Commit Graph

515 Commits

Author SHA1 Message Date
Alexey Bartenev
e573b6b557 ramips: add support for D-Link DIR-806A B1 router
General specification:
SoC Type: MediaTek MT7620A (580MHz)
ROM: 8 MB SPI-NOR (MX25L6406E)
RAM: 64 MB DDR (W9751G6KB-25)
Switch: MediaTek MT7530
Ethernet: 5 ports - 5×100MbE (WAN, LAN1-4)
Wireless: 2.4 GHz (MediaTek RT5390): b/g/n
Wireless: 5 GHz (MediaTek MT7610EN): ac/n
Buttons: 2 button (POWER, WPS/RESET)
Bootloader: U-Boot 1.1.3
Power: 12 VDC, 0.5 A

MACs:
| LAN	| [Factory + 0x04] - 2		|
| WLAN 2.4g	| [Factory + 0x04] - 1		|
| WLAN 5g	| [Factory + 0x8004] - 3	|
| WAN	| [Factory + 0x04] - 2		|

OEM easy installation:

1. Use a PC to browse to http://192.168.0.1.
2. Go to the System section and open the Firmware Update section.
3. Under the Local Update at the right, click on the CHOOSE FILE...
4. When a modal window appears, choose the firmware file and click on
 the Open.
5. Next click on the UPDATE FIRMWARE button and upload the firmware image.
Wait for the router to flash and reboot.

OEM installation using the TFTP method (need level converter):

1. Download the latest firmware image.
2. Set up a Tftp server on a PC (e.g. Tftpd32) and place the firmware
 image to the root directory of the server.
3. Power off the router and use a twisted pair cable to connect the PC
 to any of the router's LAN ports.
4. Configure the network adapter of the PC to use IP address 192.168.0.180
 and subnet mask 255.255.255.0.
5. Connect serial port (57600 8N1) and turn on the router.
6. Then interrupt "U-Boot Boot Menu" by hitting 2 key (select "2: Load
 system code then write to Flash via TFTP.").
7. Press Y key when show "Warning!! Erase Linux in Flash then burn new
 one. Are you sure? (Y/N)"
Input device IP (192.168.0.1) ==:192.168.0.1
Input server IP (192.168.0.180) ==:192.168.0.180
Input Linux Kernel filename () ==:firmware_name
The router should download the firmware via TFTP and complete flashing in
 a few minutes.
After flashing is complete, use the PC to browse to http://192.168.1.1 or
 ssh to proceed with the configuration.

Signed-off-by: Alexey Bartenev <41exey@proton.me>
(cherry picked from commit ce998cb6e1)
2024-07-09 08:54:41 +02:00
Roland Reinl
6e51ff88b0 filogic: Add support for D-Link AQUILA PRO AI M30
Specification:
 - MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
 - MT7531 switch
 - 512MB RAM
 - 128MB NAND flash with two UBI partitions with identical size
 - 1 multi color LED (red, green, blue, white) connected via GCA230718
 - 3 buttons (WPS, reset, LED on/off)
 - 1 1Gbit WAN port
 - 4 1Gbit LAN ports

Disassembly:
 - There are four screws at the bottom: 2 under the rubber feets, 2 under the label.
 - After removing the screws, the white plastic part can be shifted out of the blue part.
 - Be careful because the antennas are mounted on the side and the top of the white part.

Serial Interface
 - The serial interface can be connected to the 4 pin holes on the side of the board.
 - Pins (from front to rear):
   - 3.3V
   - RX
   - TX
   - GND
 - Settings: 115200, 8N1

MAC addresses:
 - WAN MAC is stored in partition "Odm" at offset 0x81
 - LAN (as printed on the device) is WAN MAC + 1
 - WLAN MAC (2.4 GHz) is WAN MAC + 2
 - WLAN MAC (5GHz) is WAN MAC + 3

Flashing via Recovery Web Interface:
 - The recovery web interface always flashes to the currently active partition.
 - If OpenWrt is flahsed to the second partition, it will not boot.
 - Ensure that you have an OEM image available (encrypted and decrypted version). Decryption is described in the end.
 - Set your IP address to 192.168.200.10, subnetmask 255.255.255.0
 - Press the reset button while powering on the device
 - Keep the reset button pressed until the LED blinks red
 - Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
 - Download openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-recovery.bin
 - The recovery web interface always reports successful flashing, even if it fails
 - After flashing, the recovery web interface will try to forward the browser to 192.168.0.1 (can be ignored)
 - If OpenWrt was flashed to the first partition, OpenWrt will boot (The status LED will start blinking white and stay white in the end). In this case you're done and can use OpenWrt.
 - If OpenWrt was flashed to the second partition, OpenWrt won't boot (The status LED will stay red forever). In this case, the following steps are reuqired:
   - Start the web recovery interface again and flash the **decrypted OEM image**. This will be flashed to the second partition as well. The OEM firmware web interface is afterwards accessible via http://192.168.200.1.
   - Now flash the **encrypted OEM image** via OEM firmware web interface. In this case, the new firmware is flashed to the first partition. After flashing and the following reboot, the OEM firmware web interface should still be accessible via http://192.168.200.1.
   - Start the web recovery interface again and flash the OpenWrt recovery image. Now it will be flashed to the first partition, OpenWrt will boot correctly afterwards and is accessible via 192.168.1.1.

Flashing via U-Boot:
 - Open the case, connect to the UART console
 - Set your IP address to 192.168.200.2, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
 - Run a tftp server which provides openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-initramfs-kernel.bin.
 - Power on the device and select "7. Load image" in the U-Boot menu
 - Enter image file, tftp server IP and device IP (if they differ from the default).
 - TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
 - The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
 - Perform a sysupgrade using openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-sysupgrade.bin
 - Reboot the device. OpenWrt should start from flash now

Revert back to stock using the Recovery Web Interface:
 - Set your IP address to 192.168.200.2, subnetmask 255.255.255.0
 - Press the reset button while powering on the device
 - Keep the reset button pressed until the LED blinks red
 - Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
 - Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.

Decrypting a D-Link firmware image:
 - Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
 - Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
 - Run ./m32-firmware-util M30 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
 - Example for firmware M30A1_FW101B05: ./m32-firmware-util M30 --DecryptFactoryImage M30A1_FW101B05\(0725091522\).bin M30A1_FW101B05\(0725091522\)_decrypted.bin

Flashing via OEM web interface is not possible, as it will change the active partition and OpenWrt is only running on the first UBI partition.

Controlling the LEDs:
 - The LEDs are controlled by a chip called "GCA230718" which is connected to the main CPU via I2C (address 0x40)
 - I didn't find any documentation or driver for it, so the information below is purely based on my investigations
 - If there is already I driver for it, please tell me. Maybe I didn't search enough
 - I implemented a kernel module (leds-gca230718) to access the LEDs via DTS
 - The LED controller supports PWM for brightness control and ramp control for smooth blinking. This is not implemented in the driver
 - The LED controller supports toggling (on -> off -> on -> off) where the brightness of the LEDs can be set individually for each on cycle
 - Until now, only simple active/inactive control is implemented (like when the LEDs would have been connected via GPIO)
 - Controlling the LEDs requires three sequences sent to the chip. Each sequence consists of
   - A reset command (0x81 0xE4) written to register 0x00
   - A control command (for example 0x0C 0x02 0x01 0x00 0x00 0x00 0xFF 0x01 0x00 0x00 0x00 0xFF 0x87 written to register 0x03)
 - The reset command is always the same
 - In the control command
   - byte 0 is always the same
   - byte 1 (0x02 in the example above) must be changed in every sequence: 0x02 -> 0x01 -> 0x03)
   - byte 2 is set to 0x01 which disables toggling. 0x02 would be LED toggling without ramp control, 0x03 would be toggling with ramp control
   - byte 3 to 6 define the brightness values for the LEDs (R,G,B,W) for the first on cycle when toggling
   - byte 7 defines the toggling frequency (if toggling enabled)
   - byte 8 to 11 define the brightness values for the LEDs (R,G,B,W) for the second on cycle when toggling
   - byte 12 is constant 0x87

Comparison to M32/R32:
 - The algorithms for decrypting the OEM firmware are the same for M30/M32/R32, only the keys differ
 - The keys are available in the GPL sources for the M32
 - The M32/R32 contained raw data in the firmware images (kernel, rootfs), the R30 uses a sysupgrade tar instead
 - Creation of the recovery image is quite similar, only the header start string changes. So mostly takeover from M32/R32 for that.
 - Turned out that the bytes at offset 0x0E and 0x0F in the recovery image header are the checksum over the data area
 - This checksum was not checked in the recovery web interface of M32/R32 devices, but is now active in R30
 - I adapted the recovery image creation to also calculate the checksum over the data area
 - The recovery image header for M30 contains addresses which don't match the memory layout in the DTS. The same addresses are also present in the OEM images
 - The recovery web interface either calculates the correct addresses from it or has it's own logic to determine where which information must be written

Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
(cherry picked from commit 29cca6cfee)
2024-07-08 23:06:38 +02:00
Chukun Pan
7bfdc4ea3a uboot-mediatek: add Netcore N60 support
The vendor uboot requires special fit verification.
So add a custom uboot build for this device.

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
(cherry picked from commit 0170666d89)
2024-07-08 12:00:39 +02:00
Tianling Shen
2a25de25fa mediatek: add support for JDCloud RE-CP-03
Hardware specification:
  SoC: MediaTek MT7986A 4x A53
  Flash: 128GB eMMC
  RAM: 1GB DDR4
  Ethernet: 4x 1GbE, 1x 2.5GbE (RTL8221B)
  Switch: MediaTek MT7531AE
  WiFi: MediaTek MT7976C
  Button: Reset, Joylink
  Power: DC 12V 2A

Flash instructions:
1. Download and flash the vendor migration firmware via webUI:
   https://firmware.download.immortalwrt.eu.org/cnsztl/mediatek/filogic/openwrt-mediatek-mt7986-jdcloud_re-cp-03-vendor-migration.bin
   (Default address is 192.168.68.1, user root, no password)
2. After device has booted up, write new GPT table:
   dd if=openwrt-mediatek-filogic-jdcloud_re-cp-03-gpt.bin of=/dev/mmcblk0 bs=512 seek=0 count=34 conv=fsync
3. Erase and write new BL2:
   echo 0 > /sys/block/mmcblk0boot0/force_ro
   dd if=/dev/zero of=/dev/mmcblk0boot0 bs=512 count=8192 conv=fsync
   dd if=openwrt-mediatek-filogic-jdcloud_re-cp-03-preloader.bin of=/dev/mmcblk0boot0 bs=512 conv=fsync
4. Erase and write new FIP:
   dd if=/dev/zero of=/dev/mmcblk0 bs=512 seek=13312 count=8192 conv=fsync
   dd if=openwrt-mediatek-filogic-jdcloud_re-cp-03-bl31-uboot.fip of=/dev/mmcblk0 bs=512 seek=13312 conv=fsync
5. Set static IP on your PC:
   IP 192.168.1.254/24, GW 192.168.1.1
6. Serve OpenWrt initramfs image using TFTP server.
7. Cut off the power and re-engage, wait for TFTP recovery to complete.
8. After OpenWrt has booted, perform sysupgrade.
9. Additionally, if you want to have eMMC recovery boot feature:
     (Don't worry! You will always have TFTP recovery boot feature.)
   dd if=openwrt-mediatek-filogic-jdcloud_re-cp-03-initramfs-recovery.itb of=/dev/mmcblk0p4 bs=512 conv=fsync

Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
(cherry picked from commit c0c3234e17)
2024-07-08 09:08:48 +02:00
Roland Reinl
d0744c1f66 mediatek: Add support for D-Link EAGLE PRO AI R32
R32 is like the M32 part of the EAGLE PRO AI series from D-Link.

