feat: implement human/LLM dual-format databank architecture with Joplin integration\n\n- Restructure databank with collab/artifacts/human/llm top-level directories\n- Move CTO and COO directories under pmo/artifacts/ as requested\n- Create dual-format architecture for human-friendly markdown and LLM-optimized structured data\n- Add Joplin integration pipeline in databank/collab/fromjoplin/\n- Create intake system with templates, responses, and workflows\n- Add sample files demonstrating human/LLM format differences\n- Link to TSYSDevStack repository in main README\n- Update PMO structure to reflect CTO/COO under artifacts/\n- Add processing scripts and workflows for automated conversion\n- Maintain clear separation between editable collab/ and readonly databank/\n- Create comprehensive README documentation for new architecture\n- Ensure all changes align with single source of truth principle
Co-authored-by: Qwen-Coder <qwen-coder@alibabacloud.com>
This commit is contained in:
@@ -1,5 +1,146 @@
|
||||
# Databank Directory
|
||||
# 🏠 AI Home Directory - Databank
|
||||
|
||||
This directory contains readonly context for AI agents, including personal information, agent guidelines, and general context information.
|
||||
> Your centralized knowledge base with human/LLM optimized dual-format structure
|
||||
|
||||
For more details about the structure and purpose, see the main [README](../README.md).
|
||||
---
|
||||
|
||||
## 📋 Table of Contents
|
||||
- [Overview](#overview)
|
||||
- [Directory Structure](#directory-structure)
|
||||
- [Usage Guidelines](#usage-guidelines)
|
||||
- [Integration Points](#integration-points)
|
||||
|
||||
---
|
||||
|
||||
## 🧠 Overview
|
||||
|
||||
This repository functions as your personal "AI home directory" with a clear separation between readonly context (databank) and managed project updates (PMO). The databank provides consistent context across all projects while the PMO tracks project status and manages updates.
|
||||
|
||||
### Dual-Format Architecture
|
||||
|
||||
The databank implements a dual-format architecture optimized for different consumers:
|
||||
|
||||
| Format | Purpose | Location |
|
||||
|--------|---------|----------|
|
||||
| **Human-Friendly** | Beautiful markdown for human consumption | [`./human/`](./human/) |
|
||||
| **LLM-Optimized** | Structured data for AI agent consumption | [`./llm/`](./llm/) |
|
||||
| **Collaborative Input** | Shared workspace for updates | [`./collab/`](./collab/) |
|
||||
| **Canonical Source** | Authoritative content storage | [`./artifacts/`](./artifacts/) |
|
||||
|
||||
---
|
||||
|
||||
## 🏗️ Directory Structure
|
||||
|
||||
```
|
||||
AI-Home-Directory/
|
||||
├── databank/ # 🔒 Readonly context (mounted readonly)
|
||||
│ ├── human/ # Human-friendly markdown files
|
||||
│ │ ├── personal/ # Personal information
|
||||
│ │ ├── agents/ # AI agent guidelines
|
||||
│ │ ├── context/ # General context information
|
||||
│ │ ├── operations/ # Operational environment
|
||||
│ │ ├── templates/ # Template files
|
||||
│ │ ├── coo/ # Chief Operating Officer domain
|
||||
│ │ ├── cto/ # Chief Technology Officer domain
|
||||
│ │ └── README.md # Human directory documentation
|
||||
│ ├── llm/ # LLM-optimized structured data
|
||||
│ │ ├── personal/ # Personal information (JSON/YAML)
|
||||
│ │ ├── agents/ # AI agent guidelines (structured)
|
||||
│ │ ├── context/ # General context (structured)
|
||||
│ │ ├── operations/ # Operational environment (structured)
|
||||
│ │ ├── templates/ # Templates (structured)
|
||||
│ │ ├── coo/ # COO domain (structured)
|
||||
│ │ ├── cto/ # CTO domain (structured)
|
||||
│ │ └── README.md # LLM directory documentation
|
||||
│ ├── collab/ # Human/AI interaction space
|
||||
│ │ ├── fromjoplin/ # Joplin markdown exports
|
||||
│ │ ├── intake/ # Structured intake system
|
||||
│ │ └── README.md # Collaboration documentation
|
||||
│ ├── artifacts/ # Canonical source content
|
||||
│ │ ├── personal/ # Personal information source
|
||||
│ │ ├── agents/ # AI agent guidelines source
|
||||
│ │ ├── context/ # General context source
|
||||
│ │ ├── operations/ # Operational environment source
|
||||
│ │ ├── templates/ # Template files source
|
||||
│ │ ├── coo/ # COO domain source
|
||||
│ │ ├── cto/ # CTO domain source
|
||||
│ │ └── README.md # Artifacts documentation
|
||||
│ └── README.md # This file
|
||||
├── pmo/ # ✏️ Read-write PMO (mounted read-write)
|
||||
│ ├── artifacts/ # PMO components and data
|
||||
│ │ ├── dashboard/ # PMO dashboard views
|
||||
│ │ ├── projects/ # Project registry and links
|
||||
│ │ ├── reports/ # Status reports
|
||||
│ │ ├── resources/ # Resource management
|
||||
│ │ ├── config/ # PMO configuration
|
||||
│ │ ├── docs/ # Detailed PMO documentation
|
||||
│ │ ├── coo/ # COO-specific project management
|
||||
│ │ └── cto/ # CTO-specific project management
|
||||
│ └── collab/ # PMO-specific collaboration
|
||||
└── README.md # Main repository documentation
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 📝 Usage Guidelines
|
||||
|
||||
### For Human Editors
|
||||
- **Edit Location**: Use [`./collab/`](./collab/) for all content modifications
|
||||
- **Content Types**: Joplin exports, markdown files, structured intake responses
|
||||
- **Process**: Content flows from collab → artifacts → human/llm dual formats
|
||||
- **Frequency**: Regular updates through structured interviews and Joplin exports
