Specification is similar to other devices of the MT Stuart series:
* Mediatek MT7988D (3x Cortex-A73, up to 1.8 GHz clock speed)
* 8 GiB eMMC
* 2 GiB DDR4 RAM
* 2500M/1000M/100M LAN port
* 10000M/5000M/2500M/1000M/100M/10M WAN port
* MT7992 Tri-band (2.4G, 5G, 6G) 2T2R+3T3R+3T3R 802.11be Wi-Fi
* Renesas DA14531MOD Bluetooth
* 2 buttons (Reset, Mesh/WPS)
* uC-controlled RGB LED via I2C
* 2x LED for the 2.5G port, 3x LED for the 10G port
* 3.3V-level 115200 baud UART console via 4-pin Dupont connector
exposed at the bottom of the device
* USB-C PD power input
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This commit adds support for netis N6 WiFi 6 router.
Specification
-------------
- SoC : MediaTek MT7621AT, MIPS, 880 MHz
- RAM : 256 MiB
- Flash : NAND 128 MiB (ESMT PSU1GA30DT)
- WLAN : MT7905DAN + MT7975DN
- 2.4 GHz : b/g/n/ax, 574 Mbps, MIMO 2x2
- 5 GHz : a/n/ac/ax, 1201 Mbps, MIMO 2x2
- Ethernet : 10/100/1000 Mbps x5 (1x WAN, 4x LAN)
- USB : 1x 3.0
- UART : 3.3V, 115200n8
- Buttons : 1x Reset
1x WPS
- LEDs : 1x Power (green)
1x System (green)
1x WAN (green)
1x WiFi 2.4 GHz (green), controlled by phy
1x WiFi 5 GHz (green), controlled by phy
1x WPS (green)
1x USB (green)
5x ethernet leds (green), controlled by switch
- Power : 12 VDC, 1.5 A
Installation
------------
1. Update the router using stock firmware web interface and OpenWrt
factory.bin image.
Recovery and return to stock
----------------------------
1. Assign your PC a static IP 192.168.1.2 and connect to the router using
the ethernet cable;
2. Power off the router;
3. Press Reset button, power on the router and wait until ethernet led
start blinking;
4. Release the button;
5. Open http://192.168.1.1/ (N6 System Recovery Mode) in your browser;
6. Upload OpenWrt factory.bin (or stock firmware *.bin) image and proceed
with upgrade.
MAC addresses
-------------
+---------+-------------------+
| | MAC example |
+---------+-------------------+
| LAN | dc:xx:xx:49:xx:04 |
| WAN | dc:xx:xx:49:xx:05 |
| WLAN 2g | dc:xx:xx:19:xx:06 |
| WLAN 5g | dc:xx:xx:79:xx:06 |
+---------+-------------------+
The WLAN MAC prototype was found in 'Factory', 0x4
The LAN MAC was found in 'Factory', 0x7ef20
The WAN MAC was found in 'Factory', 0x7ef26
Known issue
-----------
2.4 GHz WLAN doesn't start with mt76 driver.
Probable reason:
Original Netis N6 EEPROM contains wrong MT_EE_WIFI_CONF value (0xd2).
Other routers with the same WLAN hardware (e.g., Routerich AX1800)
have MT_EE_WIFI_CONF = 0x92.
Workaround (already included in this commit):
Extract EEPROM to a file at the first time boot and change
MT_EE_WIFI_CONF (offset 0x190) value from 0xd2 to 0x92. See
/etc/hotplug.d/firmware/11-mt76-caldata for details.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16322
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specifications:
- Device: DNA Valokuitu Plus EX400
- SoC: MT7621A
- Flash: 256MB NAND
- RAM: 256MB
- Ethernet: Built-in, 2 x 1GbE
- Wifi: MT7603 2.4 GHz, MT7615 5 GHz (4x internal antennas)
- USB: 1x 3.0
- LED: 1x green/red, 1x green
- Buttons: Reset
MAC addresses:
- LAN: u-boot 'ethaddr' (label)
- WAN: label + 1
- 2.4 GHz: label + 6
- 5 GHz: label + 7
Serial:
There is a black block connector next to the red ethernet connector. It
is accessible also through holes in the casing.
Pinout (TTL 3.3V)
+---+---+
|Tx |Rx |
+---+---+
|Vcc|Gnd|
+---+---+
Firmware:
The vendor firmware is a fork of OpenWrt (Reboot) with a kernel version
4.4.93. The flash is arranged as below and there is a dual boot
mechanism alternating between rootfs_0 and rootfs_1.
