ggml : refactor online repacking (llama/10446)

* rename ggml-cpu-aarch64.c to .cpp

* reformat extra cpu backend.

- clean Q4_0_N_M and IQ4_0_N_M
  - remove from "file" tensor type
  - allow only with dynamic repack

- extract cpu extra bufts and convert to C++
  - hbm
  - "aarch64"

- more generic use of extra buffer
  - generalise extra_supports_op
  - new API for "cpu-accel":
     - amx
     - aarch64

* clang-format

* Clean Q4_0_N_M ref

Enable restrict on C++

* add op GGML_OP_MUL_MAT_ID for Q4_0_N_M with runtime repack

* added/corrected control on tensor size for Q4 repacking.

* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add debug logs on repacks.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Djip007 2024-12-07 13:37:50 +01:00 committed by Georgi Gerganov
parent 4a6d52efe6
commit e990d1b791
23 changed files with 4794 additions and 702 deletions

View File

@ -103,24 +103,14 @@ extern "C" {
// Internal types and functions exposed for tests and benchmarks
typedef void (*ggml_from_float_to_mat_t)
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
struct ggml_type_traits_cpu {
ggml_from_float_t from_float;
ggml_from_float_to_mat_t from_float_to_mat;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously
int64_t ncols; // number of columns to process simultaneously
ggml_gemv_t gemv;
ggml_gemm_t gemm;
};
GGML_BACKEND_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
@ -140,13 +130,6 @@ extern "C" {
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
#ifdef GGML_USE_CPU_HBM
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);
GGML_BACKEND_API bool ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft);
#ifdef __cplusplus
}
#endif

View File

@ -384,15 +384,15 @@ extern "C" {
GGML_TYPE_F64 = 28,
GGML_TYPE_IQ1_M = 29,
GGML_TYPE_BF16 = 30,
GGML_TYPE_Q4_0_4_4 = 31,
GGML_TYPE_Q4_0_4_8 = 32,
GGML_TYPE_Q4_0_8_8 = 33,
// GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
// GGML_TYPE_Q4_0_4_8 = 32,
// GGML_TYPE_Q4_0_8_8 = 33,
GGML_TYPE_TQ1_0 = 34,
GGML_TYPE_TQ2_0 = 35,
GGML_TYPE_IQ4_NL_4_4 = 36,
// GGML_TYPE_IQ4_NL_4_4 = 36,
// GGML_TYPE_IQ4_NL_4_8 = 37,
// GGML_TYPE_IQ4_NL_8_8 = 38,
GGML_TYPE_COUNT,
GGML_TYPE_COUNT = 39,
};
// precision
@ -433,9 +433,6 @@ extern "C" {
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
};
// available tensor operations:
@ -2205,11 +2202,19 @@ extern "C" {
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_RESTRICT
#ifdef __cplusplus
// restrict not standard in C++
# if defined(__GNUC__)
# define GGML_RESTRICT __restrict__
# elif defined(__clang__)
# define GGML_RESTRICT __restrict
# elif defined(_MSC_VER)
# define GGML_RESTRICT __restrict
# else
# define GGML_RESTRICT
# endif
#else
#define GGML_RESTRICT restrict
# define GGML_RESTRICT restrict
#endif
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);

View File

@ -220,9 +220,7 @@ add_library(ggml-base
ggml-threading.cpp
ggml-threading.h
ggml-quants.c
ggml-quants.h
ggml-aarch64.c
ggml-aarch64.h)
ggml-quants.h)
target_include_directories(ggml-base PRIVATE .)

View File

@ -2089,7 +2089,7 @@ static void * ggml_backend_cann_reg_get_proc_address(ggml_backend_reg_t reg, con
static const ggml_backend_reg_i ggml_backend_cann_reg_interface = {
/* .get_name = */ ggml_backend_cann_reg_get_name,
/* .get_device_count = */ ggml_backend_cann_reg_get_device_count,
/* .get_device_get = */ ggml_backend_cann_reg_get_device,
/* .get_device = */ ggml_backend_cann_reg_get_device,
/* .get_proc_address = */ ggml_backend_cann_reg_get_proc_address,
};

