mirror of
https://github.com/openwrt/openwrt.git
synced 2025-01-25 05:47:00 +00:00
115 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Andreas Böhler
|
a684b512e5 |
ipq40xx: refactor ZTE MF287 series
The ZTE MF287 requires a different board calibration file for ath10k than the ZTE MF287+. The two devices receive their own DTS, thus the device tree is slightly refactored. Signed-off-by: Andreas Böhler <dev@aboehler.at> (cherry picked from commit 9c7578d560708c040dc04d0db37ef682db58f6b5) |
||
Christian Lamparter
|
894b2086fd |
ipq-wifi: fix upstream board-2.bin ZTE M289F snafu
The upstream board-2.bin file in the linux-firmware.git repository for the QCA4019 contains a packed board-2.bin for this device for both 2.4G and 5G wifis. This isn't something that the ath10k driver supports. Until this feature either gets implemented - which is very unlikely -, or the upstream boardfile is mended (both, the original submitter and ath10k-firmware custodian have been notified). OpenWrt will go back and use its own bespoke boardfile. This unfortunately means that 2.4G and on some revisions the 5G WiFi is not available in the initramfs image for this device. Fixes: #12886 Reported-by: Christian Heuff <christian@heuff.at> Debugged-by: Georgios Kourachanis <geo.kourachanis@gmail.com> Signed-off-by: Christian Lamparter <chunkeey@gmail.com> (cherry picked from commit 75505c5ec724b9b961dcb411bac1d4b9aede3e1d) |
||
Andreas Böhler
|
023a8853c8 |
ipq4019: add support for ZTE MF287+ aka DreiNeo
The ZTE MF287+ is a LTE router used (exclusively?) by the network operator "3". The MF287 (i.e. non-plus aka 3Neo) is also supported (the only difference is the LTE modem) Specifications ============== SoC: IPQ4018 RAM: 256MiB Flash: 8MiB SPI-NOR + 128MiB SPI-NAND LAN: 4x GBit LAN LTE: ZTE Cat12 (MF287+) / ZTE Cat6 (MF287) WiFi: 802.11a/b/g/n/ac SoC-integrated MAC addresses ============= LAN: from config + 2 WiFi 1: from config WiFi 2: from config + 1 Installation ============ Option 1 - TFTP --------------- TFTP installation using UART is preferred. Disassemble the device and connect serial. Put the initramfs image as openwrt.bin to your TFTP server and configure a static IP of 192.168.1.100. Load the initramfs image by typing: setenv serverip 192.168.1.100 setenv ipaddr 192.168.1.1 tftpboot 0x82000000 openwrt.bin bootm 0x82000000 From this intiramfs boot you can take a backup of the currently installed partitions as no vendor firmware is available for download: ubiattach -m14 cat /dev/ubi0_0 > /tmp/ubi0_0 cat /dev/ubi0_1 > /tmp/ubi0_1 Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save. Once booted, transfer the sysupgrade image and run sysupgrade. You might have to delete the stock volumes first: ubirmvol /dev/ubi0 -N ubi_rootfs ubirmvol /dev/ubi0 -N kernel Option 2 - From stock firmware ------------------------------ The installation from stock requires an exploit first. The exploit consists of a backup file that forces the firmware to download telnetd via TFTP from 192.168.0.22 and run it. Once exploited, you can connect via telnet and login as admin:admin. The exploit will be available at the device wiki page. Once inside the stock firmware, you can transfer the -factory.bin file to /tmp by using "scp" from the stock frmware or "tftp". ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write access - you need to read from one file in /proc. Once done, you need to erase the UBI partition and flash OpenWrt. Before performing the operation, make sure that mtd13 is the partition labelled "rootfs" by calling "cat /proc/mtd". Complete commands: cd /tmp tftp -g -r factory.bin 192.168.0.22 cat /proc/driver/sensor_id flash_erase /dev/mtd13 0 0 dd if=/tmp/factory.bin of=/dev/mtdblock13 bs=131072 Afterwards, reboot your device and you should have a working OpenWrt installation. Restore Stock ============= Option 1 - via UART ------------------- Boot an OpenWrt initramfs image via TFTP as for the initial installation. Transfer the two backed-up files to your box to /tmp. Then, run the following commands - replace $kernel_length and $rootfs_size by the size of ubi0_0 and ubi0_1 in bytes. ubiattach -m 14 ubirmvol /dev/ubi0 -N kernel ubirmvol /dev/ubi0 -N rootfs ubirmvol /dev/ubi0 -N rootfs_data ubimkvol /dev/ubi0 -N kernel -s $kernel_length ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0 ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1 Option 2 - from within OpenWrt ------------------------------ This option requires to flash an initramfs version first so that access to the flash is possible. This can be achieved by sysupgrading to the recovery.bin version and rebooting. Once rebooted, you are again in a default OpenWrt installation, but no partition is mounted. Follow the commands from Option 1 to flash back to stock. LTE Modem ========= The LTE modem is similar to other ZTE devices and controls some more LEDs and battery management. Configuring the connection using uqmi works properly, the modem provides three serial ports and a QMI CDC ethernet interface. Signed-off-by: Andreas Böhler <dev@aboehler.at> (cherry picked from commit f70ee53b08466f612546f699c556cbdaa39e1466) |
||
Petr Štetiar
|
7e6403a966
|
ipq-wifi: update to version 2023-06-03
Contains following updates: * ipq8074: update RegDB in new submitted BDF * Revert "ipq8074: update RegDB in new submitted BDF" * qcn9074: update RegDB in new submitted BDF * ipq8074: update RegDB in new submitted BDF * qca-wireless: ipq40xx: add BDFs for ZTE MF287+ * Add BDFs for prpl Foundation Haze board Signed-off-by: Petr Štetiar <ynezz@true.cz> (cherry picked from commit c2bb9f055b252f167d58540bddb9e5e9586fa986) |
||
Antti Nykänen
|
793b9cddd2
|
ipq-wifi: bump to latest git HEAD
0f73d32 ipq8074: update RegDB in new submitted BDF a4cd21f ipq8074: add Compex WPQ873 BDF c888dd0 qca-wireless: ipq40xx: Add BDFs for Eero Cento 6388ba9 ipq8074: update regdb for Netgear SXK80 BDF 77775d2 ipq8074: add Netgear SXK80 Signed-off-by: Antti Nykänen <antti.nykanen@nokia.com> (cherry picked from commit 86e7614e0deb5e97083103600b045833c6517c6b) |
||
Christian Lamparter
|
8217f02a1c |
ipq-wifi: drop upstreamed board-2.bin
The BDFs for the: Aruba AP-365 Devolo Magic 2 WiFi next Edgecore ECW5410 Edgecore OAP100 Extreme Networks WS-AP3915i GL.iNet GL-A1300 GL.iNet GL-AP1300 GL.iNet GL-S1300 Linksys EA8300 Linksys WHW03v2 Nokia Wi4A AC400i P&W R619AC Pakedge WR-1 Qxwlan E2600AC C1 Sony NCP-HG100/Cellular Teltonika RUTX10 ZTE MF18A were upstreamed to the ath10k-firmware repository and landed in linux-firmware.git. Furthermore the BDFs for the: 8devices Habanero 8devices Jalapeno Qxwlan E2600AC C2 have been updated. Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
Christian Marangi
|
69812bf8ed
|
ipq-wifi: bump to latest git HEAD
b22487d ath11k: qcn8074: Update regDb in every BDF 3add8be ath11k: ipq8074: Update regDb in every BDF 8bb6039 ath11k: ipq8074: add Netgear RAX120v2 Signed-off-by: Christian Marangi <ansuelsmth@gmail.com> |
||
Christian Marangi
|
42a5917786
|
ipq-wifi: bump to latest git HEAD
ccd7e46 ipq40xx: add support for Wallystech DR40x9 2ce60e1 Revert "ipq40xx: add support for Wallystech DR40x9" ea962ca ipq40xx: add Emplus WAP551 BDF Signed-off-by: Christian Marangi <ansuelsmth@gmail.com> |
||
Robert Marko
|
eb564690c9 |
ipq40xx: add support for Wallystech DR40x9
Adds support for the Wallys DR40x9 series boards. They come in IPQ4019 and IPQ4029 versions. IPQ4019/4029 only differ in that that IPQ4029 is the industrial version that is rated to higher temperatures. Specifications are: * CPU: Qualcomm IPQ40x9 (4x ARMv7A Cortex A7) at 716 MHz * RAM: 512 MB * Storage: 2MB of SPI-NOR, 128 MB of parallel NAND * USB 3.0 TypeA port for users * MiniPCI-E with PCI-E 2.0 link * MiniPCI-E for LTE modems with only USB2.0 link * 2 SIM card slots that are selected via GPIO11 * MicroSD card slot * Ethernet: 2x GBe with 24~48V passive POE * SFP port (Does not work, I2C and GPIO's not connected on hardware) * DC Jack * UART header * WLAN: In-SoC 2x2 802.11b/g/n and 2x2 802.11a/n/ac * 4x MMCX connectors for WLAN * Reset button * 8x LED-s Installation instructions: Connect to UART, pins are like this: -> 3.3V | TX | RX | GND Settings are 115200 8n1 Boot initramfs from TFTP: tftpboot 0x84000000 openwrt-ipq40xx-generic-wallys_dr40x9-initramfs-fit-uImage.itb bootm Then copy the sysupgrade image to the /tmp folder and execute sysupgrade -n <image_name> The board file binary was provided from Wallystech on March 14th 2023 including full permission to use and distribute. Signed-off-by: Robert Marko <robert.marko@sartura.hr> Signed-off-by: Koen Vandeputte <koen.vandeputte@citymesh.com> |
||
Koen Vandeputte
|
7699a5b1d7 |
ipq-wifi: bump to latest git HEAD
f9cece0 ipq40xx: add support for Wallystech DR40x9 Signed-off-by: Koen Vandeputte <koen.vandeputte@citymesh.com> |
||
Alexandru Gagniuc
|
7801161c4b |
ipq807x: add support for Netgear WAX218