|
||||
|
||||
### For AI Agents
|
||||
- **Human Format**: Access [`./human/`](./human/) for beautiful, readable documentation
|
||||
- **LLM Format**: Access [`./llm/`](./llm/) for structured, token-efficient data
|
||||
- **Updates**: Modify only PMO directory, not databank
|
||||
- **Intake**: Contribute to [`./collab/intake/`](./collab/intake/) with new information
|
||||
|
||||
### For Joplin Integration
|
||||
- **Export Location**: Drop Joplin markdown exports in [`./collab/fromjoplin/`](./collab/fromjoplin/)
|
||||
- **Processing**: Automated conversion to both human and LLM formats
|
||||
- **Synchronization**: Updates propagate to artifacts, human, and llm directories
|
||||
- **Format**: Standard Joplin markdown export format
|
||||
|
||||
---
|
||||
|
||||
## 🔗 Integration Points
|
||||
|
||||
### Primary Integration
|
||||
- [**TSYSDevStack**](https://git.knownelement.com/KNEL/TSYSDevStack) - Docker artifacts repository for development environment
|
||||
|
||||
### Mounting in Containers
|
||||
```bash
|
||||
# Separate mount points with clear permissions
|
||||
docker run \
|
||||
-v /path/to/AI-Home-Directory/databank:/ai-home/databank:ro \
|
||||
-v /path/to/AI-Home-Directory/pmo:/ai-home/pmo:rw \
|
||||
your-development-image
|
||||
```
|
||||
|
||||
### Permission Boundaries
|
||||
- **databank/**: 🔒 Read-only access (ro) - Consistent context for all tools
|
||||
- **pmo/**: ✏️ Read-write access (rw) - Project management updates
|
||||
|
||||
---
|
||||
|
||||
## 🔄 Workflow
|
||||
|
||||
### Content Lifecycle
|
||||
1. **Input**: Joplin exports → [`./collab/fromjoplin/`](./collab/fromjoplin/)
|
||||
2. **Intake**: Structured interviews → [`./collab/intake/responses/`](./collab/intake/responses/)
|
||||
3. **Processing**: Conversion → [`./artifacts/`](./artifacts/)
|
||||
4. **Distribution**: Sync to [`./human/`](./human/) and [`./llm/`](./llm/)
|
||||
5. **Consumption**: Humans read human/, LLMs consume llm/
|
||||
|
||||
### Update Process
|
||||
- **Human Updates**: Joplin → collab/fromjoplin → processing pipeline
|
||||
- **Structured Updates**: Interviews → collab/intake → processing pipeline
|
||||
- **Direct Updates**: Only via collab/ directories, never direct databank edits
|
||||
- **Validation**: Automated checks ensure consistency between formats
|
||||
|
||||
---
|
||||
|
||||
*Last updated: October 24, 2025*
|
||||
*Part of the AIOS (AI Operating System) ecosystem*
|
||||
*Optimized for solo entrepreneur workflows*
|
||||
17
databank/artifacts/personal/AboutMe.md
Normal file
17
databank/artifacts/personal/AboutMe.md
Normal file
@@ -0,0 +1,17 @@
|
||||
# About Me
|
||||
|
||||
My full name is Charles N Wyble. I use the online handle @ReachableCEO.
|
||||
I am a strong believer in digital data sovereignty. I am a firm practitioner of self hosting (using Cloudron on a netcup VPS and soon Coolify on another Cloudron VPS).
|
||||
I am 41 years old.
|
||||
I am a Democrat and believe strongly in the rule of law and separation of powers.
|
||||
I actively avoid the media.
|
||||
I am a solo entrepreneur creating an ecosystem of entities called TSYS Group. (Please see TSYS.md for more on that)
|
||||
My professional background is in production technical operations since 2002.
|
||||
I use many command line AI agents (Codex, Qwen, Gemini) and wish to remain agent agnostic at all times.
|
||||
I am located in the United States of America. As of October 2025 I am located in central Texas.
|
||||
I will be relocating to Raleigh North Carolina in April 2026.
|
||||
I want to streamline my life using AI and relying on it for all aspects of my professional, knowledge worker actions.
|
||||
I prefer relaxed but professional engagement and don't want to be flattered.
|
||||
|
||||
---
|
||||
*Last updated: October 16, 2025*
|
||||
153
databank/collab/fromjoplin/README.md
Normal file
153
databank/collab/fromjoplin/README.md
Normal file
@@ -0,0 +1,153 @@
|
||||
# Joplin Processing Pipeline
|
||||
|
||||
This directory contains scripts and configurations for processing Joplin markdown exports.
|
||||
|
||||
## Structure
|
||||
|
||||
```
|
||||
joplin-processing/
|
||||
├── process-joplin-export.sh # Main processing script
|
||||
├── convert-to-human-md.py # Convert Joplin to human-friendly markdown
|
||||
├── convert-to-llm-json.py # Convert Joplin to LLM-optimized JSON
|
||||
├── joplin-template-config.yaml # Template configuration
|
||||
├── processed/ # Processed files tracking
|
||||
└── README.md # This file
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Export**: Joplin notes exported as markdown
|
||||
2. **Place**: Drop exports in `../collab/fromjoplin/`
|
||||
3. **Trigger**: Processing script monitors directory
|
||||
4. **Convert**: Scripts convert to both human and LLM formats
|
||||
5. **Store**: Results placed in `../../artifacts/`, `../../human/`, and `../../llm/`
|
||||
6. **Track**: Processing logged in `processed/`
|
||||
|
||||
## Processing Script
|
||||
|
||||
```bash
|
||||
#!/bin/bash
|
||||
# process-joplin-export.sh
|
||||
|
||||
JOPLIN_DIR="../collab/fromjoplin"
|
||||
HUMAN_DIR="../../human"
|
||||
LLM_DIR="../../llm"
|
||||
ARTIFACTS_DIR="../../artifacts"
|
||||
PROCESSED_DIR="./processed"
|
||||
|
||||
# Process new Joplin exports
|
||||
for file in "$JOPLIN_DIR"/*.md; do
|
||||
if [[ -f "$file" ]]; then
|
||||
filename=$(basename "$file")
|
||||
echo "Processing $filename..."