+-------+------+------+-----------+-----------+
| | env1 | env2 | rootfs_0 | rootfs_1 |
| +------+------+-----------+-----------+
| | UBI volumes |
+-------+-------------------------------------+
|U-Boot | UBI |
+-------+-------------------------------------+
|mtd0 | mtd1 |
+-------+-------------------------------------+
| NAND |
+---------------------------------------------+
In OpenWrt rootfs_0 will be used as a boot partition that will contain the
kernel and the dtb. The squashfs rootfs and overlay are standard OpenWrt
behaviour.
+-------+------+------+-----------+--------+------------+
| | env1 | env2 | rootfs_0 | rootfs | rootfs_data|
| +------+------+-----------+--------+------------+
| | UBI volumes |
+-------+-----------------------------------------------+
|U-Boot | UBI |
+-------+-----------------------------------------------+
|mtd0 | mtd1 |
+-------+-----------------------------------------------+
| NAND |
+-------------------------------------------------------+
U-boot:
With proper serial access booting can be halted to U-boot by pressing any
key. TFTP and flash writes are available, but only the first one has been
tested.
NOTE: Recovery mode can be accessed by holding down the reset button while
powering on the device. The led 'Update' will show a solid green light
once ready. A web server will be running at 192.168.1.1:80 and it will
allow flashing a firmware package. You can cycle between rootfs_0 and
rootfs_1 by pressing the reset button once.
Root password:
With the vendor web UI create a backup of your settings and download the
archive to your computer. Within the archive in the file
/etc/shadow replace the password hash for root with that of a password you
know. Restore the configuration with the vendor web UI and you will have
changed the root password.
SSH access:
You might need to enable the SSH service for LAN interface as by default
it's enabled for WAN only.
Installing OpenWrt:
With the vendor web UI install the OpenWrt factory image. Alternatively,
ssh to the device and use sysupgrade -n from cli.
Finalize by installing the OpenWrt sysupgrade image to get a fully
functioning system.
Reverting to the vendor firmware:
Boot with OpenWrt initramfs image
- Remove volumes rootfs_0, rootfs and rootfs_data and create vendor
volumes.
ubirmvol /dev/ubi0 -n 2
ubirmvol /dev/ubi0 -n 3
ubirmvol /dev/ubi0 -n 4
ubimkvol /dev/ubi0 -N rootfs_0 -S 990
ubimkvol /dev/ubi0 -N rootfs_1 -S 990
Power off and enter to the U-boot recovery to install the vendor
firmware.
Known issues:
- MACs for wifi are stored in currently unknown place but it seems
to persist over power-off. They might be stored on the chip.
Signed-off-by: Mauri Sandberg <maukka@ext.kapsi.fi>
[rmilecki: try NVMEM for MACs]
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
move nanopc-t6 recipes above rock 5b.
Fixes: 9482341a47 ("rockchip: add support for nanopc t6")
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/16340
Signed-off-by: Robert Marko <robimarko@gmail.com>
Specifications:
* SoC: Qualcomm IPQ8072A (64-bit Quad-core Arm Cortex-A53 @ 2200MHz)
* Memory: 2x ESMT M15T4G16256A-DEBG2G (1 GiB DDR3-1866 13-13-13)
* Serial Port: 3v3 TTL 115200n8
* Wi-Fi: QCN5054 (4x4 5 GHz 802.11ax)
* Wi-Fi: QCN5024 (4x4 2.4 GHz 802.11b/g/n/ax)
* Ethernet: QCA8081 (10/100/1000/2.5GBASE-T)
* Flash: Winbond W29N01HZSINF (128 MiB)
* LEDs: 1x Blue Status (GPIO 42 Active High)
* Buttons: 1x Reset (GPIO 50 Active Low)
Installation Instructions (Serial+TFTP):
1. Solder 4 pin header to JP1 and bridge pads of R58 and R62.
2. Connect 3V3 TTL port to TX, RX, and GND, which are positions 1, 2,
and 3 respectively. Be sure to crossover TX and RX.
3. Copy RAM firmware image
openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-initramfs-uImage.itb
to TFTP server root, available at 192.168.10.1.
4. Connect PoE ethernet cable to the RJ45 port and hold Ctrl+B in the
serial console (115200 baud) until autoboot is halted.