Netgear WAX218 is a 802.11ax AP claiming AX3600 support. It is wall or ceiling mountable. It can be powered via PoE, or a 12 V adapter. The board has footprints for 2.54mm UART headers. They're difficult to solder because the GND is connected to a large copper plane. Only try soldering if you are very skilled. Otherwise, use pogo pins. Specifications: --------------- * CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz * RAM: 366 MB of RAM available to OS, not sure of total amount * Storage: Macronix MX30UF2G18AC 256MB NAND * Ethernet: * 2.5G RJ45 port (QCA8081) with PoE input * WLAN: * 2.4GHz/5GHz with 8 antennas * LEDs: * Power (Amber) * LAN (Blue) * 2G WLAN (Blue) * 5G WLAN (Blue) * Buttons: * 1x Factory reset * Power: 12V DC Jack * UART: Two 4-pin unpopulated headers near the LEDs * "J2 UART" is the CPU UART, 3.3 V level Installation: ============= Web UI method ------------- Flashing OpenWRT using the vendor's Web UI is problematic on this device. The u-boot mechanism for communicating the active rootfs is antiquated and unreliable. Instead of setting the kernel commandline, it relies on patching the DTS partitions of the nand node. The way partitions are patched is incompatible with newer kernels. Newer kernels use the SMEM partition table, which puts "rootfs" on mtd12. The vendor's Web UI will flash to either mtd12 or mtd14. One reliable way to boot from mtd14 and avoid boot loops is to use an initramfs image. 1. In the factory web UI, navigate to System Manager -> Firmware. 2. In the "Local Firmware Upgrade" section, click Browse 3. Navigate and select the 'web-ui-factory.fit' image 4. Click "Upload" 5. On the following page, click on "Proceed" The flash proceeds at this point and the system will reboot automatically to OpenWRT. 6. Flash the 'nand-sysupgrade.bin' using Luci or the commandline SSH method ---------- Enable SSH using the CLI or Web UI. The root account is locked out to ssh, and the admin account defaults to Netgear's CLI application. So we need to get creative: First, make sure the device boots from the second firmware partition: ssh -okexalgorithms=diffie-hellman-group14-sha1 admin@<ipaddr> \ /usr/sbin/fw_setenv active_fw 1 Then reboot the device, and run the update: scp -O -o kexalgorithms=diffie-hellman-group14-sha1 \ -o hostkeyalgorithms=ssh-rsa \ netgear_wax218-squashfs-nand-factory.ubi \ admin@<ipaddr>:/tmp/openwrt.ubi ssh -okexalgorithms=diffie-hellman-group14-sha1 admin@<ipaddr> \ /usr/sbin/ubiformat /dev/mtd12 -f /tmp/openwrt.ubi ssh -okexalgorithms=diffie-hellman-group14-sha1 admin@<ipaddr> \ /usr/sbin/fw_setenv active_fw 0 Now reboot the device, and it should boot into a ready-to-use OpenWRT. Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com> Reviewed-by: Robert Marko <robimarko@gmail.com> Tested-by: Francisco G Luna <frangonlun@gmail.com> |
||
Kristjan Krušič
|
cd47a58b73
|
ipq-wifi: bump to latest git HEAD
31ff96d ipq806x: add support for Nokia Airscale AC400i 1af1df2 ath11k: ipq8074: add Netgear WAX218 Signed-off-by: Kristjan Krušič <kristjan.krusic@krusic22.com> |
||
Kristjan Krušič
|
f574b535eb
|
ipq806x: add support for Nokia Airscale AC400i
Hardware -------- SoC: Qualcomm IPQ8065 RAM: 512 MB DDR3 Flash: 256 MB NAND (Macronix MX30UF2G18AC) (split into 2x128MB) 4 MB SPI-NOR (Macronix MX25U3235F) WLAN: Qualcomm Atheros QCA9984 - 2.4Ghz Qualcomm Atheros QCA9984 - 5Ghz ETH: eth0 - POE (100Mbps in U-Boot, 1000Mbps in OpenWrt) eth1 - (1000Mbps in both) Auto-negotiation broken on both. USB: USB 2.0 LED: 5G, 2.4G, ETH1, ETH2, CTRL, PWR (All support green and red) BTN: Reset Other: SD card slot (non-functional) Serial: 115200bps, near the Ethernet transformers, labeled 9X. Connections from the arrow to the 9X text: [NC] - [TXD] - [GND] - [RXD] - [NC] Installation ------------ 0. Connect to the device Plug your computer into LAN2 (1000Mbps connection required). If you use the LAN1/POE port, set your computer to force a 100Mbps link. Connect to the device via TTL (Serial) 115200n8. Locate the header (or solder pads) labeled 9X, near the Ethernet jacks/transformers. There should be an arrow on the other side of the header marking. The connections should go like this: (from the arrow to the 9X text): NC - TXD - GND - RXD - NC 1. Prepare for installation While the AP is powering up, interrupt the startup process. MAKE SURE TO CHECK YOUR CURRENT PARTITION! If you see: "Current Partition is : partB" or "Need to switch partition from partA to partB", you have to force the device into partA mode, before continuing. This can be done by changing the PKRstCnt to 5 and resetting the device. setenv PKRstCnt 5 saveenv reset After you interrupt the startup process again, you should see: Need to switch partition from partB to partA You can now continue to the next step. If you see: "Current Partition is : partA", you can continue to the next step. 2. Prevent partition switching. To prevent the device from switching partitions, we are going to modify the startup command. set bootcmd "setenv PKRstCnt 0; saveenv; bootipq" setenv 3. First boot Now, we have to boot the OpenWrt intifs. The easiest way to do this is by using Tiny PXE. You can also use the normal U-Boot tftp method. Run "bootp" this will get an IP from the DHCP server and possibly the firmware image. If it doesn't download the firmware image, run "tftpboot". Now run "bootm" to run the image. You might see: "ERROR: new format image overwritten - must RESET the board to recover" this means that the image you are trying to load is too big. Use a smaller image for the initial boot. 4. Install OpenWrt from initfs Once you are booted into OpenWrt, transfer the OpenWrt upgrade image and use sysupgrade to install OpenWrt to the device. Signed-off-by: Kristjan Krušič <kristjan.krusic@krusic22.com> |
||
Christian Marangi
|
2e72ee1b23
|
ipq-wifi: bump to latest git HEAD
86180c4 ath10k-firmware: IPQ4019 hw1.0: Rename variant to ZTE MF18A specific BDF Signed-off-by: Christian Marangi <ansuelsmth@gmail.com> |
||
Christian Marangi
|
880b4811c2
|
ipq-wifi: bump to latest git HEAD
1f35a8c ath10k-firmware: IPQ4019 hw1.0: Add variant to Teltonika RUTX10 specific BDF a49672f ath10k-firmware: QCA99X0 hw2.0: Add variant to ZTE MF18A specific BDF Signed-off-by: Christian Marangi <ansuelsmth@gmail.com> |
||
Mantas Pucka
|
93b7f0f0ed
|
ipq-wifi: bump to latest git HEAD and add 8devices boards
2dae618 ipq-wifi: update 8devices Jalapeno BDF 08e92db ipq-wifi: update 8devices Habanero BDF Signed-off-by: Mantas Pucka <mantas@8devices.com> [ split ipq40xx changes in separate commit ] Signed-off-by: Christian Marangi <ansuelsmth@gmail.com> |
||
Christian Marangi
|
f576762814
|
firmware: ipq-wifi: use project branch and drop local file
Source BDF files out of project dedicated repository and drop local file from openwrt main repository. Signed-off-by: Christian Marangi <ansuelsmth@gmail.com> |
||
INAGAKI Hiroshi
|
f490295bf2
|
ipq807x: add support for Buffalo WXR-5950AX12
Buffalo WXR-5950AX12 is a 2.4/5 GHz band 11ax (Wi-Fi 6) router, based on IPQ8074A. Specification: - SoC : Qualcomm IPQ8074A - RAM : DDR3 1024 MiB (2x Nanya NT5CC256M16ER-EK) - Flash : RAW NAND 256 MiB (Winbond W29N02GZBIBA) - WLAN : 2.4/5 GHz (IPQ8074A) - Ethernet : 5 ports - WAN : 100/1000/2500/10000 Mbps x1 (AQR113C) - LAN : 100/1000/2500/10000 Mbps x1 (AQR113C), 10/100/1000 Mbps x3 (QCA8075) - LED/Keys : 8x/5x - UART : pin header on PCB (J7) - assignment: 3.3V, GND, TX, RX from disc marking - settings : 115200n8 - Power : 12 VDC, 4 A Flash instruction using initramfs image: 1. Prepare TFTP server with IP address 192.168.11.10 2. Rename OpenWrt initramfs image to "WXR-5950AX12-initramfs.uImage and place it to TFTP directory 3. Hold AOSS (WPS) button and power on WXR-5950AX12 4. WXR-5950AX12 downloads initramfs image from TFTP server and boots with it automatically 5. Upload sysupgrade image to WXR-5950AX12 and perform sysupgrade 6. Wait ~120 seconds to complete flashing Partition layout: 0x000000000000-0x000000100000 : "0:sbl1" 0x000000100000-0x000000200000 : "0:mibib" 0x000000200000-0x000000280000 : "0:bootconfig" 0x000000280000-0x000000300000 : "0:bootconfig1" 0x000000300000-0x000000600000 : "0:qsee" 0x000000600000-0x000000900000 : "0:qsee_1" 0x000000900000-0x000000980000 : "0:devcfg" 0x000000980000-0x000000a00000 : "0:devcfg_1" 0x000000a00000-0x000000a80000 : "0:apdp" 0x000000a80000-0x000000b00000 : "0:apdp_1" 0x000000b00000-0x000000b80000 : "0:rpm" 0x000000b80000-0x000000c00000 : "0:rpm_1" 0x000000c00000-0x000000c80000 : "0:cdt" 0x000000c80000-0x000000d00000 : "0:cdt_1" 0x000000d00000-0x000000d80000 : "0:appsblenv" 0x000000d80000-0x000000e80000 : "0:appsbl" 0x000000e80000-0x000000f80000 : "0:appsbl_1" 0x000000f80000-0x000001000000 : "0:art" 0x000001000000-0x000001080000 : "0:art_1" 0x000001080000-0x000001100000 : "0:orgdata" 0x000001100000-0x000001180000 : "0:orgdata_1" 0x000001180000-0x000005180000 : "rootfs" 0x000005180000-0x000009180000 : "rootfs_recover" 0x000009180000-0x000010000000 : "user_property" Notes: - WXR-5950AX12 has 2x OS images on NAND flash. The 1st image is for normal operation and the 2nd one is for recoverying or firmware upgrading on stock. - Stock U-Boot checks MD5 hashes in "fw_hash" volume in each "root*" partition when booting. This is just a comparation of hash strings. Behaviors: - both "fw_hash" volumes exist, hashes are rootfs == rootfs_recover ---> boot from rootfs - both "fw_hash" volumes exist, hashes are rootfs != rootfs_recover ---> boot from rootfs_recover Note: this behavior is used for firmware upgrading on stock - "fw_hash" volume in rootfs is missing ---> boot from rootfs_recover - "fw_hash" volume in rootfs_recover is missing ---> boot from rootfs - "fw_hash" volumes in both root* partition are missing ---> boot from rootfs_recover Reverting to stock firmware: 1. Decrypt official image by buffalo-enc and remove header example of decryption: $ buffalo-enc -i wxr_5950ax12_jp_305 -o wxr_5950ax12_jp_305.dec \ -d -k olaffuB -O 0xc8 example of removing header (v3.05): - before $ hexdump -n 64 -v -C wxr_5950ax12_jp_305.dec 00000000 57 58 52 2d 35 39 35 30 41 58 31 32 5f 33 2e 30 |WXR-5950AX12_3.0| 00000010 35 5f 31 2e 30 31 5f 4a 50 5f 6a 70 5f 71 63 61 |5_1.01_JP_jp_qca| 00000020 0a 66 69 6c 65 6c 65 6e 3d 34 35 33 35 30 39 31 |.filelen=4535091| 00000030 32 0a 55 42 49 23 01 00 00 00 00 00 00 00 00 00 |2.UBI#..........| 00000040 - after $ hexdump -n 64 -v -C wxr_5950ax12_jp_305.ubi 00000000 55 42 49 23 01 00 00 00 00 00 00 00 00 00 00 00 |UBI#............| 00000010 00 00 08 00 00 00 10 00 78 cf c4 91 00 00 00 00 |........x.......| 00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000030 00 00 00 00 00 00 00 00 00 00 00 00 3d 2a 64 fd |............=*d.| 00000040 2. Boot WXR-5950AX12 with OpenWrt initramfs image 3. Upload modified stock image to WXR-5950AX12 4. Find partitions "rootfs" and "rootfs_recover" example: root@OpenWrt:/# cat /proc/mtd dev: size erasesize name ... mtd22: 04000000 00020000 "rootfs" mtd23: 04000000 00020000 "rootfs_recover" ... in this case, "rootfs" is mtd22 and "rootfs_recover" is mtd23 5. Format "rootfs"/"rootfs_recover" partition with the uploaded image example: ubiformat /dev/mtd22 -f /tmp/wxr_5950ax12_jp_305.ubi ubiformat /dev/mtd23 -f /tmp/wxr_5950ax12_jp_305.ubi 6. Remove "rootfs"/"rootfs_data" volume from user_property partition example: . /lib/upgrade/nand.sh UBI=$(nand_attach_ubi user_property) ubirmvol /dev/$UBI -N rootfs ubirmvol /dev/$UBI -N rootfs_data 7. Reboot MAC addresses: LAN : 50:C4:DD:xx:xx:28 (0:APPSBLENV, ethaddr (text)) WAN : 50:C4:DD:xx:xx:28 (0:APPSBLENV, ethaddr (text)) 2.4 GHz: 50:C4:DD:xx:xx:30 (0:APPSBLENV, wlan0addr (text)) 5 GHz : 50:C4:DD:xx:xx:38 (0:APPSBLENV, wlan1addr (text)) Reviewed-by: Robert Marko <robimarko@gmail.com> Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> |