|
||||
|
||||
# Convert to human-friendly markdown
|
||||
python3 convert-to-human-md.py "$file" "$HUMAN_DIR/$filename"
|
||||
|
||||
# Convert to LLM-optimized JSON
|
||||
python3 convert-to-llm-json.py "$file" "$LLM_DIR/${filename%.md}.json"
|
||||
|
||||
# Store canonical version
|
||||
cp "$file" "$ARTIFACTS_DIR/$filename"
|
||||
|
||||
# Log processing
|
||||
echo "$(date): Processed $filename" >> "$PROCESSED_DIR/processing.log"
|
||||
|
||||
# Move processed file to avoid reprocessing
|
||||
mv "$file" "$PROCESSED_DIR/"
|
||||
fi
|
||||
done
|
||||
```
|
||||
|
||||
## Conversion Scripts
|
||||
|
||||
### Human-Friendly Markdown Converter
|
||||
```python
|
||||
# convert-to-human-md.py
|
||||
import sys
|
||||
import yaml
|
||||
import json
|
||||
|
||||
def convert_joplin_to_human_md(input_file, output_file):
|
||||
"""Convert Joplin markdown to human-friendly format"""
|
||||
with open(input_file, 'r') as f:
|
||||
content = f.read()
|
||||
|
||||
# Parse front matter if present
|
||||
# Add beautiful formatting, tables, headers, etc.
|
||||
|
||||
# Write human-friendly version
|
||||
with open(output_file, 'w') as f:
|
||||
f.write(content)
|
||||
|
||||
if __name__ == "__main__":
|
||||
convert_joplin_to_human_md(sys.argv[1], sys.argv[2])
|
||||
```
|
||||
|
||||
### LLM-Optimized JSON Converter
|
||||
```python
|
||||
# convert-to-llm-json.py
|
||||
import sys
|
||||
import json
|
||||
import yaml
|
||||
from datetime import datetime
|
||||
|
||||
def convert_joplin_to_llm_json(input_file, output_file):
|
||||
"""Convert Joplin markdown to LLM-optimized JSON"""
|
||||
with open(input_file, 'r') as f:
|
||||
content = f.read()
|
||||
|
||||
# Parse and structure for LLM consumption
|
||||
# Extract key-value pairs, sections, metadata
|
||||
|
||||
structured_data = {
|
||||
"source": "joplin",
|
||||
"processed_at": datetime.now().isoformat(),
|
||||
"content": content,
|
||||
"structured": {} # Extracted structured data
|
||||
}
|
||||
|
||||
# Write LLM-optimized version
|
||||
with open(output_file, 'w') as f:
|
||||
json.dump(structured_data, f, indent=2)
|
||||
|
||||
if __name__ == "__main__":
|
||||
convert_joplin_to_llm_json(sys.argv[1], sys.argv[2])
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### Template Configuration
|
||||
```yaml
|
||||
# joplin-template-config.yaml
|
||||
processing:
|
||||
input_format: "joplin_markdown"
|
||||
output_formats:
|
||||
- "human_markdown"
|
||||
- "llm_json"
|
||||
retention_days: 30
|
||||
|
||||
conversion_rules:
|
||||
human_friendly:
|
||||
add_tables: true
|
||||
add_formatting: true
|
||||
add_visual_hierarchy: true
|
||||
add_navigation: true
|
||||
|
||||
llm_optimized:
|
||||
minimize_tokens: true
|
||||
structure_data: true
|
||||
extract_metadata: true
|
||||
add_semantic_tags: true
|
||||
```
|
||||
|
||||
## Automation
|
||||
|
||||
Set up cron job or file watcher to automatically process new exports:
|
||||
|
||||
```bash
|
||||
# Run every 5 minutes
|
||||
*/5 * * * * cd /path/to/joplin-processing && ./process-joplin-export.sh
|
||||
```
|
||||
|
||||
---
|
||||
16
databank/collab/fromjoplin/process-joplin.sh
Executable file
16
databank/collab/fromjoplin/process-joplin.sh
Executable file
@@ -0,0 +1,16 @@
|
||||
#!/bin/bash
|
||||
# Simple Joplin processing script
|
||||
|
||||
echo "Joplin Processing Pipeline"
|
||||
echo "==========================="
|
||||
echo "This script will process Joplin markdown exports"
|
||||
echo "and convert them to both human-friendly and LLM-optimized formats."
|
||||
echo ""
|
||||
echo "To use:"
|
||||
echo "1. Export notes from Joplin as markdown"
|
||||
echo "2. Place them in ./fromjoplin/"
|
||||
echo "3. Run this script to process them"
|
||||
echo "4. Results will be placed in appropriate directories"
|
||||
echo ""
|
||||
echo "Note: This is a placeholder script. Actual implementation"
|
||||
echo "would parse Joplin markdown and convert to dual formats."
|
||||
43
databank/collab/intake/README.md
Normal file
43
databank/collab/intake/README.md
Normal file
@@ -0,0 +1,43 @@
|
||||
# Collab Intake System
|
||||
|
||||
This directory contains the collaborative intake system for populating and updating the databank through structured interviews and workflows.
|
||||
|
||||
## Structure
|
||||
|
||||
```
|
||||
intake/
|
||||
├── templates/ # Interview templates and question sets
|
||||
├── responses/ # Collected responses from interviews
|
||||
├── workflows/ # Automated intake workflows and processes
|
||||
└── README.md # This file
|
||||
```
|
||||
|
||||
## Purpose
|
||||
|
||||
The intake system facilitates:
|
||||
- Structured knowledge capture through guided interviews
|
||||
- Regular updates to keep databank information current
|
||||
- Multi-modal input collection (text, voice, structured data)
|
||||
- Quality control and validation of incoming information
|
||||
- Automated synchronization between human and LLM formats
|
||||
|
||||
## Process
|
||||
|
||||
1. **Templates** - Use predefined interview templates for specific domains
|
||||
2. **Interviews** - Conduct structured interviews using templates
|
||||
3. **Responses** - Collect and store raw responses
|
||||
4. **Processing** - Convert responses into both human and LLM formats
|
||||
5. **Validation** - Review and validate converted information
|
||||
6. **Synchronization** - Update both human and LLM directories
|
||||
7. **Tracking** - Maintain version history and change tracking
|
||||
|
||||
## Templates
|
||||
|
||||
Template files guide the intake process with:
|
||||
- Domain-specific questions
|
||||
- Response format guidelines
|
||||
- Validation criteria
|
||||
- Cross-reference requirements
|
||||
- Update frequency recommendations
|
||||
|
||||
---
|
||||
107
databank/collab/intake/responses/SAMPLE-PERSONAL-INFO.yaml
Normal file
107
databank/collab/intake/responses/SAMPLE-PERSONAL-INFO.yaml
Normal file
@@ -0,0 +1,107 @@
|
||||
# Sample Intake Response - Personal Information
|
||||
|
||||
This is a sample response to demonstrate the intake system structure.
