mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-02-16 07:10:22 +00:00
RoPE: fix back, CUDA support for back + noncont. (llama/11240)
* RoPE: fix back, CUDA support for back + noncont. * fix comments reg. non-cont. RoPE support [no-ci]
This commit is contained in:
parent
9700cfb0a3
commit
54a2ee648f
@ -1500,7 +1500,7 @@ extern "C" {
|
||||
|
||||
// rotary position embedding backward, i.e compute dx from dy
|
||||
// a - dy
|
||||
GGML_API struct ggml_tensor * ggml_rope_back(
|
||||
GGML_API struct ggml_tensor * ggml_rope_ext_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // gradients of ggml_rope result
|
||||
struct ggml_tensor * b, // positions
|
||||
@ -1515,6 +1515,23 @@ extern "C" {
|
||||
float beta_fast,
|
||||
float beta_slow);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_rope_multi_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
int n_dims,
|
||||
int sections[4],
|
||||
int mode,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow);
|
||||
|
||||
|
||||
// clamp
|
||||
// in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_clamp(
|
||||
|
@ -13668,6 +13668,7 @@ struct ggml_cplan ggml_graph_plan(
|
||||
} break;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK:
|
||||
{
|
||||
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
|
||||
} break;
|
||||
|
@ -403,8 +403,6 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
||||
case GGML_OP_MUL_MAT:
|
||||
return src1->type == GGML_TYPE_F32 || src1->type == ggml_get_type_traits_cpu(src0->type)->vec_dot_type;
|
||||
case GGML_OP_ROPE_BACK:
|
||||
return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
return src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32;
|
||||
case GGML_OP_OUT_PROD:
|
||||
|
@ -2141,6 +2141,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_ROPE:
|
||||
ggml_cuda_op_rope(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ROPE_BACK:
|
||||
ggml_cuda_op_rope_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_IM2COL:
|
||||
ggml_cuda_op_im2col(ctx, dst);
|
||||
break;
|
||||
@ -3025,7 +3028,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_SOFT_MAX:
|
||||
return true;
|
||||
case GGML_OP_ROPE:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_ROPE_BACK: {
|
||||
const size_t ts = ggml_type_size(op->src[0]->type);
|
||||
const int64_t ne0_012 = op->src[0]->ne[0] * op->src[0]->ne[1] * op->src[0]->ne[2];
|
||||
return op->src[0]->nb[0] == ts && op->src[0]->nb[3] == ne0_012*ts;
|
||||
}
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM:
|
||||
@ -3081,6 +3088,7 @@ static int64_t get_op_batch_size(const ggml_tensor * op) {
|
||||
return op->ne[1];
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK:
|
||||
return op->ne[2];
|
||||
default:
|
||||
return ggml_nrows(op);
|
||||
|
@ -16,9 +16,10 @@ static __device__ float rope_yarn_ramp(const float low, const float high, const
|
||||
|
||||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||
template<bool forward>
|
||||
static __device__ void rope_yarn(
|
||||
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
|
||||
float * cos_theta, float * sin_theta) {
|
||||
const float theta_extrap, const float freq_scale, const rope_corr_dims corr_dims, const int64_t i0, const float ext_factor,
|
||||
float mscale, float & cos_theta, float & sin_theta) {
|
||||
// Get n-d rotational scaling corrected for extrapolation
|
||||
float theta_interp = freq_scale * theta_extrap;
|
||||
float theta = theta_interp;
|
||||
@ -29,24 +30,28 @@ static __device__ void rope_yarn(
|
||||
// Get n-d magnitude scaling corrected for interpolation
|
||||
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
|
||||
}
|
||||
*cos_theta = cosf(theta) * mscale;
|
||||
*sin_theta = sinf(theta) * mscale;
|
||||
cos_theta = cosf(theta) * mscale;
|
||||
sin_theta = sinf(theta) * mscale;
|
||||
if (!forward) {
|
||||
sin_theta *= -1.0f;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
template<bool forward, bool has_ff, typename T>
|
||||
static __global__ void rope_norm(
|
||||
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors) {
|
||||
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
|
||||
const int32_t * __restrict__ pos, const float freq_scale, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float theta_scale, const float * __restrict__ freq_factors) {
|
||||
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i0 >= n_dims) {
|
||||
const int i = row*ne0 + i0;
|
||||
const int i = row_dst*ne0 + i0;
|
||||
|
||||
dst[i + 0] = x[i + 0];
|
||||
dst[i + 1] = x[i + 1];
|
||||
@ -54,39 +59,43 @@ static __global__ void rope_norm(
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ne0 + i0;
|
||||
const int i2 = row/p_delta_rows;
|
||||
const int row_x = row_dst % ne1;
|
||||
const int channel_x = row_dst / ne1;
|
||||
|
||||
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
|
||||
const int idst = row_dst*ne0 + i0;
|
||||
const int ix = channel_x*s2 + row_x*s1 + i0;
|
||||
|
||||
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + 1];
|
||||
const float x0 = x[ix + 0];
|
||||
const float x1 = x[ix + 1];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[idst + 1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
template<bool forward, bool has_ff, typename T>
|
||||
static __global__ void rope_neox(
|
||||
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors) {
|
||||
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
|
||||
