whisper.cpp/examples/talk-llama/llama.cpp

20323 lines
838 KiB
C++
Raw Normal View History

2024-08-08 11:16:50 +00:00
#include "llama-impl.h"
#include "llama-vocab.h"
#include "llama-grammar.h"
#include "llama-sampling.h"
#include "unicode.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
2024-06-16 10:10:54 +00:00
#ifdef GGML_USE_RPC
# include "ggml-rpc.h"
#endif
#ifdef GGML_USE_CUDA
# include "ggml-cuda.h"
2024-01-28 17:44:10 +00:00
#elif defined(GGML_USE_VULKAN)
# include "ggml-vulkan.h"
#elif defined(GGML_USE_SYCL)
# include "ggml-sycl.h"
2024-02-10 08:10:59 +00:00
#elif defined(GGML_USE_KOMPUTE)
# include "ggml-kompute.h"
2024-08-08 11:16:50 +00:00
#elif defined(GGML_USE_CANN)
# include "ggml-cann.h"
#endif
2024-06-16 10:10:54 +00:00
#ifdef GGML_USE_BLAS
# include "ggml-blas.h"
#endif
#ifdef GGML_USE_METAL
# include "ggml-metal.h"
#endif
2024-06-16 10:10:54 +00:00
// TODO: replace with ggml API call
#define QK_K 256
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#include <fcntl.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <io.h>
#endif
2024-08-08 11:16:50 +00:00
#if __cplusplus >= 202000L
#define LU8(x) (const char*)(u8##x)
#else
#define LU8(x) u8##x
#endif
#include <algorithm>
#include <array>
#include <cassert>
#include <cctype>
2024-01-28 17:44:10 +00:00
#include <cfloat>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <functional>
2024-05-12 17:12:46 +00:00
#include <future>
#include <initializer_list>
2024-03-08 09:55:50 +00:00
#include <locale>
#include <map>
#include <memory>
#include <mutex>
#include <numeric>
#include <set>
#include <sstream>
#include <thread>
#include <type_traits>
#include <unordered_map>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
2024-07-08 11:14:17 +00:00
// bump if necessary
2024-08-08 11:16:50 +00:00
#define LLAMA_MAX_LAYERS 512
2024-07-08 11:14:17 +00:00
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
2024-03-08 09:55:50 +00:00
//
// helpers
//
2024-08-08 11:16:50 +00:00
// trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) {
size_t start = 0;
size_t end = str.size();
while (start < end && isspace(str[start])) {
start += 1;
}
while (end > start && isspace(str[end - 1])) {
end -= 1;
}
return str.substr(start, end - start);
}
static bool is_float_close(float a, float b, float abs_tol) {
// Check for non-negative tolerance
if (abs_tol < 0.0) {
throw std::invalid_argument("Tolerance must be non-negative");
}
// Exact equality check
if (a == b) {
return true;
}
// Check for infinities
if (std::isinf(a) || std::isinf(b)) {
return false;
}
// Regular comparison using the provided absolute tolerance
return std::fabs(b - a) <= abs_tol;
}
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
file.write(&zero, 1);
}
}
LLAMA_ATTRIBUTE_FORMAT(1, 2)
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
//
// gguf constants (sync with gguf.py)
//
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
LLM_ARCH_GROK,
LLM_ARCH_GPT2,
LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX,
LLM_ARCH_MPT,
LLM_ARCH_STARCODER,
LLM_ARCH_REFACT,
2024-02-12 08:39:58 +00:00
LLM_ARCH_BERT,
2024-02-20 10:09:57 +00:00
LLM_ARCH_NOMIC_BERT,
2024-05-12 17:12:46 +00:00
LLM_ARCH_JINA_BERT_V2,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
2024-01-27 15:24:53 +00:00
LLM_ARCH_QWEN2,
2024-05-12 17:12:46 +00:00
LLM_ARCH_QWEN2MOE,
LLM_ARCH_PHI2,
2024-05-12 17:12:46 +00:00
LLM_ARCH_PHI3,
2024-01-06 15:22:57 +00:00
LLM_ARCH_PLAMO,
2024-01-27 15:24:53 +00:00
LLM_ARCH_CODESHELL,
2024-01-28 17:44:10 +00:00
LLM_ARCH_ORION,
2024-02-10 08:10:59 +00:00
