Until now, Genode referenced a fork of the outdated elfloader-tool
to enable bootstrapping of sel4 on ARM platforms. Because the
elfloader is inherently dependent on the used platforms newer
ARM versions supported by the kernel could not be loaded by the
outdated elfloader. This commit uses a fresh fork of the nowadays
used sel4_tools repository.
Ref #3251
* In base-foc/recipes/src/ replace base-foc with base-foc-pc
* To base-foc/recipes/src add base-foc-arndale, base-foc-pbxa9
* Ensure that the correct base-foc recipe is choosen by the run module
'boot_dir/foc'
* To base-hw/recipes/src add base-hw-arndale, base-hw-imx53_qsb,
base-hw-imx53_qsb_tz, base-hw-odroid_xu, base-hw-panda, base-hw-rpi,
base-hw-wand_quad
* Ensure that the correct base-hw recipe is choosen by the run module
'boot_dir/hw'
This commit changes the semantic of run_boot_dir to link a core
binary with debug symbols only when the designated library is in place.
Follow-up fix refering to issues #2339 and #2700
* introduce new syscall (core-only) to create privileged threads
* take the privilege level of the thread into account
when doing a context switch
* map kernel segment as accessable for privileged code only
Ref #2091
* introduces central memory map for core/kernel
* on 32-bit platforms the kernel/core starts at 0x80000000
* on 64-bit platforms the kernel/core starts at 0xffffffc000000000
* mark kernel/core mappings as global ones (tagged TLB)
* move the exception vector to begin of core's binary,
thereby bootstrap knows from where to map it appropriately
* do not map boot modules into core anymore
* constrain core's virtual heap memory area
* differentiate in between user's and core's main thread's UTCB,
which now resides inside the kernel segment
Ref #2091
relocation is required, to avoid overlapping phdr in the elf binaries, but
sel4 will fail to boot if bender relocates the images at the end of physical
memory. Limit the physical relocation address to a fixed 256M value, so that
sel4 will work.
Issue #2451
Previously, the debugging version of the core image
(<build_dir>/var/run/<run_name>.core) was created by the run tool from
the common core object file
(<build_dir>/var/run/<run_name>/core-<kernel>.o). This object file,
however, was already stripped by the build system and thus didn't
contain debug info anymore. The build system also creates an unstripped
version in <build_dir>/debug/core-<kernel>.o, so we now use this one
for <build_dir>/var/run/<run_name>.core.
Ref #2254
This way, files copied from the depot are incorporated in addition to
the files explicitly specified as boot modules.
The patch also adds an automatic check for the validity of the XML
syntax of boot modules ending with '.config'.
Issue #2339
Run scripts can use the new 'import_from_depot' function to incorporate
archive content from the depot into a scenario. The function must be
called after the 'create_boot_directory' function and takes any number
of pkg, src, or raw archives as arguments. An archive is specified as
depot-relative path of the form <user>/<type>/name. Run scripts may
call 'import_from_depot' repeatedly.
An argument can refer to a specific version of an archive or just the
version-less archive name. In the latter case, the current version (as
defined by a corresponding archive recipe in the source tree) is used.
If a 'src' archive is specified, the run tool integrates the content of
the corrsponding binary archive into the scenario. The binary archives
are selected according the spec values as defined for the build directory.
As of now, only x86_32 and x86_64 are supported by the 'depot_spec'
function.
Issue #2339
By installing the core object to bin/, we follow the same convention as
for regular binaries. This, in turn, enables us to ship core in a
regular binary archive. The patch also adjusts the run tool to pick up
the core object from bin/ for the final linking stage.
Put the initialization of the cpu cores, setup of page-tables, enabling of
MMU and caches into a separate component that is only used to bootstrap
the kernel resp. core.
Ref #2092
In combination with run/image/uboot, run/boot_dir/foc expected a file link it
created itself to be a directory by trying to create another file link inside
it.
Ref #1987
This commit mostly removes the globally visible NR_OF_CPUS define
from the global makefile specifiers defined in the base-hw repository.
Whereever necessary it adds platform specific makefiles to the base
repository when they were missing.
Ref #2190
This patch removes possible ambiguities with respect to the naming of
kernel-dependent binaries and libraries. It also removes the use of
kernel-specific global side effects from the build system. The reach of
kernel-specific peculiarities has thereby become limited to the actual
users of the respective 'syscall-<kernel>' libraries.
Kernel-specific build artifacts are no longer generated at magic places
within the build directory (like okl4's includes, or the L4 build
directories of L4/Fiasco and Fiasco.OC, or the build directories of
various kernels). Instead, such artifacts have been largely moved to the
libcache. E.g., the former '<build-dir>/l4/' build directory for the L4
build system resides at '<build-dir>/var/libcache/syscall-foc/build/'.
This way, the location is unique to the kernel. Note that various tools
are still generated somewhat arbitrarily under '<build-dir>/tool/' as
there is no proper formalism for building host tools yet.
