Specifications:
- SoC: ar9341
- RAM: 32M
- Flash: 4M
- Ethernet: 5x FE ports
- WiFi: ar9341-wmac
Flash instruction:
Upload generated factory firmware on vendor's web interface.
This device is very similar to the TL-WR841N v8, only two LED GPIOs are
different.
Buttons configuration is similar to TL-WR842ND v2 but both buttons are
active low.
Signed-off-by: Will Moss <willormos@gmail.com>
Add support for TP-Link Deco S4 wifi router
The label refers to the device as S4R and the TP-Link firmware
site calls it the Deco S4 v2. (There does not appear to be a v1)
Hardware (and FCC id) are identical to the Deco M4R v2 but the
flash layout is ordered differently and the OEM firmware encrypts
some config parameters (including the label mac address) in flash
In order to set the encrypted mac address, the wlan's caldata
node is removed from the DTS so the mac can be decrypted with
the help of the uencrypt tool and patched into the wlan fw
via hotplug
Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR
UART serial access (115200N1) on board via solder pads:
RX = TP1 pad
TX = TP2 pad
GND = C201 (pad nearest board edge)
The device's bootloader and web gui will only accept images that
were signed using TP-Link's RSA key, however a memory safety bug
in the bootloader can be leveraged to install openwrt without
accessing the serial console. See developer forum S4 support page
for link to a "firmware" file that starts a tftp client, or you
may generate one on your own like this:
```
python - > deco_s4_faux_fw_tftp.bin <<EOF
import sys
from struct import pack
b = pack('>I', 0x00008000) + b'X'*16 + b"fw-type:" \
+ b'x'*256 + b"S000S001S002" + pack('>I', 0x80060200) \
b += b"\x00"*(0x200-len(b)) \
+ pack(">33I", *[0x3c0887fc, 0x35083ddc, 0xad000000, 0x24050000,
0x3c048006, 0x348402a0, 0x3c1987f9, 0x373947f4,
0x0320f809, 0x00000000, 0x24050000, 0x3c048006,
0x348402d0, 0x3c1987f9, 0x373947f4, 0x0320f809,
0x00000000, 0x24050000, 0x3c048006, 0x34840300,
0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000,
0x24050000, 0x3c048006, 0x34840400, 0x3c1987f9,
0x373947f4, 0x0320f809, 0x00000000, 0x1000fff1,
0x00000000])
b += b"\xff"*(0x2A0-len(b)) + b"setenv serverip 192.168.0.2\x00"
b += b"\xff"*(0x2D0-len(b)) + b"setenv ipaddr 192.168.0.1\x00"
b += b"\xff"*(0x300-len(b)) + b"tftpboot 0x81000000 initramfs-kernel.bin\x00"
b += b"\xff"*(0x400-len(b)) + b"bootm 0x81000000\x00"
b += b"\xff"*(0x8000-len(b))
sys.stdout.buffer.write(b)
EOF
```
Installation:
1. Run tftp server on pc with static ip 192.168.0.2
2. Place openwrt "initramfs-kernel.bin" image in tftp root dir
3. Connect pc to router ethernet port1
4. While holding in reset button on bottom of router, power on router
5. From pc access router webgui at http://192.168.0.1
6. Upload deco_s4_faux_fw_tftp.bin
7. Router will load and execture in-memory openwrt
8. Switch pc back to dhcp or static 192.168.1.x
9. Flash openwrt sysupgrade image via luci/ssh at 192.168.1.1
Revert to stock:
Press and hold reset button while powering device to start the
bootloader's recovery mode, where stock firmware can be uploaded
via web gui at 192.168.0.1
Please note that one additional non-github commits is also needed:
firmware-utils: add tplink-safeloader support for Deco S4
Signed-off-by: Nick French <nickfrench@gmail.com>
FCC ID: U2M-CAP2100AG
WatchGuard AP100 is an indoor wireless access point with
1 Gb ethernet port, dual-band but single-radio wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP300 v2
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2
- AR8035-A EPHY RGMII GbE with PoE+ IN
- 25 MHz clock
- 16 MB FLASH mx25l12805d
- 2x 64 MB RAM
- UART console J11, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 2 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
Label has no MAC
Only one Vendor MAC address in flash at art 0x0
eth0 ---- *:e5 art 0x0 -2
phy0 ---- *:e5 art 0x0 -2
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell
It may be necessary to use a Watchguard router to flash the image to the AP
and / or to downgrade the software on the AP to access SSH
For some Watchguard devices, serial console over UART is disabled.
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
reset button has no function at boot time
only possible with modified uboot environment,
(see commit message for Watchguard AP300)
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM reliably
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For AR934x series, the PLL registers for eth0
can be see in the DTSI as 0x2c.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Steve Wheeler <stephenw10@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: U2M-CAP4200AG
WatchGuard AP200 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP600
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2
- AR9382 WLAN PCI card 168c:0030, 5 GHz, 2x2, 26dBm
- AR8035-A EPHY RGMII GbE with PoE+ IN
- 25 MHz clock
- 16 MB FLASH mx25l12805d
- 2x 64 MB RAM
- UART console J11, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 4 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
Label has no MAC
Only one Vendor MAC address in flash at art 0x0
eth0 ---- *:be art 0x0 -2
phy1 ---- *:bf art 0x0 -1
phy0 ---- *:be art 0x0 -2
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell
It may be necessary to use a Watchguard router to flash the image to the AP
and / or to downgrade the software on the AP to access SSH
For some Watchguard devices, serial console over UART is disabled.
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
reset button has no function at boot time
only possible with modified uboot environment,
(see commit message for Watchguard AP300)
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM reliably
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For AR934x series, the PLL registers for eth0
can be see in the DTSI as 0x2c.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Steve Wheeler <stephenw10@gmail.com>
Tested-by: John Delaney <johnd@ankco.net>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: Q6G-AP300
WatchGuard AP300 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3
- QCA9880 WLAN PCI card 168c:003c, 5 GHz, 3x3, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 32 MB FLASH S25FL512S
- 2x 64 MB RAM NT5TU32M16
- UART console J10, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 6 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:3c art 0x0
phy1 ---- *:3d ---
phy0 ---- *:3e ---
**Serial console access:**
For this board, its not certain whether UART is possible
it is likely that software is blocking console access
the RX line on the board for UART is shorted to ground by resistor R176
the resistors R175 and R176 are next to the UART RX pin at J10
however console output is garbage even after this fix
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell access
downgrade XTM firewall to v2.0.0.1
downgrade AP300 firmware: v1.0.1
remove / unpair AP from controller
perform factory reset with reset button
connect ethernet to a computer
login to OEM webpage with default address / pass: wgwap
enable SSHD in OEM webpage settings
access root shell with SSH as user 'root'
modify uboot environment to automatically try TFTP at boot time
(see command below)
rename initramfs-kernel.bin to test.bin
load test.bin over TFTP (see TFTP recovery)
(optionally backup all mtdblocks to have flash backup)
perform a sysupgrade with sysupgrade.bin
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
server ip: 192.168.1.101
reset button seems to do nothing at boot time...
only possible with modified uboot environment,
running this command in the root shell:
fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi'
and verify that it is correct with
fw_printenv
then, before boot, the device will attempt TFTP from 192.168.1.101
looking for file 'test.bin'
to return uboot environment to normal:
fw_setenv bootcmd 'bootm 0x9f0a0000'
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM
(see installation method 2)
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Alessandro Kornowski <ak@wski.org>
Tested-by: John Wagner <john@wagner.us.org>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
after some trial and error, it was discovered
that by setting TX only delay on the AR8035 PHY
that setting GMAC registers is no longer necessary.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Other vendors can use this DTSI, for example, WatchGuard
there are likely several brands that use the same board design
because of outsourcing hardware from Senao.
For example, Watchguard AP300
has the same hardware as Engenius EAP600
so we use ar9344_engenius_exx600.dtsi for that
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Ruckus ZoneFlex 7321 is a dual-band, single radio 802.11n 2x2 MIMO enterprise
access point. It is very similar to its bigger brother, ZoneFlex 7372.
Hardware highligts:
- CPU: Atheros AR9342 SoC at 533 MHz
- RAM: 64MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi: AR9342 built-in dual-band 2x2 MIMO radio
- Ethernet: single Gigabit Ethernet port through AR8035 gigabit PHY
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7321-U variant.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1 ----------
|1|x3|4|5|
----------
Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H5, unpopulated, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H5
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7321-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7321_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7321_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7321_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7321_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7321_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
mtdids=nor0=ar7100-nor0
bootdelay=2
ethact=eth0
filesize=78a000
fileaddr=81000000
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=10.0.0.1
serverip=10.0.0.5
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QQW7TQBQAUF8EKRtQI6XtJDS0VJoN4gYcAE3iCbWS2MF2Sss1ORDYqVq6YMEB3rP0
Z/7Yf+aP3/56827VNP16X8Zx3E/Cw8dNuAqDYlxI7bcurpu6a3Y59v3jlzCbz5eLECbt8HbT9Y+HHLvv
x9TdbbpJVVd9vOxWVX05TotVOpZt6nN8qilyf5fKso3hIYTb8JDSEFarIazXQyjLIeRc7PvykNq+iy+T
1F7PQzivmzbcLpYftmfH87G56Wz+/v18sT1r19vu649dqi/2qaqns0W4utmelalPm27I/lac5/p+OluO
NZ+a1JaTz8M3/9hmtT0epmMjVdnF8djXLZx+TJl36TEuTlda93EYQrGpdrmrfuZ4fZPGHzjmp/vezMNJ
MV6n6qumPm06C+MRZb6vj/v4Mk/7HJ+6LarDqXweLsZnXnS5vc9tdXheWRbd0GIdh/Uq7cakOfavsty2
z1nxGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAD+1x9eTkHLAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin -g 10.42.0.1
Vverify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7321_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7321_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
- The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Ruckus ZoneFlex 7372 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.
Ruckus ZoneFlex 7352 is also supported, lacking the 5GHz radio part.
Hardware highligts:
- CPU: Atheros AR9344 SoC at 560 MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344 built-in 2x2 MIMO radio
- Wi-Fi 5Ghz: AR9582 2x2 MIMO radio (Only in ZF7372)
- Antennas:
- Separate internal active antennas with beamforming support on both
bands with 7 elements per band, each controlled by 74LV164 GPIO
expanders, attached to GPIOs of each radio.
- Two dual-band external RP-SMA antenna connections on "7372-E"
variant.
- Ethernet 1: single Gigabit Ethernet port through AR8035 gigabit PHY
- Ethernet 2: single Fast Ethernet port through AR9344 built-in switch
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on "-U" variants.
The same image should support:
- ZoneFlex 7372E (variant with external antennas, without beamforming
capability)
- ZoneFlex 7352 (single-band, 2.4GHz-only variant).
which are based on same baseboard (codename St. Bernard),
with different populated components.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1
---
|5|
---
|4|
---
|3|
---
|x|
---
|1|
---
Pin 5 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H2, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H2
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7372-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7372_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7372_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7372_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7372_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7372_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
bootdelay=2
mtdids=nor0=ar7100-nor0
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
ethact=eth0
filesize=1000000
fileaddr=81000000
ipaddr=192.168.0.7
serverip=192.168.0.51
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QTW7TQBQAYB+AQ2TZSGk6Tpv+SbNBrNhyADSJHWolsYPtlJaDcAWOCXaqQhdIXOD7
Fm/ee+MZ+/nHu58fV03Tr/dFHNf9JDzdbcJVGGRjI7Vfurhu6q7ZlbHvnz+FWZ4vFyFM2mF30/XPhzJ2
X4+pe9h0k6qu+njRrar6YkyzVToWberL+HImK/uHVBRtDE8h3IenlIawWg1hvR5CUQyhLE/vLcpdeo6L
bN8XVdHFumlDTO1NHsL5mI/9Q2r7Lv5J3uzeL5bX27Pj+XjRdJZfXuaL7Vm73nafv+1SPd+nqp7OFuHq
dntWpD5tuqH6e+K8rB+ns+V45n2T2mLyYXjmH9estsfD9DTSuo/DErJNtSu76vswbjg5NU4D3752qsOp
zu8W8/z6dh7mN1lXto9lWx3eNJd5Ng5V9VVTn2afnSYuysf6uI9/8rQv48s3Z93wn+o4XFWl3Vg0x/5N
Vbbta5X9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAID/+Q2Z/B7cAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin -g 10.42.0.1
Verify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7372_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7372_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- This is first device in ath79 target to support link state reporting
on FE port attached trough the built-in switch.
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
- Stock firmware has beamforming functionality, known as BeamFlex,
using active multi-segment antennas on both bands - controlled by
RF analog switches, driven by a pair of 74LV164 shift registers.
Shift registers used for each radio are connected to GPIO14 (clock)
and GPIO15 of the respective chip.
They are mapped as generic GPIOs in OpenWrt - in stock firmware,
they were most likely handled directly by radio firmware,
given the real-time nature of their control.
Lack of this support in OpenWrt causes the antennas to behave as
ordinary omnidirectional antennas, and does not affect throughput in
normal conditions, but GPIOs are available to tinker with nonetheless.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Add support for the ZTE MF281 battery-powered WiFi router.
Hardware
--------
SoC: Qualcomm Atheros QCA9563
RAM: 128M DDR2
FLASH: 2M SPI-NOR (GigaDevice GD25Q16)
128M SPI-NAND (GigaDevice)
WLAN: QCA9563 2T2R 802.11 abgn
QCA9886 2T2R 802.11 nac
WWAN: ASRMicro ASR1826
ETH: Qualcomm Atheros QCA8337
UART: 115200 8n1
Unpopulated connector next to SIM slot
(SIM) GND - RX - TX - 3V3
Don't connect 3V3
BUTTON: Reset - WPS
LED: 1x debug-LED (internal)
LEDs on front of the device are controlled
using the modem CPU and can not be controlled
by OpenWrt
Installation
------------
1. Connect to the serial console. Power up the device and interrupt
autoboot when prompted
2. Connect a TFTP server reachable at 192.168.1.66 to the ethernet port.
Serve the OpenWrt initramfs image as "speedbox-2.bin"
3. Boot the initramfs image using U-Boot
$ setenv serverip 192.168.1.66
$ setenv ipaddr 192.168.1.154
$ tftpboot 0x84000000 speedbox-2.bin
$ bootm
4. Copy the OpenWrt factory image to the device using scp and write to
the NAND flash
$ mtd write /path/to/openwrt/factory.bin firmware
WWAN
----
The WWAN card can be used with OpenWrt. Example configuration for
connection with a unauthenticated dual-stack APN:
network.lte=interface
network.lte.proto='ncm'
network.lte.device='/dev/ttyACM0'
network.lte.pdptype='IPV4V6'
network.lte.apn='internet.telekom'
network.lte.ipv6='auto'
network.lte.delay='10'
The WWAN card is running a modified version of OpenWrt and handles
power-management as well as the LED controller (AW9523). A root shell
can be acquired by installing adb using opkg and executing "adb shell".
Signed-off-by: David Bauer <mail@david-bauer.net>
Specifications:
- SoC: Qualcomm Atheros QCA9557-AT4A
- RAM: 2x 128MB Nanya NT5TU64M16HG
- FLASH: 64MB - SPANSION FL512SAIFG1
- LAN: Atheros AR8035-A (RGMII GbE with PoE+ IN)
- WLAN2: Qualcomm Atheros QCA9557 2x2 2T2R
- WLAN5: Qualcomm Atheros QCA9882-BR4A 2x2 2T2R
- SERIAL: UART pins at J10 (115200 8n1)
Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
- LEDs: Power (Green/Amber)
WiFi 5 (Green)
WiFi 2 (Green)
- BTN: Reset
Installation:
1. Download the OpenWrt initramfs-image.
Place it into a TFTP server root directory and rename it to 1D01A8C0.img
Configure the TFTP server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point.
Attach power and interrupt the boot procedure when prompted.
Credentials are admin / new2day
4. Configure U-Boot for booting OpenWrt from ram and flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xa1280000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot 0x89000000 1D01A8C0.img; bootm'
$ setenv bootcmd 'run boot_openwrt'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
6. Transfer the OpenWrt sysupgrade image to the device.
Write the image to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysupgrade.bin
Signed-off-by: Albin Hellström <albin.hellstrom@gmail.com>
[rename vendor - minor style fixes - update commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
Specifications:
* AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
* 1x Gigabit Ethernet (AR8035), 802.3af PoE
Installation:
* OEM Web UI is at 192.168.1.2
login as `admin` with password `1234`
* Flash factory-AASI.bin
The string `AASI` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.
TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
`run lk`
`run lf`
to flash the kernel / filesystem accordingly
MAC addresses as verified by OEM firmware:
use address source
LAN *:cc mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g *:cd mib0 0x4b ('wifi0mac')
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
* QCA9882 PCIe card, 802.11ac 2T2R
* 1x Gigabit Ethernet (AR8035), 802.3af PoE
Installation:
* OEM Web UI is at 192.168.1.2
login as `admin` with password `1234`
* Flash factory-AAOX.bin
The string `AAOX` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.
TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
`run lk`
`run lf`
to flash the kernel / filesystem accordingly
MAC addresses as verified by OEM firmware:
use address source
LAN *:1c mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g *:1c mib0 0x4b ('wifi0mac')
5g *:1e mib0 0x66 ('wifi1mac')
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
* AR9382 PCIe card, 802.11n 2T2R, 5 GHz
* 1x Gigabit Ethernet (AR8035), 802.3af PoE
Installation:
* OEM Web UI is at 192.168.1.2
login as `admin` with password `1234`
* Flash factory-AAEO.bin
The string `AAEO` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.
TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
`run lk`
`run lf`
to flash the kernel / filesystem accordingly
MAC addresses as verified by OEM firmware:
use address source
LAN *:fb mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g *:fc mib0 0x4b ('wifi0mac')
5g *:fd mib0 0x66 ('wifi1mac')
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
* 1x Gigabit Ethernet (AR8035), 802.3af PoE
Installation:
* OEM Web UI is at 192.168.1.2
login as `admin` with password `1234`
* Flash factory-AABJ.bin
The string `AABJ` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.
TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
`run lk`
`run lf`
to flash the kernel / filesystem accordingly
MAC addresses as verified by OEM firmware:
use address source
LAN *:cc mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g *:cd mib0 0x4b ('wifi0mac')
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The Sophos AP15 seems to be very close to Sophos AP55/AP100.
Based on:
commit 6f1efb2898 ("ath79: add support for Sophos AP100/AP55 family")
author Andrew Powers-Holmes <andrew@omnom.net>
Fri, 3 Sep 2021 15:53:57 +0200 (23:53 +1000)
committer Hauke Mehrtens <hauke@hauke-m.de>
Sat, 16 Apr 2022 16:59:29 +0200 (16:59 +0200)
Unique to AP15:
- Green and yellow LED
- 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
- No buttons
- No piezo beeper
- No 5.8GHz
Flashing instructions:
- Derived from UART method described in referenced commit, methods
described there should work too.
- Set up a TFTP server; IP address has to be 192.168.99.8/24
- Copy the firmware (initramfs-kernel) to your TFTP server directory
renaming it to e.g. boot.bin
- Open AP's enclosure and locate UART header (there is a video online)
- Terminal connection parameters are 115200 8/N/1
- Connect TFTP server and AP via ethernet
- Power up AP and cancel autoboot when prompted
- Prompt shows 'ath> '
- Commands used to boot:
ath> tftpboot 0x81000000 boot.bin
ath> bootm 0x81000000
- Device should boot OpenWRT
- IP address after boot is 192.168.1.1/24
- Connect to device via browser
- Permanently flash using the web ui (flashing sysupgrade image)
- (BTW: the AP55 images seem to work too, only LEDs are not working)
Testing done:
- To be honest: Currently not so much testing done.
- Flashed onto two devices
- Devices are booting
- MAC addresses are correct
- LEDs are working
- Scanning for WLANs is working
Big thanks to all the people working on this great project!
(Sorry about my english, it is not my native language)
Signed-off-by: Manuel Niekamp <m.niekamp@richter-leiterplatten.de>
The hardware difference is the antenna which has a higher gain compared
to the original UniFi AP.
The variant was supported before in ar71xx.
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
extract the compatible and model to make room for other variants
follow-up of
commit dc23df8a8c ("ath79: change Ubiquiti UniFi AP model name to include "AP"")
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
The amber and green wan led color was inverted in dts file, which ends
up leaving the wan led amber when the connection is established, so,
switch gpio led number (7 and 8) in qca9563_tplink_archer-c6-v2-us.dts.
Tip: the /etc/config/system file needs to be regenerated.
Signed-off-by: Rodrigo B. de Sousa Martins <rodrigo.sousa.577@gmail.com>
Signed-off-by: Petr Štetiar <ynezz@true.cz> [commit subject]
Asus RP-AC51 Repeater
Category:
AC750 300+433 (OEM w. unstable driver)
AC1200 300+866 (OpenWrt w. stable driver)
Hardware specifications:
Board: AP147
SoC: QCA9531 2.4G b/g/n
WiFi: QCA9886 5G n/ac
DRAM: 128MB DDR2
Flash: gd25q128 16MB SPI-NOR
LAN/WAN: AR8229 1x100M
Clocks: CPU:650MHz, DDR:600MHz, AHB:200MHz
MAC addresses as verified by OEM firmware:
use address source
Lan/W2G *:C8 art 0x1002 (label)
5G *:CC art 0x5006
Installation:
Asus windows recovery tool:
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
Start the Asus firmware restoration utility, specify the factory image
and press upload
Do not power off the device after OpenWrt has booted until the LED flashing.
TFTP Recovery method:
set computer to a static ip, 192.168.1.10
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
Asus PL-AC56 Powerline Range Extender Rev.A1
(in kit with Asus PL-E56P Powerline-slave)
Hardware specifications:
Board: AP152
SoC: QCA9563 2.4G n 3x3
PLC: QCA7500
WiFi: QCA9882 5G ac 2x2
Switch: QCA8337 3x1000M
Flash: 16MB 25L12835F SPI-NOR
DRAM SoC: 64MB w9751g6kb-25
DRAM PLC: 128MB w631gg6kb-15
Clocks: CPU:775.000MHz, DDR:650.000MHz, AHB:258.333MHz, Ref:25.000MHz
MAC addresses as verified by OEM firmware:
use address source
Lan/Wan/PLC *:10 art 0x1002 (label)
2G *:10 art 0x1000
5G *:14 art 0x5000
Important notes:
the PLC firmware has to be provided and copied manually onto the
device! The PLC here has no dedicated flash, thus the firmware file
has to be uploaded to the PLC controller at every system start
the PLC functionality is managed by the script /etc/init.d/plc_basic,
a very basic script based on the the one from Netadair (netadair dot de)
Installation:
Asus windows recovery tool:
have to have the latest Asus firmware flashed before continuing!