View File

@ -6,7 +6,20 @@
typedef uint16_t ggml_half;
typedef uint32_t ggml_half2;
#define GGML_COMMON_AGGR
#define GGML_COMMON_AGGR_U
#define GGML_COMMON_AGGR_S
#define GGML_COMMON_DECL
#elif defined(GGML_COMMON_DECL_CPP)
#include <cstdint>
typedef uint16_t ggml_half;
typedef uint32_t ggml_half2;
// std-c++ allow anonymous unions but some compiler warn on it
#define GGML_COMMON_AGGR_U data
// std-c++ do not allow it.
#define GGML_COMMON_AGGR_S data
#define GGML_COMMON_DECL
#elif defined(GGML_COMMON_DECL_METAL)
@ -15,7 +28,8 @@ typedef uint32_t ggml_half2;
typedef half ggml_half;
typedef half2 ggml_half2;
#define GGML_COMMON_AGGR
#define GGML_COMMON_AGGR_U
#define GGML_COMMON_AGGR_S
#define GGML_COMMON_DECL
#elif defined(GGML_COMMON_DECL_CUDA)
@ -29,7 +43,8 @@ typedef half2 ggml_half2;
typedef half ggml_half;
typedef half2 ggml_half2;
#define GGML_COMMON_AGGR data
#define GGML_COMMON_AGGR_U
#define GGML_COMMON_AGGR_S data
#define GGML_COMMON_DECL
#elif defined(GGML_COMMON_DECL_HIP)
@ -39,7 +54,8 @@ typedef half2 ggml_half2;
typedef half ggml_half;
typedef half2 ggml_half2;
#define GGML_COMMON_AGGR data
#define GGML_COMMON_AGGR_U
#define GGML_COMMON_AGGR_S data
#define GGML_COMMON_DECL
#elif defined(GGML_COMMON_DECL_SYCL)
@ -49,7 +65,8 @@ typedef half2 ggml_half2;
typedef sycl::half ggml_half;
typedef sycl::half2 ggml_half2;
#define GGML_COMMON_AGGR data
#define GGML_COMMON_AGGR_U
#define GGML_COMMON_AGGR_S data
#define GGML_COMMON_DECL
#endif
@ -154,9 +171,9 @@ typedef struct {
struct {
ggml_half d; // delta
ggml_half m; // min
} GGML_COMMON_AGGR;
} GGML_COMMON_AGGR_S;
ggml_half2 dm;
};
} GGML_COMMON_AGGR_U;
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_half) + QK4_1 / 2, "wrong q4_1 block size/padding");
@ -175,9 +192,9 @@ typedef struct {
struct {
ggml_half d; // delta
ggml_half m; // min
} GGML_COMMON_AGGR;
} GGML_COMMON_AGGR_S;
ggml_half2 dm;
};
} GGML_COMMON_AGGR_U;
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
@ -196,37 +213,13 @@ typedef struct {
struct {
ggml_half d; // delta
ggml_half s; // d * sum(qs[i])
} GGML_COMMON_AGGR;
} GGML_COMMON_AGGR_S;
ggml_half2 ds;
};
} GGML_COMMON_AGGR_U;
int8_t qs[QK8_1]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_half) + QK8_1, "wrong q8_1 block size/padding");
typedef struct {
ggml_half d[4]; // deltas for 4 q4_0 blocks
uint8_t qs[QK4_0 * 2]; // nibbles / quants for 4 q4_0 blocks
} block_q4_0x4;
static_assert(sizeof(block_q4_0x4) == 4 * sizeof(ggml_half) + QK4_0 * 2, "wrong q4_0x4 block size/padding");
typedef struct {
ggml_half d[8]; // deltas for 8 q4_0 blocks
uint8_t qs[QK4_0 * 4]; // nibbles / quants for 8 q4_0 blocks
} block_q4_0x8;
static_assert(sizeof(block_q4_0x8) == 8 * sizeof(ggml_half) + QK4_0 * 4, "wrong q4_0x8 block size/padding");
typedef struct {
ggml_half d[4]; // deltas for 4 q8_0 blocks
int8_t qs[QK8_0 * 4]; // quants for 4 q8_0 blocks
} block_q8_0x4;
static_assert(sizeof(block_q8_0x4) == 4 * sizeof(ggml_half) + QK8_0 * 4, "wrong q8_0x4 block size/padding");
typedef struct {
ggml_half d[8]; // deltas for 8 q8_0 blocks
int8_t qs[QK8_0 * 8]; // quants for 8 q8_0 blocks
} block_q8_0x8;
static_assert(sizeof(block_q8_0x8) == 8 * sizeof(ggml_half) + QK8_0 * 8, "wrong q8_0x8 block size/padding");
//
// Ternary quantization
//
@ -261,9 +254,9 @@ typedef struct {
struct {
ggml_half d; // super-block scale for quantized scales
ggml_half dmin; // super-block scale for quantized mins
} GGML_COMMON_AGGR;
} GGML_COMMON_AGGR_S;
ggml_half2 dm;
};
} GGML_COMMON_AGGR_U;
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_half) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
@ -288,9 +281,9 @@ typedef struct {
struct {
ggml_half d; // super-block scale for quantized scales
ggml_half dmin; // super-block scale for quantized mins
} GGML_COMMON_AGGR;
} GGML_COMMON_AGGR_S;
ggml_half2 dm;
};
} GGML_COMMON_AGGR_U;
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
@ -305,9 +298,9 @@ typedef struct {
struct {
ggml_half d; // super-block scale for quantized scales
ggml_half dmin; // super-block scale for quantized mins
} GGML_COMMON_AGGR;
} GGML_COMMON_AGGR_S;
ggml_half2 dm;
};
} GGML_COMMON_AGGR_U;
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
@ -418,12 +411,6 @@ typedef struct {
} block_iq4_xs;
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
typedef struct {
ggml_half d[4]; // deltas for 4 iq4_nl blocks
uint8_t qs[QK4_NL * 2];// nibbles / quants for 4 iq4_nl blocks
} block_iq4_nlx4;
static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wrong iq4_nlx4 block size/padding");
#endif // GGML_COMMON_DECL
#endif // GGML_COMMON_DECL
@ -437,6 +424,13 @@ static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wro
#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = {
#define GGML_TABLE_END() };
#define GGML_COMMON_IMPL
#elif defined(GGML_COMMON_IMPL_CPP)
#include <cstdint>
#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = {
#define GGML_TABLE_END() };
#define GGML_COMMON_IMPL
#elif defined(GGML_COMMON_IMPL_METAL)
#include <metal_stdlib>

View File

@ -10,10 +10,14 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list (APPEND GGML_CPU_SOURCES
ggml-cpu/ggml-cpu.c
ggml-cpu/ggml-cpu.cpp
ggml-cpu/ggml-cpu-aarch64.c
ggml-cpu/ggml-cpu-aarch64.cpp
ggml-cpu/ggml-cpu-aarch64.h
ggml-cpu/ggml-cpu-hbm.cpp
ggml-cpu/ggml-cpu-hbm.h
ggml-cpu/ggml-cpu-quants.c
ggml-cpu/ggml-cpu-quants.h
ggml-cpu/ggml-cpu-traits.cpp
ggml-cpu/ggml-cpu-traits.h
ggml-cpu/amx/amx.cpp
ggml-cpu/amx/amx.h
ggml-cpu/amx/mmq.cpp

