vmaxvq_f32
|
||||
// vcvtnq_s32_f32
|
||||
// vzip1_u8
|
||||
// vzip2_u8
|
||||
|
||||
inline static int32_t vaddlvq_s16(int16x8_t v) {
|
||||
int32x4_t v0 = vreinterpretq_s32_s64(vpaddlq_s32(vpaddlq_s16(v)));
|
||||
return vgetq_lane_s32(v0, 0) + vgetq_lane_s32(v0, 2);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
|
||||
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
|
||||
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
|
||||
return vcombine_s32(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vaddvq_f32(float32x4_t v) {
|
||||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vmaxvq_f32(float32x4_t v) {
|
||||
return
|
||||
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
||||
}
|
||||
|
||||
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
||||
int32x4_t res;
|
||||
|
||||
res[0] = roundf(vgetq_lane_f32(v, 0));
|
||||
res[1] = roundf(vgetq_lane_f32(v, 1));
|
||||
res[2] = roundf(vgetq_lane_f32(v, 2));
|
||||
res[3] = roundf(vgetq_lane_f32(v, 3));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[0]; res[1] = b[0];
|
||||
res[2] = a[1]; res[3] = b[1];
|
||||
res[4] = a[2]; res[5] = b[2];
|
||||
res[6] = a[3]; res[7] = b[3];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[4]; res[1] = b[4];
|
||||
res[2] = a[5]; res[3] = b[5];
|
||||
res[4] = a[6]; res[5] = b[6];
|
||||
res[6] = a[7]; res[7] = b[7];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// vld1q_s16_x2
|
||||
// vld1q_u8_x2
|
||||
// vld1q_u8_x4
|
||||
// vld1q_s8_x2
|
||||
// vld1q_s8_x4
|
||||
// TODO: double-check these work correctly
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s16(ptr + 0);
|
||||
res.val[1] = vld1q_s16(ptr + 8);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
res.val[2] = vld1q_u8(ptr + 32);
|
||||
res.val[3] = vld1q_u8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x2_t {
|
||||
int8x16_t val[2];
|
||||
} ggml_int8x16x2_t;
|
||||
|
||||
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
|
||||
ggml_int8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
res.val[2] = vld1q_s8(ptr + 32);
|
||||
res.val[3] = vld1q_s8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
|
||||
int8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
|
||||
uint8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_int16x8x2_t int16x8x2_t
|
||||
#define ggml_uint8x16x2_t uint8x16x2_t
|
||||
#define ggml_uint8x16x4_t uint8x16x4_t
|
||||
#define ggml_int8x16x2_t int8x16x2_t
|
||||
#define ggml_int8x16x4_t int8x16x4_t
|
||||
|
||||
#define ggml_vld1q_s16_x2 vld1q_s16_x2
|
||||
#define ggml_vld1q_u8_x2 vld1q_u8_x2
|
||||
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
||||
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||
#define ggml_vqtbl1q_s8 vqtbl1q_s8
|
||||
#define ggml_vqtbl1q_u8 vqtbl1q_u8
|
||||
|
||||
#endif // !defined(__aarch64__)
|
||||
|
||||
#if !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
|
||||
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
||||
|
||||
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
|
||||
|
||||
#endif // !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
#endif // defined(__ARM_NEON)
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
#ifdef __POWER9_VECTOR__
|
||||
#include <altivec.h>
|
||||
#undef bool
|
||||
#define bool _Bool
|
||||
#else
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#if !defined(__riscv)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch64)
|
||||
#if defined(__loongarch_asx)
|
||||
#include <lasxintrin.h>
|
||||
#endif
|
||||
#if defined(__loongarch_sx)
|
||||
#include <lsxintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
|
||||
typedef union {
|
||||
int32_t i;
|
||||
float f;
|
||||
} ft_union;
|
||||
|
||||
/* float type data load instructions */
|
||||
static __m128 __lsx_vreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
|
||||
}
|
||||
|
||||
static __m256 __lasx_xvreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
10796
ggml/src/ggml-cpu/ggml-cpu-quants.c
Normal file
10796
ggml/src/ggml-cpu/ggml-cpu-quants.c
Normal file
File diff suppressed because it is too large
Load Diff
63
ggml/src/ggml-cpu/ggml-cpu-quants.h
Normal file
63
ggml/src/ggml-cpu/ggml-cpu-quants.h
Normal file
@ -0,0 +1,63 @@
|
||||
#pragma once
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
13968
ggml/src/ggml-cpu/ggml-cpu.c
Normal file
13968
ggml/src/ggml-cpu/ggml-cpu.c
Normal file
File diff suppressed because it is too large
Load Diff
575
ggml/src/ggml-cpu/ggml-cpu.cpp
Normal file
575
ggml/src/ggml-cpu/ggml-cpu.cpp
Normal file
@ -0,0 +1,575 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <cctype>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined(__APPLE__)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
// ggml-backend interface
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
|
||||
// buffer type HBM
|
||||
|
||||
#include <hbwmalloc.h>
|
||||
|
||||
static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CPU_HBM";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
hbw_free(buffer->context);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * ptr;
|
||||
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
|
||||
if (result != 0) {
|
||||
GGML_LOG_ERROR("failed to allocate HBM buffer of size %zu\n", size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
buffer->buft = buft;
|
||||
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
||||
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
||||
},
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_buffer_type_hbm;
|
||||
}
|
||||
#endif
|
||||
|
||||
static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
|
||||
static ggml_backend_buffer_type_t bufts[] = {
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
ggml_backend_cpu_hbm_buffer_type(),
|
||||
#endif
|
||||
NULL
|
||||
};
|
||||
|
||||
return bufts;
|
||||
|
||||
GGML_UNUSED(device);
|
||||
}
|
||||
|
||||
// CPU backend - backend (stream)
|
||||
|
||||
struct ggml_backend_cpu_context {
|
||||
int n_threads;
|
||||
ggml_threadpool_t threadpool;
|
||||
|
||||
uint8_t * work_data;
|
||||
size_t work_size;
|
||||
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_free(ggml_backend_t backend) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
delete[] cpu_ctx->work_data;
|
||||
delete cpu_ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
struct ggml_backend_plan_cpu {
|
||||
struct ggml_cplan cplan;
|
||||
struct ggml_cgraph cgraph;
|
||||
};
|
||||
|
||||
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_backend_plan_cpu * cpu_plan = new ggml_backend_plan_cpu;
|
||||
|
||||
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
|
||||
|
||||
if (cpu_plan->cplan.work_size > 0) {
|
||||
cpu_plan->cplan.work_data = new uint8_t[cpu_plan->cplan.work_size];
|
||||
if (cpu_plan->cplan.work_data == NULL) {
|
||||
delete cpu_plan;
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
|
||||
return cpu_plan;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||
|
||||
delete[] cpu_plan->cplan.work_data;
|
||||
delete cpu_plan;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||
|
||||
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
|
||||
if (cpu_ctx->work_size < cplan.work_size) {
|
||||
delete[] cpu_ctx->work_data;
|
||||
cpu_ctx->work_data = new uint8_t[cplan.work_size];
|
||||
if (cpu_ctx->work_data == NULL) {
|
||||
cpu_ctx->work_size = 0;
|
||||
return GGML_STATUS_ALLOC_FAILED;
|
||||
}
|
||||
cpu_ctx->work_size = cplan.work_size;
|
||||
}
|
||||
cplan.work_data = (uint8_t *)cpu_ctx->work_data;
|
||||
|
||||
cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_i ggml_backend_cpu_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_get_name,
|
||||
/* .free = */ ggml_backend_cpu_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
||||
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cpu_guid(void) {
|
||||
static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
// initialize CPU backend now to avoid slowing the first graph computation
|
||||
ggml_cpu_init();
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = new ggml_backend_cpu_context;
|
||||
if (ctx == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
||||
ctx->threadpool = NULL;
|
||||
ctx->work_data = NULL;
|
||||
ctx->work_size = 0;
|
||||
ctx->abort_callback = NULL;
|
||||
ctx->abort_callback_data = NULL;
|
||||
|
||||
ggml_backend_t cpu_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_cpu_guid(),
|
||||
/* .interface = */ ggml_backend_cpu_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
if (cpu_backend == NULL) {
|
||||
delete ctx;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return cpu_backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_cpu(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
|
||||
if (ctx->threadpool && ctx->threadpool != threadpool) {
|
||||
// already had a different threadpool, pause/suspend it before switching
|
||||
ggml_threadpool_pause(ctx->threadpool);
|
||||
}
|
||||
ctx->threadpool = threadpool;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
ctx->abort_callback = abort_callback;
|
||||
ctx->abort_callback_data = abort_callback_data;
|
||||
}
|
||||
|
||||
// CPU backend - device
|
||||
|
||||
struct ggml_backend_cpu_device_context {
|
||||
std::string description = "CPU";
|
||||
|
||||
ggml_backend_cpu_device_context() {
|
||||
#ifdef __APPLE__
|
||||
size_t len = 0;
|
||||
if (!sysctlbyname("machdep.cpu.brand_string", NULL, &len, NULL, 0)) {
|
||||
description.resize(len);
|
||||
sysctlbyname("machdep.cpu.brand_string", &description[0], &len, NULL, 0); // NOLINT
|
||||
}
|
||||
#elif defined(__linux__)
|
||||
FILE * f = fopen("/proc/cpuinfo", "r");
|
||||
if (f) {
|
||||
char buf[1024];
|
||||
while (fgets(buf, sizeof(buf), f)) {
|
||||
if (strncmp(buf, "model name", 10) == 0) {
|
||||
char * p = strchr(buf, ':');
|
||||
if (p) {
|
||||
p++;
|
||||
while (std::isspace(*p)) {
|
||||
p++;
|
||||
}
|
||||
while (std::isspace(p[strlen(p) - 1])) {
|
||||
p[strlen(p) - 1] = '\0';
|
||||
}
|
||||
description = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
HKEY hKey;
|
||||
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
|
||||
TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
|
||||
0,
|
||||
KEY_READ,
|
||||
&hKey) == ERROR_SUCCESS) {
|
||||
DWORD cpu_brand_size = 0;
|
||||
if (RegQueryValueExA(hKey,
|
||||
TEXT("ProcessorNameString"),
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
&cpu_brand_size) == ERROR_SUCCESS) {
|
||||
description.resize(cpu_brand_size);
|
||||
if (RegQueryValueExA(hKey,
|
||||
TEXT("ProcessorNameString"),
|
||||
NULL,
|
||||
NULL,
|
||||
(LPBYTE)&description[0], // NOLINT
|
||||
&cpu_brand_size) == ERROR_SUCCESS) {
|
||||
if (description.find('\0') != std::string::npos) {
|
||||
description.resize(description.find('\0'));
|
||||
}
|
||||
}
|
||||
}
|
||||
RegCloseKey(hKey);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cpu_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t dev) {
|
||||
struct ggml_backend_cpu_device_context * ctx = (struct ggml_backend_cpu_device_context *)dev->context;
|
||||
|
||||
return ctx->description.c_str();
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_cpu_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_CPU;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_cpu_device_get_name(dev);
|
||||
props->description = ggml_backend_cpu_device_get_description(dev);
|
||||
props->type = ggml_backend_cpu_device_get_type(dev);
|
||||
ggml_backend_cpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_cpu_device_init_backend(ggml_backend_dev_t dev, const char * params) {
|
||||
return ggml_backend_cpu_init();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_cpu_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(max_tensor_size);
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
return
|
||||
op->type != GGML_TYPE_IQ2_XXS &&
|
||||
op->type != GGML_TYPE_IQ2_XS &&
|
||||
op->type != GGML_TYPE_IQ1_S &&
|
||||
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
||||
case GGML_OP_MUL_MAT:
|
||||
return op->src[1]->type == GGML_TYPE_F32;// FIXME || op->src[1]->type == ggml_get_type_traits(op->src[0]->type)->vec_dot_type;
|
||||
case GGML_OP_ROPE_BACK:
|
||||
return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_OUT_PROD:
|
||||
return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_cpu_device_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_device_get_name,
|
||||
/* .get_description = */ ggml_backend_cpu_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_cpu_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_cpu_device_get_type,
|
||||
/* .get_props = */ ggml_backend_cpu_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_cpu_device_init_backend,
|
||||
/* .get_buffer_type = */ ggml_backend_cpu_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_cpu_device_buffer_from_host_ptr,
|
||||
/* .supports_op = */ ggml_backend_cpu_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cpu_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
// CPU backend - backend (reg)
|
||||
|
||||
static const char * ggml_backend_cpu_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cpu_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_cpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
static ggml_backend_cpu_device_context ctx;
|
||||
static ggml_backend_device ggml_backend_cpu_device = {
|
||||
/* .iface = */ ggml_backend_cpu_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ &ctx,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_device;
|
||||
}
|
||||
|
||||
struct ggml_backend_feature {
|
||||
const char * name;
|
||||
const char * value;
|
||||
};
|
||||
|
||||
// Not used yet
|
||||
// This is intended to replace the the ggml_cpu_has_* functions when loading the CPU backend dynamically,
|
||||
// and additionally to allow other backends to expose their own list of features that applications can query using the same API.