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
start the Asus firmware restoration utility, specify the factory image
and press upload
do NOT power off the device after OpenWrt has booted until the LED flashing
TFTP Recovery method:
have to have the latest Asus firmware flashed before continuing!
set computer to a static ip, 192.168.1.75
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
do NOT power off the device after OpenWrt has booted until the LED flashing
Additional notes:
the pairing buttons have to have pressed for at least half a second,
it doesn't matter on which plc device (master or slave) first
it is possible to pair the devices without the button-pairing requirement
simply by pressing reset on the slave device. This will default to the
firmware settings, which is also how the plc_basic script is setting up
the master device, i.e. configuring it to firmware defaults
the PL-E56P slave PLC has its dedicated 4MByte SPI, thus it is capable
to store all firmware currently available. Note that some other
slave devices are not guarantied to have the capacity for the newer
~1MByte firmware blobs!
To have a good overlook about the slave device, here are its specs:
same QCA7500 PLC controller, same w631gg6kb-15 128MB RAM,
25L3233F 4MB SPI-NOR and an AR8035-A 1000M-Transceiver
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
The MikroTik mAP-2nd (sold as mAP) is an indoor 2.4Ghz AP with
802.3af/at PoE input and passive PoE passthrough.
See https://mikrotik.com/product/RBmAP2nD for more details.
Specifications:
- SoC: QCA9533
- RAM: 64MB
- Storage: 16MB NOR
- Wireless: QCA9533 802.11b/g/n 2x2
- Ethernet: 2x 10/100 ports,
802.3af/at PoE in port 1, 500 mA passive PoE out on port 2
- 7 user-controllable LEDs
Note: the device is a tiny AP and does not distinguish between both
ethernet ports roles, so they are both assigned to lan.
With the current setup, ETH1 is connected to eth1 and ETH2 is connected
to eth0 via the embedded switch port 2.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. The "ETH1" port
must be used to upload the TFTP image. Follow common MikroTik procedure
as in https://openwrt.org/toh/mikrotik/common.
Tested-By: Andrew Powers-Holmes <aholmes@omnom.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Linux MTD requires the parent partition be writable for a child
partition to be allowed write permission.
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
This model is almost identical to the EAP225 v3.
Major difference is the RTL8211FS PHY Chipset.
Device specifications:
* SoC: QCA9563 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n, 3x3
* Wireless 5Ghz (QCA9886): a/n/ac, 2x2 MU-MIMO
* Ethernet (RTL8211FS): 1× 1GbE, 802.3at PoE
Flashing instructions:
* ssh into target device and run `cliclientd stopcs`
* Upgrade with factory image via web interface
Debricking:
* Serial port can be soldered on PCB J4 (1: TXD, 2: RXD, 3: GND, 4: VCC)
* Bridge unpopulated resistors R225 (TXD) and R237 (RXD).
Do NOT bridge R230.
* Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via LuCI web interface
setenv ipaddr 192.168.1.1 # default, change as required
setenv serverip 192.168.1.10 # default, change as required
tftp 0x80800000 initramfs.bin
bootelf $fileaddr
MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.
Signed-off-by: Sven Hauer <sven.hauer+github@uniku.de>
The redboot-fis parser has option to specify the location of FIS
directory, use that, instead of patching the parser to scan for it, and
specifying location in kernel config.
Tested-by: Brian Gonyer <bgonyer@gmail.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
The bootloader on this board hid the partition containig MAC addresses
and prevented adding this space to FIS directory, therefore those had to
be stored in RedBoot configuration as aliases to be able to assigne them
to proper interfaces. Now that fixed partition size are used instead of
redboot-fis parser, the partition containig MAC addresses could be
specified, and with marking it as nvmem cell, we can assign them without
userspace involvement.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
After the kernel has switched version to 5.10, JA76PF2 and
RouterStations lost the capability to sysupgrade the OpenWrt version.
The cause is the lack of porting the patches responsible for partial
flash erase block writing and these boards FIS directory and RedBoot
config partitions share the same erase block. Because of that the FIS
directory can't be updated to accommodate kernel/rootfs partition size
changes. This could be remedied by bootloader update, but it is very
intrusive and could potentially lead to non-trivial recovery procedure,
if something went wrong. The less difficult option is to use OpenWrt
kernel loader, which will let us use static partition sizes and employ
mtd splitter to dynamically adjust kernel and rootfs partition sizes.
On sysupgrade from ath79 19.07 or 21.02 image, which still let to modify
FIS directory, the loader will be written to kernel partition, while the
kernel+rootfs to rootfs partition.
The caveats are:
* image format changes, no possible upgrade from ar71xx target images
* downgrade to any older OpenWrt version will require TFTP recovery or
usage of bootloader command line interface
To downgrade to 19.07 or 21.02, or to upgrade if one is already on
OpenWrt with kernel 5.10, for RouterStations use TFTP recovery
procedure. For JA76PF2 use instructions from this commit message:
commit 0cc87b3bac ("ath79: image: disable sysupgrade images for routerstations and ja76pf2"),
replacing kernel image with loader (loader.bin suffix) and rootfs
image with firmware (firmware.bin suffix).
Fixes: b10d604459 ("kernel: add linux 5.10 support")
Fixes: 15aa53d7ee ("ath79: switch to Kernel 5.10")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
(mkubntimage was moved to generic-ubnt.mk)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This SBC has Microchip TCN75 sensor, wich measures ambient temperature.
Specify it in dts to allow readout by applications using kernel hwmon
API.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
This model is almost identical to the EAP225-Outdoor v1.
Major difference is the RTL8211FS PHY Chipset.
Device specifications:
* SoC: QCA9563 @ 775MHz
* Memory: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n 2x2
* Wireless 5GHz (QCA9886): a/n/ac 2x2 MU-MIMO
* Ethernet (RTL8211FS): 1× 1GbE, PoE
Flashing instructions:
* ssh into target device with recent (>= v1.6.0) firmware
* run `cliclientd stopcs` on target device
* upload factory image via web interface
Debricking:
To recover the device, you need access to the serial port. This requires
fine soldering to test points, or the use of probe pins.
* Open the case and solder wires to the test points: RXD, TXD and TPGND4
* Use a 3.3V UART, 115200 baud, 8n1
* Interrupt bootloader by holding ctrl+B during boot
* upload initramfs via built-in tftp client and perform sysupgrade
setenv ipaddr 192.168.1.1 # default, change as required
setenv serverip 192.168.1.10 # default, change as required
tftp 0x80800000 initramfs.bin
bootelf $fileaddr
MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.
From stock ifconfig:
ath0 Link encap:Ethernet HWaddr D8:...:2E
ath10 Link encap:Ethernet HWaddr D8:...:2F
br0 Link encap:Ethernet HWaddr D8:...:2E
eth0 Link encap:Ethernet HWaddr D8:...:2E
Signed-off-by: Paul Maruhn <paulmaruhn@posteo.de>
Co-developed-by: Philipp Rothmann <philipprothmann@posteo.de>
Signed-off-by: Philipp Rothmann <philipprothmann@posteo.de>
[Add pre-calibraton nvme-cells]
Tested-by: Tido Klaassen <tido_ff@4gh.eu>
Signed-off-by: Nick Hainke <vincent@systemli.org>
This adds support for the Netgear PGZNG1, also known as the ADT Pulse
Gateway.
Hardware:
CPU: Atheros AR9344
Memory: 256MB
Storage: 256MB NAND Hynix H27U2G8F2CTR-BC
USB: 1x USB 2.0
Ethernet: 2x 100Mb/s
WiFi: Atheros AR9340 2.4GHz 2T2R
Leds: 8 LEDs
Button: 1x Reset Button
UART:
Header marked JPE1. Pinout is VCC, TX, RX, GND. The marked pin, closest
to the JPE1 marking, is VCC. Note VCC isn't required to be connected
for UART to work.
Enable Stock Firmware Shell Access:
1. Interrupt u-boot and run the following commands
setenv console_mode 1
saveenv
reset
This will enable a UART shell in the firmware. You can then login using
the root password of `icontrol`. If that doesn't work, the device is
running a firmware based on OpenWRT where you can drop into failsafe to
mount the FS and then modify /etc/passwd.
Installation Instructions:
1. Interupt u-boot and run the following commands
setenv active_image 0
setenv stock_bootcmd nboot 0x81000000 0 \${kernel_offset}
setenv openwrt_bootcmd nboot 0x82000000 0 \${kernel_offset}
setenv bootcmd run openwrt_bootcmd
saveenv
2. boot initramfs image via TFTP u-boot
tftpboot 0x82000000 openwrt-ath79-nand-netgear_pgzng1-initramfs-kernel.bin; bootm 0x82000000
3. Once booted, use LuCI sysupgrade to
flash openwrt-ath79-nand-netgear_pgzng1-squashfs-sysupgrade.bin
MAC Table:
WAN (eth0): xx:xa - caldata 0x0
LAN (eth1): xx:xb - caldata 0x6
WLAN (phy0): xx:xc - burned into ath9k caldata
Not Working:
Z-Wave
RS422
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
(added more hw-info, fixed file permissions)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration". Rename the nvmem
cell node and label to match the updated cell name.
Fixes: eca0d73011 ("ath79: TP-Link EAP225 v3: convert ath10k to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration". Rename the nvmem
cell node and label to match the updated cell name.
Fixes: 48625a0445 ("ath79: TP-Link EAP225-Wall v1: convert radios to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Fixes errors in the form of:
ath10k_pci 0000:00:00.0: failed to fetch board data for bus=pci,
vendor=168c,device=0056,subsystem-vendor=0000,subsystem-device
=0000 from ath10k/QCA9888/hw2.0/board-2.bin
ath10k_pci 0000:00:00.0: failed to fetch board-2.bin or board.bin
from ath10k/QCA9888/hw2.0
ath10k_pci 0000:00:00.0: failed to fetch board file: -12
ath10k_pci 0000:00:00.0: could not probe fw (-12)
As described already in 2d3321619b ("ath79: TP-Link EAP245 v3: use
pre-calibration nvmem-cell"):
Ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration".
Further rename the nvmem cell node and label to match the updated cell name.
Fixes: 23b9040745 ("ath79: TP-Link EAP225-Outdoor v1: convert ath10k to nvmem-cells")
Suggested-by: Sander Vanheule <sander@svanheule.net>
Signed-off-by: Nick Hainke <vincent@systemli.org>
Convert the calibration data reference for the ath9k radio to an
nvmem-cell, replacing the downstream mtd-cal-data property.
Since the 'art' label is no longer used, it can be dropped.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The art partition containing the radio calibration data is in the same
location for all supported devices. Move the definition to the base file
so the reference from the wmac node can reference the same file.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the pre-calibration data using nvmem-cells.
MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Convert the calibration data reference for the ath9k radio to an
nvmem-cell, replacing the downstream mtd-cal-data property.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The art partition containing the radio calibration data is in the same
location for all supported devices. Move the definition to the base file
so the reference from the wmac node can refer to the same file.
Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration".
Update the nvmem-cell name to make the 5GHz radio work again.
Fixes: d4b3b23942 ("ath79: TP-Link EAP245 v3: convert radios to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Move the ethernet phy definition from the eap2x5-1port include to the
device-specific DTS files. This is to prepare for new devices that have
a different ethernet phy, at another MDIO address.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle by an nvmem-cell reference to the art
partition for the 2.4GHz ath9k radio.
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle by an nvmem-cell reference from the art
partition for the 2.4GHz ath9k radio.
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using an nvmem-cell.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.
Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Replace the mtd-cal-data phandle with an nvmem-cell reference for the
2.4GHz ath9k radio. This affects the following devices:
- TP-Link EAP225 v1
- TP-Link EAP225 v3
- TP-Link EAP225-Outdoor v1
- TP-Link EAP245 v1
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Small update to my previous path 'fix I2C on GL-AR300M devices'.
This update allow using GPIO17 as regular GPIO in case it not used
as I2C SDA line.
Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com>
With the pinctrl configuration set properly by the previous commit, the
LED stays lit regardless of status of 2.4GHz radio, even if 5GHz radio
is disabled. Map GPIO19 as LED for ath9k, this way the LED will show
activity for both bands, as it is bound by logical AND with output of
ath10k-phy0 LED. This works well because during management traffic,
phy*tpt triggers typically cause LEDs to blink in unison.
Link: <https://github.com/openwrt/openwrt/pull/9941>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The default configuration of pinctrl for GPIO19 set by U-boot was not a
GPIO, but an alternate function, which prevented the GPIO hog from
working. Set GPIO19 into GPIO mode to allow the hog to work, then the
ath10k LED output can control the state of actual LED properly.
Link: <https://github.com/openwrt/openwrt/pull/9941>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Update the name of for the Ubiquiti NanoBeam M5 to match the
auto-generated one at runtime. Otherwise sysupgrade complains about
mismatching device names.
This also required renaming the DTS.
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
Ubiquiti NanoBeam M5 devices are CPE equipment for customer locations
with one Ethernet port and a 5 GHz 300Mbps wireless interface.
Specificatons:
- Atheros AR9342
- 535 MHz CPU
- 64 MB RAM
- 8 MB Flash
- 1x 10/100 Mbps Ethernet with passive PoE input (24 V)
- 6 LEDs of which four are rssi
- 1 reset button
- UART (4-pin) header on PCB
Notes:
The device was supported by OpenWrt in ar71xx.
Flash instructions (web/ssh/tftp):
Loading the image via ssh vias a stock firmware prior "AirOS 5.6".
Downgrading stock is possible.
* Flashing is possible via AirOS software update page:
The "factory" ROM image is recognized as non-native and then installed correctly.
AirOS warns to better be familiar with the recovery procedure.
* Flashing can be done via ssh, which is becoming difficult due to legacy
keyexchange methods.
This is an exempary ssh-config:
KexAlgorithms +diffie-hellman-group1-sha1
HostKeyAlgorithms ssh-rsa
PubkeyAcceptedKeyTypes ssh-rsa
User ubnt
The password is ubnt.
Connecting via IPv6 link local worked best for me.
1. scp the factory image to /tmp
2. fwupdate.real -m /tmp/firmware_image_file.bin -d
* Alternatively tftp is possible:
1. Configure PC with static IP 192.168.1.2/24.
2. Enter the rescue mode. Power off the device, push the reset button on
the device (or the PoE) and keep it pressed.
Power on the device, while still pushing the reset button.
3. When all the leds blink at the same time, release the reset button.
4. Upload the firmware image file via TFTP:
tftp 192.168.1.20
tftp> bin
tftp> trace
Packet tracing on.
tftp> put firmware_image.bin
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
The MikroTik hAP (product code RB951Ui-2nD) is
an indoor 2.4Ghz AP with a 2 dBi integrated antenna built around the
Atheros QCA9531 SoC.
Specifications:
- SoC: Atheros QCA9531
- RAM: 64 MB
- Storage: 16 MB NOR - Winbond 25Q128FVSG
- Wireless: Atheros QCA9530 (SoC) 802.11b/g/n 2x2
- Ethernet: Atheros AR934X switch, 5x 10/100 ports,
10-28 V passive PoE in port 1, 500 mA PoE out on port 5
- 8 user-controllable LEDs:
· 1x power (green)
· 1x user (green)
· 4x LAN status (green)
· 1x WAN status (green)
· 1x PoE power status (red)
See https://mikrotik.com/product/RB951Ui-2nD for more details.
Notes:
The device was already supported in the ar71xx target.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Maciej Krüger <mkg20001@gmail.com>
The MikroTik RB952Ui-5ac2nD (sold as hAP ac lite) is an indoor 2.4Ghz
and 5GHz AP/router with a 2 dBi integrated antenna.
See https://mikrotik.com/product/RB952Ui-5ac2nD for more details.
Specifications:
- SoC: QCA9533
- RAM: 64MB
- Storage: 16MB NOR
- Wireless: QCA9533 802.11b/g/n 2x2 / QCA9887 802.11a/n/ac 2x2
- Ethernet: AR934X switch, 5x 10/100 ports,
10-28 V passive PoE in port 1, 500 mA PoE out on port 5
- 6 user-controllable LEDs:
- 1x user (green)
- 5x port status (green)
Flashing:
TFTP boot initramfs image and then perform sysupgrade. The "Internet"
port (port number 1) must be used to upload the TFTP image, then
connect to any other port to access the OpenWRT system.
Follow common MikroTik procedure as in
https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
On GL-AR300M Series GPIO17 described as I2C SDA in Device Tree.
Because of GPIO_OUT_FUNCTION4 register was not initialized on start,
GPIO17 was uncontrollable, it always in high state. According to QCA9531
documentation, default setting of GPIO17 is SYS_RST_L. In order to make
GPIO17 controllable, it should write value 0x00 on bits [15:8] of
GPIO_OUT_FUNCTION4 register, located at 0x1804003C address.
Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com>
SoC: Atheros AR7161
RAM: DDR 128 MiB (hynix h5dU5162ETR-E3C)
Flash: SPI-NOR 8 MiB (mx25l6406em2i-12g)
WLAN: 2.4/5 GHz
2.4 GHz: Atheros AR9220
5 GHz: Atheros AR9223
Ethernet: 4x 10/100/1000 Mbps (Atheros AR8021)
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: RJ45 9600,8N1
Power: 12 VDC, 1.0 A
Installation instruction:
0. Make sure you have latest original firmware (3.7.11.4)
1. Connect to the Serial Port with a Serial Cable RJ45 to DB9/RS232
(9600,8N1)
screen /dev/ttyUSB0 9600,cs8,-parenb,-cstopb,-hupcl,-crtscts,clocal
2. Configure your IP-Address to 192.168.1.42
3. When device boots hit spacebar
3. Configure the device for tftpboot
setenv ipaddr 192.168.1.1
setenv serverip 192.168.1.42
saveenv
4. Reset the device
reset
5. Hit again the spacebar
6. Now load the image via tftp:
tftpboot 0x81000000 INITRAMFS.bin
7. Boot the image:
bootm 0x81000000
8. Copy the squashfs-image to the device.
9. Do a sysupgrade.
https://openwrt.org/toh/netgear/wndap360
The device should be converted from kmod-owl-loader to nvmem-cells in the
future. Nvmem cells were not working. Maybe ATH9K_PCI_NO_EEPROM is missing.
That is why this commit is still using kmod-owl-loader. In the future
the device tree may look like this:
&ath9k0 {
nvmem-cells = <&macaddr_art_120c>, <&cal_art_1000>;
nvmem-cell-names = "mac-address", "calibration";
};
&ath9k1 {
nvmem-cells = <&macaddr_art_520c>, <&cal_art_5000>;
nvmem-cell-names = "mac-address", "calibration";
};
&art {
...
cal_art_1000: cal@1000 {
reg = <0x1000 0xeb8>;
};
cal_art_5000: cal@5000 {
reg = <0x5000 0xeb8>;
};
};
Signed-off-by: Nick Hainke <vincent@systemli.org>
Add USB power control in DTS for GL.iNet models:
- AR300M;
- AR300M-Ext;
- AR300M16;
- AR300M16-Ext.
Signed-off-by: PtilopsisLeucotis <PtilopsisLeucotis@yandex.com>
This commit adds support for the TP-Link Deco M4R (it can also be M4,
TP-Link uses both names) v1 and v2. It is similar hardware-wise to the
Archer C6 v2. Software-wise it is very different. V2 has a bit different
layout from V1 but the chips are the same and the OEM firmware is the same
for both versions.
Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR
Flashing:
The device's bootloader only accepts images that are signed using
TP-Link's RSA key, therefore this way of flashing is not possible. The
device has a web GUI that should be accessible after setting up the device
using the app (it requires the app to set it up first because the web GUI
asks for the TP-Link account password) but for unknown reasons, the web
GUI also refuses custom images.
There is a debug firmware image that has been shared on the device's
OpenWrt forum thread that has telnet unlocked, which the bootloader will
accept because it is signed. It can be used to transfer an OpenWrt image
file over to the device and then be used with mtd to flash the device.
Pre-requisites:
- Debug firmware.
- A way of transferring the file to the router, you can use an FTP server
as an example.
- Set a static IP of 192.168.0.2/255.255.255.0 on your computer.
- OpenWrt image.
Installation:
- Unplug your router and turn it upside down. Using a long and thin object
like a SIM unlock tool, press and hold the reset button on the router and
replug it. Keep holding it until the LED flashes yellow.
- Open 192.168.0.1. You should see the bootloader recovery's webpage.
Choose the debug firmware that you downloaded and flash it. Wait until the
router reboots (at this stage you can remove the static IP).
- Open a terminal window and connect to the router via telnet (the primary
router should have a 192.168.0.1 IP address, secondary routers are
different).
- Transfer the file over to the router, you can use curl to download it
from the internet (use the insecure flag and make sure your source accepts
insecure downloads) or from an FTP server.
- The router's default mtd partition scheme has kernel and rootfs
separated. We can use dd to split the OpenWrt image file and flash it with
mtd:
dd if=openwrt.bin of=kernel.bin skip=0 count=8192 bs=256
dd if=openwrt.bin of=rootfs.bin skip=8192 bs=256
- Once the images are ready, you have to flash the device using mtd
(make sure to flash the correct partitions or you may be left with a
hard bricked router):
mtd write kernel.bin kernel
mtd write rootfs.bin rootfs
- Flashing is done, reboot the device now.
Signed-off-by: Foica David <superh552@gmail.com>
The MikroTik RouterBOARD wAP-2nd (sold as wAP) is a small
2.4 GHz 802.11b/g/n PoE-capable AP.
Specifications:
- SoC: Qualcomm Atheros QCA9533
- Flash: 16 MB (SPI)
- RAM: 64 MB
- Ethernet: 1x 10/100 Mbps (PoE in)
- WiFi: AR9531 2T2R 2.4 GHz (SoC)
- 3x green LEDs (1x lan, 1x wlan, 1x user)
See https://mikrotik.com/product/RBwAP2nD for more info.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Note: following 781d4bfb39
The network setup avoids using the integrated switch and connects the
single Ethernet port directly. This way, link speed (10/100 Mbps) is
properly reported by eth0.
Signed-off-by: David Musil <0x444d@protonmail.com>
The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access
points based on the Qualcomm QCA9558 SoC. They share PCB designs with
several devices that already have partial or full support, most notably the
Devolo DVL1750i/e.
The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however
the 55 models' ART does not contain calibration data for their third chain
despite it being present on the PCB.