||
André Valentin
|
5dee596501
|
ipq807x: Add ZyXEL NBG7815
ZyXEL NBG7815 is a premium 802.11ax "tri"-band router/AP. Specifications: * CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz * RAM: 1 GB 2x Nanya NT5CC256M16ER-EK * Storage: * 8MB serial flash Winbond W25Q64DW * 4GB eMMC flash Kingston EMMC04G-M627 * Ethernet: * 4x1G RJ45 ports (QCA8074A) with 1x status LED per port * 1x2.5G RJ45 port (QCA8081) with 1x status LED * 1x10G RJ45 port (AQR113C) with 1x status LED * Switch: Qualcomm Atheros QCA8075 * WLAN: * 2.4GHz: Qualcomm QCN5024 4x4@40MHz 802.11b/g/n/ax 1147 Mbps PHY rate * 2x 5GHz: Qualcomm QCN5054 4x4 802.11a/b/g/n/ac/ax 2402 PHY rate * Bluetooth CSR8811 using HSUART, currently unsupported * USB: 1x USB3.0 Type-A port * LED-s currently not supported: * White * Dark Blu * Amber * Purple * Purple and dark blue * Red * Buttons: * 1x Soft reset * Power: 12V DC Jack Installation instructions: * Disconnect WAN * Reset device to factory defaults by pushing reset button 15 sec, LEDs should lit orange color. * After 5-10 minutes, when the LEDs turn constant dark blue, put your LAN cable and connect at address 192.168.123.1 by telnet on port 23 * Login with NBG7815 login: root password: nbg7815@2019 * cd /tmp/ApplicationData * wget -O openwrt-ipq807x-generic-zyxel_nbg7815-squashfs-sysupgrade.bin http://... * wget https://github.com/itorK/nbg7815_tools/blob/main/flash_to_openwrt.sh * run flash_to_openwrt.sh If you can't use wget, you can transfer the files via nc. See https://openwrt.org/inbox/toh/zyxel/nbg7815_armor_g5 for installation details. Bluetooth usage: * you need at least package bluez-utils, recommended bluez-daemon * run following commands to enable and start hciattach /dev/ttyMSM1 bcsp hciconfig hci0 up Many thanks to itorK for his work on this device: https://github.com/itorK/openwrt/tree/nbg7815 Reviewed-by: Robert Marko <robimarko@gmail.com> Signed-off-by: André Valentin <avalentin@marcant.net> |
||
Dirk Buchwalder
|
26c095cb4d |
ipq807x: add Dynalink DL-WRX36
Dynalink DL-WRX36 is a AX WIFI router with 4 1G and 1 2.5G ports. Specifications: • CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz • RAM: 1024MB of DDR3 • Storage: 256MB Nand • Ethernet: 4x 1G RJ45 ports (QCA8075) + 1 2.5G Port (QCA8081) • WLAN: 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 1174 Mbps PHY rate 5GHz: Qualcomm QCN5054 4x4 802.11a/b/g/n/ac/ax 2402 PHY rate • 1x USB 3.0 • 1 gpio-controlled dual color led (blue/red) • Buttons: 1x soft reset / 1x WPS • Power: 12V DC jack A poulated serial header is onboard (J1004) the connector size is a 4-pin 2.0 mm JST PH. RX/TX is working, u-boot bootwait is active, secure boot is enabled. Notes: - Serial is completely deactivated in the stock firmware image. - This commit adds only single partition support, that means sysupgrade is upgrading the current rootfs partition. - Installation can be done by serial connection or SSH access on OEM firmware Installation Instructions: Most part of the installation is performed from an initramfs image running OpenWrt, and there are two options to boot it. Boot initramfs option 1: Using serial connection (3.3V) 1. Stop auto boot to get to U-boot shell 2. Transfer initramfs image to device (openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb) Tested using TFTP and a FAT-formatted USB flash drive. 3. Boot the initramfs image # bootm Boot initramfs option 2: From SSH access on OEM firmware 1. Copy the initramfs image to a FAT-formatted flash drive (tested on single-partition drive) and connect it to device USB port. 2. Change boot command so it loads the initramfs image on next boot Fallback to OEM firmware is provided. # fw_setenv bootcmd 'usb start && fatload usb 0:1 0x44000000 openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb && bootm 0x44000000; bootipq' 3. Reboot the device to boot the initramfs # reboot Install OpenWrt from initramfs image: 1. Use SCP (or other way) to transfer OpenWrt factory image 2. Connect to device using SSH (on a LAN port) 3. Check MTD partition table. rootfs and rootfs_1 should be mtd18 and mtd20 depending on current OEM slot. # cat /proc/mtd 4. Do a ubiformat to both rootfs partitions: # ubiformat /dev/mtd18 -y -f /path_to/factory_image # ubiformat /dev/mtd20 -y -f /path_to/factory_image 5. Set U-boot env variable: mtdids # fw_setenv mtdids 'nand0=nand0' 6. Get offset of mtd18 to determine current OEM slot - If current OEM slot is 1, offset is 16777216 (0x1000000) - If current OEM slot is 2, offset is 127926272 (0x7a00000) # cat /sys/class/mtd/mtd18/offset 7. Set U-boot env variable: mtdparts If current OEM slot is 1, run: # fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x1000000(fs),0x6100000@0x7a00000(fs_1)' If current OEM slot is 2, run: # fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x7a00000(fs),0x6100000@0x1000000(fs_1)' 8. Set U-boot env variable: bootcmd # fw_setenv bootcmd 'setenv bootargs console=ttyMSM0,115200n8 ubi.mtd=rootfs rootfstype=squashfs rootwait; ubi part fs; ubi read 0x44000000 kernel; bootm 0x44000000#config@rt5010w-d350-rev0' 9. Reboot the device # reboot Note: this PR adds only single partition support, that means sysupgrade is upgrading the current rootfs partition Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de> |
||
Matthew Hagan
|
6e03304c76 |
ipq807x: add Edgecore EAP102
The Edgecore EAP102 is a wall/ceiling mountable AP. The AP can be powered by either PoE or AC adapter. Device info: - IPQ8071-A SoC - 1GiB RAM - 256MiB NAND flash - 32MiB SPI NOR - 2 Ethernet ports - 1 Console port - 2GHz/5GHz AX WLAN - 2 USB 2.0 ports Install instructions: Prerequistes - TFTP server, preferrably within 192.168.1.0/24 Console cable plugged in (115200 8N1 no flow control) 1. Power on device and interrupt u-boot to obtain u-boot CLI 2. set serverip to IP address of the TFTP server: `setenv serverip 192.168.1.250` 3. Download image from TFTP server: `tftpboot 0x44000000 openwrt-ipq807x-generic-edgecore_eap102-squashfs-nand-factory.ubi` 4. Flash ubi image to both partitions and reset: `sf probe imxtract 0x44000000 ubi nand device 0 nand erase 0x0 0x3400000 nand erase 0x3c00000 0x3400000 nand write $fileaddr 0x0 $filesize nand write $fileaddr 0x3c00000 $filesize reset` Signed-off-by: Matthew Hagan <mnhagan88@gmail.com> |
||
Robert Marko
|
2ddb2057cd |
ipq807x: Add Xiaomi AX9000
Xiaomi AX9000 is a premium 802.11ax "tri"-band router/AP. Specifications: * CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz * RAM: 1024MB of DDR3 * Storage: 256MB of parallel NAND * Ethernet: * 4x1G RJ45 ports (QCA8075) with 1x status LED per port * 1x2.5G RJ45 port (QCA8081) with 1x status LED * WLAN: * PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT * 2.4GHz: Qualcomm QCN5024 4x4@40MHz 802.11b/g/n/ax 1147 Mbps PHY rate * 5.8GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402Mbps PHY rate * 5GHz: PCI based Qualcomm QCN9024 4x4@160MHz 802.11a/b/g/n/ac/ax 4804Mbps PHY rate * USB: 1x USB3.0 Type-A port * LED-s: * System (Blue and Yellow) * Network (Blue and Yellow) * RGB light bar on top in X shape * Buttons: * 1x Power switch * 1x Soft reset * 1x Mesh button * Power: 12V DC Jack Installation instructions: Obtaining SSH access is mandatory https://openwrt.org/inbox/toh/xiaomi/ax9000#obtain_ssh_access Installation is done by the ubiformat method, through SSH: 1. Open an SSH shell to the router 2. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi to the /tmp directory 3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1): nvram get flag_boot_rootfs 4. Find the rootfs and rootfs_1 mtd indexes respectively: cat /proc/mtd Please confirm if mtd21 and mtd22 are the correct indexes from above! 5. Use the command ubiformat to flash the opposite mtd with UBI image: If nvram get flag_boot_rootfs returned 0: ubiformat /dev/mtd22 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit otherwise: ubiformat /dev/mtd21 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit 6. Reboot the device by: reboot Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages. Continue in order to pernamently flash OpenWrt: 7. SSH into OpenWrt from one of the LAN ports 8. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin to the /tmp directory 9. Sysupgrade the device: sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired. Signed-off-by: Robert Marko <robimarko@gmail.com> |
||
Dirk Buchwalder
|
bd17683261 |