View File

@ -5,6 +5,7 @@
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-traits.h"
#if defined(__gnu_linux__)
#include <sys/syscall.h>
@ -17,31 +18,65 @@
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
// AMX type_trais
namespace ggml::cpu::amx {
class tensor_traits : public ggml::cpu::tensor_traits {
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
size = ggml_backend_amx_desired_wsize(op);
return true;
}
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override {
if (op->op == GGML_OP_MUL_MAT) {
ggml_backend_amx_mul_mat(params, op);
return true;
}
return false;
}
};
static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struct ggml_tensor *) {
static tensor_traits traits;
return &traits;
}
} // namespace ggml::cpu::amx
// AMX buffer interface
static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) {
free(buffer->context);
}
static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
return (void *)(buffer->context);
return (void *) (buffer->context);
}
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
memset((char *)tensor->data + offset, value, size);
static void ggml_backend_amx_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *) ggml::cpu::amx::get_tensor_traits(buffer, tensor);
GGML_UNUSED(buffer);
}
static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
uint8_t value, size_t offset, size_t size) {
memset((char *) tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
const void * data, size_t offset, size_t size) {
if (qtype_has_amx_kernels(tensor->type)) {
GGML_LOG_DEBUG("%s: amx repack tensor %s of type %s\n", __func__, tensor->name, ggml_type_name(tensor->type));
ggml_backend_amx_convert_weight(tensor, data, offset, size);
} else {
memcpy((char *)tensor->data + offset, data, size);
memcpy((char *) tensor->data + offset, data, size);
}
GGML_UNUSED(buffer);
}
/*
// need to figure what we need to do with buffer->extra.
static void ggml_backend_amx_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(!qtype_has_amx_kernels(tensor->type));
memcpy(data, (const char *)tensor->data + offset, size);
@ -62,6 +97,7 @@ static bool ggml_backend_amx_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con
GGML_UNUSED(buffer);
}
*/
static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
memset(buffer->context, value, buffer->size);
@ -70,13 +106,13 @@ static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t
static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = {
/* .free_buffer = */ ggml_backend_amx_buffer_free_buffer,
/* .get_base = */ ggml_backend_amx_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required
/* .init_tensor = */ ggml_backend_amx_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_amx_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_amx_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_amx_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_amx_buffer_cpy_tensor,
/* .get_tensor = */ nullptr,
/* .cpy_tensor = */ nullptr,
/* .clear = */ ggml_backend_amx_buffer_clear,
/* .reset = */ NULL,
/* .reset = */ nullptr,
};
static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
@ -101,18 +137,48 @@ static size_t ggml_backend_amx_buffer_type_get_alignment(ggml_backend_buffer_typ
GGML_UNUSED(buft);
}
static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
namespace ggml::cpu::amx {
class extra_buffer_type : ggml::cpu::extra_buffer_type {
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
// handle only 2d gemm for now
auto is_contiguous_2d = [](const struct ggml_tensor * t) {
return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1;
};
if (op->op == GGML_OP_MUL_MAT && is_contiguous_2d(op->src[0]) && // src0 must be contiguous
is_contiguous_2d(op->src[1]) && // src1 must be contiguous
op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_amx_buffer_type() &&
op->ne[0] % (TILE_N * 2) == 0 && // out_features is 32x
(qtype_has_amx_kernels(op->src[0]->type) || (op->src[0]->type == GGML_TYPE_F16))) {
// src1 must be host buffer
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
return false;
}
// src1 must be float32
if (op->src[1]->type == GGML_TYPE_F32) {
return true;
}
}
return false;
}
ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
if (op->op == GGML_OP_MUL_MAT && op->src[0]->buffer &&
op->src[0]->buffer->buft == ggml_backend_amx_buffer_type()) {
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
}
return nullptr;
}
};
} // namespace ggml::cpu::amx
static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
return ggml_backend_amx_get_alloc_size(tensor);
GGML_UNUSED(buft);
}
static bool ggml_backend_amx_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return false;
GGML_UNUSED(buft);
}
#define ARCH_GET_XCOMP_PERM 0x1022
#define ARCH_REQ_XCOMP_PERM 0x1023
#define XFEATURE_XTILECFG 17
@ -129,68 +195,26 @@ static bool ggml_amx_init() {
return true;
#endif
}
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = {
/* .iface = */ {
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
/* .is_host = */ ggml_backend_amx_buffer_type_is_host,
},
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
/* .is_host = */ nullptr,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ NULL,
/* .context = */ new ggml::cpu::amx::extra_buffer_type(),
};
if (!ggml_amx_init()) {
return NULL;
return nullptr;
}
return &ggml_backend_buffer_type_amx;
}
bool ggml_backend_amx_buft_is_amx(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_amx_buffer_type_get_name;
}
bool ggml_backend_amx_device_supports_op(const struct ggml_tensor * op) {
// handle only 2d gemm for now
auto is_contiguous_2d = [](const struct ggml_tensor * t) {
return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1;
};
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
return true;
case GGML_OP_MUL_MAT: {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const enum ggml_type type = src0->type;
const int64_t ne0 = op->ne[0];
// amx kernels enables for Q4_0, Q4_1, Q8_0, F16
// Q4_K, Q5_K, Q6_K, IQ4_XS enabled for QK_K = 256
bool has_amx_kernels = qtype_has_amx_kernels(type) || (type == GGML_TYPE_F16);
bool can_use_amx =
is_contiguous_2d(src0) && // src0 must be contiguous
is_contiguous_2d(src1) && // src1 must be contiguous
src1->type == GGML_TYPE_F32 && // src1 must be float32
has_amx_kernels && // with amx kernel impls
ne0 % (TILE_N * 2) == 0; // out_features is 32x
return can_use_amx;
}
default:
return false;
}
}
#endif // defined(__AMX_INT8__) && defined(__AVX512VNNI__)
#endif // defined(__AMX_INT8__) && defined(__AVX512VNNI__)

View File

@ -1,20 +1,8 @@
#include "ggml-backend.h"
#include "ggml-cpu-impl.h"
#ifdef __cplusplus
extern "C" {
#endif
// GGML internal header
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
bool ggml_backend_amx_buft_is_amx(ggml_backend_buffer_type_t buft);
bool ggml_backend_amx_device_supports_op(const struct ggml_tensor * op);
void ggml_backend_amx_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
size_t ggml_backend_amx_desired_wsize(const struct ggml_tensor * dst);
#endif
#ifdef __cplusplus
}
#endif