Specifications common to all models:
- Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor)
- 128 MB RAM
- 16 MB SPI flash
- 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in
- Green and Red status LEDs sharing a single external light-pipe
- Reset button on PCB[1]
- Piezo beeper on PCB[2]
- Serial UART header on PCB
- Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC
Unique to AP100 and AP100C:
- 3T3R 2.4GHz 802.11b/g/n via SoC WMAC
- 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)
AP55 and AP55C:
- 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
- 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)
AP100 and AP55:
- External RJ45 serial console port[3]
- USB 2.0 Type A port, power controlled via GPIO 11
Flashing instructions:
This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.
To flash via XG appliance:
- Register on Sophos' website for a no-cost Home Use XG firewall license
- Download and install the XG software on a compatible PC or virtual
machine, complete initial appliance setup, and enable SSH console access
- Connect the target AP device to the XG appliance's LAN interface
- Approve the AP from the XG Web UI and wait until it shows as Active
(this can take 3-5 minutes)
- Connect to the XG appliance over SSH and access the Advanced Console
(Menu option 5, then menu option 3)
- Run `sudo awetool` and select the menu option to connect to an AP via
SSH. When prompted to enable SSH on the target AP, select Yes.
- Wait 2-3 minutes, then select the AP from the awetool menu again. This
will connect you to a root shell on the target AP.
- Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
- Run `mtd -r write /tmp/openwrt.bin astaro_image`
- When complete, the access point will reboot to OpenWRT.
To flash via U-Boot serial console:
- Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
netmask 255.255.255.0
- Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C'
- Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
- Connect the AP ethernet to your PC's ethernet port
- Connect a terminal to the UART at 115200 8/N/1 as usual
- Power on the AP and press a key to cancel autoboot when prompted
- Run the following commands at the U-Boot console:
- `tftpboot`
- `cp.b $fileaddr 0x9f070000 $filesize`
- `boot`
- The access point will boot to OpenWRT.
MAC addresses as verified by OEM firmware:
use address source
LAN label config 0x201a (label)
2g label + 1 art 0x1002 (also found at config 0x2004)
5g label + 9 art 0x5006
Increments confirmed across three AP55C, two AP55, and one AP100C.
These changes have been tested to function on both current master and
21.02.0 without any obvious issues.
[1] Button is present but does not alter state of any GPIO on SoC
[2] Buzzer and driver circuitry is present on PCB but is not connected to
any GPIO. Shorting an unpopulated resistor next to the driver circuitry
should connect the buzzer to GPIO 4, but this is unconfirmed.
[3] This external RJ45 serial port is disabled in the OEM firmware, but
works in OpenWRT without additional configuration, at least on my
three test units.
[4] On AP100/AP55 models the UART header is accessible after removing
the device's top cover. On AP100C/AP55C models, the PCB must be removed
for access; three screws secure it to the case.
Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX
Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net>
This patch adds support for the MikroTik RouterBOARD 962UiGS-5HacT2HnT (hAP ac)
Specifications:
- SoC: QCA9558
- RAM: 128 MB
- Flash: 16 MB SPI
- 2.4GHz WLAN: 3x3:3 802.11n on SoC
- 5GHz WLAN: 3x3:3 802.11ac on QCA9880 connected via PCIe
- Switch: 5x 1000/100/10 on QCA8337 connected via RGMII
- SFP cage: connected via SGMII (tested with genuine & generic GLC-T)
- USB: 1x type A, GPIO power switch
- PoE: Passive input on Ether1, GPIO switched passthrough to Ether5
- Reset button
- "SFP" LED connected to SoC
- Ethernet LEDs connected to QCA8337 switch
- Green WLAN LED connected to QCA9880
Not working:
- Red WLAN LED
Installation:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Ryan Mounce <ryan@mounce.com.au>
The device was added for ar71xx target and dropped during the ath79
transition, mainly because of the ascii mac address stored in bdinfo
partition
Device page, http://wiki.openwrt.org/toh/hiwifi/hc6361
The vendor u-boot image accepts sysupgrade.bin image with specific
requirements, including having squashfs signature "hsqs" at file offset
0x140000. This is not possible now that OpenWrt kernel image is at
least 2MB with the signature at offset 0x240000.
Installation of current build of OpenWrt now requires a bootstrap step
of installing an earlier version first.
- If the vendor u-boot accepts sysupgrade image, hc6361 image of LEDE
release should work
- If the vendor u-boot accepts only verified flashsmt image, install
the one in the above device page. The image is based on Barrier
Breaker
SHA256SUM of the flashsmt image
81b193b95ea5f8e5c30cd62fa9facf275f39233be4fdeed7038f3deed2736156
After the bootstrap step, current build of OpenWrt can be installed
there fine.
Signed-off-by: Yousong Zhou <yszhou4tech@gmail.com>
For some reason useless labels and aliases have been propagated through
copy-paste. Before the issue spreads any further, this patch cleans up
all relevant DTS files to the canonical form, bringing ath79 in line
with other mikrotik platforms (ramips and ipq40xx).
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Specification:
- QCA9533 (650 MHz), 64 or 128MB RAM, 16MB SPI NOR
- 2x 10/100 Mbps Ethernet, with 802.3at PoE support (WAN)
- 2T2R 802.11b/g/n 2.4GHz
Flash instructions:
If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin
In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:
1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
seconds, recovery mode should start downloading image from server
(unfortunately, there is no visible indication that recovery got
enabled - in case of problems check TFTP server logs)
Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Specification:
- QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR
- 2T2R 802.11b/g/n 2.4GHz
- 2T2R 802.11n/ac 5GHz
- 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port)
LED for 5 GHz WLAN is currently not supported as it is connected directly
to the QCA9882 radio chip.
Flash instructions:
If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin
In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:
1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
seconds, recovery mode should start downloading image from server
(unfortunately, there is no visible indication that recovery got
enabled - in case of problems check TFTP server logs)
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
The label has the MAC address of eth0, not the WLAN PHY address. We can
merge the definition back into ar7241_ubnt_unifi.dtsi, as both DTS
derived from it use the same interface for their label MAC addresses
after all.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
The OCEDO Raccoon had significant packet-loss with cables longer than 50
meter. Disabling EEE restores normal operation.
Also change the ethernet config to reduce loss on sub-1G links.
Signed-off-by: David Bauer <mail@david-bauer.net>
While it hasn't always been clear whether the "AP" is part of the model
name on the Ubiquiti website, we include it for all other pre-AC
variants (AP Pro and the AP Outdoor+). Add it to the original UniFi AP
as well for consistency.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
- fix eth0 eth1 sharing same mac so it conforms to the behavior stated
in the original commit and the way it is in vendor firmware :
WAN is label, LAN is label +1 and WLAN is label +2
- add default leds config
- add default network config
Signed-off-by: Pascal Coudurier <coudu@wanadoo.fr>
FCC ID: 2AG6R-AN700APIAC
Araknis AN-700-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3
- QCA9880 WLAN PCI card, 5 GHz, 3x3, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16
- UART console J10, populated, RX shorted to ground
- 4 antennas 5 dBi, internal omni-directional plates
- 4 LEDs power, 2G, 5G, wps
- 1 button reset
NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
therefore, the power LED is off for default state
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:xb art 0x0
phy1 2.4G *:xc ---
phy0 5GHz *:xd ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
Method 1: Firmware upgrade page:
(if you cannot access the APs webpage)
factory reset with the reset button
connect ethernet to a computer
OEM webpage at 192.168.20.253
username and password 'araknis'
make a new password, login again...
Navigate to 'File Management' page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm
wait about 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
192.168.20.253
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
Method 1: Serial to load Failsafe webpage (above)
Method 2: delete a checksum from uboot-env
this will make uboot load the failsafe image at next boot
because it will fail the checksum verification of the image
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait a minute
connect to ethernet and navigate to
192.168.20.253
select OEM firmware image and click upgrade
Method 3: backup mtd partitions before upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs-kernel.bin to '0101A8C0.img'
make available on TFTP server at 192.168.1.101
power board, interrupt boot with serial console
execute `tftpboot` and `bootm 0x81000000`
NOTE: TFTP may not be reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software is built using SDKs from Senao
which is based on a heavily modified version
of Openwrt Kamikaze or Altitude Adjustment.
One of the many modifications is sysupgrade being performed by a custom script.
Images are verified through successful unpackaging, correct filenames
and size requirements for both kernel and rootfs files, and that they
start with the correct magic numbers (first 2 bytes) for the respective headers.
Newer Senao software requires more checks but their script
includes a way to skip them.
The OEM upgrade script is at
/etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be less than 1536k
and the OEM upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied at the PHY side,
using the at803x driver `phy-mode` setting through the DTS.
Therefore, the Ethernet Configuration registers for GMAC0
do not need the bits for RGMII delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: 2AG6R-AN500APIAC
Araknis AN-500-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP1200
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- QCA9557 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2
- QCA9882 WLAN PCI card 168c:003c, 5 GHz, 2x2, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16
- UART console J10, populated, RX shorted to ground
- 4 antennas 5 dBi, internal omni-directional plates
- 4 LEDs power, 2G, 5G, wps
- 1 button reset
NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
therefore, the power LED is off for default state
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:e1 art 0x0
phy1 2.4G *:e2 ---
phy0 5GHz *:e3 ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
Method 1: Firmware upgrade page:
(if you cannot access the APs webpage)
factory reset with the reset button
connect ethernet to a computer
OEM webpage at 192.168.20.253
username and password 'araknis'
make a new password, login again...
Navigate to 'File Management' page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm
wait about 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
192.168.20.253
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
Method 1: Serial to load Failsafe webpage (above)
Method 2: delete a checksum from uboot-env
this will make uboot load the failsafe image at next boot
because it will fail the checksum verification of the image
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait a minute
connect to ethernet and navigate to
192.168.20.253
select OEM firmware image and click upgrade
Method 3: backup mtd partitions before upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs-kernel.bin to '0101A8C0.img'
make available on TFTP server at 192.168.1.101
power board, interrupt boot with serial console
execute `tftpboot` and `bootm 0x81000000`
NOTE: TFTP may not be reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software is built using SDKs from Senao
which is based on a heavily modified version
of Openwrt Kamikaze or Altitude Adjustment.
One of the many modifications is sysupgrade being performed by a custom script.
Images are verified through successful unpackaging, correct filenames
and size requirements for both kernel and rootfs files, and that they
start with the correct magic numbers (first 2 bytes) for the respective headers.
Newer Senao software requires more checks but their script
includes a way to skip them.
The OEM upgrade script is at
/etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be less than 1536k
and the OEM upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied at the PHY side,
using the at803x driver `phy-mode` setting through the DTS.
Therefore, the Ethernet Configuration registers for GMAC0
do not need the bits for RGMII delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: U2M-AN300APIN
Araknis AN-300-AP-I-N is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EWS310AP
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2
- AR9382 WLAN PCI on-board 168c:0030, 5 GHz, 2x2
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM 1839ZFG V59C1512164QFJ25
- UART console J10, populated, RX shorted to ground
- 4 antennas 5 dBi, internal omni-directional plates
- 4 LEDs power, 2G, 5G, wps
- 1 button reset
NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
therefore, the power LED is off for default state
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:7d art 0x0
phy1 2.4G *:7e ---
phy0 5GHz *:7f ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
Method 1: Firmware upgrade page:
(if you cannot access the APs webpage)
factory reset with the reset button
connect ethernet to a computer
OEM webpage at 192.168.20.253
username and password 'araknis'
make a new password, login again...
Navigate to 'File Management' page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm
wait about 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
192.168.20.253
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
Method 1: Serial to load Failsafe webpage (above)
Method 2: delete a checksum from uboot-env
this will make uboot load the failsafe image at next boot
because it will fail the checksum verification of the image
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait a minute
connect to ethernet and navigate to
192.168.20.253
select OEM firmware image and click upgrade
Method 3: backup mtd partitions before upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs-kernel.bin to '0101A8C0.img'
make available on TFTP server at 192.168.1.101
power board, interrupt boot with serial console
execute `tftpboot` and `bootm 0x81000000`
NOTE: TFTP may not be reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software is built using SDKs from Senao
which is based on a heavily modified version
of Openwrt Kamikaze or Altitude Adjustment.
One of the many modifications is sysupgrade being performed by a custom script.
Images are verified through successful unpackaging, correct filenames
and size requirements for both kernel and rootfs files, and that they
start with the correct magic numbers (first 2 bytes) for the respective headers.
Newer Senao software requires more checks but their script
includes a way to skip them.
The OEM upgrade script is at
/etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be less than 1536k
and the OEM upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied at the PHY side,
using the at803x driver `phy-mode` setting through the DTS.
Therefore, the Ethernet Configuration registers for GMAC0
do not need the bits for RGMII delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Keep labels since OpenWrt userland tooling (get_dt_led) depends on them
to find the LED instances referenced by the led-* aliases.
The label for the amber power LED was removed in 4eefdc7adb.
Signed-off-by: Sven Schwermer <sven@svenschwermer.de>
These were present in ar71xx but overlooked when porting to ath79.
Fixes: 480bf28273 ("ath79: add support for Buffalo WZR-HP-AG300H")
Signed-off-by: Jeffery To <jeffery.to@gmail.com>
The MikroTik RouterBOARD mAPL-2nd (sold as mAP Lite) is a small
2.4 GHz 802.11b/g/n PoE-capable AP.
See https://mikrotik.com/product/RBmAPL-2nD for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9533
- RAM: 64 MB
- Storage: 16 MB NOR
- Wireless: Atheros AR9531 (SoC) 802.11b/g/n 2x2:2, 1.5 dBi antenna
- Ethernet: Atheros AR8229 (SoC), 1x 10/100 port, 802.3af/at PoE in
- 4 user-controllable LEDs:
· 1x power (green)
· 1x user (green)
· 1x lan (green)
· 1x wlan (green)
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Note: following 781d4bfb39
The network setup avoids using the integrated switch and connects the
single Ethernet port directly. This way, link speed (10/100 Mbps) is
properly reported by eth0.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
In addition to the missing green LED definition, the polarity of the
amber power LED was incorrect which is fixed here.
Signed-off-by: Sven Schwermer <sven@svenschwermer.de>
TP-Link Archer A9 v6 (FCCID: TE7A9V6) is an AC1900 Wave-2 gigabit home
router based on a combination of Qualcomm QCN5502 (most likely a 4x4:4
version of the QCA9563 WiSOC), QCA9984 and QCA8337N.
The vendor's firmware content reveals that the same device might be
available on the US market under name 'Archer C90 v6'. Due to lack of
access to such hardware, support introduced in this commit was tested
only on the EU version (sold under 'Archer A9 v6' name).
Based on the information on the PL version of the vendor website, this
device has been already phased out and is no longer available.
Specifications:
- Qualcomm QCN5502 (775 MHz)
- 128 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 5x Gbps Ethernet (Qualcomm QCA8337N over SGMII)
- Wi-Fi:
- 802.11b/g/n on 2.4 GHz: Qualcomm QCN5502* in 4x4:4 mode
- 802.11a/n/ac on 5 GHz: Qualcomm QCA9984 in 3x3:3 mode
- 3x non-detachable, dual-band external antennas (~3.5 dBi for 5 GHz,
~2.2 dBi for 2.4 GHz, IPEX/U.FL connectors)
- 1x internal PCB antenna for 2.4 GHz (~1.8 dBi)
- 1x USB 2.0 Type-A
- 11x LED (4x connected to QCA8337N, 7x connected to QCN5502)
- 2x button (reset, WPS)
- UART (4-pin, 2.54 mm pitch) header on PCB (not populated)
- 1x mechanical power switch
- 1x DC jack (12 V)
*) unsupported due to missing support for QCN550x in ath9k
UART system serial console notice:
The RX signal of the main SOC's UART on this device is shared with the
WPS button's GPIO. The first-stage U-Boot by default disables the RX,
resulting in a non-functional UART input.
If you press and keep 'ENTER' on the serial console during early
boot-up, the first-stage U-Boot will enable RX input.
Vendor firmware allows password-less access to the system over serial.
Flash instruction (vendor GUI):
1. It is recommended to first upgrade vendor firmware to the latest
version (1.1.1 Build 20210315 rel.40637 at the time of writing).
2. Use the 'factory' image directly in the vendor's GUI.
Flash instruction (TFTP based recovery in second-stage U-Boot):
1. Rename 'factory' image to 'ArcherA9v6_tp_recovery.bin'
2. Setup a TFTP server on your PC with IP 192.168.0.66/24.
3. Press and hold the reset button for ~5 sec while turning on power.
4. The device will download image, flash it and reboot.
Flash instruction (web based recovery in first-stage U-Boot):
1. Use 'CTRL+C' during power-up to enable CLI in first-stage U-Boot.
2. Connect a PC with IP set to 192.168.0.1 to one of the LAN ports.
3. Issue 'httpd' command and visit http://192.168.0.1 in browser.
4. Use the 'factory' image.
If you would like to restore vendor's firmware, follow one of the
recovery methods described above.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
ALFA Network Tube-2HQ is a successor of the Tube-2H/P series (EOL) which
was based on the Atheros AR9331. The new version uses Qualcomm QCA9531.
Specifications:
- Qualcomm/Atheros QCA9531 v2
- 650/400/200 MHz (CPU/DDR/AHB)
- 64 or 128 MB of RAM (DDR2)
- 16+ MB of flash (SPI NOR)
- 1x 10/100 Mbps Ethernet with passive PoE input (24 V)
(802.3at/af PoE support with optional module)
- 1T1R 2.4 GHz Wi-Fi with external PA (SE2623L, up to 27 dBm) and LNA
- 1x Type-N (male) antenna connector
- 6x LED (5x driven by GPIO)
- 1x button (reset)
- external h/w watchdog (EM6324QYSP5B, enabled by default)
- UART (4-pin, 2.00 mm pitch) header on PCB
Flash instruction:
You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
device, wait for first blink of all LEDs (indicates network setup),
then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Drop custom 'mtd-cal-data' and switch to 'nvmem-cells' based solution
for fetching radio calibration data and its MAC address.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
All the QCA9531 based boards from ALFA Network are based on the same
design and share a common DTSI: 'qca9531_alfa-network_r36a.dtsi'.
Instead of defining 'nvmem-cells' for the MAC address in every device's
DTS, move definition to the common DTSI file.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
ZTE MF286A and MF286R are indoor LTE category 6/7 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.
Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: W25N01GV 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9886 2x2 MIMO 802.11ac Wave2 radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN:
[MF286A] MDM9230-based category 6 internal LTE modem
[MF286R] PXA1826-based category 7 internal LTE modem
in extended mini-PCIE form factor, with 3 internal antennas and
2 external antenna connections, single mini-SIM slot.
- FXS: one external ATA port (handled entirely by modem part) with two
physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
Signal state) handled entirely by modem. 4 link status LEDs handled by
the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
monitoring handled by modem.
- Label MAC device: eth0
The device shares many components with previous model, MF286, differing
mostly by a Wave2 5GHz radio, flash layout and internal LED color.
In case of MF286A, the modem is the same as in MF286. MF286R uses a
different modem based on Marvell PXA1826 chip.
Internal modem of MF286A is supported via uqmi, MF286R modem isn't fully
supported, but it is expected to use comgt-ncm for connection, as it
uses standard 3GPP AT commands for connection establishment.
Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.
Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.
STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.
STEP 1: gaining root shell:
Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.
Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
"http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.
Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.
- Set IP of your computer to 192.168.0.22. (or appropriate subnet if
changed)
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
https://busybox.net/downloads/binaries/1.21.1/busybox-mips
and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
field named "addURLFilter", so it looks like this:
<input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.0.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
execute it. You should be able to log in at port 23, using
"admin/admin" as credentials.
Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.
STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.
It is highly recommended to perform backup using both methods, to avoid
hassle of reassembling firmware images in future, if a restore is
needed.
Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:
ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
ssh root@192.168.1.1: cat /dev/mtd9 > mtd9_ubi.bin
And keep them in a safe place, should a restore be needed in future.
Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:
cat /proc/mtd
It should show the following:
mtd0: 000a0000 00010000 "u-boot"
mtd1: 00020000 00010000 "u-boot-env"
mtd2: 00140000 00010000 "reserved1"
mtd3: 000a0000 00020000 "fota-flag"
mtd4: 00080000 00020000 "art"
mtd5: 00080000 00020000 "mac"
mtd6: 000c0000 00020000 "reserved2"
mtd7: 00400000 00020000 "cfg-param"
mtd8: 00400000 00020000 "log"
mtd9: 000a0000 00020000 "oops"
mtd10: 00500000 00020000 "reserved3"
mtd11: 00800000 00020000 "web"
mtd12: 00300000 00020000 "kernel"
mtd13: 01a00000 00020000 "rootfs"
mtd14: 01900000 00020000 "data"
mtd15: 03200000 00020000 "fota"
mtd16: 01d00000 00020000 "firmware"
Differences might indicate that this is NOT a MF286A device but
one of other variants.
- Copy over all MTD partitions, for example by executing the following:
for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; do cat /dev/mtd$i > \
/var/usb_disk/mtd$i; done
"Firmware" partition can be skipped, it is a concatenation
of "kernel" and "rootfs".
- If the count of MTD partitions is different, this might indicate that
this is not a MF286A device, but one of its other variants.
- (optionally) rename the files according to MTD partition names from
/proc/mtd
- Unmount the filesystem:
umount /var/usb_disk; sync
and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
firmware. This is especially important, because stock firmware for
this device is not available officially, and is usually customized by
the mobile providers.
STEP 3: Booting initramfs image:
Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
set your computer's IP address as 192.168.0.22. This is the default
expected by U-boot. You may wish to change that, and alter later
commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:
setenv serverip 192.168.0.22
setenv ipaddr 192.168.0.1
tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin
bootm 0x81000000
(Replace server IP and router IP as needed). There is no emergency
TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
installation.
Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- After backing up the previous MTD contents, write the images to the
"firmware" MTD device, which conveniently concatenates "kernel" and
"rootfs" partitions that can fit the initramfs image:
nandwrite -p /dev/<firmware-mtd> \
/var/usb_disk/openwrt-ath79-zte_mf286a-initramfs-kernel.bin
- If write is OK, reboot the device, it will reboot to OpenWrt
initramfs:
reboot -f
- After rebooting, SSH into the device and use sysupgrade to perform
proper installation.
Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
and name it root_uImage:
dd if=/dev/zero of=padding.bin bs=8M count=1
cat padding.bin openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin >
root_uImage
- Set up a TFTP server at 192.0.0.1/8. Router will use random address
from that range.
- Put the previously generated "root_uImage" into TFTP server root
directory.
- Deliberately erase "kernel" partition" using stock firmware after
taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
initramfs image, which will let you perform actual installation using
sysupgrade. This might take a considerable time, sometimes the router
doesn't establish Ethernet link properly right after booting. Be
patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
light up. At this moment, perform power-on reset, and wait for OpenWrt
initramfs to finish booting. Then proceed to actual installation.