ipq807x: add QNAP 301w
QNAP 301w is a AX WIFI router with 4 1G and 2 10G ports. Specifications: • CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz • RAM: 1024MB of DDR3 • Storage: 4GB eMMC (contains kernel and rootfs) / 8MB NOR (contains art and u-boot-env) • Ethernet: 4x 1G RJ45 ports + 2 10G ports (Aquantia AQR113C) • WLAN: 2.4GHz: Qualcomm QCN5024 4x4 (40 MHz) 802.11b/g/n/ax 1174 Mbps PHY rate 5GHz: Qualcomm QCN5054 4x4 (80 MHz) or 2x2 (160 MHz) 802.11a/b/g/n/ac/ax 2402 PHY rate • LEDs: 7 x GPIO-controlled dual color LEDs + 2 GPIO-controlled single color LEDs • Buttons: 1x soft reset / 1x WPS • Power: 12V DC jack A poulated serial header is onboard. RX/TX is working, bootwait is active, secure boot is not enabled. SSH can be activated in the stock firmware, hold WPS button til the second beep (yes the router has a buzzer) SSH is available on port 22200, login with user admin and password "mac address of the router". Installation Instructions: • obtain serial access (https://openwrt.org/inbox/toh/qnap/301w#serial) • stop auto boot • setenv serverip 192.168.10.1 • setenv ipaddr 192.168.10.10 • tftpboot the initramfs image (openwrt-ipq807x-generic-qnap_301w-initramfs-fit-uImage.itb) • bootm • make sure that current_entry is set to "0": "fw_printenv -n current_entry" should be print "0". If not, do "fw_setenv current_entry 0" • copy openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin to the device to /tmp folder • sysupgrade -n /tmp/openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin this flashes openwrt to the first kernel and rootfs partition (mmcblk0p1 / mmcblk0p4) • reboot Note: this leaves the second kernel / rootfs parition untouched. So if you want to go back to stock, stop u-boot autoboot, "setenv current_entry 1" , "saveenv", "bootipq". Stock firmware should start from the second partition. Then do a firmwareupgrade in the stock gui, that should overwrite the openwrt in the first partitions Make 10G Aquantia phy's work: The aquantia phy's need a firmware to work. This can either be loaded in linux with a userspace tool or in u-boot. I was not successfull to load the firmware in linux (aq-fw-download) but luckily there is aq_load_fw available in u-boot. But first the right firmware needs to write to the 0:ETHPHYFW mtd partition (it is empty on my device) Grab the ethphy firmware image from: https://github.com/kirdesde/nbg7815_gpl/blob/master/target/linux/ipq/ipq807x_64/prebuilt_images/AQR_ethphyfw.mbn and scp that to openwrt. Check the 0:ETHPHYFW partition number: cat /proc/mtd|grep "0:ETHPHYFW", should be mtd10. Backup the 0:ETHPHYFW partition: dd if=/dev/mtd10 of=/tmp/ethphyfw.backup, scp ethphyfw.backup to a save place. Write the new firmware image to the 0:ETHPHYFW partition: "mtd erase /dev/mtd10", "mtd -n write AQR_ethphyfw.mbn /dev/mtd10". Reboot to u-boot. Check if aq_load_fw is working: "aq_load_fw 0", that checks the firmware and if successfull, loads iram and dram to one of the aquantia phy's. If that worked, add the aq_load_fw to the bootcmd: setenv bootcmd "aq_load_fw 0 && aq_load_fw 8 && bootipq" "saveenv" "reset" Board reboots and the firmware load to both phy's should start and then openwrt boots. Check if the 10G ports work. Note: lan port labeled "10G-2" is configured as WAN port as per default. All other port are in the br-lan. This can be changed in the network config. Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de> |
||
Dirk Buchwalder
|
a36fc589fe |
ipq807x: add Edimax CAX1800
Edimax CAX1800 is a 802.11 ax dual-band AP with PoE. AP can be ceiling or wall mount. Specifications: • CPU: Qualcomm IPQ8070A Quad core Cortex-A53 1.4GHz • RAM: 512MB of DDR3 • Storage: 128MB NAND (contains rootfs) / 8MB NOR (contains art and uboot-env) • Ethernet: 1x 1G RJ45 port (QCA8072) PoE • WLAN: 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate 5GHz: Qualcomm QCN5054 2x2 802.11a/b/g/n/ac/ax 1201 PHY rate • LEDs: 3 x GPIO-controlled System-LEDs (form one virtual RGB System-LED) black_small_square Buttons: 1x soft reset black_small_square Power: 12V DC jack or PoE (802.3af ) An unpopulated serial header is onboard. RX/TX is working, bootwait is active, secure boot is not enabled. SSH can be activated in the stock firmware, but it drops only to a limited shell . Installation Instructions: black_small_square obtain serial access black_small_square stop auto boot black_small_square tftpboot the initramfs image (serverip is set to 192.168.99.8 in uboot) black_small_square bootm black_small_square copy openwrt-ipq807x-generic-edimax_cax1800-squashfs-nand-factory.ubi to the device black_small_square write the image to the NAND: black_small_square cat /proc/mtd and look for rootfs partition (should be mtd0) black_small_square ubiformat /dev/mtd0 -f -y openwrt-ipq807x-generic-edimax_cax1800-squashfs- nand-factory.ubi black_small_square reboot Note: Device is not using dual partitioning (NAND contains other partitions with different manufacture data etc.) Draytek VigorAP 960C and Lancom LW-600 both look similar, but I haven't checked them. Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de> |
||
Zhijun You
|
8253cb2de5 |
ipq807x: add Redmi AX6
Redmi AX6 is a budget 802.11ax dual-band router/AP Specifications: * CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz * RAM: 512MB of DDR3 * Storage: 128MB NAND * Ethernet: 4x1G RJ45 ports (QCA8075) * WLAN: * 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate * 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate * LEDs: * System (Blue/Yellow) * Network (Blue/Yellow) *Buttons: 1x soft reset *Power: 12V DC jack Installation instructions: Obtaining SSH access is mandatory https://openwrt.org/inbox/toh/xiaomi/xiaomi_redmi_ax6_ax3000#ssh_access Installation is done by the ubiformat method, through SSH: 1. Open an SSH shell to the router 2. Copy the file openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi to the /tmp directory 3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1): nvram get flag_boot_rootfs 4. Find the rootfs and rootfs_1 mtd indexes respectively: cat /proc/mtd Please confirm if mtd12 and mtd13 are the correct indexes from above! 5. Use the command ubiformat to flash the opposite mtd with UBI image: If nvram get flag_boot_rootfs returned 0: ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit otherwise: ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit 6. Reboot the device by: reboot Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages. Continue in order to pernamently flash OpenWrt: 7. SSH into OpenWrt from one of the LAN ports 8. Copy the file openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin to the /tmp directory 9. Sysupgrade the device: sysupgrade -n /tmp/openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired. Signed-off-by: Zhijun You <hujy652@gmail.com> |
||
Robert Marko
|
8364f08164 |
ipq807x: add Xiaomi AX3600
Xiaomi AX3600 is a budget 802.11ax dual-band router/AP. Specifications: * CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz * RAM: 512MB of DDR3 * Storage: 256MB of parallel NAND * Ethernet: 4x1G RJ45 ports (QCA8075) with 1x status LED per port * WLAN: * PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT * 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate * 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate * LED-s: * System (Blue and Yellow) * IoT (Blue) * Network (Blue and Yellow) * Buttons: 1x Soft reset * Power: 12V DC Jack Installation instructions: Obtaining SSH access is mandatory https://openwrt.org/inbox/toh/xiaomi/xiaomi_ax3600#obtain_ssh_access Installation is done by the ubiformat method, through SSH: 1. Open an SSH shell to the router 2. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi to the /tmp directory 3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1): nvram get flag_boot_rootfs 4. Find the rootfs and rootfs_1 mtd indexes respectively: cat /proc/mtd Please confirm if mtd12 and mtd13 are the correct indexes from above! 5. Use the command ubiformat to flash the opposite mtd with UBI image: If nvram get flag_boot_rootfs returned 0: ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit otherwise: ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit 6. Reboot the device by: reboot Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages. Continue in order to pernamently flash OpenWrt: 7. SSH into OpenWrt from one of the LAN ports 8. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin to the /tmp directory 9. Sysupgrade the device: sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired. Signed-off-by: Christian Marangi <ansuelsmth@gmail.com> Signed-off-by: Robert Marko <robimarko@gmail.com> |
||
Vincent Tremblay
|
9e4ede8344 |
ipq40xx: add support for Linksys WHW03 V2