View File

@ -7,7 +7,7 @@
#include <memory>
#include <type_traits>
#if defined(_OPENMP)
#if defined(GGML_USE_OPENMP)
#include <omp.h>
#endif
@ -56,11 +56,11 @@ inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
}
template <typename func_t>
inline void parallel_for(int nth, int n, const func_t& f) {
#if defined(_OPENMP)
#pragma omp parallel num_threads(nth)
inline void parallel_for(int n, const func_t& f) {
#if defined(GGML_USE_OPENMP)
#pragma omp parallel
{
//int nth = omp_get_num_threads();
int nth = omp_get_num_threads();
int ith = omp_get_thread_num();
int tbegin, tend;
balance211(n, nth, ith, tbegin, tend);
@ -68,8 +68,6 @@ inline void parallel_for(int nth, int n, const func_t& f) {
}
#else
f(0, n);
GGML_UNUSED(nth);
#endif
}
@ -91,10 +89,3 @@ inline bool qtype_has_amx_kernels(const enum ggml_type type) {
(type == GGML_TYPE_Q6_K) ||
(type == GGML_TYPE_IQ4_XS);
}
// ggml backend context
struct ggml_backend_amx_context {
int n_threads = GGML_DEFAULT_N_THREADS;
std::unique_ptr<char[]> work_data;
size_t work_size = 0;
};

View File

@ -18,10 +18,6 @@
#include <unistd.h>
#endif
#if defined(_OPENMP)
#include <omp.h>
#endif
#if (defined(_WIN32) || defined(_WIN64))
#define RESTRICT __restrict
#else
@ -1382,13 +1378,13 @@ struct tinygemm_kernel_avx<float, ggml_fp16_t, float, BLOCK_M, BLOCK_N, BLOCK_K>
#define PACKED_INDEX(n, k, KB, tile_size) (n * KB + k) * tile_size
template<typename TB, int BLOCK_K>
void convert_B_packed_format(void * RESTRICT packed_B, const TB * RESTRICT B, int N, int K, int n_threads) {
void convert_B_packed_format(void * RESTRICT packed_B, const TB * RESTRICT B, int N, int K) {
const int NB = N / TILE_N;
const int KB = K / BLOCK_K;
const int TILE_SIZE = get_tile_size<TB>();
// parallel on NB should be enough
parallel_for(n_threads, NB, [&](int begin, int end) {
parallel_for(NB, [&](int begin, int end) {
for (int n = begin; n < end; ++n) {
for (int k = 0; k < KB; ++k) {
int n0 = n * TILE_N;
@ -2334,15 +2330,8 @@ void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * d
const int K = tensor->ne[0]; // ne0: in_features
const int N = tensor->ne[1]; // ne1: out_features
#if defined(_OPENMP)
// the buffer ctx is not initialized when .set_tensor is called
int n_threads = omp_get_num_threads();
#else
int n_threads = 1;
#endif
GGML_DISPATCH_QTYPES(TYPE, [&] {
convert_B_packed_format<type, blck_size>((void *)((char *)tensor->data + offset), (const type *)data, N, K, n_threads);
convert_B_packed_format<type, blck_size>((void *)((char *)tensor->data + offset), (const type *)data, N, K);
});
}

View File

@ -1,16 +1,10 @@
#pragma once
#include "common.h"
#ifdef __cplusplus
extern "C" {
#endif
size_t ggml_backend_amx_desired_wsize(const struct ggml_tensor * dst);
size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor);
void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void ggml_backend_amx_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,32 +1,8 @@
#pragma once
#include "ggml-cpu-traits.h"
#include "ggml.h"
// GGML internal header
#ifdef __cplusplus
extern "C" {
#endif
// Quantization
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t blck_size_interleave);
// GEMV
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
// GEMM
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * data, size_t data_size);
enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur);
#ifdef __cplusplus
}
#endif
ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);

View File

@ -0,0 +1,55 @@
#ifdef GGML_USE_CPU_HBM
#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml-cpu.h"
#include "ggml-impl.h"
#include "ggml-cpu-hbm.h"
// buffer type HBM
#include <hbwmalloc.h>
static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU_HBM";
GGML_UNUSED(buft);
}
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
hbw_free(buffer->context);
}
static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
size_t size) {
void * ptr;
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
if (result != 0) {
GGML_LOG_ERROR("failed to allocate HBM buffer of size %zu\n", size);
return NULL;
}
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .context = */ nullptr,
};
return &ggml_backend_cpu_buffer_type_hbm;
}
#endif

View File

@ -0,0 +1,8 @@
#pragma once
#include "ggml-backend.h"
#include "ggml.h"
// GGML CPU internal header
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);

View File

@ -0,0 +1,36 @@
#include "ggml-cpu-traits.h"
#include "ggml-backend-impl.h"
#include "ggml-backend.h"
namespace ggml::cpu {
tensor_traits::~tensor_traits() {}
extra_buffer_type::~extra_buffer_type() {}
} // namespace ggml::cpu
bool ggml_cpu_extra_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) {
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra->context) {
auto buf_extra = (ggml::cpu::extra_buffer_type *) extra->context;
auto tensor_traits = buf_extra->get_tensor_traits(op);
if (tensor_traits && tensor_traits->compute_forward(params, op)) {
return true;
}
}
}
return false;
}
bool ggml_cpu_extra_work_size(int n_threads, const struct ggml_tensor * op, size_t * size) {
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra->context) {
auto buf_extra = (ggml::cpu::extra_buffer_type *) extra->context;
auto tensor_traits = buf_extra->get_tensor_traits(op);
if (tensor_traits && tensor_traits->work_size(n_threads, op, *size)) {
return true;
}
}
}
return false;
}

View File

@ -0,0 +1,38 @@
#pragma once
#include "ggml-backend-impl.h"
#include "ggml-cpu-impl.h"
#include "ggml.h"
#ifdef __cplusplus
# include <vector>
extern "C" {
#endif
// return true if op part of extra "accelerator"
bool ggml_cpu_extra_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op);
bool ggml_cpu_extra_work_size(int n_threads, const struct ggml_tensor * op, size_t * size);
#ifdef __cplusplus
}
namespace ggml::cpu {
// register in tensor->extra
class tensor_traits {
public:
virtual ~tensor_traits();
virtual bool work_size(int n_threads, const struct ggml_tensor * op, size_t & size) = 0;
virtual bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) = 0;
};
class extra_buffer_type {
public:
virtual ~extra_buffer_type();
virtual bool supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) = 0;
virtual tensor_traits * get_tensor_traits(const struct ggml_tensor * op) = 0;
};
} // namespace ggml::cpu
// implemented in ggml-cpu.cpp.
std::vector<ggml_backend_buffer_type_t> & ggml_backend_cpu_get_extra_buffers_type();
#endif