STEP 4: Actual installation:
- Set your computer IP to 192.168.1.22/24
- scp the sysupgrade image to the device:
scp openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin \
root@192.168.1.1:/tmp/
- ssh into the device and execute sysupgrade:
sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin
- Wait for router to reboot to full OpenWrt.
STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth '<auth>' # As required, usually 'none'
option pincode '<pin>' # If required by SIM
option apn '<apn>' # As required by ISP
option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'
For example, the following works for most polish ISPs
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth 'none'
option apn 'internet'
option pdptype 'ipv4'
The required minimum is:
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
In this case, the modem will use last configured APN from stock
firmware - this should work out of the box, unless your SIM requires
PIN which can't be switched off.
If you have build with LuCI, installing luci-proto-qmi helps with this
task.
Restoring the stock firmware:
Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware
The only partitions you really care about are "web", "kernel", and
"rootfs". These are required to restore the stock firmware through
factory TFTP recovery.
Because kernel partition was enlarged, compared to stock
firmware, the kernel and rootfs MTDs don't align anymore, and you need
to carve out required data if you only have backup from stock FW:
- Prepare kernel image
cat mtd12_kernel.bin mtd13_rootfs.bin > owrt_kernel.bin
truncate -s 4M owrt_kernel_restore.bin
- Cut off first 1MB from rootfs
dd if=mtd13_rootfs.bin of=owrt_rootfs.bin bs=1M skip=1
- Prepare image to write to "ubi" meta-partition:
cat mtd6_reserved2.bi mtd7_cfg-param.bin mtd8_log.bin mtd9_oops.bin \
mtd10_reserved3.bin mtd11_web.bin owrt_rootfs.bin > \
owrt_ubi_ubi_restore.bin
You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.
Method 1: Using initramfs:
This method is recmmended if you took your backup from within OpenWrt
initramfs, as the reassembly is not needed.
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
(scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
mtd write <kernel_mtd> mtd4_kernel.bin
rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
restore them individually. Otherwise you might run out of space in
tmpfs:
(scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
rm mtd3_ubiconcat0.bin
(scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
rm mtd5_ubiconcat1.bin
- If the write was correct, force a device reboot with
reboot -f
Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
your drive
- Mount your flash drive
mkdir /tmp/usb
mount /dev/sda1 /tmp/usb
- Remount your UBI volume at /overlay to R/O
mount -o remount,ro /overlay
- Write back the kernel and ubi partitions from USB drive
cd /tmp/usb
mtd write mtd4_kernel.bin /dev/<kernel_mtd>
mtd write mtd9_ubi.bin /dev/<kernel_ubi>
- If everything went well, force a device reboot with
reboot -f
Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.
Method 3: using built-in TFTP recovery:
This method is recommended if you took backups using stock firmware.
- Assemble a recovery rootfs image from backup of stock partitions by
concatenating "web", "kernel", "rootfs" images dumped from the device,
as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
TFTP pre-installation method.
Quirks and known issuesa
- It was observed, that CH340-based USB-UART converters output garbage
during U-boot phase of system boot. At least CP2102 is known to work
properly.
- Kernel partition size is increased to 4MB compared to stock 3MB, to
accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
image is at 2.5MB which is dangerously close to the limit. This has no
effect on booting the system - but keep that in mind when reassembling
an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
you used before in stock firmware first. If you need to change it,
please use protocok '3g' to establish connection once, or use the
following command to change APN (and optionally IP type) manually:
echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the blue debug LED hidden
inside the case. All other LEDs are controlled by modem, on which the
router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
correct GPIO mapping. All other LEDs are controlled by modem,
including this one in stock firmware. GPIO19, mapped there only acts
as a gate, while the actual signal source seems to be 5GHz Wi-Fi
radio, however it seems it is not the LED exposed by ath10k as
ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
reset of whole board, not only the modem. It is attached to
gpio-restart driver, to restart the modem on reboot as well, to ensure
QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
for OpenWrt operation at all - have fun lurking around.
The same modem module is used as in older MF286.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The Zyxel EMG2926-Q10A is 99% the Zyxel NBG6716, but the bootloader
expects a different product name when flashing over TFTP. Also, the
EMG2926-Q10A always has 128 MiB of NAND flash whereas the NBG6716
reportedly can have either 128 MiB or 256 MiB.
Signed-off-by: Alex Henrie <alexhenrie24@gmail.com>
mtd-mac-address should no longer be used after commit 5ae2e78639
("kernel: drop support for mtd-mac-address"). Convert it to nvmem-cells.
While at it, also convert OpenWrt's custom mtd-cal-data property and
userspace pre-calibration data extraction to the nvmem implementation.
Note: nvmem-cells in QCN5502 wmac has not been tested.
Fixes: c32008a37b ("ath79: add partial support for Netgear EX7300v2")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Switch to a generic GPIO cascade driver.
Signed-off-by: Mauri Sandberg <maukka@ext.kapsi.fi>
Signed-off-by: Petr Štetiar <ynezz@true.cz> [missing commit description]
The MikroTik LHG 5 series (product codes RBLHG-5nD, RBLHG-5HPnD and
RBLHG-5HPnD-XL) devices are an outdoor 5GHz CPE with a 24.5dBi or 27dBi
integrated antenna built around the Atheros AR9344 SoC.
It is very similar to the SXT Lite5 series which this patch is based
upon.
Specifications:
- SoC: Atheros AR9344
- RAM: 64 MB
- Storage: 16 MB SPI NOR
- Wireless: Atheros AR9340 (SoC) 802.11a/n 2x2:2
- Ethernet: Atheros AR8229 switch (SoC), 1x 10/100 port,
8-32 Vdc PoE in
- 8 user-controllable LEDs:
- 1x power (blue)
- 1x user (white)
- 1x ethernet (green)
- 5x rssi (green)
See https://mikrotik.com/product/RBLHG-5nD for more details.
Notes:
The device was already supported in the ar71xx target.
Flashing:
TFTP boot initramfs image and then perform a sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Jakob Riepler <jakob+openwrt@chaosfield.at>
Hardware
--------
SoC: QCN5502
Flash: 16 MiB
RAM: 128 MiB
Ethernet: 1 gigabit port
Wireless No1: QCN5502 on-chip 2.4GHz 4x4
Wireless No2: QCA9984 pcie 5GHz 4x4
USB: none
Installation
------------
Flash the factory image using the stock web interface or TFTP the
factory image to the bootloader.
What works
----------
- LEDs
- Ethernet port
- 5GHz wifi (QCA9984 pcie)
What doesn't work
-----------------
- 2.4GHz wifi (QCN5502 on-chip)
(I was not able to make this work, probably because ath9k requires
some changes to support QCN5502.)
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
Specifications:
- AR9344 SoC, 8 MB nor flash, 64 MB DDR2 RAM
- 2x2 9dBi antenna, wifi 2.4Ghz 300Mbps
- 4x Ethernet LAN 10/100, 1x Ethernet WAN 10/100
- 1x WAN, 4x LAN, Wifi, PWR, WPS, SYSTEM Leds
- Reset/WPS button
- Serial UART at J4 onboard: 3.3v GND RX TX, 1152008N1
MAC addresses as verified by OEM firmware:
vendor OpenWrt address
LAN eth0 label
WAN eth1 label + 1
WLAN phy0 label
The label MAC address was found in u-boot 0x1fc00.
Installation:
To install openwrt,
- set the device's SSID to each of the following lines,
making sure to include the backticks.
- set the ssid and click save between each line.
`echo "httpd -k"> /tmp/s`
`echo "sleep 10">> /tmp/s`
`echo "httpd -r&">> /tmp/s`
`echo "sleep 10">> /tmp/s`
`echo "httpd -k">> /tmp/s`
`echo "sleep 10">> /tmp/s`
`echo "httpd -f">> /tmp/s`
`sh /tmp/s`
- Now, wait 60 sec.
- After the reboot sequence, the router may have fallen back to
its default IP address with the default credentials (admin:admin).
- Log in to the web interface and go the the firmware upload page.
Select "openwrt-ath79-generic-tplink_tl-wr841hp-v2-squashfs-factory.bin"
and you're done : the system now accepts the openwrt.
Forum support topic:
https://forum.openwrt.org/t/support-for-tplink-tl-wr841hp-v2/69445/
Signed-off-by: Saiful Islam <si87868@gmail.com>
ZTE MF286 is an indoor LTE category 6 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.
Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: GD5F1G04UBYIG 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9882 2x2 MIMO 802.11ac radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN: MDM9230-based category 6 internal LTE modem in extended
mini-PCIE form factor, with 3 internal antennas and 2 external antenna
connections, single mini-SIM slot. Modem model identified as MF270,
- FXS: one external ATA port (handled entirely by modem part) with two
physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
Signal state) handled entirely by modem. 4 link status LEDs handled by
the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
monitoring handled by modem.
- Label MAC device: eth0
Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.
Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.
STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.
STEP 1: gaining root shell:
Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.
Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
"http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.
Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.
- Set IP of your computer to 192.168.1.22.
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
https://busybox.net/downloads/binaries/1.21.1/busybox-mips
and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
field named "addURLFilter", so it looks like this:
<input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.1.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
execute it. You should be able to log in at port 23, using
"admin/admin" as credentials.
Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.
STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.
Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:
ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
ssh root@192.168.1.1: cat /dev/mtd8 > mtd8_ubi.bin
And keep them in a safe place, should a restore be needed in future.
Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:
cat /proc/mtd
It should show the following:
mtd0: 00080000 00010000 "uboot"
mtd1: 00020000 00010000 "uboot-env"
mtd2: 00140000 00020000 "fota-flag"
mtd3: 00140000 00020000 "caldata"
mtd4: 00140000 00020000 "mac"
mtd5: 00600000 00020000 "cfg-param"
mtd6: 00140000 00020000 "oops"
mtd7: 00800000 00020000 "web"
mtd8: 00300000 00020000 "kernel"
mtd9: 01f00000 00020000 "rootfs"
mtd10: 01900000 00020000 "data"
mtd11: 03200000 00020000 "fota"
Differences might indicate that this is NOT a vanilla MF286 device but
one of its later derivatives.
- Copy over all MTD partitions, for example by executing the following:
for i in 0 1 2 3 4 5 6 7 8 9 10 11; do cat /dev/mtd$i > \
/var/usb_disk/mtd$i; done
- If the count of MTD partitions is different, this might indicate that
this is not a standard MF286 device, but one of its later derivatives.
- (optionally) rename the files according to MTD partition names from
/proc/mtd
- Unmount the filesystem:
umount /var/usb_disk; sync
and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
firmware. This is especially important, because stock firmware for
this device is not available officially, and is usually customized by
the mobile providers.
STEP 3: Booting initramfs image:
Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
set your computer's IP address as 192.168.1.22. This is the default
expected by U-boot. You may wish to change that, and alter later
commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:
setenv serverip 192.168.1.22
setenv ipaddr 192.168.1.1
tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin
bootm 0x81000000
(Replace server IP and router IP as needed). There is no emergency
TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
installation.
Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- Split the image into two parts on 3MB partition size boundary, which
is the size of kernel partition. Pad the output of second file to
eraseblock size:
dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
bs=128k count=24 \
of=openwrt-ath79-zte_mf286-intermediate-kernel.bin
dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
bs=128k skip=24 conv=sync \
of=openwrt-ath79-zte_mf286-intermediate-rootfs.bin
- Copy over /usr/bin/flash_eraseall and /usr/bin/nandwrite utilities to
/tmp. This is CRITICAL for installation, as erasing rootfs will cut
you off from those tools on flash!
- After backing up the previous MTD contents, write the images to the
respective MTD devices:
/tmp/flash_eraseall /dev/<kernel-mtd>
/tmp/nandwrite /dev/<kernel-mtd> \
/var/usb_disk/openwrt-ath79-zte_mf286-intermediate-kernel.bin
/tmp/flash_eraseall /dev/<kernel-mtd>
/tmp/nandwrite /dev/<rootfs-mtd> \
/var/usb_disk/openwrt-ath79-zte_mf286-intermediate-rootfs.bin
- Ensure that no bad blocks were present on the devices while writing.
If they were present, you may need to vary the split between
kernel and rootfs parts, so U-boot reads a valid uImage after skipping
the bad blocks. If it fails, you will be left with method 3 (below).
- If write is OK, reboot the device, it will reboot to OpenWrt
initramfs:
reboot -f
- After rebooting, SSH into the device and use sysupgrade to perform
proper installation.
Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
and name it root_uImage:
dd if=/dev/zero of=padding.bin bs=8M count=1
cat padding.bin openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin >
root_uImage
- Set up a TFTP server at 192.0.0.1/8. Router will use random address
from that range.
- Put the previously generated "root_uImage" into TFTP server root
directory.
- Deliberately erase "kernel" partition" using stock firmware after
taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
initramfs image, which will let you perform actual installation using
sysupgrade. This might take a considerable time, sometimes the router
doesn't establish Ethernet link properly right after booting. Be
patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
light up. At this moment, perform power-on reset, and wait for OpenWrt
initramfs to finish booting. Then proceed to actual installation.
STEP 4: Actual installation:
- scp the sysupgrade image to the device:
scp openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin \
root@192.168.1.1:/tmp/
- ssh into the device and execute sysupgrade:
sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin
- Wait for router to reboot to full OpenWrt.
STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth '<auth>' # As required, usually 'none'
option pincode '<pin>' # If required by SIM
option apn '<apn>' # As required by ISP
option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'
For example, the following works for most polish ISPs
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth 'none'
option apn 'internet'
option pdptype 'ipv4'
If you have build with LuCI, installing luci-proto-qmi helps with this
task.
Restoring the stock firmware:
Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware.
The only partitions you really care about are "web", "kernel", and
"rootfs". For easy padding and possibly restoring configuration, you can
concatenate most of them into images written into "ubi" meta-partition
in OpenWrt. To do so, execute something like:
cat mtd5_cfg-param.bin mtd6-oops.bin mtd7-web.bin mtd9-rootfs.bin > \
mtd8-ubi_restore.bin
You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.
Method 1: Using initramfs:
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
(scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
mtd write <kernel_mtd> mtd4_kernel.bin
rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
restore them individually. Otherwise you might run out of space in
tmpfs:
(scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
rm mtd3_ubiconcat0.bin
(scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
rm mtd5_ubiconcat1.bin
- If the write was correct, force a device reboot with
reboot -f
Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
your drive
- Mount your flash drive
mkdir /tmp/usb
mount /dev/sda1 /tmp/usb
- Remount your UBI volume at /overlay to R/O
mount -o remount,ro /overlay
- Write back the kernel and ubi partitions from USB drive
cd /tmp/usb
mtd write mtd4_kernel.bin /dev/<kernel_mtd>
mtd write mtd8_ubi.bin /dev/<kernel_ubi>
- If everything went well, force a device reboot with
reboot -f
Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.
Method 3: using built-in TFTP recovery (LAST RESORT):
- Assemble a recovery rootfs image from backup of stock partitions by
concatenating "web", "kernel", "rootfs" images dumped from the device,
as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
TFTP pre-installation method.
Quirks and known issues
- Kernel partition size is increased to 4MB compared to stock 3MB, to
accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
image is at 2.5MB which is dangerously close to the limit. This has no
effect on booting the system - but keep that in mind when reassembling
an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
you used before in stock firmware first. If you need to change it,
please use protocok '3g' to establish connection once, or use the
following command to change APN (and optionally IP type) manually:
echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the green debug LED hidden
inside the case. All other LEDs are controlled by modem, on which the
router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
correct GPIO mapping. All other LEDs are controlled by modem,
including this one in stock firmware. GPIO19, mapped there only acts
as a gate, while the actual signal source seems to be 5GHz Wi-Fi
radio, however it seems it is not the LED exposed by ath10k as
ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
reset of whole board, not only the modem. It is attached to
gpio-restart driver, to restart the modem on reboot as well, to ensure
QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
for OpenWrt operation at all - have fun lurking around.
- MAC address shift for 5GHz Wi-Fi used in stock firmware is
0x320000000000, which is impossible to encode in the device tree, so I
took the liberty of using MAC address increment of 1 for it, to ensure
different BSSID for both Wi-Fi interfaces.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Commit d284e6ef0f ("treewide: convert mtd-mac-address-increment* to
generic implementation") renamed "mtd-mac-address-increment" property
to "mac-address-increment". Convert remaining usages that have been
added after that.
Fixes: af8a059bb4 ("ath79: add support for GL.iNet GL-XE300")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This makes available the additional space,
which was occupied by OEM's jffs2 partition before:
"0x000000f80000-0x000001000000 : jffs2"
Reverting to the OEM firmware will also recover
this partition, i.e. it is not needed and can be
used by OpenWrt.
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
The GL.iNet GL-XE300 is a 4G LTE Wireless router, based on QCA9531 SoC.
Specifications:
- SoC: QCA9531 (650MHz)
- RAM: DDR2 128M
- Flash: SPI NOR 16M + SPI NAND 128M
- WiFi: 2.4GHz with 2 antennas
- Ethernet:
- 1x LAN (10/100M)
- 1x WAN (10/100M)
- LTE:
- USB: 1x USB 2.0 port
- UART:
- 3.3V, TX, RX, GND / 115200 8N1
MAC addresses as verified by OEM firmware:
use address source
LAN *:c5 art 0x0 (label)
WAN *:c6 label + 1
WLAN *:c7 art 0x1002
Installation via U-Boot rescue:
1. Press and hold reset and power buttons simultaneously
2. Wait for the LAN led to blink 5 times
3. Release reset and power buttons
4. The rescue page is accessible via http://192.168.1.1
5. Select the OpenWrt factory image and start upgrade
6. Wait for the router to flash new firmware and reboot
Revert to stock firmware:
i. Download the stock firmware from GL.Inet website
ii. Use the same method explained above to flash the stock firmware
Signed-off-by: Victorien Molle <victorien.molle@wifirst.fr>
[update commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
On MikroTik RB91x board series a reset key shares SoC gpio
line #15 with NAND ALE and NAND IO7. So we need a custom
gpio driver to manage this non-trivial connection schema.
Also rb91x-nand needs to have an ability to disable a polling
of the key while it works with NAND.
While we've been integrating rb91x-key into a firmware, we've
figured out that:
* In the gpio-latch driver we need to add a "cansleep" suffix to
several gpiolib calls,
* When gpio-latch and rb91x-nand fail to get a gpio and an error
is -EPROBE_DEFER, they shouldn't report about this, since this
actually is not an error and occurs when the gpio-latch probe
function is called before the rb91x-key probe.
We fix these related things here too.
Signed-off-by: Denis Kalashnikov <denis281089@gmail.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Tested-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
Device specifications:
======================
* Qualcomm/Atheros AR7240 rev 2
* 350/350/175 MHz (CPU/DDR/AHB)
* 32 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 18-24V passive POE (mode B)
+ used as WAN interface
- eth1
+ builtin switch port 4
+ used as LAN interface
* 12-24V 1A DC
* external antenna
The device itself requires the mtdparts from the uboot arguments to
properly boot the flashed image and to support dual-boot (primary +
recovery image). Unfortunately, the name of the mtd device in mtdparts is
still using the legacy name "ar7240-nor0" which must be supplied using the
Linux-specfic DT parameter linux,mtd-name to overwrite the generic name
"spi0.0".
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/200 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 4x GPIO-LEDs (3x wifi, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
- eth0
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as LAN interface
- eth1
+ AR8031 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
This device support is based on the partially working stub from commit
53c474abbd ("ath79: add new OF only target for QCA MIPS silicon").
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
- clean up leftovers regarding MAC configure in dts
- fix alphabetical order in caldata
- IMAGE_SIZE for sysupgrade image
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
It was reported that some rb912 boards (ar934x) have issues with some ethernet speeds.
Investigation shows that the board failed to adapt the ethernet pll values as shown here:
[ 5.284359] ag71xx 19000000.eth: failed to read pll-handle property
added custom prints in code and triggering a link switch:
[ 62.821446] Atheros AG71xx: fast reset
[ 62.826442] Atheros AG71xx: update pll 2
[ 62.830494] Atheros AG71xx: no pll regmap!
Comparison with another very similar board (rb922 - QCA955x) showed a missing
reference clock frequency in dts, which seems to cause a pll init issue.
Unfortunately, no errors are printed when this occurs.
Adding the frequency property fixes the pll init as it can be parsed now
by the ethernet driver.
[ 55.861407] Atheros AG71xx: fast reset
[ 55.866403] Atheros AG71xx: update pll 2
[ 55.870462] Atheros AG71xx: ath79_set_pllval: regmap: 0x81548000, pll_reg: 0x2c, pll_val: 0x02000000
Signed-off-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
- eth0
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as LAN interface
- eth1
+ AR8035 ethernet PHY (SGMII)
+ 10/100/1000 Mbps Ethernet
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 1T1R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
- eth0
+ AR8035 ethernet PHY
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as LAN interface
- eth1
+ 10/100 Mbps Ethernet
+ builtin switch port 1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Asus RP-AC66 Repeater
Hardware specifications:
Board: AP152
SoC: QCA9563
DRAM: 64MB DDR2
Flash: 25l128 16MB SPI-NOR
LAN/WAN: 1x1000M QCA8033
WiFi 5GHz: QCA9880
Clocks: CPU:775.000MHz, DDR:650.000MHz, AHB:258.333MHz, Ref:25.000MHz
MAC addresses as verified by OEM firmware:
use address source
Lan/Wan *:24 art 0x1002 (label)
2G *:24 art 0x1002
5G *:26 art 0x5006
Installation:
Asus windows recovery tool:
- install the Asus firmware restoration utility
- unplug the router, hold the reset button while powering it on
- release when the power LED flashes slowly
- specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
- Start the Asus firmware restoration utility, specify the factory image
and press upload
- Do not power off the device after OpenWrt has booted until the LED flashing.
TFTP Recovery method:
- set computer to a static ip, 192.168.1.75
- connect computer to the LAN 1 port of the router
- hold the reset button while powering on the router for a few seconds
- send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
On startup the USB of QCA9531 board can't be initialized successfully.
lsusb result as below:
root@OpenWrt:~# lsusb unable to initialize libusb: -99
This is because usb-phy-analog is not added to reset list.
Signed-off-by: Jinfan Lei <153869379@qq.com>
(added linebreaks and small little changes to the commit message)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
ar9344_openmesh_mr600-v1.dts:40.10-44.5: Warning (gpios_property):
/leds-ath9k/wifi2g: Missing property '#gpio-cells' in node
/ahb/pcie-controller@180c0000/wifi@0,0 or bad phandle
=> added gpio-controller + #gpio-cells
qca955x_zyxel_nbg6x16.dtsi:121.3-13: Warning (reg_format):
/ahb/usb@1b000000/port@1:reg: property has invalid length (4 bytes)
(#address-cells == 2, #size-cells == 1)
../dts/qca955x_zyxel_nbg6x16.dtsi:131.3-13: Warning (reg_format):
/ahb/usb@1b400000/port@1:reg: property has invalid length (4 bytes)
(#address-cells == 2, #size-cells == 1)
qca955x_zyxel_nbg6x16.dtsi:120.20-123.4: Warning (avoid_default_addr_size):
/ahb/usb@1b000000/port@1: Relying on default #address-cells value
=> ath79's usb-nodes are missing the address- and size-cells properties.