|
||||
static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t reg) {
|
||||
static std::vector<ggml_backend_feature> features = []() {
|
||||
std::vector<ggml_backend_feature> features;
|
||||
if (ggml_cpu_has_sse3()) {
|
||||
features.push_back({ "SSE3", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_ssse3()) {
|
||||
features.push_back({ "SSSE3", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx()) {
|
||||
features.push_back({ "AVX", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx2()) {
|
||||
features.push_back({ "AVX2", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_f16c()) {
|
||||
features.push_back({ "F16C", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_fma()) {
|
||||
features.push_back({ "FMA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx_vnni()) {
|
||||
features.push_back({ "AVX_VNNI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512()) {
|
||||
features.push_back({ "AVX512", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512_vbmi()) {
|
||||
features.push_back({ "AVX512_VBMI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512_vnni()) {
|
||||
features.push_back({ "AVX512_VNNI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512_bf16()) {
|
||||
features.push_back({ "AVX512_BF16", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_amx_int8()) {
|
||||
features.push_back({ "AMX_INT8", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_neon()) {
|
||||
features.push_back({ "NEON", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_arm_fma()) {
|
||||
features.push_back({ "ARM_FMA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_fp16_va()) {
|
||||
features.push_back({ "FP16_VA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_matmul_int8()) {
|
||||
features.push_back({ "MATMUL_INT8", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_sve()) {
|
||||
features.push_back({ "SVE", "1" });
|
||||
}
|
||||
if (ggml_cpu_get_sve_cnt() > 0) {
|
||||
static std::string sve_cnt = std::to_string(ggml_cpu_get_sve_cnt());
|
||||
features.push_back({ "SVE_CNT", sve_cnt.c_str() });
|
||||
}
|
||||
if (ggml_cpu_has_riscv_v()) {
|
||||
features.push_back({ "RISCV_V", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_vsx()) {
|
||||
features.push_back({ "VSX", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_wasm_simd()) {
|
||||
features.push_back({ "WASM_SIMD", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_llamafile()) {
|
||||
features.push_back({ "LLAMAFILE", "1" });
|
||||
}
|
||||
|
||||
features.push_back({ nullptr, nullptr });
|
||||
|
||||
return features;
|
||||
}();
|
||||
|
||||
return features.data();
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
||||
return (void *)ggml_backend_cpu_set_n_threads;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
|
||||
return (void *)ggml_backend_cpu_get_extra_bufts;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_cpu_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_cpu_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_cpu_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_cpu_reg(void) {
|
||||
static struct ggml_backend_reg ggml_backend_cpu_reg = {
|
||||
/* .iface = */ ggml_backend_cpu_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_reg;
|
||||
}
|
1884
ggml/src/ggml-cpu/llamafile/sgemm.cpp
Normal file
1884
ggml/src/ggml-cpu/llamafile/sgemm.cpp
Normal file
File diff suppressed because it is too large
Load Diff
14
ggml/src/ggml-cpu/llamafile/sgemm.h
Normal file
14
ggml/src/ggml-cpu/llamafile/sgemm.h
Normal file
@ -0,0 +1,14 @@
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t,
|
||||
const void *, int64_t, void *, int64_t, int, int,
|
||||
int, int, int);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -6,7 +6,7 @@
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#if defined(GGML_USE_HIP)
|
||||
#define GGML_COMMON_DECL_HIP
|
||||
#define GGML_COMMON_IMPL_HIP
|
||||
#else
|
||||
@ -26,13 +26,13 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#if defined(GGML_USE_HIP)
|
||||
#include "vendors/hip.h"
|
||||
#elif defined(GGML_USE_MUSA)
|
||||
#include "vendors/musa.h"
|
||||
#else
|
||||
#include "vendors/cuda.h"
|
||||
#endif // defined(GGML_USE_HIPBLAS)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
|
||||
#define STRINGIZE_IMPL(...) #__VA_ARGS__
|
||||
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
|
||||
@ -97,7 +97,7 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
|
||||
|
||||
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
|
||||
|
||||
#if !defined(GGML_USE_HIPBLAS)
|
||||
#if !defined(GGML_USE_HIP)
|
||||
static const char * cu_get_error_str(CUresult err) {
|
||||
const char * err_str;
|
||||
cuGetErrorString(err, &err_str);
|
||||
@ -120,21 +120,21 @@ typedef float dfloat; // dequantize float
|
||||
typedef float2 dfloat2;
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
#if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
#define FP16_AVAILABLE
|
||||
#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
|
||||
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
#define FAST_FP16_AVAILABLE
|
||||
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
|
||||
#define INT8_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
|
||||
|
||||
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
|
||||
#define FLASH_ATTN_AVAILABLE
|
||||
@ -156,14 +156,14 @@ static constexpr bool int8_mma_available(const int cc) {
|
||||
static __device__ void no_device_code(
|
||||
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
||||
file_name, line, function_name, arch);
|
||||
GGML_UNUSED(arch_list);
|
||||
#else
|
||||
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
||||
file_name, line, function_name, arch, arch_list);
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
__trap();
|
||||
|
||||
GGML_UNUSED(no_device_code); // suppress unused function warning
|
||||
@ -176,7 +176,7 @@ static __device__ void no_device_code(
|
||||
#endif // __CUDA_ARCH__
|
||||
|
||||
static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
return __reduce_add_sync(0xffffffff, x);
|
||||
#else
|
||||
#pragma unroll
|
||||
@ -184,7 +184,7 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
}
|
||||
return x;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||
@ -207,7 +207,7 @@ static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
|
||||
@ -221,7 +221,7 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||
}
|
||||
return a;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
@ -240,11 +240,11 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
return __float2half(fmaxf(__half2float(a), __half2float(b)));
|
||||
#else
|
||||
return __hmax(a, b);
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
@ -254,7 +254,7 @@ static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
#if CUDART_VERSION >= CUDART_HMAX
|
||||
return __hmax2(a, b);
|
||||
@ -269,11 +269,11 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(b);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
@ -282,7 +282,7 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#else
|
||||
GGML_UNUSED(x);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
}
|
||||
|
||||
#if CUDART_VERSION < CUDART_HMASK
|
||||
@ -294,7 +294,7 @@ static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half
|
||||
#endif // CUDART_VERSION < CUDART_HMASK
|
||||
|
||||
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
#elif defined(RDNA3)
|
||||
@ -320,7 +320,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#endif
|
||||
return c;
|
||||
|
||||
#else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||
return __dp4a(a, b, c);
|
||||
@ -330,7 +330,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
|
||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
// TODO: move to ggml-common.h
|
||||
|
@ -517,9 +517,9 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
||||
}
|
||||
|
||||
template<int D, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_combine_results(
|
||||
const float * __restrict__ VKQ_parts,
|
||||
const float2 * __restrict__ VKQ_meta,
|
||||
|
@ -5,9 +5,9 @@
|
||||
#define FATTN_KQ_STRIDE_TILE_F16 64
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_tile_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
@ -5,9 +5,9 @@
|
||||
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_tile_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
@ -2,9 +2,9 @@
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_vec_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
@ -2,9 +2,9 @@
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_vec_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
@ -7,9 +7,9 @@
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
3375
ggml/src/ggml-cuda/ggml-cuda.cu
Normal file
3375
ggml/src/ggml-cuda/ggml-cuda.cu
Normal file
File diff suppressed because it is too large
Load Diff
165
ggml/src/ggml-cuda/ggml/CMakeLists.txt
Normal file
165
ggml/src/ggml-cuda/ggml/CMakeLists.txt
Normal file
@ -0,0 +1,165 @@
|
||||
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "CUDA Toolkit found")
|
||||
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# 52 == lowest CUDA 12 standard
|
||||
# 60 == FP16 CUDA intrinsics
|
||||
# 61 == integer CUDA intrinsics
|
||||
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52;61;70;75")
|
||||
#set(CMAKE_CUDA_ARCHITECTURES "OFF") # use this to compile much faster, but only F16 models work
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
file(GLOB GGML_HEADERS_CUDA "*.cuh")
|
||||
list(APPEND GGML_HEADERS_CUDA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_CUDA "*.cu")
|
||||
file(GLOB SRCS "template-instances/fattn-wmma*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "template-instances/fattn-vec*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||
else()
|
||||
file(GLOB SRCS "template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/fattn-vec*f16-f16.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
endif()
|
||||
|
||||
add_library(ggml-cuda
|
||||
${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_CUDA}
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-cuda PRIVATE ggml-base)
|
||||
target_include_directories(ggml-cuda PRIVATE . ..)
|
||||
|
||||
# TODO: change the definitions to this target only
|
||||
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
|
||||
if (GGML_CUDA_GRAPHS)
|
||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_CUBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
add_compile_definitions(GGML_CUDA_NO_VMM)
|
||||
endif()
|
||||
|
||||
if (DEFINED GGML_CUDA_DMMV_Y)
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_DMMV_Y}) # for backwards compatibility
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
if (WIN32)
|
||||
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
|
||||
else ()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
endif()
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
# No VMM requested, no need to link directly with the cuda driver lib (libcuda.so)
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cuda_driver)
|
||||
endif()
|
||||
|
||||
set(CUDA_CXX_FLAGS "")
|
||||
|
||||
set(CUDA_FLAGS -use_fast_math)
|
||||
|
||||
if (GGML_FATAL_WARNINGS)
|
||||
list(APPEND CUDA_FLAGS -Werror all-warnings)
|
||||
endif()
|
||||
|
||||
if (GGML_ALL_WARNINGS AND NOT MSVC)
|
||||
set(NVCC_CMD ${CMAKE_CUDA_COMPILER} .c)
|
||||
if (NOT CMAKE_CUDA_HOST_COMPILER STREQUAL "")
|
||||
list(APPEND NVCC_CMD -ccbin ${CMAKE_CUDA_HOST_COMPILER})
|
||||
endif()
|
||||
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler --version
|
||||
OUTPUT_VARIABLE CUDA_CCFULLVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
|
||||
if (NOT CUDA_CCFULLVER MATCHES clang)
|
||||
set(CUDA_CCID "GNU")
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
|
||||
OUTPUT_VARIABLE CUDA_CCVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
else()
|
||||
if (CUDA_CCFULLVER MATCHES Apple)
|
||||
set(CUDA_CCID "AppleClang")
|
||||
else()
|
||||
set(CUDA_CCID "Clang")
|
||||
endif()
|
||||
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
|
||||
endif()
|
||||
|
||||
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
|
||||
get_flags(${CUDA_CCID} ${CUDA_CCVER})
|
||||
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
list(APPEND CUDA_CXX_FLAGS -Wno-pedantic)
|
||||
endif()
|
||||
|
||||
list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument
|
||||
|
||||
if (NOT CUDA_CXX_FLAGS_JOINED STREQUAL "")
|
||||
list(APPEND CUDA_FLAGS -Xcompiler ${CUDA_CXX_FLAGS_JOINED})
|
||||
endif()
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${CUDA_FLAGS}>")
|
||||
else()
|
||||
message(FATAL_ERROR "CUDA Toolkit not found")
|
||||
endif()
|
@ -100,9 +100,9 @@ static constexpr __device__ int get_mmq_x_max_device() {
|
||||
return 128;
|
||||
#else // INT8_MMA_AVAILABLE
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
return 128;
|
||||
#else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#if __CUDA_ARCH__ >= CC_VOLTA
|
||||
#ifdef GGML_CUDA_FORCE_MMQ
|
||||
@ -115,7 +115,7 @@ static constexpr __device__ int get_mmq_x_max_device() {
|
||||
return 64;
|
||||
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
||||
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // INT8_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
@ -124,7 +124,7 @@ static constexpr int get_mmq_y_host(const int cc) {
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_mmq_y_device() {
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(RDNA1)
|
||||
return 64;
|
||||
#else
|
||||
@ -136,7 +136,7 @@ static constexpr __device__ int get_mmq_y_device() {
|
||||
#else
|
||||
return 64;
|
||||
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
#define MMQ_DP4A_TXS_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0}
|
||||
@ -2569,7 +2569,7 @@ static __device__ void mul_mat_q_process_tile(
|
||||
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(RDNA3) || defined(RDNA2)
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // defined(RDNA3) || defined(RDNA2)
|
||||
@ -2579,7 +2579,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#else
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
static __global__ void mul_mat_q(
|
||||
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) {
|
||||
@ -2594,7 +2594,7 @@ static __global__ void mul_mat_q(
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
|
||||
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
|
||||
#if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
{
|
||||
constexpr bool fixup = false;
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
@ -2602,7 +2602,7 @@ static __global__ void mul_mat_q(
|
||||
blockIdx.x, blockIdx.y, 0, ne00/qk);
|
||||
return;
|
||||
}
|
||||
#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
|
||||
const int64_t blocks_per_ne00 = ne00 / qk;
|
||||
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
|
||||
@ -2765,14 +2765,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
|
||||
const int shmem = mmq_get_shmem<type>(mmq_x, mmq_y, cc);
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
||||
if (!shmem_limit_raised[id]) {
|
||||
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
||||
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
||||
shmem_limit_raised[id] = true;
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
const int nty = (args.ne01 + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
|
||||
|
@ -48,10 +48,10 @@ static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
|
||||
}
|
||||
|
||||
template <ggml_type type, int ncols_y>
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
||||
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void mul_mat_vec_q(
|
||||
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
||||
@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
|
||||
|
||||
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||
constexpr int nwarps = 1;
|
||||
constexpr int rows_per_cuda_block = 1;
|
||||
#else
|
||||
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
||||
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
const int row0 = rows_per_cuda_block*blockIdx.x;
|
||||
|
@ -1,6 +1,6 @@
|
||||
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
#define USE_CUB
|
||||
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
|
||||
#ifdef USE_CUB
|
||||
// On Windows CUB uses libraries with variables called CC_PASCAL which conflict with the define in common.cuh.
