mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-18 20:27:53 +00:00
ggml : build backends as libraries (llama/10256)
* ggml : build backends as libraries --------- Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: R0CKSTAR <xiaodong.ye@mthreads.com>
This commit is contained in:
parent
5f7e094ccb
commit
746bf2596f
@ -116,6 +116,7 @@ endif()
|
||||
|
||||
# ggml core
|
||||
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
|
||||
option(GGML_CPU "ggml: enable CPU backend" ON)
|
||||
|
||||
# 3rd party libs / backends
|
||||
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
|
||||
@ -141,7 +142,7 @@ option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM"
|
||||
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
|
||||
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
|
||||
|
||||
option(GGML_HIPBLAS "ggml: use hipBLAS" OFF)
|
||||
option(GGML_HIP "ggml: use HIP" OFF)
|
||||
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
@ -238,12 +239,15 @@ set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
install(TARGETS ggml PUBLIC_HEADER)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
install(TARGETS ggml LIBRARY)
|
||||
install(TARGETS ggml LIBRARY)
|
||||
install(TARGETS ggml-base LIBRARY)
|
||||
endif()
|
||||
|
||||
# FIXME: this should be done in the backend cmake files
|
||||
if (GGML_METAL)
|
||||
# FIXME: does this need to be installed with GGML_METAL_EMBED_LIBRARY?
|
||||
install(
|
||||
FILES src/ggml-metal.metal
|
||||
FILES ggml/src/ggml-metal/ggml-metal.metal
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
|
@ -9,16 +9,16 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
// buffer_type API
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_amx(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_amx(ggml_backend_t backend);
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_amx_init(void);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_amx_init(void);
|
||||
|
||||
GGML_API void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads);
|
||||
GGML_BACKEND_API void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_amx_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_amx_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -3,6 +3,20 @@
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#ifdef GGML_BACKEND_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef GGML_BACKEND_BUILD
|
||||
# define GGML_BACKEND_API __declspec(dllexport) extern
|
||||
# else
|
||||
# define GGML_BACKEND_API __declspec(dllimport) extern
|
||||
# endif
|
||||
# else
|
||||
# define GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
|
||||
# endif
|
||||
#else
|
||||
# define GGML_BACKEND_API extern
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
@ -9,15 +9,15 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_blas_init(void);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_blas_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_blas(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_blas(ggml_backend_t backend);
|
||||
|
||||
// number of threads used for conversion to float
|
||||
// for openblas and blis, this will also set the number of threads used for blas operations
|
||||
GGML_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
||||
GGML_BACKEND_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_blas_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_blas_reg(void);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
@ -34,7 +34,7 @@ extern "C" {
|
||||
*/
|
||||
#define GGML_CANN_MAX_DEVICES 16
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_cann_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cann_reg(void);
|
||||
|
||||
/**
|
||||
* @brief Initializes the CANN backend for a specified device.
|
||||
@ -46,7 +46,7 @@ GGML_API ggml_backend_reg_t ggml_backend_cann_reg(void);
|
||||
* @param device The index of the device to initialize.
|
||||
* @return A pointer to the initialized backend instance, or nullptr on failure.
|
||||
*/
|
||||
GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
|
||||
/**
|
||||
* @brief Checks if a given backend is a CANN backend.
|
||||
@ -57,7 +57,7 @@ GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
* @param backend The backend instance to check.
|
||||
* @return True if the backend is a CANN backend, false otherwise.
|
||||
*/
|
||||
GGML_API bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the CANN buffer type for a specified device.
|
||||
@ -69,7 +69,7 @@ GGML_API bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
* @return A pointer to the buffer type interface for the specified device, or
|
||||
* nullptr if the device index is out of range.
|
||||
*/
|
||||
GGML_API ggml_backend_buffer_type_t
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t
|
||||
ggml_backend_cann_buffer_type(int32_t device);
|
||||
|
||||
/**
|
||||
@ -80,14 +80,14 @@ ggml_backend_cann_buffer_type(int32_t device);
|
||||
*
|
||||
* @return The number of CANN devices available.
|
||||
*/
|
||||
GGML_API int32_t ggml_backend_cann_get_device_count(void);
|
||||
GGML_BACKEND_API int32_t ggml_backend_cann_get_device_count(void);
|
||||
|
||||
/**
|
||||
* @brief pinned host buffer for use with the CPU backend for faster copies between CPU and NPU.
|
||||
*
|
||||
* @return A pointer to the host buffer type interface.
|
||||
*/
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the description of a specific CANN device.
|
||||
@ -99,7 +99,7 @@ GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||
* @param description Pointer to a buffer where the description will be written.
|
||||
* @param description_size Size of the description buffer.
|
||||
*/
|
||||
GGML_API void ggml_backend_cann_get_device_description(
|
||||
GGML_BACKEND_API void ggml_backend_cann_get_device_description(
|
||||
int32_t device, char* description, size_t description_size);
|
||||
|
||||
/**
|
||||
@ -114,7 +114,7 @@ GGML_API void ggml_backend_cann_get_device_description(
|
||||
* @param total Pointer to a variable where the total memory size will be
|
||||
* stored.
|
||||
*/
|
||||
GGML_API void ggml_backend_cann_get_device_memory(int32_t device,
|
||||
GGML_BACKEND_API void ggml_backend_cann_get_device_memory(int32_t device,
|
||||
size_t* free,
|
||||
size_t* total);
|
||||
|
||||
|
@ -54,54 +54,77 @@ extern "C" {
|
||||
GGML_NUMA_STRATEGY_COUNT
|
||||
};
|
||||
|
||||
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
||||
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
||||
GGML_BACKEND_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
||||
GGML_BACKEND_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
||||
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||||
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||||
|
||||
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
||||
GGML_BACKEND_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_BACKEND_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
||||
|
||||
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
||||
GGML_BACKEND_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_BACKEND_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
||||
|
||||
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||||
GGML_BACKEND_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_BACKEND_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||||
|
||||
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
||||
GGML_BACKEND_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_BACKEND_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
||||
|
||||
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
||||
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
||||
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
||||
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
||||
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
||||
GGML_BACKEND_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
||||
GGML_BACKEND_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
||||
GGML_BACKEND_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||
GGML_BACKEND_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
GGML_API struct ggml_cplan ggml_graph_plan(
|
||||
GGML_BACKEND_API struct ggml_cplan ggml_graph_plan(
|
||||
const struct ggml_cgraph * cgraph,
|
||||
int n_threads, /* = GGML_DEFAULT_N_THREADS */
|
||||
struct ggml_threadpool * threadpool /* = NULL */ );
|
||||
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
GGML_BACKEND_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
|
||||
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||||
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||||
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||||
GGML_BACKEND_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||||
|
||||
// TODO: move to backend interface
|
||||
GGML_API int ggml_cpu_has_neon (void);
|
||||
GGML_API int ggml_cpu_has_sve (void);
|
||||
GGML_API int ggml_cpu_has_matmul_int8(void);
|
||||
// get the sve vector length in bytes
|
||||
GGML_API int ggml_cpu_get_sve_cnt(void);
|
||||
//
|
||||
// system info
|
||||
//
|
||||
|
||||
// x86
|
||||
GGML_BACKEND_API int ggml_cpu_has_sse3 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_ssse3 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx2 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_f16c (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_vbmi(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_vnni(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_bf16(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_amx_int8 (void);
|
||||
// ARM
|
||||
GGML_BACKEND_API int ggml_cpu_has_neon (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_arm_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fp16_va (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_sve (void);
|
||||
GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
|
||||
// other
|
||||
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
// Internal types and functions exposed for tests and benchmarks
|
||||
|
||||
@ -115,6 +138,7 @@ extern "C" {
|
||||
const void * GGML_RESTRICT y, int nr, int nc);
|
||||
|
||||
struct ggml_type_traits_cpu {
|
||||
ggml_from_float_t from_float;
|
||||
ggml_from_float_to_mat_t from_float_to_mat;
|
||||
ggml_vec_dot_t vec_dot;
|
||||
enum ggml_type vec_dot_type;
|
||||
@ -124,25 +148,25 @@ extern "C" {
|
||||
ggml_gemm_t gemm;
|
||||
};
|
||||
|
||||
GGML_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
|
||||
GGML_BACKEND_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
|
||||
|
||||
GGML_API void ggml_cpu_init(void);
|
||||
GGML_BACKEND_API void ggml_cpu_init(void);
|
||||
|
||||
//
|
||||
// CPU backend
|
||||
//
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
GGML_BACKEND_API bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
@ -7,7 +7,7 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_HIPBLAS
|
||||
#ifdef GGML_USE_HIP
|
||||
#define GGML_CUDA_NAME "ROCm"
|
||||
#define GGML_CUBLAS_NAME "hipBLAS"
|
||||
#elif defined(GGML_USE_MUSA)
|
||||
@ -20,27 +20,27 @@ extern "C" {
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
|
||||
// device buffer
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
|
||||
GGML_API int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
GGML_BACKEND_API int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_BACKEND_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_BACKEND_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||
GGML_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||
GGML_BACKEND_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||
GGML_BACKEND_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -37,13 +37,13 @@ struct ggml_vk_device ggml_vk_current_device(void);
|
||||
// forward declaration
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_kompute_init(int device);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_kompute_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -39,27 +39,27 @@ extern "C" {
|
||||
// user-code should use only these functions
|
||||
//
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_metal_init(void);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_metal_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||
|
||||
GGML_DEPRECATED(
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
|
||||
GGML_BACKEND_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
|
||||
"obsoleted by the new device interface - https://github.com/ggerganov/llama.cpp/pull/9713");
|
||||
|
||||
GGML_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
|
||||
GGML_BACKEND_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
|
||||
// helper to check if the device supports a specific family
|
||||
// ideally, the user code should be doing these checks
|
||||
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
GGML_BACKEND_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
|
||||
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
|
||||
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
||||
GGML_BACKEND_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_metal_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_metal_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -10,18 +10,18 @@ extern "C" {
|
||||
#define GGML_RPC_MAX_SERVERS 16
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||
GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||
GGML_BACKEND_API bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||
|
||||
GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
|
||||
GGML_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
||||
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
|
||||
|
||||
GGML_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
|
||||
GGML_BACKEND_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -17,32 +17,32 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_sycl(ggml_backend_t backend);
|
||||
GGML_BACKEND_API bool ggml_backend_is_sycl(ggml_backend_t backend);
|
||||
|
||||
// devide buffer
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||
|
||||
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_API void ggml_backend_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_API void ggml_backend_sycl_get_device_description(int device,
|
||||
GGML_BACKEND_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_BACKEND_API void ggml_backend_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_BACKEND_API void ggml_backend_sycl_get_device_description(int device,
|
||||
char *description,
|
||||
size_t description_size);
|
||||
GGML_API int ggml_backend_sycl_get_device_count();
|
||||
GGML_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
GGML_BACKEND_API int ggml_backend_sycl_get_device_count();
|
||||
GGML_BACKEND_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
|
||||
// SYCL doesn't support registering host memory, keep here for reference
|
||||
// GGML_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||
// GGML_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
||||
// GGML_BACKEND_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||
// GGML_BACKEND_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_sycl_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_sycl_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -10,21 +10,21 @@ extern "C" {
|
||||
#define GGML_VK_NAME "Vulkan"
|
||||
#define GGML_VK_MAX_DEVICES 16
|
||||
|
||||
GGML_API void ggml_vk_instance_init(void);
|
||||
GGML_BACKEND_API void ggml_vk_instance_init(void);
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
|
||||
GGML_API bool ggml_backend_is_vk(ggml_backend_t backend);
|
||||
GGML_API int ggml_backend_vk_get_device_count(void);
|
||||
GGML_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
||||
GGML_BACKEND_API bool ggml_backend_is_vk(ggml_backend_t backend);
|
||||
GGML_BACKEND_API int ggml_backend_vk_get_device_count(void);
|
||||
GGML_BACKEND_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_BACKEND_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_vk_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_vk_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -176,15 +176,15 @@
|
||||
#ifdef GGML_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef GGML_BUILD
|
||||
# define GGML_API __declspec(dllexport)
|
||||
# define GGML_API __declspec(dllexport) extern
|
||||
# else
|
||||
# define GGML_API __declspec(dllimport)
|
||||
# define GGML_API __declspec(dllimport) extern
|
||||
# endif
|
||||
# else
|
||||
# define GGML_API __attribute__ ((visibility ("default")))
|
||||
# define GGML_API __attribute__ ((visibility ("default"))) extern
|
||||
# endif
|
||||
#else
|
||||
# define GGML_API
|
||||
# define GGML_API extern
|
||||
#endif
|
||||
|
||||
// TODO: support for clang
|
||||
@ -1490,7 +1490,7 @@ extern "C" {
|
||||
"use ggml_rope_ext_inplace instead");
|
||||
|
||||
// compute correction dims for YaRN RoPE scaling
|
||||
void ggml_rope_yarn_corr_dims(
|
||||
GGML_API void ggml_rope_yarn_corr_dims(
|
||||
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
||||
|
||||
// rotary position embedding backward, i.e compute dx from dy
|
||||
@ -2384,38 +2384,6 @@ extern "C" {
|
||||
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
||||
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
||||
|
||||
//
|
||||
// system info
|
||||
//
|
||||
|
||||
GGML_API int ggml_cpu_has_avx (void);
|
||||
GGML_API int ggml_cpu_has_avx_vnni (void);
|
||||
GGML_API int ggml_cpu_has_avx2 (void);
|
||||
GGML_API int ggml_cpu_has_avx512 (void);
|
||||
GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
||||
GGML_API int ggml_cpu_has_avx512_vnni(void);
|
||||
GGML_API int ggml_cpu_has_avx512_bf16(void);
|
||||
GGML_API int ggml_cpu_has_amx_int8 (void);
|
||||
GGML_API int ggml_cpu_has_fma (void);
|
||||
GGML_API int ggml_cpu_has_arm_fma (void);
|
||||
GGML_API int ggml_cpu_has_metal (void);
|
||||
GGML_API int ggml_cpu_has_f16c (void);
|
||||
GGML_API int ggml_cpu_has_fp16_va (void);
|
||||
GGML_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_API int ggml_cpu_has_blas (void);
|
||||
GGML_API int ggml_cpu_has_cuda (void);
|
||||
GGML_API int ggml_cpu_has_vulkan (void);
|
||||
GGML_API int ggml_cpu_has_kompute (void);
|
||||
GGML_API int ggml_cpu_has_gpublas (void);
|
||||
GGML_API int ggml_cpu_has_sse3 (void);
|
||||
GGML_API int ggml_cpu_has_ssse3 (void);
|
||||
GGML_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_API int ggml_cpu_has_sycl (void);
|
||||
GGML_API int ggml_cpu_has_rpc (void);
|
||||
GGML_API int ggml_cpu_has_vsx (void);
|
||||
GGML_API int ggml_cpu_has_cann (void);
|
||||
GGML_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
// restrict not standard in C++
|
||||
#define GGML_RESTRICT
|
||||
@ -2432,7 +2400,6 @@ extern "C" {
|
||||
size_t type_size;
|
||||
bool is_quantized;
|
||||
ggml_to_float_t to_float;
|
||||
ggml_from_float_t from_float;
|
||||
ggml_from_float_t from_float_ref;
|
||||
};
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,9 +1,5 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Arm Ltd.
|
||||
#pragma once
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
@ -12,27 +8,11 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t blck_size_interleave);
|
||||
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
size_t quantize_q4_0_4x4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0_4x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0_8x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
// GEMV
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// GEMM
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
107
ggml/src/ggml-amx/CMakeLists.txt
Normal file
107
ggml/src/ggml-amx/CMakeLists.txt
Normal file
@ -0,0 +1,107 @@
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$") AND
|
||||
CMAKE_COMPILER_IS_GNUCC AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 11.0)
|
||||
message(STATUS "Using AMX")
|
||||
|
||||
file(GLOB GGML_HEADERS_AMX "*.h")
|
||||
list(APPEND GGML_HEADERS_AMX "../../include/ggml-amx.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_AMX "*.cpp")
|
||||
|
||||
add_library(ggml-amx
|
||||
${GGML_HEADERS_AMX}
|
||||
${GGML_SOURCES_AMX})
|
||||
|
||||
target_link_libraries(ggml-amx PRIVATE ggml-base)
|
||||
target_include_directories(ggml-amx PRIVATE . ..)
|
||||
|
||||
# this is duplicated from the CPU backend, since the AMX backend also depends on the architecture flags
|
||||
# TODO: integrate AMX backend into the CPU backend
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
# TODO: improve, should not reference files from the parent folder
|
||||
include(../ggml-cpu/cmake/FindSIMD.cmake)
|
||||
endif ()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX512)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (GGML_AVX512_VBMI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_TILE__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_TILE__>)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_INT8__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_INT8__>)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_BF16__>)
|
||||
endif()
|
||||
elseif (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX2)
|
||||
elseif (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX)
|
||||
endif()
|
||||
else()
|
||||
if (GGML_NATIVE)
|
||||
list(APPEND ARCH_FLAGS -march=native)
|
||||
endif()
|
||||
if (GGML_F16C)
|
||||
list(APPEND ARCH_FLAGS -mf16c)
|
||||
endif()
|
||||
if (GGML_FMA)
|
||||
list(APPEND ARCH_FLAGS -mfma)
|
||||
endif()
|
||||
if (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS -mavx)
|
||||
endif()
|
||||
if (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS -mavx2)
|
||||
endif()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS -mavx512f)
|
||||
list(APPEND ARCH_FLAGS -mavx512dq)
|
||||
list(APPEND ARCH_FLAGS -mavx512bw)
|
||||
endif()
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_FLAGS -mamx-tile)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_FLAGS -mamx-int8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_FLAGS -mamx-bf16)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
target_compile_options(ggml-amx PRIVATE ${ARCH_FLAGS})
|
||||
else()
|
||||
set(GGML_AMX OFF PARENT_SCOPE)
|
||||
message(WARNING "AMX requires x86 and gcc version > 11.0. Turning off GGML_AMX.")