SOC: Qualcomm IPQ4019 WiFi 1: QCA4019 IEEE 802.11b/g/n WiFi 2: QCA4019 IEEE 802.11a/n/ac WiFi 3: QCA8888 IEEE 802.11a/n/ac Bluetooth: Qualcomm CSR8811 (A12U) Zigbee: Silicon Labs EM3581 NCP + Skyworks SE2432L Ethernet: Qualcomm Atheros QCA8072 (2-port) Flash 1: Mactronix MX30LF4G18AC-XKI RAM (NAND): SK hynix H5TC4G63CFR-PBA (512MB) LED Controller: NXP PCA9633 (I2C) Buttons: Single reset button (GPIO). - The three WiFis were fully tested and are configured with the same settings as in the vendor firmware. - The specific board files were submitted to the ATH10k mailing list but I'm still waiting for a reply. They can be removed once they are approved upstream. - Two ethernet ports are accessible on the device. By default one is configured as WAN and the other one is LAN. They are fully working. Bluetooth: ======== - Fully working with the following caveats: - RFKILL need to be enabled in the kernel. - An older version of bluez is needed as bccmd is needed to configure the chip. Zigbee: ====== - The spidev device is available in the /dev directory. - GPIOs are configured the same way as in the vendor firmware. - Tests are on-going. I am working on getting access to the Silicon Labs stack to validate that it is fully working. Installation: ========= The squash-factory image can be installed via the Linksys Web UI: 1. Open "http://192.168.1.1/ca" (Change the IP with the IP of your device). 2. Login with your admin password. 3. To enter into the support mode, click on the "CA" link and the bottom of the page. 4. Open the "Connectivity" menu and upload the squash-factory image with the "Choose file" button. 5. Click start. Ignore all the prompts and warnings by click "yes" in all the popups. The device uses a dual partition mechanism. The device automatically revert to the previous partition after 3 failed boot attempts. If you want to force the previous firmware to load, you can turn off and then turn on the device for 2 seconds, 3 times in a row. It can also be done via TFTP: 1. Setup a local TFTP server and configure its IP to 192.168.1.100. 2. Rename your image to "nodes_v2.img" and put it to the TFTP root of your server. 3. Connect to the device through the serial console. 4. Power on device and press enter when prompted to drop into U-Boot. 5. Flash the partition of your choice by typing "run flashimg" or "run flashimg2". 6. Once flashed, enter "reset" to reboot the device. Reviewed-by: Robert Marko <robimarko@gmail.com> Signed-off-by: Vincent Tremblay <vincent@vtremblay.dev> |
||
Marcin Gajda
|
700c47a5f6 |
ipq40xx: Add support ZTE MF18A
Light and small router ( In Poland operators sells together with MC7010 outdoor modem to provide WIFI inside home). Device specification SoC Type: Qualcomm IPQ4019 RAM: 256 MiB Flash: 128 MiB SPI NAND (Winbond W25N01GV) ROM: 2MiB SPI Flash (GD25Q16) Wireless 2.4 GHz (IP4019): b/g/n, 2x2 Wireless 5 GHz (QCA9982): a/n/ac, 3x3 Ethernet: 2xGbE (WAN/LAN1, LAN2) USB ports: No Button: 2 (Reset/WPS) LEDs: 3 external leds: Power (blue) , WiFI (blue and red), SMARTHOME (blue and red) and 1 internal (blue) -- NOTE: Power controls all external led (if down ,all others also not lights even signal is up) Power: 5VDC, 2,1A via USB-C socket Bootloader: U-Boot On board ZWave and Zigbee (EFR32 MG1P232GG..) modules ( not supported by orginal software ) Installation 1.Open MF18A case by ungluing rubber pad under the router and unscrew screws, and connect to serial console port, with the following pinout, starting from pin 1, which is the topmost pin when the board is upright (reset button on the bottom) : VCC (3.3V). Do not use unless you need to source power for the converer from it. TX RX GND Default port configuration in U-boot as well as in stock firmware is 115200-8-N-1. 2.Place OpenWrt initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2 3.Connect TFTP server to RJ-45 port (WAN/LAN1). 4.Power on MF18A , stop in u-Boot (using ESC button) and run u-Boot commands: setenv serverip 192.168.0.2 setenv ipaddr 192.168.0.1 set fdt_high 0x85000000 tftpboot 0x84000000 openwrt-ipq40xx-generic-zte_mf18a-initramfs-fit-zImage.itb bootm 0x84000000 5.Please make backup of original partitions, if you think about revert to stock, specially mtd8 (Web UI) and mtd9 (rootFS). Use /tmp as temporary storage and do: WEB PARITION cat /dev/mtd8 > /tmp/mtd8.bin scp /tmp/mtd8.bin root@YOURSERVERIP:/ rm /tmp/mtd8.bin ROOT PARITION cat /dev/mtd9 > /tmp/mtd9.bin scp /tmp/mtd9.bin root@YOURSERVERIP:/ rm /tmp/mtd9.bin If you are sure ,that you want to flash openwrt, from uBoot, before bootm, clean rootfs partition with command: nand erase 0x1800000 0x1D00000 6.Login via ssh or serial and remove stock partitions (default IP 192.168.1.1): ubiattach -m 9 # it could return error if ubi was attached before or rootfs part was erased before ubirmvol /dev/ubi0 -N ubi_rootfs # it could return error if rootfs part was erased before ubirmvol /dev/ubi0 -N ubi_rootfs_data # some devices doesn't have it 7. Install image via : sysupgrade -n /tmp/openwrt-ipq40xx-generic-zte_mf18a-squashfs-sysupgrade.bin previously wgeting bin. Sometimes it could print ubi attach error, but please ignore it if process goes forward. Back to Stock (!!! need original dump taken from initramfs !!!) ------------- Place mtd8.bin and mtd9.bin initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2 Connect serial console (115200,8n1) to serial console connector . Connect TFTP server to RJ-45 port (WAN/LAN1). rename mtd8.bin to web.img and mtd9.bin to root_uImage_s Stop in u-Boot (using ESC button) and run u-Boot commands: This will erase Web and RootFS: nand erase 0x1000000 0x800000 nand erase 0x1800000 0x1D00000 This will restore RootFS: tftpboot 0x84000000 root_uImage_s nand erase 0x1800000 0x1D00000 nand write 0x84000000 0x1800000 0x1D00000 This will restore Web Interface: tftpboot 0x84000000 web.img nand erase 0x1000000 0x800000 nand write 0x84000000 0x1000000 0x800000 After first boot on stock firwmare, do a factory reset. Push reset button for 5 seconds so all parameters will be reverted to the one printed on label on bottom of the router As reference was taken MF289F support by Giammarco Marzano stich86@gmail.com and MF286D by Pawel Dembicki paweldembicki@gmail.com Signed-off-by: Marcin Gajda <mgajda@o2.pl> |
||
Weiping Yang
|
9945d05171 |
ipq40xx: add support for GL.iNet GL-A1300
Specifications: SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core RAM: 256 MiB FLASH1: 4 MiB NOR FLASH2: 128 MiB NAND ETH: Qualcomm QCA8075 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2 WLAN2: Qualcomm Atheros QCA4018 5G 802.11n/ac W2 2x2 USB: 1 x USB 3.0 port Button: 1 x Reset button Switch: 1 x Mode switch LED: 1 x Blue LED + 1 x White LED Install via uboot tftp or uboot web failsafe. By uboot tftp: (IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-a1300-squashfs-nand-factory.ubi (IPQ40xx) # nand erase 0 0x8000000 (IPQ40xx) # nand write 0x84000000 0 $filesize By uboot web failsafe: Push the reset button for 10 seconds util the power led flash faster, then use broswer to access http://192.168.1.1 Afterwards upgrade can use sysupgrade image. Signed-off-by: Weiping Yang <weiping.yang@gl-inet.com> |
||
Giammarco Marzano
|
0de6a3339f |
ipq40xx: Add ZTE MF289F
It's a 4G Cat.20 router used by Vodafone Italy (called Vodafone FWA) and Vodafone DE\T-Mobile PL (called GigaCube). Modem is a MiniPCIe-to-USB based on Snapdragon X24, it supports 4CA aggregation. There are currently two hardware revisions, which differ on the 5Ghz radio: AT1 = QCA9984 5Ghz Radio on PCI-E bus AT2 = IPQ4019 5Ghz Radio inside IPQ4019 like 2.4Ghz Device specification -------------------- SoC Type: Qualcomm IPQ4019 RAM: 256 MiB Flash: 128 MiB SPI NAND (Winbond W25N01GV) ROM: 2MiB SPI Flash (GD25Q16) Wireless 2.4 GHz (IP4019): b/g/n, 2x2 Wireless 5 GHz: (QCA9984): a/n/ac, 4x4 HW REV AT1 (IPA4019): a/n/ac, 2x2 HW REV AT2 Ethernet: 2xGbE (WAN/LAN1, LAN2) USB ports: No Button: 2 (Reset/WPS) LEDs: 3 external leds: Network (white or red), Wifi, Power and 1 internal (blue) Power: 12 VDC, 1 A Connector type: Barrel Bootloader: U-Boot Installation ------------ 1. Place OpenWrt initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2 2. Connect serial console (115200,8n1) to serial connector GND (which is right next to the thing with MF289F MIMO-V1.0), RX, TX (refer to this image: https://ibb.co/31Gngpr). 3. Connect TFTP server to RJ-45 port (WAN/LAN1). 4. Stop in u-Boot (using ESC button) and run u-Boot commands: setenv serverip 192.168.0.2 setenv ipaddr 192.168.0.1 set fdt_high 0x85000000 tftp openwrt-ipq40xx-generic-zte_mf289f-initramfs-fit-zImage.itb bootm $loadaddr 5. Please make backup of original partitions, if you think about revert to stock, specially mtd16 (Web UI) and mtd17 (rootFS). Use /tmp as temporary storage and do: WEB PARITION -------------------------------------- cat /dev/mtd16 > /tmp/mtd16.bin scp /tmp/mtd16.bin root@YOURSERVERIP:/ rm /tmp/mtd16.bin ROOT PARITION -------------------------------------- cat /dev/mtd17 > /tmp/mtd17.bin scp /tmp/mtd17.bin root@YOURSERVERIP:/ rm /tmp/mtd17.bin 6. Login via ssh or serial and remove stock partitions (default IP 192.168.0.1): # this can return an error, if ubi was attached before # or rootfs part was erased before. ubiattach -m 17 # it could return error if rootfs part was erased before ubirmvol /dev/ubi0 -N ubi_rootfs # some devices doesn't have it ubirmvol /dev/ubi0 -N ubi_rootfs_data 7. download and install image via sysupgrade -n (either use wget/scp to copy the mf289f's squashfs-sysupgrade.bin to the device's /tmp directory) sysupgrade -n /tmp/openwrt-...-zte_mf289f-squashfs-sysupgrade.bin Sometimes it could print ubi attach error, but please ignore it if process goes forward. Flash Layout NAND: mtd8: 000a0000 00020000 "fota-flag" mtd9: 00080000 00020000 "0:ART" mtd10: 00080000 00020000 "mac" mtd11: 000c0000 00020000 "reserved2" mtd12: 00400000 00020000 "cfg-param" mtd13: 00400000 00020000 "log" mtd14: 000a0000 00020000 "oops" mtd15: 00500000 00020000 "reserved3" mtd16: 00800000 00020000 "web" mtd17: 01d00000 00020000 "rootfs" mtd18: 01900000 00020000 "data" mtd19: 03200000 00020000 "fota" mtd20: 0041e000 0001f000 "kernel" mtd21: 0101b000 0001f000 "ubi_rootfs" SPI: mtd0: 00040000 00010000 "0:SBL1" mtd1: 00020000 00010000 "0:MIBIB" mtd2: 00060000 00010000 "0:QSEE" mtd3: 00010000 00010000 "0:CDT" mtd4: 00010000 00010000 "0:DDRPARAMS" mtd5: 00010000 00010000 "0:APPSBLENV" mtd6: 000c0000 00010000 "0:APPSBL" mtd7: 00050000 00010000 "0:reserved1" Back to Stock (!!! need original dump taken from initramfs !!!) ------------- 1. Place mtd16.bin and mtd17.bin initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.0.2 2. Connect serial console (115200,8n1) to serial console connector (refer to the pin-out from above). 3. Connect TFTP server to RJ-45 port (WAN/LAN1). 4. rename mtd16.bin to web.img and mtd17.bin to root_uImage_s 5. Stop in u-Boot (using ESC button) and run u-Boot commands: This will erase RootFS+Web: nand erase 0x1000000 0x800000 nand erase 0x1800000 0x1D00000 This will restore RootFS: tftpboot 0x84000000 ${dir}root_uImage_s nand erase 0x1800000 0x1D00000 nand write $fileaddr 0x1800000 $filesize This will restore Web Interface: tftpboot 0x84000000 ${dir}web.img nand erase 0x1000000 0x800000 nand write $fileaddr 0x1000000 $filesize After first boot on stock firwmare, do a factory reset. Push reset button for 5 seconds so all parameters will be reverted to the one printed on label on bottom of the router Signed-off-by: Giammarco Marzano <stich86@gmail.com> Reviewed-by: Lech Perczak <lech.perczak@gmail.com> (Warning: commit message did not conform to UTF-8 - hopefully fixed?, added description of the pin-out if image goes down, reformatted commit message to be hopefully somewhat readable on git-web, redid some of the gpio-buttons & leds DT nodes, etc.) Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