These are needed for usb led trigger support.
ar7242_ubnt_sw.dtsi:54.4-14: Warning (reg_format): /gpio_spi/gpio_spi@0:reg:
property has invalid length (4 bytes) (#address-cells == 1, #size-cells == 1)
=> the #address-cells and #size-cells had to be nudged.
qca9531_dlink_dch-g020-a1.dts:19.6-39.4: Warning (i2c_bus_bridge):
/i2c: incorrect #size-cells for I2C bus
=> #size-cells = <0>;
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
SoC: AR9344
RAM: 128MB
Flash: 16MiB SPI NOR
5GHz WiFi: AR9382 PCIe 2x2:2 802.11n
2.4GHz WiFi: AR9344 (SoC) AHB 2x2:2 802.11n
5x Fast ethernet via SoC switch (green LEDs)
1x USB 2.0
4x front LEDs from SoC GPIO
1x front WPS button from SoC GPIO
1x bottom reset button from SoC GPIO
UART header JP1, 115200 no parity 1 stop
TX
GND
VCC
(N/P)
RX
Flash factory image via "emergency room" recovery:
- Configure your computer with a static IP 192.168.1.123/24
- Connect to LAN port on the N600 switch
- Hold reset putton
- Power on, holding reset until the power LED blinks slowly
- Visit http://192.168.1.1/ and upload OpenWrt factory image
- Wait at least 5 minutes for flashing, reboot and key generation
- Visit http://192.168.1.1/ (OpenWrt LuCI) and upload OpenWrt sysupgrade image
Signed-off-by: Ryan Mounce <ryan@mounce.com.au>
[dt leds preparations]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The jjPlus JWAP230 is an access point board built around the QCA9558,
with built-in 2.4GHz 3x3 N WiFi (28dBm). It can be expanded with 2
mini-PCIe boards, and has an USB2 root port.
Specifications:
- SOC: Qualcomm Atheros QCA9558
- CPU: 720MHz
- H/W switch: QCA8327 rev 2
- Flash: 16 MiB SPI NOR (en25qh128)
- RAM: 128 MiB DDR2
- WLAN: AR9550 built-in SoC bgn 3T3R (ath9k)
- PCI: 2x mini-PCIe (optional 5V)
- LEDs: 6x LEDs (3 are currently available)
- Button: 1x Reset (not yet defined)
- USB2:
- 1x Type A root port
- 1x combined mini-PCIe
- Ethernet:
- 2x 10/100/1000 (1x PoE 802.3af (36-57 V))
Notes:
The device used to be supported in the ar71xx target.
For upgrades: Please use "sysupgrade --force -n <image>".
This will restore the device back to OpenWrt defaults!
MAC address assignment:
use source
LAN art 0x0
WAN art 0x6
WLAN art 0x1002 (as part of the calibration data)
Flash instructions:
- install from u-boot with tftp (requires serial access)
> setenv ipaddr a.b.c.d
> setenv serverip e.f.g.h
> tftp 0x80060000 \
openwrt-ath79-generic-jjplus_jwap230-squashfs-sysupgrade.bin
> erase 0x9f050000 +${filesize}
> cp.b $fileaddr 0x9f050000 $filesize
> setenv bootcmd bootm 0x9f050000
> saveenv
Signed-off-by: Olivier Valentin <valentio@free.fr>
[Added DT-Leds (based on ar71xx), Added more notes about sysupgrade,
fixed "qca9550" to match SoC in commit and dts file name]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
TP-Link EAP225 v1 is an AC1200 (802.11ac Wave-1) ceiling mount access point.
Device specifications:
* SoC: QCA9563 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n, 2x2
* Wireless 5Ghz (QCA9882): a/n/ac, 2x2
* Ethernet (AR8033): 1× 1GbE, 802.3at PoE
Flashing instructions:
* Ensure the device is upgraded to firmware v1.4.0
* Exploit the user management page in the web interface to start telnetd
by changing the username to `;/usr/sbin/telnetd -l/bin/sh&`.
* Immediately change the malformed username back to something valid
(e.g. 'admin') to make ssh work again.
* Use the root shell via telnet to make /tmp world writeable (chmod 777)
* Extract /usr/bin/uclited from the device via ssh and apply the binary
patch listed below. The patch is required to prevent `uclited -u` in
the last step from crashing.
* Copy the patched uclited binary back to the device at /tmp/uclited
(via ssh)
* Upload the factory image to /tmp/upgrade.bin (via ssh)
* Run `chmod +x /tmp/uclited && /tmp/uclited -u` to install OpenWrt.
uclited patching:
--- xxd uclited
+++ xxd uclited-patched
@@ -53811,7 +53811,7 @@
000d2330: 8c44 0000 0320 f809 0000 0000 8fbc 0010 .D... ..........
000d2340: 8fa6 0a4c 02c0 2821 8f82 87c4 0000 0000 ...L..(!........
-000d2350: 8c44 0000 0c13 461c 27a7 0018 8fbc 0010 .D....F.'.......
+000d2350: 8c44 0000 2402 0000 0000 0000 8fbc 0010 .D..$...........
000d2360: 1040 001d 0000 1821 8f99 8378 3c04 0058 .@.....!...x<..X
000d2370: 3c05 0056 2484 ad68 24a5 9f00 0320 f809 <..V$..h$.... ..
To make sure the correct file is patched, the following MD5 checksums
should match the unpatched and patched files:
4bd74183c23859c897ed77e8566b84de uclited
4107104024a2e0aeaf6395ed30adccae uclited-patched
Debricking:
* Serial port can be soldered on unpopulated 4-pin header
(1: TXD, 2: RXD, 3: GND, 4: VCC)
* Bridge unpopulated resistors running from pins 1 (TXD) and 2 (RXD).
Do NOT bridge the pull-down for pin 2, running parallel to the
header.
* Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via the LuCI web interface
setenv ipaddr 192.168.1.1 # default, change as required
setenv serverip 192.168.1.10 # default, change as required
tftp 0x80800000 initramfs.bin
bootelf $fileaddr
Tested by forum user KernelMaker.
Link: https://forum.openwrt.org/t/eap225-v1-firmware/87116
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Add the Embedded Wireless "Balin" platform, it is in ar71xx too
SoC: QCA AR9344 or AR9350
RAM: DDR2-RAM 64MBytes
Flash: SPI-NOR 16MBytes
WLAN: 2 x 2 MIMO 2.4 & 5 GHz IEEE802.11 a/b/g/n
Ethernet: 3 x 10/100 Mb/s
USB: 1 x USB2.0 Host/Device bootstrap-pin at power-up
PCIe: MiniPCIe - 1 x lane PCIe 1.2
Button: 1 x Reset-Button
UART: 1 x Normal, 1 x High-Speed
JTAG: 1 x EJTAG
LED: 1 x Green Power/Status LED
GPIO: 10 x Input/Output multiplexed
The module comes already with the current vanilla OpenWrt firmware.
To update, use "sysupgrade -n --force <image>" image directly in
vendor firmware. This resets the existing configurations back to
default!
Signed-off-by: Catrinel Catrinescu <cc@80211.de>
[indent, led function+color properties, fix partition unit-address,
re-enable pcie port, mention button+led in commit message]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
For v2, both ath9k (2.4GHz Wifi) and ath10k (5 GHz) driver now
pull the (pre-)calibration data from the nvmem subsystem. v1
is slightly different as only the ath9k Wifi is supported.
This allows us to move the userspace caldata extraction
and mac-address patching for the 5GHZ ath10k supported
wifi into the device-tree definition of the device.
ath9k's nodes are also changed over to use nvmem-cells
over OpenWrt's custom mtd-cal-data property.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Further devices from the series have been added in the meantime,
introducing `qca955x_dlink_dap-2xxx.dtsi`.
Thus, merge support for DAP-2695 with the existing dtsi.
This implies factory images can now be flashed via the regular
OEM Web UI, as well as the bootloader recovery.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
This device can be merged with the existing dtsi, which declares
the location of ath9k cal-data via devicetree, correcting the 2.4G
mac address in `10_fix_wifi_mac` rather than `10-ath9k-eeprom`.
To make these changes more visible, apply before merging with dtsi.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
This device can be merged with the existing dtsi,
which will increase spi-max-frequency to 50 MHz.
To make this change more visible, increase to 50 MHz before merging.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The MikroTik LHG 5 series (product codes RBLHG-5nD, RBLHG-5HPnD and
RBLHG-5HPnD-XL) devices are an outdoor 5GHz CPE with a 24.5dBi or 27dBi
integrated antenna built around the Atheros AR9344 SoC.
It is very similar to the SXT Lite5 series which this patch is based
upon.
Specifications:
- SoC: Atheros AR9344
- RAM: 64 MB
- Storage: 16 MB SPI NOR
- Wireless: Atheros AR9340 (SoC) 802.11a/n 2x2:2
- Ethernet: Atheros AR8229 switch (SoC), 1x 10/100 port,
8-32 Vdc PoE in
- 8 user-controllable LEDs:
- 1x power (blue)
- 1x user (white)
- 1x ethernet (green)
- 5x rssi (green)
See https://mikrotik.com/product/RBLHG-5nD for more details.
Notes:
The device was already supported in the ar71xx target.
Flashing:
TFTP boot initramfs image and then perform a sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Jakob (Jack/XDjackieXD) <jakob@chaosfield.at>
The MikroTik RouterBOARD wAPR-2nD (wAP R) router features a miniPCI-e
slot with USB lines connected, which are used by some USB cards with
miniPCI-e form factor, like the R11e-LR8. Enabling USB support is
required for such cards to work.
Tested on a MikroTik wAP LR8 kit (RB wAPR-2nD + R11e-LR8).
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
converts the still popular WNDR3700 Series to fetch the
caldata through nvmem. As the "MAC with NVMEM" has shown,
there could pitfalls along the way.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Netgear R6100 is a dual-band Wi-Fi 5 (AC1200) router based on Qualcomm
Atheros (AR9344 + QCA9882) platform. Support for this device was first
introduced in 15f6f67d18 (ar71xx). FCC ID: PY312400225.
Specifications:
- Atheros AR9344 (560 MHz)
- 128 MB of RAM (DDR2)
- 128 MB of flash (parallel NAND)
- 2T2R 2.4 GHz Wi-Fi (AR9344)
- 2T2R 5 GHz Wi-Fi (QCA9882)
- 5x 10/100 Mbps Ethernet (AR9344)
- 4x internal antenna
- 1x USB 2.0 (GPIO-controlled power)
- 6x LED, 3x button (reset, Wi-Fi, WPS)
- UART (4-pin, 2.54 mm pitch) header on PCB
- 1x mechanical power switch
- DC jack for main power input (12 V)
WARNING: sysupgrade from older stable releases is not possible, fresh
installation (via vendor's GUI or TFTP based recovery) is required.
Reason for that is increased kernel partition size.
Installation:
Use the 'factory' image under vendor's GUI or via TFTP U-Boot recovery.
You can use the 'nmrpflash' tool at a boot time, before kernel is loaded
or start it manually by pressing the 'reset' button for ~20 seconds from
powering up the device (U-Boot will start TFTP server on 192.168.1.1,
use TFTP client to send the image).
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
GPIOs on the Aircube AC are wrong:
- Reset GPIO moved from 17 to 12
- PoE Pass Through GPIO for Aircube AC is 3
Fixes: 491ae3357e ("ath79: add support for Ubiquiti airCube AC")
Signed-off-by: Nicolò Veronese <nicveronese@gmail.com>
Specifications:
SOC: QCA9531 650 MHz
ROM: 16 MiB Flash (Winbond W25Q128FV)
RAM: 128 MiB DDR2 (Winbond W971GG6SB)
LAN: 10/100M *2
WAN: 10/100M *1
LED: BGR color *1
Mac address:
label C8:0E:77:xx:xx:68 art@0x0
lan C8:0E:77:xx:xx:62 art@0x6
wan C8:0E:77:xx:xx:68 art@0x0 (same as the label)
wlan C8:0E:77:xx:xx:B2 art@0x1002 (load automatically)
TFTP installation:
* Set local IP to 192.168.67.100 and open tftpd64, link lan
port to computer.
Rename "xxxx-factory.bin" to
"openwrt-ar71xx-generic-ap147-16M-rootfs-squashfs.bin".
* Make sure firmware file is in the tftpd's directory, push
reset button and plug in, hold it for 5 seconds, and then
it will download firmware from tftp server automatically.
More information:
* This device boot from flash@0xe80000 so we need a okli
loader to deal with small kernel partition issue. In order
to make full use of the storage space, connect a part of the
previous kernel partition to the firmware.
Stock Modify
0x000000-0x040000(u-boot) 0x000000-0x040000(u-boot)
0x040000-0x050000(u-boot-env) 0x000000-0x050000(u-boot-env)
0x050000-0xe80000(rootfs) 0x050000-0xe80000(firmware part1)
0xe80000-0xff0000(kernel) 0xe80000-0xe90000(okli-loader)
0xe90000-0xff0000(firmware part2)
0xff0000-0x1000000(art) 0xff0000-0x1000000(art)
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Dongwon T&I DW02-412H is a 2.4/5GHz band 11ac (WiFi-5) router, based on
Qualcomm Atheros QCA9557.
Specifications
--------------
- SoC: Qualcomm Atheros QCA9557-AT4A
- RAM: DDR2 128MB
- Flash: SPI NOR 2MB (Winbond W25Q16DVSSIG / ESMT F25L16PA(2S)) +
NAND 64/128MB
- WiFi:
- 2.4GHz: QCA9557 WMAC
- 5GHz: QCA9882-BR4A
- Ethernet: 5x 10/100/1000Mbps
- Switch: QCA8337N-AL3C
- USB: 1x USB 2.0
- UART:
- JP2: 3.3V, TX, RX, GND (3.3V is the square pad) / 115200 8N1
Installation
--------------
1. Connect a serial interface to UART header and
interrupt the autostart of kernel.
2. Transfer the factory image via TFTP and write it to the NAND flash.
3. Update U-Boot environment variable.
> tftpboot 0x81000000 <your image>-factory.img
> nand erase 0x1000000
> nand write 0x81000000 0x1000000 ${filesize}
> setenv bootpart 2
> saveenv
Revert to stock firmware
--------------
1. Revert to stock U-Boot environment variable.
> setenv bootpart 1
> saveenv
MAC addresses as verified by OEM firmware
--------------
WAN: *:XX (label)
LAN: *:XX + 1
2.4G: *:XX + 3
5G: *:XX + 4
The label MAC address was found in art 0x0.
Credits
--------------
Credit goes to the @manatails who first developed how to port OpenWRT
to this device and had a significant impact on this patch.
And thanks to @adschm and @mans0n for guiding me to revise the code
in many ways.
Signed-off-by: Jihoon Han <rapid_renard@renard.ga>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
Tested-by: Sungbo Eo <mans0n@gorani.run>
This patch enables the SFP cage on the MikroTik RouterBOARD 921GS-5HPacD
(mANTBox 15s).
The RB922UAGS-5HPacD had it already working, so the support code is
moved to the common DTSI file both devices share.
Tested on a RouterBOARD 921GS-5HPacD with a MikroTik S-53LC20D module.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
OpenWrt maintains two special out-of-tree DT properties:
"qca,disable-5ghz" and "qca,disable-2ghz". These are implemented
in a mac80211 ath9k patch "550-ath9k-disable-bands-via-dt.patch".
With the things being what they are, now might be a good
point to switch the devices to the generic and upstream
"ieee80211-freq-limit" property. This property is much
broader and works differently. Instead of disabling the
drivers logic which would add the affected band and
channels. It now disables all channels which are not
within the specified frequency range.
Reviewed-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Tested-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> # HH5A
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
TP-Link CPE710-v1 is an outdoor wireless CPE for 5 GHz with
one Ethernet port based on the AP152 reference board
Specifications:
- SoC: QCA9563-AL3A MIPS 74kc @ 775MHz, AHB @ 258MHz
- RAM: 128MiB DDR2 @ 650MHz
- Flash: 16MiB SPI NOR Based on the GD25Q128
- Wi-Fi 5Ghz: ath10k chip (802.11ac for up to 867Mbps on 5GHz wireless
data rate) Based on the QCA9896
- Ethernet: one 1GbE port
- 23dBi high-gain directional 2×2 MIMO antenna and a dedicated metal
reflector
- Power, LAN, WLAN5G Blue LEDs
- 3x Blue LEDs
Flashing instructions:
Flash factory image through stock firmware WEB UI or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 30-40 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP address:192.168.0.254
Signed-off-by: Andrew Cameron <apcameron@softhome.net>
[convert to nvmem, fix MAC assignment in 11-ath10k-caldata]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device is a wireless access point working on the 2.4 GHz and 5 GHz
band, based on Qualcomm/Atheros QCA9563 + QCA9886.
Specification
- 775 MHz CPU
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- QCA9563: 2.4 GHz 3x3
- QCA9886: 5 GHz
- AR8033: 1x 1 Gbs Ethernet
- 4x LED, WPS factory reset and power button
- bare UART on PCB (accessible through testpoints)
Methods for Flashing:
- Apply factory image in OEM firmware web-gui. Wait a minute after the
progress bar completes and restart the device.
- Sysupgrade on top of existing OpenWRT image
- Solder wires onto UART testpoints and attach a terminal.
Boot the device and press enter to enter u-boot's menu. Then issue the
following commands
1. setenv serverip your-server-ip
setenv ipaddr your-device-ip
2. tftp 0x80060000 openwrt-squashfs.bin (Rembember output of size in
hex, henceforth "sizeinhex")
3. erase 0x9f030000 +"sizeinhex"
4. cp.b 0x80060000 0x9f030000 0x"sizeinhex"
5. reboot
Recover:
- U-boot serial console
Signed-off-by: Robert Balas <balasr@iis.ee.ethz.ch>
[convert to nvmem]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Onion Omega is a hardware development platform with built-in WiFi.
https://onioniot.github.io/wiki/
Specifications:
- QCA9331 @ 400 MHz (MIPS 24Kc Big-Endian Processor)
- 64MB of DDR2 RAM running at 400 MHz
- 16MB of on-board flash storage
- Support for USB 2.0
- Support for Ethernet at 100 Mbps
- 802.11b/g/n WiFi at 150 Mbps
- 18 digital GPIOs
- A single Serial UART
- Support for SPI
- Support for I2S
Flash instructions:
The device is running OpenWrt upon release using the ar71xx target.
Both a sysupgrade
and uploading the factory image using u-boots web-UI do work fine.
Depending on the ssh client, it might be necessary to enable outdated
KeyExchange methods e.g. in the clients ssh-config:
Host 192.168.1.1
KexAlgorithms +diffie-hellman-group1-sha1
The stock credentials are: root onioneer
For u-boots web-UI manually configure `192.168.1.2/24` on your computer,
connect to `192.168.1.1`.
MAC addresses as verified by OEM firmware:
2G phy0 label
LAN eth0 label - 1
LAN is only available in combination with an optional expansion dock.
Based on vendor acked commit:
commit 5cd49bb067 ("ar71xx: add support for Onion Omega")
Partly reverts:
commit fc553c7e4c ("ath79: drop unused/incomplete dts")
Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
Specifications:
- SoC: QCA9558
- DRAM: 128MB DDR2
- Flash: 16MB SPI-NOR
- Wireless: on-board abgn 2×2 2.4GHz radio
- Ethernet: 2x 10/100/1000 Mbps (1x 802.11af PoE)
- miniPCIe slot
Flash instruction:
- From u-boot
tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj558-16m-squashfs-sysupgrade.bin
erase 0x9f030000 +$filesize
cp.b $fileaddr 0x9f030000 $filesize
boot
- From cpximg loader
The cpximg loader can be started either by holding the reset button
during power up. Once it's running, a TFTP-server under 192.168.1.1 will accept
the image appropriate for the board revision that is etched on the board.
For example, if the board is labelled '6A07':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj558-16m-squashfs-cpximg-6a07.bin
Signed-off-by: Romain Mahoux <romain@mahoux.fr>
[convert to nvmem, remove redundant lan_mac in 02_network]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Atheros DB120 reference board.
Specifications:
SoC: QCA9344
DRAM: 128Mb DDR2
Flash: 8Mb SPI-NOR, 128Mb NAND flash
Switch: 5x 10/100Mbps via AR8229 switch (integrated into SoC),
5x 10/100/1000Mbps via QCA8237 via RGMII
WLAN: AR9300 (SoC, 2.4G+5G) + AR9340 (PCIe, 5G-only)
USB: 1x 2.0
UART: standard QCA UART header
JTAG: yes
Button: 1x reset
LEDs: a lot
Slots: 2x mPCIe + 1x mini-PCI, but using them requires
additional undocumented changes.
Misc: The board allows to boot off NAND, and there is
I2S audio support as well - also requiring
additional undocumented changes.
Installation:
1. Original bootloader
Connect the board to ethernet
Set up a server with an IP address of 192.168.1.10
Make the openwrt-ath79-generic-atheros_db120-squashfs-factory.bin
available via TFTP
tftpboot 0x80060000 openwrt-ath79-generic-atheros_db120-squashfs-factory.bin
erase 0x9f050000 +$filesize
cp.b $fileaddr 0x9f050000 $filesize
2. pepe2k's u-boot_mod
Connect the board to ethernet
Set up a server with an IP address of 192.168.1.10
Make the openwrt-ath79-generic-atheros_db120-squashfs-factory.bin
available via TFTP, as "firmware.bin"
run fw_upg
Reboot the board.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
[explicit factory recipe in generic.mk, sorting in 10-ath9k-eeprom,
convert to nvmem, use fwconcat* names in DTS, remove unneeded DT
labels, remove redundant uart node]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the Ubiquiti PowerBeam M2 (XW), e.g. PBE-M2-400,
a 802.11n wireless with a feed+dish form factor. This device was previously
supported by the ar71xx loco-m-xw firmware.
Specifications:
- Atheros AR9342 SoC
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet port, 24 Vdc PoE-in
- Power and LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1)
Flashing via stock GUI:
- Downgrade to AirOS v5.5.x (latest available is 5.5.10-u2) first (see
https://openwrt.org/toh/ubiquiti/powerbeam installation instructions)
- Upload the factory image via AirOS web GUI.