View File

@ -3,7 +3,7 @@
#include "ggml-backend-impl.h"
#include "ggml-backend.h"
#include "ggml-cpu-aarch64.h"
#include "ggml-cpu-traits.h"
#include "ggml-cpu-impl.h"
#include "ggml-cpu.h"
#include "ggml-impl.h"
@ -224,10 +224,6 @@ typedef void * thread_ret_t;
typedef pthread_t ggml_thread_t;
#ifdef GGML_USE_CPU_HBM
#include <hbwmalloc.h>
#endif
#if defined(__APPLE__)
#include <unistd.h>
#include <mach/mach.h>
@ -301,7 +297,6 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
},
[GGML_TYPE_Q8_0] = {
.from_float = quantize_row_q8_0,
.from_float_to_mat = quantize_mat_q8_0,
.vec_dot = ggml_vec_dot_q8_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
#if defined (__ARM_FEATURE_MATMUL_INT8)
@ -409,33 +404,6 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_BF16,
.nrows = 1,
},
[GGML_TYPE_Q4_0_4_4] = {
.from_float = NULL,
.vec_dot = NULL,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
.ncols = 4,
.gemv = ggml_gemv_q4_0_4x4_q8_0,
.gemm = ggml_gemm_q4_0_4x4_q8_0,
},
[GGML_TYPE_Q4_0_4_8] = {
.from_float = NULL,
.vec_dot = NULL,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
.ncols = 4,
.gemv = ggml_gemv_q4_0_4x8_q8_0,
.gemm = ggml_gemm_q4_0_4x8_q8_0,
},
[GGML_TYPE_Q4_0_8_8] = {
.from_float = NULL,
.vec_dot = NULL,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
.ncols = 8,
.gemv = ggml_gemv_q4_0_8x8_q8_0,
.gemm = ggml_gemm_q4_0_8x8_q8_0,
},
[GGML_TYPE_TQ1_0] = {
.from_float = quantize_row_tq1_0,
.vec_dot = ggml_vec_dot_tq1_0_q8_K,
@ -448,15 +416,6 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_IQ4_NL_4_4] = {
.from_float = NULL,
.vec_dot = NULL,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
.ncols = 4,
.gemv = ggml_gemv_iq4_nl_4x4_q8_0,
.gemm = ggml_gemm_iq4_nl_4x4_q8_0,
},
};
const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
@ -4509,9 +4468,6 @@ static void ggml_compute_forward_add(
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
{
ggml_compute_forward_add_q_f32(params, dst);
} break;
@ -4889,9 +4845,6 @@ static void ggml_compute_forward_add1(
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
{
ggml_compute_forward_add1_q_f32(params, dst);
} break;
@ -5019,9 +4972,6 @@ static void ggml_compute_forward_acc(
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
default:
{
GGML_ABORT("fatal error");
@ -7437,27 +7387,9 @@ static void ggml_compute_forward_mul_mat(
const int ith = params->ith;
const int nth = params->nth;
enum ggml_type type = src0->type;
if (src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
type = (enum ggml_type)(intptr_t)src0->extra;
}
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
if (src0->buffer && ggml_backend_amx_buft_is_amx(src0->buffer->buft)) {
ggml_backend_amx_mul_mat(params, dst);
return;
}
#endif
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
enum ggml_type const vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
ggml_from_float_to_mat_t const from_float_to_mat = type_traits_cpu[vec_dot_type].from_float_to_mat;
int64_t const vec_dot_num_rows = type_traits_cpu[type].nrows;
int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
int64_t const blck_size_interleave = ggml_get_type_traits(type)->blck_size_interleave;
ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
ggml_gemm_t const gemm = type_traits_cpu[type].gemm;
int64_t const vec_dot_num_rows = type_traits_cpu[src0->type].nrows;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
@ -7465,7 +7397,7 @@ static void ggml_compute_forward_mul_mat(
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb00 == ggml_type_size(src0->type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
@ -7477,6 +7409,7 @@ static void ggml_compute_forward_mul_mat(
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: extract to "extra_op"
#if GGML_USE_LLAMAFILE
// broadcast factors
const int64_t r2 = ne12 / ne02;
@ -7487,15 +7420,15 @@ static void ggml_compute_forward_mul_mat(
if (src1_cont) {
for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(type),
nb01/ggml_type_size(src0->type),
(const char *)src1->data + i12*nb12 + i13*nb13,
nb11/ggml_type_size(src1->type),
(char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type),
ith, nth,
type,
src0->type,
src1->type,
dst->type))
goto UseGgmlGemm1;
@ -7516,19 +7449,10 @@ UseGgmlGemm1:;
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
int64_t i11_processed = 0;
if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
4, ne10, blck_size_interleave);
}
i11_processed = ne11 - ne11 % 4;
}
for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
ne10);
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
ne10);
}
}
}
@ -7548,15 +7472,15 @@ UseGgmlGemm1:;
for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(type),
nb01/ggml_type_size(src0->type),
(const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
row_size/ggml_type_size(vec_dot_type),
(char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type),
ith, nth,
type,
src0->type,
vec_dot_type,
dst->type))
goto UseGgmlGemm2;
@ -7598,28 +7522,6 @@ UseGgmlGemm2:;
const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
if ((ggml_n_dims(src0) == 2) && gemv) {
const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
int64_t src0_start = (ith * ne01) / nth;
int64_t src0_end = ((ith + 1) * ne01) / nth;
src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
if (src0_start >= src0_end) return;
// If there are more than three rows in src1, use gemm; otherwise, use gemv.
if (gemm && (ne11 > 3)) {
gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
(const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
}
for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
(const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
src0_end - src0_start);
}
return;
}
// The first chunk comes from our thread_id, the rest will get auto-assigned.
int current_chunk = ith;
@ -7642,7 +7544,7 @@ UseGgmlGemm2:;
num_rows_per_vec_dot = 1;
}
ggml_compute_forward_mul_mat_one_chunk(params, dst, type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
ggml_compute_forward_mul_mat_one_chunk(params, dst, src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
if (nth >= nchunk0 * nchunk1) {
break;
@ -7674,8 +7576,6 @@ static void ggml_compute_forward_mul_mat_id(
ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
@ -7761,34 +7661,6 @@ static void ggml_compute_forward_mul_mat_id(
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1; // src1 rows
if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
int64_t src0_cur_start = (ith * ne01) / nth;
int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
if (src0_cur_start >= src0_cur_end) return;
for (int ir1 = 0; ir1 < nr1; ir1++) {
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
const int id = row_mapping.i1; // selected expert index
const int64_t i11 = id % ne11;
const int64_t i12 = row_mapping.i2; // row index in src1
const int64_t i1 = id; // selected expert index
const int64_t i2 = i12; // row
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12 * ne11) * row_size
: (i11 * nb11 + i12 * nb12));
gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
(const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