Specification:
 - MT7622BV SoC with 2.4GHz wifi
 - MT7975AN + MT7915AN for 5GHz
 - MT7531BE Switch
 - 512MB RAM
 - 128 MB flash
 - 2 LEDs (Status and Internet, both can be either orange or white)
 - 2 buttons (WPS and Reset)

Compared to M32, the R32 has the following differences:
 - 4 LAN ports instead of 2
 - The recory image starts with DLK6E6015001 instaed of DLK6E6010001
 - Individual LEDs for power and internet
 - MAC address is stored at another offset in the ODM partition

MAC addresses:
 - WAN MAC is stored in partition "Odm" at offset 0x81
 - LAN (as printed on the device) is WAN MAC + 1
 - WLAN MAC (2.4 GHz) is WAN MAC + 2
 - WLAN MAC (5GHz) is WAN MAC + 3

Flashing via Recovery Web Interface:
 - Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
 - Press the reset button while powering on the deivce
 - Keep the reset button pressed until the internet LED blinks fast
 - Open a Chromium based and goto http://192.168.0.1
 - Download openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-a1-squashfs-recovery.bin

Flashing via uBoot:
 - Open the case, connect to the UART console
 - Set your IP address to 10.10.10.3, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
 - Run a tftp server which provides openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-initramfs-kernel.bin.
 - You can rename the file to iverson_uImage (no extension), then you don't have to enter the whole file name in uboot later.
 - Power on the device and select "1. System Load Linux to SDRAM via TFTP." in the boot menu
 - Enter image file, tftp server IP and device IP (if they differ from the default).
 - TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
 - The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
 - Create a backup of the Kernel1 partition, this file is required if a revert to stock should be done later
 - Perform a sysupgrade using openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-squashfs-sysupgrade.bin
 - Reboot the device. OpenWrt should start from flash now

Revert back to stock using the Recovery Web Interface:
 - Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
 - Press the reset button while powering on the deivce
 - Keep the reset button pressed until the internet LED blinks fast
 - Open a Chromium based and goto http://192.168.0.1
 - Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.

Decrypting a D-Link firmware image:
 - Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
 - Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
 - Run ./m32-firmware-util R32 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
 - Example for firmware R32A1_FW103B01: ./m32-firmware-util R32 --DecryptFactoryImage R32A1_FW103B01.bin R32A1_FW103B01.decrypted.bin

Revert back to stock using uBoot:
 - Open the case, connect to the UART console
 - Set your IP address to 10.10.10.3, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
 - Run a tftp server which provides the previously created backup of the Kernel1 partition.
 - You can rename the file to iverson_uImage (no extension), then you don't have to enter the whole file name in uboot later.
 - Power on the device and select "2. System Load Linux Kernel then write to Flash via TFTP." in the boot menu
 - Enter image file, tftp server IP and device IP (if they differ from the default).
 - TFTP download to FLASH will start. After a few seconds the stock firmware should start again

There is also an image openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-a1-squashfs-tftp.bin which can directly be flashed via U-Boot and TFTP.
It can be used if no backup of the Kernel1 partition is reuqired.

Flahsing via OEM web interface is currently not possible, the OEM images are encrypted. Creating images is only possible manually at the moment.
The support for the M32/R32 already includes support for flashing from the OEM web interface:
 - The device tree contains both partitions (Kernel1 and Kernel2) with conditions to select the correct one based on the kernel command line
 - The U-Boot variable "boot_part" is set accordingly during startup to finish the partition swap after flashing from the OEM web interface
 - OpenWrt sysupgrade flashing always uses the partition where it was initially flashed to (no partition swap)

Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
(cherry picked from commit fdb87a91b4)
Link: https://github.com/openwrt/openwrt/pull/15776
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2024-07-06 18:32:57 +02:00
David Bentham
9ac1523062 mediatek: add Comfast CF-E393AX support
Comfast CF-E393AX is a dual-band Wi-Fi 6 POE ceiling mount access point.

Oem firmware is a custom openwrt 21.02 snapshot version.

We can gain access via ssh once we remove the root password.

Hardware specification:
  SoC: MediaTek MT7981A 2x A53
  Flash: 128 MB SPI-NAND
  RAM: 256MB DDR3
  Ethernet: 1x 10/100/1000 Mbps built-in PHY (WAN)
            1x 10/100/1000/2500 Mbps MaxLinear GPY211C (LAN)
  Switch: MediaTek MT7531AE
  WiFi: MediaTek MT7976D
  LEDS: 1x (Red, Blue and Green)
  Button: Reset
  UART: 3.3v, 115200n8
  --------------------------
  | Layout |
  | ----------------- |
  | 4 | VCC GND TX RX | <= |
  | ----------------- |
  --------------------------

Gain SSH access:
1. Login into web interface (http://apipaddress/computer/login.html),
   and download the
   configuration(http://apipaddress/computer/config.html).

2. Rename downloaded backup config - 'backup.file to backup.tar.gz',
   Enter 'fakeroot' command then decompress the configuration:
   tar -zxf backup.tar.gz

3. Edit 'etc/shadow', update (remove) root password:
   With password =
   'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
   'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
   to
   Without password =
   'root::0:99999:7:::'
   'root::0:99999:7:::'

4. Repack 'etc' directory back to a new backup file:
   tar -zcf backup-ssh.tar.gz etc/
5. Rename new config tar.gz file to 'backup-ssh.file'
   Exit fakeroot - 'exit'

6. Upload new configuration via web interface, now you
   can SSH with the following:

   'ssh -vv -o HostKeyAlgorithms=+ssh-rsa \
   -o PubkeyAcceptedAlgorithms=+ssh-rsa root@192.168.10.1'.

   Backup the mtd partitions
   - https://openwrt.org/docs/guide-user/installation/generic.backup

7. Copy openwrt factory firmware to the tmp folder to install via ssh:

   'scp -o HostKeyAlgorithms=+ssh-rsa \
   -o PubkeyAcceptedAlgorithms=+ssh-rsa \
   *-mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin \
   root@192.168.10.1:/tmp/'

   'sysupgrade -n -F \
   /tmp/*--mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin'

8. Once led has stopped flashing - Connect via ssh with the
   default openwrt ip address - 'ssh root@192.168.1.1'

9. SSH copy the openwrt sysupgrade firmware and upgrade
   as per the default instructions.

Signed-off-by: David Bentham <db260179@gmail.com>
(cherry picked from commit d8f4453bf2)
2024-07-04 15:54:27 +02:00
Chukun Pan
e4015c446b uboot-envtools: filogic: reorder alphabetically
Reorder scripts to keep alphabetical order.

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
(cherry picked from commit 4825defe44)
2024-07-04 15:39:22 +02:00
Ian Oderon
77354213b7 mediatek: add support for Zbtlink ZBT-Z8103AX
Specifications:
SoC: MediaTek MT7981B
RAM: 256MiB
Flash: SPI-NAND 128 MiB
Switch: 1 WAN, 3 LAN (Gigabit)
Buttons: Reset, Mesh
Power: DC 12V 1A
WiFi: MT7976CN
UART: 115200n8
UART Layout:
VCC-RX-TX-GND

No. of Antennas: 6
Note: Upon opening the router, only 5 antennas were connected
to the mainboard.

Led Layout:
Power-Mesh-5gwifi-WAN-LAN3-LAN2-LAN1-2gWiFi

Buttons:
Reset-Mesh

Installation:
A. Through OpenWrt Dashboard:
If your router comes with OpenWrt preinstalled (modified by the seller),
you can easily upgrade by going to the dashboard (192.168.1.1) and then
navigate to System -> Backup/Flash firmware, then flash the firmware

B. Through TFTP
Standard installation via UART:

1. Connect USB Serial Adapter to the UART, (NOTE: Don't connect the VCC pin).
2. Power on the router. Make sure that you can access your router via UART.
3. Restart the router then repeatedly press ctrl + c to skip default boot.
4. Type > bootmenu
5. Press '2' to select upgrade firmware
6. Press 'Y' on 'Run image after upgrading?'
7. Press '0' and hit 'enter' to select TFTP client (default)
8. Fill the U-Boot's IP address and TFTP server's IP address.
9. Finally, enter the 'firmware' filename.

Signed-off-by: Ian Oderon <ianoderon@gmail.com>
(cherry picked from commit 4300bc6688)
2024-07-03 09:19:41 +02:00
Chuanhong Guo
51822a907e mediatek: drop NMBM layout for Xiaomi WR30U
This reverts commit dcdcfc1511.

This is a firmware for third-party u-boot mod, which should not
be carried here by us.

Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
(cherry picked from commit 1b7e62b20b)
2024-05-23 21:50:00 +02:00
Dim Fish
f11e6e221e mediatek: filogic: add support for Xiaomi AX3000T
**SoC**: MediaTek MT7981B 2x A53
  **Flash**: ESMT F50L1G41LB 128MB
  **RAM**: NT52B128M16JR-FL 256MB
  **Ethernet**: 4x 10/100/1000 Mbps
  **Switch**: MediaTek MT7531AE
  **WiFi**: MediaTek MT7976C
  **Buttons**: Reset, Mesh
  **Power**: DC 12V 1A

1. Get ssh access. Supported stock firmware **1.0.47**
   ```
   curl -X POST "http://192.168.31.1/cgi-bin/luci/;stok=*******/api/misystem/arn_switch" -d "open=1&model=1&level=%0Anvram%20set%20ssh_en%3D1%0A"
   curl -X POST "http://192.168.31.1/cgi-bin/luci/;stok=*******/api/misystem/arn_switch" -d "open=1&model=1&level=%0Anvram%20commit%0A"
   curl -X POST "http://192.168.31.1/cgi-bin/luci/;stok=*******/api/misystem/arn_switch" -d "open=1&model=1&level=%0Ased%20-i%20's%2Fchannel%3D.*%2Fchannel%3D%22debug%22%2Fg'%20%2Fetc%2Finit.d%2Fdropbear%0A"
   curl -X POST "http://192.168.31.1/cgi-bin/luci/;stok=*******/api/misystem/arn_switch" -d "open=1&model=1&level=%0A%2Fetc%2Finit.d%2Fdropbear%20start%0A"
   curl -X POST "http://192.168.31.1/cgi-bin/luci/;stok=********/api/misystem/arn_switch" -d "open=1&model=1&level=%0Apasswd%20-d%20root%0A
   ```

2. Backup stock partitions
   ```
   nanddump -f /tmp/BL2.bin /dev/mtd1
   nanddump -f /tmp/Nvram.bin /dev/mtd2
   nanddump -f /tmp/Bdata.bin /dev/mtd3
   nanddump -f /tmp/Factory.bin /dev/mtd4
   nanddump -f /tmp/FIP.bin /dev/mtd5
   nanddump -f /tmp/ubi.bin /dev/mtd8
   nanddump -f /tmp/KF.bin /dev/mtd12
   ```
   Then transfer them to your computer in a safe place.

3. Get firmware information `cat /proc/cmdline`

4. Copy openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-initramfs-factory.ubi to **/tmp** and flash
   If **firmware=0**
   ```
   ubiformat /dev/mtd9 -y -f /tmp/openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-initramfs-factory.ubi
   nvram set boot_wait=on
   nvram set uart_en=1
   nvram set flag_boot_rootfs=1
   nvram set flag_last_success=1
   nvram set flag_boot_success=1
   nvram set flag_try_sys1_failed=0
   nvram set flag_try_sys2_failed=0
   nvram commit
   reboot
   ```
   If **firmware=1**
   ```
   ubiformat /dev/mtd8 -y -f /tmp/openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-initramfs-factory.ubi
   nvram set boot_wait=on
   nvram set uart_en=1
   nvram set flag_boot_rootfs=0
   nvram set flag_last_success=0
   nvram set flag_boot_success=1
   nvram set flag_try_sys1_failed=0
   nvram set flag_try_sys2_failed=0
   nvram commit
   reboot
   ```

   Then reboot your router, it should boot to the OpenWrt initramfs system now.