INAGAKI Hiroshi
|
c34f071972 |
ipq40xx: add support for Sony NCP-HG100/Cellular
Sony NCP-HG100/Cellular is a IoT Gateway with 2.4/5 GHz band 11ac (WiFi-5) wireless function, based on IPQ4019. Specification: - SoC : Qualcomm IPQ4019 - RAM : DDR3 512 MiB (H5TC4G63EFR) - Flash : eMMC 4 GiB (THGBMNG5D1LBAIT) - WLAN : 2.4/5 GHz 2T2R (IPQ4019) - Ethernet : 10/100/1000 Mbps x2 - Transceiver : Qualcomm QCA8072 - WWAN : Telit LN940A9 - Z-Wave : Silicon Labs ZM5101 - Bluetooth : Qualcomm CSR8811 - Audio DAC : Realtek ALC5629 - Audio Amp. : Realtek ALC1304 - Voice Input Processor : Conexant CX20924 - Micro Controller Unit : Nuvoton MINI54FDE - RGB LED, Fan, Temp. sensors - Touch Sensor : Cypress CY8C4014LQI - RGB LED driver : TI LP55231 (2x) - LEDs/Keys : 11x, 6x - UART : through-hole on PCB - J1: 3.3V, TX, RX, GND from tri-angle marking - 115200n8 - Power : 12 VDC, 2.5 A Flash instruction using initramfs image: 1. Prepare TFTP server with the IP address 192.168.132.100 and place the initramfs image to TFTP directory with the name "C0A88401.img" 2. Boot NCP-HG100/Cellular and interrupt after the message "Hit any key to stop autoboot: 2" 3. Perform the following commands and set bootcmd to allow booting from eMMC setenv bootcmd "mmc read 0x84000000 0x2e22 0x4000 && bootm 0x84000000" saveenv 4. Perform the following command to load/boot the OpenWrt initramfs image tftpboot && bootm 5. On the initramfs image, perform sysupgrade with the sysupgrade image (if needed, backup eMMC partitions by dd command and download to other place before performing sysupgrade) 6. Wait for ~120 seconds to complete flashing Known issues: - There are no drivers for audio-related chips/functions in Linux Kernel and OpenWrt, they cannot be used. - There is no driver for MINI54FDE Micro-Controller Unit, customized for this device by the firmware in the MCU. This chip controls the following functions, but they cannot be controlled in OpenWrt. - RGB LED - Fan this fan is controlled automatically by MCU by default, without driver - Thermal Sensors (2x) - Currently, there is no driver or tool for CY8C4014LQI and cannot be controlled. It cannot be exited from "booting mode" and moved to "normal op mode" after booting. And also, the 4x buttons (mic mute, vol down, vol up, alexa trigger) connected to the IC cannot be controlled. - it can be exited from "booting mode" by installing and executing i2cset command: opkg update opkg install i2c-tools i2cset -y 1 0x14 0xf 1 - There is a connection issue on the control by uqmi for the WWAN module. But modemmanager can be used without any issues and the use of it is recommended. - With the F2FS format, too many errors are reported on erasing eMMC partition "rootfs_data" while booting: [ 1.360270] sdhci: Secure Digital Host Controller Interface driver [ 1.363636] sdhci: Copyright(c) Pierre Ossman [ 1.369730] sdhci-pltfm: SDHCI platform and OF driver helper [ 1.374729] sdhci_msm 7824900.sdhci: Got CD GPIO ... [ 1.413552] mmc0: SDHCI controller on 7824900.sdhci [7824900.sdhci] using ADMA 64-bit [ 1.528325] mmc0: new HS200 MMC card at address 0001 [ 1.530627] mmcblk0: mmc0:0001 004GA0 3.69 GiB [ 1.533530] mmcblk0boot0: mmc0:0001 004GA0 partition 1 2.00 MiB [ 1.537831] mmcblk0boot1: mmc0:0001 004GA0 partition 2 2.00 MiB [ 1.542918] mmcblk0rpmb: mmc0:0001 004GA0 partition 3 512 KiB, chardev (247:0) [ 1.550323] Alternate GPT is invalid, using primary GPT. [ 1.561669] mmcblk0: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 ... [ 8.841400] mount_root: loading kmods from internal overlay [ 8.860241] kmodloader: loading kernel modules from //etc/modules-boot.d/* [ 8.863746] kmodloader: done loading kernel modules from //etc/modules-boot.d/* [ 9.240465] block: attempting to load /etc/config/fstab [ 9.246722] block: unable to load configuration (fstab: Entry not found) [ 9.246863] block: no usable configuration [ 9.254883] mount_root: overlay filesystem in /dev/mmcblk0p17 has not been formatted yet [ 9.438915] urandom_read: 5 callbacks suppressed [ 9.438924] random: mkfs.f2fs: uninitialized urandom read (16 bytes read) [ 12.243332] mmc_erase: erase error -110, status 0x800 [ 12.246638] mmc0: cache flush error -110 [ 15.134585] mmc_erase: erase error -110, status 0x800 [ 15.135891] mmc_erase: group start error -110, status 0x0 [ 15.139850] mmc_erase: group start error -110, status 0x0 ...(too many the same errors)... [ 17.350811] mmc_erase: group start error -110, status 0x0 [ 17.356197] mmc_erase: group start error -110, status 0x0 [ 17.439498] sdhci_msm 7824900.sdhci: Card stuck in wrong state! card_busy_detect status: 0xe00 [ 17.446910] mmc0: tuning execution failed: -5 [ 17.447111] mmc0: cache flush error -110 [ 18.012440] F2FS-fs (mmcblk0p17): Found nat_bits in checkpoint [ 18.062652] F2FS-fs (mmcblk0p17): Mounted with checkpoint version = 428fa16b [ 18.198691] block: attempting to load /etc/config/fstab [ 18.198972] block: unable to load configuration (fstab: Entry not found) [ 18.203029] block: no usable configuration [ 18.211371] mount_root: overlay filesystem has not been fully initialized yet [ 18.214487] mount_root: switching to f2fs overlay So, this support uses ext4 format instead which has no errors. Note: - The primary uart is shared for debug console and Z-Wave chip. The function is switched by GPIO15 (Linux: 427). value: 1: debug console 0: Z-Wave - NCP-HG100/Cellular has 2x os-image pairs in eMMC. - 0:HLOS, rootfs - 0:HLOS_1, rootfs_1 In OpenWrt, the first image pair is used. - "bootipq" command in U-Boot requires authentication with signed-image by default. To boot unsigned image of OpenWrt, use "mmc read" and "bootm" command instead. - This support is for "Cellular" variant of NCP-HG100 and not tested on "WLAN" (non-cellular) variant. - The board files of ipq-wifi may also be used in "WLAN" variant of NCP-HG100, but unconfirmed and add files as for "Cellular" variant. - "NET" LED is used to indicate WWAN status in stock firmware. - There is no MAC address information in the label on the case, use the address included in UUID in the label as "label-MAC" instead. - The "CLOUD" LEDs are partially used for indication of system status in stock firmware, use they as status LEDs in OpenWrt instead of RGB LED connected to the MCU. MAC addresses: LAN : 5C:FF:35:**:**:ED (ART, 0x6 (hex)) WAN : 5C:FF:35:**:**:EF (ART, 0x0 (hex)) 2.4 GHz: 5C:FF:35:**:**:ED (ART, 0x1006 (hex)) 5 GHz : 5C:FF:35:**:**:EE (ART, 0x5006 (hex)) partition layout in eMMC (by fdisk, GPT): Disk /dev/mmcblk0: 7733248 sectors, 3776M Logical sector size: 512 Disk identifier (GUID): **** Partition table holds up to 20 entries First usable sector is 34, last usable sector is 7634910 Number Start (sector) End (sector) Size Name 1 34 1057 512K 0:SBL1 2 1058 2081 512K 0:BOOTCONFIG 3 2082 3105 512K 0:QSEE 4 3106 4129 512K 0:QSEE_1 5 4130 4641 256K 0:CDT 6 4642 5153 256K 0:CDT_1 7 5154 6177 512K 0:BOOTCONFIG1 8 6178 6689 256K 0:APPSBLENV 9 6690 8737 1024K 0:APPSBL 10 8738 10785 1024K 0:APPSBL_1 11 10786 11297 256K 0:ART 12 11298 11809 256K 0:HSEE 13 11810 28193 8192K 0:HLOS 14 28194 44577 8192K 0:HLOS_1 15 44578 306721 128M rootfs 16 306722 568865 128M rootfs_1 17 568866 3958065 1654M rootfs_data [initial work] Signed-off-by: Iwao Yuki <dev.clef@gmail.com> Co-developed-by: Iwao Yuki <dev.clef@gmail.com> [adjustments, cleanups, commit message, sending patch] Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com> (dropped clk_unused_ignore, dropped 901-* patches, renamed key nodes, changed LEDs chan/labels to match func-en, made :net -> (w)wan leds) Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
Tomasz Maciej Nowak
|
47306d47ef |
ipq-wifi: add Pakedge WR-1 support
Calibration variants: Pakedge-WR-1 ETSI, FCC and IC-2.4GHz Pakedge-WR-1-ACMA ACMA Pakedge-WR-1-IC IC-5GHz Pakedge-WR-1-SRRC SRRC Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com> |
||
David Bauer
|
02f81494bb |
ipq-wifi: add Extreme Networks WS-AP3915i
Signed-off-by: David Bauer <mail@david-bauer.net> |
||
Christian Lamparter
|
e3a1d3ba15 |
ipq-wifi: remove dangling GL.iNet GL-B2200 boardfiles
those board files can/should be dropped now too. Fixes: 50c232d6f446 ("ipq-wifi: drop upstreamed board-2.bin") Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
Christian Lamparter
|
50c232d6f4 |
ipq-wifi: drop upstreamed board-2.bin
The BDFs for the: GL.iNet GL-B2200 were upstreamed to the ath10k-firmware repository and landed in linux-firmware.git Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