|
||||
endif()
|
@ -1,7 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-impl.h" // <immintrin.h>
|
||||
// hack until AMX is moved into the CPU backend
|
||||
#include "../ggml-cpu/ggml-cpu-impl.h" // <immintrin.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
|
449
ggml/src/ggml-amx/ggml-amx.cpp
Normal file
449
ggml/src/ggml-amx/ggml-amx.cpp
Normal file
@ -0,0 +1,449 @@
|
||||
#include "ggml-amx.h"
|
||||
#include "ggml-amx/common.h"
|
||||
#include "ggml-amx/mmq.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#include <sys/syscall.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
|
||||
#if defined(__AMX_INT8__)
|
||||
|
||||
// AMX buffer interface
|
||||
static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
free(buffer->context);
|
||||
}
|
||||
|
||||
static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *)(buffer->context);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
if (qtype_has_amx_kernels(tensor->type)) {
|
||||
ggml_backend_amx_convert_weight(tensor, data, offset, size);
|
||||
} else {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(!qtype_has_amx_kernels(tensor->type));
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
if (qtype_has_amx_kernels(src->type)) {
|
||||
ggml_backend_amx_convert_weight(dst, src->data, 0, ggml_backend_amx_get_alloc_size(dst));
|
||||
} else {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
memset(buffer->context, value, buffer->size);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_amx_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_amx_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .memset_tensor = */ ggml_backend_amx_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_amx_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_amx_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_amx_buffer_cpy_tensor,
|
||||
/* .clear = */ ggml_backend_amx_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_amx_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * data = aligned_alloc(TENSOR_ALIGNMENT, size);
|
||||
if (data == NULL) {
|
||||
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(buft, ggml_backend_amx_buffer_interface, data, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
|
||||
return ggml_backend_amx_get_alloc_size(tensor);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_amx_buffer_type_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_amx_reg(), 0),
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_buffer_type_amx;
|
||||
}
|
||||
|
||||
// backend interface
|
||||
|
||||
static const char * ggml_backend_amx_name(ggml_backend_t backend) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_free(ggml_backend_t backend) {
|
||||
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend->context;
|
||||
delete ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_amx_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend->context;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_amx_mul_mat(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i ggml_backend_amx_i = {
|
||||
/* .get_name = */ ggml_backend_amx_name,
|
||||
/* .free = */ ggml_backend_amx_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_amx_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_amx_guid() {
|
||||
static ggml_guid guid = { 0x13, 0xb8, 0xa4, 0xc4, 0xba, 0xfe, 0x51, 0x67, 0x87, 0x44, 0x55, 0x15, 0xb2, 0x35, 0x62, 0x3e };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
#define ARCH_GET_XCOMP_PERM 0x1022
|
||||
#define ARCH_REQ_XCOMP_PERM 0x1023
|
||||
#define XFEATURE_XTILECFG 17
|
||||
#define XFEATURE_XTILEDATA 18
|
||||
|
||||
static bool ggml_amx_init() {
|
||||
#if defined(__gnu_linux__)
|
||||
if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) {
|
||||
fprintf(stderr, "AMX is not ready to be used!\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#elif defined(_WIN32)
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_amx_init() {
|
||||
|
||||
// invoke a Linux system call to request access to AMX features
|
||||
ggml_amx_init();
|
||||
|
||||
// backend context
|
||||
ggml_backend_amx_context * ctx = new ggml_backend_amx_context;
|
||||
|
||||
// ggml amx backend
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_amx_guid(),
|
||||
/* .interface = */ ggml_backend_amx_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_amx_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_amx(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_amx_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_amx(backend_amx));
|
||||
|
||||
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend_amx->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
// device interface
|
||||
|
||||
static const char * ggml_backend_amx_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_amx_device_get_description(ggml_backend_dev_t dev) {
|
||||
return "Intel Advanced Matrix Extensions";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_amx_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_amx_device_get_name(dev);
|
||||
props->description = ggml_backend_amx_device_get_description(dev);
|
||||
props->type = ggml_backend_amx_device_get_type(dev);
|
||||
ggml_backend_amx_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
|
||||
// `buffer_from_host_ptr` is intended to be used in mmap, when memory layout unchanged
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ false,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_amx_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
return ggml_backend_amx_init();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_amx_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_amx_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
|
||||
// handle only 2d gemm for now
|
||||
auto is_contiguous_2d = [](const struct ggml_tensor * t) {
|
||||
return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1;
|
||||
};
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
return true;
|
||||
|
||||
case GGML_OP_MUL_MAT: {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
const int64_t ne0 = op->ne[0];
|
||||
|
||||
bool is_training = src0->grad || src1->grad;
|
||||
|
||||
// amx kernels enables for Q4_0, Q4_1, Q8_0, F16
|
||||
// Q4_K, Q5_K, Q6_K, IQ4_XS enabled for QK_K = 256
|
||||
bool has_amx_kernels = qtype_has_amx_kernels(type) || (type == GGML_TYPE_F16);
|
||||
|
||||
bool can_use_amx =
|
||||
is_contiguous_2d(src0) && // src0 must be contiguous
|
||||
is_contiguous_2d(src1) && // src1 must be contiguous
|
||||
!is_training && // inference only
|
||||
src1->type == GGML_TYPE_F32 && // src1 must be float32
|
||||
has_amx_kernels && // with amx kernel impls
|
||||
ne0 % (TILE_N * 2) == 0; // out_features is 32x
|
||||
|
||||
return can_use_amx;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_amx_buffer_type_get_name;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_amx_device_i = {
|
||||
/* .get_name = */ ggml_backend_amx_device_get_name,
|
||||
/* .get_description = */ ggml_backend_amx_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_amx_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_amx_device_get_type,
|
||||
/* .get_props = */ ggml_backend_amx_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_amx_device_init,
|
||||
/* .get_buffer_type = */ ggml_backend_amx_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ NULL,
|
||||
/* .supports_op = */ ggml_backend_amx_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_amx_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
// backend reg interface
|
||||
|
||||
static const char * ggml_backend_amx_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_amx_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
static ggml_backend_device ggml_backend_amx_device = {
|
||||
/* .iface = */ ggml_backend_amx_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return &ggml_backend_amx_device;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
}
|
||||
|
||||
static void * ggml_backend_amx_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
||||
return (void *)ggml_backend_amx_set_n_threads;
|
||||
}
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(name);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_amx_reg_i = {
|
||||
/* .get_name = */ ggml_backend_amx_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_amx_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_amx_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_amx_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_amx_reg(void) {
|
||||
static struct ggml_backend_reg ggml_backend_amx_reg = {
|
||||
/* .iface = */ ggml_backend_amx_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_amx_reg;
|
||||
}
|
||||
|
||||
#else // if defined(__AMX_INT8__)
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_amx(ggml_backend_t backend) {
|
||||
GGML_UNUSED(backend);
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_amx_init(void) {
|
||||
fprintf(stderr, "GGML is not compiled with AMX support!\n");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads) {
|
||||
fprintf(stderr, "GGML is not compiled with AMX support!\n");
|
||||
|
||||
GGML_UNUSED(backend_amx);
|
||||
GGML_UNUSED(n_threads);
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_amx_reg(void) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#endif
|
@ -496,19 +496,20 @@ inline void from_float(const float * x, char * vy, int64_t k);
|
||||
|
||||
template <>
|
||||
inline void from_float<block_q8_0>(const float * x, char * vy, int64_t k) {
|
||||
quantize_row_q8_0(x, vy, k);
|
||||
// FIXME: using unoptimized reference impl until moved to CPU backend
|
||||
quantize_row_q8_0_ref(x, (block_q8_0 *)vy, k);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void from_float<block_q8_1>(const float * x, char * vy, int64_t k) {
|
||||
quantize_row_q8_1(x, vy, k);
|
||||
quantize_row_q8_1_ref(x, (block_q8_1 *)vy, k);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void from_float<block_q8_K>(const float * x, char * vy, int64_t k) {
|
||||
#if 1
|
||||
// TODO: this is reference impl!
|
||||
quantize_row_q8_K(x, vy, k);
|
||||
quantize_row_q8_K_ref(x, (block_q8_K *)vy, k);
|
||||
#else
|
||||
quantize_row_q8_K_vnni(x, vy, k);
|
||||
#endif
|
||||
|
195
ggml/src/ggml-backend-reg.cpp
Normal file
195
ggml/src/ggml-backend-reg.cpp
Normal file
@ -0,0 +1,195 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
|
||||
// Backend registry
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_SYCL
|
||||
#include "ggml-sycl.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_BLAS
|
||||
#include "ggml-blas.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_RPC
|
||||
#include "ggml-rpc.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_AMX
|
||||
# include "ggml-amx.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
#include "ggml-kompute.h"
|
||||
#endif
|
||||
|
||||
struct ggml_backend_registry {
|
||||
std::vector<ggml_backend_reg_t> backends;
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
|
||||
ggml_backend_registry() {
|
||||
#ifdef GGML_USE_CUDA
|
||||
register_backend(ggml_backend_cuda_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_METAL
|
||||
register_backend(ggml_backend_metal_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_SYCL
|
||||
register_backend(ggml_backend_sycl_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_VULKAN
|
||||
register_backend(ggml_backend_vk_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_CANN
|
||||
register_backend(ggml_backend_cann_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_BLAS
|
||||
register_backend(ggml_backend_blas_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_RPC
|
||||
register_backend(ggml_backend_rpc_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_AMX
|
||||
register_backend(ggml_backend_amx_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
register_backend(ggml_backend_kompute_reg());
|
||||
#endif
|
||||
|
||||
register_backend(ggml_backend_cpu_reg());
|
||||
}
|
||||
|
||||
void register_backend(ggml_backend_reg_t reg) {
|
||||
if (!reg) {
|
||||
return;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: registered backend %s (%zu devices)\n",
|
||||
__func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
|
||||
#endif
|
||||
backends.push_back(reg);
|
||||
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
|
||||
register_device(ggml_backend_reg_dev_get(reg, i));
|
||||
}
|
||||
}
|
||||
|
||||
void register_device(ggml_backend_dev_t device) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
|
||||
#endif
|
||||
devices.push_back(device);
|
||||
}
|
||||
};
|
||||
|
||||
static ggml_backend_registry & get_reg() {
|
||||
static ggml_backend_registry reg;
|
||||
return reg;
|
||||
}
|
||||
|
||||
// Internal API
|
||||
void ggml_backend_register(ggml_backend_reg_t reg) {
|
||||
get_reg().register_backend(reg);
|
||||
}
|
||||
|
||||
void ggml_backend_device_register(ggml_backend_dev_t device) {
|
||||
get_reg().register_device(device);
|
||||
}
|
||||
|
||||
// Backend (reg) enumeration
|
||||
size_t ggml_backend_reg_count() {
|
||||
return get_reg().backends.size();
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
|
||||
GGML_ASSERT(index < ggml_backend_reg_count());
|
||||
return get_reg().backends[index];
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
|
||||
ggml_backend_reg_t reg = ggml_backend_reg_get(i);
|
||||
if (std::strcmp(ggml_backend_reg_name(reg), name) == 0) {
|
||||
return reg;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Device enumeration
|
||||
size_t ggml_backend_dev_count() {
|
||||
return get_reg().devices.size();
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
|
||||
GGML_ASSERT(index < ggml_backend_dev_count());
|
||||
return get_reg().devices[index];
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
if (ggml_backend_dev_type(dev) == type) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Convenience functions
|
||||
ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
|
||||
if (!dev) {
|
||||
return NULL;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, params);
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
|
||||
if (!dev) {
|
||||
return NULL;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, params);
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_init_best(void) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
|
||||
if (!dev) {
|
||||
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
}
|
||||
if (!dev) {
|
||||
return NULL;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, NULL);
|
||||
}
|
91
ggml/src/ggml-blas/CMakeLists.txt
Normal file
91
ggml/src/ggml-blas/CMakeLists.txt
Normal file
@ -0,0 +1,91 @@
|
||||
if (GGML_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
endif()
|
||||
#if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
|
||||
# set(BLA_SIZEOF_INTEGER 8)
|
||||
#endif()
|
||||
|
||||
set(BLA_VENDOR ${GGML_BLAS_VENDOR})
|
||||
find_package(BLAS)
|
||||
|
||||
if (BLAS_FOUND)
|
||||
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
|
||||
|
||||
add_library(ggml-blas
|
||||
ggml-blas.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-blas PRIVATE ggml-base)
|
||||
target_include_directories(ggml-blas PRIVATE . ..)
|
||||
|
||||
if (${GGML_BLAS_VENDOR} MATCHES "Apple")
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
|
||||
add_compile_definitions(GGML_BLAS_USE_ACCELERATE)
|
||||
elseif ("${BLAS_INCLUDE_DIRS}" STREQUAL "")
|
||||
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
|
||||
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
|
||||
find_package(PkgConfig REQUIRED)
|
||||
if (${GGML_BLAS_VENDOR} MATCHES "Generic")
|
||||
pkg_check_modules(DepBLAS blas)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "OpenBLAS")
|
||||
# As of openblas v0.3.22, the 64-bit is named openblas64.pc
|
||||
pkg_check_modules(DepBLAS openblas64)
|
||||
if (NOT DepBLAS_FOUND)
|
||||
pkg_check_modules(DepBLAS openblas)
|
||||
endif()
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "FLAME")
|
||||
add_compile_definitions(GGML_BLAS_USE_BLIS)
|
||||
pkg_check_modules(DepBLAS blis)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "ATLAS")
|
||||
pkg_check_modules(DepBLAS blas-atlas)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "FlexiBLAS")
|
||||
pkg_check_modules(DepBLAS flexiblas_api)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "Intel")
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
# all Intel* libraries share the same include path
|
||||
pkg_check_modules(DepBLAS mkl-sdl)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "NVHPC")
|
||||
# this doesn't provide pkg-config
|
||||
# suggest to assign BLAS_INCLUDE_DIRS on your own
|
||||
if ("${NVHPC_VERSION}" STREQUAL "")
|
||||
message(WARNING "Better to set NVHPC_VERSION")
|
||||
else()
|
||||
set(DepBLAS_FOUND ON)
|
||||
set(DepBLAS_INCLUDE_DIRS "/opt/nvidia/hpc_sdk/${CMAKE_SYSTEM_NAME}_${CMAKE_SYSTEM_PROCESSOR}/${NVHPC_VERSION}/math_libs/include")
|
||||
endif()
|
||||
endif()
|
||||
if (DepBLAS_FOUND)
|
||||
set(BLAS_INCLUDE_DIRS ${DepBLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(WARNING "BLAS_INCLUDE_DIRS neither been provided nor been automatically"
|
||||
" detected by pkgconfig, trying to find cblas.h from possible paths...")
|
||||
find_path(BLAS_INCLUDE_DIRS
|
||||
NAMES cblas.h
|
||||
HINTS
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
/usr/include/openblas
|
||||
/opt/homebrew/opt/openblas/include
|
||||
/usr/local/opt/openblas/include
|
||||
/usr/include/x86_64-linux-gnu/openblas/include
|
||||
)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
|
||||
|
||||
#add_compile_options(${BLAS_LINKER_FLAGS})
|
||||
target_compile_options(ggml-blas PRIVATE ${BLAS_LINKER_FLAGS})
|
||||
|
||||
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
|
||||
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
|
||||
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(ERROR "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
" to set correct GGML_BLAS_VENDOR")
|
||||
endif()
|
514
ggml/src/ggml-blas/ggml-blas.cpp
Normal file
514
ggml/src/ggml-blas/ggml-blas.cpp
Normal file
@ -0,0 +1,514 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-blas.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include <future>
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
|
||||
#if defined(GGML_BLAS_USE_ACCELERATE)
|
||||
# include <Accelerate/Accelerate.h>
|
||||
#elif defined(GGML_BLAS_USE_MKL)
|
||||
# include <mkl.h>
|
||||
#elif defined(GGML_BLAS_USE_BLIS)
|
||||
# include <blis.h>
|
||||
#elif defined(GGML_BLAS_USE_NVPL)
|
||||
# include <nvpl_blas.h>
|
||||
#else
|
||||
# include <cblas.h>
|
||||
#endif
|
||||
|
||||
struct ggml_backend_blas_context {
|
||||
int n_threads = GGML_DEFAULT_N_THREADS;
|
||||
std::unique_ptr<char[]> work_data;
|
||||
size_t work_size = 0;
|
||||
#ifndef GGML_USE_OPENMP
|
||||
std::vector<std::future<void>> tasks;
|
||||
#endif
|
||||
};
|
||||
|
||||
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
GGML_ASSERT(ne1 == ne11);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12/ne02;
|
||||
const int64_t r3 = ne13/ne03;
|
||||
|
||||
const int64_t ne_plane = ne01*ne00;
|
||||
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
|
||||
|
||||
if (ctx->work_size < desired_wsize) {
|
||||
ctx->work_data.reset(new char[desired_wsize]);
|
||||
ctx->work_size = desired_wsize;
|
||||
}
|
||||
void * wdata = ctx->work_data.get();
|
||||
|
||||
// convert src0 to float
|
||||
if (type != GGML_TYPE_F32) {
|
||||
const auto * type_traits = ggml_get_type_traits(type);
|
||||
ggml_to_float_t const to_float = type_traits->to_float;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
|
||||
const int min_cols_per_thread = 4096;
|
||||
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
|
||||
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
|
||||
|
||||
#ifdef GGML_USE_OPENMP
|
||||
#pragma omp parallel for num_threads(n_threads)
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
#else
|
||||
for (int i = 1; i < n_threads; i++) {
|
||||
const int64_t start = i*ne01/n_threads;
|
||||
const int64_t end = (i + 1)*ne01/n_threads;
|
||||
if (start < end) {
|
||||
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}));
|
||||
}
|
||||
}
|
||||
{
|
||||
// reuse the current thread for the first task
|
||||
const int64_t start = 0;
|
||||
const int64_t end = ne01/n_threads;
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef GGML_USE_OPENMP
|
||||
// wait for all tasks to finish
|
||||
for (auto & task : ctx->tasks) {
|
||||
task.get();
|
||||
}
|
||||
ctx->tasks.clear();
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(OPENBLAS_VERSION)
|
||||
openblas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(GGML_BLAS_USE_BLIS)
|
||||
bli_thread_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(GGML_BLAS_USE_NVPL)
|
||||
nvpl_blas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
||||
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne1, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
GGML_ASSERT(ne2 == ne02);
|
||||
GGML_ASSERT(ne02 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
GGML_ASSERT(ne03 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
// GGML_ASSERT(nb0 <= nb1);
|
||||
// GGML_ASSERT(nb1 <= nb2);
|
||||
// GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
||||
// src0: (k,n)
|
||||
// src1: (k,m)
|
||||
// dst: (m,n)
|
||||
//
|
||||
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
||||
// Also expressed as (major,minor)
|
||||
// a: (m,k): so src1 transposed
|
||||
// b: (k,n): so src0
|
||||
// c: (m,n)
|
||||
//
|
||||
// However, if ggml_is_transposed(src1) is true, then
|
||||
// src1->data already contains a transposed version, so sgemm mustn't
|
||||
// transpose it further.
|
||||
|
||||
int n = src0->ne[0];
|
||||
int k = src0->ne[1];
|
||||
int m = src1->ne[0];
|
||||
|
||||
CBLAS_TRANSPOSE transposeA;
|
||||
int lda;
|
||||
|
||||
if (!ggml_is_transposed(src1)) {
|
||||
transposeA = CblasTrans;
|
||||
lda = m;
|
||||
} else {
|
||||
transposeA = CblasNoTrans;
|
||||
lda = k;
|
||||
}
|
||||
|
||||
float * a = (float *) ((char *) src1->data);
|
||||
float * b = (float *) ((char *) src0->data);
|
||||
float * c = (float *) ((char *) dst->data);
|
||||
|
||||
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
||||
|
||||
GGML_UNUSED(ctx);
|
||||
}
|
||||
|
||||
// backend interface
|
||||
|
||||
static const char * ggml_backend_blas_get_name(ggml_backend_t backend) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_free(ggml_backend_t backend) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
delete ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_blas_mul_mat(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_OUT_PROD:
|
||||
ggml_backend_blas_out_prod(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
break;
|
||||
|
||||
default:
|
||||
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i blas_backend_i = {
|
||||
/* .get_name = */ ggml_backend_blas_get_name,
|
||||
/* .free = */ ggml_backend_blas_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_blas_guid(void) {
|
||||
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_blas_init(void) {
|
||||
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
|
||||
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_blas_guid(),
|
||||
/* .interface = */ blas_backend_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
#if defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
|
||||
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
|
||||
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
|
||||
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
|
||||
#endif
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_blas(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
|
||||
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
// device interface
|
||||
|
||||
static const char * ggml_backend_blas_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_blas_device_get_description(ggml_backend_dev_t dev) {
|
||||
#if defined(GGML_BLAS_USE_ACCELERATE)
|
||||
return "Accelerate";
|
||||
#elif defined(GGML_BLAS_USE_MKL)
|
||||
return "MKL";
|
||||
#elif defined(GGML_BLAS_USE_BLIS)
|
||||
return "BLIS";
|
||||
#elif defined(GGML_BLAS_USE_NVPL)
|
||||
return "NVPL";
|
||||
#elif defined(OPENBLAS_VERSION)
|
||||
return "OpenBLAS";
|
||||
#else
|
||||
return "BLAS";
|
||||
#endif
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_blas_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_blas_device_get_name(dev);
|
||||
props->description = ggml_backend_blas_device_get_description(dev);
|
||||
props->type = ggml_backend_blas_device_get_type(dev);
|
||||
ggml_backend_blas_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_blas_device_init_backend(ggml_backend_dev_t dev, const char * params) {
|
||||
return ggml_backend_blas_init();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_blas_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_blas_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(max_tensor_size);
|
||||
}
|
||||
|
||||
static bool ggml_backend_blas_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
return true;
|
||||
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
// BLAS usually is only faster for large matrices
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = op->ne[0];
|
||||
const int64_t ne1 = op->ne[1];
|
||||
|
||||
// TODO: find the optimal value
|
||||
const int64_t min_batch = 32;
|
||||
|
||||
return ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= min_batch && ne1 >= min_batch && ne10 >= min_batch) &&
|
||||
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
|
||||
}
|
||||
|
||||
case GGML_OP_OUT_PROD:
|
||||
return op->src[0]->type == GGML_TYPE_F32 &&
|
||||
op->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_is_matrix(src0) &&
|
||||
ggml_is_matrix(src1) &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)) &&
|
||||
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
|
||||
|
||||
default:
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_blas_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_blas_device_i = {
|
||||
/* .get_name = */ ggml_backend_blas_device_get_name,
|
||||
/* .get_description = */ ggml_backend_blas_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_blas_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_blas_device_get_type,
|
||||
/* .get_props = */ ggml_backend_blas_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_blas_device_init_backend,
|
||||
/* .get_buffer_type = */ ggml_backend_blas_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_blas_device_buffer_from_host_ptr,
|
||||
/* .supports_op = */ ggml_backend_blas_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_blas_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
// backend reg interface
|
||||
|
||||
static const char * ggml_backend_blas_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_blas_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_blas_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
static ggml_backend_device ggml_backend_blas_device = {
|
||||
/* .iface = */ ggml_backend_blas_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return &ggml_backend_blas_device;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
}
|
||||
|
||||
static void * ggml_backend_blas_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
||||
return (void *)ggml_backend_blas_set_n_threads;
|
||||
}
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(name);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_blas_reg_i = {
|
||||
/* .get_name = */ ggml_backend_blas_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_blas_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_blas_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_blas_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_blas_reg(void) {
|
||||
static struct ggml_backend_reg ggml_backend_blas_reg = {
|
||||
/* .iface = */ ggml_backend_blas_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_blas_reg;
|
||||
}
|
46
ggml/src/ggml-cann/CMakeLists.txt
Normal file
46
ggml/src/ggml-cann/CMakeLists.txt
Normal file
@ -0,0 +1,46 @@
|
||||
if ("cann${CANN_INSTALL_DIR}" STREQUAL "cann" AND DEFINED ENV{ASCEND_TOOLKIT_HOME})
|
||||
set(CANN_INSTALL_DIR $ENV{ASCEND_TOOLKIT_HOME})
|
||||
message(STATUS "CANN: updated CANN_INSTALL_DIR from ASCEND_TOOLKIT_HOME=$ENV{ASCEND_TOOLKIT_HOME}")
|
||||
endif()
|
||||
|
||||
if (CANN_INSTALL_DIR)