5. Flash openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-squashfs-sysupgrade.bin
   `sysupgrade -n /tmp/openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-squashfs-sysupgrade.bin`

1. Flash openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-ubootmod-initramfs-recovery.itb
   `ubiformat /dev/mtd8 -y -f /tmp/openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-ubootmod-initramfs-recovery.itb`

   `reboot`

2. Install kmod-mtd-rw
   `opkg update && opkg install kmod-mtd-rw`

   `insmod /lib/modules/$(uname -r)/mtd-rw.ko i_want_a_brick=1`

3. Format ubi and create new ubootenv volume
   ```
   ubidetach -p /dev/mtd8; ubiformat /dev/mtd8 -y; ubiattach -p /dev/mtd8
   ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
   ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
   ```

4. *(Optional **-10Mb** free space) Add recovery boot feature.*
   ```
   ubimkvol /dev/ubi0 -n 2 -N recovery -s 10MiB
   ubiupdatevol /dev/ubi0_2 /tmp/openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-ubootmod-initramfs-recovery.itb
   ```

5. Flash Openwrt U-Boot
   ```
   mtd write /tmp/openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-ubootmod-preloader.bin BL2
   mtd write /tmp/openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-ubootmod-bl31-uboot.fip FIP
   ```

6. Flash openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-ubootmod-squashfs-sysupgrade.itb
   `sysupgrade -n /tmp/openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-ubootmod-squashfs-sysupgrade.itb`

1. Force flash openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-ubootmod-initramfs-recovery.itb
   `sysupgrade -F -n /tmp/openwrt-mediatek-filogic-xiaomi_mi-router-ax3000t-ubootmod-initramfs-recovery.itb`

2. Format ubi and Nvram
   ```
   ubidetach -p /dev/mtd8; ubiformat /dev/mtd8 -y; ubiattach -p /dev/mtd8
   mtd erase Nvram
   ```

3. Install kmod-mtd-rw
   `opkg update && opkg install kmod-mtd-rw`

   `insmod /lib/modules/$(uname -r)/mtd-rw.ko i_want_a_brick=1`

4. Flash stock images from backup
   ```
   mtd write /tmp/BL2.bin BL2
   mtd write /tmp/FIP.bin FIP
   mtd write /tmp/ubi.bin ubi
   ```
   Then reboot your router, waiting it finished rollback in minutes.

   `ubiformat /dev/mtd7 -y -f /tmp/ubi.bin`
   Then reboot your router, waiting it finished rollback in minutes.

Signed-off-by: Dim Fish <dimfish@gmail.com>
(cherry picked from commit 7dbcc1215a)
2024-05-23 21:50:00 +02:00
Marco von Rosenberg
f314debd4f ath79: add support for Huawei AP5030DN
Huawei AP5030DN is a dual-band, dual-radio 802.11ac Wave 1 3x3 MIMO
enterprise access point with two Gigabit Ethernet ports and PoE
support.

Hardware highlights:
- CPU: QCA9550 SoC at 720MHz
- RAM: 256MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: QCA9550-internal radio
- Wi-Fi 5GHz: QCA9880 PCIe WLAN SoC
- Ethernet 1: 10/100/1000 Mbps Ethernet through Broadcom B50612E PHY
- Ethernet 2: 10/100/1000 Mbps Ethernet through Marvell 88E1510 PHY
- PoE: input through Ethernet 1 port
- Standalone 12V/2A power input
- Serial console externally available through RJ45 port
- External watchdog: SGM706 (1.6s timeout)

Serial console:
  9600n8 (9600 baud, no stop bits, no parity, 8 data bits)

MAC addresses:
  Each device has 32 consecutive MAC addresses allocated by
  the vendor, which don't overlap between devices.
  This was confirmed with multiple devices with consecutive
  serial numbers.
  The MAC address range starts with the address on the label.
  To be able to distinguish between the interfaces,
  the following MAC address scheme is used:
    - eth0 = label MAC
    - eth1 = label MAC + 1
    - radio0 (Wi-Fi 5GHz) = label MAC + 2
    - radio1 (Wi-Fi 2.4GHz) = label MAC + 3

Installation:
0. Connect some sort of RJ45-to-USB adapter to "Console" port of the AP

1. Power up the AP

2. At prompt "Press f or F  to stop Auto-Boot in 3 seconds",
   do what they say.
   Log in with default admin password "admin@huawei.com".

3. Boot the OpenWrt initramfs from TFTP using the hidden script
   "run ramboot". Replace IP address as needed:

   > setenv serverip 192.168.1.10
   > setenv ipaddr 192.168.1.1
   > setenv rambootfile
     openwrt-ath79-generic-huawei_ap5030dn-initramfs-kernel.bin
   > saveenv
   > run ramboot

4. Optional but recommended as the factory firmware cannot
   be downloaded publicly:
   Back up contents of "firmware" partition using the web interface or ssh:

   $ ssh root@192.168.1.1 cat /dev/mtd11 > huawei_ap5030dn_fw_backup.bin

5. Run sysupgrade using sysupgrade image. OpenWrt
   shall boot from flash afterwards.

Return to factory firmware (using firmware upgrade package downloaded from
non-public Huawei website):
1. Start a TFTP server in the directory where
   the firmware upgrade package is located

2. Boot to u-boot as described above

3. Install firmware upgrade package and format the config partitions:

   > update system FatAP5X30XN_SOMEVERSION.bin
   > format_fs

Return to factory firmware (from previously created backup):
1. Copy over the firmware partition backup to /tmp,
   for example using scp

2. Use sysupgrade with force to restore the backup:
   sysupgrade -F huawei_ap5030dn_fw_backup.bin

3. Boot AP to U-Boot as described above

Quirks and known issues
-----------------------

- On initial power-up, the Huawei-modified bootloader suspends both
ethernet PHYs (it sets the "Power Down" bit in the MII control
register). Unfortunately, at the time of the initial port, the kernel
driver for the B50612E/BCM54612E PHY behind eth0 doesn't have a resume
callback defined which would clear this bit. This makes the PHY unusable
since it remains suspended forever. This is why the backported kernel
patches in this commit are required which add this callback and for
completeness also a suspend callback.

- The stock firmware has a semi dual boot concept where the primary
kernel uses a squashfs as root partition and the secondary kernel uses
an initramfs. This dual boot concept is circumvented on purpose to gain
more flash space and since the stock firmware's flash layout isn't
compatible with mtdsplit.

- The external watchdog's timeout of 1.6s is very hard to satisfy
during bootup. This is why the GPIO15 pin connected to the watchdog input
is configured directly in the LZMA loader to output the CPU_CLK/4 signal
which keeps the watchdog happy until the wdt-gpio kernel driver takes
over. Because it would also take too long to read the whole kernel image
from flash, the uImage header only includes the loader which then reads
the kernel image from flash after GPIO15 is configured.

Signed-off-by: Marco von Rosenberg <marcovr@selfnet.de>
[fixed 6.6 backport patch naming]
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 06cdc07f8c)
2024-04-03 02:56:56 +02:00
Sander van Deijck
0a2047cf77 kirkwood: add ix4-200d support to uboot-envtools
This adds support for the Iomega ix4-200d device in uboot-envtools.

Signed-off-by: Sander van Deijck <sander@vandeijck.com>
(cherry picked from commit 2cfe86d383)
2024-03-23 14:58:33 +01:00
Nicolò Veronese
02272df01c uboot-envtools: add support for Zyxel EX5601-T0 ubootmod
The ubootmod bootlaoder for EX5601-T0 uses two partitions
 in ubi to store enviroment variables. so proper config
 is needed.

Signed-off-by: Nicolò Veronese <nicveronese@gmail.com>
(cherry picked from commit 2a0805fd3d)
2024-03-12 23:13:38 +01:00
Xavier Franquet
7338733dc9 mediatek: filogic: add support ASUS RT-AX59U
(based on support for ASUS RT-AX59U by liushiyou006)

SOC: MediaTek MT7986
RAM: 512MB DDR4
FLASH: 128MB SPI-NAND (Winbond W25N01GV)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: MediaTek MT7531 Switch
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)

Upgrade from AsusWRT to OpenWRT using UART

    Download the OpenWrt initramfs image.
    Copy the image to a TFTP server reachable at 192.168.1.70/24. Rename the image to rtax59u.bin.

    Connect the PC with TFTP server to the RT-AX59U.
    Set a static ip on the ethernet interface of your PC.
    (ip address: 192.168.1.70, subnet mask:255.255.255.0)
    Conect to the serial console, interrupt the autoboot process by pressing '4' when prompted.

    Download & Boot the OpenWrt initramfs image.

    $ setenv ipaddr 192.168.1.1
    $ setenv serverip 192.168.1.70
    $ tftpboot 0x46000000 rtax59u.bin
    $ bootm 0x46000000

    Wait for OpenWrt to boot. Transfer the sysupgrade image to the device using scp and install using sysupgrade.

    $ sysupgrade -n <path-to-sysupgrade.bin>

Upgrade from AsusWRT to OpenWRT using WebUI

    Download transit TRX file from https://drive.google.com/drive/folders/1A20QdjK7Udagu31FSszpWAk8-cGlCwsq

    Upgrade firmware from WebUI (192.168.50.1) using downloaded TRX file

    Wait for OpenWRT to boot (192.168.1.1).

    Upgrade system with sysupgrade image using luci or uploading it through scp and executing sysupgrade command

MAC Address for WLAN 5g is not following the same algorithm as in AsusWRT.
We have increased by one the WLAN 5g to avoid collisions with other networks from WLAN 2g
when bit 28 is already set.

              : Stock             : OpenWrt
  WLAN 2g (1) : C8:xx:xx:0D:xx:D4 : C8:xx:xx:0D:xx:D4
  WLAN 2g (2) :                   : CA:xx:xx:0D:xx:D4
  WLAN 2g (3) :                   : CE:xx:xx:0D:xx:D4
  WLAN 5g (1) : CA:xx:xx:1D:xx:D4 : CA:xx:xx:1D:xx:D5
  WLAN 5g (2) :                   : CE:xx:xx:1D:xx:D5
  WLAN 5g (3) :                   : C2:xx:xx:1D:xx:D5

  WLAN 2g (1) : 08:xx:xx:76:xx:BE : 08:xx:xx:76:xx:BE
  WLAN 2g (2) :                   : 0A:xx:xx:76:xx:BE
  WLAN 2g (3) :                   : 0E:xx:xx:76:xx:BE
  WLAN 5g (1) : 0A:xx:xx:76:xx:BE : 0A:xx:xx:76:xx:BF
  WLAN 5g (2) :                   : 0E:xx:xx:76:xx:BF
  WLAN 5g (3) :                   : 02:xx:xx:76:xx:BF

Signed-off-by: Xavier Franquet <xavier@franquet.es>
(cherry picked from commit 782eb05008)
2024-01-20 19:07:15 +01:00
Mikhail Zhilkin
51881b2eb9 mediatek: add support for Routerich AX3000
This PR is continuation of work under "mediatek: add support for Routerich
AX3000" #13703 by the agreement with PR #13703 original author (Maximilian
Weinmann <x1@disroot.org>). All reviews from the previous PR were taken
into into account.

Routerich AX3000 is a wireless WiFi 6 router.