|
||||
|
113
ggml/src/ggml-hip/CMakeLists.txt
Normal file
113
ggml/src/ggml-hip/CMakeLists.txt
Normal file
@ -0,0 +1,113 @@
|
||||
if (NOT EXISTS $ENV{ROCM_PATH})
|
||||
if (NOT EXISTS /opt/rocm)
|
||||
set(ROCM_PATH /usr)
|
||||
else()
|
||||
set(ROCM_PATH /opt/rocm)
|
||||
endif()
|
||||
else()
|
||||
set(ROCM_PATH $ENV{ROCM_PATH})
|
||||
endif()
|
||||
|
||||
list(APPEND CMAKE_PREFIX_PATH ${ROCM_PATH})
|
||||
list(APPEND CMAKE_PREFIX_PATH "${ROCM_PATH}/lib64/cmake")
|
||||
|
||||
# CMake on Windows doesn't support the HIP language yet
|
||||
if (WIN32)
|
||||
set(CXX_IS_HIPCC TRUE)
|
||||
else()
|
||||
string(REGEX MATCH "hipcc(\.bat)?$" CXX_IS_HIPCC "${CMAKE_CXX_COMPILER}")
|
||||
endif()
|
||||
|
||||
if (CXX_IS_HIPCC)
|
||||
if (LINUX)
|
||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||
endif()
|
||||
|
||||
message(WARNING "Setting hipcc as the C++ compiler is legacy behavior."
|
||||
" Prefer setting the HIP compiler directly. See README for details.")
|
||||
endif()
|
||||
else()
|
||||
# Forward AMDGPU_TARGETS to CMAKE_HIP_ARCHITECTURES.
|
||||
if (AMDGPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES)
|
||||
set(CMAKE_HIP_ARCHITECTURES ${AMDGPU_TARGETS})
|
||||
endif()
|
||||
cmake_minimum_required(VERSION 3.21)
|
||||
enable_language(HIP)
|
||||
endif()
|
||||
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
|
||||
file(GLOB GGML_HEADERS_ROCM "../ggml-cuda/*.cuh")
|
||||
list(APPEND GGML_HEADERS_ROCM "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_ROCM "../ggml-cuda/*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||
else()
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
endif()
|
||||
|
||||
add_library(ggml-hip
|
||||
${GGML_HEADERS_ROCM}
|
||||
${GGML_SOURCES_ROCM})
|
||||
|
||||
target_link_libraries(ggml-hip PRIVATE ggml-base)
|
||||
target_include_directories(ggml-hip PRIVATE . ..)
|
||||
|
||||
# TODO: do not use CUDA definitions for HIP
|
||||
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
||||
|
||||
add_compile_definitions(GGML_USE_HIP)
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
||||
|
||||
if (GGML_HIP_UMA)
|
||||
add_compile_definitions(GGML_HIP_UMA)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_CUBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (CXX_IS_HIPCC)
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
target_link_libraries(ggml-hip PRIVATE hip::device)
|
||||
else()
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE HIP)
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
|
||||
target_link_libraries(ggml-hip PRIVATE ggml-base hip::host roc::rocblas roc::hipblas)
|
@ -3,13 +3,29 @@
|
||||
// GGML internal header
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
#include <arm_sve.h>
|
||||
#endif // __ARM_FEATURE_SVE
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
|
||||
#if defined(__F16C__)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -28,13 +44,13 @@ extern "C" {
|
||||
// if C99 - static_assert is noop
|
||||
// ref: https://stackoverflow.com/a/53923785/4039976
|
||||
#ifndef __cplusplus
|
||||
#ifndef static_assert
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
|
||||
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
||||
#else
|
||||
#define static_assert(cond, msg) struct global_scope_noop_trick
|
||||
#endif
|
||||
#endif
|
||||
#ifndef static_assert
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
|
||||
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
||||
#else
|
||||
#define static_assert(cond, msg) struct global_scope_noop_trick
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
static inline int ggml_up32(int n) {
|
||||
@ -120,14 +136,12 @@ struct ggml_map_custom1_op_params {
|
||||
void * userdata;
|
||||
};
|
||||
|
||||
|
||||
struct ggml_map_custom2_op_params {
|
||||
ggml_custom2_op_t fun;
|
||||
int n_tasks;
|
||||
void * userdata;
|
||||
};
|
||||
|
||||
|
||||
struct ggml_map_custom3_op_params {
|
||||
ggml_custom3_op_t fun;
|
||||
int n_tasks;
|
||||
@ -287,9 +301,249 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
void * ggml_aligned_malloc(size_t size);
|
||||
void ggml_aligned_free(void * ptr, size_t size);
|
||||
|
||||
// TODO: move to threading file
|
||||
void ggml_critical_section_start(void);
|
||||
void ggml_critical_section_end(void);
|
||||
// FP16 to FP32 conversion
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
#ifdef _MSC_VER
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
#else
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
ggml_fp16_internal_t tmp;
|
||||
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
|
||||
return (float)tmp;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
ggml_fp16_t res;
|
||||
ggml_fp16_internal_t tmp = f;
|
||||
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
|
||||
return res;
|
||||
}
|
||||
|
||||
#elif defined(__F16C__)
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
|
||||
#else
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
|
||||
#endif
|
||||
|
||||
#elif defined(__POWER9_VECTOR__)
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
/* the inline asm below is about 12% faster than the lookup method */
|
||||
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
register float f;
|
||||
register double d;
|
||||
__asm__(
|
||||
"mtfprd %0,%2\n"
|
||||
"xscvhpdp %0,%0\n"
|
||||
"frsp %1,%0\n" :
|
||||
/* temp */ "=d"(d),
|
||||
/* out */ "=f"(f):
|
||||
/* in */ "r"(h));
|
||||
return f;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
register double d;
|
||||
register ggml_fp16_t r;
|
||||
__asm__( /* xscvdphp can work on double or single precision */
|
||||
"xscvdphp %0,%2\n"
|
||||
"mffprd %1,%0\n" :
|
||||
/* temp */ "=d"(d),
|
||||
/* out */ "=r"(r):
|
||||
/* in */ "f"(f));
|
||||
return r;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// FP16 <-> FP32
|
||||
// ref: https://github.com/Maratyszcza/FP16
|
||||
|
||||
static inline float fp32_from_bits(uint32_t w) {
|
||||
union {
|
||||
uint32_t as_bits;
|
||||
float as_value;
|
||||
} fp32;
|
||||
fp32.as_bits = w;
|
||||
return fp32.as_value;
|
||||
}
|
||||
|
||||
static inline uint32_t fp32_to_bits(float f) {
|
||||
union {
|
||||
float as_value;
|
||||
uint32_t as_bits;
|
||||
} fp32;
|
||||
fp32.as_value = f;
|
||||
return fp32.as_bits;
|
||||
}
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
const uint32_t w = (uint32_t) h << 16;
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
const uint32_t two_w = w + w;
|
||||
|
||||
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
|
||||
#if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L)
|
||||
const float exp_scale = 0x1.0p-112f;
|
||||
#else
|
||||
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
|
||||
#endif
|
||||
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
|
||||
|
||||
const uint32_t magic_mask = UINT32_C(126) << 23;
|
||||
const float magic_bias = 0.5f;
|
||||
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
|
||||
|
||||
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
|
||||
const uint32_t result = sign |
|
||||
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
|
||||
return fp32_from_bits(result);
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
#if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L)
|
||||
const float scale_to_inf = 0x1.0p+112f;
|
||||
const float scale_to_zero = 0x1.0p-110f;
|
||||
#else
|
||||
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
|
||||
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
|
||||
#endif
|
||||
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
|
||||
|
||||
const uint32_t w = fp32_to_bits(f);
|
||||
const uint32_t shl1_w = w + w;
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
|
||||
if (bias < UINT32_C(0x71000000)) {
|
||||
bias = UINT32_C(0x71000000);
|
||||
}
|
||||
|
||||
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
|
||||
const uint32_t bits = fp32_to_bits(base);
|
||||
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
|
||||
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
|
||||
const uint32_t nonsign = exp_bits + mantissa_bits;
|
||||
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
|
||||
}
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
|
||||
|
||||
// precomputed f32 table for f16 (256 KB)
|
||||
// defined in ggml.c, initialized in ggml_init()
|
||||
GGML_API float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
||||
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
||||
// This is also true for POWER9.
|
||||
#if !defined(GGML_FP16_TO_FP32)
|
||||
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
uint16_t s;
|
||||
memcpy(&s, &f, sizeof(uint16_t));
|
||||
return ggml_table_f32_f16[s];
|
||||
}
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
||||
#endif
|
||||
|
||||
#if !defined(GGML_FP32_TO_FP16)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Converts brain16 to float32.
|
||||
*
|
||||
* The bfloat16 floating point format has the following structure:
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌──┴───┐┌─┴───┐
|
||||
* 0b0000000000000000 brain16
|
||||
*
|
||||
* Since bf16 has the same number of exponent bits as a 32bit float,
|
||||
* encoding and decoding numbers becomes relatively straightforward.
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌──┴───┐┌─┴───────────────────┐
|
||||
* 0b00000000000000000000000000000000 IEEE binary32
|
||||
*
|
||||
* For comparison, the standard fp16 format has fewer exponent bits.
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌─┴─┐┌─┴──────┐
|
||||
* 0b0000000000000000 IEEE binary16
|
||||
*
|
||||
* @see IEEE 754-2008
|
||||
*/
|
||||
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.i = (uint32_t)h.bits << 16;
|
||||
return u.f;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts float32 to brain16.
|
||||
*
|
||||
* This is binary identical with Google Brain float conversion.
|
||||
* Floats shall round to nearest even, and NANs shall be quiet.
|
||||
* Subnormals aren't flushed to zero, except perhaps when used.
|
||||
* This code should vectorize nicely if using modern compilers.