const int32_t * __restrict__ pos, const float freq_scale, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float theta_scale, const float * __restrict__ freq_factors) {
|
||||
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i0 >= n_dims) {
|
||||
const int i = row*ne0 + i0;
|
||||
const int i = row_dst*ne0 + i0;
|
||||
|
||||
dst[i + 0] = x[i + 0];
|
||||
dst[i + 1] = x[i + 1];
|
||||
@ -94,39 +103,43 @@ static __global__ void rope_neox(
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ne0 + i0/2;
|
||||
const int i2 = row/p_delta_rows;
|
||||
const int row_x = row_dst % ne1;
|
||||
const int channel_x = row_dst / ne1;
|
||||
|
||||
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
|
||||
const int idst = row_dst*ne0 + i0/2;
|
||||
const int ix = channel_x*s2 + row_x*s1 + i0/2;
|
||||
|
||||
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + n_dims/2];
|
||||
const float x0 = x[ix + 0];
|
||||
const float x1 = x[ix + n_dims/2];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[idst + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
template<bool forward, bool has_ff, typename T>
|
||||
static __global__ void rope_multi(
|
||||
const T * x, T * dst, int ne0, int ne2, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, mrope_sections sections) {
|
||||
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2,
|
||||
const int n_dims, const int32_t * __restrict__ pos, const float freq_scale, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float theta_scale, const float * __restrict__ freq_factors, const mrope_sections sections) {
|
||||
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i0 >= n_dims) {
|
||||
const int i = row*ne0 + i0;
|
||||
const int i = row_dst*ne0 + i0;
|
||||
|
||||
dst[i + 0] = x[i + 0];
|
||||
dst[i + 1] = x[i + 1];
|
||||
@ -134,25 +147,28 @@ static __global__ void rope_multi(
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ne0 + i0/2;
|
||||
const int i2 = row/p_delta_rows;
|
||||
const int row_x = row_dst % ne1;
|
||||
const int channel_x = row_dst / ne1;
|
||||
|
||||
int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
|
||||
int sec_w = sections.v[1] + sections.v[0];
|
||||
int sector = (i0 / 2) % sect_dims;
|
||||
const int idst = row_dst*ne0 + i0/2;
|
||||
const int ix = channel_x*s2 + row_x*s1 + i0/2;
|
||||
|
||||
const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
|
||||
const int sec_w = sections.v[1] + sections.v[0];
|
||||
const int sector = (i0 / 2) % sect_dims;
|
||||
|
||||
float theta_base = 0.0;
|
||||
if (sector < sections.v[0]) {
|
||||
theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
|
||||
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sections.v[0] && sector < sec_w) {
|
||||
theta_base = pos[i2 + ne2 * 1]*powf(theta_scale, i0/2.0f);
|
||||
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
|
||||
theta_base = pos[i2 + ne2 * 2]*powf(theta_scale, i0/2.0f);
|
||||
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sec_w + sections.v[2]) {
|
||||
theta_base = pos[i2 + ne2 * 3]*powf(theta_scale, i0/2.0f);
|
||||
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
@ -160,42 +176,46 @@ static __global__ void rope_multi(
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + n_dims/2];
|
||||
const float x0 = x[ix + 0];
|
||||
const float x1 = x[ix + n_dims/2];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[idst + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
template<bool forward, bool has_ff, typename T>
|
||||
static __global__ void rope_vision(
|
||||
const T * x, T * dst, int ne0, int ne2, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, mrope_sections sections) {
|
||||
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims,
|
||||
const int32_t * __restrict__ pos, const float freq_scale, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
|
||||
const float theta_scale, const float * __restrict__ freq_factors, const mrope_sections sections) {
|
||||
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
const int i = row*ne0 + i0/2;
|
||||
const int i2 = row/p_delta_rows; // i2-th tokens
|
||||
const int row_x = row_dst % ne1;
|
||||
const int channel_x = row_dst / ne1;
|
||||
|
||||
int sect_dims = sections.v[0] + sections.v[1];
|
||||
int sec_w = sections.v[1] + sections.v[0];
|
||||
int sector = (i0 / 2) % sect_dims;
|
||||
const int idst = row_dst*ne0 + i0/2;
|
||||
const int ix = channel_x*s2 + row_x*s1 + i0/2;
|
||||
|
||||
const int sect_dims = sections.v[0] + sections.v[1];
|
||||
const int sec_w = sections.v[1] + sections.v[0];
|
||||
const int sector = (i0 / 2) % sect_dims;
|
||||
|
||||
float theta_base = 0.0;
|
||||
if (sector < sections.v[0]) {
|
||||
const int p = sector;
|
||||
theta_base = pos[i2]*powf(theta_scale, p);
|
||||
theta_base = pos[channel_x]*powf(theta_scale, p);
|
||||
}
|
||||
else if (sector >= sections.v[0] && sector < sec_w) {
|
||||
const int p = sector - sections.v[0];
|
||||
theta_base = pos[i2 + ne2]*powf(theta_scale, p);
|
||||
theta_base = pos[channel_x + ne2]*powf(theta_scale, p);
|
||||
}
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
@ -203,19 +223,20 @@ static __global__ void rope_vision(
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + n_dims];
|
||||
const float x0 = x[ix + 0];
|
||||
const float x1 = x[ix + n_dims];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + n_dims] = x0*sin_theta + x1*cos_theta;
|
||||
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[idst + n_dims] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<bool forward, typename T>