5. Run the following commands in the U-boot prompt:
# tftpboot 0x44000000 openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-initramfs-uImage.itb
# bootm
You may need to type Ctrl+C and Enter before running these commands
to clear invisible characters from the buffer.
6. Run the following command in a terminal to copy the sysupgrade image
to be installed (check IP address):
$ scp openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/
7. Activate the OpenWrt serial console and run the following commands:
# cd /tmp
# sysupgrade -n openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-squashfs-sysupgrade.bin
8. The AP will reboot and OpenWrt will be successfully installed.
Signed-off-by: George Witt <george.witt@nltsproject.org>
Link: https://github.com/openwrt/openwrt/pull/15832
Signed-off-by: Robert Marko <robimarko@gmail.com>
GCC errors on returning int in void function now.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16348
Signed-off-by: Robert Marko <robimarko@gmail.com>
Adds u-boot config for access to system env variables on this board
Signed-off-by: Ivan Pavlov <AuthorReflex@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16312
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Radxa ROCK 3B is a Pico-ITX form factor SBC[1] using the Rockchip
RK3568(J).
Hardware
--------
- Rockchip RK3568(J) SoC
- Quad A55 CPU
- Mali-G52 GPU
- 1 TOPS @ INT8 NPU
- 2GB/4GB/8GB LPDDR4 RAM
- eMMC connector
- Micro SD Card slot
- NVMe SSD through the M.2 M Key (2-lane PCIe 3.0)
- SPI Flash for bootloader
- 2x Gigabit ethernet port (one supports PoE with add-on PoE HAT)
- 1x M.2 E Key socket with SDIO, UART and USB interfaces
- 1x M.2 B Key socket with PCIe, SATA, and USB interfaces
- 1x SIM card socket
- 1x USB 3.0 Type-A HOST port
- 1x USB 3.0 Type-A OTG port
- 2x USB 2.0 Type-A HOST ports
- 40 Pin GPIO header
[1] https://radxa.com/products/rock3/3b
Installation
------------
Uncompress the OpenWrt sysupgrade and write it to a micro SD card or
internal eMMC using dd.
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/16185
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Radxa ROCK 3C is a high-performance, low-cost SBC[1] using the
Rockchip RK3566.
Hardware
--------
- Rockchip RK3566 SoC
- Quad A55 CPU
- Mali-G52-2EE GPU
- 1 TOPS @ INT8 NPU
- 1GB/2GB/4GB LPDDR4 RAM
- eMMC connector
- Micro SD Card slot
- NVMe SSD through the M.2 M Key connector(2230) or M.2 Extension
board(2232/2260/2280)
- SATA through the Radxa Penta SATA HAT
- 1x Gigabit ethernet port(supports PoE with add-on PoE HAT)
- WiFi6/BT5.4 (not supported yet on OpenWrt)
- 1x USB 3.0 Type-A HOST port
- 2x USB 2.0 Type-A HOST ports
- 1x USB 2.0 Type-A OTG port
- 40 Pin GPIO header
[1] https://radxa.com/products/rock3/3c
Installation
------------
Uncompress the OpenWrt sysupgrade and write it to a micro SD card or
internal eMMC using dd.
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/16185
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The company Zyxel rebranded some years ago.
Currently the casing is according to the old branding even
for newer devices which already use the new branding.
This commit aligns the casing of Zyxel everywhere.
Signed-off-by: Goetz Goerisch <ggoerisch@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15652
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This patch fixes model name in dts as below:
Radxa ROCK3 model A -> Radxa ROCK 3A
Radxa ROCK 5 model A -> Radxa ROCK 5A
Radxa ROCK 5 model B -> Radxa ROCK 5B
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/16232
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for the Radxa ROCK 5B board.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/16149
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for the Radxa ROCK 5A board.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/16149
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
There is no need to build BL31 as anyway only the bl2 image is
relevant for use with mtk_uartboot. Build only bl2 in this case.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Specification:
- MT7629 CPU
- MT7531 switch
- MT7761N and MT7762N wifi
- 256 MB RAM
- 128 MB NAND flash with dual-boot partitions
- 2 buttons: WPS and reset
- 1 WAN port (1G)
- 4 LAN ports (1G)
- 1 USB port
Limitations (same as other MT7629/MT7761N/MT7762N devices):
- Wifi is not working
- Second core is not working (kernel error message "CPU1: failed to come online")
Disassembly:
- There are two screws under the front rubber feet and two under the label on the bottom (in the corners towards the back, you should be able to feel them).