|
||||
# Only Support Linux.
|
||||
if (NOT UNIX)
|
||||
message(FATAL_ERROR "CANN: CANN toolkit supports unix but not ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
|
||||
# Supported platforms: x86-64, arm64
|
||||
if (CMAKE_SYSTEM_PROCESSOR STREQUAL "aarch64")
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64" OR CMAKE_SYSTEM_PROCESSOR STREQUAL "amd64")
|
||||
else()
|
||||
message(FATAL_ERROR "CANN: CANN toolkit supports x86-64 and arm64 but not ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
endif()
|
||||
|
||||
# Set header and libs
|
||||
set(CANN_INCLUDE_DIRS
|
||||
${CANN_INSTALL_DIR}/include
|
||||
${CANN_INSTALL_DIR}/include/aclnn
|
||||
${CANN_INSTALL_DIR}/acllib/include
|
||||
)
|
||||
|
||||
add_subdirectory(kernels)
|
||||
list(APPEND CANN_LIBRARIES
|
||||
ascendcl
|
||||
nnopbase
|
||||
opapi
|
||||
acl_op_compiler
|
||||
ascendc_kernels
|
||||
)
|
||||
|
||||
file(GLOB GGML_SOURCES_CANN "*.cpp")
|
||||
|
||||
add_library(ggml-cann ${GGML_SOURCES_CANN})
|
||||
target_link_libraries(ggml-cann PRIVATE ggml-base ${CANN_LIBRARIES})
|
||||
target_include_directories(ggml-cann PRIVATE . .. ${CANN_INCLUDE_DIRS})
|
||||
target_link_directories(ggml-cann PRIVATE ${CANN_INSTALL_DIR}/lib64)
|
||||
|
||||
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
|
||||
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
|
||||
else()
|
||||
message(FATAL_ERROR "CANN: Can't find CANN_INSTALL_DIR, did you forget to source set_var.sh?")
|
||||
endif()
|
2128
ggml/src/ggml-cann/ggml-cann.cpp
Normal file
2128
ggml/src/ggml-cann/ggml-cann.cpp
Normal file
File diff suppressed because it is too large
Load Diff
244
ggml/src/ggml-cpu/CMakeLists.txt
Normal file
244
ggml/src/ggml-cpu/CMakeLists.txt
Normal file
@ -0,0 +1,244 @@
|
||||
add_library(ggml-cpu
|
||||
ggml-cpu.c
|
||||
ggml-cpu.cpp
|
||||
ggml-cpu-aarch64.c
|
||||
ggml-cpu-aarch64.h
|
||||
ggml-cpu-quants.c
|
||||
ggml-cpu-quants.h
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-cpu PRIVATE ggml-base)
|
||||
target_include_directories(ggml-cpu PRIVATE . ..)
|
||||
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
add_compile_definitions(GGML_USE_ACCELERATE)
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
|
||||
|
||||
target_link_libraries(ggml-cpu PRIVATE ${ACCELERATE_FRAMEWORK})
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP)
|
||||
if (OpenMP_FOUND)
|
||||
message(STATUS "OpenMP found")
|
||||
|
||||
add_compile_definitions(GGML_USE_OPENMP)
|
||||
|
||||
target_link_libraries(ggml-cpu PRIVATE OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
|
||||
# FIXME: should be replaced with a compiler id check
|
||||
#if (GGML_MUSA)
|
||||
# list(APPEND GGML_CPU_EXTRA_INCLUDES "/usr/lib/llvm-14/lib/clang/14.0.0/include")
|
||||
# list(APPEND GGML_CPU_EXTRA_LIBS_PRIVATE "/usr/lib/llvm-14/lib/libomp.so")
|
||||
#endif()
|
||||
else()
|
||||
message(WARNING "OpenMP not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_LLAMAFILE)
|
||||
message(STATUS "Using llamafile")
|
||||
|
||||
add_compile_definitions(GGML_USE_LLAMAFILE)
|
||||
|
||||
target_sources(ggml-cpu PRIVATE
|
||||
llamafile/sgemm.cpp
|
||||
llamafile/sgemm.h)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
|
||||
message(STATUS "Using memkind for CPU HBM")
|
||||
|
||||
add_compile_definitions(GGML_USE_CPU_HBM)
|
||||
|
||||
target_link_libraries(ggml-cpu PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND
|
||||
NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
|
||||
message(STATUS "ARM detected")
|
||||
|
||||
if (MSVC)
|
||||
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
|
||||
add_compile_definitions(__ARM_NEON)
|
||||
add_compile_definitions(__ARM_FEATURE_FMA)
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS_PREV ${CMAKE_REQUIRED_FLAGS})
|
||||
string(JOIN " " CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "/arch:armv8.2")
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
if (GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
||||
endif ()
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
|
||||
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
add_compile_definitions(__ARM_FEATURE_MATMUL_INT8)
|
||||
endif ()
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
endif ()
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_PREV})
|
||||
else()
|
||||
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
|
||||
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
|
||||
list(APPEND ARCH_FLAGS -mfp16-format=ieee)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
|
||||
# Raspberry Pi 1, Zero
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
|
||||
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
|
||||
# Android armeabi-v7a
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
else()
|
||||
# Raspberry Pi 2
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
endif()
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
|
||||
# Android arm64-v8a
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
list(APPEND ARCH_FLAGS -mno-unaligned-access)
|
||||
endif()
|
||||
if (GGML_SVE)
|
||||
list(APPEND ARCH_FLAGS -march=armv8.6-a+sve)
|
||||
endif()
|
||||
endif()
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
# TODO: improve, should not reference files from the parent folder
|
||||
include(cmake/FindSIMD.cmake)
|
||||
endif ()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX512)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (GGML_AVX512_VBMI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_TILE__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_TILE__>)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_INT8__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_INT8__>)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_BF16__>)
|
||||
endif()
|
||||
elseif (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX2)
|
||||
elseif (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX)
|
||||
endif()
|
||||
else()
|
||||
if (GGML_NATIVE)
|
||||
list(APPEND ARCH_FLAGS -march=native)
|
||||
endif()
|
||||
if (GGML_F16C)
|
||||
list(APPEND ARCH_FLAGS -mf16c)
|
||||
endif()
|
||||
if (GGML_FMA)
|
||||
list(APPEND ARCH_FLAGS -mfma)
|
||||
endif()
|
||||
if (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS -mavx)
|
||||
endif()
|
||||
if (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS -mavx2)
|
||||
endif()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS -mavx512f)
|
||||
list(APPEND ARCH_FLAGS -mavx512dq)
|
||||
list(APPEND ARCH_FLAGS -mavx512bw)
|
||||
endif()
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_FLAGS -mamx-tile)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_FLAGS -mamx-int8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_FLAGS -mamx-bf16)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
message(STATUS "PowerPC detected")
|
||||
execute_process(COMMAND bash -c "grep POWER10 /proc/cpuinfo | head -n 1"
|
||||
OUTPUT_VARIABLE POWER10_M)
|
||||
string(FIND ${POWER10_M} "POWER10" substring_index)
|
||||
if(${substring_index} GREATER_EQUAL 0)
|
||||
list(APPEND ARCH_FLAGS -mcpu=power10)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
|
||||
list(APPEND ARCH_FLAGS -mcpu=powerpc64le)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
|
||||
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
|
||||
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||
if (GGML_LASX)
|
||||
list(APPEND ARCH_FLAGS -mlasx)
|
||||
endif()
|
||||
if (GGML_LSX)
|
||||
list(APPEND ARCH_FLAGS -mlsx)
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
|
||||
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set_target_properties(ggml-cpu PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
100
ggml/src/ggml-cpu/cmake/FindSIMD.cmake
Normal file
100
ggml/src/ggml-cpu/cmake/FindSIMD.cmake
Normal file
@ -0,0 +1,100 @@
|
||||
include(CheckCSourceRuns)
|
||||
|
||||
set(AVX_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m256 a;
|
||||
a = _mm256_set1_ps(0);
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
set(AVX512_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m512i a = _mm512_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0);
|
||||
__m512i b = a;
|
||||
__mmask64 equality_mask = _mm512_cmp_epi8_mask(a, b, _MM_CMPINT_EQ);
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
set(AVX2_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m256i a = {0};
|
||||
a = _mm256_abs_epi16(a);
|
||||
__m256i x;
|
||||
_mm256_extract_epi64(x, 0); // we rely on this in our AVX2 code
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
set(FMA_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
const __m256 d = _mm256_setzero_ps();
|
||||
const __m256 p = _mm256_setzero_ps();
|
||||
acc = _mm256_fmadd_ps( d, p, acc );
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
macro(check_sse type flags)
|
||||
set(__FLAG_I 1)
|
||||
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
|
||||
foreach (__FLAG ${flags})
|
||||
if (NOT ${type}_FOUND)
|
||||
set(CMAKE_REQUIRED_FLAGS ${__FLAG})
|
||||
check_c_source_runs("${${type}_CODE}" HAS_${type}_${__FLAG_I})
|
||||
if (HAS_${type}_${__FLAG_I})
|
||||
set(${type}_FOUND TRUE CACHE BOOL "${type} support")
|
||||
set(${type}_FLAGS "${__FLAG}" CACHE STRING "${type} flags")
|
||||
endif()
|
||||
math(EXPR __FLAG_I "${__FLAG_I}+1")
|
||||
endif()
|
||||
endforeach()
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
|
||||
|
||||
if (NOT ${type}_FOUND)
|
||||
set(${type}_FOUND FALSE CACHE BOOL "${type} support")
|
||||
set(${type}_FLAGS "" CACHE STRING "${type} flags")
|
||||
endif()
|
||||
|
||||
mark_as_advanced(${type}_FOUND ${type}_FLAGS)
|
||||
endmacro()
|
||||
|
||||
# flags are for MSVC only!
|
||||
check_sse("AVX" " ;/arch:AVX")
|
||||
if (NOT ${AVX_FOUND})
|
||||
set(GGML_AVX OFF)
|
||||
else()
|
||||
set(GGML_AVX ON)
|
||||
endif()
|
||||
|
||||
check_sse("AVX2" " ;/arch:AVX2")
|
||||
check_sse("FMA" " ;/arch:AVX2")
|
||||
if ((NOT ${AVX2_FOUND}) OR (NOT ${FMA_FOUND}))
|
||||
set(GGML_AVX2 OFF)
|
||||
else()
|
||||
set(GGML_AVX2 ON)
|
||||
endif()
|
||||
|
||||
check_sse("AVX512" " ;/arch:AVX512")
|
||||
if (NOT ${AVX512_FOUND})
|
||||
set(GGML_AVX512 OFF)
|
||||
else()
|
||||
set(GGML_AVX512 ON)
|
||||
endif()
|
3387
ggml/src/ggml-cpu/ggml-cpu-aarch64.c
Normal file
3387
ggml/src/ggml-cpu/ggml-cpu-aarch64.c
Normal file
File diff suppressed because it is too large
Load Diff
27
ggml/src/ggml-cpu/ggml-cpu-aarch64.h
Normal file
27
ggml/src/ggml-cpu/ggml-cpu-aarch64.h
Normal file
@ -0,0 +1,27 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t blck_size_interleave);
|
||||
|
||||
// GEMV
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// GEMM
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
371
ggml/src/ggml-cpu/ggml-cpu-impl.h
Normal file
371
ggml/src/ggml-cpu/ggml-cpu-impl.h
Normal file
@ -0,0 +1,371 @@
|
||||
#pragma once
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
||||
//#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h> // memcpy
|
||||
#include <math.h> // fabsf
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define m512bh(p) p
|
||||
#define m512i(p) p
|
||||
|
||||
#else
|
||||
|
||||
#define m512bh(p) (__m512bh)(p)
|
||||
#define m512i(p) (__m512i)(p)
|
||||
|
||||
#endif
|
||||
|
||||
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
||||
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __FMA__
|
||||
#define __FMA__
|
||||
#endif
|
||||
#ifndef __F16C__
|
||||
#define __F16C__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
|
||||
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __SSE3__
|
||||
#define __SSE3__
|
||||
#endif
|
||||
#ifndef __SSSE3__
|
||||
#define __SSSE3__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <arm_sve.h>
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
|
||||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
// on x86, we use uint16_t
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
|
||||
|
||||
#else
|
||||
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
|
||||
|
||||
#endif // _MSC_VER
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
// 32-bit ARM compatibility
|
||||
|
||||
// vaddlvq_s16
|
||||
// vpaddq_s16
|
||||
// vpaddq_s32
|
||||
// vaddvq_s32
|
||||
// vaddvq_f32
|
||||
// vmaxvq_f32
|
||||
// vcvtnq_s32_f32
|
||||
// vzip1_u8
|
||||
// vzip2_u8
|
||||
|
||||
inline static int32_t vaddlvq_s16(int16x8_t v) {
|
||||
int32x4_t v0 = vreinterpretq_s32_s64(vpaddlq_s32(vpaddlq_s16(v)));
|
||||
return vgetq_lane_s32(v0, 0) + vgetq_lane_s32(v0, 2);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
|
||||
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
|
||||
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
|
||||
return vcombine_s32(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vaddvq_f32(float32x4_t v) {
|
||||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vmaxvq_f32(float32x4_t v) {
|
||||
return
|
||||
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
||||
}
|
||||
|
||||
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
||||
int32x4_t res;
|
||||
|
||||
res[0] = roundf(vgetq_lane_f32(v, 0));
|
||||
res[1] = roundf(vgetq_lane_f32(v, 1));
|
||||
res[2] = roundf(vgetq_lane_f32(v, 2));
|
||||
res[3] = roundf(vgetq_lane_f32(v, 3));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[0]; res[1] = b[0];
|
||||
res[2] = a[1]; res[3] = b[1];
|
||||
res[4] = a[2]; res[5] = b[2];
|
||||
res[6] = a[3]; res[7] = b[3];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[4]; res[1] = b[4];
|
||||
res[2] = a[5]; res[3] = b[5];
|
||||
res[4] = a[6]; res[5] = b[6];
|
||||
res[6] = a[7]; res[7] = b[7];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// vld1q_s16_x2
|
||||
// vld1q_u8_x2
|
||||
// vld1q_u8_x4
|
||||
// vld1q_s8_x2
|
||||
// vld1q_s8_x4
|
||||
// TODO: double-check these work correctly
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s16(ptr + 0);
|
||||
res.val[1] = vld1q_s16(ptr + 8);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
res.val[2] = vld1q_u8(ptr + 32);
|
||||
res.val[3] = vld1q_u8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x2_t {
|
||||
int8x16_t val[2];
|
||||
} ggml_int8x16x2_t;
|
||||
|
||||
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
|
||||
ggml_int8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
res.val[2] = vld1q_s8(ptr + 32);
|
||||
res.val[3] = vld1q_s8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
|
||||
int8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
|
||||
uint8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_int16x8x2_t int16x8x2_t
|
||||
#define ggml_uint8x16x2_t uint8x16x2_t
|
||||
#define ggml_uint8x16x4_t uint8x16x4_t
|
||||
#define ggml_int8x16x2_t int8x16x2_t
|
||||
#define ggml_int8x16x4_t int8x16x4_t
|
||||
|
||||
#define ggml_vld1q_s16_x2 vld1q_s16_x2
|
||||
#define ggml_vld1q_u8_x2 vld1q_u8_x2
|
||||
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
||||
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||
#define ggml_vqtbl1q_s8 vqtbl1q_s8
|
||||
#define ggml_vqtbl1q_u8 vqtbl1q_u8
|
||||
|
||||
#endif // !defined(__aarch64__)
|
||||
|
||||
#if !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
|
||||
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
||||
|
||||
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
|
||||
|
||||
#endif // !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
#endif // defined(__ARM_NEON)
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
#ifdef __POWER9_VECTOR__
|
||||
#include <altivec.h>
|
||||
#undef bool
|
||||
#define bool _Bool
|
||||
#else
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#if !defined(__riscv)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch64)
|
||||
#if defined(__loongarch_asx)
|
||||
#include <lasxintrin.h>
|
||||
#endif
|
||||
#if defined(__loongarch_sx)
|
||||
#include <lsxintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
|
||||
typedef union {
|
||||
int32_t i;
|
||||
float f;
|
||||
} ft_union;
|
||||
|
||||
/* float type data load instructions */
|
||||
static __m128 __lsx_vreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
|
||||
}
|
||||
|
||||
static __m256 __lasx_xvreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
10796
ggml/src/ggml-cpu/ggml-cpu-quants.c
Normal file
10796
ggml/src/ggml-cpu/ggml-cpu-quants.c
Normal file
File diff suppressed because it is too large
Load Diff
63
ggml/src/ggml-cpu/ggml-cpu-quants.h
Normal file
63
ggml/src/ggml-cpu/ggml-cpu-quants.h
Normal file
@ -0,0 +1,63 @@
|
||||
#pragma once
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
13968
ggml/src/ggml-cpu/ggml-cpu.c
Normal file
13968
ggml/src/ggml-cpu/ggml-cpu.c
Normal file
File diff suppressed because it is too large
Load Diff
575
ggml/src/ggml-cpu/ggml-cpu.cpp
Normal file
575
ggml/src/ggml-cpu/ggml-cpu.cpp
Normal file
@ -0,0 +1,575 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <cctype>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined(__APPLE__)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
// ggml-backend interface
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
|
||||
// buffer type HBM
|
||||
|
||||
#include <hbwmalloc.h>
|
||||
|
||||
static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CPU_HBM";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
hbw_free(buffer->context);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * ptr;
|
||||
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
|
||||
if (result != 0) {
|
||||
GGML_LOG_ERROR("failed to allocate HBM buffer of size %zu\n", size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
buffer->buft = buft;
|
||||
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
||||
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
||||
},
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_buffer_type_hbm;
|
||||
}
|
||||
#endif
|
||||
|
||||
static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
|
||||
static ggml_backend_buffer_type_t bufts[] = {
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
ggml_backend_cpu_hbm_buffer_type(),
|
||||
#endif
|
||||
NULL
|
||||
};
|
||||
|
||||
return bufts;
|
||||
|
||||
GGML_UNUSED(device);
|
||||
}
|
||||
|
||||
// CPU backend - backend (stream)
|
||||
|
||||
struct ggml_backend_cpu_context {
|
||||
int n_threads;
|
||||
ggml_threadpool_t threadpool;
|
||||
|
||||
uint8_t * work_data;
|
||||
size_t work_size;
|
||||
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_free(ggml_backend_t backend) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
delete[] cpu_ctx->work_data;
|
||||
delete cpu_ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
struct ggml_backend_plan_cpu {
|
||||
struct ggml_cplan cplan;
|
||||
struct ggml_cgraph cgraph;
|
||||
};
|
||||
|
||||
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_backend_plan_cpu * cpu_plan = new ggml_backend_plan_cpu;
|
||||
|
||||
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
|
||||
|
||||
if (cpu_plan->cplan.work_size > 0) {
|
||||
cpu_plan->cplan.work_data = new uint8_t[cpu_plan->cplan.work_size];
|
||||
if (cpu_plan->cplan.work_data == NULL) {
|
||||
delete cpu_plan;
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
|
||||
return cpu_plan;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||
|
||||
delete[] cpu_plan->cplan.work_data;
|
||||
delete cpu_plan;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||
|
||||
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
|
||||
if (cpu_ctx->work_size < cplan.work_size) {
|
||||
delete[] cpu_ctx->work_data;
|
||||
cpu_ctx->work_data = new uint8_t[cplan.work_size];
|
||||
if (cpu_ctx->work_data == NULL) {
|
||||
cpu_ctx->work_size = 0;
|
||||
return GGML_STATUS_ALLOC_FAILED;
|
||||
}
|
||||
cpu_ctx->work_size = cplan.work_size;
|
||||
}
|
||||
cplan.work_data = (uint8_t *)cpu_ctx->work_data;
|
||||
|
||||
cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_i ggml_backend_cpu_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_get_name,
|
||||
/* .free = */ ggml_backend_cpu_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
||||
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cpu_guid(void) {
|
||||
static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
// initialize CPU backend now to avoid slowing the first graph computation
|
||||
ggml_cpu_init();
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = new ggml_backend_cpu_context;
|
||||
if (ctx == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
||||
ctx->threadpool = NULL;
|
||||
ctx->work_data = NULL;
|
||||
ctx->work_size = 0;
|
||||
ctx->abort_callback = NULL;
|
||||
ctx->abort_callback_data = NULL;
|
||||
|
||||
ggml_backend_t cpu_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_cpu_guid(),
|
||||
/* .interface = */ ggml_backend_cpu_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
if (cpu_backend == NULL) {
|
||||
delete ctx;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return cpu_backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_cpu(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
|
||||
if (ctx->threadpool && ctx->threadpool != threadpool) {
|
||||
// already had a different threadpool, pause/suspend it before switching
|
||||
ggml_threadpool_pause(ctx->threadpool);
|
||||
}
|
||||
ctx->threadpool = threadpool;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
ctx->abort_callback = abort_callback;