Specification
-------------
- SoC       : MediaTek MT7981BA dual-core ARM Cortex-A53 1.3 GHz
- RAM       : DDR3 256 MiB (ESMT M15T2G16128A)
- Flash     : SPI-NAND 128 MiB (ESMT F50L1G41LB)
- WLAN      : MediaTek MT7976CN dual-band WiFi 6
  - 2.4 GHz : b/g/n/ax, MIMO 2x2
  - 5 GHz   : a/n/ac/ax, MIMO 2x2
- Ethernet  : 10/100/1000 Mbps x4 (MediaTek MT7531AE)
- USB       : 1x 2.0
- UART      : through-hole on PCB
  - [J500] GND, TX, RX, 3.3V (115200n8)
- Buttons   : Mesh, Reset
- LEDs      : 1x Power (Blue)
              1x WiFi 2.4 GHz (Blue)
              1x WiFi 5 GHz (Red)
              1x Mesh (Blue)
              3x LAN activity (Blue)
              1x WAN activity (Blue)
              2x WAN no-internet (Red)
- Power     : 12 VDC, 1.5 A

Installation
------------
Flash OpenWrt 'sysupgrade.bin' image using stock firmware web-interface
(without keeping settings).

Return to stock
---------------
Install stock firmware image (without keeping settings) using OpenWrt
sysupgrade method.

Recovery
--------
Connect uart, use u-boot menu to flash stock firmware image or boot
OpenWrt initramfs image.

MAC addresses
-------------
+---------+-------------------+-----------+
|         | MAC               | Algorithm |
+---------+-------------------+-----------+
| WAN     | 24:0f:5e:xx:xx:b4 | label     |
| LAN     | 24:0f:5e:xx:xx:b5 | label+1   |
| WLAN 2g | 24:0f:5e:xx:xx:b6 | label+2   |
| WLAN 5g | 24:0f:5e:xx:xx:b7 | label+3   |
+---------+-------------------+-----------+
The WLAN 2g MAC was found in 'Factory', 0x4

Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit 485adc9d3c)
[Fix merge conflict in uboot-envtools]
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2024-01-04 21:47:43 +01:00
Mikhail Zhilkin
18d7962f7b ramips: add support for Rostelecom RT-FE-1A
Rostelecom RT-FE-1A is a wireless WiFi 5 router manufactured by Sercomm
company.

Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: No
Button: 2 buttons (Reset & WPS)
LEDs:
   - 1x Power (green, unmanaged)
   - 1x Status (green, gpio)
   - 1x 2.4G (green, hardware, mt76-phy0)
   - 1x 2.4G (blue, gpio)
   - 1x 5G (green, hardware, mt76-phy1)
   - 1x 5G (blue, gpio)
   - 5x Ethernet (green, hardware, 4x LAN & WAN)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot

Installation
-----------------

1.  Login to the router web interface (default http://192.168.0.1/)
    under "admin" account

2.  Navigate to Settings -> Configuration -> Save to Computer

3.  Decode the configuration. For example, using cfgtool.py tool (see
    related section):
    cfgtool.py -u configurationBackup.cfg

4.  Open configurationBackup.xml and find the following block:

<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="<some value>" writable="1" encryption="1" password="1" />
</OBJECT>

5.  Replace <some value> by a new superadmin password and add a line
    which enabling superadmin login after. For example, the block after
    the changes:

<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="s0meP@ss" writable="1" encryption="1" password="1" />
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
</OBJECT>

6.  Encode the configuration. For example, using cfgtool.py tool:
       cfgtool.py -p configurationBackup.xml

7.  Upload the changed configuration (configurationBackup_changed.cfg) to
    the router

8.  Login to the router web interface (superadmin:xxxxxxxxxx, where
    xxxxxxxxxx is a new password from the p.5)

9.  Enable SSH access to the router (Settings -> Access control -> SSH)

10. Connect to the router using SSH shell using superadmin account

11. Run in SSH shell:
    sh

12. Make a mtd backup (optional, see related section)

13. Change bootflag to Sercomm1 and reboot:
    printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
    reboot

14. Login to the router web interface under admin account

15. Remove dots from the OpenWrt factory image filename

16. Update firmware via web using OpenWrt factory image

Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
   printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3

mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
   cd /tmp
   for i in 0 1 2 3 4 5 6 7 8 9; do nanddump -f mtd$i /dev/mtd$i; \
   tftp -l mtd$i -p 192.168.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
   tftp -l mtd.md5 -p 192.168.0.2

MAC Addresses
-------------
+-----+------------+---------+
| use | address    | example |
+-----+------------+---------+
| LAN | label      | f4:*:66 |
| WAN | label + 11 | f4:*:71 |
| 2g  | label + 2  | f4:*:68 |
| 5g  | label + 3  | f4:*:69 |
+-----+------------+---------+
The label MAC address was found in Factory, 0x21000

cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit f3cdc9f988)
2024-01-04 21:45:04 +01:00
Daniel Golle
d9246902b0 mediatek: add support for Zbtlink ZBT-Z8102AX
Specifications:
SoC: MediaTek MT7981B
RAM: 1024MiB
Flash: SPI-NAND 128 MiB
Switch: 1 WAN, 4 LAN (Gigabit)
USB: two M.2 slots for 5G modems via USB 3.0 hub, external USB 3.0 port
Buttons: Reset, Mesh
Power: DC 12V 1A
WiFi: MT7976CN
UART: 115200n8
UART Layout:
VCC-RX-TX-GND

Installation:
A. Through OpenWrt Dashboard:
If your router comes with OpenWrt preinstalled (modified by the seller),
you can easily upgrade by going to the dashboard (192.168.1.1) and then
navigate to System -> Backup/Flash firmware, then flash the firmware

B. Through TFTP
Standard installation via UART:

1. Connect USB Serial Adapter to the UART, (NOTE: Don't connect the VCC pin).
2. Power on the router. Make sure that you can access your router via UART.
3. Restart the router then repeatedly press ctrl + c to skip default boot.
4. Type > bootmenu
5. Press '2' to select upgrade firmware
6. Press 'Y' on 'Run image after upgrading?'
7. Press '0' and hit 'enter' to select TFTP client (default)
8. Fill the U-Boot's IP address and TFTP server's IP address.
9. Finally, enter the 'firmware' filename.

Based on patch adding support for similar Zbtlink ZBT-Z8103AX device by
Ian Ishmael C. Oderon.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit c8c2f52262)
2023-12-09 13:39:53 +01:00
Chukun Pan
4f9c4113c4 uboot-mediatek: add JCG Q30 PRO support
The vendor uboot will verify firmware at boot.
So add a custom uboot build for this device.

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
(cherry picked from commit b42c527228)
2023-12-08 07:35:46 +01:00
Jianhui Zhao
b530d492a9 filogic: add support for GL.iNet GL-MT6000
Hardware specification:
* SoC: MediaTek MT7986A 4x A53
* Flash: 8GB EMMC
* RAM: 1GB DDR4
* Ethernet:
  * 2x2.5G RJ45 port (RTL8221B)
  * 4x1G RJ45 ports (MT7531AE)
* WLAN:
  * 2.4GHz: MT7976GN 4T4R
  * 5GHz: MT7976AN 4T4R
* Button: Reset
* LED: 1 x dual color LED
* USB: 1 x USB 3.0
* Power: DC 12V 4A
* UART: 3V3 115200 8N1 (Pinout: GND TX RX VCC)
* JTAG: 9 PIN

If you want to use u-boot from OpenWrt, you can upgrade it safely.
* bl2: openwrt-mediatek-filogic-glinet_gl-mt6000-preloader.bin
* fip: openwrt-mediatek-filogic-glinet_gl-mt6000-bl31-uboot.fip

`openwrt-mediatek-filogic-glinet_gl-mt6000-squashfs-factory.bin` is used in OpenWrt's u-boot.

Signed-off-by: Jianhui Zhao <zhaojh329@gmail.com>
(cherry picked from commit fe10f97439)
2023-12-07 09:46:36 +01:00
Elbert Mai
28d15e2040 mediatek: filogic: add support for Ubiquiti UniFi 6 Plus (U6+)
Ubiquiti U6+ is a dual-band WiFi 6 PoE access point.
It is a drop-in upgrade of the U6 lite.

Specifications
---

- SoC: MediaTek MT7981A dual-core ARM Cortex-A53 1.3 GHz
- RAM: 256 MB DDR3-2133 RAM
- Flash: 16 MB SPI NOR and 4 GB eMMC
- LAN: 1x Gigabit Ethernet with 802.3af/at support
- WLAN: MediaTek MT7976C 2x2 MIMO dual-band WiFi 6
- LEDs: 1x blue and 1x white
- Buttons: 1x reset button

Installation
---

1. Power device using a PoE injector or switch
2. Connect via Ethernet to the device with static IP 192.168.1.2
3. SSH into the device with password: ubnt

        $ ssh ubnt@192.168.1.20

4. Unlock kernel partitions for writing

        $ echo 5edfacbf > /proc/ubnthal/.uf

5. Confirm correct partitions

        $ grep PARTNAME /sys/block/mmcblk0/mmcblk0p6/uevent
        PARTNAME=kernel0
        $ grep PARTNAME /sys/block/mmcblk0/mmcblk0p7/uevent
        PARTNAME=kernel1
        $ grep PARTNAME /sys/block/mmcblk0/mmcblk0p8/uevent
        PARTNAME=bs

6. Set and confirm bootloader environment

        $ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr); fdt rm /signature; bootubnt"
        $ fw_setenv bootcmd_real "run boot_openwrt"
        $ fw_printenv

7. Copy sysupgrade image to /tmp/openwrt.bin via scp
8. Copy kernel and rootfs to mmcblk0p6 and mmcblk0p7, respectively

        $ tar xf /tmp/openwrt.bin sysupgrade-ubnt_unifi-6-plus/kernel -O | dd of=/dev/mmcblk0p6
        $ tar xf /tmp/openwrt.bin sysupgrade-ubnt_unifi-6-plus/root -O | dd of=/dev/mmcblk0p7

9. Ensure device boots from mmcblk0p6

        $ echo -ne "\x00\x00\x00\x00\x2b\xe8\x4d\xa3" > /dev/mmcblk0p8

10. Reboot the device

        $ reboot

Signed-off-by: Elbert Mai <code@elbertmai.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
(cherry picked from commit 75ee5546e9)
2023-12-07 09:45:33 +01:00
Patricia Lee
e1d1c26c0f mediatek: add support for Cetron CT3003
**Hardware specification:**

- SoC: MediaTek MT7981B 2x A53
- Flash: ESMT F50L1G41LB 128MB
- RAM: Nanya NT5CC128M16JR-EK 256MB
- Ethernet: 4 x 10/100/1000 Mbps
- Switch: MediaTek MT7531AE
- WiFi: MediaTek MT7976C
- Button: Reset, Mesh
- Power: DC 12V 1A
- UART: 3.3v, 115200n8
  | Layout:   |
  | :-------- |
  | <Antenna> |
  | VCC       |
  | GND       |
  | Tx        |
  | Rx        |

**Flash instructions:**

1. Rename `openwrt-mediatek-filogic-cetron_ct3003-squashfs-factory.bin` to `factory.bin`.
2. Upload the `factory.bin` using the device's Web interface.
3. Click the upgrade button and wait for the process to finish.
4. Access the OpenWrt interface using the same password.
5. Use the 'Restore' function to reset the firmware to its initial state.

**Notes:**

If you plan to recovery the stock firmware in the future, it's advisable
to connect the device via the serial port and enter failsafe mode to
back up all the MTD partitions before proceeding the steps above.

Signed-off-by: Patricia Lee <patricialee320@gmail.com>
(cherry picked from commit 907e9e0bd3)
2023-12-07 09:39:35 +01:00
Bjørn Mork
3846b6eb49 filogic: support Telenor branded ZyXEL EX5700
Telenor quirks
--------------
The operator specific firmware running on the Telenor branded
ZyXEL EX5700 includes U-Boot modifications affecting the OpenWrt
installation.