Christian Lamparter
|
3b3eaf31cb |
ipq40xx: R619AC: replace space with - separator in variant string
Kalle: "I see that variant has a space in it, does that work it correctly? My original idea was that spaces would not be allowed, but didn't realise to add a check for that." Is this an easy change? Because the original author (Tim Davis) noted: "You may substitute the & and space with something else saner if they prove to be problematic." Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
David Bauer
|
b21b98627d |
ipq40xx: add Aruba AP-365 specific BDF
Aruba deploys a BDF in the root filesystem, however this matches the one used for the DK04 reference board. The board-specific BDFs are built into the kernel. The AP-365 shows sinificant degraded performance with increased range when used with the reference BDF. Replace the BDF with the one extracted from Arubas kernel. Signed-off-by: David Bauer <mail@david-bauer.net> |
||
Robert Marko
|
ab141a6e2c |
ipq-wifi: remove packaged BDF-s for MikroTik devices
Since we now provide the BDF-s for MikroTik IPQ40xx devices on the fly, there is noneed to include package and ship them like we do now. This also resolves the performance issues that happen as MikroTik changes the boards and ships them under the same revision but they actually ship with and require a different BDF. Signed-off-by: Robert Marko <robimarko@gmail.com> |
||
Christian Lamparter
|
91fa4826b9 |
ipq-wifi: drop upstreamed board-2.bin
The BDFs for the: Aruba AP-303 ASUS RT-AC42U AVM FRITZ!Repeater 1200 Buffalo WTR-M2133HP Cell C RTL30VW D-Link DAP-2610 EnGenius EAP2200 EnGenius EMD1 EnGenius EMR3500 EnGenius EMR5000 EZVIZ CS-W3-WD1200G EUP Google Wifi Linksys MR8300 V1.0 Luma WRTQ-329ACN MobiPromo CM520-79F NEC Platforms WG2600HP3 Plasma Cloud PA1200 (updated version) Plasma Cloud PA2200 ZTE MF286D were upstreamed to the ath10k-firmware repository and landed in linux-firmware.git. Furthermore the BDFs for the: 8devices Habanero OpenMesh A62 OpenMesh A42 AVM FRITZ!Box 4040 have been updated. Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
Enrico Mioso
|
e3f9af4fb6 |
ipq40xx: fix BDF file for pcie wifi chip on the GL.Inet GL-B2200
After the switch to pre-calibration, ath10k would fail to initialize the PCIE Wi-Fi on the GL-B200 as follows: ath10k_pci 0000:01:00.0: enabling device (0140 -> 0142) ath10k_pci 0000:01:00.0: qca9888 hw2.0 target 0x01000000 chip_id 0x00000000 sub 0000:0000 [...] ath10k_pci 0000:01:00.0: failed to fetch board data for bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=GL-B2200 from ath10k/QCA9888/hw2.0/board-2.bin ath10k_pci 0000:01:00.0: failed to fetch board-2.bin or board.bin from ath10k/QCA9888/hw2.0 ath10k_pci 0000:01:00.0: failed to fetch board file: -12 ath10k_pci 0000:01:00.0: could not probe fw (-12) Repackage the BDF file after renaming relevant fields and files to allow for the Wi-Fi interface to start again. Fixes: 80d34d9d593 ("ipq40xx: document pcie wifi chip on the GL.Inet GL-B2200") CC: Christian Lamparter <chunkeey@gmail.com> CC: Robert Marko <robimarko@gmail.com> Reviewed-by: Robert Marko <robert.marko@sartura.hr> Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com> |
||
张 鹏
|
bdc786e82c |
ipq40xx: update E2600AC c1/c2 board
Modified the radio frequency hardware part of e2600ac c1/c2, need to cooperate with the modified board.bin file, the device can work normally. Signed-off-by: 张 鹏 <sd20@qxwlan.com> |
||
Brian Norris
|
331d78a90f |
firmware/ipq-wifi: Add Google Wifi board-2.bin
From a manufacturer's image (version R89-13729.57.27), with appopriate ',variant=' appended to the board names: $ .../qca-swiss-army-knife/tools/scripts/ath10k/ath10k-bdencoder \ -i ./board-google_wifi.qca4019 FileSize: 48596 FileCRC32: 3966df5d FileMD5: d54161b0fb9e93691c4272649c37535a BoardNames[0]: 'bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=GO_GALE' BoardLength[0]: 12064 BoardCRC32[0]: e117f336 BoardMD5[0]: ea35e78c88a8571201da8b75edc9b881 BoardNames[1]: 'bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=GO_GALE' BoardLength[1]: 12064 BoardCRC32[1]: 6c751ec9 BoardMD5[1]: 44cbc4ca6cb7141ba4249615f7065582 BoardNames[2]: 'bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=GO_BREEZE' BoardLength[2]: 12064 BoardCRC32[2]: 24fba117 BoardMD5[2]: b4ac055b3ab67d5a6f5607a96af39a1f BoardNames[3]: 'bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=GO_BREEZE' BoardLength[3]: 12064 BoardCRC32[3]: a3e16b2a BoardMD5[3]: 8b26cb285032314247304114b8ac50e7 Naming follows existing Google projects included in upstream board-2.bin -- GO(ogle) prefix, an underscore (_), and the project code name, all in caps. Note that I only tested the "gale" model; the "breeze" model is a later revision (same marketing name) with very small hardware changes but otherwise using the same firmware image. Submitted upstream here: ath10k-firmware: QCA4019: hw1.0: Add Google Wifi BDFs http://lists.infradead.org/pipermail/ath10k/2022-March/013465.html https://lore.kernel.org/ath10k/YjaNGW252Ls%2FyDw8@localhost/ Signed-off-by: Brian Norris <computersforpeace@gmail.com> |
||
Pawel Dembicki
|
a91ab8bc05 |
ipq40xx: add support for ZTE MF286D
ZTE MF286D is a LTE router with four gigabit ethernet ports and integrated QMI mPCIE modem. Hardware specification: - CPU: IPQ4019 - RAM: 256MB - Flash: NAND 128MB + NOR 2MB - WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2x2:2 - WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11anac 2x2:2 - LTE: mPCIe cat 12 card (Modem chipset MDM9250) - LAN: 4 Gigabit Ports - USB: 1x USB2.0 (regular port). 1x USB3.0 (mpcie - used by the modem) - Serial console: X8 connector 115200 8n1 Known issues: - Many LEDs are driven by the modem. Only internal LEDs and wifi LEDs are driven by cpu. - Wifi LED is triggered by phy0tpt only - No VoIP support - LAN1/WAN port is configured as WAN - ZTE gives only one MAC per device. Use +1/+2/+3 increment for WAN and WLAN0/1 Opening the case: 1. Take of battery lid (no battery support for this model, battery cage is dummy). 2. Unscrew screw placed behind battery lid. 3. Take off back cover. It attached with multiple plastic clamps. 4. Unscrew four more screws hidden behind back case. 5. Remove front panel from blue chassis. There are more plastic clamps. 6. Unscrew two boards, which secures the PCB in the chassis. 7. Extract board from blue chassis. Console connection (X8 connector): 1. Parameters: 115200 8N1 2. Pin description: (from closest pin to X8 descriptor to farthest) - VCC (3.3V) - TX - RX - GND Install Instructions: Serial + initramfs: 1. Place OpenWrt initramfs image for the device on a TFTP in the server's root. This example uses Server IP: 192.168.1.3 2. Connect serial console (115200,8n1) to X8 connector. 3. Connect TFTP server to RJ-45 port. 4. Stop in u-Boot and run u-Boot commands: setenv serverip 192.168.1.3 setenv ipaddr 192.168.1.72 set fdt_high 0x85000000 tftp openwrt-ipq40xx-generic-zte_mf286d-initramfs-fit-zImage.itb bootm $loadaddr 5. Please make backup of original partitions, if you think about revert to stock. 6. Login via ssh or serial and remove stock partitions: ubiattach -m 9 ubirmvol /dev/ubi0 -N ubi_rootfs ubirmvol /dev/ubi0 -N ubi_rootfs_data 7. Install image via "sysupgrade -n". Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com> (cosmetic changes to the commit message) Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
Alar Aun
|
70eedac9b3 |
ipq40xx: add MikroTik cAP ac support
This adds support for the MikroTik RouterBOARD RBcAPGi-5acD2nD (cAP ac), a indoor dual band, dual-radio 802.11ac wireless AP, two 10/100/1000 Mbps Ethernet ports. See https://mikrotik.com/product/cap_ac for more info. Specifications: - SoC: Qualcomm Atheros IPQ4018 - RAM: 128 MB - Storage: 16 MB NOR - Wireless: · Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae · Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae - Ethernet: Built-in IPQ4018 (SoC, QCA8075) , 2x 1000/100/10 port, PoE in and passive PoE out Unsupported: - PoE out Installation: Boot the initramfs image via TFTP and then flash the sysupgrade image using "sysupgrade -n" Signed-off-by: Alar Aun <alar.aun@gmail.com> |
||
Joshua Roys
|
51b9aef553 |
ipq40xx: add support for ASUS RT-ACRH17/RT-AC42U
SOC: IPQ4019 CPU: Quad-core ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d DRAM: 256 MB NAND: 128 MiB Macronix MX30LF1G18AC ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4x LAN, 1x WAN) USB: 1x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC) WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2x2:2 WLAN2: Qualcomm Atheros QCA9984 5GHz 802.11nac 4x4:4 INPUT: 1x WPS, 1x Reset LEDS: Status, WIFI1, WIFI2, WAN (red & blue), 4x LAN This board is very similar to the RT-ACRH13/RT-AC58U. It must be flashed with an intermediary initramfs image, the jffs2 ubi volume deleted, and then finally a sysupgrade with the final image performed. Signed-off-by: Joshua Roys <roysjosh@gmail.com> (added ALT0) Signed-off-by: Christian Lamparter <chunkeey@gmail.com> |
||
TruongSinh Tran-Nguyen
|
febc2b831f
|
ipq40xx: add support for GL.iNet GL-B2200