|
||||
ctx->abort_callback_data = abort_callback_data;
|
||||
}
|
||||
|
||||
// CPU backend - device
|
||||
|
||||
struct ggml_backend_cpu_device_context {
|
||||
std::string description = "CPU";
|
||||
|
||||
ggml_backend_cpu_device_context() {
|
||||
#ifdef __APPLE__
|
||||
size_t len = 0;
|
||||
if (!sysctlbyname("machdep.cpu.brand_string", NULL, &len, NULL, 0)) {
|
||||
description.resize(len);
|
||||
sysctlbyname("machdep.cpu.brand_string", &description[0], &len, NULL, 0); // NOLINT
|
||||
}
|
||||
#elif defined(__linux__)
|
||||
FILE * f = fopen("/proc/cpuinfo", "r");
|
||||
if (f) {
|
||||
char buf[1024];
|
||||
while (fgets(buf, sizeof(buf), f)) {
|
||||
if (strncmp(buf, "model name", 10) == 0) {
|
||||
char * p = strchr(buf, ':');
|
||||
if (p) {
|
||||
p++;
|
||||
while (std::isspace(*p)) {
|
||||
p++;
|
||||
}
|
||||
while (std::isspace(p[strlen(p) - 1])) {
|
||||
p[strlen(p) - 1] = '\0';
|
||||
}
|
||||
description = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
HKEY hKey;
|
||||
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
|
||||
TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
|
||||
0,
|
||||
KEY_READ,
|
||||
&hKey) == ERROR_SUCCESS) {
|
||||
DWORD cpu_brand_size = 0;
|
||||
if (RegQueryValueExA(hKey,
|
||||
TEXT("ProcessorNameString"),
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
&cpu_brand_size) == ERROR_SUCCESS) {
|
||||
description.resize(cpu_brand_size);
|
||||
if (RegQueryValueExA(hKey,
|
||||
TEXT("ProcessorNameString"),
|
||||
NULL,
|
||||
NULL,
|
||||
(LPBYTE)&description[0], // NOLINT
|
||||
&cpu_brand_size) == ERROR_SUCCESS) {
|
||||
if (description.find('\0') != std::string::npos) {
|
||||
description.resize(description.find('\0'));
|
||||
}
|
||||
}
|
||||
}
|
||||
RegCloseKey(hKey);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cpu_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t dev) {
|
||||
struct ggml_backend_cpu_device_context * ctx = (struct ggml_backend_cpu_device_context *)dev->context;
|
||||
|
||||
return ctx->description.c_str();
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_cpu_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_CPU;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_cpu_device_get_name(dev);
|
||||
props->description = ggml_backend_cpu_device_get_description(dev);
|
||||
props->type = ggml_backend_cpu_device_get_type(dev);
|
||||
ggml_backend_cpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_cpu_device_init_backend(ggml_backend_dev_t dev, const char * params) {
|
||||
return ggml_backend_cpu_init();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_cpu_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(max_tensor_size);
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
return
|
||||
op->type != GGML_TYPE_IQ2_XXS &&
|
||||
op->type != GGML_TYPE_IQ2_XS &&
|
||||
op->type != GGML_TYPE_IQ1_S &&
|
||||
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
||||
case GGML_OP_MUL_MAT:
|
||||
return op->src[1]->type == GGML_TYPE_F32;// FIXME || op->src[1]->type == ggml_get_type_traits(op->src[0]->type)->vec_dot_type;
|
||||
case GGML_OP_ROPE_BACK:
|
||||
return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_OUT_PROD:
|
||||
return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_cpu_device_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_device_get_name,
|
||||
/* .get_description = */ ggml_backend_cpu_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_cpu_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_cpu_device_get_type,
|
||||
/* .get_props = */ ggml_backend_cpu_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_cpu_device_init_backend,
|
||||
/* .get_buffer_type = */ ggml_backend_cpu_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_cpu_device_buffer_from_host_ptr,
|
||||
/* .supports_op = */ ggml_backend_cpu_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cpu_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
// CPU backend - backend (reg)
|
||||
|
||||
static const char * ggml_backend_cpu_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cpu_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_cpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
static ggml_backend_cpu_device_context ctx;
|
||||
static ggml_backend_device ggml_backend_cpu_device = {
|
||||
/* .iface = */ ggml_backend_cpu_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ &ctx,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_device;
|
||||
}
|
||||
|
||||
struct ggml_backend_feature {
|
||||
const char * name;
|
||||
const char * value;
|
||||
};
|
||||
|
||||
// Not used yet
|
||||
// This is intended to replace the the ggml_cpu_has_* functions when loading the CPU backend dynamically,
|
||||
// and additionally to allow other backends to expose their own list of features that applications can query using the same API.
|
||||
static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t reg) {
|
||||
static std::vector<ggml_backend_feature> features = []() {
|
||||
std::vector<ggml_backend_feature> features;
|
||||
if (ggml_cpu_has_sse3()) {
|
||||
features.push_back({ "SSE3", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_ssse3()) {
|
||||
features.push_back({ "SSSE3", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx()) {
|
||||
features.push_back({ "AVX", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx2()) {
|
||||
features.push_back({ "AVX2", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_f16c()) {
|
||||
features.push_back({ "F16C", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_fma()) {
|
||||
features.push_back({ "FMA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx_vnni()) {
|
||||
features.push_back({ "AVX_VNNI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512()) {
|
||||
features.push_back({ "AVX512", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512_vbmi()) {
|
||||
features.push_back({ "AVX512_VBMI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512_vnni()) {
|
||||
features.push_back({ "AVX512_VNNI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512_bf16()) {
|
||||
features.push_back({ "AVX512_BF16", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_amx_int8()) {
|
||||
features.push_back({ "AMX_INT8", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_neon()) {
|
||||
features.push_back({ "NEON", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_arm_fma()) {
|
||||
features.push_back({ "ARM_FMA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_fp16_va()) {
|
||||
features.push_back({ "FP16_VA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_matmul_int8()) {
|
||||
features.push_back({ "MATMUL_INT8", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_sve()) {
|
||||
features.push_back({ "SVE", "1" });
|
||||
}
|
||||
if (ggml_cpu_get_sve_cnt() > 0) {
|
||||
static std::string sve_cnt = std::to_string(ggml_cpu_get_sve_cnt());
|
||||
features.push_back({ "SVE_CNT", sve_cnt.c_str() });
|
||||
}
|
||||
if (ggml_cpu_has_riscv_v()) {
|
||||
features.push_back({ "RISCV_V", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_vsx()) {
|
||||
features.push_back({ "VSX", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_wasm_simd()) {
|
||||
features.push_back({ "WASM_SIMD", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_llamafile()) {
|
||||
features.push_back({ "LLAMAFILE", "1" });
|
||||
}
|
||||
|
||||
features.push_back({ nullptr, nullptr });
|
||||
|
||||
return features;
|
||||
}();
|
||||
|
||||
return features.data();
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
||||
return (void *)ggml_backend_cpu_set_n_threads;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
|
||||
return (void *)ggml_backend_cpu_get_extra_bufts;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_cpu_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_cpu_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_cpu_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_cpu_reg(void) {
|
||||
static struct ggml_backend_reg ggml_backend_cpu_reg = {
|
||||
/* .iface = */ ggml_backend_cpu_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_reg;
|
||||
}
|
1884
ggml/src/ggml-cpu/llamafile/sgemm.cpp
Normal file
1884
ggml/src/ggml-cpu/llamafile/sgemm.cpp
Normal file
File diff suppressed because it is too large
Load Diff
14
ggml/src/ggml-cpu/llamafile/sgemm.h
Normal file
14
ggml/src/ggml-cpu/llamafile/sgemm.h
Normal file
@ -0,0 +1,14 @@
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t,
|
||||
const void *, int64_t, void *, int64_t, int, int,
|
||||
int, int, int);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -6,7 +6,7 @@
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#if defined(GGML_USE_HIP)
|
||||
#define GGML_COMMON_DECL_HIP
|
||||
#define GGML_COMMON_IMPL_HIP
|
||||
#else
|
||||
@ -26,13 +26,13 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#if defined(GGML_USE_HIP)
|
||||
#include "vendors/hip.h"
|
||||
#elif defined(GGML_USE_MUSA)
|
||||
#include "vendors/musa.h"
|
||||
#else
|
||||
#include "vendors/cuda.h"
|
||||
#endif // defined(GGML_USE_HIPBLAS)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
|
||||
#define STRINGIZE_IMPL(...) #__VA_ARGS__
|
||||
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
|
||||
@ -97,7 +97,7 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
|
||||
|
||||
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
|
||||
|
||||
#if !defined(GGML_USE_HIPBLAS)
|
||||
#if !defined(GGML_USE_HIP)
|
||||
static const char * cu_get_error_str(CUresult err) {
|
||||
const char * err_str;
|
||||
cuGetErrorString(err, &err_str);
|
||||
@ -120,21 +120,21 @@ typedef float dfloat; // dequantize float
|
||||
typedef float2 dfloat2;
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
#if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
#define FP16_AVAILABLE
|
||||
#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
|
||||
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
#define FAST_FP16_AVAILABLE
|
||||
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
|
||||
#define INT8_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
|
||||
|
||||
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
|
||||
#define FLASH_ATTN_AVAILABLE
|
||||
@ -156,14 +156,14 @@ static constexpr bool int8_mma_available(const int cc) {
|
||||
static __device__ void no_device_code(
|
||||
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
||||
file_name, line, function_name, arch);
|
||||
GGML_UNUSED(arch_list);
|
||||
#else
|
||||
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
||||
file_name, line, function_name, arch, arch_list);
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
__trap();
|
||||
|
||||
GGML_UNUSED(no_device_code); // suppress unused function warning
|
||||
@ -176,7 +176,7 @@ static __device__ void no_device_code(
|
||||
#endif // __CUDA_ARCH__
|
||||
|
||||
static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
return __reduce_add_sync(0xffffffff, x);
|
||||
#else
|
||||
#pragma unroll
|
||||
@ -184,7 +184,7 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
}
|
||||
return x;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||
@ -207,7 +207,7 @@ static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
|
||||
@ -221,7 +221,7 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||
}
|
||||
return a;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
@ -240,11 +240,11 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
return __float2half(fmaxf(__half2float(a), __half2float(b)));
|
||||
#else
|
||||
return __hmax(a, b);
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
@ -254,7 +254,7 @@ static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
#if CUDART_VERSION >= CUDART_HMAX
|
||||
return __hmax2(a, b);
|
||||
@ -269,11 +269,11 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(b);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
@ -282,7 +282,7 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#else
|
||||
GGML_UNUSED(x);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
}
|
||||
|
||||
#if CUDART_VERSION < CUDART_HMASK
|
||||
@ -294,7 +294,7 @@ static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half
|
||||
#endif // CUDART_VERSION < CUDART_HMASK
|
||||
|
||||
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
#elif defined(RDNA3)
|
||||
@ -320,7 +320,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#endif
|
||||
return c;
|
||||
|
||||
#else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||
return __dp4a(a, b, c);
|
||||
@ -330,7 +330,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
|
||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
// TODO: move to ggml-common.h
|
||||
|
@ -517,9 +517,9 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
||||
}
|
||||
|
||||
template<int D, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_combine_results(
|
||||
const float * __restrict__ VKQ_parts,
|
||||
const float2 * __restrict__ VKQ_meta,
|
||||
|
@ -5,9 +5,9 @@
|
||||
#define FATTN_KQ_STRIDE_TILE_F16 64
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_tile_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
@ -5,9 +5,9 @@
|
||||
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_tile_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
@ -2,9 +2,9 @@
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_vec_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
@ -2,9 +2,9 @@
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_vec_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
@ -7,9 +7,9 @@
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
|
3375
ggml/src/ggml-cuda/ggml-cuda.cu
Normal file
3375
ggml/src/ggml-cuda/ggml-cuda.cu
Normal file
File diff suppressed because it is too large
Load Diff
165
ggml/src/ggml-cuda/ggml/CMakeLists.txt
Normal file
165
ggml/src/ggml-cuda/ggml/CMakeLists.txt
Normal file
@ -0,0 +1,165 @@
|
||||
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "CUDA Toolkit found")
|
||||
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# 52 == lowest CUDA 12 standard
|
||||
# 60 == FP16 CUDA intrinsics
|
||||
# 61 == integer CUDA intrinsics
|
||||
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52;61;70;75")
|
||||
#set(CMAKE_CUDA_ARCHITECTURES "OFF") # use this to compile much faster, but only F16 models work
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
file(GLOB GGML_HEADERS_CUDA "*.cuh")
|
||||
list(APPEND GGML_HEADERS_CUDA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_CUDA "*.cu")
|
||||
file(GLOB SRCS "template-instances/fattn-wmma*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "template-instances/fattn-vec*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||
else()
|
||||
file(GLOB SRCS "template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/fattn-vec*f16-f16.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
endif()
|
||||
|
||||
add_library(ggml-cuda
|
||||
${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_CUDA}
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-cuda PRIVATE ggml-base)
|
||||
target_include_directories(ggml-cuda PRIVATE . ..)
|
||||
|
||||
# TODO: change the definitions to this target only
|
||||
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
|
||||
if (GGML_CUDA_GRAPHS)
|
||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_CUBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
add_compile_definitions(GGML_CUDA_NO_VMM)
|
||||
endif()
|
||||
|
||||
if (DEFINED GGML_CUDA_DMMV_Y)
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_DMMV_Y}) # for backwards compatibility
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
if (WIN32)
|
||||
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
|
||||
else ()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
endif()
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
# No VMM requested, no need to link directly with the cuda driver lib (libcuda.so)
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cuda_driver)
|
||||
endif()
|
||||
|
||||
set(CUDA_CXX_FLAGS "")
|
||||
|
||||
set(CUDA_FLAGS -use_fast_math)
|
||||
|
||||
if (GGML_FATAL_WARNINGS)
|
||||
list(APPEND CUDA_FLAGS -Werror all-warnings)
|
||||
endif()
|
||||
|
||||
if (GGML_ALL_WARNINGS AND NOT MSVC)
|
||||
set(NVCC_CMD ${CMAKE_CUDA_COMPILER} .c)
|
||||
if (NOT CMAKE_CUDA_HOST_COMPILER STREQUAL "")
|
||||
list(APPEND NVCC_CMD -ccbin ${CMAKE_CUDA_HOST_COMPILER})
|
||||
endif()
|
||||
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler --version
|
||||
OUTPUT_VARIABLE CUDA_CCFULLVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
|
||||
if (NOT CUDA_CCFULLVER MATCHES clang)
|
||||
set(CUDA_CCID "GNU")
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
|
||||
OUTPUT_VARIABLE CUDA_CCVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
else()
|
||||
if (CUDA_CCFULLVER MATCHES Apple)
|
||||
set(CUDA_CCID "AppleClang")
|
||||
else()
|
||||
set(CUDA_CCID "Clang")
|
||||
endif()
|
||||
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
|
||||
endif()
|
||||
|
||||
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
|
||||
get_flags(${CUDA_CCID} ${CUDA_CCVER})
|
||||
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
list(APPEND CUDA_CXX_FLAGS -Wno-pedantic)
|
||||
endif()
|
||||
|
||||
list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument
|
||||
|
||||
if (NOT CUDA_CXX_FLAGS_JOINED STREQUAL "")
|
||||
list(APPEND CUDA_FLAGS -Xcompiler ${CUDA_CXX_FLAGS_JOINED})
|
||||
endif()
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${CUDA_FLAGS}>")
|
||||
else()
|
||||
message(FATAL_ERROR "CUDA Toolkit not found")
|
||||
endif()
|
@ -100,9 +100,9 @@ static constexpr __device__ int get_mmq_x_max_device() {
|
||||
return 128;
|
||||
#else // INT8_MMA_AVAILABLE
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
return 128;
|
||||
#else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#if __CUDA_ARCH__ >= CC_VOLTA
|
||||
#ifdef GGML_CUDA_FORCE_MMQ
|
||||
@ -115,7 +115,7 @@ static constexpr __device__ int get_mmq_x_max_device() {
|
||||
return 64;
|
||||
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
||||
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // INT8_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
@ -124,7 +124,7 @@ static constexpr int get_mmq_y_host(const int cc) {
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_mmq_y_device() {
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(RDNA1)
|
||||
return 64;
|
||||
#else
|
||||
@ -136,7 +136,7 @@ static constexpr __device__ int get_mmq_y_device() {
|
||||
#else
|
||||
return 64;
|
||||
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
#define MMQ_DP4A_TXS_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0}
|
||||
@ -2569,7 +2569,7 @@ static __device__ void mul_mat_q_process_tile(
|
||||
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(RDNA3) || defined(RDNA2)
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // defined(RDNA3) || defined(RDNA2)
|
||||
@ -2579,7 +2579,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#else
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
static __global__ void mul_mat_q(
|
||||
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) {
|
||||
@ -2594,7 +2594,7 @@ static __global__ void mul_mat_q(
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
|
||||
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
|
||||
#if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
{
|
||||
constexpr bool fixup = false;
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
@ -2602,7 +2602,7 @@ static __global__ void mul_mat_q(
|
||||
blockIdx.x, blockIdx.y, 0, ne00/qk);
|
||||
return;
|
||||
}
|
||||
#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
|
||||
const int64_t blocks_per_ne00 = ne00 / qk;
|
||||
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
|
||||
@ -2765,14 +2765,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
|
||||
const int shmem = mmq_get_shmem<type>(mmq_x, mmq_y, cc);
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
||||
if (!shmem_limit_raised[id]) {
|
||||
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
||||
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
||||
shmem_limit_raised[id] = true;
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
const int nty = (args.ne01 + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
|
||||
|
@ -48,10 +48,10 @@ static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
|
||||
}
|
||||
|
||||
template <ggml_type type, int ncols_y>
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
||||
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void mul_mat_vec_q(
|
||||
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
||||
@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
|
||||
|
||||
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||
constexpr int nwarps = 1;
|
||||
constexpr int rows_per_cuda_block = 1;
|
||||
#else
|
||||
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
||||
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
const int row0 = rows_per_cuda_block*blockIdx.x;
|
||||
|
@ -1,6 +1,6 @@
|
||||
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
#define USE_CUB
|
||||
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
|
||||
#ifdef USE_CUB
|
||||
// On Windows CUB uses libraries with variables called CC_PASCAL which conflict with the define in common.cuh.