|
||||
*/
|
||||
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
||||
ggml_bf16_t h;
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.f = s;
|
||||
if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
|
||||
h.bits = (u.i >> 16) | 64; /* force to quiet */
|
||||
return h;
|
||||
}
|
||||
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
|
||||
return h;
|
||||
}
|
||||
|
||||
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
|
||||
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
162
ggml/src/ggml-kompute/CMakeLists.txt
Normal file
162
ggml/src/ggml-kompute/CMakeLists.txt
Normal file
@ -0,0 +1,162 @@
|
||||
|
||||
find_package(Vulkan COMPONENTS glslc REQUIRED)
|
||||
find_program(glslc_executable NAMES glslc HINTS Vulkan::glslc)
|
||||
|
||||
if (NOT glslc_executable)
|
||||
message(FATAL_ERROR "glslc not found")
|
||||
endif()
|
||||
|
||||
add_library(ggml-kompute
|
||||
ggml-kompute.cpp
|
||||
../../include/ggml-kompute.h
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-kompute PRIVATE ggml-base kompute)
|
||||
target_include_directories(ggml-kompute PRIVATE . .. ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
add_compile_definitions(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1)
|
||||
|
||||
function(compile_shader)
|
||||
set(options)
|
||||
set(oneValueArgs)
|
||||
set(multiValueArgs SOURCES)
|
||||
cmake_parse_arguments(compile_shader "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
foreach(source ${compile_shader_SOURCES})
|
||||
get_filename_component(filename ${source} NAME)
|
||||
set(spv_file ${filename}.spv)
|
||||
add_custom_command(
|
||||
OUTPUT ${spv_file}
|
||||
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/common.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_getrows.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n_pre.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n.comp
|
||||
COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
||||
COMMENT "Compiling ${source} to ${spv_file}"
|
||||
)
|
||||
|
||||
get_filename_component(RAW_FILE_NAME ${spv_file} NAME)
|
||||
set(FILE_NAME "shader${RAW_FILE_NAME}")
|
||||
string(REPLACE ".comp.spv" ".h" HEADER_FILE ${FILE_NAME})
|
||||
string(TOUPPER ${HEADER_FILE} HEADER_FILE_DEFINE)
|
||||
string(REPLACE "." "_" HEADER_FILE_DEFINE "${HEADER_FILE_DEFINE}")
|
||||
set(OUTPUT_HEADER_FILE "${HEADER_FILE}")
|
||||
message(STATUS "${HEADER_FILE} generating ${HEADER_FILE_DEFINE}")
|
||||
if(CMAKE_GENERATOR MATCHES "Visual Studio")
|
||||
add_custom_command(
|
||||
OUTPUT ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
DEPENDS ${spv_file} xxd
|
||||
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd"
|
||||
)
|
||||
else()
|
||||
add_custom_command(
|
||||
OUTPUT ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_BINARY_DIR}/bin/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
DEPENDS ${spv_file} xxd
|
||||
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/xxd"
|
||||
)
|
||||
endif()
|
||||
endforeach()
|
||||
endfunction()
|
||||
|
||||
if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt")
|
||||
message(STATUS "Kompute found")
|
||||
set(KOMPUTE_OPT_LOG_LEVEL Error CACHE STRING "Kompute log level")
|
||||
add_subdirectory(kompute)
|
||||
|
||||
# Compile our shaders
|
||||
compile_shader(SOURCES
|
||||
kompute-shaders/op_scale.comp
|
||||
kompute-shaders/op_scale_8.comp
|
||||
kompute-shaders/op_add.comp
|
||||
kompute-shaders/op_addrow.comp
|
||||
kompute-shaders/op_mul.comp
|
||||
kompute-shaders/op_silu.comp
|
||||
kompute-shaders/op_relu.comp
|
||||
kompute-shaders/op_gelu.comp
|
||||
kompute-shaders/op_softmax.comp
|
||||
kompute-shaders/op_norm.comp
|
||||
kompute-shaders/op_rmsnorm.comp
|
||||
kompute-shaders/op_diagmask.comp
|
||||
kompute-shaders/op_mul_mat_mat_f32.comp
|
||||
kompute-shaders/op_mul_mat_f16.comp
|
||||
kompute-shaders/op_mul_mat_q8_0.comp
|
||||
kompute-shaders/op_mul_mat_q4_0.comp
|
||||
kompute-shaders/op_mul_mat_q4_1.comp
|
||||
kompute-shaders/op_mul_mat_q4_k.comp
|
||||
kompute-shaders/op_mul_mat_q6_k.comp
|
||||
kompute-shaders/op_getrows_f32.comp
|
||||
kompute-shaders/op_getrows_f16.comp
|
||||
kompute-shaders/op_getrows_q4_0.comp
|
||||
kompute-shaders/op_getrows_q4_1.comp
|
||||
kompute-shaders/op_getrows_q6_k.comp
|
||||
kompute-shaders/op_rope_f16.comp
|
||||
kompute-shaders/op_rope_f32.comp
|
||||
kompute-shaders/op_cpy_f16_f16.comp
|
||||
kompute-shaders/op_cpy_f16_f32.comp
|
||||
kompute-shaders/op_cpy_f32_f16.comp
|
||||
kompute-shaders/op_cpy_f32_f32.comp
|
||||
)
|
||||
|
||||
# Create a custom target for our generated shaders
|
||||
add_custom_target(generated_shaders DEPENDS
|
||||
shaderop_scale.h
|
||||
shaderop_scale_8.h
|
||||
shaderop_add.h
|
||||
shaderop_addrow.h
|
||||
shaderop_mul.h
|
||||
shaderop_silu.h
|
||||
shaderop_relu.h
|
||||
shaderop_gelu.h
|
||||
shaderop_softmax.h
|
||||
shaderop_norm.h
|
||||
shaderop_rmsnorm.h
|
||||
shaderop_diagmask.h
|
||||
shaderop_mul_mat_mat_f32.h
|
||||
shaderop_mul_mat_f16.h
|
||||
shaderop_mul_mat_q8_0.h
|
||||
shaderop_mul_mat_q4_0.h
|
||||
shaderop_mul_mat_q4_1.h
|
||||
shaderop_mul_mat_q4_k.h
|
||||
shaderop_mul_mat_q6_k.h
|
||||
shaderop_getrows_f32.h
|
||||
shaderop_getrows_f16.h
|
||||
shaderop_getrows_q4_0.h
|
||||
shaderop_getrows_q4_1.h
|
||||
shaderop_getrows_q6_k.h
|
||||
shaderop_rope_f16.h
|
||||
shaderop_rope_f32.h
|
||||
shaderop_cpy_f16_f16.h
|
||||
shaderop_cpy_f16_f32.h
|
||||
shaderop_cpy_f32_f16.h
|
||||
shaderop_cpy_f32_f32.h
|
||||
)
|
||||
|
||||
# Create a custom command that depends on the generated_shaders
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
||||
COMMAND ${CMAKE_COMMAND} -E touch ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
||||
DEPENDS generated_shaders
|
||||
COMMENT "Ensuring shaders are generated before compiling ggml-kompute.cpp"
|
||||
)
|
||||
|
||||
# Add the stamp to the main sources to ensure dependency tracking
|
||||
target_sources(ggml-kompute PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
|
||||
else()
|
||||
message(WARNING "Kompute not found")
|
||||
endif()
|
2184
ggml/src/ggml-kompute/ggml-kompute.cpp
Normal file
2184
ggml/src/ggml-kompute/ggml-kompute.cpp
Normal file
File diff suppressed because it is too large
Load Diff
111
ggml/src/ggml-kompute/kompute-shaders/common.comp
Normal file
111
ggml/src/ggml-kompute/kompute-shaders/common.comp
Normal file
@ -0,0 +1,111 @@
|
||||
#extension GL_EXT_shader_16bit_storage: require
|
||||
#extension GL_EXT_shader_8bit_storage: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
|
||||
#extension GL_EXT_control_flow_attributes: enable
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
#extension GL_EXT_debug_printf : enable
|
||||
|
||||
#define QK4_0 32
|
||||
#define QK4_1 32
|
||||
|
||||
#define GELU_COEF_A 0.044715
|
||||
#define SQRT_2_OVER_PI 0.79788456080286535587989211986876
|
||||
#define TWOPI_F 6.283185307179586f
|
||||
|
||||
#define QK_K 256
|
||||
#define K_SCALE_SIZE 12
|
||||
|
||||
#define u8BufToU16(buf, idx) (((uint16_t(buf[idx + 1]) << 8)) | buf[idx])
|
||||
#define u8BufToFloat16(buf, idx) uint16BitsToHalf u8BufToU16(buf, idx)
|
||||
#define u8BufToU32(buf, idx) (((uint32_t u8BufToU16(buf, idx + 2) << 8 | buf[idx + 1]) << 8) | buf[idx])
|
||||
#define u8BufToFloat(buf, idx) uintBitsToFloat u8BufToU32(buf, idx)
|
||||
|
||||
#define sizeof_block_q4_0 0x12
|
||||
struct block_q4_0 {
|
||||
float16_t d;
|
||||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
mat4 dequantize_q4_0(const block_q4_0 xb, uint il) {
|
||||
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float md = -8.f * xb.d;
|
||||
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
|
||||
const uint16_t mask1 = mask0 << 8;
|
||||
|
||||
mat4 reg;
|
||||
for (int i=0;i<8;i++) {
|
||||
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
|
||||
reg[i/2][2*(i%2)+0] = d1 * (b & mask0) + md;
|
||||
reg[i/2][2*(i%2)+1] = d2 * (b & mask1) + md;
|
||||
}
|
||||
return reg;
|
||||
}
|
||||
|
||||
#define sizeof_block_q4_1 0x14
|
||||
struct block_q4_1 {
|
||||
float16_t d;
|
||||
float16_t m;
|
||||
uint8_t qs[QK4_1 / 2];
|
||||
};
|
||||
mat4 dequantize_q4_1(const block_q4_1 xb, uint il) {
|
||||
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float m = xb.m;
|
||||
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
|
||||
const uint16_t mask1 = mask0 << 8;
|
||||
|
||||
mat4 reg;
|
||||
for (int i=0;i<8;i++) {
|
||||
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
|
||||
reg[i/2][2*(i%2)+0] = ((b & mask0) * d1) + m;
|
||||
reg[i/2][2*(i%2)+1] = ((b & mask1) * d2) + m;
|
||||
}
|
||||
return reg;
|
||||
}
|
||||
|
||||
#define sizeof_block_q4_k 144
|
||||
struct block_q4_k {
|
||||
float16_t d;
|
||||
float16_t dmin;
|
||||
uint8_t scales[K_SCALE_SIZE];
|
||||
uint8_t qs[QK_K/2];
|
||||
};
|
||||
|
||||
#define sizeof_block_q6_k 210
|
||||
struct block_q6_k {
|
||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
||||
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||
float16_t d; // super-block scale
|
||||
};
|
||||
mat4 dequantize_q6_k(const block_q6_k xb, uint il) {
|
||||
const float16_t d_all = xb.d;
|
||||
|
||||
const uint qlIndex = 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
||||
const uint qhIndex = 32*(il/8) + 16*(il&1);
|
||||
float16_t sc = xb.scales[(il%2) + 2 * ((il/2))];
|
||||
il = (il/2) & 3;
|
||||
|
||||
const uint16_t kmask1 = il>1 ? uint16_t(il>2 ? 192 : 48) : uint16_t(il>0 ? 12 : 3);
|
||||
const uint16_t kmask2 = il>1 ? uint8_t(0xF0) : uint8_t(0x0F);
|
||||
const float16_t coef = il>1 ? float16_t(1.f/16.f) : float16_t(1.f);
|
||||
const float16_t ml = float16_t(d_all * sc * 32.f);
|
||||
const float16_t dl = float16_t(d_all * sc * coef);
|
||||
mat4 reg;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
const float16_t q = (il&1) != 0 ? ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 2))
|
||||
: ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 4));
|
||||
reg[i/4][i%4] = dl * q - ml;
|
||||
}
|
||||
return reg;
|
||||
}
|
||||
|
||||
|
||||
#define QK8_0 32
|
||||
// struct block_q8_0 {
|
||||
// float16_t d; // delta
|
||||
// int8_t qs[QK8_0]; // quants
|
||||
// };
|
||||
#define sizeof_block_q8_0 34
|
58
ggml/src/ggml-kompute/kompute-shaders/op_add.comp
Normal file
58
ggml/src/ggml-kompute/kompute-shaders/op_add.comp
Normal file
@ -0,0 +1,58 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb00;
|
||||
int nb01;
|
||||
int nb02;
|
||||
int nb03;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
int ne13;
|
||||
int nb10;
|
||||
int nb11;
|
||||
int nb12;
|
||||
int nb13;
|
||||
int ne0;
|
||||
int nb0;
|
||||
int nb1;
|
||||
int nb2;
|
||||
int nb3;
|
||||
//int offs; // TODO: needed for GGML_OP_ACC, see metal code
|
||||
} pcs;
|
||||
|
||||
// general-purpose kernel for addition of two tensors
|
||||
// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
|
||||
// cons: not very efficient
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const uint i13 = i03 % pcs.ne13;
|
||||
const uint i12 = i02 % pcs.ne12;
|
||||
const uint i11 = i01 % pcs.ne11;
|
||||
|
||||
int offs = 0; // TMP (see above)
|
||||
|
||||
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + offs) / 4);
|
||||
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11 ) / 4);
|
||||
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1 + offs) / 4);
|
||||
|
||||
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
|
||||
const uint i10 = i0 % pcs.ne10;
|
||||
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] + inB[pcs.inBOff + src1_off + i10];
|
||||
}
|
||||
}
|
25
ggml/src/ggml-kompute/kompute-shaders/op_addrow.comp
Normal file
25
ggml/src/ggml-kompute/kompute-shaders/op_addrow.comp
Normal file
@ -0,0 +1,25 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
uint row;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 4;
|
||||
|
||||
for (uint x = 0; x < 4; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
out_[i + pcs.outOff] = inA[i + pcs.inAOff] + inB[(i % pcs.row) + pcs.inBOff];
|
||||
}
|
||||
}
|
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f16.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f16.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float16_t
|
||||
#define IN_TYPE_SIZE 2
|
||||
#define OUT_TYPE float16_t
|
||||
#define OUT_TYPE_SIZE 2
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f32.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f32.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float16_t
|
||||
#define IN_TYPE_SIZE 2
|
||||
#define OUT_TYPE float
|
||||
#define OUT_TYPE_SIZE 4
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f16.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f16.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float
|
||||
#define IN_TYPE_SIZE 4
|
||||
#define OUT_TYPE float16_t
|
||||
#define OUT_TYPE_SIZE 2
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f32.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f32.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float
|
||||
#define IN_TYPE_SIZE 4
|
||||
#define OUT_TYPE float
|
||||
#define OUT_TYPE_SIZE 4
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
30
ggml/src/ggml-kompute/kompute-shaders/op_diagmask.comp
Normal file
30
ggml/src/ggml-kompute/kompute-shaders/op_diagmask.comp
Normal file
@ -0,0 +1,30 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
uint n_past;
|
||||
int ne00;
|
||||
int ne01;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i02 = gl_WorkGroupID.z;
|
||||
const uint i01 = gl_WorkGroupID.y;
|
||||
const uint i00 = gl_WorkGroupID.x;
|
||||
|
||||
const uint index = i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00 + i00;
|
||||
|
||||
if (i00 > pcs.n_past + i01) {
|
||||
out_[index + pcs.outOff] = uintBitsToFloat(0xFF800000);
|
||||
} else {
|