Serial Interface:
- UART pin header is already soldered on the board. Pinning from front to back:
1 - VCC
2 - TX
3 - RX
4 - n/a
5 - GND
GPIO:
- 1 white LED, connected to GPIO 52
- 1 reset button, connected to GPIO 60
- 1 WPS button, connected to GPIO 58
MAC Adresses:
- The MAC address printed on the device label is used for LAN and WAN
- The MAC address is stored in the devinfo partition in ASCII format (hw_mac_addr=aa:bb:cc:dd:ee)
- 2.4 GHz wifi uses MAC of the device label + 1
- 5 GHz wifi uses MAC of the device label + 2
Flashing:
- OpenWrt is only runnig in the first partition of dual boot
- To ensure to be able to go back to the factory image, flash the last OEM firmware via OEM web interface. This will ensure that the OEM firmware is present on both partitions
- Because of dual boot partitions, flashing via OEM interface is not supported
- Start a TFTP server and provide the initramfs image. Default settings:
- Router IP: 192.168.1.1
- TFTP server IP: 192.168.1.100
- TFTP file name: 7531.bin
- Open the device, connect UART and select " 1. System Load Linux to SDRAM via TFTP." during startup
- Adapt the settings to your environment, if required
- After initramfs is booted, flash the sysupgrade image
Return to OEM firmware:
- Run the following commands in OpenWrt to switch to the second partition
fw_setenv boot_part 2
fw_setenv bootimage 2
- Reboot the device. OEM firmware will start up again
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16067
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support this boards to envtools config
This commit integrates the latest changes from new U-Boot, which includes important updates to the DTSI files for the Orange Pi R1 Plus and Orange Pi R1 Plus LTS boards.
Signed-off-by: Vyacheslav Ivanov <islavaivanov76@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16090
Signed-off-by: Robert Marko <robimarko@gmail.com>
A bug has plagued bl2 which caused failure to boot and bricked Linksys
E8450 and Belkin RT3200 devices in case of correctable bitflips being
detected during a read operation. A simple logic error resulted in read
to be considered errornous instead of just continueing in case of
correctable bitflips.
Address this by importing a patch fixing that logic error.
The issue, which has been dubbed as the "OpenWrt Kiss of Death", and is
now a thing of the past.
Users should preemptively update bl2 to prevent their devices being at
risk.
Link: https://github.com/mtk-openwrt/arm-trusted-firmware/pull/11
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Backporting support for the NanoPi R6S from upstream
uboot.
Signed-off-by: Ben Whitten <ben.whitten@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15607
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Upstream uboot have merged in kernel dts files, we need
the update for the rk3588 boards.
Signed-off-by: Ben Whitten <ben.whitten@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15607
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Adding support for the rk3588 platform
Signed-off-by: Ben Whitten <ben.whitten@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15607
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Cambium Networks XE3-4 is a tri-radio Wi-Fi 6/6E 4×4/2×2 AP.
Hardware:
Model: Cambium Networks XE3-4
CPU: IPQ6010/AP-CP01-C3, SoC Version: 1.0 @ 800 MHz
Memory: 1 GiB
Flash: 512 MiB Macronix MX30UF2G18AC + W25Q128FW
Ethernet: 1x 1 GbE (QCA8072)
1x 2.5 GbE (QCA8081)
Buttons: 1x Reset
Serial: TX, RX, GND
Baudrate: 115200
Radios: Qualcomm Atheros IPQ6018 802.11ax - 2x2 - 2GHz
Qualcomm Atheros IPQ6018 802.11ax - 2x2 - 5GHz
Qualcomm Atheros QCN9074 802.11ax - 4x4 - 5GHz or 6GHz
BLE 4.1
Power: 32.0W 802.3bt5 PoE++
25.5W 802.3at with USB, BT disabled
Size: 215mm x 215mm
Ports: 1x USB 2.0
Antenna: 6 GHz: 6.29 dBi, Omni 30 dBm
5 GHz: 6.12 dBi, Omni 31 dBm
2.4 GHz: 4.85 dBi, Omni 29 dBm
LEDs: Multi-color status LEDs
Mounting: Wall, ceiling or T-bar
Installation: Serial connection
1. Open the AP to get access to the board. Connect RX, TX and GND.
2. Power on the AP, and short the CS pin of the SPI flash with
one of the APs GND pins.