|
||||
|
113
ggml/src/ggml-hip/CMakeLists.txt
Normal file
113
ggml/src/ggml-hip/CMakeLists.txt
Normal file
@ -0,0 +1,113 @@
|
||||
if (NOT EXISTS $ENV{ROCM_PATH})
|
||||
if (NOT EXISTS /opt/rocm)
|
||||
set(ROCM_PATH /usr)
|
||||
else()
|
||||
set(ROCM_PATH /opt/rocm)
|
||||
endif()
|
||||
else()
|
||||
set(ROCM_PATH $ENV{ROCM_PATH})
|
||||
endif()
|
||||
|
||||
list(APPEND CMAKE_PREFIX_PATH ${ROCM_PATH})
|
||||
list(APPEND CMAKE_PREFIX_PATH "${ROCM_PATH}/lib64/cmake")
|
||||
|
||||
# CMake on Windows doesn't support the HIP language yet
|
||||
if (WIN32)
|
||||
set(CXX_IS_HIPCC TRUE)
|
||||
else()
|
||||
string(REGEX MATCH "hipcc(\.bat)?$" CXX_IS_HIPCC "${CMAKE_CXX_COMPILER}")
|
||||
endif()
|
||||
|
||||
if (CXX_IS_HIPCC)
|
||||
if (LINUX)
|
||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||
endif()
|
||||
|
||||
message(WARNING "Setting hipcc as the C++ compiler is legacy behavior."
|
||||
" Prefer setting the HIP compiler directly. See README for details.")
|
||||
endif()
|
||||
else()
|
||||
# Forward AMDGPU_TARGETS to CMAKE_HIP_ARCHITECTURES.
|
||||
if (AMDGPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES)
|
||||
set(CMAKE_HIP_ARCHITECTURES ${AMDGPU_TARGETS})
|
||||
endif()
|
||||
cmake_minimum_required(VERSION 3.21)
|
||||
enable_language(HIP)
|
||||
endif()
|
||||
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
|
||||
file(GLOB GGML_HEADERS_ROCM "../ggml-cuda/*.cuh")
|
||||
list(APPEND GGML_HEADERS_ROCM "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_ROCM "../ggml-cuda/*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||
else()
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
endif()
|
||||
|
||||
add_library(ggml-hip
|
||||
${GGML_HEADERS_ROCM}
|
||||
${GGML_SOURCES_ROCM})
|
||||
|
||||
target_link_libraries(ggml-hip PRIVATE ggml-base)
|
||||
target_include_directories(ggml-hip PRIVATE . ..)
|
||||
|
||||
# TODO: do not use CUDA definitions for HIP
|
||||
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
||||
|
||||
add_compile_definitions(GGML_USE_HIP)
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
||||
|
||||
if (GGML_HIP_UMA)
|
||||
add_compile_definitions(GGML_HIP_UMA)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_CUBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (CXX_IS_HIPCC)
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
target_link_libraries(ggml-hip PRIVATE hip::device)
|
||||
else()
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE HIP)
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
|
||||
target_link_libraries(ggml-hip PRIVATE ggml-base hip::host roc::rocblas roc::hipblas)
|
@ -3,13 +3,29 @@
|
||||
// GGML internal header
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
#include <arm_sve.h>
|
||||
#endif // __ARM_FEATURE_SVE
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
|
||||
#if defined(__F16C__)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -28,13 +44,13 @@ extern "C" {
|
||||
// if C99 - static_assert is noop
|
||||
// ref: https://stackoverflow.com/a/53923785/4039976
|
||||
#ifndef __cplusplus
|
||||
#ifndef static_assert
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
|
||||
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
||||
#else
|
||||
#define static_assert(cond, msg) struct global_scope_noop_trick
|
||||
#endif
|
||||
#endif
|
||||
#ifndef static_assert
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
|
||||
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
||||
#else
|
||||
#define static_assert(cond, msg) struct global_scope_noop_trick
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
static inline int ggml_up32(int n) {
|
||||
@ -120,14 +136,12 @@ struct ggml_map_custom1_op_params {
|
||||
void * userdata;
|
||||
};
|
||||
|
||||
|
||||
struct ggml_map_custom2_op_params {
|
||||
ggml_custom2_op_t fun;
|
||||
int n_tasks;
|
||||
void * userdata;
|
||||
};
|
||||
|
||||
|
||||
struct ggml_map_custom3_op_params {
|
||||
ggml_custom3_op_t fun;
|
||||
int n_tasks;
|
||||
@ -287,9 +301,249 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
void * ggml_aligned_malloc(size_t size);
|
||||
void ggml_aligned_free(void * ptr, size_t size);
|
||||
|
||||
// TODO: move to threading file
|
||||
void ggml_critical_section_start(void);
|
||||
void ggml_critical_section_end(void);
|
||||
// FP16 to FP32 conversion
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
#ifdef _MSC_VER
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
#else
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
ggml_fp16_internal_t tmp;
|
||||
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
|
||||
return (float)tmp;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
ggml_fp16_t res;
|
||||
ggml_fp16_internal_t tmp = f;
|
||||
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
|
||||
return res;
|
||||
}
|
||||
|
||||
#elif defined(__F16C__)
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
|
||||
#else
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
|
||||
#endif
|
||||
|
||||
#elif defined(__POWER9_VECTOR__)
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
/* the inline asm below is about 12% faster than the lookup method */
|
||||
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
register float f;
|
||||
register double d;
|
||||
__asm__(
|
||||
"mtfprd %0,%2\n"
|
||||
"xscvhpdp %0,%0\n"
|
||||
"frsp %1,%0\n" :
|
||||
/* temp */ "=d"(d),
|
||||
/* out */ "=f"(f):
|
||||
/* in */ "r"(h));
|
||||
return f;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
register double d;
|
||||
register ggml_fp16_t r;
|
||||
__asm__( /* xscvdphp can work on double or single precision */
|
||||
"xscvdphp %0,%2\n"
|
||||
"mffprd %1,%0\n" :
|
||||
/* temp */ "=d"(d),
|
||||
/* out */ "=r"(r):
|
||||
/* in */ "f"(f));
|
||||
return r;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// FP16 <-> FP32
|
||||
// ref: https://github.com/Maratyszcza/FP16
|
||||
|
||||
static inline float fp32_from_bits(uint32_t w) {
|
||||
union {
|
||||
uint32_t as_bits;
|
||||
float as_value;
|
||||
} fp32;
|
||||
fp32.as_bits = w;
|
||||
return fp32.as_value;
|
||||
}
|
||||
|
||||
static inline uint32_t fp32_to_bits(float f) {
|
||||
union {
|
||||
float as_value;
|
||||
uint32_t as_bits;
|
||||
} fp32;
|
||||
fp32.as_value = f;
|
||||
return fp32.as_bits;
|
||||
}
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
const uint32_t w = (uint32_t) h << 16;
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
const uint32_t two_w = w + w;
|
||||
|
||||
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
|
||||
#if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L)
|
||||
const float exp_scale = 0x1.0p-112f;
|
||||
#else
|
||||
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
|
||||
#endif
|
||||
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
|
||||
|
||||
const uint32_t magic_mask = UINT32_C(126) << 23;
|
||||
const float magic_bias = 0.5f;
|
||||
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
|
||||
|
||||
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
|
||||
const uint32_t result = sign |
|
||||
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
|
||||
return fp32_from_bits(result);
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
#if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L)
|
||||
const float scale_to_inf = 0x1.0p+112f;
|
||||
const float scale_to_zero = 0x1.0p-110f;
|
||||
#else
|
||||
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
|
||||
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
|
||||
#endif
|
||||
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
|
||||
|
||||
const uint32_t w = fp32_to_bits(f);
|
||||
const uint32_t shl1_w = w + w;
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
|
||||
if (bias < UINT32_C(0x71000000)) {
|
||||
bias = UINT32_C(0x71000000);
|
||||
}
|
||||
|
||||
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
|
||||
const uint32_t bits = fp32_to_bits(base);
|
||||
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
|
||||
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
|
||||
const uint32_t nonsign = exp_bits + mantissa_bits;
|
||||
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
|
||||
}
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
|
||||
|
||||
// precomputed f32 table for f16 (256 KB)
|
||||
// defined in ggml.c, initialized in ggml_init()
|
||||
GGML_API float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
||||
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
||||
// This is also true for POWER9.
|
||||
#if !defined(GGML_FP16_TO_FP32)
|
||||
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
uint16_t s;
|
||||
memcpy(&s, &f, sizeof(uint16_t));
|
||||
return ggml_table_f32_f16[s];
|
||||
}
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
||||
#endif
|
||||
|
||||
#if !defined(GGML_FP32_TO_FP16)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Converts brain16 to float32.
|
||||
*
|
||||
* The bfloat16 floating point format has the following structure:
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌──┴───┐┌─┴───┐
|
||||
* 0b0000000000000000 brain16
|
||||
*
|
||||
* Since bf16 has the same number of exponent bits as a 32bit float,
|
||||
* encoding and decoding numbers becomes relatively straightforward.
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌──┴───┐┌─┴───────────────────┐
|
||||
* 0b00000000000000000000000000000000 IEEE binary32
|
||||
*
|
||||
* For comparison, the standard fp16 format has fewer exponent bits.
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌─┴─┐┌─┴──────┐
|
||||
* 0b0000000000000000 IEEE binary16
|
||||
*
|
||||
* @see IEEE 754-2008
|
||||
*/
|
||||
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.i = (uint32_t)h.bits << 16;
|
||||
return u.f;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts float32 to brain16.
|
||||
*
|
||||
* This is binary identical with Google Brain float conversion.
|
||||
* Floats shall round to nearest even, and NANs shall be quiet.
|
||||
* Subnormals aren't flushed to zero, except perhaps when used.
|
||||
* This code should vectorize nicely if using modern compilers.
|
||||
*/
|
||||
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
||||
ggml_bf16_t h;
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.f = s;
|
||||
if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
|
||||
h.bits = (u.i >> 16) | 64; /* force to quiet */
|
||||
return h;
|
||||
}
|
||||
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
|
||||
return h;
|
||||
}
|
||||
|
||||
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
|
||||
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
162
ggml/src/ggml-kompute/CMakeLists.txt
Normal file
162
ggml/src/ggml-kompute/CMakeLists.txt
Normal file
@ -0,0 +1,162 @@
|
||||
|
||||
find_package(Vulkan COMPONENTS glslc REQUIRED)
|
||||
find_program(glslc_executable NAMES glslc HINTS Vulkan::glslc)
|
||||
|
||||
if (NOT glslc_executable)
|
||||
message(FATAL_ERROR "glslc not found")
|
||||
endif()
|
||||
|
||||
add_library(ggml-kompute
|
||||
ggml-kompute.cpp
|
||||
../../include/ggml-kompute.h
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-kompute PRIVATE ggml-base kompute)
|
||||
target_include_directories(ggml-kompute PRIVATE . .. ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
add_compile_definitions(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1)
|
||||
|
||||
function(compile_shader)
|
||||
set(options)
|
||||
set(oneValueArgs)
|
||||
set(multiValueArgs SOURCES)
|
||||
cmake_parse_arguments(compile_shader "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
foreach(source ${compile_shader_SOURCES})
|
||||
get_filename_component(filename ${source} NAME)
|
||||
set(spv_file ${filename}.spv)
|
||||
add_custom_command(
|
||||
OUTPUT ${spv_file}
|
||||
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/common.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_getrows.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n_pre.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n.comp
|
||||
COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
||||
COMMENT "Compiling ${source} to ${spv_file}"
|
||||
)
|
||||
|
||||
get_filename_component(RAW_FILE_NAME ${spv_file} NAME)
|
||||
set(FILE_NAME "shader${RAW_FILE_NAME}")
|
||||
string(REPLACE ".comp.spv" ".h" HEADER_FILE ${FILE_NAME})
|
||||
string(TOUPPER ${HEADER_FILE} HEADER_FILE_DEFINE)
|
||||
string(REPLACE "." "_" HEADER_FILE_DEFINE "${HEADER_FILE_DEFINE}")
|
||||
set(OUTPUT_HEADER_FILE "${HEADER_FILE}")
|
||||
message(STATUS "${HEADER_FILE} generating ${HEADER_FILE_DEFINE}")
|
||||
if(CMAKE_GENERATOR MATCHES "Visual Studio")
|
||||
add_custom_command(
|
||||
OUTPUT ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
DEPENDS ${spv_file} xxd
|
||||
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd"
|
||||
)
|
||||
else()
|
||||
add_custom_command(
|
||||
OUTPUT ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_BINARY_DIR}/bin/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
DEPENDS ${spv_file} xxd
|
||||
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/xxd"
|
||||
)
|
||||
endif()
|
||||
endforeach()
|
||||
endfunction()
|
||||
|
||||
if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt")
|
||||
message(STATUS "Kompute found")
|
||||
set(KOMPUTE_OPT_LOG_LEVEL Error CACHE STRING "Kompute log level")
|
||||
add_subdirectory(kompute)
|
||||
|
||||
# Compile our shaders
|
||||
compile_shader(SOURCES
|
||||
kompute-shaders/op_scale.comp
|
||||
kompute-shaders/op_scale_8.comp
|
||||
kompute-shaders/op_add.comp
|
||||
kompute-shaders/op_addrow.comp
|
||||
kompute-shaders/op_mul.comp
|
||||
kompute-shaders/op_silu.comp
|
||||
kompute-shaders/op_relu.comp
|
||||
kompute-shaders/op_gelu.comp
|
||||
kompute-shaders/op_softmax.comp
|
||||
kompute-shaders/op_norm.comp
|
||||
kompute-shaders/op_rmsnorm.comp
|
||||
kompute-shaders/op_diagmask.comp
|
||||
kompute-shaders/op_mul_mat_mat_f32.comp
|
||||
kompute-shaders/op_mul_mat_f16.comp
|
||||
kompute-shaders/op_mul_mat_q8_0.comp
|
||||
kompute-shaders/op_mul_mat_q4_0.comp
|
||||
kompute-shaders/op_mul_mat_q4_1.comp
|
||||
kompute-shaders/op_mul_mat_q4_k.comp
|
||||
kompute-shaders/op_mul_mat_q6_k.comp
|
||||
kompute-shaders/op_getrows_f32.comp
|
||||
kompute-shaders/op_getrows_f16.comp
|
||||
kompute-shaders/op_getrows_q4_0.comp
|
||||
kompute-shaders/op_getrows_q4_1.comp
|
||||
kompute-shaders/op_getrows_q6_k.comp
|
||||
kompute-shaders/op_rope_f16.comp
|
||||
kompute-shaders/op_rope_f32.comp
|
||||
kompute-shaders/op_cpy_f16_f16.comp
|
||||
kompute-shaders/op_cpy_f16_f32.comp
|
||||
kompute-shaders/op_cpy_f32_f16.comp
|
||||
kompute-shaders/op_cpy_f32_f32.comp
|
||||
)
|
||||
|
||||
# Create a custom target for our generated shaders
|
||||
add_custom_target(generated_shaders DEPENDS
|
||||
shaderop_scale.h
|
||||
shaderop_scale_8.h
|
||||
shaderop_add.h
|
||||
shaderop_addrow.h
|
||||
shaderop_mul.h
|
||||
shaderop_silu.h
|
||||
shaderop_relu.h
|
||||
shaderop_gelu.h
|
||||
shaderop_softmax.h
|
||||
shaderop_norm.h
|
||||
shaderop_rmsnorm.h
|
||||
shaderop_diagmask.h
|
||||
shaderop_mul_mat_mat_f32.h
|
||||
shaderop_mul_mat_f16.h
|
||||
shaderop_mul_mat_q8_0.h
|
||||
shaderop_mul_mat_q4_0.h
|
||||
shaderop_mul_mat_q4_1.h
|
||||
shaderop_mul_mat_q4_k.h
|
||||
shaderop_mul_mat_q6_k.h
|
||||
shaderop_getrows_f32.h
|
||||
shaderop_getrows_f16.h
|
||||
shaderop_getrows_q4_0.h
|
||||
shaderop_getrows_q4_1.h
|
||||
shaderop_getrows_q6_k.h
|
||||
shaderop_rope_f16.h
|
||||
shaderop_rope_f32.h
|
||||
shaderop_cpy_f16_f16.h
|
||||
shaderop_cpy_f16_f32.h
|
||||
shaderop_cpy_f32_f16.h
|
||||
shaderop_cpy_f32_f32.h
|
||||
)
|
||||
|
||||
# Create a custom command that depends on the generated_shaders
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
||||
COMMAND ${CMAKE_COMMAND} -E touch ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
||||
DEPENDS generated_shaders
|
||||
COMMENT "Ensuring shaders are generated before compiling ggml-kompute.cpp"
|
||||
)
|
||||
|
||||
# Add the stamp to the main sources to ensure dependency tracking
|
||||
target_sources(ggml-kompute PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
|
||||
else()
|
||||
message(WARNING "Kompute not found")
|
||||
endif()
|
2184
ggml/src/ggml-kompute/ggml-kompute.cpp
Normal file
2184
ggml/src/ggml-kompute/ggml-kompute.cpp
Normal file
File diff suppressed because it is too large
Load Diff
111
ggml/src/ggml-kompute/kompute-shaders/common.comp
Normal file
111
ggml/src/ggml-kompute/kompute-shaders/common.comp
Normal file
@ -0,0 +1,111 @@
|
||||
#extension GL_EXT_shader_16bit_storage: require
|
||||
#extension GL_EXT_shader_8bit_storage: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
|
||||
#extension GL_EXT_control_flow_attributes: enable
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
#extension GL_EXT_debug_printf : enable
|
||||
|
||||
#define QK4_0 32
|
||||
#define QK4_1 32
|
||||
|
||||
#define GELU_COEF_A 0.044715
|
||||
#define SQRT_2_OVER_PI 0.79788456080286535587989211986876
|
||||
#define TWOPI_F 6.283185307179586f
|
||||
|
||||
#define QK_K 256
|
||||
#define K_SCALE_SIZE 12
|
||||
|
||||
#define u8BufToU16(buf, idx) (((uint16_t(buf[idx + 1]) << 8)) | buf[idx])
|
||||
#define u8BufToFloat16(buf, idx) uint16BitsToHalf u8BufToU16(buf, idx)
|
||||
#define u8BufToU32(buf, idx) (((uint32_t u8BufToU16(buf, idx + 2) << 8 | buf[idx + 1]) << 8) | buf[idx])
|
||||
#define u8BufToFloat(buf, idx) uintBitsToFloat u8BufToU32(buf, idx)
|
||||
|
||||
#define sizeof_block_q4_0 0x12
|
||||
struct block_q4_0 {
|
||||
float16_t d;
|
||||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
mat4 dequantize_q4_0(const block_q4_0 xb, uint il) {
|
||||
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float md = -8.f * xb.d;
|
||||
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
|
||||
const uint16_t mask1 = mask0 << 8;
|
||||
|
||||
mat4 reg;
|
||||
for (int i=0;i<8;i++) {
|
||||
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
|
||||
reg[i/2][2*(i%2)+0] = d1 * (b & mask0) + md;
|
||||
reg[i/2][2*(i%2)+1] = d2 * (b & mask1) + md;
|
||||
}
|
||||
return reg;
|
||||
}
|
||||
|
||||
#define sizeof_block_q4_1 0x14
|
||||
struct block_q4_1 {
|
||||
float16_t d;
|
||||
float16_t m;
|
||||
uint8_t qs[QK4_1 / 2];
|
||||
};
|
||||
mat4 dequantize_q4_1(const block_q4_1 xb, uint il) {
|
||||
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float m = xb.m;
|
||||
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
|
||||
const uint16_t mask1 = mask0 << 8;
|
||||
|
||||
mat4 reg;
|
||||
for (int i=0;i<8;i++) {
|
||||
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
|
||||
reg[i/2][2*(i%2)+0] = ((b & mask0) * d1) + m;
|
||||
reg[i/2][2*(i%2)+1] = ((b & mask1) * d2) + m;
|
||||
}
|
||||
return reg;
|
||||
}
|
||||
|
||||
#define sizeof_block_q4_k 144
|
||||
struct block_q4_k {
|
||||
float16_t d;
|
||||
float16_t dmin;
|
||||
uint8_t scales[K_SCALE_SIZE];
|
||||
uint8_t qs[QK_K/2];
|
||||
};
|
||||
|
||||
#define sizeof_block_q6_k 210
|
||||
struct block_q6_k {
|
||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
||||
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||
float16_t d; // super-block scale
|
||||
};
|
||||
mat4 dequantize_q6_k(const block_q6_k xb, uint il) {
|
||||
const float16_t d_all = xb.d;
|
||||
|
||||
const uint qlIndex = 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
||||
const uint qhIndex = 32*(il/8) + 16*(il&1);
|
||||
float16_t sc = xb.scales[(il%2) + 2 * ((il/2))];
|
||||
il = (il/2) & 3;
|
||||
|
||||
const uint16_t kmask1 = il>1 ? uint16_t(il>2 ? 192 : 48) : uint16_t(il>0 ? 12 : 3);
|
||||
const uint16_t kmask2 = il>1 ? uint8_t(0xF0) : uint8_t(0x0F);
|
||||
const float16_t coef = il>1 ? float16_t(1.f/16.f) : float16_t(1.f);
|
||||
const float16_t ml = float16_t(d_all * sc * 32.f);
|
||||
const float16_t dl = float16_t(d_all * sc * coef);
|
||||
mat4 reg;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
const float16_t q = (il&1) != 0 ? ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 2))