||||
out_[index + pcs.outOff] = in_[index + pcs.inOff];
|
||||
}
|
||||
}
|
22
ggml/src/ggml-kompute/kompute-shaders/op_gelu.comp
Normal file
22
ggml/src/ggml-kompute/kompute-shaders/op_gelu.comp
Normal file
@ -0,0 +1,22 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 8;
|
||||
|
||||
for (uint x = 0; x < 8; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
const float y = in_[i + pcs.inOff];
|
||||
out_[i + pcs.outOff] = 0.5*y*(1.0 + tanh(clamp(SQRT_2_OVER_PI*y*(1.0 + GELU_COEF_A*y*y), -15.0, 15.0)));
|
||||
}
|
||||
}
|
17
ggml/src/ggml-kompute/kompute-shaders/op_getrows.comp
Normal file
17
ggml/src/ggml-kompute/kompute-shaders/op_getrows.comp
Normal file
@ -0,0 +1,17 @@
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
const int r = inB[i + pcs.inBOff];
|
||||
|
||||
int z = 0;
|
||||
for (uint ind = gl_LocalInvocationID.x; ind < pcs.ne00/16; ind += gl_WorkGroupSize.x) {
|
||||
const uint inIndex = (r * pcs.nb01 + pcs.inAOff) + ind/NL * SIZE_OF_BLOCK;
|
||||
const mat4 result = dequantize_block(inIndex, ind%NL);
|
||||
for (uint j = 0; j < 4; ++j) {
|
||||
for (uint k = 0; k < 4; ++k) {
|
||||
const uint outIndex = i * pcs.nb1/BYTES_FOR_TYPE + pcs.outOff + z;
|
||||
out_[outIndex] = result[j][k];
|
||||
++z;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
31
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f16.comp
Normal file
31
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f16.comp
Normal file
@ -0,0 +1,31 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
void dequantize_row_f16(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
|
||||
for (int j = 0; j < k; j++) {
|
||||
out_[y + j] = inA[x + j];
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
const int r = inB[i + pcs.inBOff];
|
||||
|
||||
dequantize_row_f16(r*pcs.nb01/2/*bytes for float16*/ + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
|
||||
}
|
31
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f32.comp
Normal file
31
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f32.comp
Normal file
@ -0,0 +1,31 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { float inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
void dequantize_row_f32(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
|
||||
for (int j = 0; j < k; j++) {
|
||||
out_[y + j] = inA[x + j];
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
const int r = inB[i + pcs.inBOff];
|
||||
|
||||
dequantize_row_f32(r*pcs.nb01/4 + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
|
||||
}
|
38
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_0.comp
Normal file
38
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_0.comp
Normal file
@ -0,0 +1,38 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define NL 2
|
||||
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_0
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
block_q4_0 get_unaligned_block_q4_0(uint index) {
|
||||
block_q4_0 fres;
|
||||
fres.d = u8BufToFloat16(inA, index);
|
||||
[[unroll]] for (uint it = 0; it != QK4_0 / 2; it++) {
|
||||
fres.qs[it] = inA[index+2+it];
|
||||
}
|
||||
return fres;
|
||||
}
|
||||
|
||||
mat4 dequantize_block(uint index, uint il) {
|
||||
const block_q4_0 block = get_unaligned_block_q4_0(index);
|
||||
return dequantize_q4_0(block, il);
|
||||
}
|
||||
|
||||
#include "op_getrows.comp"
|
39
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_1.comp
Normal file
39
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_1.comp
Normal file
@ -0,0 +1,39 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define NL 2
|
||||
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_1
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
block_q4_1 get_unaligned_block_q4_1(uint index) {
|
||||
block_q4_1 fres;
|
||||
fres.d = u8BufToFloat16(inA, index);
|
||||
fres.m = u8BufToFloat16(inA, index+2);
|
||||
[[unroll]] for (uint it = 0; it != QK4_1 / 2; it++) {
|
||||
fres.qs[it] = inA[index+4+it];
|
||||
}
|
||||
return fres;
|
||||
}
|
||||
|
||||
mat4 dequantize_block(uint index, uint il) {
|
||||
const block_q4_1 block = get_unaligned_block_q4_1(index);
|
||||
return dequantize_q4_1(block, il);
|
||||
}
|
||||
|
||||
#include "op_getrows.comp"
|
44
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q6_k.comp
Normal file
44
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q6_k.comp
Normal file
@ -0,0 +1,44 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define NL 16
|
||||
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
||||
#define SIZE_OF_BLOCK sizeof_block_q6_k
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
block_q6_k get_unaligned_block_q6_k(uint index) {
|
||||
block_q6_k fres;
|
||||
[[unroll]] for (uint it = 0; it != QK_K / 2; it++) {
|
||||
fres.ql[it] = inA[index + it];
|
||||
}
|
||||
[[unroll]] for (uint it = 0; it != QK_K / 4; it++) {
|
||||
fres.qh[it] = inA[index + QK_K/2 + it];
|
||||
}
|
||||
[[unroll]] for (uint it = 0; it != QK_K / 16; it++) {
|
||||
fres.scales[it] = int8_t(inA[index + QK_K/2 + QK_K/4 + it]);
|
||||
}
|
||||
fres.d = u8BufToFloat16(inA, index + QK_K/2 + QK_K/4 + QK_K/16);
|
||||
return fres;
|
||||
}
|
||||
|
||||
mat4 dequantize_block(uint index, uint il) {
|
||||
const block_q6_k block = get_unaligned_block_q6_k(index);
|
||||
return dequantize_q6_k(block, il);
|
||||
}
|
||||
|
||||
#include "op_getrows.comp"
|
52
ggml/src/ggml-kompute/kompute-shaders/op_mul.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_mul.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb00;
|
||||
int nb01;
|
||||
int nb02;
|
||||
int nb03;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
int ne13;
|
||||
int nb10;
|
||||
int nb11;
|
||||
int nb12;
|
||||
int nb13;
|
||||
int ne0;
|
||||
int nb0;
|
||||
int nb1;
|
||||
int nb2;
|
||||
int nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const uint i13 = i03 % pcs.ne13;
|
||||
const uint i12 = i02 % pcs.ne12;
|
||||
const uint i11 = i01 % pcs.ne11;
|
||||
|
||||
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01) / 4);
|
||||
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11) / 4);
|
||||
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1) / 4);
|
||||
|
||||
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
|
||||
const uint i10 = i0 % pcs.ne10;
|
||||
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] * inB[pcs.inBOff + src1_off + i10];
|
||||
}
|
||||
}
|
67
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_f16.comp
Normal file
67
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_f16.comp
Normal file
@ -0,0 +1,67 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
|
||||
layout(local_size_x_id = 0) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
uint nb10;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
int ne0;
|
||||
int ne1;
|
||||
uint r2;
|
||||
uint r3;
|
||||
} pcs;
|
||||
|
||||
#define N_F16_F32 4
|
||||
|
||||
void main() {
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint rb = gl_WorkGroupID.y*N_F16_F32;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = r0*pcs.nb01 + (i12/pcs.r2)*pcs.nb02 + (i13/pcs.r3)*pcs.nb02*pcs.ne02;
|
||||
|
||||
const uint x = offset0 / 2 + pcs.inAOff; // Based from inA
|
||||
|
||||
for (uint row = 0; row < N_F16_F32; ++row) {
|
||||
uint r1 = rb + row;
|
||||
if (r1 >= pcs.ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
const uint y = (r1*pcs.nb11 + im*pcs.nb12) / 4 + pcs.inBOff; // Based from inB
|
||||
|
||||
float sumf = 0;
|
||||
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
|
||||
sumf += float(inA[x+i]) * float(inB[y+i]);
|
||||
}
|
||||
|
||||
const float all_sum = subgroupAdd(sumf);
|
||||
if (subgroupElect()) {
|
||||
out_[im*pcs.ne1*pcs.ne0 + r1*pcs.ne0 + r0 + pcs.outOff] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,51 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
#extension GL_EXT_debug_printf : enable
|
||||
|
||||
// device subgroup size
|
||||
layout (local_size_x_id = 0) in;
|
||||
|
||||
layout(binding = 0) readonly buffer tensorInA { float inA[]; };
|
||||
layout(binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout(binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
int ne11;
|
||||
int ne12;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
}
|
||||
pcs;
|
||||
|
||||
|
||||
void main() {
|
||||
uvec3 gid = gl_WorkGroupID;
|
||||
|
||||
uint bc_ab = pcs.ne12 > pcs.ne02 ? gid.z / (pcs.ne12 / pcs.ne02) : gid.z;
|
||||
uint bc_ba = pcs.ne02 > pcs.ne12 ? gid.z / (pcs.ne02 / pcs.ne12) : gid.z;
|
||||
|
||||
const uint x = (gid.x*pcs.nb01 + bc_ab*pcs.nb02) / 4 + pcs.inAOff; // Based from inA
|
||||
const uint y = (gid.y*pcs.nb11 + bc_ba*pcs.nb12) / 4 + pcs.inBOff; // based from inB
|
||||
float sum = 0.0f;
|
||||
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
|
||||
sum += float(inA[x+i]) * float(inB[y+i]);
|
||||
}
|
||||
|
||||
const float all_sum = subgroupAdd(sum);
|
||||
if (subgroupElect()) {
|
||||
out_[gid.z*(pcs.nb2/4) + gid.y*(pcs.nb1/4) + gid.x + pcs.outOff] = all_sum;
|
||||
}
|
||||
}
|
33
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_0.comp
Normal file
33
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_0.comp
Normal file
@ -0,0 +1,33 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define BLOCKS_IN_QUANT QK4_0
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_0
|
||||
#define N_ROWS 4
|
||||
|
||||
#include "op_mul_mv_q_n_pre.comp"
|
||||
|
||||
// The q4_0 version of this function
|
||||
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
|
||||
vec2 acc = vec2(0.0, 0.0);
|
||||
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
|
||||
float d = float(u8BufToFloat16(inA, index));
|
||||
float sumy = 0.0f;
|
||||
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
|
||||
const uint16_t b = u8BufToU16(inA, index + 2 + il + i);
|
||||
|
||||
const float yl0 = inB[yb + i];
|
||||
const float yl1 = inB[yb + i + 1];
|
||||
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
|
||||
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
|
||||
|
||||
sumy += yl0 + yl1 + yl8 + yl9;
|
||||
|
||||
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
|
||||
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
|
||||
}
|
||||
return d * (sumy * -8.f + acc[0] + acc[1]);
|
||||
}
|
||||
|
||||
#include "op_mul_mv_q_n.comp"
|
35
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_1.comp
Normal file
35
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_1.comp
Normal file
@ -0,0 +1,35 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define BLOCKS_IN_QUANT QK4_1
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_1
|
||||
#define N_ROWS 4
|
||||
|
||||
#include "op_mul_mv_q_n_pre.comp"
|
||||
|
||||
// The q4_1 version of this function
|
||||
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
|
||||
vec2 acc = vec2(0.0, 0.0);
|
||||
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
|
||||
float d = float(u8BufToFloat16(inA, index));
|
||||
float m = float(u8BufToFloat16(inA, index+2));
|
||||
|
||||
float sumy = 0.0f;
|
||||
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
|
||||
const uint16_t b = u8BufToU16(inA, index + 4 + il + i);
|
||||
|
||||
const float yl0 = inB[yb + i];
|
||||
const float yl1 = inB[yb + i + 1];
|
||||
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
|
||||
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
|
||||
|
||||
sumy += yl0 + yl1 + yl8 + yl9;
|
||||
|
||||
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
|
||||
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
|
||||
}
|
||||
return d * (acc[0] + acc[1]) + sumy * m;
|
||||
}
|
||||
|
||||
#include "op_mul_mv_q_n.comp"
|
133
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_k.comp
Normal file
133
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_k.comp
Normal file
@ -0,0 +1,133 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define N_DST 4
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_k
|
||||
|
||||
layout(local_size_x = 4) in;
|
||||
layout(local_size_y = 8) in;
|
||||
layout(local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { block_q4_k inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne10;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne01;
|
||||
int ne02;
|
||||
int ne12;
|
||||
int r2;
|
||||
int r3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint16_t kmask1 = uint16_t(0x3f3f);
|
||||
const uint16_t kmask2 = uint16_t(0x0f0f);
|
||||
const uint16_t kmask3 = uint16_t(0xc0c0);
|
||||
|
||||
const uint ix = gl_SubgroupInvocationID/8; // 0...3
|
||||
const uint it = gl_SubgroupInvocationID%8; // 0...7
|
||||
const uint iq = it/4; // 0 or 1
|
||||
const uint ir = it%4; // 0...3
|
||||
|
||||
const uint nb = pcs.ne00/QK_K;
|
||||
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint first_row = r0 * N_DST;
|
||||
const uint ib_row = first_row * nb;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
|
||||
const uint xblk = ib_row + offset0 + pcs.inAOff;
|
||||
const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff;
|
||||
|
||||
float yl[16];
|
||||
float yh[16];
|
||||
float sumf[N_DST] = {0.f, 0.f, 0.f, 0.f};
|
||||
float all_sum = 0.f;
|
||||
|
||||
uint y4 = y + ix * QK_K + 64 * iq + 8 * ir;
|
||||
|
||||
for (uint ib = ix; ib < nb; ib += 4) {
|
||||
const uint blk_idx = ib + xblk;
|
||||
|
||||
float sumy[4] = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
yl[i+0] = inB[y4+i+ 0]; sumy[0] += yl[i+0];
|
||||
yl[i+8] = inB[y4+i+ 32]; sumy[1] += yl[i+8];
|
||||
yh[i+0] = inB[y4+i+128]; sumy[2] += yh[i+0];
|
||||
yh[i+8] = inB[y4+i+160]; sumy[3] += yh[i+8];
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
uint row_idx = row * nb;
|
||||
|
||||
uint16_t sc_0 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 0);
|
||||
uint16_t sc_1 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 2);
|
||||