Flashing via TFTP:
- Use a pointy tool (e.g., unbent paperclip) to keep the
reset button pressed.
- Power on the device (keep reset button pressed).
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button.
- The device starts a TFTP server at 192.168.1.20.
- Set a static IP on the computer (e.g., 192.168.1.21/24).
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-ubnt_powerbeam-m2-xw-squashfs-factory.bin
WARNING: so far, no non-destructive method has been discovered for
opening the enclosure to reach the serial console. Internal photos
are available here: https://fcc.io/SWX-NBM2HP
Signed-off-by: Russell Senior <russell@personaltelco.net>
The commit [1] added support for Ubiquiti PowerBeam M (XW), tested
on the PBE-M5-400. But, it turns out the PBE-M2-400 has a different
ethernet configuration, so make the support specific to the m5 version
in anticipation of adding specific support for the m2 in a separate
commit.
[1] 12eb5b2384 ("ath79: add support for Ubiquiti PowerBeam M (XW)")
Signed-off-by: Russell Senior <russell@personaltelco.net>
[fix model name in DTS, format commit reference in commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Due to use of a script when migrating from mtd-mac-address, a few
of the definitions are redundant in DTSI and DTS files. Remove
those and consolidate the definitions in parent DTSI files in a
few cases.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Since the nvmem-based approach for retrieving MAC addresses
appears to depend on the addresses being set up after the
partitions, it is no longer possible to keep the MAC address
setup in shared DTSI files while the partitions itself are
set up in DTS files for the individual devices.
In ath79 the firmware partition is typically located somewhere
"in the middle" of the partition table. Thus, it's not trivial
to share the partitions containing MAC address information in
a common DTSI (like we did in some cases on ramips).
In this commit, MAC address setup is thus moved to the relevant
partitions, and in most cases needs to be duplicated. While
the duplication is not really nice, it eventually provides a
cleaner and more tidy setup, making the DTS(I) file
fragmentation a bit more logical. This should also help
with adding new devices, as information is distributed across
less locations.
For consistency, this commit also moves the mtd-cal-data property
"down" together with the MAC address setup, so it's not based
on a partition before the latter is defined either. (This is
only done for those files touched due to nvmem conversion.)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The GL-X300B is a industrial 4G LTE router based on the Qualcomm
QCA9531 SoC.
Specifications:
- Qualcomm QCA9531 @ 650 MHz
- 128 MB of RAM
- 16 MB of SPI NOR FLASH
- 2x 10/100 Mbps Ethernet
- 2.4GHz 802.11b/g/n
- 1x USB 2.0 (vbus driven by GPIO)
- 4x LED, driven by GPIO
- 1x button (reset)
- 1x mini pci-e slot (vcc driven by GPIO)
- RS-485 Serial Port (untested)
Flash instructions:
This firmware can be flashed using either sysupgrade from the GL.iNet
firmware or the recovery console as follows:
- Press and hold the reset button
- Connect power to the router, wait five seconds
- Manually configure 192.168.1.2/24 on your computer, connect to
192.168.1.1
- Upload the firmware image using the web interface
RS-485 serial port is untested and may depend on the following commit in
the GL.iNet repo:
202e83a32a
MAC addresses as verified by OEM firmware:
vendor OpenWrt address
WAN eth0 label
LAN eth1 label + 1
2g phy0 label + 2
The label MAC address was found in the art partition at 0x0
Based on vendor commit:
16c5708b20
Signed-off-by: John Marrett <johnf@zioncluster.ca>
The LEDs for LAN1 and LAN3 were swapped. Link on port 1 would illuminate
the LED on port 3 and vice versa.
Signed-off-by: David Bauer <mail@david-bauer.net>
Without explicit configuration of these pins the ethernet as well as
status LED of the device do not work correctly.
Signed-off-by: David Bauer <mail@david-bauer.net>
Specifications:
* QCA9531, 16 MiB flash (Winbond W25Q128JVSQ), 128 MiB RAM
* 802.11n 2T2R (external antennas)
* QCA9887, 802.11ac 1T1R (connected with diplexer to one of the antennas)
* 3x 10/100 LAN, 1x 10/100 WAN
* UART header with pinout printed on PCB
Installation:
* The device comes with a bootloader installed only
* The bootloader offers DHCP and is reachable at http://10.123.123.1
* Accept the agreement and flash sysupgrade.bin
* Use Firefox if flashing does not work
TFTP recovery with static IP:
* Rename sysupgrade.bin to jt-or750i_firmware.bin
* Offer it via TFTP server at 192.168.0.66
* Keep the reset button pressed for 4 seconds after connecting power
TFTP recovery with dynamic IP:
* Rename sysupgrade.bin to jt-or750i_firmware.bin
* Offer it via TFTP server with a DHCP server running at the same address
* Keep the reset button pressed for 6 seconds after connecting power
Co-authored-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Vincent Wiemann <vincent.wiemann@ironai.com>
Define nvmem-cells and convert mtd-mac-address to nvmem implementation.
The conversion is done with an automated script.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Rework patch 681-NET-add-mtd-mac-address-support to implement
only the function to read the mac-address from mtd.
Generalize mtd-mac-address-increment function so it can be applied
to any source of of_get_mac_address.
Rename any mtd-mac-address-increment to mac-address-increment.
Rename any mtd-mac-address-increment-byte to mac-address-increment-byte.
This should make simplify the conversion of target to nvmem implementation.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
The MX25L12805D used on all ath79 OCEDO boards supports clock
speeds up to 50 MHz.
Thus, we can increase the maximum SPI frequency the flash chip is
controlled at to 50 MHz, increasing transfer speed.
Signed-off-by: David Bauer <mail@david-bauer.net>
The M25P80 used on the Siemens WS-AP3610 supports clock speeds up to 54
MHz. Thus, we can safely increase the maximum SPI frequency the flash
chip is controlled at to 50 MHz, increasing transfer speed.
Signed-off-by: David Bauer <mail@david-bauer.net>
Device specifications
* SoC: QCA9563 @ 775MHz (MIPS 74Kc)
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR (EN25QH128)
* Wireless 2.4GHz (SoC): b/g/n, 3x3
* Wireless 5Ghz (QCA9988): a/n/ac, 4x4 MU-MIMO
* IoT Wireless 2.4GHz (QCA6006): currently unusable
* Ethernet (AR8327): 3 LAN × 1GbE, 1 WAN × 1GbE
* LEDs: Internet (blue/orange), System (blue/orange)
* Buttons: Reset
* UART: through-hole on PCB ([VCC 3.3v](RX)(GND)(TX) 115200, 8n1)
* Power: 12VDC, 1,5A
MAC addresses map (like in OEM firmware)
art@0x0 88:C3:97:*:57 wan/label
art@0x1002 88:C3:97:*:2D lan/wlan2g
art@0x5006 88:C3:97:*:2C wlan5g
Obtain SSH Access
1. Download and flash the firmware version 1.3.8 (China).
2. Login to the router web interface and get the value of `stok=` from the
URL
3. Open a new tab and go to the following URL (replace <STOK> with the stok
value gained above; line breaks are only for easier handling, please put
together all four lines into a single URL without any spaces):
http://192.168.31.1/cgi-bin/luci/;stok=<STOK>/api/misystem/set_config_iotdev
?bssid=any&user_id=any&ssid=-h%0Anvram%20set%20ssh_en%3D1%0Anvram%20commit
%0Ased%20-i%20%27s%2Fchannel%3D.%2A%2Fchannel%3D%5C%5C%22debug%5C%5C%22%2F
g%27%20%2Fetc%2Finit.d%2Fdropbear%0A%2Fetc%2Finit.d%2Fdropbear%20start%0A
4. Wait 30-60 seconds (this is the time required to generate keys for the
SSH server on the router).
Create Full Backup
1. Obtain SSH Access.
2. Create backup of all flash (on router):
dd if=/dev/mtd0 of=/tmp/ALL.backup
3. Copy backup to PC (on PC):
scp root@192.168.31.1:/tmp/ALL.backup ./
Tip: backup of the original firmware, taken three times, increases the
chances of recovery :)
Calculate The Password
* Locally using shell (replace "12345/E0QM98765" with your router's serial
number):
On Linux
printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \
md5sum - | head -c8 && echo
On macOS
printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \
md5 | head -c8
* Locally using python script (replace "12345/E0QM98765" with your
router's serial number):
wget https://raw.githubusercontent.com/eisaev/ax3600-files/master/scripts/calc_passwd.py
python3.7 -c 'from calc_passwd import calc_passwd; print(calc_passwd("12345/E0QM98765"))'
* Online
https://www.oxygen7.cn/miwifi/
Debricking (lite)
If you have a healthy bootloader, you can use recovery via TFTP using
programs like TinyPXE on Windows or dnsmasq on Linux. To switch the router
to TFTP recovery mode, hold down the reset button, connect the power
supply, and release the button after about 10 seconds. The router must be
connected directly to the PC via the LAN port.
Debricking
You will need a full dump of your flash, a CH341 programmer, and a clip
for in-circuit programming.
Install OpenWRT
1. Obtain SSH Access.
2. Create script (on router):
echo '#!/bin/sh' > /tmp/flash_fw.sh
echo >> /tmp/flash_fw.sh
echo '. /bin/boardupgrade.sh' >> /tmp/flash_fw.sh
echo >> /tmp/flash_fw.sh
echo 'board_prepare_upgrade' >> /tmp/flash_fw.sh
echo 'mtd erase rootfs_data' >> /tmp/flash_fw.sh
echo 'mtd write /tmp/openwrt.bin firmware' >> /tmp/flash_fw.sh
echo 'sleep 3' >> /tmp/flash_fw.sh
echo 'reboot' >> /tmp/flash_fw.sh
echo >> /tmp/flash_fw.sh
chmod +x /tmp/flash_fw.sh
3. Copy `openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin`
to the router (on PC):
scp openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin \
root@192.168.31.1:/tmp/openwrt.bin
4. Flash OpenWRT (on router):
/bin/ash /tmp/flash_fw.sh &
5. SSH connection will be interrupted - this is normal.
6. Wait for the indicator to turn blue.
Signed-off-by: Evgeniy Isaev <isaev.evgeniy@gmail.com>
[improve commit message formatting slightly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SOC: Qualcomm Atheros TP9343 (750 MHz)
Flash: 8 Mb (GigaDevice GD25Q64CSIG)
RAM: 64 Mb (Zentel A3R12E40DBF-8E)
Serial: yes, 4-pin header
Wlan: Qualcomm Atheros TP9343, antenna: MIM0 3x3:3 RP-SMA
3 x 2.4GHz power amp module Skyworks (SiGe) SE2576L
Ethernet: Qualcomm Atheros TP9343
Lan speed: 100M ports: 4
Lan speed: 100M ports: 1
Other info: same case, ram and flash that TP-Link TL-WR841HP,
different SOC
https://forum.openwrt.org/t/adding-device-support-tp-link-wr941hp/
Label MAC addresses based on vendor firmware:
LAN *:ee label
WAN *:ef label +1
WLAN *:ee label
The label MAC address found in "config" partition at 0x8
Flash instruction:
Upload the generated factory firmware on web interface.
Signed-off-by: Diogenes Rengo <rengocbx250@gmail.com>
[remove various whitespace issues, squash commits, use short 0x0]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the Ubiquiti PowerBeam M (XW), e.g. PBE-M5-400,
a 802.11n wireless with a feed+dish form factor. This device was previously
supported by the ar71xx loco-m-xw firmware.
Specifications:
- Atheros AR9342 SoC
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet port, 24 Vdc PoE-in
- Power and LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1)
Flashing via stock GUI:
- Downgrade to AirOS v5.5.x (latest available is 5.5.10-u2) first (see
https://openwrt.org/toh/ubiquiti/powerbeam installation instructions)
- Upload the factory image via AirOS web GUI.
Flashing via TFTP:
- Use a pointy tool (e.g., unbent paperclip) to keep the
reset button pressed.
- Power on the device (keep reset button pressed).
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button.
- The device starts a TFTP server at 192.168.1.20.
- Set a static IP on the computer (e.g., 192.168.1.21/24).
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_powerbeam-m-xw-squashfs-factory.bin
WARNING: so far, no non-destructive method has been discovered for
opening the enclosure to reach the serial console. Internal photos
are available here: https://fcc.io/SWX-NBM5HP
Signed-off-by: Russell Senior <russell@personaltelco.net>
The ar71xx GPIO driver only uses 0x24 registers, all following GPIO
registers are using to control pinmux functions, which are not handles
by the GPIO driver but the generic Linux pinctrl driver.
For some SoC conflicting address ranges were defined for these (AR7240 &
AR9330).
Resolve these cases and align the address space of the GPIO controller
between all SoCs, as the used address space of the driver is identical
for all these.
Signed-off-by: David Bauer <mail@david-bauer.net>
Analysis done by Denis Kalashnikov:
It seems that some ROS versions on some routerboard models have this bug:
after silence boot (no output to uart, no beeps) beeper clicks when wireless traffic is.
https://forum.mikrotik.com/viewtopic.php?f=3&t=92269https://forum.mikrotik.com/viewtopic.php?t=63399
From these links:
1)
Hello, I have RB951G-2HnD and I noticed strange thing
when I loaded the device with some wireless traffic it
produced strange sound - like hissing, fizzing etc.
2)
Same problem still on 6.33, with silent boot enabled
I hear buzzing noise on wireless load.
3)
The sound is fixed in v5.19, it was a bug that caused beeper to make clicks.
It also got fixed in RouterOS:
* What's new in 5.19 (2012-Jul-16 10:51):
fix ticking sound on RB411UAHL;
* What's new in 6.38.3 (2017-Feb-07 09:52):
rb3011 - fixed noise from buzzer after silent boot;
I've checked with an oscilloscope that:
* When on the ssr beeper pin is 0,
on the beeper itself is 1 (~5V),
and when on the ssr beeper pin is 1,
on the beeper is 0
The beeper doesn't consume power,
so 1 should be a default/idle value for the ssr beeper pin).
* When there is wireless traffic (ping packets)
in the background and the beeper clicks, I see
pulses on the beeper itself,
but no pulses on the ssr beeper pin (Q5 pin of 74hc595).
When I manually toggle the ssr beeper pin I see pulses on both.
So, it is likely that the phantom beeper clicks are caused by the EMI.
Suggested-by: Denis Kalashnikov <denis281089@gmail.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This commit adds support for the Teltonika RUT230 v1, a Atheros AR9331
based router with a Quectel UC20 UMTS modem.
Hardware
--------
Atheros AR9331
16 MB SPI-NOR XTX XT25F128B
64M DDR2 memory
Atheros AR9331 1T1R 802.11bgn Wireless
Boootloader: pepe2k U-Boot mod
Hardware-Revision
-----------------
There are two board revisions of the RUT230, a v0 and v1.
A HW version is silkscreened on the top of the PCBs front side as well
as shown in the Teltonika UI. However, this looks to be a different
identifier, as the GPl dump shows this silkscreened / UI shown version
are internally treated identically.
Th following mapping has been obtained from the latest GPl dump.
HW Ver 01 - 04 --> v0
HW Ver > 05 --> v1
My board was a HW Ver 09 and is treated as a v1.
Installation
------------
While attaching power, hold down the reset button and release it after
the signal LEDs flashed 3 times.
Attach your Computer with the devices LAN port and assign yourself the
IPv4 address 192.168.1.10/24. Open a web browser, navigate to
192.168.1.1. Upload the OpenWrt factory image.
The device will install OpenWrt and automatically reboots afterwards.
You can use the smae procedure with the stock firmware to return back to
the vendor firmware.
Signed-off-by: David Bauer <mail@david-bauer.net>
This board has been supported in the ar71xx.
Links:
* https://mikrotik.com/product/RB912UAG-2HPnD
* https://openwrt.org/toh/hwdata/mikrotik/mikrotik_rb912uag-2hpnd
This also supports the 5GHz flavour of the board.
Hardware:
* SoC: Atheros AR9342,
* RAM: DDR 64MB,
* SPI NOR: 64KB,
* NAND: 128MB,
* Ethernet: x1 10/100/1000 port with passive POE in,
* Wi-Fi: 802.11 b/g/n,
* PCIe,
* USB: 2.0 EHCI controller, connected to mPCIe slot and a Type-A
port -- both can be used for LTE modem, but only one can be
used at any time.
* LEDs: 5 general purpose LEDs (led1..led5), power LED, user LED,
Ethernet phy LED,
* Button,
* Beeper.
Not working:
* Button: it shares gpio line 15 with NAND ALE and NAND IO7,
and current drivers doesn't easily support this configuration,
* Beeper: it is connected to bit 5 of a serial shift register
(tested with sysfs led trigger timer). But kmod-gpio-beeper
doesn't work -- we left this as is for now.
Flashing:
* Use the RouterBOARD Reset button to enable TFTP netboot,
boot kernel and initramfs and then perform sysupgrade.
* From ar71xx OpenWrt firmware run:
$ sysupgrade -F /tmp/<sysupgrade.bin>
For more info see: https://openwrt.org/toh/mikrotik/common.
Co-Developed-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Denis Kalashnikov <denis281089@gmail.com>
Specifications:
- QCA9533 SoC, 8 MB nor flash, 64 MB DDR2 RAM
- 2x2 9dBi antenna, wifi 2.4Ghz 300Mbps
- 4x Ethernet LAN 10/100, 1x Ethernet WAN 10/100
- 1x WAN, LAN, Wifi, PWR, WPS, RE Leds
- Reset, Wifi on/off, WPS, RE buttons
- Serial UART at J4 onboard: 3.3v GND RX TX, 1152008N1
Label MAC addresses based on vendor firmware:
LAN *:ea label
WAN *:eb label +1
2.4 GHz *:ea label
The label MAC address in found in u-boot 0x1fc00
Installation:
Upload openwrt-ath79-generic-tplink_tl-wr841hp-v3-squashfs-factory.bin
from stock firmware webgui.
Maybe we need rename to shorten file name due to stock webgui error.
Revert back to stock firmware instructions:
- set your PC to static IP address 192.168.0.66 netmask 255.255.255.0
- download stock firmware from Tp-link website
- put it in the root directory of tftp server software
- rename it to wr841hpv3_tp_recovery.bin
- power on while pressing Reset button until any Led is lighting up
- wait for the router to reboot. done
Forum support topic:
https://forum.openwrt.org/t/support-for-tp-link-tl-wr841hp-v3-router
Signed-off-by: Andy Lee <congquynh284@yahoo.com>
[rebase and squash]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This replaces the register bits for RGMII delay on the MAC side in favor
of having the RGMII delay on the PHY side by setting the phy-mode
property to rgmii-id (RGMII internal delay), which is supported by the
at803x driver. Speed 1000 is fixed as a result, so now all ethernet
speeds function.
Signed-off-by: Jonathan A. Kollasch <jakllsch@kollasch.net>
Reviewed-by: Michael Pratt <mcpratt@pm.me>
NEC Aterm WF1200CR is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
QCA9561.
Specification:
- SoC : Qualcomm Atheros QCA9561
- RAM : DDR2 128 MiB (W971GG6SB-25)
- Flash : SPI-NOR 8 MiB (MX25L6433FM2I-08G)
- WLAN : 2.4/5 GHz 2T2R
- 2.4 GHz : QCA9561 (SoC)
- 5 GHz : QCA9888
- Ethernet : 2x 10/100 Mbps
- Switch : QCA9561 (SoC)
- LEDs/Keys : 8x/3x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- JP1: Vcc, GND, NC, TX, RX from "JP1" marking
- 115200n8
- Power : 12 VDC, 0.9 A
Flash instruction using factory image (stock: < v1.3.2):
1. Boot WF1200CR normally with "Router" mode
2. Access to "http://192.168.10.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click update ("更新") button to
perform firmware update
4. Wait ~150 seconds to complete flashing
Alternate flash instruction using initramfs image (stock: >= v1.3.2):
1. Prepare the TFTP server with the IP address 192.168.1.10 and place
the OpenWrt initramfs image to the TFTP directory with the name
"0101A8C0.img"
2. Connect serial console to WF1200CR
3. Boot WF1200CR and interrupt with any key after the message
"Hit any key to stop autoboot: 2", the U-Boot starts telnetd after
the message "starting telnetd server from server 192.168.1.1"
4. login the telnet (address: 192.168.1.1)
5. Perform the following commands to modify "bootcmd" variable
temporary and check the value
(to ignore the limitation of available commands, "tp; " command at
the first is required as dummy, and the output of "printenv" is
printed on the serial console)
tp; set bootcmd 'set autostart yes; tftpboot'
tp; printenv
6. Save the modified variable with the following command and reset
device
tp; saveenv
tp; reset
7. The U-Boot downloads initramfs image from TFTP server and boots it
8. On initramfs image, download the sysupgrade image to the device and
perform the following commands to erase stock firmware and sysupgrade
mtd erase firmware
sysupgrade <sysupgrade image>
9. After the rebooting by completion of sysupgrade, start U-Boot telnetd
and login with the same way above (3, 4)
10. Perform the following commands to reset "bootcmd" variable to the
default and reset the device
tp; run seattle
tp; reset
(the contents of "seattle":
setenv bootcmd 'bootm 0x9f070040' && saveenv)
11. Wait booting-up the device
Known issues:
- the following 6x LEDs are connected to the gpio controller on QCA9888
chip and the implementation of control via the controller is missing in
ath10k/ath10k-ct
- "ACTIVE" (Red/Green)
- "2.4GHz" (Red/Green)
- "5GHz" (Red/Green)
Note:
- after the version v1.3.2 of stock firmware, "offline update" by
uploading image by user is deleted and the factory image cannot be
used
- the U-Boot on WF1200CR doesn't configure the port-side LEDs on WAN/LAN
and the configuration is required on OpenWrt
- gpio-hog: set the direction of GPIO 14(WAN)/19(LAN) to output
- pinmux: set GPIO 14/19 as switch-controlled LEDs
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
This patch adds support for the Devolo dLAN pro 1200+ WiFi ac.
This device is a plc wifi AC2400 router/extender with 2 Ethernet ports,
has a QCA7500 PLC and uses the HomePlug AV2 standard.
Other than the PLC the hardware is identical to the Devolo Magic 2 WIFI.
Therefore it uses the same dts, which was moved to a dtsi to be included
by both boards.
This is a board that was previously included in the ar71xx tree.