This patch adds supports for the GL-B2200 router. Specifications: - SOC: Qualcomm IPQ4019 ARM Quad-Core - RAM: 512 MiB - Flash: 16 MiB NOR - SPI0 - EMMC: 8GB EMMC - ETH: Qualcomm QCA8075 - WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2 - WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2 - WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2 - INPUT: Reset, WPS - LED: Power, Internet - UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1 - UART2: On board with BLE module - SPI1: On board socket for Zigbee module Update firmware instructions: Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at https://docs.gl-inet.com/en/3/troubleshooting/debrick/). Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware. Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first. What's working: - WiFi 2G, 5G - WPA2/WPA3 Not tested: - Bluetooth LE/Zigbee Credits goes to the original authors of this patch. V1->V2: - updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake) - add uboot-envtools support V2->V3: - Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface V3->V4: - wire up sysupgrade Signed-off-by: Li Zhang <li.zhang@gl-inet.com> [fix tab and trailing space, document what's working and what's not] Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro> [rebase on top of master, address remaining comments] Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com> [remove redundant check in platform.sh] Signed-off-by: Daniel Golle <daniel@makrotopia.org> |
||
Felix Matouschek
|
1cc3b95efc |
ipq40xx: Add support for Teltonika RUTX10
This patch adds support for the Teltonika RUTX10. This device is an industrial DIN-rail router with 4 ethernet ports, 2.4G/5G dualband WiFi, Bluetooth, a USB 2.0 port and two GPIOs. The RUTX series devices are very similiar so common parts of the DTS are kept in a DTSI file. They are based on the QCA AP-DK01.1-C1 dev board. See https://teltonika-networks.com/product/rutx10 for more info. Hardware: SoC: Qualcomm IPQ4018 RAM: 256MB DDR3 SPI Flash 1: XTX XT25F128B (16MB, NOR) SPI Flash 2: XTX XT26G02AWS (256MB, NAND) Ethernet: Built-in IPQ4018 (SoC, QCA8075), 4x 10/100/1000 ports WiFi 1: Qualcomm QCA4019 IEEE 802.11b/g/n Wifi 2: Qualcomm QCA4019 IEEE 802.11a/n/ac USB Hub: Genesys Logic GL852GT Bluetooth: Qualcomm CSR8510 (A10U) LED/GPIO controller: STM32F030 with custom firmware Buttons: Reset button Leds: Power (green, cannot be controlled) WiFi 2.4G activity (green) WiFi 5G activity (green) MACs Details verified with the stock firmware: eth0: Partition 0:CONFIG Offset: 0x0 eth1: = eth0 + 1 radio0 (2.4 GHz): = eth0 + 2 radio1 (5.0 GHz): = eth0 + 3 Label MAC address is from eth0. The LED/GPIO controller needs a separate kernel driver to function. The driver was extracted from the Teltonika GPL sources and can be found at following feed: https://github.com/0xFelix/teltonika-rutx-openwrt USB detection of the bluetooth interface is sometimes a bit flaky. When not detected power cycle the device. When the bluetooth interface was detected properly it can be used with bluez / bluetoothctl. Flash instructions via stock web interface (sysupgrade based): 1. Set PC to fixed ip address 192.168.1.100 2. Push reset button and power on the device 3. Open u-boot HTTP recovery at http://192.168.1.1 4. Upload latest stock firmware and wait until the device is rebooted 5. Open stock web interface at http://192.168.1.1 6. Set some password so the web interface is happy 7. Go to firmware upgrade settings 8. Choose openwrt-ipq40xx-generic-teltonika_rutx10-squashfs-nand-factory.ubi 9. Set 'Keep settings' to off 10. Click update, when warned that it is not a signed image proceed Return to stock firmware: 1. Set PC to fixed ip address 192.168.1.100 2. Push reset button and power on the device 3. Open u-boot HTTP recovery at http://192.168.1.1 4. Upload latest stock firmware and wait until the device is rebooted Note: The DTS expects OpenWrt to be running from the second rootfs partition. u-boot on these devices hot-patches the DTS so running from the first rootfs partition should also be possible. If you want to be save follow the instructions above. u-boot HTTP recovery restores the device so that when flashing OpenWrt from stock firmware it is flashed to the second rootfs partition and the DTS matches. Signed-off-by: Felix Matouschek <felix@matouschek.org> |
||
Robert Marko
|
3ad229db0b |
ipq40xx: add support for MikroTik hAP ac3
This adds support for the MikroTik RouterBOARD RBD53iG-5HacD2HnD (hAP ac³), a indoor dual band, dual-radio 802.11ac wireless AP with external omnidirectional antennae, USB port, five 10/100/1000 Mbps Ethernet ports and PoE passthrough. See https://mikrotik.com/product/hap_ac3 for more info. Specifications: - SoC: Qualcomm Atheros IPQ4019 - RAM: 256 MB - Storage: 16 MB NOR + 128 MB NAND - Wireless: · Built-in IPQ4019 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae · Built-in IPQ4019 (SoC) 802.11a/n/ac 2x2:2, 5.5 dBi antennae - Ethernet: Built-in IPQ4019 (SoC, QCA8075) , 5x 1000/100/10 port, passive PoE in, PoE passtrough on port 5 - 1x USB Type A port Installation: 1. Boot the initramfs image via TFTP 2. Run "cat /proc/mtd" and look for "ubi" partition mtd device number, ex. "mtd1" 3. Use ubiformat to remove MikroTik specific UBI volumes * Detach the UBI partition by running: "ubidetach -d 0" * Format the partition by running: "ubiformat /dev/mtdN -y" Replace mtdN with the correct mtd index from step 2. 3. Flash the sysupgrade image using "sysupgrade -n" Signed-off-by: Robert Marko <robimarko@gmail.com> Tested-by: Mark Birss <markbirss@gmail.com> Tested-by: Michael Büchler <michael.buechler@posteo.net> Tested-by: Alex Tomkins <tomkins@darkzone.net> |
||
Richard Yu
|
12d33d388c |
ipq40xx: add support for P&W R619AC (aka G-DOCK 2.0)
P&W R619AC is a IPQ4019 Dual-Band AC1200 router. It is made by P&W (p2w-tech.com) known as P&W R619AC but marketed and sold more popularly as G-DOCK 2.0. Specification: * SOC: Qualcomm Atheros IPQ4019 (717 MHz) * RAM: 512 MiB * Flash: 16 MiB (NOR) + 128 MiB (NAND) * Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) * Wireless: - 2.4 GHz b/g/n Qualcomm Atheros IPQ4019 - 5 GHz a/n/ac Qualcomm Atheros IPQ4019 * USB: 1 x USB 3.0 * LED: 4 x LAN, 1 x WAN, 2 x WiFi, 1 x Power (All Blue LED) * Input: 1 x reset * 1 x MicroSD card slot * Serial console: 115200bps, pinheader J2 on PCB * Power: DC 12V 2A * 1 x Unpopulated mPCIe Slot (see below how to connect it) * 1 x Unpopulated Sim Card Slot Installation: 1. Access to tty console via UART serial 2. Enter failsafe mode and mount rootfs <https://openwrt.org/docs/guide-user/troubleshooting/failsafe_and_factory_reset> 3. Edit inittab to enable shell on tty console `sed -i 's/#ttyM/ttyM/' /etc/inittab` 4. Reboot and upload `-nand-factory.bin` to the router (using wget) 5. Use `sysupgrade` command to install Another installation method is to hijack the upgrade server domain of stock firmware, because it's using insecure http. This commit is based on @LGA1150(at GitHub)'s work < |
||
Sven Eckelmann
|
8b09070820 |
ipq-wifi: Work around Plasma Cloud PA1200 5GHz crash
It was noticed [1] that the ath10k firmware crashes on 5GHz since OpenWrt 21.02.0. The problem seems to be triggered by the the nonLinearTxFir field in the 5GHz BDF. If baseEepHeader.nonLinearTxFir (offset 0xc2) is 1 then the firmware just crashes when setting up the 5Ghz radio using `ifconfig wlan1 up`: ath10k_ahb a800000.wifi: firmware crashed! (guid 9e36ee82-4d2c-4c63-b20b-609a1eaca30c) ath10k_ahb a800000.wifi: qca4019 hw1.0 target 0x01000000 chip_id 0x003b00ff sub 0000:0000 ath10k_ahb a800000.wifi: kconfig debug 0 debugfs 1 tracing 0 dfs 1 testmode 0 ath10k_ahb a800000.wifi: firmware ver 10.4-3.6-00140 api 5 features no-p2p,mfp,peer-flow-ctrl,btcoex-param,allows-mesh-bcast,no-ps crc32 ba79b746 ath10k_ahb a800000.wifi: board_file api 2 bmi_id 0:17 crc32 5f400efc ath10k_ahb a800000.wifi: htt-ver 2.2 wmi-op 6 htt-op 4 cal pre-cal-file max-sta 512 raw 0 hwcrypto 1 ath10k_ahb a800000.wifi: firmware register dump: ath10k_ahb a800000.wifi: [00]: 0x0000000B 0x000015B3 0x009C3C27 0x00975B31 ath10k_ahb a800000.wifi: [04]: 0x009C3C27 0x00060530 0x00000018 0x004176B8 ath10k_ahb a800000.wifi: [08]: 0x00405A50 0x00412A30 0x00000000 0x00000000 ath10k_ahb a800000.wifi: [12]: 0x00000009 0x00000000 0x009B9742 0x009B974F ath10k_ahb a800000.wifi: [16]: 0x00971238 0x009B9742 0x00000000 0x00000000 ath10k_ahb a800000.wifi: [20]: 0x409C3C27 0x004053DC 0x00000D2C 0x00405A60 ath10k_ahb a800000.wifi: [24]: 0x809C3E13 0x0040543C 0x00000000 0xC09C3C27 ath10k_ahb a800000.wifi: [28]: 0x809B9AC5 0x0040547C 0x00412A30 0x0040549C ath10k_ahb a800000.wifi: [32]: 0x809B8ECD 0x0040549C 0x00000001 0x00412A30 ath10k_ahb a800000.wifi: [36]: 0x809B8FF3 0x004054CC 0x00412838 0x00000014 ath10k_ahb a800000.wifi: [40]: 0x809BEF98 0x0040551C 0x0041627C 0x00000002 ath10k_ahb a800000.wifi: [44]: 0x80986D47 0x0040553C 0x0041627C 0x00416A88 ath10k_ahb a800000.wifi: [48]: 0x809CBB0A 0x0040559C 0x0041ACC0 0x00000000 ath10k_ahb a800000.wifi: [52]: 0x809864EE 0x0040560C 0x0041ACC0 0x00000001 ath10k_ahb a800000.wifi: [56]: 0x809CA8A4 0x0040564C 0x0041ACC0 0x00000001 ath10k_ahb a800000.wifi: Copy Engine register dump: ath10k_ahb a800000.wifi: [00]: 0x0004a000 14 14 3 3 ath10k_ahb a800000.wifi: [01]: 0x0004a400 16 16 22 23 ath10k_ahb a800000.wifi: [02]: 0x0004a800 3 3 2 3 ath10k_ahb a800000.wifi: [03]: 0x0004ac00 15 15 15 15 ath10k_ahb a800000.wifi: [04]: 0x0004b000 4 4 44 4 ath10k_ahb a800000.wifi: [05]: 0x0004b400 3 3 2 3 ath10k_ahb a800000.wifi: [06]: 0x0004b800 1 1 1 1 ath10k_ahb a800000.wifi: [07]: 0x0004bc00 1 1 1 1 ath10k_ahb a800000.wifi: [08]: 0x0004c000 0 0 127 0 ath10k_ahb a800000.wifi: [09]: 0x0004c400 0 0 0 0 ath10k_ahb a800000.wifi: [10]: 0x0004c800 0 0 0 0 ath10k_ahb a800000.wifi: [11]: 0x0004cc00 0 0 0 0 ath10k_ahb a800000.wifi: failed to update channel list: -108 ath10k_ahb a800000.wifi: failed to set pdev regdomain: -108 ath10k_ahb a800000.wifi: failed to create WMI vdev 0: -108 ieee80211 phy1: Hardware restart was requested Since no actual solution is known (besides downgrading the ath10k firmware) it seems to be better to disable the nonLinearTxFir for now. [1] https://lore.kernel.org/ath10k/3423718.UToCqzeSYe@ripper/ Signed-off-by: Sven Eckelmann <sven@narfation.org> |