uint16_t sc_2 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 4);
|
||||
uint16_t sc_3 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 6);
|
||||
uint16_t sc_4 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 8);
|
||||
|
||||
uint16_t sc16[4];
|
||||
sc16[0] = sc_0 & kmask1;
|
||||
sc16[1] = sc_2 & kmask1;
|
||||
sc16[2] = ((sc_4 >> 0) & kmask2) | ((sc_0 & kmask3) >> 2);
|
||||
sc16[3] = ((sc_4 >> 4) & kmask2) | ((sc_2 & kmask3) >> 2);
|
||||
|
||||
float acc1[4] = {0.f, 0.f, 0.f, 0.f};
|
||||
float acc2[4] = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int i = 0; i < 8; i += 2) {
|
||||
uint16_t q1 = u8BufToU16(inA[blk_idx + row_idx].qs, 32 * iq + 8 * ir + i);
|
||||
uint16_t q2 = u8BufToU16(inA[blk_idx + row_idx].qs, 64 + 32 * iq + 8 * ir + i);
|
||||
acc1[0] += yl[i+0] * (q1 & 0x000F);
|
||||
acc1[1] += yl[i+1] * (q1 & 0x0F00);
|
||||
acc1[2] += yl[i+8] * (q1 & 0x00F0);
|
||||
acc1[3] += yl[i+9] * (q1 & 0xF000);
|
||||
acc2[0] += yh[i+0] * (q2 & 0x000F);
|
||||
acc2[1] += yh[i+1] * (q2 & 0x0F00);
|
||||
acc2[2] += yh[i+8] * (q2 & 0x00F0);
|
||||
acc2[3] += yh[i+9] * (q2 & 0xF000);
|
||||
}
|
||||
|
||||
uint8_t sc8_0 = uint8_t(sc16[0] & 0xFF);
|
||||
uint8_t sc8_1 = uint8_t(sc16[0] >> 8 );
|
||||
uint8_t sc8_2 = uint8_t(sc16[1] & 0xFF);
|
||||
uint8_t sc8_3 = uint8_t(sc16[1] >> 8 );
|
||||
uint8_t sc8_4 = uint8_t(sc16[2] & 0xFF);
|
||||
uint8_t sc8_5 = uint8_t(sc16[2] >> 8 );
|
||||
uint8_t sc8_6 = uint8_t(sc16[3] & 0xFF);
|
||||
uint8_t sc8_7 = uint8_t(sc16[3] >> 8 );
|
||||
|
||||
float dall = float(inA[blk_idx + row_idx].d);
|
||||
float dmin = float(inA[blk_idx + row_idx].dmin);
|
||||
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8_0 +
|
||||
(acc1[2] + 1.f/256.f * acc1[3]) * sc8_1 * 1.f/16.f +
|
||||
(acc2[0] + 1.f/256.f * acc2[1]) * sc8_4 +
|
||||
(acc2[2] + 1.f/256.f * acc2[3]) * sc8_5 * 1.f/16.f) -
|
||||
dmin * (sumy[0] * sc8_2 + sumy[1] * sc8_3 + sumy[2] * sc8_6 + sumy[3] * sc8_7);
|
||||
}
|
||||
|
||||
y4 += 4 * QK_K;
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
all_sum = subgroupAdd(sumf[row]);
|
||||
if (subgroupElect()) {
|
||||
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
94
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q6_k.comp
Normal file
94
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q6_k.comp
Normal file
@ -0,0 +1,94 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define SIZE_OF_BLOCK sizeof_block_q6_k
|
||||
|
||||
layout(local_size_x_id = 0) in;
|
||||
layout(local_size_y_id = 1) in;
|
||||
layout(local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne10;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne01;
|
||||
int gqa;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint8_t kmask1 = uint8_t(0x03);
|
||||
const uint8_t kmask2 = uint8_t(0x0C);
|
||||
const uint8_t kmask3 = uint8_t(0x30);
|
||||
const uint8_t kmask4 = uint8_t(0xC0);
|
||||
|
||||
const uint nb = pcs.ne00/QK_K;
|
||||
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint r2 = gl_WorkGroupID.z;
|
||||
|
||||
const uint row = (r0 * gl_NumSubgroups + gl_SubgroupID);
|
||||
const uint offset0 = r2/pcs.gqa*(nb*pcs.ne0);
|
||||
const uint x = row * nb + offset0; // Based from inA without base offset
|
||||
const uint yy = r1*pcs.ne10 + r2*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
// bits of invocation ID for gl_SubgroupSize=32:
|
||||
// x x x x x
|
||||
// 4 3 2 1 0
|
||||
// ( tid ) ix
|
||||
// ip ( il )
|
||||
|
||||
const uint block_stride = gl_SubgroupSize / 16; // number of blocks each subgroup processes
|
||||
const uint tid = gl_SubgroupInvocationID/block_stride; // first block_stride groups have tid=0
|
||||
const uint ix = gl_SubgroupInvocationID%block_stride; // first block is 0..block_stride-1
|
||||
const uint ip = tid/8; // first or second half of block (0 or 1)
|
||||
const uint il = tid%8; // each half has 8 parts, one per scale
|
||||
const uint n = 4; // 4 scales at a time (and 4 sums)
|
||||
const uint l0 = n*il; // offset into half-block, 0..28
|
||||
const uint is = 8*ip + l0/16; // 0, 1, 8, 9
|
||||
|
||||
const uint y_offset = 128*ip + l0;
|
||||
const uint q_offset_l = 64*ip + l0;
|
||||
const uint q_offset_h = 32*ip + l0;
|
||||
|
||||
for (uint i = ix; i < nb; i += block_stride) {
|
||||
|
||||
const uint baseIndex = (x + i) * SIZE_OF_BLOCK + pcs.inAOff;
|
||||
|
||||
const uint qlIndex = q_offset_l;
|
||||
const uint q2Index = qlIndex + QK_K/8;
|
||||
const uint qhIndex = q_offset_h;
|
||||
const uint y = yy + i * QK_K + y_offset;
|
||||
|
||||
float sums[4] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
for (uint l = 0; l < n; ++l) {
|
||||
const uint8_t currentQ1 = inA[baseIndex + qlIndex + l];
|
||||
const uint8_t currentQ2 = inA[baseIndex + q2Index + l];
|
||||
const uint8_t currentQh = inA[baseIndex + QK_K/2 + qhIndex + l];
|
||||
|
||||
sums[0] += inB[y+l+ 0] * (int8_t((currentQ1 & 0xF) | ((currentQh & kmask1) << 4)) - 32);
|
||||
sums[1] += inB[y+l+32] * (int8_t((currentQ2 & 0xF) | ((currentQh & kmask2) << 2)) - 32);
|
||||
sums[2] += inB[y+l+64] * (int8_t((currentQ1 >> 4) | ((currentQh & kmask3) << 0)) - 32);
|
||||
sums[3] += inB[y+l+96] * (int8_t((currentQ2 >> 4) | ((currentQh & kmask4) >> 2)) - 32);
|
||||
}
|
||||
|
||||
float d = u8BufToFloat16(inA, baseIndex + QK_K/2 + QK_K/4 + QK_K/16);
|
||||
sumf += d * (sums[0] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + is]) + sums[1] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 2 + is]) + sums[2] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 4 + is]) + sums[3] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 6 + is]));
|
||||
}
|
||||
|
||||
const float tot = subgroupAdd(sumf);
|
||||
if (subgroupElect()) {
|
||||
out_[r1*pcs.ne0 + r2*pcs.ne0*pcs.ne1 + row + pcs.outOff] = tot;
|
||||
}
|
||||
}
|
73
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q8_0.comp
Normal file
73
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q8_0.comp
Normal file
@ -0,0 +1,73 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#include "op_mul_mv_q_n_pre.comp"
|
||||
|
||||
#define SIZE_OF_D 2
|
||||
|
||||
#define N_DST 4 // each SIMD group works on 4 rows
|
||||
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
||||
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
||||
|
||||
#define NB_Q8_0 8
|
||||
|
||||
void main() {
|
||||
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
|
||||
if (gl_SubgroupInvocationID > 31)
|
||||
return;
|
||||
|
||||
const int nr = N_DST;
|
||||
const int nsg = N_SIMDGROUP;
|
||||
const int nw = N_SIMDWIDTH;
|
||||
|
||||
const int nb = pcs.ne00/QK8_0;
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint first_row = (r0 * nsg + gl_SubgroupID) * nr;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
|
||||
const uint x = offset0*sizeof_block_q8_0 + pcs.inAOff; // Based from inA
|
||||
const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff; // based from inB
|
||||
|
||||
float yl[NB_Q8_0];
|
||||
float sumf[N_DST]={0.f, 0.f, 0.f, 0.f};
|
||||
|
||||
const uint ix = gl_SubgroupInvocationID.x/4;
|
||||
const uint il = gl_SubgroupInvocationID.x%4;
|
||||
|
||||
uint yb = y + ix * QK8_0 + NB_Q8_0*il;
|
||||
|
||||
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
|
||||
for (uint ib = ix; ib < nb; ib += nw/4) {
|
||||
for (int i = 0; i < NB_Q8_0; ++i) {
|
||||
yl[i] = inB[yb + i];
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; row++) {
|
||||
const uint block_offset = (ib+row*nb) * sizeof_block_q8_0;
|
||||
float sumq = 0.f;
|
||||
for (int iq = 0; iq < NB_Q8_0; ++iq) {
|
||||
const int8_t qs_iq = int8_t(inA[x + block_offset + SIZE_OF_D + NB_Q8_0*il + iq]);
|
||||
sumq += qs_iq * yl[iq];
|
||||
}
|
||||
const float16_t d = u8BufToFloat16(inA, x + block_offset);
|
||||
sumf[row] += sumq*d;
|
||||
}
|
||||
|
||||
yb += NB_Q8_0 * nw;
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; ++row) {
|
||||
const float tot = subgroupAdd(sumf[row]);
|
||||
if (subgroupElect() && first_row + row < pcs.ne01) {
|
||||
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row] = tot;
|
||||
}
|
||||
}
|
||||
}
|
48
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n.comp
Normal file
48
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n.comp
Normal file
@ -0,0 +1,48 @@
|
||||
void main() {
|
||||
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
|
||||
if (gl_SubgroupInvocationID > 31)
|
||||
return;
|
||||
|
||||
const uint nb = uint(pcs.ne00/BLOCKS_IN_QUANT);
|
||||
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint first_row = (r0 * gl_NumSubgroups + gl_SubgroupID) * N_ROWS;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
|
||||
const uint x = offset0; // Based from inA without base offset
|
||||
const uint y = r1*uint(pcs.ne10)+im*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
|
||||
|
||||
float sumf[N_ROWS] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
const uint ix = gl_SubgroupInvocationID/2;
|
||||
const uint il = (BLOCKS_IN_QUANT/4)*(gl_SubgroupInvocationID%2);
|
||||
|
||||
uint yb = y + ix * BLOCKS_IN_QUANT + il;
|
||||
|
||||
//debugPrintfEXT("gl_NumSubgroups=%d, gl_SubgroupID=%d, gl_SubgroupInvocationID=%d, glSubgroupSize=%d, gl_WorkGroupSize.x=%d, gl_WorkGroupSize.y=%d, gl_WorkGroupSize.z=%d\n",
|
||||
// gl_NumSubgroups, gl_SubgroupID, gl_SubgroupInvocationID, gl_SubgroupSize,
|
||||
// gl_WorkGroupSize.x, gl_WorkGroupSize.y, gl_WorkGroupSize.z);
|
||||
|
||||
for (uint ib = ix; ib < nb; ib += 16) {
|
||||
for (int row = 0; row < N_ROWS; row++) {
|
||||
const uint block_index = x + ib + row * nb;
|
||||
sumf[row] += block_q_n_dot_y(block_index, yb, il);
|
||||
}
|
||||
|
||||
yb += BLOCKS_IN_QUANT * 16;
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_ROWS; ++row) {
|
||||
const float tot = subgroupAdd(sumf[row]);
|
||||
if (first_row + row < pcs.ne01 && subgroupElect()) {
|
||||
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = tot;
|
||||
}
|
||||
}
|
||||
}
|
22
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n_pre.comp
Normal file
22
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n_pre.comp
Normal file
@ -0,0 +1,22 @@
|
||||
layout(local_size_x_id = 0) in;
|
||||
layout(local_size_y = 1) in;
|
||||
layout(local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
int ne10;
|
||||
int ne12;
|
||||
int ne0;
|
||||
int ne1;
|
||||
uint r2;
|
||||
uint r3;
|
||||
} pcs;
|
84
ggml/src/ggml-kompute/kompute-shaders/op_norm.comp
Normal file
84
ggml/src/ggml-kompute/kompute-shaders/op_norm.comp
Normal file
@ -0,0 +1,84 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 256) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
uint ne00;
|
||||
uint nb01;
|
||||
float eps;
|
||||
} pcs;
|
||||
|
||||
shared float sum[gl_WorkGroupSize.x];
|
||||
|
||||
void main() {
|
||||
const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
|
||||
// MEAN
|
||||
// parallel sum
|
||||
sum[gl_LocalInvocationID.x] = 0.0;
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
sum[gl_LocalInvocationID.x] += in_[x+i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
||||
if (gl_LocalInvocationID.x < i) {
|
||||
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sum[0] /= float(pcs.ne00);
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
const float mean = sum[0];
|
||||
|
||||
// recenter
|
||||
const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
out_[y+i00] = in_[x+i00] - mean;
|
||||
}
|
||||
|
||||
// VARIANCE
|
||||
// parallel sum
|
||||
sum[gl_LocalInvocationID.x] = 0.0;
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
sum[gl_LocalInvocationID.x] += out_[y+i00] * out_[y+i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
||||
if (gl_LocalInvocationID.x < i) {
|
||||
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sum[0] /= float(pcs.ne00);
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
const float variance = sum[0];
|
||||
|
||||
const float scale = 1.0f/sqrt(variance + pcs.eps);
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
out_[y+i00] *= scale;
|
||||
}
|
||||
}
|
21
ggml/src/ggml-kompute/kompute-shaders/op_relu.comp
Normal file
21
ggml/src/ggml-kompute/kompute-shaders/op_relu.comp
Normal file
@ -0,0 +1,21 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 4;
|
||||
|
||||
for (uint x = 0; x < 4; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
out_[i + pcs.outOff] = max(0.0, in_[i + pcs.inOff]);
|
||||
}
|
||||
}
|
53
ggml/src/ggml-kompute/kompute-shaders/op_rmsnorm.comp
Normal file
53
ggml/src/ggml-kompute/kompute-shaders/op_rmsnorm.comp
Normal file
@ -0,0 +1,53 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 512) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
uint ne00;
|
||||
uint nb01;
|
||||
float eps;
|
||||
} pcs;
|
||||
|
||||
shared float sum[gl_WorkGroupSize.x];
|
||||
|
||||
void main() {
|
||||
const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
|
||||
|
||||
// parallel sum
|
||||
sum[gl_LocalInvocationID.x] = 0.0;
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
sum[gl_LocalInvocationID.x] += in_[x+i00] * in_[x+i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
||||
if (gl_LocalInvocationID.x < i) {
|
||||
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sum[0] /= float(pcs.ne00);
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
|
||||
const float scale = 1.0f/sqrt(sum[0] + pcs.eps);
|
||||
|
||||
const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
out_[y+i00] = in_[x+i00] * scale;
|
||||
}
|
||||
}
|
73
ggml/src/ggml-kompute/kompute-shaders/op_rope_f16.comp
Normal file
73
ggml/src/ggml-kompute/kompute-shaders/op_rope_f16.comp
Normal file
@ -0,0 +1,73 @@
|
||||
#version 450
|
||||
|
||||
#include "rope_common.comp"
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float16_t out_[]; };
|
||||
|
||||
void main() {
|
||||
const uint i3 = gl_WorkGroupID.z;
|
||||