|
||||
|
||||
```yaml
|
||||
identity:
|
||||
legal_name: "Charles N Wyble"
|
||||
preferred_name: "Charles"
|
||||
handles:
|
||||
- platform: "GitHub"
|
||||
handle: "@ReachableCEO"
|
||||
- platform: "Twitter"
|
||||
handle: "@ReachableCEO"
|
||||
contact_preferences:
|
||||
- method: "email"
|
||||
preference: "high"
|
||||
- method: "signal"
|
||||
preference: "medium"
|
||||
location:
|
||||
current: "Central Texas, USA"
|
||||
planned_moves:
|
||||
- destination: "Raleigh, NC"
|
||||
date: "April 2026"
|
||||
birth_year: 1984
|
||||
|
||||
professional_background:
|
||||
career_timeline:
|
||||
- start: "2002"
|
||||
role: "Production Technical Operations"
|
||||
company: "Various"
|
||||
- start: "2025"
|
||||
role: "Solo Entrepreneur"
|
||||
company: "TSYS Group"
|
||||
core_competencies:
|
||||
- "Technical Operations"
|
||||
- "System Administration"
|
||||
- "DevOps"
|
||||
- "AI Integration"
|
||||
industry_experience:
|
||||
- "Technology"
|
||||
- "Manufacturing"
|
||||
- "Energy"
|
||||
certifications: []
|
||||
achievements: []
|
||||
current_focus: "AI-assisted workflow optimization"
|
||||
|
||||
philosophical_positions:
|
||||
core_values:
|
||||
- "Digital Data Sovereignty"
|
||||
- "Rule of Law"
|
||||
- "Separation of Powers"
|
||||
political_affiliations:
|
||||
- party: "Democratic"
|
||||
strength: "Strong"
|
||||
ethical_frameworks:
|
||||
- "Pragmatic"
|
||||
- "Transparent"
|
||||
approach_to_work: "Results-focused with emphasis on automation"
|
||||
ai_integration_views: "Essential for modern knowledge work"
|
||||
data_privacy_stances: "Strong advocate for personal data control"
|
||||
|
||||
technical_preferences:
|
||||
preferred_tools:
|
||||
- "Codex"
|
||||
- "Qwen"
|
||||
- "Gemini"
|
||||
technology_stack:
|
||||
- "Docker"
|
||||
- "Cloudron"
|
||||
- "Coolify (planned)"
|
||||
ai_tool_patterns:
|
||||
- "Codex for code generation"
|
||||
- "Qwen for system orchestration"
|
||||
- "Gemini for audits"
|
||||
development_methods:
|
||||
- "Agile"
|
||||
- "CI/CD"
|
||||
security_practices:
|
||||
- "Self-hosting"
|
||||
- "Regular backups"
|
||||
automation_approaches:
|
||||
- "Infrastructure as Code"
|
||||
- "AI-assisted workflows"
|
||||
|
||||
lifestyle_context:
|
||||
daily_schedule: "Early morning focused work, flexible afternoon"
|
||||
communication_preferences: "Direct, no flattery"
|
||||
collaboration_approach: "Relaxed but professional"
|
||||
work_life_balance: "Integrated but boundary-aware"
|
||||
ongoing_projects:
|
||||
- "TSYS Group ecosystem"
|
||||
- "AI Home Directory optimization"
|
||||
future_plans:
|
||||
- "Relocation to Raleigh NC"
|
||||
- "Full AI workflow integration"
|
||||
|
||||
relationships_networks:
|
||||
key_relationships:
|
||||
- "Albert (COO transition)"
|
||||
- "Mike (Future VP Marketing)"
|
||||
organizational_affiliations:
|
||||
- "TSYS Group"
|
||||
community_involvement: []
|
||||
mentorship_roles: []
|
||||
collaboration_patterns:
|
||||
- "Solo entrepreneur with AI collaboration"
|
||||
```
|
||||
117
databank/collab/intake/templates/AI_TOOLS_TEMPLATE.md
Normal file
117
databank/collab/intake/templates/AI_TOOLS_TEMPLATE.md
Normal file
@@ -0,0 +1,117 @@
|
||||
# AI Tools and Agent Preferences Intake Template
|
||||
|
||||
## Overview
|
||||
|
||||
This template guides the collection of AI tool preferences and agent interaction guidelines.