3. Transfer the initramfs image with TFTP
(Default server IP is 192.168.0.120)
# tftpboot factory.ubi
4. Flash the rootfs partition
# flash rootfs
5. Reboot the AP
# reset
Signed-off-by: Kristian Skramstad <kristian+github@83.no>
Link: https://github.com/openwrt/openwrt/pull/15633
Signed-off-by: Robert Marko <robimarko@gmail.com>
Mark the package as nonshared to build it in the target specific build
step 1 of the build bots instead of the architecture generic build step
2. In the build step 2 it may be left out if we build it using a
different target.
Fixes: 1eb21b87bd ("kobs-ng: add new package")
Link: https://github.com/openwrt/openwrt/pull/16031
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Mark the package as nonshared to build it in the target specific build
step 1 of the build bots instead of the architecture generic build step
2. In the build step 2 it may be left out if we build it using a
different target.
Fixes: 07043a853a ("imx23: rename imx23 to mxs for upcoming imx23/28 support")
Link: https://github.com/openwrt/openwrt/pull/16031
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Radxa ROCK Pi E v3.0 is a compact networking SBC[1] using the Rockchip
RK3328 SoC.
Hardware
--------
- Rockchip RK3328 SoC
- Quad A53 CPU
- 512MB/1GB/2GB DDR4 RAM
- 4/8/16/32GB eMMC
- Micro SD Card slot
- WiFi 4 and BT 4, or WiFi 5 and BT 5 (not supported yet)
- 1x 1000M Ethernet with PoE support (additional PoE HAT required)
- 1x 100M Ethernet
- 1x USB 3.0 Type-A port (Host)
- 1x 4-ring 3.5mm headphone jack
- 40 Pin GPIO header
[1] https://radxa.com/products/rockpi/pie
Installation
------------
Uncompress the OpenWrt sysupgrade and write it to a micro SD card or
internal eMMC using dd.
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/15984
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for NEC Aterm series devices based on Atheros AR9344.
The following devices have almost the same hardware, so the same U-Boot
binary can be used for them.
- NEC Aterm WR8750N
- NEC Aterm WR9500N
- NEC Aterm WG600HP
By the way, on NetBSD-based NEC Aterm devices, only 0x20000 (128KiB) is
available for a bootloader on the flash chip and that limitation is too
small for mainline U-Boot with the default options. So many
features/commands not required for booting OpenWrt and recoverying are
disabled on that devices, like the followings.
- networking support
- FIT support
- all decompression methods support
etc...
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15432
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add U-Boot package for the devices that based on Atheros/Qualcomm
Atheros SoCs.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15432
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Same as TP-Link TL-XDR608x, this router comes with locked vendor
loader. Add U-Boot build for replacement loader for this device.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Link: https://github.com/openwrt/openwrt/pull/15930
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Radxa ROCK Pi S is a small in size, full in features SBC[1] using the
Rockchip RK3308B SoC.
Hardware
--------
- Rockchip RK3308B SoC
- Quad A35 CPU
- 256/512MB DDR3 RAM
- Optional 4/8GB eMMC
- Micro SD Card slot
- Optional WiFi 4 and BT 4 (not supported yet)
- 1x 100M Ethernet with PoE support (additional PoE HAT required)
- 1x USB 2.0 Type-A port (Host)
- 1x USB 2.0 Type-C port (OTG)
- 2x 26 Pin GPIO header
[1] https://radxa.com/products/rockpi/pis
Installation
------------
Uncompress the OpenWrt sysupgrade and write it to a micro SD card or
internal eMMC using dd.
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/15933
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Huawei AP6010DN is a dual-band, dual-radio 802.11a/b/g/n 2x2 MIMO
enterprise access point with one Gigabit Ethernet port and PoE
support.
Hardware highlights:
- CPU: AR9344 SoC at 480MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344-internal radio
- Wi-Fi 5GHz: AR9580 PCIe WLAN SoC
- Ethernet: 10/100/1000 Mbps Ethernet through Atheros AR8035 PHY
- PoE: yes
- Standalone 12V/2A power input
- Serial console externally available through RJ45 port
- External watchdog: CAT706SVI (1.6s timeout)
Serial console:
9600n8 (9600 baud, no stop bits, no parity, 8 data bits)
MAC addresses:
Each device has 32 consecutive MAC addresses allocated by
the vendor, which don't overlap between devices.