|
||||
static void rope_norm_cuda(
|
||||
const T * x, T * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
|
||||
const int32_t * __restrict__ pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float * __restrict__ freq_factors, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
@ -224,22 +245,21 @@ static void rope_norm_cuda(
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
rope_norm<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
rope_norm<forward, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors);
|
||||
} else {
|
||||
rope_norm<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
rope_norm<forward, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<bool forward, typename T>
|
||||
static void rope_neox_cuda(
|
||||
const T * x, T * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
|
||||
const int32_t * __restrict__ pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float * __restrict__ freq_factors, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
@ -248,22 +268,21 @@ static void rope_neox_cuda(
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
rope_neox<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors);
|
||||
} else {
|
||||
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
rope_neox<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<bool forward, typename T>
|
||||
static void rope_multi_cuda(
|
||||
const T * x, T * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream) {
|
||||
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
|
||||
const int32_t * __restrict__ pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float * __restrict__ freq_factors, const mrope_sections sections, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
@ -272,22 +291,21 @@ static void rope_multi_cuda(
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
rope_multi<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors, sections
|
||||
);
|
||||
rope_multi<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
} else {
|
||||
rope_multi<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors, sections
|
||||
);
|
||||
rope_multi<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<bool forward, typename T>
|
||||
static void rope_vision_cuda(
|
||||
const T * x, T * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream) {
|
||||
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
|
||||
const int32_t * __restrict__ pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float * __restrict__ freq_factors, const mrope_sections sections, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
@ -298,80 +316,18 @@ static void rope_vision_cuda(
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
rope_vision<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors, sections
|
||||
);
|
||||
rope_vision<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
} else {
|
||||
rope_vision<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors, sections
|
||||
);
|
||||
rope_vision<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
}
|
||||
}
|
||||
|
||||
static void rope_norm_cuda_f16(
|
||||
const half * x, half * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
|
||||
rope_norm_cuda<half>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
static void rope_norm_cuda_f32(
|
||||
const float * x, float * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
|
||||
rope_norm_cuda<float>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
static void rope_neox_cuda_f16(
|
||||
const half * x, half * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
|
||||
rope_neox_cuda<half>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
static void rope_neox_cuda_f32(
|
||||
const float * x, float * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_neox_cuda<float>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
static void rope_multi_cuda_f16(
|
||||
const half * x, half * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_multi_cuda<half>(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
}
|
||||
|
||||
static void rope_multi_cuda_f32(
|
||||
const float * x, float * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_multi_cuda<float>(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
}
|
||||
|
||||
static void rope_vision_cuda_f16(
|
||||
const half * x, half * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_vision_cuda<half>(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
}
|
||||
|
||||
static void rope_vision_cuda_f32(
|
||||
const float * x, float * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_vision_cuda<float>(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
template <bool forward>
|
||||
void ggml_cuda_op_rope_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * src2 = dst->src[2];
|
||||
@ -382,7 +338,6 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
@ -392,6 +347,9 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const int64_t ne02 = src0->ne[2]; // num heads
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
const size_t s01 = src0->nb[1] / ggml_type_size(src0->type);
|
||||
const size_t s02 = src0->nb[2] / ggml_type_size(src0->type);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
@ -440,59 +398,59 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
// compute
|
||||
if (is_neox) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_neox_cuda_f32(
|
||||
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