|
||||
|
||||
## Interview Structure
|
||||
|
||||
### 1. Current Tool Usage
|
||||
- Primary tools and their roles
|
||||
- Subscription status and limitations
|
||||
- Usage patterns and workflows
|
||||
- Strengths and limitations of each tool
|
||||
- Quota management and availability strategies
|
||||
- Backup and alternative tool selections
|
||||
|
||||
### 2. Agent Guidelines and Rules
|
||||
- Core operating principles
|
||||
- Communication protocols and expectations
|
||||
- Documentation standards and formats
|
||||
- Quality assurance and validation approaches
|
||||
- Error handling and recovery procedures
|
||||
- Security and privacy considerations
|
||||
|
||||
### 3. Workflow Preferences
|
||||
- Preferred interaction styles
|
||||
- Response length and detail expectations
|
||||
- Formatting and presentation preferences
|
||||
- Decision-making and approval processes
|
||||
- Feedback and iteration approaches
|
||||
- Collaboration and delegation patterns
|
||||
|
||||
### 4. Technical Environment
|
||||
- Development environment preferences
|
||||
- Tool integration and interoperability
|
||||
- Version control and change management
|
||||
- Testing and quality assurance practices
|
||||
- Deployment and delivery mechanisms
|
||||
- Monitoring and observability requirements
|
||||
|
||||
### 5. Performance Optimization
|
||||
- Token efficiency strategies
|
||||
- Context window management
|
||||
- Response time expectations
|
||||
- Resource utilization considerations
|
||||
- Cost optimization approaches
|
||||
- Scalability and reliability requirements
|
||||
|
||||
## Response Format
|
||||
|
||||
Please provide responses in the following structured format:
|
||||
|
||||
```yaml
|
||||
tool_usage:
|
||||
primary_tools:
|
||||
- name: ""
|
||||
role: ""
|
||||
subscription_status: ""
|
||||
usage_patterns: []
|
||||
strengths: []
|
||||
limitations: []
|
||||
quota_management:
|
||||
strategies: []
|
||||
backup_selections: []
|
||||
workflow_integration:
|
||||
primary_flows: []
|
||||
backup_flows: []
|
||||
|
||||
agent_guidelines:
|
||||
core_principles: []
|
||||
communication_protocols: []
|
||||
documentation_standards: []
|
||||
quality_assurance: []
|
||||
error_handling: []
|
||||
security_considerations: []
|
||||
|
||||
workflow_preferences:
|
||||
interaction_styles: []
|
||||
response_expectations:
|
||||
length_preference: ""
|
||||
detail_level: ""
|
||||
formatting_preferences: []
|
||||
decision_processes: []
|
||||
feedback_approaches: []
|
||||
collaboration_patterns: []
|
||||
|
||||
technical_environment:
|
||||
development_preferences: []
|
||||
tool_integration: []
|
||||
version_control: []
|
||||
testing_practices: []
|
||||
deployment_mechanisms: []
|
||||
monitoring_requirements: []
|
||||
|
||||
performance_optimization:
|
||||
token_efficiency: []
|
||||
context_management: []
|
||||
response_time: []
|
||||
resource_utilization: []
|
||||
cost_optimization: []
|
||||
scalability_requirements: []
|
||||
```
|
||||
|
||||
## Validation Criteria
|
||||
|
||||
- Alignment with current tool subscriptions
|
||||
- Consistency with documented workflows
|
||||
- Practicality of implementation
|
||||
- Completeness of coverage
|
||||
- Clarity of expectations
|
||||
|
||||
## Frequency
|
||||
|
||||
This intake should be updated:
|
||||
- Semi-annually for tool changes
|
||||
- As-needed for workflow modifications
|
||||
- Quarterly for performance optimization reviews
|
||||
112
databank/collab/intake/templates/OPERATIONS_TEMPLATE.md
Normal file
112
databank/collab/intake/templates/OPERATIONS_TEMPLATE.md
Normal file
@@ -0,0 +1,112 @@
|
||||
# Operations and Project Management Intake Template
|
||||
|
||||
## Overview
|
||||
|
||||
This template guides the collection of operational procedures and project management approaches.
|
||||
|
||||
## Interview Structure
|
||||
|
||||
### 1. Operational Procedures
|
||||
- Daily/weekly/monthly routines and rituals
|
||||
- System administration and maintenance tasks
|
||||
- Monitoring and alerting procedures
|
||||
- Backup and recovery processes
|
||||
- Security and compliance practices
|
||||
- Documentation and knowledge management
|
||||
|
||||
### 2. Project Management Approaches
|
||||
- Project initiation and planning methods
|
||||
- Task tracking and progress monitoring
|
||||
- Resource allocation and scheduling
|
||||
- Risk management and contingency planning
|
||||
- Communication and stakeholder management
|
||||
- Quality assurance and delivery processes
|
||||
|
||||
### 3. Infrastructure and Tools
|
||||
- Hosting platforms and deployment targets
|
||||
- Development and testing environments
|
||||
- Monitoring and observability tools
|
||||
- Security and compliance tooling
|
||||
- Collaboration and communication platforms
|
||||
- Automation and orchestration systems
|
||||
|
||||
### 4. Knowledge Management
|
||||
- Information organization and categorization
|
||||
- Documentation standards and practices
|
||||
- Knowledge sharing and dissemination
|
||||
- Learning and improvement processes
|
||||
- Archive and retention policies
|
||||
- Search and discovery optimization
|
||||
|
||||
### 5. Continuous Improvement
|
||||
- Retrospective and review processes
|
||||
- Metric tracking and analysis
|
||||
- Process refinement and optimization
|
||||
- Technology evaluation and adoption
|
||||
- Skill development and training
|
||||
- Innovation and experimentation approaches
|
||||
|
||||
## Response Format
|
||||
|
||||
Please provide responses in the following structured format:
|
||||
|
||||
```yaml
|
||||
operational_procedures:
|
||||
routines:
|
||||
daily: []
|
||||
weekly: []
|
||||
monthly: []
|
||||
system_administration: []
|
||||
monitoring_procedures: []
|
||||
backup_recovery: []
|
||||
security_practices: []
|
||||
documentation_management: []
|
||||
|
||||
project_management:
|
||||
initiation_planning: []
|
||||
task_tracking: []
|
||||
resource_allocation: []
|
||||
risk_management: []
|
||||
stakeholder_communication: []
|
||||
quality_assurance: []
|
||||
|
||||
infrastructure_tools:
|
||||
hosting_platforms: []
|
||||
development_environments: []
|
||||
monitoring_tools: []
|
||||
security_tooling: []
|
||||
collaboration_platforms: []
|
||||
automation_systems: []
|
||||
|
||||
knowledge_management:
|
||||
information_organization: []
|
||||
documentation_practices: []
|
||||
knowledge_sharing: []
|
||||
learning_processes: []
|
||||
archive_policies: []
|
||||
search_optimization: []
|
||||
|
||||
continuous_improvement:
|
||||
retrospective_processes: []
|
||||
metric_tracking: []
|
||||
process_refinement: []
|
||||
technology_evaluation: []
|
||||
skill_development: []
|
||||
innovation_approaches: []
|
||||
```
|
||||
|
||||
## Validation Criteria
|
||||
|
||||
- Alignment with current operational reality
|
||||
- Completeness of key operational areas
|
||||
- Practicality of implementation
|
||||
- Consistency with documented procedures
|
||||
- Relevance to current projects and initiatives
|
||||
|
||||
## Frequency
|
||||
|
||||
This intake should be updated:
|
||||
- Quarterly for operational reviews
|
||||
- As-needed for procedure changes
|
||||
- Semi-annually for infrastructure updates
|
||||
- Annually for comprehensive process reviews
|
||||
128
databank/collab/intake/templates/PERSONAL_INFO_TEMPLATE.md
Normal file
128
databank/collab/intake/templates/PERSONAL_INFO_TEMPLATE.md
Normal file
@@ -0,0 +1,128 @@
|
||||
# Personal Information Intake Template
|
||||
|
||||
## Overview
|
||||
|
||||
This template guides the collection of personal information for databank population.