const uint i2 = gl_WorkGroupID.y;
|
||||
const uint i1 = gl_WorkGroupID.x;
|
||||
|
||||
const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0;
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||
|
||||
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
||||
|
||||
const int p = inB[pcs.inBOff + i2];
|
||||
|
||||
float theta = float(p);
|
||||
|
||||
if (!is_neox) {
|
||||
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = float(inA[src]);
|
||||
const float x1 = float(inA[src+1]);
|
||||
|
||||
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
||||
out_[dst_data+1] = float16_t(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
} else {
|
||||
const float inv_ndims = -1.f/pcs.n_dims;
|
||||
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
||||
const uint cur_rot = ic;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint i0 = ic/2;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = float(inA[src]);
|
||||
const float x1 = float(inA[src+pcs.n_dims/2]);
|
||||
|
||||
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
||||
out_[dst_data+pcs.n_dims/2] = float16_t(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
|
||||
for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
|
||||
const uint i0 = ic;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
out_[dst_data + 0] = inA[src + 0];
|
||||
out_[dst_data + 1] = inA[src + 1];
|
||||
}
|
||||
}
|
||||
}
|
73
ggml/src/ggml-kompute/kompute-shaders/op_rope_f32.comp
Normal file
73
ggml/src/ggml-kompute/kompute-shaders/op_rope_f32.comp
Normal file
@ -0,0 +1,73 @@
|
||||
#version 450
|
||||
|
||||
#include "rope_common.comp"
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
void main() {
|
||||
const uint i3 = gl_WorkGroupID.z;
|
||||
const uint i2 = gl_WorkGroupID.y;
|
||||
const uint i1 = gl_WorkGroupID.x;
|
||||
|
||||
const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0;
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||
|
||||
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
||||
|
||||
const int p = inB[pcs.inBOff + i2];
|
||||
|
||||
float theta = float(p);
|
||||
|
||||
if (!is_neox) {
|
||||
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = inA[src];
|
||||
const float x1 = inA[src+1];
|
||||
|
||||
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
||||
out_[dst_data+1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
} else {
|
||||
const float inv_ndims = -1.f/pcs.n_dims;
|
||||
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
||||
const uint cur_rot = ic;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint i0 = ic/2;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = inA[src];
|
||||
const float x1 = inA[src+pcs.n_dims/2];
|
||||
|
||||
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
||||
out_[dst_data+pcs.n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
|
||||
const uint i0 = ic;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
out_[dst_data + 0] = inA[src + 0];
|
||||
out_[dst_data + 1] = inA[src + 1];
|
||||
}
|
||||
}
|
||||
}
|
19
ggml/src/ggml-kompute/kompute-shaders/op_scale.comp
Normal file
19
ggml/src/ggml-kompute/kompute-shaders/op_scale.comp
Normal file
@ -0,0 +1,19 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
float scale;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
|
||||
}
|
23
ggml/src/ggml-kompute/kompute-shaders/op_scale_8.comp
Normal file
23
ggml/src/ggml-kompute/kompute-shaders/op_scale_8.comp
Normal file
@ -0,0 +1,23 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
float scale;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 8;
|
||||
|
||||
for (uint x = 0; x < 8; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
|
||||
}
|
||||
}
|
22
ggml/src/ggml-kompute/kompute-shaders/op_silu.comp
Normal file
22
ggml/src/ggml-kompute/kompute-shaders/op_silu.comp
Normal file
@ -0,0 +1,22 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 4;
|
||||
|
||||
for (uint x = 0; x < 4; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
const float y = in_[i + pcs.inOff];
|
||||
out_[i + pcs.outOff] = y / (1.0 + exp(-y));
|
||||
}
|
||||
}
|
56
ggml/src/ggml-kompute/kompute-shaders/op_softmax.comp
Normal file
56
ggml/src/ggml-kompute/kompute-shaders/op_softmax.comp
Normal file
@ -0,0 +1,56 @@
|
||||
// TODO: implement multi-simd softmax (llama.cpp commit e16b9fa4)
|
||||
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x_id = 0) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
float scale;
|
||||
int mask;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
if (gl_SubgroupInvocationID > 31)
|
||||
return;
|
||||
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const uint extra_off = i03*pcs.ne02*pcs.ne01*pcs.ne00 + i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00;
|
||||
const uint psrc0 = extra_off + pcs.inAOff; // Based from inA
|
||||
const uint pmask = i01*pcs.ne00 + pcs.inBOff; // Based from inB
|
||||
const uint pdst = extra_off + pcs.outOff; // Based from out_
|
||||
|
||||
// parallel max
|
||||
float localMax = uintBitsToFloat(0xFF800000);
|
||||
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
||||
localMax = max(localMax, inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f));
|
||||
}
|
||||
float max_ = subgroupMax(localMax);
|
||||
|
||||
// parallel sum
|
||||
float localSum = 0.0f;
|
||||
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
||||
const float exp_psrc0 = exp(inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f) - max_);
|
||||
localSum += exp_psrc0;
|
||||
out_[pdst + i00] = exp_psrc0;
|
||||
}
|
||||
|
||||
const float sum = subgroupAdd(localSum);
|
||||
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
||||
out_[pdst + i00] /= sum;
|
||||
}
|
||||
}
|
69
ggml/src/ggml-kompute/kompute-shaders/rope_common.comp
Normal file
69
ggml/src/ggml-kompute/kompute-shaders/rope_common.comp
Normal file
@ -0,0 +1,69 @@
|
||||
#include "common.comp"
|
||||
|
||||
#define GGML_ROPE_TYPE_NEOX 2
|
||||
|
||||
// TODO: use a local size of 32 or more (Metal uses 1024)
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int n_dims;
|
||||
int mode;
|
||||
int n_ctx_orig;
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
float ext_factor;
|
||||
float attn_factor;
|
||||
float beta_fast;
|
||||
float beta_slow;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
float rope_yarn_ramp(const float low, const float high, const float i0) {
|
||||
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
||||
return 1.0f - min(1.0f, max(0.0f, y));
|
||||
}
|
||||
|
||||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||
void rope_yarn(
|
||||
float theta_extrap, float freq_scale, float corr_dims[2], float i0, float ext_factor, float mscale,
|
||||
out float cos_theta, out float sin_theta
|
||||
) {
|
||||
// Get n-d rotational scaling corrected for extrapolation
|
||||
float theta_interp = freq_scale * theta_extrap;
|
||||
float theta = theta_interp;
|
||||
if (ext_factor != 0.0f) {
|
||||
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
|
||||
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
|
||||
// Get n-d magnitude scaling corrected for interpolation
|
||||
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
|
||||
}
|
||||
cos_theta = cos(theta) * mscale;
|
||||
sin_theta = sin(theta) * mscale;
|
||||
}
|
||||
|
||||
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
||||
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
||||
float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
|
||||
return n_dims * log(n_ctx_orig / (n_rot * TWOPI_F)) / (2 * log(base));
|
||||
}
|
||||
|
||||
void rope_yarn_corr_dims(
|
||||
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, out float dims[2]
|
||||
) {
|
||||
// start and end correction dims
|
||||
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base)));
|
||||
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)));
|
||||
}
|
104
ggml/src/ggml-metal/CMakeLists.txt
Normal file
104
ggml/src/ggml-metal/CMakeLists.txt
Normal file
@ -0,0 +1,104 @@
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
message(STATUS "Metal framework found")
|
||||
|
||||
add_library(ggml-metal
|
||||
ggml-metal.m
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-metal PRIVATE
|
||||
ggml-base
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
)
|
||||
|
||||
target_include_directories(ggml-metal PRIVATE . ..)
|
||||
|
||||
if (GGML_METAL_NDEBUG)
|
||||
add_compile_definitions(GGML_METAL_NDEBUG)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL_USE_BF16)
|
||||
add_compile_definitions(GGML_METAL_USE_BF16)
|
||||
endif()
|
||||
|
||||
# copy ggml-common.h and ggml-metal.metal to bin directory
|
||||
configure_file(../ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h COPYONLY)
|
||||
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
|
||||
|
||||
if (GGML_METAL_EMBED_LIBRARY)
|
||||
enable_language(ASM)
|
||||
|
||||
add_compile_definitions(GGML_METAL_EMBED_LIBRARY)
|
||||
|
||||
set(METALLIB_COMMON "${CMAKE_CURRENT_SOURCE_DIR}/../ggml-common.h")
|
||||
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
|
||||
|
||||
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
|
||||
|
||||
# merge ggml-common.h and ggml-metal.metal into a single file
|
||||
set(METALLIB_EMBED_ASM "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.s")
|
||||
set(METALLIB_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.metal")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo "Embedding Metal library"
|
||||
COMMAND sed -e '/__embed_ggml-common.h__/r ${METALLIB_COMMON}' -e '/__embed_ggml-common.h__/d' < ${METALLIB_SOURCE} > ${METALLIB_SOURCE_EMBED}
|
||||
COMMAND echo ".section __DATA,__ggml_metallib" > ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo ".globl _ggml_metallib_start" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo "_ggml_metallib_start:" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo ".incbin \\\"${METALLIB_SOURCE_EMBED}\\\"" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo ".globl _ggml_metallib_end" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo "_ggml_metallib_end:" >> ${METALLIB_EMBED_ASM}
|
||||
DEPENDS ggml-metal.metal ../ggml-common.h
|
||||
COMMENT "Generate assembly for embedded Metal library"
|
||||
)
|
||||
|
||||
target_sources(ggml-metal PRIVATE ${METALLIB_EMBED_ASM})
|
||||
else()
|
||||
if (GGML_METAL_SHADER_DEBUG)
|
||||
# custom command to do the following:
|
||||
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
|
||||
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
|
||||
#
|
||||
# note: this is the only way I found to disable fast-math in Metal. it's ugly, but at least it works
|
||||
# disabling fast math is needed in order to pass tests/test-backend-ops
|
||||
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
|
||||
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
|
||||
set(XC_FLAGS -fno-fast-math -fno-inline -g)
|
||||
else()
|
||||
set(XC_FLAGS -O3)
|
||||
endif()
|
||||
|
||||
# Append macOS metal versioning flags
|
||||
if (GGML_METAL_MACOSX_VERSION_MIN)
|
||||
message(STATUS "Adding -mmacosx-version-min=${GGML_METAL_MACOSX_VERSION_MIN} flag to metal compilation")
|
||||
list (APPEND XC_FLAGS -mmacosx-version-min=${GGML_METAL_MACOSX_VERSION_MIN})
|
||||
endif()
|
||||
|
||||
if (GGML_METAL_STD)
|
||||
message(STATUS "Adding -std=${GGML_METAL_STD} flag to metal compilation")
|
||||
list (APPEND XC_FLAGS -std=${GGML_METAL_STD})
|
||||
endif()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
|
||||
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
|
||||
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
|
||||
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal
|
||||
DEPENDS ggml-metal.metal ggml-common.h
|
||||
COMMENT "Compiling Metal kernels"
|
||||
)
|
||||
|
||||
# FIXME: only add to the ggml-metal target?
|
||||
add_custom_target(
|
||||
ggml-metal-lib ALL
|
||||
DEPENDS ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
)
|
||||
endif() # GGML_METAL_EMBED_LIBRARY
|
4294
ggml/src/ggml-metal/ggml-metal.m
Normal file
4294
ggml/src/ggml-metal/ggml-metal.m
Normal file
File diff suppressed because it is too large
Load Diff
7069
ggml/src/ggml-metal/ggml-metal.metal
Normal file
7069
ggml/src/ggml-metal/ggml-metal.metal
Normal file
File diff suppressed because it is too large
Load Diff
111
ggml/src/ggml-musa/ggml/CMakeLists.txt
Normal file
111
ggml/src/ggml-musa/ggml/CMakeLists.txt
Normal file
@ -0,0 +1,111 @@
|
||||
if (NOT EXISTS $ENV{MUSA_PATH})
|
||||
if (NOT EXISTS /opt/musa)
|
||||
set(MUSA_PATH /usr/local/musa)
|
||||
else()
|
||||
set(MUSA_PATH /opt/musa)
|
||||
endif()
|
||||
else()
|
||||
set(MUSA_PATH $ENV{MUSA_PATH})
|
||||
endif()
|
||||
|
||||
set(CMAKE_C_COMPILER "${MUSA_PATH}/bin/clang")
|
||||
set(CMAKE_C_EXTENSIONS OFF)
|
||||
set(CMAKE_CXX_COMPILER "${MUSA_PATH}/bin/clang++")
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH "${MUSA_PATH}/cmake")
|
||||
|
||||
find_package(MUSAToolkit)
|
||||
|
||||
if (MUSAToolkit_FOUND)
|
||||
message(STATUS "MUSA Toolkit found")
|
||||
|
||||
file(GLOB GGML_HEADERS_MUSA "../ggml-cuda/*.cuh")
|
||||
list(APPEND GGML_HEADERS_MUSA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_MUSA "../ggml-cuda/*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||
else()
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
endif()
|
||||
|
||||
set_source_files_properties(${GGML_SOURCES_MUSA} PROPERTIES LANGUAGE CXX)
|
||||
foreach(SOURCE ${GGML_SOURCES_MUSA})
|
||||
set_property(SOURCE ${SOURCE} PROPERTY COMPILE_FLAGS "-x musa -mtgpu --cuda-gpu-arch=mp_21 --cuda-gpu-arch=mp_22")
|
||||
endforeach()
|
||||
|
||||
add_library(ggml-musa
|
||||
${GGML_HEADERS_MUSA}
|
||||
${GGML_SOURCES_MUSA})
|
||||
|
||||
target_link_libraries(ggml-musa PRIVATE ggml-base)
|
||||
target_include_directories(ggml-musa PRIVATE . ..)