|
||||
: ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 4));
|
||||
reg[i/4][i%4] = dl * q - ml;
|
||||
}
|
||||
return reg;
|
||||
}
|
||||
|
||||
|
||||
#define QK8_0 32
|
||||
// struct block_q8_0 {
|
||||
// float16_t d; // delta
|
||||
// int8_t qs[QK8_0]; // quants
|
||||
// };
|
||||
#define sizeof_block_q8_0 34
|
58
ggml/src/ggml-kompute/kompute-shaders/op_add.comp
Normal file
58
ggml/src/ggml-kompute/kompute-shaders/op_add.comp
Normal file
@ -0,0 +1,58 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb00;
|
||||
int nb01;
|
||||
int nb02;
|
||||
int nb03;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
int ne13;
|
||||
int nb10;
|
||||
int nb11;
|
||||
int nb12;
|
||||
int nb13;
|
||||
int ne0;
|
||||
int nb0;
|
||||
int nb1;
|
||||
int nb2;
|
||||
int nb3;
|
||||
//int offs; // TODO: needed for GGML_OP_ACC, see metal code
|
||||
} pcs;
|
||||
|
||||
// general-purpose kernel for addition of two tensors
|
||||
// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
|
||||
// cons: not very efficient
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const uint i13 = i03 % pcs.ne13;
|
||||
const uint i12 = i02 % pcs.ne12;
|
||||
const uint i11 = i01 % pcs.ne11;
|
||||
|
||||
int offs = 0; // TMP (see above)
|
||||
|
||||
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + offs) / 4);
|
||||
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11 ) / 4);
|
||||
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1 + offs) / 4);
|
||||
|
||||
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
|
||||
const uint i10 = i0 % pcs.ne10;
|
||||
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] + inB[pcs.inBOff + src1_off + i10];
|
||||
}
|
||||
}
|
25
ggml/src/ggml-kompute/kompute-shaders/op_addrow.comp
Normal file
25
ggml/src/ggml-kompute/kompute-shaders/op_addrow.comp
Normal file
@ -0,0 +1,25 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
uint row;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 4;
|
||||
|
||||
for (uint x = 0; x < 4; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
out_[i + pcs.outOff] = inA[i + pcs.inAOff] + inB[(i % pcs.row) + pcs.inBOff];
|
||||
}
|
||||
}
|
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f16.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f16.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float16_t
|
||||
#define IN_TYPE_SIZE 2
|
||||
#define OUT_TYPE float16_t
|
||||
#define OUT_TYPE_SIZE 2
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f32.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f32.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float16_t
|
||||
#define IN_TYPE_SIZE 2
|
||||
#define OUT_TYPE float
|
||||
#define OUT_TYPE_SIZE 4
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f16.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f16.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float
|
||||
#define IN_TYPE_SIZE 4
|
||||
#define OUT_TYPE float16_t
|
||||
#define OUT_TYPE_SIZE 2
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f32.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f32.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float
|
||||
#define IN_TYPE_SIZE 4
|
||||
#define OUT_TYPE float
|
||||
#define OUT_TYPE_SIZE 4
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
30
ggml/src/ggml-kompute/kompute-shaders/op_diagmask.comp
Normal file
30
ggml/src/ggml-kompute/kompute-shaders/op_diagmask.comp
Normal file
@ -0,0 +1,30 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
uint n_past;
|
||||
int ne00;
|
||||
int ne01;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i02 = gl_WorkGroupID.z;
|
||||
const uint i01 = gl_WorkGroupID.y;
|
||||
const uint i00 = gl_WorkGroupID.x;
|
||||
|
||||
const uint index = i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00 + i00;
|
||||
|
||||
if (i00 > pcs.n_past + i01) {
|
||||
out_[index + pcs.outOff] = uintBitsToFloat(0xFF800000);
|
||||
} else {
|
||||
out_[index + pcs.outOff] = in_[index + pcs.inOff];
|
||||
}
|
||||
}
|
22
ggml/src/ggml-kompute/kompute-shaders/op_gelu.comp
Normal file
22
ggml/src/ggml-kompute/kompute-shaders/op_gelu.comp
Normal file
@ -0,0 +1,22 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 8;
|
||||
|
||||
for (uint x = 0; x < 8; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
const float y = in_[i + pcs.inOff];
|
||||
out_[i + pcs.outOff] = 0.5*y*(1.0 + tanh(clamp(SQRT_2_OVER_PI*y*(1.0 + GELU_COEF_A*y*y), -15.0, 15.0)));
|
||||
}
|
||||
}
|
17
ggml/src/ggml-kompute/kompute-shaders/op_getrows.comp
Normal file
17
ggml/src/ggml-kompute/kompute-shaders/op_getrows.comp
Normal file
@ -0,0 +1,17 @@
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
const int r = inB[i + pcs.inBOff];
|
||||
|
||||
int z = 0;
|
||||
for (uint ind = gl_LocalInvocationID.x; ind < pcs.ne00/16; ind += gl_WorkGroupSize.x) {
|
||||
const uint inIndex = (r * pcs.nb01 + pcs.inAOff) + ind/NL * SIZE_OF_BLOCK;
|
||||
const mat4 result = dequantize_block(inIndex, ind%NL);
|
||||
for (uint j = 0; j < 4; ++j) {
|
||||
for (uint k = 0; k < 4; ++k) {
|
||||
const uint outIndex = i * pcs.nb1/BYTES_FOR_TYPE + pcs.outOff + z;
|
||||
out_[outIndex] = result[j][k];
|
||||
++z;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
31
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f16.comp
Normal file
31
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f16.comp
Normal file
@ -0,0 +1,31 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
void dequantize_row_f16(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
|
||||
for (int j = 0; j < k; j++) {
|
||||
out_[y + j] = inA[x + j];
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
const int r = inB[i + pcs.inBOff];
|
||||
|
||||
dequantize_row_f16(r*pcs.nb01/2/*bytes for float16*/ + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
|
||||
}
|
31
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f32.comp
Normal file
31
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f32.comp
Normal file
@ -0,0 +1,31 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { float inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
void dequantize_row_f32(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
|
||||
for (int j = 0; j < k; j++) {
|
||||
out_[y + j] = inA[x + j];
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
const int r = inB[i + pcs.inBOff];
|
||||
|
||||
dequantize_row_f32(r*pcs.nb01/4 + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
|
||||
}
|
38
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_0.comp
Normal file
38
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_0.comp
Normal file
@ -0,0 +1,38 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define NL 2
|
||||
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_0
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
block_q4_0 get_unaligned_block_q4_0(uint index) {
|
||||
block_q4_0 fres;
|
||||
fres.d = u8BufToFloat16(inA, index);
|
||||
[[unroll]] for (uint it = 0; it != QK4_0 / 2; it++) {
|
||||
fres.qs[it] = inA[index+2+it];
|
||||
}
|
||||
return fres;
|
||||
}
|
||||
|
||||
mat4 dequantize_block(uint index, uint il) {
|
||||
const block_q4_0 block = get_unaligned_block_q4_0(index);
|
||||
return dequantize_q4_0(block, il);
|
||||
}
|
||||
|
||||
#include "op_getrows.comp"
|
39
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_1.comp
Normal file
39
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_1.comp
Normal file
@ -0,0 +1,39 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define NL 2
|
||||
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_1
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
block_q4_1 get_unaligned_block_q4_1(uint index) {
|
||||
block_q4_1 fres;
|
||||
fres.d = u8BufToFloat16(inA, index);
|
||||
fres.m = u8BufToFloat16(inA, index+2);
|
||||
[[unroll]] for (uint it = 0; it != QK4_1 / 2; it++) {
|
||||
fres.qs[it] = inA[index+4+it];
|
||||
}
|
||||
return fres;
|
||||
}
|
||||
|
||||
mat4 dequantize_block(uint index, uint il) {
|
||||
const block_q4_1 block = get_unaligned_block_q4_1(index);
|
||||
return dequantize_q4_1(block, il);
|
||||
}
|
||||
|
||||
#include "op_getrows.comp"
|
44
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q6_k.comp
Normal file
44
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q6_k.comp
Normal file
@ -0,0 +1,44 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define NL 16
|
||||
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
||||
#define SIZE_OF_BLOCK sizeof_block_q6_k
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
block_q6_k get_unaligned_block_q6_k(uint index) {
|
||||
block_q6_k fres;
|
||||
[[unroll]] for (uint it = 0; it != QK_K / 2; it++) {
|
||||
fres.ql[it] = inA[index + it];
|
||||
}
|
||||
[[unroll]] for (uint it = 0; it != QK_K / 4; it++) {
|
||||
fres.qh[it] = inA[index + QK_K/2 + it];
|
||||
}
|
||||
[[unroll]] for (uint it = 0; it != QK_K / 16; it++) {
|
||||
fres.scales[it] = int8_t(inA[index + QK_K/2 + QK_K/4 + it]);
|
||||
}
|
||||
fres.d = u8BufToFloat16(inA, index + QK_K/2 + QK_K/4 + QK_K/16);
|
||||
return fres;
|
||||
}
|
||||
|
||||
mat4 dequantize_block(uint index, uint il) {
|
||||
const block_q6_k block = get_unaligned_block_q6_k(index);
|
||||
return dequantize_q6_k(block, il);
|
||||
}
|
||||
|
||||
#include "op_getrows.comp"
|
52
ggml/src/ggml-kompute/kompute-shaders/op_mul.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_mul.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb00;
|
||||
int nb01;
|
||||
int nb02;
|
||||
int nb03;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
int ne13;
|
||||
int nb10;
|
||||
int nb11;
|
||||
int nb12;
|
||||
int nb13;
|
||||
int ne0;
|
||||
int nb0;
|
||||
int nb1;
|
||||
int nb2;
|
||||
int nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const uint i13 = i03 % pcs.ne13;
|
||||
const uint i12 = i02 % pcs.ne12;
|
||||
const uint i11 = i01 % pcs.ne11;
|
||||
|
||||
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01) / 4);
|
||||
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11) / 4);
|
||||
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1) / 4);
|
||||
|
||||
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
|
||||
const uint i10 = i0 % pcs.ne10;
|
||||
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] * inB[pcs.inBOff + src1_off + i10];
|
||||
}
|
||||
}
|
67
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_f16.comp
Normal file
67
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_f16.comp
Normal file
@ -0,0 +1,67 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
|
||||
layout(local_size_x_id = 0) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
uint nb10;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
int ne0;
|
||||
int ne1;
|
||||
uint r2;
|
||||
uint r3;
|
||||
} pcs;
|
||||
|
||||
#define N_F16_F32 4
|
||||
|
||||
void main() {
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint rb = gl_WorkGroupID.y*N_F16_F32;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = r0*pcs.nb01 + (i12/pcs.r2)*pcs.nb02 + (i13/pcs.r3)*pcs.nb02*pcs.ne02;
|
||||
|
||||
const uint x = offset0 / 2 + pcs.inAOff; // Based from inA
|
||||
|
||||
for (uint row = 0; row < N_F16_F32; ++row) {
|
||||
uint r1 = rb + row;
|
||||
if (r1 >= pcs.ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
const uint y = (r1*pcs.nb11 + im*pcs.nb12) / 4 + pcs.inBOff; // Based from inB
|
||||
|
||||
float sumf = 0;
|
||||
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
|
||||
sumf += float(inA[x+i]) * float(inB[y+i]);
|
||||
}
|
||||
|
||||
const float all_sum = subgroupAdd(sumf);
|
||||
if (subgroupElect()) {
|
||||
out_[im*pcs.ne1*pcs.ne0 + r1*pcs.ne0 + r0 + pcs.outOff] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,51 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
#extension GL_EXT_debug_printf : enable
|
||||
|
||||
// device subgroup size
|
||||
layout (local_size_x_id = 0) in;
|
||||
|
||||
layout(binding = 0) readonly buffer tensorInA { float inA[]; };
|
||||
layout(binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout(binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
int ne11;
|
||||
int ne12;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
}
|
||||
pcs;
|
||||
|
||||
|
||||
void main() {
|
||||
uvec3 gid = gl_WorkGroupID;
|
||||
|
||||
uint bc_ab = pcs.ne12 > pcs.ne02 ? gid.z / (pcs.ne12 / pcs.ne02) : gid.z;
|
||||
uint bc_ba = pcs.ne02 > pcs.ne12 ? gid.z / (pcs.ne02 / pcs.ne12) : gid.z;
|
||||
|
||||
const uint x = (gid.x*pcs.nb01 + bc_ab*pcs.nb02) / 4 + pcs.inAOff; // Based from inA
|
||||
const uint y = (gid.y*pcs.nb11 + bc_ba*pcs.nb12) / 4 + pcs.inBOff; // based from inB
|
||||
float sum = 0.0f;
|
||||
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
|
||||
sum += float(inA[x+i]) * float(inB[y+i]);
|
||||
}
|
||||
|
||||
const float all_sum = subgroupAdd(sum);
|
||||
if (subgroupElect()) {
|
||||
out_[gid.z*(pcs.nb2/4) + gid.y*(pcs.nb1/4) + gid.x + pcs.outOff] = all_sum;
|
||||
}
|
||||
}
|
33
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_0.comp
Normal file
33
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_0.comp
Normal file
@ -0,0 +1,33 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define BLOCKS_IN_QUANT QK4_0
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_0
|
||||
#define N_ROWS 4
|
||||
|
||||
#include "op_mul_mv_q_n_pre.comp"
|
||||
|
||||
// The q4_0 version of this function
|
||||
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
|
||||
vec2 acc = vec2(0.0, 0.0);
|
||||
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
|
||||
float d = float(u8BufToFloat16(inA, index));
|
||||
float sumy = 0.0f;
|
||||
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
|
||||
const uint16_t b = u8BufToU16(inA, index + 2 + il + i);
|
||||
|
||||
const float yl0 = inB[yb + i];
|
||||
const float yl1 = inB[yb + i + 1];
|
||||
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
|
||||
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
|
||||
|
||||
sumy += yl0 + yl1 + yl8 + yl9;
|
||||
|
||||
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
|
||||
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
|
||||
}
|
||||
return d * (sumy * -8.f + acc[0] + acc[1]);
|
||||
}
|
||||
|
||||
#include "op_mul_mv_q_n.comp"
|
35
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_1.comp
Normal file
35
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_1.comp
Normal file
@ -0,0 +1,35 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define BLOCKS_IN_QUANT QK4_1
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_1
|
||||
#define N_ROWS 4
|
||||
|
||||
#include "op_mul_mv_q_n_pre.comp"
|
||||
|
||||
// The q4_1 version of this function
|
||||
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
|
||||
vec2 acc = vec2(0.0, 0.0);
|
||||
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
|
||||
float d = float(u8BufToFloat16(inA, index));
|
||||
float m = float(u8BufToFloat16(inA, index+2));
|
||||
|
||||
float sumy = 0.0f;
|
||||
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
|
||||
const uint16_t b = u8BufToU16(inA, index + 4 + il + i);
|
||||
|
||||
const float yl0 = inB[yb + i];
|
||||
const float yl1 = inB[yb + i + 1];
|
||||
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
|
||||
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
|
||||
|
||||
sumy += yl0 + yl1 + yl8 + yl9;
|
||||
|
||||
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
|
||||
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
|
||||
}
|
||||
return d * (acc[0] + acc[1]) + sumy * m;
|
||||
}
|
||||
|
||||
#include "op_mul_mv_q_n.comp"
|
133
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_k.comp
Normal file
133
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_k.comp
Normal file
@ -0,0 +1,133 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define N_DST 4
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_k
|
||||
|
||||
layout(local_size_x = 4) in;
|
||||
layout(local_size_y = 8) in;
|
||||
layout(local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { block_q4_k inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne10;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne01;
|
||||
int ne02;
|
||||
int ne12;
|
||||
int r2;
|
||||
int r3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint16_t kmask1 = uint16_t(0x3f3f);
|
||||
const uint16_t kmask2 = uint16_t(0x0f0f);
|
||||
const uint16_t kmask3 = uint16_t(0xc0c0);
|
||||
|
||||
const uint ix = gl_SubgroupInvocationID/8; // 0...3
|
||||
const uint it = gl_SubgroupInvocationID%8; // 0...7
|
||||
const uint iq = it/4; // 0 or 1
|
||||
const uint ir = it%4; // 0...3
|
||||
|
||||
const uint nb = pcs.ne00/QK_K;
|
||||
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint first_row = r0 * N_DST;
|
||||
const uint ib_row = first_row * nb;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
|
||||
const uint xblk = ib_row + offset0 + pcs.inAOff;
|
||||
const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff;
|
||||
|
||||
float yl[16];
|
||||
float yh[16];
|
||||
float sumf[N_DST] = {0.f, 0.f, 0.f, 0.f};
|
||||
float all_sum = 0.f;
|
||||
|
||||
uint y4 = y + ix * QK_K + 64 * iq + 8 * ir;
|
||||
|
||||
for (uint ib = ix; ib < nb; ib += 4) {
|
||||
const uint blk_idx = ib + xblk;
|
||||
|
||||
float sumy[4] = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
yl[i+0] = inB[y4+i+ 0]; sumy[0] += yl[i+0];
|
||||
yl[i+8] = inB[y4+i+ 32]; sumy[1] += yl[i+8];
|
||||
yh[i+0] = inB[y4+i+128]; sumy[2] += yh[i+0];
|
||||
yh[i+8] = inB[y4+i+160]; sumy[3] += yh[i+8];
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
uint row_idx = row * nb;
|
||||
|
||||
uint16_t sc_0 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 0);
|
||||
uint16_t sc_1 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 2);
|
||||
uint16_t sc_2 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 4);
|
||||
uint16_t sc_3 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 6);
|
||||
uint16_t sc_4 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 8);
|
||||
|
||||
uint16_t sc16[4];
|
||||
sc16[0] = sc_0 & kmask1;
|
||||
sc16[1] = sc_2 & kmask1;
|
||||
sc16[2] = ((sc_4 >> 0) & kmask2) | ((sc_0 & kmask3) >> 2);
|
||||
sc16[3] = ((sc_4 >> 4) & kmask2) | ((sc_2 & kmask3) >> 2);
|
||||
|
||||
float acc1[4] = {0.f, 0.f, 0.f, 0.f};
|
||||
float acc2[4] = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int i = 0; i < 8; i += 2) {
|
||||
uint16_t q1 = u8BufToU16(inA[blk_idx + row_idx].qs, 32 * iq + 8 * ir + i);
|
||||
uint16_t q2 = u8BufToU16(inA[blk_idx + row_idx].qs, 64 + 32 * iq + 8 * ir + i);
|
||||
acc1[0] += yl[i+0] * (q1 & 0x000F);
|
||||
acc1[1] += yl[i+1] * (q1 & 0x0F00);
|
||||
acc1[2] += yl[i+8] * (q1 & 0x00F0);
|
||||
acc1[3] += yl[i+9] * (q1 & 0xF000);
|
||||
acc2[0] += yh[i+0] * (q2 & 0x000F);
|
||||
acc2[1] += yh[i+1] * (q2 & 0x0F00);
|
||||
acc2[2] += yh[i+8] * (q2 & 0x00F0);
|
||||
acc2[3] += yh[i+9] * (q2 & 0xF000);
|
||||
}
|
||||
|
||||
uint8_t sc8_0 = uint8_t(sc16[0] & 0xFF);
|
||||
uint8_t sc8_1 = uint8_t(sc16[0] >> 8 );
|
||||
uint8_t sc8_2 = uint8_t(sc16[1] & 0xFF);
|
||||
uint8_t sc8_3 = uint8_t(sc16[1] >> 8 );
|
||||
uint8_t sc8_4 = uint8_t(sc16[2] & 0xFF);
|
||||
uint8_t sc8_5 = uint8_t(sc16[2] >> 8 );
|
||||
uint8_t sc8_6 = uint8_t(sc16[3] & 0xFF);
|
||||
uint8_t sc8_7 = uint8_t(sc16[3] >> 8 );
|
||||
|
||||
float dall = float(inA[blk_idx + row_idx].d);
|
||||
float dmin = float(inA[blk_idx + row_idx].dmin);
|
||||
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8_0 +
|
||||
(acc1[2] + 1.f/256.f * acc1[3]) * sc8_1 * 1.f/16.f +
|
||||
(acc2[0] + 1.f/256.f * acc2[1]) * sc8_4 +
|
||||
(acc2[2] + 1.f/256.f * acc2[3]) * sc8_5 * 1.f/16.f) -
|
||||
dmin * (sumy[0] * sc8_2 + sumy[1] * sc8_3 + sumy[2] * sc8_6 + sumy[3] * sc8_7);
|
||||
}
|
||||
|
||||
y4 += 4 * QK_K;
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
all_sum = subgroupAdd(sumf[row]);
|
||||
if (subgroupElect()) {
|
||||
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
94