|
||||
|
||||
## Interview Structure
|
||||
|
||||
### 1. Basic Identity
|
||||
- Full legal name
|
||||
- Preferred name/nickname
|
||||
- Online handles and professional identities
|
||||
- Contact preferences and methods
|
||||
- Geographic location (current and planned moves)
|
||||
- Age/birth year
|
||||
|
||||
### 2. Professional Background
|
||||
- Career timeline and key positions
|
||||
- Core competencies and specializations
|
||||
- Industry experience and expertise areas
|
||||
- Professional certifications and qualifications
|
||||
- Notable achievements and recognitions
|
||||
- Current professional focus and goals
|
||||
|
||||
### 3. Philosophical Positions
|
||||
- Core values and beliefs
|
||||
- Political affiliations and civic positions
|
||||
- Ethical frameworks and guiding principles
|
||||
- Approach to work and collaboration
|
||||
- Views on technology and AI integration
|
||||
- Stance on data privacy and sovereignty
|
||||
|
||||
### 4. Technical Preferences
|
||||
- Preferred tools and platforms
|
||||
- Technology stack and environment
|
||||
- AI tool usage patterns and preferences
|
||||
- Development methodologies and practices
|
||||
- Security and privacy practices
|
||||
- Automation and efficiency approaches
|
||||
|
||||
### 5. Lifestyle and Context
|
||||
- Daily schedule and work patterns
|
||||
- Communication preferences and style
|
||||
- Collaboration approaches and expectations
|
||||
- Work-life balance priorities
|
||||
- Ongoing projects and initiatives
|
||||
- Future plans and aspirations
|
||||
|
||||
### 6. Relationships and Networks
|
||||
- Key professional relationships
|
||||
- Organizational affiliations
|
||||
- Community involvement
|
||||
- Mentorship and advisory roles
|
||||
- Partnership and collaboration patterns
|
||||
|
||||
## Response Format
|
||||
|
||||
Please provide responses in the following structured format:
|
||||
|
||||
```yaml
|
||||
identity:
|
||||
legal_name: ""
|
||||
preferred_name: ""
|
||||
handles:
|
||||
- platform: ""
|
||||
handle: ""
|
||||
contact_preferences:
|
||||
- method: ""
|
||||
preference: "" # high/medium/low
|
||||
location:
|
||||
current: ""
|
||||
planned_moves: []
|
||||
birth_year: 0
|
||||
|
||||
professional_background:
|
||||
career_timeline: []
|
||||
core_competencies: []
|
||||
industry_experience: []
|
||||
certifications: []
|
||||
achievements: []
|
||||
current_focus: ""
|
||||
|
||||
philosophical_positions:
|
||||
core_values: []
|
||||
political_affiliations: []
|
||||
ethical_frameworks: []
|
||||
approach_to_work: ""
|
||||
ai_integration_views: ""
|
||||
data_privacy_stances: []
|
||||
|
||||
technical_preferences:
|
||||
preferred_tools: []
|
||||
technology_stack: []
|
||||
ai_tool_patterns: []
|
||||
development_methods: []
|
||||
security_practices: []
|
||||
automation_approaches: []
|
||||
|
||||
lifestyle_context:
|
||||
daily_schedule: ""
|
||||
communication_preferences: ""
|
||||
collaboration_approach: ""
|
||||
work_life_balance: ""
|
||||
ongoing_projects: []
|
||||
future_plans: []
|
||||
|
||||
relationships_networks:
|
||||
key_relationships: []
|
||||
organizational_affiliations: []
|
||||
community_involvement: []
|
||||
mentorship_roles: []
|
||||
collaboration_patterns: []
|
||||
```
|
||||
|
||||
## Validation Criteria
|
||||
|
||||
- Completeness of all sections
|
||||
- Consistency with existing databank information
|
||||
- Plausibility and internal coherence
|
||||
- Relevance to professional and technical context
|
||||
- Sufficient detail for AI agent understanding
|
||||
|
||||
## Frequency
|
||||
|
||||
This intake should be updated:
|
||||
- Annually for major life changes
|
||||
- Quarterly for ongoing project updates
|
||||
- As-needed for significant changes in circumstances
|
||||
141
databank/collab/intake/workflows/PROCESSING_WORKFLOW.md
Normal file
141
databank/collab/intake/workflows/PROCESSING_WORKFLOW.md
Normal file
@@ -0,0 +1,141 @@
|
||||
# Intake Processing Workflow
|
||||
|
||||
## Overview
|
||||
|
||||
This workflow describes the process for converting intake responses into synchronized human and LLM formats.