Notable changes to U-Boot include
- environment is stored in RAM and reset to defaults when power
  cycled
- dual partition scheme with "nomimal" or "rescue" systems, falling
  back to "rescue" unless the OS signals success in 3 attempts
- several runtime additions to the device-tree

Some of these modifications have side effects requiring workarounds
- U-Boot modifies /chosen/bootargs in an unsafe manner, and will crash
  unless this node exists
- U-Boot verifies that the selected rootfs UBI volume exists, and
  refuses to boot if it doesn't. The chosen "rootfs" volume must contain
  a squashfs signature even for tftp or initramfs booting.
- U-Boot parses the "factoryparams" UBI volume, setting the "ethaddr"
  variable to the label mac.  But "factoryparams" does not always
  exist.  Instead there is a "RIP" volume containing all the factory
  data.  Copying the "RIP" volume to  "factoryparams" will fix this

Hardware
--------
SOC:   MediaTek MT7986
RAM:   1GB DDR4
FLASH: 512MB SPI-NAND (Mikron xxx)
WIFI:  Mediatek MT7986 802.11ax 5 GHz
       Mediatek MT7916 DBDC 802.11ax 2.4 + 6 GHz
ETH:   MediaTek MT7531 Switch + SoC
       3 x builtin 1G phy (lan1, lan2, lan3)
       2 x MaxLinear GPY211C 2.5 N-Base-T phy (lan4, wan)
USB:   1 x USB 3.2 Enhanced SuperSpeed port
UART:  3V3 115200 8N1 (Pinout: GND KEY RX TX VCC)

Installation
------------
1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
   reachable at 192.168.1.2/24. Rename the image to C0A80101.img.

2. Connect the TFTP server to lan1, lan2 or lan3. Connect to the serial
   console, Interrupt the autoboot process by pressing ESC when prompted.

3. Download and boot the OpenWrt initramfs image.

   $ env set uboot_bootcount 0
   $ env set firmware nominal
   $ tftpboot
   $ bootm

4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
   using scp and install using sysupgrade.

   $ sysupgrade -n <path-to-sysupgrade.bin>

Missing features
----------------

- The "lan1", "lan2" and "lan3" port LEDs are driven by the switch but
  OpenWrt does not correctly configure the output.
- The "lan4" and "wan" port LEDs are driven by the GPH211C phys and
  not configured by OpenWrt.

Signed-off-by: Bjørn Mork <bjorn@mork.no>
(cherry picked from commit 6cc14bf66a)
2023-12-07 08:00:33 +01:00
Daniel Golle
ce62536aca uboot-envtools: add environment config for MeiG SLT866
Add configuration to access U-Boot environment on MeiG SLT866.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit f8414f1a6f)
2023-11-13 00:58:08 +00:00
Tianling Shen
d3c193525e mediatek: add CMCC RAX3000M support
Hardware specification:
  SoC: MediaTek MT7981B 2x A53
  Flash: 64GB eMMC or 128 MB SPI-NAND
  RAM: 512MB
  Ethernet: 4x 10/100/1000 Mbps
  Switch: MediaTek MT7531AE
  WiFi: MediaTek MT7976C
  Button: Reset, Mesh
  Power: DC 12V 1A
- UART: 3.3v, 115200n8
  --------------------------
  |         Layout         |
  |   -----------------    |
  | 4 | GND TX VCC RX | <= |
  |   -----------------    |
  --------------------------

Gain SSH access:
1. Login into web interface, and download the configuration.
2. Enter fakeroot, decompress the configuration:
   tar -zxf cfg_export_config_file.conf
3. Edit 'etc/config/dropbear', set 'enable' to '1'.
4. Edit 'etc/shadow', update (remove) root password:
   'root::19523:0:99999:7:::'
5. Repack 'etc' directory:
   tar -zcf cfg_export_config_file.conf etc/
   * If you find an error about 'etc/wireless/mediatek/DBDC_card0.dat',
     just ignore it.
6. Upload new configuration via web interface, now you can SSH to RAX3000M.

Check stroage type:
Check the label on the back of the device:
"CH EC CMIIT ID: xxxx" is eMMC version
"CH    CMIIT ID: xxxx" is NAND version

eMMC Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'factory' part.
   ('data' partition can be ignored, it's useless.)
2. Write new GPT table:
   dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-gpt.bin of=/dev/mmcblk0 bs=512 seek=0 count=34 conv=fsync
3. Erase and write new BL2:
   echo 0 > /sys/block/mmcblk0boot0/force_ro
   dd if=/dev/zero of=/dev/mmcblk0boot0 bs=512 count=8192 conv=fsync
   dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-preloader.bin of=/dev/mmcblk0boot0 bs=512 conv=fsync
4. Erase and write new FIP:
   dd if=/dev/zero of=/dev/mmcblk0 bs=512 seek=13312 count=8192 conv=fsync
   dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-bl31-uboot.fip of=/dev/mmcblk0 bs=512 seek=13312 conv=fsync
5. Set static IP on your PC:
   IP 192.168.1.254, GW 192.168.1.1
6. Serve OpenWrt initramfs image using TFTP server.
7. Cut off the power and re-engage, wait for TFTP recovery to complete.
8. After OpenWrt has booted, perform sysupgrade.
9. Additionally, if you want to have eMMC recovery boot feature:
     (Don't worry! You will always have TFTP recovery boot feature.)
   dd if=openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb of=/dev/mmcblk0p4 bs=512 conv=fsync

NAND Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'Factory' part.
2. Erase and write new BL2:
   mtd erase BL2
   mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-preloader.bin BL2
3. Erase and write new FIP:
   mtd erase FIP
   mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-bl31-uboot.fip FIP
4. Set static IP on your PC:
   IP 192.168.1.254, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, erase UBI volumes:
   ubidetach -p /dev/mtd0
   ubiformat -y /dev/mtd0
   ubiattach -p /dev/mtd0
8. Create new ubootenv volumes:
   ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
   ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
9. Additionally, if you want to have NAND recovery boot feature:
     (Don't worry! You will always have TFTP recovery boot feature.)
   ubimkvol /dev/ubi0 -n 2 -N recovery -s 20MiB
   ubiupdatevol /dev/ubi0_2 openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb
10. Perform sysupgrade.

Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
(cherry picked from commit 423186d7d8)
[rebased to 23.05]
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
2023-11-07 00:46:00 +01:00
Piotr Dymacz
0165daf569 uboot-envtools: ramips: add support for ALFA Network AX1800RM
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(backported from commit 69f12c2f23)
2023-09-11 13:49:07 +02:00
Stefan Agner
f445c38263 mediatek: filogic: wax220: cleanup device tree
Fix compatible string to match what is supported upstream, fix alignment
and order MTD partitions according to offset.

Signed-off-by: Stefan Agner <stefan@agner.ch>
(cherry picked from commit 4af06aaf33)
2023-08-22 13:40:10 +02:00
Ivan Pavlov
4e066f1f0b uboot-envtools: add u-boot env config for Xiaomi mi-mini
Add u-boot env config for Xiaomi mi-mini for using fw_printenv and fw_setenv on this board

Signed-off-by: Ivan Pavlov <AuthorReflex@gmail.com>
(cherry picked from commit a87bc138cf)
2023-08-15 17:19:05 +02:00
Hank Moretti
34d8913bd5 mediatek: filogic: add specific layout for WR30U
Because this device enable NMBM by default, most users use custom
U-Boot with NMBM-Enabled in Chinese forums.

This layout is the same as the ubootmod layout but enabling NMBM.

Signed-off-by: Hank Moretti <mchank9999@gmail.com>
2023-08-07 16:31:27 +01:00
Hank Moretti
d0fc9e96be uboot-mediatek: add support for Xiaomi WR30U
Add a custom uboot build to support openwrt uboot layout.

Signed-off-by: Hank Moretti <mchank9999@gmail.com>
2023-08-07 16:31:27 +01:00
Mathew McBride
cef98caf6e layerscape: remove Traverse LS1043 boards
The Traverse LS1043 boards were not publicly released,
all the production has been going to OEM customers who
do not use the image format defined in the OpenWrt tree.

Only a few samples were circulated outside Traverse
and our OEM customers. The public release (then called
Five64) of this series was cancelled in favour of our
LS1088A based design (Ten64).

It is best to remove these boards to avoid wasting
OpenWrt project and contributor resources.

Signed-off-by: Mathew McBride <matt@traverse.com.au>
(cherry picked from commit 8e7ba6fbae)
2023-07-26 13:36:58 +02:00
Mathew McBride
68a4c60b5c layerscape: armv8_64b: add Traverse Ten64 NAND variant
The Ten64 board[1] is based around NXP's Layerscape LS1088A SoC.
It is capable of booting both standard Linux distributions
from disk devices, using EFI, and booting OpenWrt
from NAND.

See the online manual for more information, including the
flash layout[2].

This patchset adds support for generating Ten64 images
for NAND boot.
For disk boot, one can use the EFI support that was
recently added to the armvirt target.

We previously supported NAND users by building
inside our armvirt/EFI target[3], but this approach
is not suitable for OpenWrt upstream. Users who
used our supplied NAND images will be able to upgrade
to this via sysupgrade.

Signed-off-by: Mathew McBride <matt@traverse.com.au>

[1] - https://www.traverse.com.au/hardware/ten64
[2] - https://ten64doc.traverse.com.au/hardware/flash/
[3] - Example:
285e4360e1
(cherry picked from commit af0546da34)
2023-07-26 13:36:58 +02:00
Chukun Pan
f7daeec3bd uboot-mediatek: add H3C Magic NX30 Pro support
The OEM uboot limit brush into 3rd-party firmware.
So add a custom uboot build to support openwrt.

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
(cherry picked from commit 437e79ad6d)
2023-07-13 12:05:28 +01:00
Wenli Looi
23d6474e45 mediatek: add support for Netgear EX6250v2 series
Netgear EX6250v2, EX6400v3, EX6410v2, EX6470 are wall-plug 802.11ac
(Wi-Fi 5) extenders. Like other MT7629 devices, Wi-Fi does not work
currently as there is no driver.

Related: https://github.com/openwrt/openwrt/pull/5084

For future reference, 2.4GHz MAC = LAN+1, 5GHz MAC = LAN+2.

Specifications:
* MT7629, 256 MiB RAM, 16 MiB SPI NOR
* MT7761N (2.4GHz) / MT7762N (5GHz) - no driver
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)

Installation:
* Flash the factory image through the stock web interface, or TFTP to
  the bootloader. NMRP can be used to TFTP without opening the case.
* After installation, perform a factory reset. Wait for the device to
  boot, then hold the reset button for 10 seconds. This is needed
  because sysupgrade in the stock firmware will attempt to preserve its
  configuration using sysupgrade.tgz.
  See https://github.com/openwrt/openwrt/pull/4182

Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
(cherry picked from commit 73de41898f)
2023-07-13 12:05:28 +01:00
Mikhail Zhilkin
436ef37728 ramips: add support for Sercomm S1500 devices
This commit adds support for following wireless routers:
 - Beeline SmartBox PRO (Serсomm S1500 AWI)
 - WiFire S1500.NBN (Serсomm S1500 BUC)

This commit is based on this PR:
 - Link: https://github.com/openwrt/openwrt/pull/4770
 - Author: Maximilian Weinmann <x1@disroot.org>
The opening of this PR was agreed with author.