}
continue;
}
// distribute the thread work across the inner or outer loop based on which one is larger
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
@ -8096,9 +7968,6 @@ static void ggml_compute_forward_out_prod(
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
{
ggml_compute_forward_out_prod_q_f32(params, dst);
} break;
@ -8361,9 +8230,6 @@ static void ggml_compute_forward_set(
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
default:
{
GGML_ABORT("fatal error");
@ -8625,9 +8491,6 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
{
ggml_compute_forward_get_rows_q(params, dst);
} break;
@ -9217,10 +9080,6 @@ static void ggml_compute_forward_clamp(
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_Q8_K:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
case GGML_TYPE_IQ4_NL_4_4:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
@ -12426,6 +12285,9 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
return;
}
// extra_buffer op?
if (ggml_cpu_extra_compute_forward(params, tensor)) return;
switch (tensor->op) {
case GGML_OP_DUP:
{
@ -13373,146 +13235,142 @@ struct ggml_cplan ggml_graph_plan(
size_t cur = 0;
switch (node->op) {
case GGML_OP_CPY:
case GGML_OP_DUP:
{
if (ggml_is_quantized(node->type) ||
// F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
(node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
if (!ggml_cpu_extra_work_size(n_threads, node, &cur)) {
switch (node->op) {
case GGML_OP_CPY:
case GGML_OP_DUP:
{
if (ggml_is_quantized(node->type) ||
// F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
(node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
}
} break;
case GGML_OP_ADD:
case GGML_OP_ADD1:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
case GGML_OP_ACC:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
}
} break;
case GGML_OP_COUNT_EQUAL:
{
cur = ggml_type_size(node->type)*n_tasks;
} break;
case GGML_OP_MUL_MAT:
{
const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type;
if (node->src[1]->type != vec_dot_type) {
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
}
} break;
case GGML_OP_MUL_MAT_ID:
{
cur = 0;
const struct ggml_tensor * src0 = node->src[0];
const struct ggml_tensor * src1 = node->src[1];
const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
if (src1->type != vec_dot_type) {
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
}
const int n_as = src0->ne[2];
cur += GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
} break;
case GGML_OP_OUT_PROD:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
case GGML_OP_SOFT_MAX:
case GGML_OP_ROPE:
{
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
}
} break;
case GGML_OP_ADD:
case GGML_OP_ADD1:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
case GGML_OP_ACC:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
}
} break;
case GGML_OP_COUNT_EQUAL:
{
cur = ggml_type_size(node->type)*n_tasks;
} break;
case GGML_OP_MUL_MAT:
{
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
if (node->src[0]->buffer && ggml_backend_amx_buft_is_amx(node->src[0]->buffer->buft)) {
cur = ggml_backend_amx_desired_wsize(node);
}
#endif
const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type;
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
GGML_ASSERT(node->src[0]->ne[3] == 1);
GGML_ASSERT(node->src[1]->ne[2] == 1);
GGML_ASSERT(node->src[1]->ne[3] == 1);
if (node->src[1]->type != vec_dot_type) {
size_t cur2 = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
cur = MAX(cur, cur2);
}
} break;
case GGML_OP_MUL_MAT_ID:
{
cur = 0;
const struct ggml_tensor * src0 = node->src[0];
const struct ggml_tensor * src1 = node->src[1];
const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
if (src1->type != vec_dot_type) {
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
}
const int n_as = src0->ne[2];
cur += GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
} break;
case GGML_OP_OUT_PROD:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
case GGML_OP_SOFT_MAX:
case GGML_OP_ROPE:
{
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
GGML_ASSERT(node->src[0]->ne[3] == 1);
GGML_ASSERT(node->src[1]->ne[2] == 1);
GGML_ASSERT(node->src[1]->ne[3] == 1);
const int64_t ne00 = node->src[0]->ne[0]; // K
const int64_t ne01 = node->src[0]->ne[1]; // Cout
const int64_t ne02 = node->src[0]->ne[2]; // Cin
const int64_t ne10 = node->src[1]->ne[0]; // L
const int64_t ne11 = node->src[1]->ne[1]; // Cin
const int64_t ne00 = node->src[0]->ne[0]; // K
const int64_t ne01 = node->src[0]->ne[1]; // Cout
const int64_t ne02 = node->src[0]->ne[2]; // Cin
if ((node->src[0]->type == GGML_TYPE_F16 ||
node->src[0]->type == GGML_TYPE_BF16) &&
node->src[1]->type == GGML_TYPE_F32) {
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
cur += sizeof(ggml_fp16_t)*ne10*ne11;
} else if (node->src[0]->type == GGML_TYPE_F32 &&
node->src[1]->type == GGML_TYPE_F32) {
cur += sizeof(float)*ne00*ne01*ne02;
cur += sizeof(float)*ne10*ne11;
} else {
GGML_ABORT("fatal error");
}
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
const int64_t ne00 = node->src[0]->ne[0]; // W
const int64_t ne01 = node->src[0]->ne[1]; // H
const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
const int64_t ne03 = node->src[0]->ne[3]; // Channels In
const int64_t ne10 = node->src[1]->ne[0]; // L
const int64_t ne11 = node->src[1]->ne[1]; // Cin
const int64_t ne10 = node->src[1]->ne[0]; // W
const int64_t ne11 = node->src[1]->ne[1]; // H
const int64_t ne12 = node->src[1]->ne[2]; // Channels In
if ((node->src[0]->type == GGML_TYPE_F16 ||
node->src[0]->type == GGML_TYPE_BF16) &&
node->src[1]->type == GGML_TYPE_F32) {
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
cur += sizeof(ggml_fp16_t)*ne10*ne11;
} else if (node->src[0]->type == GGML_TYPE_F32 &&
node->src[1]->type == GGML_TYPE_F32) {
cur += sizeof(float)*ne00*ne01*ne02;
cur += sizeof(float)*ne10*ne11;
} else {
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
const int64_t ne00 = node->src[0]->ne[0]; // D
cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
const int64_t D = node->src[0]->ne[0];
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_BF16) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
} break;
case GGML_OP_COUNT:
{
GGML_ABORT("fatal error");
}
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
const int64_t ne00 = node->src[0]->ne[0]; // W
const int64_t ne01 = node->src[0]->ne[1]; // H
const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
const int64_t ne03 = node->src[0]->ne[3]; // Channels In
const int64_t ne10 = node->src[1]->ne[0]; // W
const int64_t ne11 = node->src[1]->ne[1]; // H
const int64_t ne12 = node->src[1]->ne[2]; // Channels In
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
const int64_t ne00 = node->src[0]->ne[0]; // D
cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
const int64_t D = node->src[0]->ne[0];
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_BF16) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
} break;
case GGML_OP_COUNT:
{
GGML_ABORT("fatal error");
}
default:
break;
default:
break;
}
}
work_size = MAX(work_size, cur);