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q6_k.comp
Normal file
94
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q6_k.comp
Normal file
@ -0,0 +1,94 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define SIZE_OF_BLOCK sizeof_block_q6_k
|
||||
|
||||
layout(local_size_x_id = 0) in;
|
||||
layout(local_size_y_id = 1) in;
|
||||
layout(local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne10;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne01;
|
||||
int gqa;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint8_t kmask1 = uint8_t(0x03);
|
||||
const uint8_t kmask2 = uint8_t(0x0C);
|
||||
const uint8_t kmask3 = uint8_t(0x30);
|
||||
const uint8_t kmask4 = uint8_t(0xC0);
|
||||
|
||||
const uint nb = pcs.ne00/QK_K;
|
||||
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint r2 = gl_WorkGroupID.z;
|
||||
|
||||
const uint row = (r0 * gl_NumSubgroups + gl_SubgroupID);
|
||||
const uint offset0 = r2/pcs.gqa*(nb*pcs.ne0);
|
||||
const uint x = row * nb + offset0; // Based from inA without base offset
|
||||
const uint yy = r1*pcs.ne10 + r2*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
// bits of invocation ID for gl_SubgroupSize=32:
|
||||
// x x x x x
|
||||
// 4 3 2 1 0
|
||||
// ( tid ) ix
|
||||
// ip ( il )
|
||||
|
||||
const uint block_stride = gl_SubgroupSize / 16; // number of blocks each subgroup processes
|
||||
const uint tid = gl_SubgroupInvocationID/block_stride; // first block_stride groups have tid=0
|
||||
const uint ix = gl_SubgroupInvocationID%block_stride; // first block is 0..block_stride-1
|
||||
const uint ip = tid/8; // first or second half of block (0 or 1)
|
||||
const uint il = tid%8; // each half has 8 parts, one per scale
|
||||
const uint n = 4; // 4 scales at a time (and 4 sums)
|
||||
const uint l0 = n*il; // offset into half-block, 0..28
|
||||
const uint is = 8*ip + l0/16; // 0, 1, 8, 9
|
||||
|
||||
const uint y_offset = 128*ip + l0;
|
||||
const uint q_offset_l = 64*ip + l0;
|
||||
const uint q_offset_h = 32*ip + l0;
|
||||
|
||||
for (uint i = ix; i < nb; i += block_stride) {
|
||||
|
||||
const uint baseIndex = (x + i) * SIZE_OF_BLOCK + pcs.inAOff;
|
||||
|
||||
const uint qlIndex = q_offset_l;
|
||||
const uint q2Index = qlIndex + QK_K/8;
|
||||
const uint qhIndex = q_offset_h;
|
||||
const uint y = yy + i * QK_K + y_offset;
|
||||
|
||||
float sums[4] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
for (uint l = 0; l < n; ++l) {
|
||||
const uint8_t currentQ1 = inA[baseIndex + qlIndex + l];
|
||||
const uint8_t currentQ2 = inA[baseIndex + q2Index + l];
|
||||
const uint8_t currentQh = inA[baseIndex + QK_K/2 + qhIndex + l];
|
||||
|
||||
sums[0] += inB[y+l+ 0] * (int8_t((currentQ1 & 0xF) | ((currentQh & kmask1) << 4)) - 32);
|
||||
sums[1] += inB[y+l+32] * (int8_t((currentQ2 & 0xF) | ((currentQh & kmask2) << 2)) - 32);
|
||||
sums[2] += inB[y+l+64] * (int8_t((currentQ1 >> 4) | ((currentQh & kmask3) << 0)) - 32);
|
||||
sums[3] += inB[y+l+96] * (int8_t((currentQ2 >> 4) | ((currentQh & kmask4) >> 2)) - 32);
|
||||
}
|
||||
|
||||
float d = u8BufToFloat16(inA, baseIndex + QK_K/2 + QK_K/4 + QK_K/16);
|
||||
sumf += d * (sums[0] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + is]) + sums[1] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 2 + is]) + sums[2] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 4 + is]) + sums[3] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 6 + is]));
|
||||
}
|
||||
|
||||
const float tot = subgroupAdd(sumf);
|
||||
if (subgroupElect()) {
|
||||
out_[r1*pcs.ne0 + r2*pcs.ne0*pcs.ne1 + row + pcs.outOff] = tot;
|
||||
}
|
||||
}
|
73
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q8_0.comp
Normal file
73
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q8_0.comp
Normal file
@ -0,0 +1,73 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#include "op_mul_mv_q_n_pre.comp"
|
||||
|
||||
#define SIZE_OF_D 2
|
||||
|
||||
#define N_DST 4 // each SIMD group works on 4 rows
|
||||
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
||||
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
||||
|
||||
#define NB_Q8_0 8
|
||||
|
||||
void main() {
|
||||
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
|
||||
if (gl_SubgroupInvocationID > 31)
|
||||
return;
|
||||
|
||||
const int nr = N_DST;
|
||||
const int nsg = N_SIMDGROUP;
|
||||
const int nw = N_SIMDWIDTH;
|
||||
|
||||
const int nb = pcs.ne00/QK8_0;
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint first_row = (r0 * nsg + gl_SubgroupID) * nr;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
|
||||
const uint x = offset0*sizeof_block_q8_0 + pcs.inAOff; // Based from inA
|
||||
const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff; // based from inB
|
||||
|
||||
float yl[NB_Q8_0];
|
||||
float sumf[N_DST]={0.f, 0.f, 0.f, 0.f};
|
||||
|
||||
const uint ix = gl_SubgroupInvocationID.x/4;
|
||||
const uint il = gl_SubgroupInvocationID.x%4;
|
||||
|
||||
uint yb = y + ix * QK8_0 + NB_Q8_0*il;
|
||||
|
||||
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
|
||||
for (uint ib = ix; ib < nb; ib += nw/4) {
|
||||
for (int i = 0; i < NB_Q8_0; ++i) {
|
||||
yl[i] = inB[yb + i];
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; row++) {
|
||||
const uint block_offset = (ib+row*nb) * sizeof_block_q8_0;
|
||||
float sumq = 0.f;
|
||||
for (int iq = 0; iq < NB_Q8_0; ++iq) {
|
||||
const int8_t qs_iq = int8_t(inA[x + block_offset + SIZE_OF_D + NB_Q8_0*il + iq]);
|
||||
sumq += qs_iq * yl[iq];
|
||||
}
|
||||
const float16_t d = u8BufToFloat16(inA, x + block_offset);
|
||||
sumf[row] += sumq*d;
|
||||
}
|
||||
|
||||
yb += NB_Q8_0 * nw;
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; ++row) {
|
||||
const float tot = subgroupAdd(sumf[row]);
|
||||
if (subgroupElect() && first_row + row < pcs.ne01) {
|
||||
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row] = tot;
|
||||
}
|
||||
}
|
||||
}
|
48
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n.comp
Normal file
48
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n.comp
Normal file
@ -0,0 +1,48 @@
|
||||
void main() {
|
||||
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
|
||||
if (gl_SubgroupInvocationID > 31)
|
||||
return;
|
||||
|
||||
const uint nb = uint(pcs.ne00/BLOCKS_IN_QUANT);
|
||||
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint first_row = (r0 * gl_NumSubgroups + gl_SubgroupID) * N_ROWS;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
|
||||
const uint x = offset0; // Based from inA without base offset
|
||||
const uint y = r1*uint(pcs.ne10)+im*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
|
||||
|
||||
float sumf[N_ROWS] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
const uint ix = gl_SubgroupInvocationID/2;
|
||||
const uint il = (BLOCKS_IN_QUANT/4)*(gl_SubgroupInvocationID%2);
|
||||
|
||||
uint yb = y + ix * BLOCKS_IN_QUANT + il;
|
||||
|
||||
//debugPrintfEXT("gl_NumSubgroups=%d, gl_SubgroupID=%d, gl_SubgroupInvocationID=%d, glSubgroupSize=%d, gl_WorkGroupSize.x=%d, gl_WorkGroupSize.y=%d, gl_WorkGroupSize.z=%d\n",
|
||||
// gl_NumSubgroups, gl_SubgroupID, gl_SubgroupInvocationID, gl_SubgroupSize,
|
||||
// gl_WorkGroupSize.x, gl_WorkGroupSize.y, gl_WorkGroupSize.z);
|
||||
|
||||
for (uint ib = ix; ib < nb; ib += 16) {
|
||||
for (int row = 0; row < N_ROWS; row++) {
|
||||
const uint block_index = x + ib + row * nb;
|
||||
sumf[row] += block_q_n_dot_y(block_index, yb, il);
|
||||
}
|
||||
|
||||
yb += BLOCKS_IN_QUANT * 16;
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_ROWS; ++row) {
|
||||
const float tot = subgroupAdd(sumf[row]);
|
||||
if (first_row + row < pcs.ne01 && subgroupElect()) {
|
||||
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = tot;
|
||||
}
|
||||
}
|
||||
}
|
22
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n_pre.comp
Normal file
22
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n_pre.comp
Normal file
@ -0,0 +1,22 @@
|
||||
layout(local_size_x_id = 0) in;
|
||||
layout(local_size_y = 1) in;
|
||||
layout(local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
int ne10;
|
||||
int ne12;
|
||||
int ne0;
|
||||
int ne1;
|
||||
uint r2;
|
||||
uint r3;
|
||||
} pcs;
|
84
ggml/src/ggml-kompute/kompute-shaders/op_norm.comp
Normal file
84
ggml/src/ggml-kompute/kompute-shaders/op_norm.comp
Normal file
@ -0,0 +1,84 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 256) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
uint ne00;
|
||||
uint nb01;
|
||||
float eps;
|
||||
} pcs;
|
||||
|
||||
shared float sum[gl_WorkGroupSize.x];
|
||||
|
||||
void main() {
|
||||
const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
|
||||
// MEAN
|
||||
// parallel sum
|
||||
sum[gl_LocalInvocationID.x] = 0.0;
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
sum[gl_LocalInvocationID.x] += in_[x+i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
||||
if (gl_LocalInvocationID.x < i) {
|
||||
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sum[0] /= float(pcs.ne00);
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
const float mean = sum[0];
|
||||
|
||||
// recenter
|
||||
const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
out_[y+i00] = in_[x+i00] - mean;
|
||||
}
|
||||
|
||||
// VARIANCE
|
||||
// parallel sum
|
||||
sum[gl_LocalInvocationID.x] = 0.0;
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
sum[gl_LocalInvocationID.x] += out_[y+i00] * out_[y+i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
||||
if (gl_LocalInvocationID.x < i) {
|
||||
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sum[0] /= float(pcs.ne00);
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
const float variance = sum[0];
|
||||
|
||||
const float scale = 1.0f/sqrt(variance + pcs.eps);
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
out_[y+i00] *= scale;
|
||||
}
|
||||
}
|
21
ggml/src/ggml-kompute/kompute-shaders/op_relu.comp
Normal file
21
ggml/src/ggml-kompute/kompute-shaders/op_relu.comp
Normal file
@ -0,0 +1,21 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 4;
|
||||
|
||||
for (uint x = 0; x < 4; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
out_[i + pcs.outOff] = max(0.0, in_[i + pcs.inOff]);
|
||||
}
|
||||
}
|
53
ggml/src/ggml-kompute/kompute-shaders/op_rmsnorm.comp
Normal file
53
ggml/src/ggml-kompute/kompute-shaders/op_rmsnorm.comp
Normal file
@ -0,0 +1,53 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 512) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
uint ne00;
|
||||
uint nb01;
|
||||
float eps;
|
||||
} pcs;
|
||||
|
||||
shared float sum[gl_WorkGroupSize.x];
|
||||
|
||||
void main() {
|
||||
const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
|
||||
|
||||
// parallel sum
|
||||
sum[gl_LocalInvocationID.x] = 0.0;
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
sum[gl_LocalInvocationID.x] += in_[x+i00] * in_[x+i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
||||
if (gl_LocalInvocationID.x < i) {
|
||||
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sum[0] /= float(pcs.ne00);
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
|
||||
const float scale = 1.0f/sqrt(sum[0] + pcs.eps);
|
||||
|
||||
const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
out_[y+i00] = in_[x+i00] * scale;
|
||||
}
|
||||
}
|
73
ggml/src/ggml-kompute/kompute-shaders/op_rope_f16.comp
Normal file
73
ggml/src/ggml-kompute/kompute-shaders/op_rope_f16.comp
Normal file
@ -0,0 +1,73 @@
|
||||
#version 450
|
||||
|
||||
#include "rope_common.comp"
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float16_t out_[]; };
|
||||
|
||||
void main() {
|
||||
const uint i3 = gl_WorkGroupID.z;
|
||||
const uint i2 = gl_WorkGroupID.y;
|
||||
const uint i1 = gl_WorkGroupID.x;
|
||||
|
||||
const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0;
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||
|
||||
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
||||
|
||||
const int p = inB[pcs.inBOff + i2];
|
||||
|
||||
float theta = float(p);
|
||||
|
||||
if (!is_neox) {
|
||||
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = float(inA[src]);
|
||||
const float x1 = float(inA[src+1]);
|
||||
|
||||
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
||||
out_[dst_data+1] = float16_t(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
} else {
|
||||
const float inv_ndims = -1.f/pcs.n_dims;
|
||||
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
||||
const uint cur_rot = ic;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint i0 = ic/2;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = float(inA[src]);
|
||||
const float x1 = float(inA[src+pcs.n_dims/2]);
|
||||
|
||||
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
||||
out_[dst_data+pcs.n_dims/2] = float16_t(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
|
||||
for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
|
||||
const uint i0 = ic;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
out_[dst_data + 0] = inA[src + 0];
|
||||
out_[dst_data + 1] = inA[src + 1];
|
||||
}
|
||||
}
|
||||
}
|
73
ggml/src/ggml-kompute/kompute-shaders/op_rope_f32.comp
Normal file
73
ggml/src/ggml-kompute/kompute-shaders/op_rope_f32.comp
Normal file
@ -0,0 +1,73 @@
|
||||
#version 450
|
||||
|
||||
#include "rope_common.comp"
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
void main() {
|
||||
const uint i3 = gl_WorkGroupID.z;
|
||||
const uint i2 = gl_WorkGroupID.y;
|
||||
const uint i1 = gl_WorkGroupID.x;
|
||||
|
||||
const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0;
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||
|
||||
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
||||
|
||||
const int p = inB[pcs.inBOff + i2];
|
||||
|
||||
float theta = float(p);
|
||||
|
||||
if (!is_neox) {
|
||||
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = inA[src];
|
||||
const float x1 = inA[src+1];
|
||||
|
||||
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
||||
out_[dst_data+1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
} else {
|
||||
const float inv_ndims = -1.f/pcs.n_dims;
|
||||
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
||||
const uint cur_rot = ic;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint i0 = ic/2;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = inA[src];
|
||||
const float x1 = inA[src+pcs.n_dims/2];
|
||||
|
||||
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
||||
out_[dst_data+pcs.n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
|
||||
const uint i0 = ic;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
out_[dst_data + 0] = inA[src + 0];
|
||||
out_[dst_data + 1] = inA[src + 1];
|
||||
}
|
||||
}
|
||||
}
|
19
ggml/src/ggml-kompute/kompute-shaders/op_scale.comp
Normal file
19
ggml/src/ggml-kompute/kompute-shaders/op_scale.comp
Normal file
@ -0,0 +1,19 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
float scale;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
|
||||
}
|
23
ggml/src/ggml-kompute/kompute-shaders/op_scale_8.comp
Normal file
23
ggml/src/ggml-kompute/kompute-shaders/op_scale_8.comp
Normal file
@ -0,0 +1,23 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
float scale;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 8;
|
||||
|
||||
for (uint x = 0; x < 8; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
|
||||
}
|
||||
}
|
22
ggml/src/ggml-kompute/kompute-shaders/op_silu.comp
Normal file
22
ggml/src/ggml-kompute/kompute-shaders/op_silu.comp
Normal file
@ -0,0 +1,22 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 4;
|
||||
|
||||
for (uint x = 0; x < 4; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
const float y = in_[i + pcs.inOff];
|
||||
out_[i + pcs.outOff] = y / (1.0 + exp(-y));
|
||||
}
|
||||
}
|
56
ggml/src/ggml-kompute/kompute-shaders/op_softmax.comp
Normal file
56
ggml/src/ggml-kompute/kompute-shaders/op_softmax.comp
Normal file
@ -0,0 +1,56 @@
|
||||
// TODO: implement multi-simd softmax (llama.cpp commit e16b9fa4)
|
||||
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x_id = 0) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
float scale;
|
||||
int mask;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
if (gl_SubgroupInvocationID > 31)
|
||||
return;
|
||||
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const uint extra_off = i03*pcs.ne02*pcs.ne01*pcs.ne00 + i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00;
|
||||
const uint psrc0 = extra_off + pcs.inAOff; // Based from inA
|
||||
const uint pmask = i01*pcs.ne00 + pcs.inBOff; // Based from inB
|
||||
const uint pdst = extra_off + pcs.outOff; // Based from out_
|
||||
|
||||
// parallel max
|
||||
float localMax = uintBitsToFloat(0xFF800000);
|
||||
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
||||
localMax = max(localMax, inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f));
|
||||
}
|
||||
float max_ = subgroupMax(localMax);
|
||||
|
||||
// parallel sum
|
||||
float localSum = 0.0f;
|
||||
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
||||
const float exp_psrc0 = exp(inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f) - max_);
|
||||
localSum += exp_psrc0;
|
||||
out_[pdst + i00] = exp_psrc0;
|
||||
}
|
||||
|
||||
const float sum = subgroupAdd(localSum);
|
||||
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
||||
out_[pdst + i00] /= sum;
|
||||
}
|
||||
}
|
69
ggml/src/ggml-kompute/kompute-shaders/rope_common.comp
Normal file
69
ggml/src/ggml-kompute/kompute-shaders/rope_common.comp
Normal file
@ -0,0 +1,69 @@
|
||||
#include "common.comp"
|
||||
|
||||
#define GGML_ROPE_TYPE_NEOX 2
|
||||
|
||||
// TODO: use a local size of 32 or more (Metal uses 1024)
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int n_dims;
|
||||
int mode;
|
||||
int n_ctx_orig;
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
float ext_factor;
|
||||
float attn_factor;
|
||||
float beta_fast;
|
||||
float beta_slow;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
float rope_yarn_ramp(const float low, const float high, const float i0) {
|
||||
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
||||
return 1.0f - min(1.0f, max(0.0f, y));
|
||||
}
|
||||
|
||||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||
void rope_yarn(
|
||||
float theta_extrap, float freq_scale, float corr_dims[2], float i0, float ext_factor, float mscale,
|
||||
out float cos_theta, out float sin_theta
|
||||
) {
|
||||
// Get n-d rotational scaling corrected for extrapolation
|
||||
float theta_interp = freq_scale * theta_extrap;
|
||||
float theta = theta_interp;
|
||||
if (ext_factor != 0.0f) {
|
||||
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
|
||||
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
|
||||
// Get n-d magnitude scaling corrected for interpolation
|
||||
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
|
||||
}
|
||||
cos_theta = cos(theta) * mscale;
|
||||
sin_theta = sin(theta) * mscale;
|
||||
}
|
||||
|
||||
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
||||
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
||||
float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
|
||||
return n_dims * log(n_ctx_orig / (n_rot * TWOPI_F)) / (2 * log(base));
|
||||
}
|
||||
|
||||
void rope_yarn_corr_dims(
|
||||
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, out float dims[2]
|
||||
) {
|
||||
// start and end correction dims
|
||||
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base)));
|
||||
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)));
|
||||
}
|
104
ggml/src/ggml-metal/CMakeLists.txt
Normal file
104
ggml/src/ggml-metal/CMakeLists.txt
Normal file
@ -0,0 +1,104 @@
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
message(STATUS "Metal framework found")
|
||||
|
||||
add_library(ggml-metal
|
||||
ggml-metal.m
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-metal PRIVATE
|
||||
ggml-base
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
)
|
||||
|
||||
target_include_directories(ggml-metal PRIVATE . ..)