Hardware:
SoC: AR9344
CPU: 560 MHz
Flash: 16 MiB (W25Q128JVSIQ)
RAM: 128 MiB DDR2
Ethernet: 2xLAN 10/100/1000
PLC: QCA75000 (Qualcomm HPAV2)
PLC Uplink: 1Gbps MIMO
PLC Link: RGMII 1Gbps (WAN)
WiFi: Atheros AR9340 2.4GHz 802.11bgn
Atheros AR9882-BR4A 5GHz 802.11ac
Switch: QCA8337, Port0:CPU, Port2:PLC, Port3:LAN1, Port4:LAN2
Button: 3x Buttons (Reset, wifi and plc)
LED: 3x Leds (wifi, plc white, plc red)
GPIO Switch: 11-PLC Pairing (Active Low)
13-PLC Enable
21-WLAN power
MACs Details verified with the stock firmware:
Radio1: 2.4 GHz &wmac *:4c Art location: 0x1002
Radio0: 5.0 GHz &pcie *:4d Art location: 0x5006
Ethernet ðernet *:4e = 2.4 GHz + 2
PLC uplink --- *:4f = 2.4 GHz + 3
Label MAC address is from PLC uplink
The Powerline (PLC) interface of the dLAN pro 1200+ WiFi ac requires 3rd
party firmware which is not available from standard OpenWrt package
feeds. There is a package feed on github which you must add to
OpenWrt buildroot so you can build a firmware image which supports the
plc interface.
See: https://github.com/0xFelix/dlan-openwrt (forked from Devolo and
added compatibility for OpenWrt 21.02)
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.100
2. Download the sysupgrade image and rename it to uploadfile
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Allow 1-2 minutes for the first boot.
Signed-off-by: Felix Matouschek <felix@matouschek.org>
[add "plus" to compatible and device name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
CPExxx and WBSxxx boards with AR9344 SOC
use the OKLI lzma kernel loader
with the offset of 3 blocks of length 4k (0x3000)
in order to have a fake "kernel" that cannot grow larger
than how it is defined in the now static OEM partition table.
Before recent changes to the mtdsplit driver,
the uImage parser for OKLI only supported images
that started exactly on an eraseblock boundary.
The mtdsplit parser for uImage now supports identifying images
with any magic number value
and at any offset from the eraseblock boundary
using DTS properties to define those values.
So, it is no longer necessary to use fixed sizes
for kernel and rootfs
Tested-by: Andrew Cameron <apcameron@softhome.net> [CPE510 v2]
Tested-by: Bernhard Geier <freifunk@geierb.de> [WBS210 v2]
Tested-by: Petrov <d7c48mWsPKx67w2@gmail.com> [CPE210 v1]
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Specifications:
SoC: QCA9533
DRAM: 32Mb DDR1
Flash: 8/16Mb SPI-NOR
LAN: 4x 10/100Mbps via AR8229 switch (integrated into SoC)
on GMII
WAN: 1x 10/100Mbps via MII
WLAN: QCA9530
USB: 1x 2.0
UART: standard QCA UART header
JTAG: yes
Button: 1x WPS, 1x reset
LEDs: 8x LEDs
A version with 4Mb flash is also available, but due to lack of
enough space it's not supported.
As the original flash layout does not provide enough space for
the kernel (1472k), the firmware uses OKLI and concat flash to
overcome the limitation without changing the boot address of the
bootloaders.
Installation:
1. Original bootloader
Connect the board to ethernet
Set up a server with an IP address of 192.168.1.10
Make the openwrt-ath79-generic-qca_ap143-8m-squashfs-factory.bin
available via TFTP
tftpboot 0x80060000 openwrt-ath79-generic-qca_ap143-8m-squashfs-factory.bin
erase 0x9f050000 +$filesize
cp.b $fileaddr 0x9f050000 $filesize
Reboot the board.
2. pepe2k's u-boot_mod
Connect the board to ethernet
Set up a server with an IP address of 192.168.1.10
Make the openwrt-ath79-generic-qca_ap143-8m-squashfs-factory.bin
available via TFTP, as "firmware.bin"
run fw_upg
Reboot the board.
For the 16M version of the board, please use
openwrt-ath79-generic-qca_ap143-16m-squashfs-factory.bin
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
[use fwconcatX names, drop redundant uart status, fix IMAGE_SIZE,
set up IMAGE/factory.bin without metadata]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
- eth0
+ Label: Ethernet 1
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ AR8035 ethernet PHY (SGMII)
+ 10/100/1000 Mbps Ethernet
+ used as LAN interface
* 1x USB
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x ethernet
- eth0
+ Label: Ethernet 1
+ AR8035 ethernet PHY (RGMII)
+ 10/100/1000 Mbps Ethernet
+ 802.3af POE
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ AR8031 ethernet PHY (SGMII)
+ 10/100/1000 Mbps Ethernet
+ used as LAN interface
* 1x USB
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
ZiKing CPE46B is a POE outdoor 2.4ghz device with an integrated directional
antenna. It is low cost and mostly available via Aliexpress, references can
be found at:
- https://forum.openwrt.org/t/anddear-ziking-cpe46b-ar9331-ap121/60383
- https://git.lsd.cat/g/openwrt-cpe46b
Specifications:
- Atheros AR9330
- 32MB of RAM
- 8MB of flash (SPI NOR)
- 1 * 2.4ghz integrated antenna
- 2 * 10/100/1000 ethernet ports (1 POE)
- 3 * Green LEDs controlled by the SoC
- 3 * Green LEDs controlled via GPIO
- 1 * Reset Button controlled via GPIO
- 1 * 4 pin serial header on the PCB
- Outdoor packaging
Flashing instruction:
You can use sysupgrade image directly in vendor firmware which is based
on OpenWrt/LEDE. In case of issues with the vendor GUI, the vendor
Telnet console is vulnerable to command injection and can be used to gain
a shell directly on the OEM OpenWrt distribution.
Signed-off-by: Giulio Lorenzo <salveenee@mortemale.org>
[fix whitespaces, drop redundant uart status and serial0, drop
num-chipselects, drop 0x1002 MAC address for wmac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
COMFAST CF-E375AC is a ceiling mount AP with PoE support,
based on Qualcomm/Atheros QCA9563 + QCA9886 + QCA8337.
Short specification:
2x 10/100/1000 Mbps Ethernet, with PoE support
128MB of RAM (DDR2)
16 MB of FLASH
3T3R 2.4 GHz, 802.11b/g/n
2T2R 5 GHz, 802.11ac/n/a, wave 2
built-in 5x 3 dBi antennas
output power (max): 500 mW (27 dBm)
1x RGB LED, 1x button
built-in watchdog chipset
Flash instruction:
1) Original firmware is based on OpenWrt.
Use sysupgrade image directly in vendor GUI.
2) TFTP
2.1) Set a tftp server on your machine with a fixed IP address of
192.168.1.10. A place the sysupgrade as firmware_auto.bin.
2.2) boot the device with an ethernet connection on fixed ip route
2.3) wait a few seconds and try to login via ssh
3) TFTP trough Bootloader
3.1) open the device case and get a uart connection working
3.2) stop the autoboot process and test connection with serverip
3.3) name the sysupgrade image firmware.bin and run firmware_upg
MAC addresses:
Though the OEM firmware has four adresses in the usual locations,
it appears that the assigned addresses are just incremented in a
different way:
interface address location
LAN: *:DC 0x0
WAN *:DD 0x1002
WLAN 2.4g *:E6 n/a (0x0 + 10)
WLAN 5g *:DE 0x6
unused *:DF 0x5006
The MAC address pointed at the label is the one assign to the LAN
interface.
Signed-off-by: Joao Henrique Albuquerque <joaohccalbu@gmail.com>
[add label-mac-device, remove redundant uart status, fix whitespace
issues, fix commit message wrapping, remove x bit on DTS file]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The spi-ath79 driver performs the chipselect by writing to dedicated
register in the SPI register block. So the GPIO numbers were not used.
Tested-on: Enterasys WS-AP3705i
Signed-off-by: David Bauer <mail@david-bauer.net>
This patch enables the SFP cage on the MikroTik RouterBOARD 922UAGS-5HPacD.
GPIO16 (tx-disable-gpios) should be governed by the SFP driver to enable
or disable transmission, but no change is observed. Therefore, it is
left as output high to ensure the SFP module is forced to transmit.
Tested on a RouterBOARD 922UAGS-5HPacD board, with a CISCO GLC-LH-SMD
1310nm module and an unbranded GLC-T RJ45 Gigabit module. PC=>router
iperf3 tests deliver 440/300 Mbps up/down, both via regular eth0 port
or SFP port with RJ45 module. Bridge between eth0 and eth1 delivers
950 Mbps symmetric.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Fix the PLL register value for 10 Mbit/s link modes on TP-Link EAP
boards using a AR8033 SGMII PHY.
Otherwise, 10 Mbit/s links do not transfer data.
Reported-by: Tom Herbers <freifunk@tomherbers.de>
Tested-by: Tom Herbers <freifunk@tomherbers.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
Fix the PLL register value for 10 Mbit/s link modes on the UniFi AC Lite
/ Mesh / LR. Otherwise, 10 Mbit/s links do not transfer data.
Signed-off-by: David Bauer <mail@david-bauer.net>
Increase the spi-max frequency to 50 MHz, similar to the DIR-842.
Signed-off-by: Jan Forman <forman.jan96@gmail.com>
[improve commit title, fix commit message alignment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
pcie0 is the same for this generation of Senao APs
while eth0, eth1, and wmac can differ
the qca,no-eeprom property has no effect
for the ath10k drivers
Signed-off-by: Michael Pratt <mcpratt@pm.me>
use qca955x_senao_loader.dtsi
because it is the same hardware / partitioning
and some cleanup
Effects:
nodes to match similar boards
- keys
- eth0
- pcie0
bumps SPI frequency to 40 MHz
removes &pll node:
the property is defined in qca955x.dtsi
removes qca,no-eeprom:
has no effect with mtd-cal-data property
(also spelling)
Tested-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This device is a Senao-based product
using hardware and software from Senao
with the tar-gz platform for factory.bin
and checksum verification at boot time
using variables stored in uboot environment
and a 'failsafe' image when it fails.
Extremely similar hardware/software to Engenius EAP1200H
and other Engenius APs with qca955x
Tested-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Use a similar upgrade method for sysupgrade.bin, like factory.bin,
for Senao boards with the tar.gz OEM upgrade platform,
and 'failsafe' image which is loaded on checksum failure.
This is inspired by the OEM upgrade script /etc/fwupgrade.sh
and the existing platforms for dual-boot Senao boards.
Previously, if the real kernel was damaged or missing
the only way to recover was with UART serial console,
because the OKLI lzma-loader is programmed to halt.
uboot did not detect cases where kernel or rootfs is damaged
and boots OKLI instead of the failsafe image,
because the checksums stored in uboot environment
did not include the real kernel and rootfs space.
Now, the stored checksums include the space for both
the lzma-loader, kernel, and rootfs.
Therefore, these boards are now practically unbrickable.
Also, the factory.bin and sysupgrade.bin are now the same,
except for image metadata.
This allows for flashing OEM image directly from openwrt
as well as flashing openwrt image directly from OEM.
Make 'loader' partition writable so that it can be updated
during a sysupgrade.
tested with
ENS202EXT v1
EAP1200H
EAP350 v1
EAP600
ECB350 v1
ECB600
ENH202 v1
Signed-off-by: Michael Pratt <mcpratt@pm.me>
ath79/tiny kernel config has
CONFIG_MTD_SPI_NOR_USE_4K_SECTORS=y
from commit
05d35403b2
Because of this, these changes are required for 2 reasons:
1.
Senao devices in ath79/tiny
with a 'failsafe' partition and the tar.gz sysupgrade platform
and a flash chip that supports 4k sectors
will fail to reboot to openwrt after a sysupgrade.
the stored checksum is made with the 64k blocksize length
of the image to be flashed,
and the actual checksum changes after flashing due to JFFS2 space
being formatted within the length of the rootfs from the image
example:
0x440000 length of kernel + rootfs (from sysupgrade.bin)
0x439000 offset of rootfs_data (from kernel log)
2.
for boards with flash chips that support 4k sectors:
saving configuration over sysupgrade is not possible
because sysupgrade.tgz is appended at a 64k boundary
and the mtd parser starts JFFS2 at a 4k boundary.
for boards with flash chips that do not support 4k sectors:
partitioning with 4k boundaries causes a boot loop
from the mtd parser not finding kernel and rootfs.
Also:
Some of the Senao boards that belong in ath79/tiny,
for example ENH202,
have a flash chip that does not support 4k sectors
(no SECT_4K symbol in upstream source).
Because of this, partitioning must be different for these devices
depending on the flash chip model detected by the kernel.
Therefore:
this creates 2 DTSI files
to replace the single one with 64k partitioning
for 4k and 64k partitioning respectively.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
By using the same custom kernel header magic
in both OKLI lzma-loader, DTS, and makefile
this hack is not necessary anymore
However, "rootfs" size and checksum
must now be supplied by the factory.bin image
through a script that is accepted by the OEM upgrade script.
This is because Senao OEM scripts assume a squashfs header exists
at the offset for the original "rootfs" partition
which is actually the kernel + rootfs in this implementation,
and takes size value from the header that would be there with hexdump,
but this offset is now the uImage header instead.
This frees up 1 eraseblock
previously used by the "fakeroot" partition
for bypassing the OEM image verification.
Also, these Senao devices with a 'failsafe' partition
and the tar-gz factory.bin platform would otherwise require
flashing the new tar-gz sysupgrade.bin afterward.
So this also prevents having to flash both images
when starting from OEM or 'failsafe'
the OEM upgrade script verifies the header magic numbers,
but only the first two bytes.
Example:
[ "${magic_word_kernel}" = "2705" ] &&
[ "${magic_word_rootfs}" = "7371" -o "${magic_word_rootfs}" = "6873" ] &&
errcode="0"
therefore picked the magic number
0x73714f4b
which is
'sqOK'
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This device is a wireless router working on 2.4GHz band based on
Qualcom/Atheros AR9132 rev 2 SoC and is accompanied by Atheros AR9103
wireless chip and Realtek RTL8366RB/S switches. Due to two different
switches being used also two different devices are provided.
Specification:
- 400 MHz CPU
- 64 MB of RAM
- 32 MB of FLASH (NOR)
- 3x3:2 2.4 GHz 802.11bgn
- 5x 10/100/1000 Mbps Ethernet
- 4x LED, 3x button, On/Off slider, Auto/On/Off slider
- 1x USB 2.0
- bare UART header place on PCB
Flash instruction:
- NOTE: Pay attention to the switch variant and choose the image to
flash accordingly. (dmesg / kernel logs can tell it)
- Methods for flashing
- Apply factory image in OEM firmware web-gui.
- Sysupgrade on top of existing OpenWRT image
- U-Boot TFPT recovery for both stock or OpenWRT images:
The device U-boot contains a TFTP server that by default has
an address 192.168.11.1 (MAC 02:AA:BB:CC:DD:1A). During the boot
there is a time window, during which the device allows an image to
be uploaded from a client with address 192.168.11.2. The image will
be written on flash automatically.
1) Have a computer with static IP address 192.168.11.2 and the
router device switched off.
2) Connect the LAN port next to the WAN port in the device and the
computer using a network switch.
3) Assign IP 192.168.11.1 the MAC address 02:AA:BB:CC:DD:1A
arp -s 192.168.11.1 02:AA:BB:CC:DD:1A
4) Initiate an upload using TFTP image variant
curl -T <imagename> tftp://192.168.11.1
5) Switch on the device. The image will be uploaded subsequently.
You can keep an eye on the diag light on the device, it should
keep on blinking for a while indicating the writing of the image.
General notes:
- In the stock firmware the MAC address is the same among all
interfaces so it is left here that way too.
Recovery:
- TFTP method
- U-boot serial console
Differences to ar71xx platform
- This device is split in two different targets now due to hardware
being a bit different under the hood. Dynamic solution within the same
image is left for later time.
- GPIOs for a sliding On/Off switch, marked 'Movie engine' on the device
cover, were the wrong way around and were renamed qos_on -> movie_off,
qos_off -> movie_on. Associated key codes remained the same they were.
The device tree source code is mostly based on musashino's work
Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
DTR GPIO isn't actually needed and triggers boot warning.
TX pin was off by one (GPIO 19 instead of GPIO 18).
Reported-by: @tophirsch
Fixes: d1130ad265 ("ath79: add support for Teltonika RUT955")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Before: Kernel reported "usb_vbus: disabling" and the USB was not
providing power
After: USB power is switched on, peripheral is powered from the
device
Signed-off-by: Tom Stöveken <tom@naaa.de>
[squash and tidy up]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This was overlooked when adding support for this device.
(It has recently been discovered that this was the only device in
ath79 having &uart disabled.)
Fixes: acc6263013 ("ath79: add support for GL.iNet GL-USB150")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a shared DTSI for qca955x Senao/Engenius APs with
concatenated firmware partition/okli loader:
- EAP1200H
- EnstationAC v1
To make this usable for future boards with 32 MB flash as well,
split the partitions node already.
Suggested-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a shared DTSI for ar934x Senao/Engenius APs:
- EAP300 v2
- ENS202EXT v1
- EAP600
- ECB600
Since ar9341/ar9344 have different configuration, this new file
mostly contains the partitioning.
Suggested-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a shared DTSI for ar724x Senao/Engenius APs:
- ENH202 v1
- EAP350 v1
- ECB350 v1
Since ar7240/ar7242 have different configuration, this new file
mostly contains the partitioning.
Suggested-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The uart node is enabled on all devices except one (GL-USB150 *).
Thus, let's not have a few hundred nodes to enable it, but do not
disable it in the first place.
Where the majority of devices is using it, also move the serial0
alias to the DTSI.
*) Since GL-USB150 even defines serial0 alias, the missing uart
is probably just a mistake. Anyway, disable it for now so this
patch stays cosmetic.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specify the device_type property for PCI as well as PCIe controllers.
Otherwise, the PCI range parser will not be selected when using kernel
5.10.
Signed-off-by: David Bauer <mail@david-bauer.net>
The TP-Link TL-WR810N v1 is known to cause soft-brick on ath79 and
work fine for ar71xx [1]. On closer inspection, the only apparent
difference is the GPIO used for the USB regulator, which deviates
between the two targets.
This applies the value from ar71xx to ath79.
Tested successfully by a forum user.
[1] https://forum.openwrt.org/t/tp-link-tl-wr810n-v1-ath79/48267
Fixes: cdbf2de777 ("ath79: Add support for TP-Link WR810N")
Fixes: FS#3522
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
* QCA9882, 802.11ac 2T2R
* 2x Gigabit LAN (1x 802.11af PoE)
* IP68 pole-mountable outdoor case
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Both ethernet ports are set to LAN by default, matching the labelling on
the case. However, since both GMAC Interfaces eth0 and eth1 are connected
to the switch (QCA8337), the user may create an additional 'wan' interface
as desired and override the vlan id settings to map br-lan / wan to either
the PoE or non-PoE port, depending on the individual scenario of use.
So, the LAN and WAN ports would then be connected to different GMACs, e.g.
config interface 'lan'
option ifname 'eth0.1'
...
config interface 'wan'
option ifname 'eth1.2'
...
config switch_vlan
option device 'switch0'
option vlan '1'
option ports '1 0t'
config switch_vlan
option device 'switch0'
option vlan '2'
option ports '2 6t'
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[add configuration example]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Have the port use GMAC1 with internal switch
which fixes the issue of the ethernet LED not functioning
The LED is triggered by the internal switch, not a GPIO.
The GPIO for the ethernet LED was added in ath79
as it was defined in the ar71xx target
but it was not functioning in ath79 for a previously unknown reason.
It is unknown why that GPIO was defined as an LED in ar71xx.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[drop unrelated changes: model property and SPI max frequency]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Port device support for Meraki MR12 from the ar71xx target to ath79.
Specifications:
- SoC: AR7242-AH1A CPU
- RAM: 64MiB (NANYA NT5DS32M16DS-5T)
- NOR Flash: 16MiB (MXIC MX25L12845EMI-10G)
- Ethernet: 1 x PoE Gigabit Ethernet Port (SoC MAC + AR8021-BL1E PHY)
- Ethernet: 1 x 100Mbit port (SoC MAC+PHY)
- Wi-Fi: Atheros AR9283-AL1A (2T2R, 11n)
Installation:
1. Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins
2. Open shell case
3. Connect a USB->TTL cable to headers furthest from the RF shield
4. Power on the router; connect to U-boot over 115200-baud connection
5. Interrupt U-boot process to boot Openwrt by running:
setenv bootcmd bootm 0xbf0a0000; saveenv;
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin;
bootm 0c00000;
6. Copy sysupgrade image to /tmp on MR12
7. sysupgrade /tmp/<filename-of-sysupgrade>.bin
Notes:
- kmod-owl-loader is still required to load the ART partition into the
driver.
- The manner of storing MAC addresses is updated from ar71xx; it is
at 0x66 of the 'config' partition, where it was discovered that the
OEM firmware stores it. This is set as read-only. If you are
migrating from ar71xx and used the method mentioned above to
upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more
method for doing this is described below.
- Migrating directly from ar71xx has not been thoroughly tested, but
one method has been used a couple of times with good success,
migrating 18.06.2 to a full image produced as of this commit. Please
note that these instructions are only for experienced users, and/or
those still able to open their device up to flash it via the serial
headers should anything go wrong.
1) Install kmod-mtd-rw and uboot-envtools
2) Run `insmod mtd-rw.ko i_want_a_brick=1`
3) Modify /etc/fw_env.config to point to the u-boot-env partition.
The file /etc/fw_env.config should contain:
# MTD device env offset env size sector size
/dev/mtd1 0x00000 0x10000 0x10000
See https://openwrt.org/docs/techref/bootloader/uboot.config
for more details.
4) Run `fw_printenv` to verify everything is correct, as per the
link above.
5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address.
6) Manually modify /lib/upgrade/common.sh's get_image function:
Change ...
cat "$from" 2>/dev/null | $cmd
... into ...
(
dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes
echo -ne '\x00\x18\x0a\x12\x34\x56' ; # Add in MAC address
dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest
cat "$from" 2>/dev/null
) | $cmd
... which, during the upgrade process, will pad the image by
128K of zeroes-plus-MAC-address, in order for the ar71xx's
firmware partition -- which starts at 0xbf080000 -- to be
instead aligned with the ath79 firmware partition, which
starts 128K later at 0xbf0a0000.
7) Copy the sysupgrade image into /tmp, as above
8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait
Again, this may BRICK YOUR DEVICE, so make *sure* to have your
serial cable handy.
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[add LED migration and extend compat message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Hardware
--------
Atheros AR7241
16M SPI-NOR
64M DDR2
Atheros AR9283 2T2R b/g/n
2x Fast Ethernet (built-in)
Installation
------------
Transfer the Firmware update to the device using SCP.