My changes:
- Sorting, minor changes and some movings between dts and dtsi
- Move leds to dts when possible
- Recipes for the factory image
- Update of the installation/recovery/return to stock guides
- Add reset GPIO for the pcie1

Common specification
--------------------
SoC:        MediaTek MT7621AT (880 MHz, 2 cores)
Switch:     MediaTek MT7530 (via SoC MT7621AT)
Wireless:   2.4 GHz, MT7602EN, b/g/n, 2x2
Wireless:   5 GHz, MT7612EN, a/n/ac, 2x2
Ethernet:   5 ports - 5×GbE (WAN, LAN1-4)
Mini PCIe:  via J2 on PCB, not soldered on the board
UART:       J4 -> GND[], TX, VCC(3.3V), RX
BootLoader: U-Boot SerComm/Mediatek

Beeline SmartBox PRO specification
----------------------------------
RAM (Nanya NT5CB128M16FP): 256 MiB
NAND-Flash (ESMT F59L2G81A): 256 MiB
USB ports: 2xUSB2.0
LEDs: Status (white), WPS (blue), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (reset, wps), 1 switch button (ROUT<->REP)
Power: 12 VDC, 1.5 A
PCB Sticker: 970AWI0QW00N256SMT Ver. 1.0
CSN: SG15********
MAC LAN: 94:4A:0C:**:**:**
Manufacturer's code: 0AWI0500QW1

WiFire S1500.NBN specification
------------------------------
RAM (Nanya NT5CC64M16GP): 128 MiB
NAND-Flash (ESMT F59L1G81MA): 128 MiB
USB ports: 1xUSB2.0
LEDs: Status (white), WPS (white), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (RESET, WPS)
Power: 12 VDC, 1.0 A
PCB Sticker: 970BUC0RW00N128SMT Ver. 1.0
CSN: MH16********
MAC WAN: E0:60:66:**:**:**
Manufacturer's code: 0BUC0500RW1

MAC address table (PRO)
-----------------------
use   address   source
LAN   *:23      factory 0x1000 (label)
WAN   *:24      factory $label +1
2g    *:23      factory $label
5g    *:25      factory $label +2

MAC addresses (NBN)
-------------------
use   address   source
LAN   *:0e      factory 0x1000
WAN   *:0f      LAN +1 (label)
2g    *:0f      LAN +1
5g    *:10      LAN +2

OEM easy installation
---------------------
1. Remove all dots from the factory image filename (except the dot
   before file extension)
2. Upload and update the firmware via the original web interface
3. Two options are possible after the reboot:
   a. OpenWrt - that's OK, the mission accomplished
   b. Stock firmware - install Stock firmware (to switch booflag from
      Sercomm0 to Sercomm1) and then OpenWrt factory image.

Return to Stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
   printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock2
   reboot
2. Install stock firmware via the web OEM firmware interface

Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery

Tested-by: Pavel Ivanov <pi635v@gmail.com>
Tested-by: Denis Myshaev <denis.myshaev@gmail.com>
Tested-by: Oleg Galeev <olegingaleev@gmail.com>
Tested-By: Ivan Pavlov <AuthorReflex@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit 2d6784a033)
2023-07-02 15:19:34 +02:00
Mikhail Zhilkin
7ff95775a2 mediatek: add support for Mercusys MR90X v1
This commit adds support for Mercusys MR90X(EU) v1 router.

Device specification
--------------------
SoC Type:   MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM:        MediaTek MT7986BLA (512MB)
Flash:      SPI NAND GigaDevice GD5F1GQ5UEYIGY (128 MB)
Ethernet:   MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet:   1x2.5Gbe (WAN/LAN 2.5Gbps), 3xGbE (WAN/LAN 1Gbps, LAN1, LAN2)
WLAN 2g:    MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g:    MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs:       1 orange and 1 green status LEDs, 4 green gpio-controlled
            LEDs on ethernet ports
Button:     1 (Reset)
USB ports:  No
Power:      12 VDC, 2 A
Connector:  Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, both UBI
            slots contain "seconduboot" (also U-Boot 2022.01-rc4)

Serial console (UART)
---------------------
                            V
+-------+-------+-------+-------+
| +3.3V |  GND  |  TX   |  RX   |
+---+---+-------+-------+-------+
    |
    +--- Don't connect

The R3 (TX line) and R6 (RX line) are absent on the PCB. You should
solder them or solder the jumpers.

Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
   pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
      tftpboot initramfs-kernel.bin
      bootm
4. Once inside OpenWrt, set / update env variables:
      fw_setenv baudrate 115200
      fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
      fw_setenv fdtcontroladdr 5ffc0e70
      fw_setenv ipaddr 192.168.1.1
      fw_setenv loadaddr 0x46000000
      fw_setenv mtdids "spi-nand0=spi-nand0"
      fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
      fw_setenv netmask 255.255.255.0
      fw_setenv serverip 192.168.1.2
      fw_setenv stderr serial@11002000
      fw_setenv stdin serial@11002000
      fw_setenv stdout serial@11002000
      fw_setenv tp_boot_idx 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image

Installation (without UART)
---------------------------
1.  Login as root via SSH (router IP, port 20001, password - your web
    interface password)
2.  Open for editing /etc/hotplug.d/iface/65-iptv (e.g., using WinSCP and
    SSH settings from the p.1)
3.  Add a newline after "#!/bin/sh":
       telnetd -l /bin/login.sh
4.  Save "65-iptv" file
5.  Toggle "IPTV/VLAN Enable" checkbox in the router web interface and
    save
6.  Make sure that telnetd is running:
       netstat -ltunp | grep 23
7.  Login via telnet to router IP, port 23 (no username and password are
    required)
8  Upload OpenWrt "initramfs-kernel.bin" to the "/tmp" folder of the
    router (e.g., using WinSCP and SSH settings from the p.1)
9.  Stock busybox doesn't contain ubiupdatevol command. Hence, we need to
    download and upload the full version of busybox to the router. For
    example, from here:
    https://github.com/xerta555/Busybox-Binaries/raw/master/busybox-arm64
    Upload busybox-arm64 to the /tmp dir of the router and run:
    in the telnet shell:
       cd /tmp
       chmod a+x busybox-arm64
10. Check "initramfs-kernel.bin" size:
       du -h initramfs-kernel.bin
11. Delete old and create new "kernel" volume with appropriate size
    (greater than "initramfs-kernel.bin" size):
       ubirmvol /dev/ubi0 -N kernel
       ubimkvol /dev/ubi0 -n 1 -N kernel -s 9MiB
12. Write OpenWrt "initramfs-kernel.bin" to the flash:
       ./busybox-arm64 ubiupdatevol /dev/ubi0_1 /tmp/initramfs-kernel.bin
13. u-boot-env can be empty so lets create it (or overwrite it if it
    already exists) with the necessary values:
       fw_setenv baudrate 115200
       fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
       fw_setenv fdtcontroladdr 5ffc0e70
       fw_setenv ipaddr 192.168.1.1
       fw_setenv loadaddr 0x46000000
       fw_setenv mtdids "spi-nand0=spi-nand0"
       fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
       fw_setenv netmask 255.255.255.0
       fw_setenv serverip 192.168.1.2
       fw_setenv stderr serial@11002000
       fw_setenv stdin serial@11002000
       fw_setenv stdout serial@11002000
       fw_setenv tp_boot_idx 0
14. Reboot to OpenWrt initramfs:
       reboot
15. Login as root via SSH (IP 192.168.1.1, port 22)
16. Upload OpenWrt sysupgrade.bin image to the /tmp dir of the router
17. Run sysupgrade:
       sysupgrade -n /tmp/sysupgrade.bin

Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.1.1/) and
   upload the OEM firmware

Recovery (UART)
---------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
   pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
      tftpboot initramfs-kernel.bin
      bootm
4. Do what you need (restore partitions from a backup, install OpenWrt
   etc.)

Stock layout
------------
0x000000000000-0x000000200000 : "boot"
0x000000200000-0x000000300000 : "u-boot-env"
0x000000300000-0x000003500000 : "ubi0"
0x000003500000-0x000006700000 : "ubi1"
0x000006700000-0x000006f00000 : "userconfig"
0x000006f00000-0x000007300000 : "tp_data"

ubi0/ubi1 format
----------------
U-Boot at boot checks that all volumes are in place:
+-------------------------------+
| Volume Name: uboot   Vol ID: 0|
| Volume Name: kernel  Vol ID: 1|
| Volume Name: rootfs  Vol ID: 2|
+-------------------------------+

MAC addresses
-------------
+---------+-------------------+-----------+
|         | MAC               | Algorithm |
+---------+-------------------+-----------+
| label   | 00:eb:xx:xx:xx:be | label     |
| LAN     | 00:eb:xx:xx:xx:be | label     |
| WAN     | 00:eb:xx:xx:xx:bf | label+1   |
| WLAN 2g | 00:eb:xx:xx:xx:be | label     |
| WLAN 5g | 00:eb:xx:xx:xx:bd | label-1   |
+---------+-------------------+-----------+
label MAC address was found in UBI partition "tp_data", file
"default-mac". OEM wireless eeprom is also there (file
"MT7986_EEPROM.bin").

Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit e4fe3097ef)
[Fix merging conflict]
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
2023-07-01 15:16:17 +00:00
Jianhui Zhao
42c99789ac uboot-envtools: Add u-boot env config for GL-MT3000
This commit add u-boot env config for GL-MT3000, so
that we can use fw_printenv to print u-boot env and
use fw_setenv to set u-boot env in GL-MT3000.

Signed-off-by: Jianhui Zhao <zhaojh329@gmail.com>
(cherry picked from commit 6892603efa)
2023-07-01 11:49:25 +02:00
Flole Systems
cd17d8df2a
filogic: add support for Netgear WAX220
Hardware
--------
SOC:   MediaTek MT7986
RAM:   1024MB DDR3
FLASH: 128MB SPI-NAND (Winbond)
WIFI:  Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH:   Realtek RTL8221B-VB-CG 2.5 N-Base-T PHY with PoE
UART:  3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)

Installation
------------

1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
2. Connect the TFTP server to the WAX220. Conect to the serial console,
   interrupt the autoboot process by pressing '0' when prompted.
3. Download & Boot the OpenWrt initramfs image.

   $ setenv ipaddr 192.168.2.1
   $ setenv serverip 192.168.2.2
   $ tftpboot openwrt.bin
   $ bootm

4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
   using scp and install using sysupgrade.

   $ sysupgrade -n <path-to-sysupgrade.bin>

Signed-off-by: Flole Systems <flole@flole.de>
Signed-off-by: Stefan Agner <stefan@agner.ch>
(cherry picked from commit 984786a2f7)
2023-06-26 13:20:39 +02:00
David Bauer
b6f2c58dd6 ath79: add support for Aruba AP-115
Hardware
========

CPU   Qualcomm Atheros QCA9558
RAM   256MB DDR2
FLASH 2x 16M SPI-NOR (Macronix MX25L12805D)
WIFI  Qualcomm Atheros QCA9558
      Atheros AR9590

Installation
============

1. Attach to the serial console of the AP-105.
   Interrupt autoboot and change the U-Boot env.

   $ setenv rb_openwrt "setenv ipaddr 192.168.1.1;
     setenv serverip 192.168.1.66;
     netget 0x80060000 ap115.bin; go 0x80060000"
   $ setenv fb_openwrt "bank 1;
     cp.b 0xbf100040 0x80060000 0x10000; go 0x80060000"
   $ setenv bootcmd "run fb_openwrt"
   $ saveenv

2. Load the OpenWrt initramfs image on the device using TFTP.
   Place the initramfs image as "ap105.bin" in the TFTP server
   root directory, connect it to the AP and make the server reachable
   at 192.168.1.66/24.

   $ run rb_openwrt

3. Once OpenWrt booted, transfer the sysupgrade image to the device
   using scp and use sysupgrade to install the firmware.

Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 1b467a902e)
2023-06-23 00:23:48 +02:00
Maximilian Weinmann
8a0746955d ramips: Add support for Beeline SmartBox TURBO+
This adds support for Beeline Smart Box TURBO+ (Serсomm S3 CQR) router.