|
||||
|
||||
if (GGML_METAL_NDEBUG)
|
||||
add_compile_definitions(GGML_METAL_NDEBUG)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL_USE_BF16)
|
||||
add_compile_definitions(GGML_METAL_USE_BF16)
|
||||
endif()
|
||||
|
||||
# copy ggml-common.h and ggml-metal.metal to bin directory
|
||||
configure_file(../ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h COPYONLY)
|
||||
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
|
||||
|
||||
if (GGML_METAL_EMBED_LIBRARY)
|
||||
enable_language(ASM)
|
||||
|
||||
add_compile_definitions(GGML_METAL_EMBED_LIBRARY)
|
||||
|
||||
set(METALLIB_COMMON "${CMAKE_CURRENT_SOURCE_DIR}/../ggml-common.h")
|
||||
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
|
||||
|
||||
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
|
||||
|
||||
# merge ggml-common.h and ggml-metal.metal into a single file
|
||||
set(METALLIB_EMBED_ASM "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.s")
|
||||
set(METALLIB_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.metal")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo "Embedding Metal library"
|
||||
COMMAND sed -e '/__embed_ggml-common.h__/r ${METALLIB_COMMON}' -e '/__embed_ggml-common.h__/d' < ${METALLIB_SOURCE} > ${METALLIB_SOURCE_EMBED}
|
||||
COMMAND echo ".section __DATA,__ggml_metallib" > ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo ".globl _ggml_metallib_start" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo "_ggml_metallib_start:" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo ".incbin \\\"${METALLIB_SOURCE_EMBED}\\\"" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo ".globl _ggml_metallib_end" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo "_ggml_metallib_end:" >> ${METALLIB_EMBED_ASM}
|
||||
DEPENDS ggml-metal.metal ../ggml-common.h
|
||||
COMMENT "Generate assembly for embedded Metal library"
|
||||
)
|
||||
|
||||
target_sources(ggml-metal PRIVATE ${METALLIB_EMBED_ASM})
|
||||
else()
|
||||
if (GGML_METAL_SHADER_DEBUG)
|
||||
# custom command to do the following:
|
||||
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
|
||||
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
|
||||
#
|
||||
# note: this is the only way I found to disable fast-math in Metal. it's ugly, but at least it works
|
||||
# disabling fast math is needed in order to pass tests/test-backend-ops
|
||||
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
|
||||
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
|
||||
set(XC_FLAGS -fno-fast-math -fno-inline -g)
|
||||
else()
|
||||
set(XC_FLAGS -O3)
|
||||
endif()
|
||||
|
||||
# Append macOS metal versioning flags
|
||||
if (GGML_METAL_MACOSX_VERSION_MIN)
|
||||
message(STATUS "Adding -mmacosx-version-min=${GGML_METAL_MACOSX_VERSION_MIN} flag to metal compilation")
|
||||
list (APPEND XC_FLAGS -mmacosx-version-min=${GGML_METAL_MACOSX_VERSION_MIN})
|
||||
endif()
|
||||
|
||||
if (GGML_METAL_STD)
|
||||
message(STATUS "Adding -std=${GGML_METAL_STD} flag to metal compilation")
|
||||
list (APPEND XC_FLAGS -std=${GGML_METAL_STD})
|
||||
endif()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
|
||||
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
|
||||
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
|
||||
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal
|
||||
DEPENDS ggml-metal.metal ggml-common.h
|
||||
COMMENT "Compiling Metal kernels"
|
||||
)
|
||||
|
||||
# FIXME: only add to the ggml-metal target?
|
||||
add_custom_target(
|
||||
ggml-metal-lib ALL
|
||||
DEPENDS ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
)
|
||||
endif() # GGML_METAL_EMBED_LIBRARY
|
4294
ggml/src/ggml-metal/ggml-metal.m
Normal file
4294
ggml/src/ggml-metal/ggml-metal.m
Normal file
File diff suppressed because it is too large
Load Diff
7069
ggml/src/ggml-metal/ggml-metal.metal
Normal file
7069
ggml/src/ggml-metal/ggml-metal.metal
Normal file
File diff suppressed because it is too large
Load Diff
111
ggml/src/ggml-musa/ggml/CMakeLists.txt
Normal file
111
ggml/src/ggml-musa/ggml/CMakeLists.txt
Normal file
@ -0,0 +1,111 @@
|
||||
if (NOT EXISTS $ENV{MUSA_PATH})
|
||||
if (NOT EXISTS /opt/musa)
|
||||
set(MUSA_PATH /usr/local/musa)
|
||||
else()
|
||||
set(MUSA_PATH /opt/musa)
|
||||
endif()
|
||||
else()
|
||||
set(MUSA_PATH $ENV{MUSA_PATH})
|
||||
endif()
|
||||
|
||||
set(CMAKE_C_COMPILER "${MUSA_PATH}/bin/clang")
|
||||
set(CMAKE_C_EXTENSIONS OFF)
|
||||
set(CMAKE_CXX_COMPILER "${MUSA_PATH}/bin/clang++")
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH "${MUSA_PATH}/cmake")
|
||||
|
||||
find_package(MUSAToolkit)
|
||||
|
||||
if (MUSAToolkit_FOUND)
|
||||
message(STATUS "MUSA Toolkit found")
|
||||
|
||||
file(GLOB GGML_HEADERS_MUSA "../ggml-cuda/*.cuh")
|
||||
list(APPEND GGML_HEADERS_MUSA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_MUSA "../ggml-cuda/*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||
else()
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
endif()
|
||||
|
||||
set_source_files_properties(${GGML_SOURCES_MUSA} PROPERTIES LANGUAGE CXX)
|
||||
foreach(SOURCE ${GGML_SOURCES_MUSA})
|
||||
set_property(SOURCE ${SOURCE} PROPERTY COMPILE_FLAGS "-x musa -mtgpu --cuda-gpu-arch=mp_21 --cuda-gpu-arch=mp_22")
|
||||
endforeach()
|
||||
|
||||
add_library(ggml-musa
|
||||
${GGML_HEADERS_MUSA}
|
||||
${GGML_SOURCES_MUSA})
|
||||
|
||||
target_link_libraries(ggml-musa PRIVATE ggml-base)
|
||||
target_include_directories(ggml-musa PRIVATE . ..)
|
||||
|
||||
# TODO: do not use CUDA definitions for MUSA
|
||||
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
||||
|
||||
add_compile_definitions(GGML_USE_MUSA)
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
|
||||
if (GGML_CUDA_GRAPHS)
|
||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_CUBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
add_compile_definitions(GGML_CUDA_NO_VMM)
|
||||
endif()
|
||||
|
||||
if (DEFINED GGML_CUDA_DMMV_Y)
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_DMMV_Y}) # for backwards compatibility
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
target_link_libraries(ggml-musa PRIVATE MUSA::musart_static MUSA::mublas_static)
|
||||
else()
|
||||
target_link_libraries(ggml-musa PRIVATE MUSA::musart MUSA::mublas)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
# No VMM requested, no need to link directly with the musa driver lib (libmusa.so)
|
||||
else()
|
||||
target_link_libraries(ggml-musa PRIVATE MUSA::musa_driver)
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "MUSA Toolkit not found")
|
||||
endif()
|
10506
ggml/src/ggml-quants.c
10506
ggml/src/ggml-quants.c
File diff suppressed because it is too large
Load Diff
@ -11,136 +11,89 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// NOTE: these functions are defined as GGML_API because they used by the CPU backend
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1_ref(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0_ref(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1_ref(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q4_0_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q4_1_ref(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q5_0_ref(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q5_1_ref(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q8_0_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K_ref(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K_ref(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K_ref(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K_ref(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K_ref(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K_ref(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q2_K_ref(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q3_K_ref(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q4_K_ref(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q5_K_ref(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q6_K_ref(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_q8_K_ref(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0_ref(const float * GGML_RESTRICT x, block_tq1_0 * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0_ref(const float * GGML_RESTRICT x, block_tq2_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_tq1_0_ref(const float * GGML_RESTRICT x, block_tq1_0 * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_tq2_0_ref(const float * GGML_RESTRICT x, block_tq2_0 * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq3_xxs_ref(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_nl_ref (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs_ref (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq3_s_ref (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq2_s_ref (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq3_xxs_ref(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq4_nl_ref (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq4_xs_ref (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq3_s_ref (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void quantize_row_iq2_s_ref (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
//GGML_API void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_tq1_0(const block_tq1_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_tq2_0(const block_tq2_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_tq1_0(const block_tq1_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_tq2_0(const block_tq2_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
GGML_API void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
GGML_API void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
size_t quantize_tq1_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_tq2_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_tq1_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_tq2_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
GGML_API size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
void iq2xs_init_impl(enum ggml_type type);
|
||||
void iq2xs_free_impl(enum ggml_type type);
|
||||
void iq3xs_init_impl(int grid_size);
|
||||
void iq3xs_free_impl(int grid_size);
|
||||
GGML_API void iq2xs_init_impl(enum ggml_type type);
|
||||
GGML_API void iq2xs_free_impl(enum ggml_type type);
|
||||
GGML_API void iq3xs_init_impl(int grid_size);
|
||||
GGML_API void iq3xs_free_impl(int grid_size);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
11
ggml/src/ggml-rpc/CMakeLists.txt
Normal file
11
ggml/src/ggml-rpc/CMakeLists.txt
Normal file
@ -0,0 +1,11 @@
|
||||
message(STATUS "Using RPC backend")
|
||||
|
||||
add_library(ggml-rpc
|
||||
ggml-rpc.cpp)
|
||||
|
||||
target_link_libraries(ggml-rpc PRIVATE ggml-base)
|
||||
target_include_directories(ggml-rpc PRIVATE . ..)
|
||||
|
||||
if (WIN32)
|
||||
target_link_libraries(ggml-rpc PRIVATE ws2_32)
|
||||
endif()
|
1403
ggml/src/ggml-rpc/ggml-rpc.cpp
Normal file
1403
ggml/src/ggml-rpc/ggml-rpc.cpp
Normal file
File diff suppressed because it is too large
Load Diff
81
ggml/src/ggml-sycl/CMakeLists.txt
Normal file
81
ggml/src/ggml-sycl/CMakeLists.txt
Normal file
@ -0,0 +1,81 @@
|
||||
if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL|NVIDIA|AMD)$")
|
||||
message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL, NVIDIA, or AMD")
|
||||
endif()
|
||||
|
||||
check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL)
|
||||
|
||||
if (DEFINED ENV{ONEAPI_ROOT})
|
||||
message(STATUS "Using oneAPI Release SYCL compiler (icpx).")
|
||||
elseif(SUPPORTS_SYCL)
|
||||
message(WARNING "Using open-source SYCL compiler (clang++). Didn't detect ENV {ONEAPI_ROOT}.
|
||||
If you expected the oneAPI Release compiler, please install oneAPI & source it, like:
|
||||
source /opt/intel/oneapi/setvars.sh")
|
||||
else()
|
||||
message(FATAL_ERROR, "C++ compiler lacks SYCL support.")
|
||||
endif()
|
||||
message(STATUS "SYCL found")
|
||||
#todo: AOT
|
||||
|
||||
add_library(ggml-sycl
|
||||
ggml-sycl.cpp
|
||||
../../include/ggml-sycl.h)
|
||||
|
||||
target_link_libraries(ggml-sycl PRIVATE ggml-base)
|
||||
target_include_directories(ggml-sycl PRIVATE . ..)
|
||||
|
||||
if (GGML_SYCL_F16)
|
||||
if (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
message(WARNING "AMD target does not entirely support FP16 in the SYCL backend.")
|
||||
endif()
|
||||
add_compile_definitions(GGML_SYCL_F16)
|
||||
endif()
|
||||
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing -fsycl")
|
||||
|
||||
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
# INFO: Allowed Sub_group_sizes are not consistent through all
|
||||
# hip targets. For example, 64 is used for certain models, but the backend
|
||||
# does not support it.
|
||||
# Target archs tested working: gfx1030, gfx1031, (Only tested sub_group_size = 32)
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
else()
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
|
||||
endif()
|
||||
|
||||
file(GLOB GGML_HEADERS_SYCL "*.hpp")
|
||||
file(GLOB GGML_SOURCES_SYCL "*.cpp")
|
||||
target_sources(ggml-sycl PRIVATE ${GGML_HEADERS_SYCL} ${GGML_SOURCES_SYCL})
|
||||
|
||||
find_package(DNNL)
|
||||
message("-- DNNL found:" ${DNNL_FOUND})
|
||||
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
add_compile_definitions(GGML_SYCL_DNNL=${DNNL_FOUND})
|
||||
else()
|
||||
add_compile_definitions(GGML_SYCL_DNNL=0)
|
||||
endif()
|
||||
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
target_link_libraries(ggml-sycl PRIVATE DNNL::dnnl)
|
||||
endif()
|
||||
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
target_link_libraries(ggml-sycl PRIVATE IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
else()
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
target_link_libraries(ggml-sycl PRIVATE sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
|
||||
target_link_libraries(ggml-sycl PRIVATE sycl pthread m dl onemkl)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
if (GGML_SYCL_HIP_TARGET STREQUAL "")
|
||||
message(ERROR "Can't enable SYCL hip backend, GGML_SYCL_HIP_TARGET has not been set.")
|
||||
endif()
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=amdgcn-amd-amdhsa -Xsycl-target-backend --offload-arch=${GGML_SYCL_HIP_TARGET}")
|
||||
target_link_libraries(ggml-sycl PRIVATE sycl pthread m dl onemkl)
|
||||
endif()
|
||||
endif()
|
4684
ggml/src/ggml-sycl/ggml-sycl.cpp
Normal file
4684
ggml/src/ggml-sycl/ggml-sycl.cpp
Normal file
File diff suppressed because it is too large
Load Diff
12
ggml/src/ggml-threading.cpp
Normal file
12
ggml/src/ggml-threading.cpp
Normal file
@ -0,0 +1,12 @@
|
||||
#include "ggml-threading.h"
|
||||
#include <mutex>
|
||||
|
||||
std::mutex ggml_critical_section_mutex;
|
||||
|
||||
void ggml_critical_section_start() {
|
||||
ggml_critical_section_mutex.lock();
|
||||
}
|
||||
|
||||
void ggml_critical_section_end(void) {
|
||||
ggml_critical_section_mutex.unlock();
|
||||
}
|
12
ggml/src/ggml-threading.h
Normal file
12
ggml/src/ggml-threading.h
Normal file
@ -0,0 +1,12 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ggml_critical_section_start(void);
|
||||
void ggml_critical_section_end(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
78
ggml/src/ggml-vulkan/CMakeLists.txt
Normal file
78
ggml/src/ggml-vulkan/CMakeLists.txt
Normal file
@ -0,0 +1,78 @@
|
||||
find_package(Vulkan COMPONENTS glslc REQUIRED)
|
||||
|
||||
if (Vulkan_FOUND)
|
||||
message(STATUS "Vulkan found")
|
||||
|
||||
add_library(ggml-vulkan
|
||||
ggml-vulkan.cpp
|
||||
../../include/ggml-vulkan.h
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-vulkan PRIVATE ggml-base Vulkan::Vulkan)
|
||||
target_include_directories(ggml-vulkan PRIVATE . .. ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
# Workaround to the "can't dereference invalidated vector iterator" bug in clang-cl debug build
|
||||
# Posssibly relevant: https://stackoverflow.com/questions/74748276/visual-studio-no-displays-the-correct-length-of-stdvector
|
||||
if (MSVC AND CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
|
||||
add_compile_definitions(_ITERATOR_DEBUG_LEVEL=0)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_CHECK_RESULTS)
|
||||
add_compile_definitions(GGML_VULKAN_CHECK_RESULTS)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_DEBUG)
|
||||
add_compile_definitions(GGML_VULKAN_DEBUG)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_MEMORY_DEBUG)
|
||||
add_compile_definitions(GGML_VULKAN_MEMORY_DEBUG)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_SHADER_DEBUG_INFO)
|
||||
add_compile_definitions(GGML_VULKAN_SHADER_DEBUG_INFO)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_PERF)
|
||||
add_compile_definitions(GGML_VULKAN_PERF)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_VALIDATE)
|
||||
add_compile_definitions(GGML_VULKAN_VALIDATE)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN_RUN_TESTS)
|
||||
add_compile_definitions(GGML_VULKAN_RUN_TESTS)
|
||||
endif()
|
||||
|
||||
add_subdirectory(vulkan-shaders)
|
||||
|
||||
set (_ggml_vk_genshaders_cmd vulkan-shaders-gen)
|
||||
set (_ggml_vk_header ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.hpp)
|
||||
set (_ggml_vk_source ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.cpp)
|
||||
set (_ggml_vk_input_dir ${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders)
|
||||
set (_ggml_vk_output_dir ${CMAKE_CURRENT_BINARY_DIR}/vulkan-shaders.spv)
|
||||
|
||||
file(GLOB _ggml_vk_shader_deps "${_ggml_vk_input_dir}/*.comp")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${_ggml_vk_header}
|
||||
${_ggml_vk_source}
|
||||
|
||||
COMMAND ${_ggml_vk_genshaders_cmd}
|
||||
--glslc ${Vulkan_GLSLC_EXECUTABLE}
|
||||
--input-dir ${_ggml_vk_input_dir}
|
||||
--output-dir ${_ggml_vk_output_dir}
|
||||
--target-hpp ${_ggml_vk_header}
|
||||
--target-cpp ${_ggml_vk_source}
|
||||
--no-clean
|
||||
|
||||
DEPENDS ${_ggml_vk_shader_deps}
|
||||
COMMENT "Generate vulkan shaders"
|
||||
)
|
||||
|
||||
target_sources(ggml-vulkan PRIVATE ${_ggml_vk_source} ${_ggml_vk_header})
|
||||
|
||||
else()
|
||||
message(WARNING "Vulkan not found")
|
||||
endif()
|
7337
ggml/src/ggml-vulkan/ggml-vulkan.cpp
Normal file
7337
ggml/src/ggml-vulkan/ggml-vulkan.cpp
Normal file
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user