|
||||
|
||||
# TODO: do not use CUDA definitions for MUSA
|
||||
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
||||
|
||||
add_compile_definitions(GGML_USE_MUSA)
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
|
||||
if (GGML_CUDA_GRAPHS)
|
||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_CUBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
add_compile_definitions(GGML_CUDA_NO_VMM)
|
||||
endif()
|
||||
|
||||
if (DEFINED GGML_CUDA_DMMV_Y)
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_DMMV_Y}) # for backwards compatibility
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
target_link_libraries(ggml-musa PRIVATE MUSA::musart_static MUSA::mublas_static)
|
||||
else()
|
||||
target_link_libraries(ggml-musa PRIVATE MUSA::musart MUSA::mublas)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
# No VMM requested, no need to link directly with the musa driver lib (libmusa.so)
|
||||
else()
|
||||
target_link_libraries(ggml-musa PRIVATE MUSA::musa_driver)
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "MUSA Toolkit not found")
|
||||
endif()
|
10506
ggml/src/ggml-quants.c
10506
ggml/src/ggml-quants.c
File diff suppressed because it is too large
Load Diff
@ -11,136 +11,89 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// NOTE: these functions are defined as GGML_API because they used by the CPU backend
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1_ref(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0_ref(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1_ref(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q4_0_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q4_1_ref(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q5_0_ref(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q5_1_ref(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q8_0_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K_ref(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K_ref(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K_ref(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K_ref(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K_ref(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K_ref(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q2_K_ref(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q3_K_ref(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q4_K_ref(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q5_K_ref(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q6_K_ref(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q8_K_ref(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0_ref(const float * GGML_RESTRICT x, block_tq1_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0_ref(const float * GGML_RESTRICT x, block_tq2_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_tq1_0_ref(const float * GGML_RESTRICT x, block_tq1_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_tq2_0_ref(const float * GGML_RESTRICT x, block_tq2_0 * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq3_xxs_ref(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_nl_ref (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs_ref (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq3_s_ref (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq2_s_ref (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq3_xxs_ref(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq4_nl_ref (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq4_xs_ref (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq3_s_ref (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq2_s_ref (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
//GGML_API void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_tq1_0(const block_tq1_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_tq2_0(const block_tq2_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_tq1_0(const block_tq1_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_tq2_0(const block_tq2_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
GGML_API void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
size_t quantize_tq1_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_tq2_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_tq1_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_tq2_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
void iq2xs_init_impl(enum ggml_type type);
|
||||
void iq2xs_free_impl(enum ggml_type type);
|
||||
void iq3xs_init_impl(int grid_size);
|
||||
void iq3xs_free_impl(int grid_size);
|
||||
GGML_API void iq2xs_init_impl(enum ggml_type type);
|
||||
GGML_API void iq2xs_free_impl(enum ggml_type type);
|
||||
GGML_API void iq3xs_init_impl(int grid_size);
|
||||
GGML_API void iq3xs_free_impl(int grid_size);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
11
ggml/src/ggml-rpc/CMakeLists.txt
Normal file
11
ggml/src/ggml-rpc/CMakeLists.txt
Normal file
@ -0,0 +1,11 @@
|
||||
message(STATUS "Using RPC backend")
|
||||
|
||||
add_library(ggml-rpc
|
||||
ggml-rpc.cpp)
|
||||
|
||||
target_link_libraries(ggml-rpc PRIVATE ggml-base)
|
||||
target_include_directories(ggml-rpc PRIVATE . ..)
|
||||
|
||||
if (WIN32)
|
||||
target_link_libraries(ggml-rpc PRIVATE ws2_32)
|
||||
endif()
|
1403
ggml/src/ggml-rpc/ggml-rpc.cpp
Normal file
1403
ggml/src/ggml-rpc/ggml-rpc.cpp
Normal file
File diff suppressed because it is too large
Load Diff
81
ggml/src/ggml-sycl/CMakeLists.txt
Normal file
81
ggml/src/ggml-sycl/CMakeLists.txt
Normal file
@ -0,0 +1,81 @@
|
||||
if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL|NVIDIA|AMD)$")
|
||||
message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL, NVIDIA, or AMD")
|
||||
endif()
|
||||
|
||||
check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL)
|
||||
|
||||
if (DEFINED ENV{ONEAPI_ROOT})
|
||||
message(STATUS "Using oneAPI Release SYCL compiler (icpx).")
|
||||
elseif(SUPPORTS_SYCL)
|
||||
message(WARNING "Using open-source SYCL compiler (clang++). Didn't detect ENV {ONEAPI_ROOT}.
|
||||
If you expected the oneAPI Release compiler, please install oneAPI & source it, like:
|
||||
source /opt/intel/oneapi/setvars.sh")
|
||||
else()
|
||||
message(FATAL_ERROR, "C++ compiler lacks SYCL support.")
|
||||
endif()
|
||||
message(STATUS "SYCL found")
|
||||
#todo: AOT
|
||||
|
||||
add_library(ggml-sycl
|
||||
ggml-sycl.cpp
|
||||
../../include/ggml-sycl.h)
|
||||
|
||||
target_link_libraries(ggml-sycl PRIVATE ggml-base)
|
||||
target_include_directories(ggml-sycl PRIVATE . ..)
|
||||
|
||||
if (GGML_SYCL_F16)
|
||||
if (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
message(WARNING "AMD target does not entirely support FP16 in the SYCL backend.")
|
||||
endif()
|
||||
add_compile_definitions(GGML_SYCL_F16)
|
||||
endif()
|
||||
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing -fsycl")
|
||||
|
||||
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
# INFO: Allowed Sub_group_sizes are not consistent through all
|
||||
# hip targets. For example, 64 is used for certain models, but the backend
|
||||
# does not support it.
|
||||
# Target archs tested working: gfx1030, gfx1031, (Only tested sub_group_size = 32)
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
else()
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
|
||||
endif()
|
||||
|
||||
file(GLOB GGML_HEADERS_SYCL "*.hpp")
|
||||
file(GLOB GGML_SOURCES_SYCL "*.cpp")
|
||||
target_sources(ggml-sycl PRIVATE ${GGML_HEADERS_SYCL} ${GGML_SOURCES_SYCL})
|
||||
|
||||
find_package(DNNL)
|
||||
message("-- DNNL found:" ${DNNL_FOUND})
|
||||
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
add_compile_definitions(GGML_SYCL_DNNL=${DNNL_FOUND})
|
||||
else()
|
||||
add_compile_definitions(GGML_SYCL_DNNL=0)
|
||||
endif()
|
||||
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
target_link_libraries(ggml-sycl PRIVATE DNNL::dnnl)
|
||||
endif()
|
||||
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
target_link_libraries(ggml-sycl PRIVATE IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
else()
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
target_link_libraries(ggml-sycl PRIVATE sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
|
||||
target_link_libraries(ggml-sycl PRIVATE sycl pthread m dl onemkl)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
if (GGML_SYCL_HIP_TARGET STREQUAL "")
|
||||
message(ERROR "Can't enable SYCL hip backend, GGML_SYCL_HIP_TARGET has not been set.")
|
||||
endif()
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=amdgcn-amd-amdhsa -Xsycl-target-backend --offload-arch=${GGML_SYCL_HIP_TARGET}")
|
||||
target_link_libraries(ggml-sycl PRIVATE sycl pthread m dl onemkl)
|
||||
endif()
|
||||
endif()
|
4684
ggml/src/ggml-sycl/ggml-sycl.cpp
Normal file
4684
ggml/src/ggml-sycl/ggml-sycl.cpp
Normal file
File diff suppressed because it is too large
Load Diff
12
ggml/src/ggml-threading.cpp
Normal file
12
ggml/src/ggml-threading.cpp
Normal file
@ -0,0 +1,12 @@
|
||||
#include "ggml-threading.h"
|
||||
#include <mutex>
|
||||
|
||||
std::mutex ggml_critical_section_mutex;
|
||||
|
||||
void ggml_critical_section_start() {
|
||||
ggml_critical_section_mutex.lock();
|
||||
}
|
||||
|
||||
void ggml_critical_section_end(void) {
|
||||
ggml_critical_section_mutex.unlock();
|
||||
}
|
12
ggml/src/ggml-threading.h
Normal file
12
ggml/src/ggml-threading.h
Normal file
@ -0,0 +1,12 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ggml_critical_section_start(void);
|
||||
void ggml_critical_section_end(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
78
ggml/src/ggml-vulkan/CMakeLists.txt
Normal file
78
ggml/src/ggml-vulkan/CMakeLists.txt
Normal file
@ -0,0 +1,78 @@
|
||||
find_package(Vulkan COMPONENTS glslc REQUIRED)
|
||||
|
||||
if (Vulkan_FOUND)
|
||||
message(STATUS "Vulkan found")
|
||||
|
||||
add_library(ggml-vulkan
|
||||
ggml-vulkan.cpp
|
||||
../../include/ggml-vulkan.h
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-vulkan PRIVATE ggml-base Vulkan::Vulkan)
|
||||
target_include_directories(ggml-vulkan PRIVATE . .. ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
# Workaround to the "can't dereference invalidated vector iterator" bug in clang-cl debug build
|
||||
# Posssibly relevant: https://stackoverflow.com/questions/74748276/visual-studio-no-displays-the-correct-length-of-stdvector
|
||||
if (MSVC AND CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
|
||||
add_compile_definitions(_ITERATOR_DEBUG_LEVEL=0)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_CHECK_RESULTS)
|
||||
add_compile_definitions(GGML_VULKAN_CHECK_RESULTS)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_DEBUG)
|
||||
add_compile_definitions(GGML_VULKAN_DEBUG)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_MEMORY_DEBUG)
|
||||
add_compile_definitions(GGML_VULKAN_MEMORY_DEBUG)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_SHADER_DEBUG_INFO)
|
||||
add_compile_definitions(GGML_VULKAN_SHADER_DEBUG_INFO)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_PERF)
|
||||
add_compile_definitions(GGML_VULKAN_PERF)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_VALIDATE)
|
||||
add_compile_definitions(GGML_VULKAN_VALIDATE)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_RUN_TESTS)
|
||||
add_compile_definitions(GGML_VULKAN_RUN_TESTS)
|
||||
endif()
|
||||
|
||||
add_subdirectory(vulkan-shaders)
|
||||
|
||||
set (_ggml_vk_genshaders_cmd vulkan-shaders-gen)
|
||||
set (_ggml_vk_header ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.hpp)
|
||||
set (_ggml_vk_source ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.cpp)
|
||||
set (_ggml_vk_input_dir ${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders)
|
||||
set (_ggml_vk_output_dir ${CMAKE_CURRENT_BINARY_DIR}/vulkan-shaders.spv)
|
||||
|
||||
file(GLOB _ggml_vk_shader_deps "${_ggml_vk_input_dir}/*.comp")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${_ggml_vk_header}
|
||||
${_ggml_vk_source}
|
||||
|
||||
COMMAND ${_ggml_vk_genshaders_cmd}
|
||||
--glslc ${Vulkan_GLSLC_EXECUTABLE}
|
||||
--input-dir ${_ggml_vk_input_dir}
|
||||
--output-dir ${_ggml_vk_output_dir}
|
||||
--target-hpp ${_ggml_vk_header}
|
||||
--target-cpp ${_ggml_vk_source}
|
||||
--no-clean
|
||||
|
||||
DEPENDS ${_ggml_vk_shader_deps}
|
||||
COMMENT "Generate vulkan shaders"
|
||||
)
|
||||
|
||||
target_sources(ggml-vulkan PRIVATE ${_ggml_vk_source} ${_ggml_vk_header})
|
||||
|
||||
else()
|
||||
message(WARNING "Vulkan not found")
|
||||
endif()
|
7337
ggml/src/ggml-vulkan/ggml-vulkan.cpp
Normal file
7337
ggml/src/ggml-vulkan/ggml-vulkan.cpp
Normal file
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user