View File

@ -2,12 +2,18 @@
#include "ggml-backend-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-aarch64.h"
#include "ggml-cpu-traits.h"
#include "ggml-impl.h"
#include "amx/amx.h"
#include <cctype>
#include <string>
#include <vector>
#ifdef GGML_USE_CPU_HBM
#include "ggml-cpu-hbm.h"
#endif
#if defined(__APPLE__)
#include <sys/types.h>
#include <sys/sysctl.h>
@ -23,115 +29,7 @@
// ggml-backend interface
#ifdef GGML_USE_CPU_HBM
// buffer type HBM
#include <hbwmalloc.h>
static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU_HBM";
GGML_UNUSED(buft);
}
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
hbw_free(buffer->context);
}
static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * ptr;
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
if (result != 0) {
GGML_LOG_ERROR("failed to allocate HBM buffer of size %zu\n", size);
return NULL;
}
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type_hbm;
}
#endif
// buffer type AARCH64
static void ggml_backend_cpu_aarch64_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *)ggml_aarch64_get_optimal_repack_type(tensor); // NOLINT
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_aarch64_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
enum ggml_type repack_type = (enum ggml_type)(intptr_t)tensor->extra;
ggml_aarch64_repack_tensor(tensor, repack_type, data, size);
GGML_UNUSED(buffer);
}
static const char * ggml_backend_cpu_aarch64_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU_AARCH64";
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_cpu_aarch64_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
auto * buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
if (buffer == NULL) {
return NULL;
}
buffer->buft = buft;
buffer->iface.init_tensor = ggml_backend_cpu_aarch64_buffer_init_tensor;
buffer->iface.set_tensor = ggml_backend_cpu_aarch64_buffer_set_tensor;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_aarch64 = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cpu_aarch64_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_aarch64_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ NULL,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type_aarch64;
}
bool ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft) {
return buft == ggml_backend_cpu_aarch64_buffer_type();
}
static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type() {
static std::vector<ggml_backend_buffer_type_t> bufts = []() {
std::vector<ggml_backend_buffer_type_t> bufts;
@ -152,11 +50,22 @@ static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backen
return bufts;
}();
return bufts.data();
return bufts;
}
static ggml_backend_buffer_type_t * ggml_backend_cpu_device_get_extra_buffers_type(ggml_backend_dev_t device) {
return ggml_backend_cpu_get_extra_buffers_type().data();
GGML_UNUSED(device);
}
static bool ggml_backend_cpu_is_extra_buffer_type(ggml_backend_buffer_type_t buft) {
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra == buft) return true;
}
return false;
}
// CPU backend - backend (stream)
struct ggml_backend_cpu_context {
@ -465,25 +374,19 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
return true;
}
if (src0 && src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
if (op->op != GGML_OP_MUL_MAT || src0->type == ggml_aarch64_get_optimal_repack_type(src0)) {
return false;
// extra_buffer_op?
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra) {
auto buf_extra = (ggml::cpu::extra_buffer_type*) extra->context;
if (buf_extra && buf_extra->supports_op(dev, op)) {
return true;
}
}
}
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
if (src0 && src0->buffer && ggml_backend_amx_buft_is_amx(src0->buffer->buft)) {
return ggml_backend_amx_device_supports_op(op);
}
for (int i = 1; i < GGML_MAX_SRC; i++) {
if (op->src[i] && op->src[i]->buffer && ggml_backend_amx_buft_is_amx(op->src[i]->buffer->buft)) {
return false;
}
}
#endif
for (int i = 1; i < GGML_MAX_SRC; i++) {
if (op->src[i] && op->src[i]->buffer && ggml_backend_cpu_buft_is_aarch64(op->src[i]->buffer->buft)) {
// the other case need host buffer.
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (op->src[i] && op->src[i]->buffer && !ggml_backend_buft_is_host(op->src[i]->buffer->buft)) {
return false;
}
}
@ -506,19 +409,10 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
default:
return true;
}
GGML_UNUSED(dev);
}
static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
bool supported = ggml_backend_buft_is_host(buft) || ggml_backend_cpu_buft_is_aarch64(buft);
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
supported = supported || ggml_backend_amx_buft_is_amx(buft);
#endif
return supported;
return ggml_backend_buft_is_host(buft) || ggml_backend_cpu_is_extra_buffer_type(buft);
GGML_UNUSED(dev);
}
@ -666,10 +560,12 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const char * name) {
if (strcmp(name, "ggml_backend_set_n_threads") == 0) {
return (void *)ggml_backend_cpu_set_n_threads;
ggml_backend_set_n_threads_t fct = ggml_backend_cpu_set_n_threads;
return (void *)fct;
}
if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
return (void *)ggml_backend_cpu_get_extra_bufts;
ggml_backend_dev_get_extra_bufts_t fct = ggml_backend_cpu_device_get_extra_buffers_type;
return (void *)fct;
}
if (strcmp(name, "ggml_backend_get_features") == 0) {
return (void *)ggml_backend_cpu_get_features;