Device specification
--------------------
SoC Type: MediaTek MT7621AT (880 MHz, 2 cores)
RAM (Nanya NT5CC64M16GP): 128 MiB
Flash (Macronix MX30LF1G18AC): 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615N): a/n/ac, 4x4
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
USB ports: 1xUSB3.0
Buttons: 2 button (reset, wps)
LEDs: Red, Green, Blue
Zigbee (EFR32MG1B232GG): 3.0
Stock bootloader: U-Boot 1.1.3
Power: 12 VDC, 1.5 A

Installation (fw 2.0.9)
-----------------------
1.  Login to the web interface under SuperUser (root) credentials.
    Password: SDXXXXXXXXXX, where SDXXXXXXXXXX is serial number of the
    device written on the backplate stick.
2.  Navigate to Setting -> WAN. Add:
       Name - WAN1
       Connection Type - Static
       IP Address - 172.16.0.1
       Netmask - 255.255.255.0
    Save -> Apply. Set default: WAN1
3.  Enable SSH and HTTP on WAN. Setting -> Remote control. Add:
       Protocol - SSH
       Port - 22
       IP Address - 172.16.0.1
       Netmask - 255.255.255.0
       WAN Interface - WAN1
    Save ->Apply
    Add:
       Protocol - HTTP
       Port - 80
       IP Address - 172.16.0.1
       Netmask - 255.255.255.0
       WAN interface - WAN1
    Save -> Apply
4.  Set up your PC ethernet:
       Connection Type - Static
       IP Address - 172.16.0.2
       Netmask - 255.255.255.0
       Gateway - 172.16.0.1
5.  Connect PC using ethernet cable to the WAN port of the router
6.  Connect to the router using SSH shell under SuperUser account
7.  Make a mtd backup (optional, see related section)
8.  Change bootflag to Sercomm1 and reboot:
        printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
        reboot
9.  Login to the router web interface under admin account
10. Remove dots from the OpenWrt factory image filename
11. Update firmware via web using OpenWrt factory image

Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
   printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3

mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
      cd /tmp
      for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
      tftp -l mtd$i -p 172.16.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
      tftp -l mtd.md5 -p 171.16.0.2

Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery

MAC Addresses (fw 2.0.9)
------------------------
+-----+------------+---------+
| use | address    | example |
+-----+------------+---------+
| LAN | label      | *:e8    |
| WAN | label + 1  | *:e9    |
| 2g  | label + 4  | *:ec    |
| 5g  | label + 5  | *:ed    |
+-----+------------+---------+
The label MAC address was found in Factory 0x21000

Factory image format
--------------------
+---+-------------------+-------------+--------------------+
| # | Offset            | Size        | Description        |
+---+-------------------+-------------+--------------------+
| 1 | 0x0               | 0x200       | Tag Header Factory |
| 2 | 0x200             | 0x100       | Tag Header Kernel1 |
| 3 | 0x300             | 0x100       | Tag Header Kernel2 |
| 4 | 0x400             | SIZE_KERNEL | Kernel             |
| 5 | 0x400+SIZE_KERNEL | SIZE_ROOTFS | RootFS(UBI)        |
+---+-------------------+-------------+--------------------+

Co-authored-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
(cherry picked from commit 8fcfb21b16)
2023-06-17 12:59:37 +02:00
Petr Štetiar
41af35cf6b
ipq807x: add initial support for prpl Foundation Haze board
Haze is prpl Foundation's reference board (WNC LVRP).

Board info:

 - IPQ8072A SoC
 - 2 GiB RAM
 - 4 GiB eMMC
 - 8MiB SPI NOR (MX25U6435F)

 - 3x 1GigE ports (QCA8075)
 - 1x 10GigE port (AQR113C)
 - 1x SFP cage

 - WiFi 6GHz 160MHz (QCN9074)
 - WiFi 5GHz 80+80MHz (QCN5054)
 - WiFi 2.4G (QCN5024)

 - ARM Standard 20-pin 2.54mm/0.1" JTAG (1V8 !!!)
 - Bluetooth v5.0 + EDR with integrated Class 1 PA (CYW20704)
 - 1x M.2 B-key socket with PCIe 3.0
 - 1x USB 3.0 port
 - UART marked J6 is 4-pin 2.54mm/0.1" connector 3V3(arrow),RX,TX,GND (115200 8N1)
 - Reset and WPS buttons

Flashing instructions:

 1. From U-Boot boot OpenWrt using initramfs image:

    IPQ807x# tftpboot openwrt-ipq807x-generic-prpl_haze-initramfs-uImage.itb && bootm

 2. In OpenWrt running from initramfs execute sysupgrade:

    root@OpenWrt:/# sysupgrade -n /tmp/openwrt-ipq807x-generic-prpl_haze-squashfs-sysupgrade.bin

Work in progress/known issues:

 * SFP feature not implemented/tested
 * M.2 feature not implemented/tested
 * Bluetooth feature not implemented/tested
 * 6GHz wireless should be working, but not tested
 * MAC address assigments for LAN interfaces

Signed-off-by: Petr Štetiar <ynezz@true.cz>
(cherry picked from commit 2e910039dd)
2023-06-12 22:10:29 +02:00
Chukun Pan
99c94c6696 uboot-mediatek: add Qihoo 360T7 support
The vendor uboot will verify firmware at boot.
So add a custom uboot build for this device.

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
(cherry picked from commit c51eb17730)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2023-05-29 13:04:14 +01:00
Pietro Ameruoso
22d7148689 mediatek: add support for Zyxel EX5601-T0 router
Zyxel EX5601-T0 specifics
--------------
The operator specific firmware running on the Zyxel branded
EX5601-T0 includes  U-Boot modifications affecting the OpenWrt
installation.

Partition Table
| dev  | size     | erasesize | name          |
| ---- | -------- | --------- | ------------- |
| mtd0 | 20000000 | 00040000  | "spi0.1"      |
| mtd1 | 00100000 | 00040000  | "BL2"         |
| mtd2 | 00080000 | 00040000  | "u-boot-env"  |
| mtd3 | 00200000 | 00040000  | "Factory"     |
| mtd4 | 001c0000 | 00040000  | "FIP"         |
| mtd5 | 00040000 | 00040000  | "zloader"     |
| mtd6 | 04000000 | 00040000  | "ubi"         |
| mtd7 | 04000000 | 00040000  | "ubi2"        |
| mtd8 | 15a80000 | 00040000  | "zyubi"       |

The router boots BL2 which than loads FIP (u-boot).
U-boot has hardcoded a command to always launch Zloader "mtd read zloader 0x46000000" and than "bootm". Bootargs are deactivated.
Zloader is the zyxel booloader which allow to dual-boot ubi or ubi2, by default access to zloader is blocked.
Too zloader checks that the firmware contains a particolar file called zyfwinfo.
Additional details regarding Zloader can be found here:
https://hack-gpon.github.io/zyxel/
https://forum.openwrt.org/t/adding-openwrt-support-for-zyxel-ex5601-t0/155914

Hardware
--------
SOC: MediaTek MT7986a
CPU: 4 core cortex-a53 (2000MHz)
RAM: 1GB DDR4
FLASH: 512MB SPI-NAND (Micron xxx)
WIFI: Wifi6 Mediatek MT7976 802.11ax 5 GHz 4x4 + 2.4GHZ 4x4
ETH: MediaTek MT7531 Switch + SoC
3 x builtin 1G phy (lan1, lan2, lan3)
1 x MaxLinear GPY211B 2.5 N-Base-T phy5 (lan4)
1 x MaxLinear GPY211B 2.5Gbit xor SFP/N-Base-T phy6 (wan)
USB: 1 x USB 3.2 Enhanced SuperSpeed port
UART: 3V3 115200 8N1 (Pinout: GND KEY RX TX VCC)
VOIP: 2 FXS ports for analog phones

MAC Address Table
-----------------
eth0/lan    Factory 0x002a
eth1/wan    Factory 0x0024
wifi 2.4Ghz Factory 0x0004
wifi 5Ghz   Factory 0x0004 + 1

Serial console (UART)
---------------------
+-------+-------+-------+-------+-------+
| +3.3V |  RX   |  TX   |  KEY  |  GND  |
+---+---+-------+-------+-------+-------+
    |
    +--- Don't connect

Installation
------------
Keep in mind that openwrt can only run on the UBI partition, the openwrt firmware is not able to understand the zloader bootargs.
The procedure allows restoring the UBI partition with the Zyxel firmware and retains all the OEM functionalities.

1. Unlock Zloader (this will allow to swap manually between partitions UBI and UBI2):
- Attach a usb-ttl adapter to your computer and boot the router.
- While the router is booting at some point you will read the following: `Please press Enter to activate this console.`
- As soon as you read that press enter, type root and than press enter again (just do it, don't care about the logs scrolling).
- Most likely the router is still printing the boot log, leave it boot until it stops.
- If everything went ok you should have full root access "root@EX5601-T0:/#".
- Type the following command and press enter: "fw_setenv EngDebugFlag 0x1".
- Reboot the router.
- As soon as you read `Hit any key to stop autoboot:` press Enter.
- If everything went ok you should have the following prompt: "ZHAL>".
- You have successfully unlocked zloader access, this procedure must be done only once.

2. Check the current active partition:
- Boot the router and repeat the steps above to gain root access.
- Type the following command to check the current active image: "cat /proc/cmdline".
- If `rootubi=ubi` it means that the active partition is `mtd6`
- If `rootubi=ubi2` it means that the active partition is `mtd7`
- As mentioned earlier we need to flash openwrt into ubi/mtd6 and never overwrite ubi2/mtd7 to be able to fully roll-back.
- To activate and boot from mtd7 (ubi2) enter into ZHAL> command prompt and type the following commands:
atbt 1  # unlock write
atsw    # swap boot partition
atsr    # reboot the router
- After rebooting check again with "cat /proc/cmdline" that you are correctly booting from mtd7/ubi2
- If yes proceed with the installation guide. If not probably you don't have a firmware into ubi2 or you did something wrong.

3. Flashing:
- Download the sysupgrade file for the router from openwrt, than we need to add the zyfwinfo file into the sysupgrade tar.
Zloader only checks for the magic (which is a fixed value 'EXYZ') and the crc of the file itself (256bytes).
I created a script to create a valid zyfwinfo file but you can use anything that does exactly the same:
https://raw.githubusercontent.com/pameruoso/OpenWRT-Zyxel-EX5601-T0/main/gen_zyfwinfo.sh
- Add the zyfwinfo file into the sysupgrade tar.
- Enter via telnet or ssh into the router with admin credentials
- Enter the following commands to disable the firmware and model checks
"zycli fwidcheck off" and "zycli modelcheck off"
- Open the router web interface and in the update firmware page select the "restore default settings option"
- Select the sysupgrade file and click on upload.
- The router will flash and reboot itself into openwrt from UBI

4. Restoring and going back to Zyxel firmware.
- Use the ZHAL> command line to manually swap the boot parition to UBI2 with the following:
atbt 1  # unlock write
atsw    # swap boot partition
atsr    # reboot the router
- You will boot again the Zyxel firmware you have into UBI2 and you can flash the zyxel firmware to overwrite the UBI partition and openwrt.

Working features
----------------
3 gbit lan ports
Wifi
Zyxel partitioning for coexistance with Zloader and dual boot.
WAN SFP port (only after exporting pins 57 and 10. gpiobase411)
leds
reset button
serial interface
usb port
lan ethernet 2.5 gbit port (autosense)
wan ethernet 2.5 gbit port (autosense)

Not working
----------------
voip (missing drivers or proper zyxel platform software)

Swapping the wan ethernet/sfp xor port
----------------
The way to swap the wan port between sfp and ethernet is the following:
export the pins 57 and 10.
Pin 57 is used to probe if an sfp is present.
If pin 57 value is 0 it means that an sfp is present into the cage (cat /sys/class/gpio/gpio468/value).
If pin 57 value is 1 it means that no sfp is inserted into the cage.
In conclusion by default both 57 an 10 pins are by default 1, which means that the active port is the ethernet one.
After inserting an SFP pin 57 will become 0 and you have to manually change the value of pin 10 to 0 too.
This is totally scriptable of course.