This was confirmed with multiple devices with consecutive
serial numbers.
The MAC address range starts with the address on the label.
To be able to distinguish between the interfaces,
the following MAC address scheme is used:
- eth0 = label MAC
- radio0 (Wi-Fi 2.4GHz) = label MAC + 1
- radio1 (Wi-Fi 5GHz) = label MAC + 2
Installation:
0. Connect some sort of RJ45-to-USB adapter to "Console" port of the AP
1. Power up the AP
2. At prompt "Press f or F to stop Auto-Boot in 3 seconds",
do what they say.
Log in with default admin password "admin@huawei.com".
3. Boot the OpenWrt initramfs from TFTP using the hidden script "run ramboot".
Replace IP address as needed:
> setenv serverip 192.168.1.10
> setenv ipaddr 192.168.1.1
> setenv rambootfile openwrt-ath79-generic-huawei_ap6010dn-initramfs-kernel.bin
> saveenv
> run ramboot
4. Optional but recommended as the factory firmware cannot be downloaded publicly:
Back up contents of "firmware" partition using the web interface or ssh:
$ ssh root@192.168.1.1 cat /dev/mtd11 > huawei_ap6010dn_fw_backup.bin
5. Run sysupgrade using sysupgrade image. OpenWrt
shall boot from flash afterwards.
Return to factory firmware (using firmware upgrade package downloaded from non-public Huawei website):
1. Start a TFTP server in the directory where
the firmware upgrade package is located
2. Boot to u-boot as described above
3. Install firmware upgrade package and format the config partitions:
> update system FatAP6X10XN_SOMEVERSION.bin
> format_fs
Return to factory firmware (from previously created backup):
1. Copy over the firmware partition backup to /tmp,
for example using scp
2. Use sysupgrade with force to restore the backup:
sysupgrade -F huawei_ap6010dn_fw_backup.bin
3. Boot AP to U-Boot as described above
Quirks and known issues:
- The stock firmware has a semi dual boot concept where the primary
kernel uses a squashfs as root partition and the secondary kernel uses
an initramfs. This dual boot concept is circumvented on purpose to gain
more flash space and since the stock firmware's flash layout isn't
compatible with mtdsplit.
- The external watchdog's timeout of 1.6s is very hard to satisfy
during bootup. This is why the GPIO15 pin connected to the watchdog input
is configured directly in the LZMA loader to output the AHB_CLK/2 signal
which keeps the watchdog happy until the wdt-gpio kernel driver takes
over. Because it would also take too long to read the whole kernel image
from flash, the uImage header only includes the loader which then reads
the kernel image from flash after GPIO15 is configured.
Signed-off-by: Marco von Rosenberg <marcovr@selfnet.de>
Link: https://github.com/openwrt/openwrt/pull/15941
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, Mesh
Power: DC 12V 1A
Gain telnet access:
1. Login into web interface, and download the configuration.
2. Decode and uncompress the configuration:
* Enter fakeroot if you are not login as root.
base64 -d e-xxxxxxxxxxxx-cfg.tar.gz | tar -zx
3. Edit 'etc/passwd', remove root password: 'root::1:0:99999:7:::'.
4. Edit 'etc/rc.local', insert telnetd command before 'exit 0':
( sleep 3s; /usr/sbin/telnetd; ) &
5. Repack the configuration:
tar -zc etc/ | base64 > e-xxxxxxxxxxxx-cfg.tar.gz
6. Upload new configuration via web interface, now you can connect to
ASR3000 via telnet.
Flash instructions:
1. Connect to ASR3000, backup everything, especially 'Factory' part.
2. Write new BL2:
mtd write openwrt-mediatek-filogic-abt_asr3000-preloader.bin BL2
3. Write new FIP:
mtd write openwrt-mediatek-filogic-abt_asr3000-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254/24, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/15887
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Use export_fitblk_bootdev() in /lib/upgrade/fit.sh instead of now
deprecated fitblk_get_bootdev() function. Include /lib/upgrade/fit.sh
instead of /lib/upgrade/common.sh to allow removing the function there.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
There is no point in hard-coding the UBI volume numbers as we are
dynamically looking up the volume by volume name in all cases by now.
Remove this relict as it causes problems without being useful for
anything.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>