As the result of this work, it has become possible to use a joint Genode
build directory that is usable with all kernels of a given hardware
platform. E.g., on x86_32, one can now seamlessly switch between linux,
nova, sel4, okl4, fiasco, foc, and pistachio without rebuilding any
components except for core, the kernel, the dynamic linker, and the timer
driver. At the current stage, such a build directory must still be
created manually. A change of the 'create_builddir' tool will follow to
make this feature easily available.
This patch also simplifies various 'run/boot_dir' plugins by removing
the option for an externally hosted kernel. This option remained unused
for many years now.
Issue #2190
This patch decouples the kernel-specific implementation of the dynamic
linker from its kernel-agnostic binary interface. The name of the
kernel-specific dynamic linker binary now corresponds to the kernel,
e.g., 'ld-linux.lib.so' or 'ld-nova.lib.so'. Applications are no longer
linked directly against a concrete instance of the dynamic linker but
against a shallow stub called 'ld.lib.so'. This stub contains nothing
but the symbols provided by the dynamic linker. It thereby represents
the Genode ABI.
At system-integration time, the kernel-specific run/boot_dir back ends
integrate the matching the kernel-specific variant of the dynamic linker
as 'ld.lib.so' into the boot image.
The ABI symbol file for the dynamic linker is located at
'base/lib/symbols/ld'. It contains the joint ABI of all supported
architectures. The new utility 'tool/abi_symbols' eases the creation of
such an ABI symbol file for a given shared library. Its result should be
manually inspected and edited as needed.
The patch removes the 'syscall' library from 'base_libs.mk' to avoid
polluting the kernel-agnostic ABI with kernel-specific interfaces.
Issue #2190
Issue #2195
Instead of solving the problem to deliver ROM modules to core while booting
differently for the several kernels (multi-boot, elfweaver, core re-linking),
this commit unifies the approaches. It always builds core as a library, and
after all binaries are built from a run-script, the run-tool will link an
ELF image out of the core-library and all boot modules. Thereby, core can
access its ROM modules directly.
This approach now works for all kernels except Linux.
With this solution, there is no [build_dir]/bin/core binary available anymore.
For debugging purposes you will find a core binary without boot modules, but
with debug symbols under [run_dir].core.
Fix#2095
* Remove 'test' routine from kernel/core
* Move 'cpu_scheduler' and 'double_list' test to user-land
* Remove 'hw_info' target at all (can be recycled in a topic branch)
- disable iommu
- increase root_cnode further for native boot
- support vesa driver on native hardware
- don't mask edge triggered ioapic irqs
- increase various allocators to get noux_tool_chain_* booting natively
Issue #2044
- adjust syscall bindings to support -fPIC
- read serial i/o ports from BIOS data area
- use autoconf.h provided by sel4
-- to avoid ambiguity between sel4 kernel and user libraries
-- remove manual set defines
- remove debug messages
- increase user virtual area to 3GB
Issue #1720
Issue #2044
When running the same kernel in a VM as on the host system and the
kernel boot message from the VM appears on the log output, the run tool
assumes that the host machine has rebooted unexpectedly. With this
commit, an unexpected reboot is assumed only if the kernel boot message
appears at the beginning of a line. On base-hw, we enforce a line feed
at the beginning of the boot message as the SPIKE emulator log starts
with the first message of the kernel lacking a line feed.
Fixes#2041
Enable the ACPI functionality in the platform_drv on hw_x86_64_muen and
provide a simple generated XML report as ROM session in order to make
the PCI configuration space available.
This is a requirement to implement support for MSI on hw_x86_64_muen.
Causes trouble if a gz image is loaded via grub and later used as initrd for a
Linux VM (e.g. with Seoul VMM)
Discovered during Turmvilla scenario #1552 and issue #1733.
This makes use of the iPXE sanboot command [1] which downloads and
boots an ISO image directly via HTTP. Therefore, your RUN_OPT needs
both
--include image/iso and
--include load/ipxe
NOTE: The webserver serving the ISO image must support ranged requests,
see [2].
[1] - http://ipxe.org/cmd/sanboot
[2] - http://forum.ipxe.org/showthread.php?tid=7295&pid=10482#pid10482
The boot modules assembled by the generated boot_modules.s file is
accessed from core using struct Bm_header. Unfortunately the assembler
.long directive is synonym to .int [1] and thus has the same size as the
C++ int type and *not* long. Use the matching assembly type .quad in
boot_modules.s when generating the file for 64-bit platforms such as
x86_64.
[1] - https://sourceware.org/binutils/docs/as/Long.html
This patch contains the initial code needed to build and bootstrap the
base-hw kernel on x86 64-bit platforms. It gets stuck earlier
because the binary contains 64-bit instructions, but it is started in
32-bit mode. The initial setup of page tables and switch to long mode is
still missing from the crt0 code.