Leds description
------------
All the leds are working out of the box but the leds managed by the 2 maxlinear phy (phy 5 lan, phy6 wan).
To activate the phy5 led (rj45 ethernet port led on the back of the router) you have to use mdio-tools.
To activate the phy6 led (led on the front of the router for 2.5gbit link) you have to use mdio-tools.
Example:
Set lan5 led to fast blink on 2500/1000, slow blink on 10/100:
mdio mdio-bus mmd 5:30 raw 0x0001 0x33FC

Set wan 2.5gbit led to constant on when wan is 2.5gbit:
mdio mdio-bus mmd 6:30 raw 0x0001 0x0080

Signed-off-by: Pietro Ameruoso <p.ameruoso@live.it>
(cherry picked from commit 1c05388ab0)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2023-05-24 19:26:11 +01:00
Shiji Yang
635d5488c9 ath79: add support for D-Link DIR-859 A3
Specifications:
  SOC:      QCA9563 775 MHz + QCA9880
  Switch:   QCA8337N-AL3C
  RAM:      Winbond W9751G6KB-25 64 MiB
  Flash:    Winbond W25Q128FVSG 16 MiB
  WLAN:     Wi-Fi4 2.4 GHz 3*3 + 5 GHz 3*3
  LAN:      LAN ports *4
  WAN:      WAN port *1
  Buttons:  reset *1 + wps *1
  LEDs: ethernet *5, power, wlan, wps

MAC Address:
  use      address               source1          source2
  label    40:9b:xx:xx:xx:3c     lan && wlan      u-boot,env@ethaddr
  lan      40:9b:xx:xx:xx:3c     devdata@0x3f     $label
  wan      40:9b:xx:xx:xx:3f     devdata@0x8f     $label + 3
  wlan2g   40:9b:xx:xx:xx:3c     devdata@0x5b     $label
  wlan5g   40:9b:xx:xx:xx:3e     devdata@0x76     $label + 2

Install via Web UI:
  Apply factory image in the stock firmware's Web UI.

Install via Emergency Room Mode:
  DIR-859 A1 will enter recovery mode when the system fails to boot
  or press reset button for about 10 seconds.

  First, set computer IP to 192.168.0.5 and Gateway to 192.168.0.1.
  Then we can open http://192.168.0.1 in the web browser to upload
  OpenWrt factory image or stock firmware. Some modern browsers may
  need to turn on compatibility mode.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
(cherry picked from commit 0ffbef9317)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2023-05-24 19:25:56 +01:00
Shiji Yang
f0b2fdb82e ath79: improve support for D-Link DIR-8x9 A1 series
1. Remove unnecessary new lines in the dts.
2. Remove duplicate included file "gpio.h" in the device dts.
3. Add missing button labels "reset" and "wps".
4. Unify the format of the reg properties.
5. Add u-boot environment support.
6. Reduce spi clock frequency since the max value suggested by the
   chip datasheet is only 25 MHz.
7. Add seama header fixup for DIR-859 A1. Without this header fixup,
   u-boot checksum for kernel will fail after the first boot.

Signed-off-by: Shiji Yang <yangshiji66@qq.com>
(cherry picked from commit e5d8739aa8)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2023-05-24 19:25:52 +01:00
Christoph Krapp
e882af2850 ramips: add support for Linksys RE7000
Hardware specification:

- SoC: MediaTek MT7621AT (880 MHz)
- Flash: 16 MB (Macronix MX25L12835FM2I-10G)
- RAM: 128 MB (Nanya NT5CC64M16GP-DI)
- WLAN 2.4 GHz: 2x2 MediaTek MT7603EN
- WLAN 5 GHz: 2x2 MediaTek MT7615N
- Ethernet: 1x 10/100/1000 Mbps
- LED: Power, Wifi, WPS
- Button: Reset, WPS
- UART: 1:VCC, 2:GND, 3:TX, 4:RX (from LAN port)
  Serial console @ 57600,8n1

Flash instructions:

Connect to serial console and start up the device. As the bootloader got
locked you need to type in a password to unlock U-Boot access.
When you see the following output on the console:

relocate_code Pointer at: 87f1c000

type in the super secure password:

1234567890

Then select TFTP boot from RAM by selecting option 1 in the boot menu.
As Linksys decided to leave out a basic TFTP configuration you need to
set server- & client ip as well as the image filename the device will
search for. You need to use the initramfs openwrt image for the TFTP
boot process.

Once openwrt has booted up, upload the sysupgrade image via scp and run
sysupgrade as normal.

Signed-off-by: Christoph Krapp <achterin@gmail.com>
2023-05-09 11:52:53 +02:00
Maximilian Weinmann
ecdb24814f ramips: add support for SNR-CPE-ME1
SNR-CPE-ME1 is a wireless WiFi 5 router manufactured by SNR/NAG company.

Specification:
    - SoC           : MediaTek MT7621A
    - RAM           : DDR3 256 MiB
    - Flash         : SPI-NOR 16 MiB (GD25Q128CSIG)
    - WLAN          : 2.4 GHz (MediaTek MT7603EN)
                      5 GHz (MediaTek MT7610EN)
    - Ethernet      : 10/100/1000 Mbps x5
      - Switch      : MediaTek MT7530 (in SoC)
    - USB           : 3.0 x1
    - UART          : through-hole on PCB
      - [J4] 3.3V, RX, TX, GND (57600n8)
    - Power         : 12 VDC, 2 A

Flash instruction via TFTP:
    1. Boot SNR-CPE-ME1 to recovery mode
        (hold the reset button while power on)
    2. Send firmware via TFTP client:
       TFTP Server address: 192.168.1.1
       TFTP Client address: 192.168.1.131
    3. Wait ~120 seconds to complete flashing
    4. Do sysupgrade using web-interface

Signed-off-by: Maximilian Weinmann <x1@disroot.org>
2023-05-07 14:44:54 +02:00
Andreas Böhler
28df7f7ff2 ramips: mt7621: add support for ZyXEL WSM20
The ZyXEL WSM20 aka Multy M1 is a cheap mesh router system by ZyXEL
based on the MT7621 CPU.

Specifications
==============

SoC: MediaTek MT7621AT (880MHz)
RAM: 256MiB
Flash: 128MiB NAND
Wireless: 802.11ax (2x2 MT7915E DBDC)
Ethernet: 4x 10/100/1000 (MT7530)
Button: 1x WPS, 1x Reset, 1x LED On/Off
LED: 7 LEDs (3x white, 2x red, 2x green)

MAC address assignment
======================

The MAC address assignment follows stock: The label MAC address is the LAN
MAC address, the WAN address is read from flash.

The WiFi MAC addresses are set in userspace to label MAC + 1 and label MAC
+ 2.

Installation (web interface)
============================

The device is cloud-managed, but there is a hidden local firmware upgrade
page in the OEM web interface. The device has to be registered in the
cloud in order to be able to access this page.

The system has a dual firmware design, there is no way to tell which
firmware is currently booted. Therefore, an -initramfs version is flashed
first.

1. Log into the OEM web GUI
2. Access the hidden upgrade page by navigating to
   https://192.168.212.1/gui/#/main/debug/firmwareupgrade
3. Upload the -initramfs-kernel.bin file and flash it
4. Wait for OpenWrt to boot and log in via SSH
5. Transfer the sysupgrade file via SCP
6. Run sysupgrade to install the image
7. Reboot and enjoy

NB: If the initramfs version was installed in RAS2, the sysupgrade script
sets the boot number to the first partition. A backup has to be performed
manually in case the OEM firwmare should be kept.

Installation (UART method)
==========================

The UART method is more difficult, as the boot loader does not have a
timeout set. A semi-working stock firmware is required to configure it:

1. Attach UART
2. Boot the stock firmware until the message about failsafe mode appears
3. Enter failsafe mode by pressing "f" and "Enter"
4. Type "mount_root"
5. Run "fw_setenv bootmenu_delay 3"
6. Reboot, U-Boot now presents a menu
7. The -initramfs-kernel.bin image can be flashed using the menu
8. Run the regular sysupgrade for a permanent installation

Changing the partition to boot is a bit cumbersome in U-Boot, as there is
no menu to select it. It can only be checked using mstc_bootnum. To change
it, issue the following commands in U-Boot:

   nand read 1800000 53c0000 800
   mw.b 1800004 1 1
   nand erase 53c0000 800
   nand write 1800000 53c0000 800

This selects FW1. Replace "mw.b 1800004 1 1" by "mw.b 1800004 2 1" to
change to the second slot.

Back to stock
=============

It is possible to flash back to stock, but a OEM firmware upgrade is
required. ZyXEL does not provide the link on its website, but the link
can be acquired from the OEM web GUI by analyzing the transferred JSON
objects.

It is then a matter of writing the firmware to Kernel2 and setting the
boot partition to FW2:

   mtd write zyxel.bin Kernel2
   echo -ne "\x02" | dd of=/dev/mtdblock7 count=1 bs=1 seek=4 conv=notrunc

Signed-off-by: Andreas Böhler <dev@aboehler.at>
Credits to forum users Annick and SirLouen for their initial work on this
device
2023-04-29 21:53:34 +02:00
Andreas Böhler
097f350aeb ath79: add support for Alcatel HH40V
The Alcatel HH40V is a CAT4 LTE router used by various ISPs.

Specifications
==============

SoC: QCA9531 650MHz
RAM: 128MiB
Flash: 32MiB SPI NOR
LAN: 1x 10/100MBit
WAN: 1x 10/100MBit
LTE: MDM9607 USB 2.0 (rndis configuration)
WiFi: 802.11n (SoC integrated)

MAC address assignment
======================

There are three MAC addresses stored in the flash ROM, the assignment
follows stock. The MAC on the label is the WiFi MAC address.

Installation (TFTP)
===================

1. Connect serial console
2. Configure static IP to 192.168.1.112
3. Put OpenWrt factory.bin file as firmware-system.bin
4. Press Power + WPS and plug in power
5. Keep buttons pressed until TFTP requests are visible
6. Wait for the system to finish flashing and wait for reboot
7. Bootup will fail as the kernel offset is wrong
8. Run "setenv bootcmd bootm 0x9f150000"
9. Reset board and enjoy OpenWrt

Installation (without UART)
===========================

Installation without UART is a bit tricky and requires several steps too
long for the commit message. Basic steps:

1. Create configure backup
2. Patch backup file to enable SSH
3. Login via SSH and configure the new bootcmd
3. Flash OpenWrt factory.bin image manually (sysupgrade doesn't work)

More detailed instructions will be provided on the Wiki page.

Tested by: Christian Heuff <christian@heuff.at>
Signed-off-by: Andreas Böhler <dev@aboehler.at>
2023-04-23 19:32:18 +02:00
Daniel Golle
cc00e22029 uboot-mediatek: add TP-Link TL-XDR4288 and TL-XDR608x
TP-Link TL-XDR608x comes with locked vendor loader. Add U-Boot build
for replacement loader for both TL-XDR6086 and TL-XDR6088. The only
difference at U-Boot level is the different filename requested via
TFTP, matching the corresponding OpenWrt build artifacts for each
device.

The TP-Link TL-XDR4288 has the same hardware as the TP-Link TL-XDR6088
except for the wireless part. Also create a uboot for the TP-Link
TL-XDR4288.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[rebase to uboot 23.04, correct led and button]
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2023-04-22 04:10:19 +01:00
Nick Hainke
fea4ffdef2 uboot-envtools: update to 2023.04
Update to latest version.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2023-04-11 17:24:29 +02:00