View File

@ -3210,7 +3210,7 @@ static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, con
static const ggml_backend_reg_i ggml_backend_cuda_reg_interface = {
/* .get_name = */ ggml_backend_cuda_reg_get_name,
/* .get_device_count = */ ggml_backend_cuda_reg_get_device_count,
/* .get_device_get = */ ggml_backend_cuda_reg_get_device,
/* .get_device = */ ggml_backend_cuda_reg_get_device,
/* .get_proc_address = */ ggml_backend_cuda_reg_get_proc_address,
};

View File

@ -5220,15 +5220,6 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
} break;
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
{
VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x4, data, nbytes / sizeof(block_q4_0x4), 4);
} break;
case GGML_TYPE_Q4_0_8_8:
{
VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x8, data, nbytes / sizeof(block_q4_0x8), 8);
} break;
case GGML_TYPE_I8:
case GGML_TYPE_I16:

View File

@ -4630,7 +4630,7 @@ static void *ggml_backend_sycl_reg_get_proc_address(ggml_backend_reg_t reg, cons
static const ggml_backend_reg_i ggml_backend_sycl_reg_interface = {
/* .get_name = */ ggml_backend_sycl_reg_get_name,
/* .get_device_count = */ ggml_backend_sycl_reg_get_device_count,
/* .get_device_get = */ ggml_backend_sycl_reg_get_device,
/* .get_device = */ ggml_backend_sycl_reg_get_device,
/* .get_proc_address = */ ggml_backend_sycl_reg_get_proc_address,
};

View File

@ -8,7 +8,10 @@
// FIXME: required here for quantization functions
#include "ggml-quants.h"
#include "ggml-aarch64.h"
#ifdef GGML_USE_CPU_HBM
#include <hbwmalloc.h>
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
@ -788,32 +791,23 @@ static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
.to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
},
[GGML_TYPE_Q4_0_4_4] = {
.type_name = "q4_0_4x4",
.blck_size = QK4_0,
.blck_size_interleave = 4,
.type_size = sizeof(block_q4_0),
.is_quantized = true,
.to_float = NULL,
.from_float_ref = NULL,
[31] = { // GGML_TYPE_Q4_0_4_4
.type_name = "TYPE_Q4_0_4_4 REMOVED, use Q4_0 with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[GGML_TYPE_Q4_0_4_8] = {
.type_name = "q4_0_4x8",
.blck_size = QK4_0,
.blck_size_interleave = 8,
.type_size = sizeof(block_q4_0),
.is_quantized = true,
.to_float = NULL,
.from_float_ref = NULL,
[32] = { // GGML_TYPE_Q4_0_4_8
.type_name = "TYPE_Q4_0_4_8 REMOVED, use Q4_0 with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[GGML_TYPE_Q4_0_8_8] = {
.type_name = "q4_0_8x8",
.blck_size = QK4_0,
.blck_size_interleave = 8,
.type_size = sizeof(block_q4_0),
.is_quantized = true,
.to_float = NULL,
.from_float_ref = NULL,
[33] = { // GGML_TYPE_Q4_0_8_8
.type_name = "TYPE_Q4_0_8_8 REMOVED, use Q4_0 with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[GGML_TYPE_TQ1_0] = {
.type_name = "tq1_0",
@ -831,14 +825,23 @@ static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
.to_float = (ggml_to_float_t) dequantize_row_tq2_0,
.from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
},
[GGML_TYPE_IQ4_NL_4_4] = {
.type_name = "iq4_nl_4x4",
.blck_size = QK4_NL,
.blck_size_interleave = 4,
.type_size = sizeof(block_iq4_nl),
.is_quantized = true,
.to_float = NULL,
.from_float_ref = NULL,
[36] = { // GGML_TYPE_IQ4_NL_4_4
.type_name = "TYPE_IQ4_NL_4_4 REMOVED, use IQ4_NL with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[37] = { // GGML_TYPE_IQ4_NL_4_8
.type_name = "TYPE_IQ4_NL_4_8 REMOVED, use IQ4_NL with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
[38] = { // GGML_TYPE_IQ4_NL_8_8
.type_name = "TYPE_IQ4_NL_8_8 REMOVED, use IQ4_NL with runtime repacking",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
},
};
@ -1270,9 +1273,6 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
}
@ -6304,9 +6304,6 @@ size_t ggml_quantize_chunk(
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_F16:
{
size_t elemsize = sizeof(ggml_fp16_t);
@ -6838,7 +6835,16 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
(int64_t) info->ne[2] *
(int64_t) info->ne[3];
if (ggml_blck_size(info->type) == 0 || ne % ggml_blck_size(info->type) != 0) {
if (ggml_blck_size(info->type) == 0 ) {
// this tensor type support have been removed:
fprintf(stderr, "%s: tensor '%s' of type %d: %s\n",
__func__, info->name.data, (int) info->type, ggml_type_name(info->type));
fclose(file);
gguf_free(ctx);
return NULL;
}
if (ne % ggml_blck_size(info->type) != 0) {
fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
__func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
fclose(file);