rope_neox_cuda<forward>(
|
||||
(const float *) src0_d, (float *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_neox_cuda_f16(
|
||||
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
rope_neox_cuda<forward>(
|
||||
(const half *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
} else if (is_mrope && !is_vision) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_multi_cuda_f32(
|
||||
(const float *)src0_d, (float *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, sections, stream
|
||||
);
|
||||
rope_multi_cuda<forward>(
|
||||
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_multi_cuda_f16(
|
||||
(const half *)src0_d, (half *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, sections, stream
|
||||
);
|
||||
rope_multi_cuda<forward>(
|
||||
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
} else if (is_vision) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_vision_cuda_f32(
|
||||
(const float *)src0_d, (float *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, sections, stream
|
||||
);
|
||||
rope_vision_cuda<forward>(
|
||||
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_vision_cuda_f16(
|
||||
(const half *)src0_d, (half *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, sections, stream
|
||||
);
|
||||
rope_vision_cuda<forward>(
|
||||
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
} else {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_norm_cuda_f32(
|
||||
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
rope_norm_cuda<forward>(
|
||||
(const float *) src0_d, (float *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_norm_cuda_f16(
|
||||
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
rope_norm_cuda<forward>(
|
||||
(const half *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_rope_impl<true>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rope_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_rope_impl<false>(ctx, dst);
|
||||
}
|
||||
|
@ -3,3 +3,5 @@
|
||||
#define CUDA_ROPE_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_rope_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
@ -3699,7 +3699,7 @@ void ggml_rope_yarn_corr_dims(
|
||||
|
||||
// ggml_rope_back
|
||||
|
||||
struct ggml_tensor * ggml_rope_back(
|
||||
struct ggml_tensor * ggml_rope_ext_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
@ -3713,29 +3713,32 @@ struct ggml_tensor * ggml_rope_back(
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow) {
|
||||
GGML_ASSERT(ggml_is_vector(b));
|
||||
GGML_ASSERT(b->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(a->ne[2] == b->ne[0]);
|
||||
|
||||
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
||||
|
||||
int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
|
||||
memcpy(params + 5, &freq_base, sizeof(float));
|
||||
memcpy(params + 6, &freq_scale, sizeof(float));
|
||||
memcpy(params + 7, &ext_factor, sizeof(float));
|
||||
memcpy(params + 8, &attn_factor, sizeof(float));
|
||||
memcpy(params + 9, &beta_fast, sizeof(float));
|
||||
memcpy(params + 10, &beta_slow, sizeof(float));
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_ROPE_BACK;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
result->src[2] = c;
|
||||
|
||||
struct ggml_tensor * result = ggml_rope_ext(
|
||||
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
result->op = GGML_OP_ROPE_BACK;
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_rope_multi_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
int n_dims,
|
||||
int sections[4],
|
||||
int mode,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow) {
|
||||
struct ggml_tensor * result = ggml_rope_multi(
|
||||
ctx, a, b, c, n_dims, sections, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
result->op = GGML_OP_ROPE_BACK;
|
||||
return result;
|
||||
}
|
||||
// ggml_clamp
|
||||
|
||||
struct ggml_tensor * ggml_clamp(
|
||||
@ -5598,6 +5601,7 @@ static void ggml_compute_backward(
|
||||
//const int n_ctx = ((int32_t *) tensor->op_params)[3];
|
||||
const int n_ctx_orig = ((const int32_t *) tensor->op_params)[4];
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
int sections[4] = {0, 0, 0, 0};
|
||||
|
||||
memcpy(&freq_base, (const float *) tensor->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (const float *) tensor->op_params + 6, sizeof(float));
|
||||
@ -5605,10 +5609,14 @@ static void ggml_compute_backward(
|
||||
memcpy(&attn_factor, (const float *) tensor->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (const float *) tensor->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (const float *) tensor->op_params + 10, sizeof(float));
|
||||
memcpy(§ions, tensor->op_params + 11, sizeof(sections));
|
||||
|
||||
ggml_add_or_set(ctx, cgraph, isrc0,
|
||||
ggml_rope_back(ctx, grad, src1, src2, n_dims, mode, n_ctx_orig, freq_base,
|
||||
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow));
|
||||
struct ggml_tensor * rope_back = grad->ne[2] == src1->ne[0] ?
|
||||
ggml_rope_ext_back(ctx, grad, src1, src2, n_dims,
|
||||
mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow) :
|
||||
ggml_rope_multi_back(ctx, grad, src1, src2, n_dims, sections,
|
||||
mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
ggml_add_or_set(ctx, cgraph, isrc0, rope_back);
|
||||
}
|
||||
GGML_ASSERT((!src2 || !src2_needs_grads) && "gradients for freq factors not implemented");
|
||||
} break;
|
||||
|
Loading…
x
Reference in New Issue
Block a user