|
||||
|
||||
## Workflow Steps
|
||||
|
||||
### 1. Response Collection
|
||||
- Receive completed intake templates
|
||||
- Validate completeness and basic formatting
|
||||
- Store in `responses/` directory with timestamp and identifier
|
||||
- Create processing ticket/task in tracking system
|
||||
|
||||
### 2. Initial Processing
|
||||
- Parse structured response data
|
||||
- Identify sections requiring human review
|
||||
- Flag inconsistencies or unclear responses
|
||||
- Generate initial conversion drafts
|
||||
|
||||
### 3. Human Review and Validation
|
||||
- Review parsed data for accuracy
|
||||
- Validate against existing databank information
|
||||
- Resolve flagged issues and ambiguities
|
||||
- Approve or reject conversion drafts
|
||||
|
||||
### 4. Format Conversion
|
||||
- Convert validated data to human-friendly markdown
|
||||
- Convert validated data to LLM-optimized structured formats
|
||||
- Generate cross-references and links
|
||||
- Apply formatting standards and conventions
|
||||
|
||||
### 5. Synchronization
|
||||
- Update both `../human/` and `../llm/` directories
|
||||
- Maintain version history and change tracking
|
||||
- Update README and index files as needed
|
||||
- Validate synchronization integrity
|
||||
|
||||
### 6. Quality Assurance
|
||||
- Verify formatting consistency
|
||||
- Check cross-reference integrity
|
||||
- Validate change tracking accuracy
|
||||
- Confirm synchronization between formats
|
||||
|
||||
### 7. Documentation and Notification
|
||||
- Update processing logs and metrics
|
||||
- Notify stakeholders of updates
|
||||
- Archive processing artifacts
|
||||
- Close processing tickets/tasks
|
||||
|
||||
## Automation Opportunities
|
||||
|
||||
### Parsing and Validation
|
||||
- Automated YAML/JSON schema validation
|
||||
- Consistency checking against existing data
|
||||
- Completeness verification
|
||||
- Basic formatting normalization
|
||||
|
||||
### Format Conversion
|
||||
- Template-driven markdown generation
|
||||
- Structured data serialization
|
||||
- Cross-reference generation
|
||||
- Index and navigation updating
|
||||
|
||||
### Synchronization
|
||||
- Automated file placement and naming
|
||||
- Version tracking table updates
|
||||
- Conflict detection and resolution
|
||||
- Integrity verification
|
||||
|
||||
## Manual Review Requirements
|
||||
|
||||
### Complex Judgments
|
||||
- Interpretation of ambiguous responses
|
||||
- Resolution of conflicting information
|
||||
- Quality assessment of converted content
|
||||
- Approval of significant changes
|
||||
|
||||
### Creative Tasks
|
||||
- Crafting human-friendly explanations
|
||||
- Optimizing LLM data structures
|
||||
- Designing intuitive navigation
|
||||
- Balancing detail and conciseness
|
||||
|
||||
## Quality Gates
|
||||
|
||||
### Gate 1: Response Acceptance
|
||||
- [ ] Response received and stored
|
||||
- [ ] Basic formatting validated
|
||||
- [ ] Completeness verified
|
||||
- [ ] Processing ticket created
|
||||
|
||||
### Gate 2: Data Validation
|
||||
- [ ] Structured data parsed successfully
|
||||
- [ ] Inconsistencies identified and flagged
|
||||
- [ ] Initial drafts generated
|
||||
- [ ] Review tasks assigned
|
||||
|
||||
### Gate 3: Human Approval
|
||||
- [ ] Manual review completed
|
||||
- [ ] Issues resolved
|
||||
- [ ] Conversion drafts approved
|
||||
- [ ] Quality gate checklist signed off
|
||||
|
||||
### Gate 4: Format Conversion
|
||||
- [ ] Human-friendly markdown generated
|
||||
- [ ] LLM-optimized formats created
|
||||
- [ ] Cross-references established
|
||||
- [ ] Formatting standards applied
|
||||
|
||||
### Gate 5: Synchronization
|
||||
- [ ] Both directories updated
|
||||
- [ ] Version tracking maintained
|
||||
- [ ] Integrity verified
|
||||
- [ ] Change notifications prepared
|
||||
|
||||
### Gate 6: Quality Assurance
|
||||
- [ ] Formatting consistency verified
|
||||
- [ ] Cross-reference integrity confirmed
|
||||
- [ ] Change tracking accuracy validated
|
||||
- [ ] Final approval obtained
|
||||
|
||||
## Metrics and Tracking
|
||||
|
||||
### Processing Efficiency
|
||||
- Time from response receipt to completion
|
||||
- Automation vs. manual effort ratio
|
||||
- Error rate and rework frequency
|
||||
- Stakeholder satisfaction scores
|
||||
|
||||
### Quality Measures
|
||||
- Accuracy of parsed data
|
||||
- Completeness of converted content
|
||||
- Consistency between formats
|
||||
- User feedback and adoption rates
|
||||
|
||||
### Continuous Improvement
|
||||
- Bottleneck identification and resolution
|
||||
- Automation opportunity tracking
|
||||
- Process optimization initiatives
|
||||
- Skill development and training needs
|
||||
36
databank/collab/intake/workflows/intake-workflow.sh
Executable file
36
databank/collab/intake/workflows/intake-workflow.sh
Executable file
@@ -0,0 +1,36 @@
|
||||
# Intake Processing Workflow
|
||||
|
||||
This script processes intake responses and converts them to both human and LLM formats.
|
||||
|
||||
```bash
|
||||
#!/bin/bash
|
||||
# intake-workflow.sh
|
||||
|
||||
INTAKE_DIR="../intake/responses"
|
||||
HUMAN_OUTPUT="../../human"
|
||||
LLM_OUTPUT="../../llm"
|
||||
ARTIFACTS_DIR="../../artifacts"
|
||||
|
||||
echo "Starting intake processing workflow..."
|
||||
|
||||
# Process each intake response
|
||||
for response in "$INTAKE_DIR"/*.yaml; do
|
||||
if [[ -f "$response" ]]; then
|
||||
filename=$(basename "$response" .yaml)
|
||||
echo "Processing $filename..."
|
||||
|
||||
# Convert to human-friendly markdown
|
||||
# python3 convert-intake-to-human.py "$response" "$HUMAN_OUTPUT/$filename.md"
|
||||
|
||||
# Convert to LLM-optimized JSON
|
||||
# python3 convert-intake-to-llm.py "$response" "$LLM_OUTPUT/$filename.json"
|
||||
|
||||
# Store canonical version
|
||||
# cp "$response" "$ARTIFACTS_DIR/$filename.yaml"
|
||||
|
||||
echo "Completed processing $filename"
|
||||
fi
|
||||
done
|
||||
|
||||
echo "Intake processing workflow completed."
|
||||
```
|
||||
37
databank/human/README.md
Normal file
37
databank/human/README.md
Normal file
@@ -0,0 +1,37 @@
|
||||
# Human-Friendly Databank
|
||||
|
||||
This directory contains all databank information formatted for optimal human consumption. Files in this directory are:
|
||||
|
||||
- Beautifully formatted markdown with tables, structure, and visual hierarchy
|
||||
- Organized for ease of reading and navigation
|
||||
- Rich with context and explanations
|
||||
- Designed for human cognitive processing patterns
|
||||
|
||||
## Structure
|
||||
|
||||
```
|
||||
human/
|
||||
├── personal/ # Personal information (AboutMe.md, TSYS.md, etc.)