Install using fwupdate.real -m <openwrt.bin> -d
Signed-off-by: David Bauer <mail@david-bauer.net>
FCC ID: A8J-EAP1200H
Engenius EAP1200H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
**Specification:**
- QCA9557 SOC
- QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 populated
- 4 internal antenna plates (5 dbi, omni-directional)
- 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)
**MAC addresses:**
MAC addresses are labeled as ETH, 2.4G, and 5GHz
Only one Vendor MAC address in flash
eth0 ETH *:a2 art 0x0
phy1 2.4G *:a3 ---
phy0 5GHz *:a4 ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
2 ways to flash factory.bin from OEM:
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will brick the device
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board, interrupt boot
execute tftpboot and bootm 0x81000000
NOTE: TFTP is not reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of EAP1200H is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin
openwrt-ar71xx-generic-eap1200h-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The "netgear,uimage" parser can be replaced by the generic
parser using device specific openwrt,ih-magic and
openwrt,ih-type properties.
Device tree properties for the following devices have not
been set, as they have been dropped from OpenWrt with the
removal of the ar71xx target:
FW_MAGIC_WNR2000V1 0x32303031
FW_MAGIC_WNR2000V4 0x32303034
FW_MAGIC_WNR1000V2_VC 0x31303030
FW_MAGIC_WPN824N 0x31313030
Tested-by: Sander Vanheule <sander@svanheule.net> # WNDR3700v2
Tested-by: Stijn Segers <foss@volatilesystems.org> # WNDR3700v1
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The only difference between the "openwrt,okli" and the generic
parser is the magic. Set this in device tree for all affected
devices and remove the "openwrt,okli" parser.
Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, apply shared DTSI/device node, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 and to-be-added MR1750 family are very similar.
Make the existing MR900 DTSI more general so it can be used for
the MR1750 devices as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 is a modified version of the Exx900/Exx1750 family.
These devices are shipped with an AR803x PHY and had various problems with
the delay configuration in ar71xx. These problems are now in the past [1]
and parts of the delay configuration should now be done in the PHY only.
Just switch to the configuration of the ECB1750 to have an already well
tested configuration for ath79 with the newer kernel versions.
[1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292
Reported-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR600 is a modified version of the EAP600 family. These
devices are shipped with an AR803x PHY and had various problems with the
delay configuration in ar71xx. These problems are now in the past [1] and
parts of the delay configuration should now be done in the PHY only.
Just switch to the configuration of the EAP600 to have an already well
tested configuration for ath79 with the newer kernel versions.
[1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292
Reported-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 8x GPIO-LEDs (6x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 4x GPIO-LEDs (2x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, make WLAN LEDs consistent, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
These devices do not run Ubiquiti AirOS. Rename the partition to the
name used by other UniFi devices with vendor dualboot support.
Signed-off-by: David Bauer <mail@david-bauer.net>
The USB port definition is only needed when it is linked to a USB
LED. Since there is none for this device, we might as well remove
the port definition.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
CPU: Atheros AR9342 rev 3 SoC
RAM: 64 MB DDR2
Flash: 16 MB NOR SPI
WLAN 2.4GHz: Atheros AR9342 v3 (ath9k)
WLAN 5.0GHz: QCA988X
Ports: 1x GbE
Flashing procedure is identical to other ubnt devices.
https://openwrt.org/toh/ubiquiti/common
Flashing through factory firmware
1. Ensure firmware version v8.7.0 is installed.
Up/downgrade to this exact version.
2. Patch fwupdate.real binary using
`hexdump -Cv /bin/ubntbox | sed 's/14 40 fe 27/00 00 00 00/g' | \
hexdump -R > /tmp/fwupdate.real`
3. Make the patched fwupdate.real binary executable using
`chmod +x /tmp/fwupdate.real`
4. Copy the squashfs factory image to /tmp on the device
5. Flash OpenWrt using `/tmp/fwupdate.real -m <squashfs-factory image>`
6. Wait for the device to reboot
(copied from Ubiquiti NanoBeam AC and modified)
Flashing from serial console
1. Connect serial console (115200 baud)
2. Connect ethernet to a network with a TFTP server, through a
passive PoE injector.
3. Press a key to obtain a u-boot prompt
4. Set your TFTP server's ip address, with:
setenv serverip <tftp-server-address>
5. Set the Bullet AC's ip address, with:
setenv ipaddr <bullet-ac-address>
6. Set the boot file, with:
setenv bootfile <name-of-initramfs-binary-on-tftp-server>
7. Fetch the binary with tftp:
tftpboot
8. Boot the initramfs binary:
bootm
9. From the initramfs, fetch the sysupgrade binary, and flash it with
sysupgrade.
The Bullet AC is identified as a 2WA board by Ubiquiti. As such, the UBNT_TYPE
must match from the "Flashing through factory firmware" install instructions
to work.
Phy0 is QCA988X which can tune either band (2.4 or 5GHz). Phy1 is AR9342,
on which 5GHz is disabled. It isn't currently known whether phy1 is
routed to the N connector at all.
Signed-off-by: Russell Senior <russell@personaltelco.net>
For:
- ENH202 v1
- ENS202EXT v1
These boards were committed before it was discovered
that for all Engenius boards with a "failsafe" image,
forcing the failsafe image to load next boot
can be achieved by editing the u-boot environment like:
`fw_setenv rootfs_checksum 0`
So it's not necessary to delete a partition to boot to failsafe image.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
It is good practice to define device tree files based on specific
SoCs. Thus, let's not start to create files that are used across
different architectures.
Duplicate the DTSI file for D-Link DAP-2xxx in order to have one
for qca953x and one for qca955x, respectively.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
* 10/100 Ethernet Port, 802.11af PoE
* IP55 pole-mountable outdoor case
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* QCA9558, 16 MiB Flash, 256 MiB RAM, 802.11n 3T3R
* QCA9984, 802.11ac Wave 2 3T3R
* Gigabit LAN Port (AR8035), 802.11at PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
* 10/100 Ethernet Port, 802.11af PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The phy label/node name should correspond to the reg property.
While at it, use more common decimal notation for reg property itself.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here.
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[add LED swap comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[drop redundant status from eth1]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 1
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[wrap two very long lines, fix typo in comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
A few devices in ath79 and ramips use mtd-concat to concatenate
individual partitions into a bigger "firmware" or "ubi" partition.
However, the original partitions are still present and visible,
and one can write to them directly although this might break the
actual virtual, concatenated partition.
As we cannot do much about the former, let's at least choose more
descriptive names than just "firmwareX" in order to indicate the
concatenation to the user. He might be less tempted into overwriting
a "fwconcat1" than a "firmware1", which might be perceived as an
alternate firmware for dual boot etc.
This applies the new naming consistently for all relevant devices,
i.e. fwconcatX for virtual "firmware" members and ubiconcatX for
"ubi" members.
While at it, use DT labels and label property consistently, and
also use consistent zero-based indexing.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
FCC ID: U2M-EAP350
Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port,
2.4 GHz wireless, external ethernet switch, and 2 internal antennas.
Specification:
- AR7242 SOC
- AR9283 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 8 MB FLASH MX25L6406E
- 32 MB RAM EM6AA160TSA-5G
- UART at J2 (populated)
- 3 LEDs, 1 button (power, eth, 2.4 GHz) (reset)
- 2 internal antennas
MAC addresses:
MAC address is labeled as "MAC"
Only 1 address on label and in flash
The OEM software reports these MACs for the ifconfig
eth0 MAC *:0c art 0x0
phy0 --- *:0d ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.10.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP350 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap350-uImage-lzma.bin
openwrt-senao-eap350-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1024k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR724x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
uboot did not have a good value for 1 GBps
so it was taken from other similar DTS file.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-EAP600
Engenius EAP600 is a wireless access point with 1 gigabit ethernet port,
dual-band wireless, external ethernet switch, 4 internal antennas
and 802.3af PoE.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 5 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz, wps) (reset)
- 4 internal antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
eth0 MAC 1 *:5e ---
phy1 MAC 2 *:5f --- (2.4 GHz)
phy0 ----- *:60 art 0x0 (5 GHz)
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap600-uImage-lzma.bin
openwrt-senao-eap600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The boards have equivalent hardware except for LEDs
and equivalent device config except for MACs
also use naming convention for mtd-concat partitions
to prepare for upcoming patch
"treewide: use more descriptive names for concatenated partitions"
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ECB600
Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port,
dual-band wireless, external ethernet switch, and 4 external antennas.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset)
- 4 external antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
phy1 MAC 1 *:52 --- (2.4 GHz)
phy0 MAC 2 *:53 --- (5 GHz)
eth0 ----- *:54 art 0x0
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of ECB600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-ecb600-uImage-lzma.bin
openwrt-senao-ecb600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the ECB series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ENSTAC
Engenius EnStationAC v1 is an outdoor wireless access point/bridge with
2 gigabit ethernet ports on 2 external ethernet switches,
5 GHz only wireless, internal antenna plates, and proprietery PoE.
Specification:
- QCA9557 SOC
- QCA9882 WLAN (PCI card, 5 GHz, 2x2, 26dBm)
- AR8035-A switch (RGMII GbE with PoE+ IN)
- AR8031 switch (SGMII GbE with PoE OUT)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 (unpopulated)
- internal antenna plates (19 dbi, directional)
- 7 LEDs, 1 button (power, eth, wlan, RSSI) (reset)
MAC addresses:
MAC addresses are labeled as ETH and 5GHz
Vendor MAC addresses in flash are duplicate
eth0 ETH *:d3 art 0x0/0x6
eth1 ---- *:d4 ---
phy0 5GHz *:d5 ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
TFTP recovery:
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board
hold or press reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
Format of OEM firmware image:
The OEM software of EnStationAC is a heavily modified version
of Openwrt Altitude Adjustment 12.09. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-enstationac-uImage-lzma.bin
openwrt-ar71xx-enstationac-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8033 switch between
the SOC and the ethernet PHY chips.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
For eth0 at 1000 speed, the value returned was
ae000000 but that didn't work, so following
the logical pattern from the rest of the values,
the guessed value of a3000000 works better.
later discovered that delay can be placed on the PHY end only
with phy-mode as 'rgmii-id' and set register to 0x82...
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Specifications:
* QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
* QCA9882, 802.11ac 2T2R
* Gigabit LAN Port (AR8035), 802.11af PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The Ubiquiti Network airCube AC is a cube shaped device supporting
2.4 GHz and 5 GHz with internal 2x2 MIMO antennas.
It can be powered with either one of:
- 24v power supply with 3.0mm x 1.0mm barrel plug
- 24v passive PoE on first LAN port
There are four 10/100/1000 Mbps ports (1 * WAN + 3 * LAN).
First LAN port have optional PoE passthrough to the WAN port.
SoC: Qualcomm / Atheros AR9342
RAM: 64 MB DDR2
Flash: 16 MB SPI NOR
Ethernet: 4x 10/100/1000 Mbps (1 WAN + 3 LAN)
LEDS: 1x via a SPI controller (not yet supported)
Buttons: 1x Reset
Serial: 1x (only RX and TX); 115200 baud, 8N1
Missing features:
- LED control is not supported
Physical to internal switch port mapping:
- physical port #1 (poe in) = switchport 2
- physical port #2 = switchport 3
- physical port #3 = switchport 5
- physical port #4 (wan/poe out) = switchport 4
Factory update is tested and is the same as for Ubiquiti AirCube ISP
hence the shared configuration between that devices.
Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com>
This patch adds support for the MikroTik RouterBOARD wAPR-2nD (wAP R)
router, a weatherproof 2.4 GHz access point with a miniPCI-e slot and
a SIM card slot.
Specifications:
- SoC: Qualcomm Atheros QCA9533
- Flash: 16 MB (SPI)
- RAM: 64 MB
- Ethernet: 1x 10/100 Mbps (PoE in)
- WiFi: AR9531 2T2R 2.4 GHz (SoC)
- miniPCI-e slot
- 4x green LEDs (1x WiFi, 3x RSSI)
- 1x reset button
See https://mikrotik.com/product/RBwAPR-2nD for more details.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Device specifications:
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 2
+ used as LAN interface
* 12-24V 1A DC
* external antennas
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 2
+ used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
FCC ID: A8J-ECB350
Engenius ECB350 v1 is an indoor wireless access point with a gigabit ethernet port,
2.4 GHz wireless, external antennas, and PoE.
**Specification:**
- AR7242 SOC
- AR9283 WLAN 2.4 GHz (2x2), PCIe on-board
- AR8035-A switch RGMII, GbE with 802.3af PoE
- 40 MHz reference clock
- 8 MB FLASH 25L6406EM2I-12G
- 32 MB RAM
- UART at J2 (populated)
- 2 external antennas
- 3 LEDs, 1 button (power, lan, wlan) (reset)
**MAC addresses:**
MACs are labeled as WLAN and WAN
vendor MAC addresses in flash are duplicate
phy0 WLAN *:b8 ---
eth0 WAN *:b9 art 0x0/0x6
**Installation:**
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery** (unstable / not reliable):
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board while holding or pressing reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of ECB350 v1 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel size to be no greater than 1536k
and otherwise the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
The factory upgrade script follows the original mtd partitions.
**Note on PLL-data cells:**
The default PLL register values will not work
because of the AR8035 switch between
the SOC and the ethernet port.
For AR724x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from u-boot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`
However the registers that u-boot sets are not ideal and sometimes wrong...
the at803x driver supports setting the RGMII clock/data delay on the PHY side.
This way the pll-data register only needs to handle invert and phase.
for this board no extra adjustements are needed on the MAC side
all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Add support for the ar71xx supported GL.iNet GL-USB150 to ath79.
GL.iNet GL-USB150 is an USB dongle WiFi router, based on Atheros AR9331.
Specification:
- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- Realtek RTL8152B USB to Ethernet bridge (connected with AR9331 PHY4)
- 1T1R 2.4 GHz
- 2x LED, 1x button
- UART header on PCB
Flash instruction:
Vendor software is based on openwrt so you can flash the sysupgrade
image via the vendor GUI or using command line sysupgrade utility.
Make sure to not save configuration over reflash as uci settings
differ between versions.
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
These boards are sister boards
exactly the same hardware except that ECB1200 has:
- QCA9557
- 2 RF circuits/antennas per band instead of 3
- a resistor blocking UART RX line
Tested-by: sven friedmann <sf.openwrt@okay.ms>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ECB1200
Engenius ECB1200 is an indoor wireless access point with a GbE port,
2.4 GHz and 5 GHz wireless, external antennas, and 802.3af PoE.
**Specification:**
- QCA9557 SOC MIPS, 2.4 GHz (2x2)
- QCA9882 WLAN PCIe card, 5 GHz (2x2)
- AR8035-A switch RGMII, GbE with 802.3af PoE, 25 MHz clock
- 40 MHz reference clock
- 16 MB FLASH 25L12845EMI-10G
- 2x 64 MB RAM 1538ZFZ V59C1512164QEJ25
- UART at JP1 (unpopulated, RX shorted to ground)
- 4 external antennas
- 4 LEDs, 1 button (power, eth, wifi2g, wifi5g) (reset)
**MAC addresses:**
MAC Addresses are labeled as ETH and 5GHZ
U-boot environment has the vendor MAC addresses
MAC addresses in ART do not match vendor
eth0 ETH *:5c u-boot-env ethaddr
phy0 5GHZ *:5d u-boot-env athaddr
---- ---- ???? art 0x0/0x6
**Installation:**
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
(see TFTP recovery)
perform a sysupgrade
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART pinout at JP1
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
Unlike most Engenius boards, this does not have a 'failsafe' image
the only way to return to OEM is TFTP or serial access to u-boot
**TFTP recovery:**
Unlike most Engenius boards, TFTP is reliable here
rename initramfs-kernel.bin to 'ap.bin'
make the file available on a TFTP server at 192.168.1.10
power board while holding or pressing reset button repeatedly
or with serial access:
run `tftpboot` or `run factory_boot` with initramfs-kernel.bin
then `bootm` with the load address
**Format of OEM firmware image:**
The OEM software of ECB1200 is a heavily modified version
of Openwrt Altitude Adjustment 12.09.
This Engenius board, like ECB1750, uses a proprietary header
with a unique Product ID. The header for factory.bin is
generated by the mksenaofw program included in openwrt.
**Note on PLL-data cells:**
The default PLL register values will not work
because of the AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
However the registers that u-boot sets are not ideal and sometimes wrong...
the at803x driver supports setting the RGMII clock/data delay on the PHY side.
This way the pll-data register only needs to handle invert and phase.
for this board clock invert is needed on the MAC side
all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Incorrect values were used for the switch initialization causing the
lan port leds to not light up in case of 10Mb or 100Mb connections.
This commit fixes this problem and removes unused values.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
The flash capacity is divided in two flash chips and currently only
first is used. Increase available space for OpenWrt by additional 16 MiB
using mtd-concat driver. Because U-Boot might not be able to load kernel
image spanned through two flash chips, the size of kernel is limited
to space available on first first chip.
Cc: Vladimir Georgievsky <vladimir.georgievsky@yahoo.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
AirTight Networks (later renamed to Mojo Networks) C-75 is a dual-band
access point, also sold by WatchGuard under name AP320.
Specification
SoC: Qualcomm Atheros QCA9550
RAM: 128 MiB DDR2
Flash: 2x 16 MiB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
5 GHz 3T3R QCA9890 oversized Mini PCIe card
Ethernet: 2x 10/100/1000 Mbps QCA8334
port labeled LAN1 is PoE capable (802.3at)
USB: 1x 2.0
LEDs: 7x which two are GPIO controlled, four switch controlled, one
controlled by wireless driver
Buttons: 1x GPIO controlled
Serial: RJ-45 port, Cisco pinout
baud: 115200, parity: none, flow control: none
JTAG: Yes, pins marked J1 on PCB
Installation
1. Prepare TFTP server with OpenWrt initramfs-kernel image.
2. Connect to one of LAN ports.
3. Connect to serial port.
4. Power on the device and when prompted to stop autoboot, hit any key.
5. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x81000000 <openwrt_initramfs-kernel_image_name>
bootm 0x81000000
6. Wait about 1 minute for OpenWrt to boot.
7. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
sysupgrade -n /tmp/<openwrt_sysupgrade_image_name>
8. After flashing, the access point will reboot to OpenWrt. Wait few
minutes, until the Power LED stops blinking, then it's ready for
configuration.
Known issues
Green power LED does not work.
Additional information
The U-Boot fails to initialise ethernet ports correctly when a UART
adapter is attached to UART pins (marked J3 on PCB).
Cc: Vladimir Georgievsky <vladimir.georgievsky@yahoo.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
phy-mode is already set to rgmii for eth0 and sgmii for eth1 in
qca955x.dtsi, no need to do that again in the device DTS files.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device has (almost?) identical hardware to the F9J1108 v2 but uses
a different firmware magic and model number.
Specifications:
SoC: QCA9558
CPU: 720 MHz
Flash: 16 MiB NOR
RAM: 128 MiB
WiFi 2.4 GHz: QCA9558-AT4A 3x3 MIMO 802.11b/g/n
WiFi 5 GHz: QCA9880-2R4E 3x3 MIMO 802.11a/n/ac
Ethernet: 4x LAN and 1x WAN (all 1Gbit/s ports)
USB: 1 x USB 2.0 (lower), 1 x USB 3.0 (upper)
MAC addresses based on OEM firmware:
Interface Address Location
--------- ------- --------
lan *:5A sometimes in 0x6
wan *:5B 0x0
2.4Ghz *:5A 0x1002
5Ghz As per mini PCIe EEPROM
Flashing instructions:
The factory.bin can be flashed via the Belkin web UI or via the uboot
HTTP upgrade page (which is by default listening on 192.168.2.1). Once
the factory.bin has been written, sysupgrade.bin will work as usual.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Belkin F9J1108 v2 and F9K1115 v2 are (seemingly) identical hardware
with different model numbers. Extract all non-device specific code to a
common .dtsi so it can be re-used when adding support for the
F9K1115 v2.
Similar to the .dtsi most of the image building recipe code can be
re-used. Move everything except the device model, edimax header magic
and edimax header model into a shared build recipe.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
[drop duplicate TARGET_DEVICES, add EDIMAX_* to DEVICE_VARS, edit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device is the non-US build of the F9K1115 v2, with a different
firmware magic.
Specifications:
SoC: QCA9558
CPU: 720 MHz
Flash: 16 MiB NOR
RAM: 128 MiB
WiFi 2.4 GHz: QCA9558-AT4A 3x3 MIMO 802.11b/g/n
WiFi 5 GHz: QCA9880-2R4E 3x3 MIMO 802.11a/n/ac
Ethernet: 4x LAN and 1x WAN (all 1gbps)
USB: 1 x USB 2.0 (lower), 1 x USB 3.0 (upper)
MAC addresses based on OEM firmware:
Interface Address Location
--------- ------- --------
lan *:5A sometimes in 0x6
wan *:5B 0x0
2.4Ghz *:5A 0x1002
5Ghz As per mini PCIe EEPROM
Flashing instructions:
The factory.bin can be flashed via the Belkin web UI or via the uboot
http upgrade page.
Once the factory.bin has been written, sysupgrade.bin will work as usual.
Signed-off-by: Damien Mascord <tusker@tusker.org>
Acked-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
[wrap commit message/code, adjust label-mac-device, whitespace fixes,
merge block in 02_network]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports support for the TP-Link TL-WDR7500 v3 from ar71xx to ath79.
The basic features appear to be identical to the Archer C7 v1, however
it has the (supported) QCA9880-BR4A chip of the C7 v2.
Specifications:
SoC: QCA9558
CPU: 720 MHz
Flash: 8 MiB
RAM: 128 MiB
WLAN: 2.4 GHz b/g/n, 5 GHz a/n/ac
Qualcomm Atheros QCA9880-BR4A
Ethernet: 5x Gbit ports
USB: 2x 2.0 ports
Flashing instructions:
Upload the factory image via the OEM firmware GUI.
TFTP recovery appears to be available as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
None of the spi drivers on ath79 uses the num-cs property.
Cc: Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Chuanhong Guo <gch981213@gmail.com>
Remove the MDIO reset from the MAC mode for the AR934x SoC family.
The reset is currently also defined for the MDIO node, where the reset
is acquired exclusively.
In case the ethernet node is enabled, this triggers a warning, as the
reset is already acquired by the MAC.
Signed-off-by: David Bauer <mail@david-bauer.net>
The TPLink CPE devices CPE210/CPE510 based on ar9344 have a build-in
Low Noise Amplifier on both of the 2x2 mimo rx chains.
This patch activates those two LNAs in the respective receiving chains
and hence improves the RX sensitivity by about 20dB.
Tested on CPE510 v2 & v3.
Signed-off-by: Thomas Huehn <thomas.huehn@hs-nordhausen.de>
Acked-by: Robert Marko <robimarko@gmail.com>