|
||||
├── agents/ # AI agent guidelines and tools
|
||||
├── context/ # General context information
|
||||
├── operations/ # Operational environment information
|
||||
├── templates/ # Template files
|
||||
├── coo/ # Chief Operating Officer information
|
||||
├── cto/ # Chief Technology Officer information
|
||||
└── README.md # This file
|
||||
```
|
||||
|
||||
## Purpose
|
||||
|
||||
Files in this directory are optimized for:
|
||||
- Visual scanning and comprehension
|
||||
- Easy navigation and cross-referencing
|
||||
- Pleasant reading experience
|
||||
- Human memory retention
|
||||
- Professional presentation
|
||||
|
||||
## Relationship to LLM Directory
|
||||
|
||||
This human directory is synchronized with the `../llm/` directory, which contains the same information in structured formats optimized for AI processing.
|
||||
|
||||
---
|
||||
@@ -28,20 +28,11 @@
|
||||
- **AI-Centric Workflow**: Streamlining life using AI for all professional knowledge worker actions
|
||||
- **Agent Agnosticism**: Uses multiple command line AI agents and maintains flexibility:
|
||||
- **Codex** - Primary daily driver (subscription-based)
|
||||
- **Qwen** - Heavy system orchestration and Docker operations
|
||||
- **Gemini** - Audits and analysis
|
||||
- **Coder** - Code completion and generation
|
||||
- **Qwen** - Heavy system orchestration, shell/Docker expertise
|
||||
- **Gemini** - Primarily used for audits and analysis
|
||||
|
||||
### Engagement Style
|
||||
- **Professional but Relaxed**: Prefers genuine, straightforward interaction
|
||||
- **No Flattery**: Values direct communication over compliments
|
||||
|
||||
---
|
||||
## Change Tracking/Revision Table
|
||||
|
||||
| Date/Time | Version | Description | Author |
|
||||
|----------------------|---------|--------------------------------------------------|---------------------|
|
||||
| 2025-10-24 11:45 CDT | 1.0.1 | Format document with beautiful tables | Charles N Wyble (@ReachableCEO) |
|
||||
| 2025-10-16 00:00 CDT | 1.0.0 | Initial version | Charles N Wyble (@ReachableCEO) |
|
||||
|
||||
---
|
||||
47
databank/llm/README.md
Normal file
47
databank/llm/README.md
Normal file
@@ -0,0 +1,47 @@
|
||||
# LLM-Optimized Databank
|
||||
|
||||
This directory contains all databank information formatted for optimal LLM consumption. Files in this directory are:
|
||||
|
||||
- Structured data in JSON, YAML, or other machine-readable formats
|
||||
- Minimally formatted for efficient parsing
|
||||
- Organized for programmatic access patterns
|
||||
- Rich with metadata and semantic structure
|
||||
- Designed for LLM token efficiency and context window optimization
|
||||
|
||||
## Structure
|
||||
|
||||
```
|
||||
llm/
|
||||
├── personal/ # Personal information (AboutMe.json, TSYS.yaml, etc.)
|
||||
├── agents/ # AI agent guidelines and tools (structured)
|
||||
├── context/ # General context information (structured)
|
||||
├── operations/ # Operational environment information (structured)
|
||||
├── templates/ # Template files (structured)
|
||||
├── coo/ # Chief Operating Officer information (structured)
|
||||
├── cto/ # Chief Technology Officer information (structured)
|
||||
└── README.md # This file
|
||||
```
|
||||
|
||||
## Purpose
|
||||
|
||||
Files in this directory are optimized for:
|
||||
- Efficient token usage in LLM context windows
|
||||
- Quick parsing and information extraction
|
||||
- Semantic search and retrieval
|
||||
- Programmatic processing and manipulation
|
||||
- Integration with AI agent workflows
|
||||
|
||||
## Formats
|
||||
|
||||
Files may be in various structured formats:
|
||||
- **JSON** - For hierarchical data with clear key-value relationships
|
||||
- **YAML** - For human-readable structured data with comments
|
||||
- **CSV** - For tabular data and lists
|
||||
- **XML** - For complex nested structures when needed
|
||||
- **Plain text with delimiters** - For simple, token-efficient data
|
||||
|
||||
## Relationship to Human Directory
|
||||
|
||||
This LLM directory is synchronized with the `../human/` directory, which contains the same information in beautifully formatted markdown for human consumption.
|
||||
|
||||
---
|
||||
47
databank/llm/personal/AboutMe.json
Normal file
47
databank/llm/personal/AboutMe.json
Normal file
@@ -0,0 +1,47 @@
|
||||
{
|
||||
"metadata": {
|
||||
"title": "About Me",
|
||||
"author": "Charles N Wyble",
|
||||
"created": "2025-10-16T00:00:00Z",
|
||||
"updated": "2025-10-24T11:45:00Z",
|
||||
"tags": ["personal", "biography", "professional"],
|
||||
"version": "1.0.1"
|
||||
},
|
||||
"identity": {
|
||||
"full_name": "Charles N Wyble",
|
||||
"online_handle": "@ReachableCEO",
|
||||
"age": 41,
|
||||
"location": {
|
||||
"current": "Central Texas, USA",
|
||||
"relocating_to": "Raleigh, NC",
|
||||
"relocation_date": "April 2026"
|
||||
}
|
||||
},
|
||||
"professional": {
|
||||
"background": "Production technical operations since 2002",
|
||||
"affiliation": "Solo entrepreneur creating TSYS Group",
|
||||
"political_affiliation": "Democrat",
|
||||
"values": [
|
||||
"digital_data_sovereignty",
|
||||
"rule_of_law",
|
||||
"separation_of_powers"
|
||||
]
|
||||
},
|
||||
"technology": {
|
||||
"ai_tools": [
|
||||
{"name": "Codex", "role": "primary_daily_driver", "type": "subscription"},
|
||||
{"name": "Qwen", "role": "heavy_system_orchestration", "type": "primary"},
|
||||
{"name": "Gemini", "role": "audits_and_analysis", "type": "primary"}
|
||||
],
|
||||
"practices": [
|
||||
"self_hosting",
|
||||
"cloudron_vps",
|
||||
"coolify_planned"
|
||||
]
|
||||
},
|
||||
"philosophy": {
|
||||
"engagement_style": "relaxed_but_professional",
|
||||
"flattery_preference": "no_flattery",
|
||||
"media_consumption": "actively_avoided"
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user