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
2024-02-22 21:30:53 +00:00
LLM_ARCH_GEMMA,
2024-07-08 11:14:17 +00:00
LLM_ARCH_GEMMA2,
2024-03-08 09:55:50 +00:00
LLM_ARCH_STARCODER2,
2024-03-15 12:21:59 +00:00
LLM_ARCH_MAMBA,
2024-04-07 13:21:08 +00:00
LLM_ARCH_XVERSE,
LLM_ARCH_COMMAND_R,
2024-05-12 17:12:46 +00:00
LLM_ARCH_DBRX,
LLM_ARCH_OLMO,
2024-07-08 11:14:17 +00:00
LLM_ARCH_OPENELM,
2024-06-16 10:10:54 +00:00
LLM_ARCH_ARCTIC,
LLM_ARCH_DEEPSEEK2,
2024-07-08 11:14:17 +00:00
LLM_ARCH_CHATGLM,
LLM_ARCH_BITNET,
2024-07-08 11:14:17 +00:00
LLM_ARCH_T5,
2024-08-28 08:04:02 +00:00
LLM_ARCH_T5ENCODER,
2024-07-08 11:14:17 +00:00
LLM_ARCH_JAIS,
2024-08-28 08:04:02 +00:00
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_UNKNOWN,
};
2024-03-08 09:55:50 +00:00
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
2024-05-12 17:12:46 +00:00
{ LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GROK, "grok" },
{ LLM_ARCH_GPT2, "gpt2" },
{ LLM_ARCH_GPTJ, "gptj" },
{ LLM_ARCH_GPTNEOX, "gptneox" },
{ LLM_ARCH_MPT, "mpt" },
{ LLM_ARCH_BAICHUAN, "baichuan" },
{ LLM_ARCH_STARCODER, "starcoder" },
{ LLM_ARCH_REFACT, "refact" },
{ LLM_ARCH_BERT, "bert" },
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
{ LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
{ LLM_ARCH_BLOOM, "bloom" },
{ LLM_ARCH_STABLELM, "stablelm" },
{ LLM_ARCH_QWEN, "qwen" },
{ LLM_ARCH_QWEN2, "qwen2" },
{ LLM_ARCH_QWEN2MOE, "qwen2moe" },
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" },
{ LLM_ARCH_INTERNLM2, "internlm2" },
{ LLM_ARCH_MINICPM, "minicpm" },
{ LLM_ARCH_GEMMA, "gemma" },
2024-07-08 11:14:17 +00:00
{ LLM_ARCH_GEMMA2, "gemma2" },
2024-05-12 17:12:46 +00:00
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
{ LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_DBRX, "dbrx" },
{ LLM_ARCH_OLMO, "olmo" },
2024-07-08 11:14:17 +00:00
{ LLM_ARCH_OPENELM, "openelm" },
2024-06-16 10:10:54 +00:00
{ LLM_ARCH_ARCTIC, "arctic" },
{ LLM_ARCH_DEEPSEEK2, "deepseek2" },
2024-07-08 11:14:17 +00:00
{ LLM_ARCH_CHATGLM, "chatglm" },
{ LLM_ARCH_BITNET, "bitnet" },
2024-07-08 11:14:17 +00:00
{ LLM_ARCH_T5, "t5" },
2024-08-28 08:04:02 +00:00
{ LLM_ARCH_T5ENCODER, "t5encoder" },
2024-07-08 11:14:17 +00:00
{ LLM_ARCH_JAIS, "jais" },
2024-08-28 08:04:02 +00:00
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_EXAONE, "exaone" },
2024-05-12 17:12:46 +00:00
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
enum llm_kv {
2024-08-08 11:16:50 +00:00
LLM_KV_GENERAL_TYPE,
LLM_KV_GENERAL_ARCHITECTURE,
LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR,
2024-04-07 13:21:08 +00:00
LLM_KV_GENERAL_VERSION,
LLM_KV_GENERAL_URL,
LLM_KV_GENERAL_DESCRIPTION,
LLM_KV_GENERAL_LICENSE,
LLM_KV_GENERAL_SOURCE_URL,
LLM_KV_GENERAL_SOURCE_HF_REPO,
2024-03-15 12:21:59 +00:00
LLM_KV_VOCAB_SIZE,
LLM_KV_CONTEXT_LENGTH,
LLM_KV_EMBEDDING_LENGTH,
LLM_KV_BLOCK_COUNT,
2024-06-16 10:10:54 +00:00
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
LLM_KV_FEED_FORWARD_LENGTH,
2024-06-16 10:10:54 +00:00
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
2024-06-18 06:45:37 +00:00
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
LLM_KV_USE_PARALLEL_RESIDUAL,
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_EXPERT_COUNT,
LLM_KV_EXPERT_USED_COUNT,
2024-06-16 10:10:54 +00:00
LLM_KV_EXPERT_SHARED_COUNT,
LLM_KV_EXPERT_WEIGHTS_SCALE,
2024-02-20 10:09:57 +00:00
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
2024-07-08 11:14:17 +00:00
LLM_KV_DECODER_START_TOKEN_ID,
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
LLM_KV_ATTENTION_CLAMP_KQV,
2024-01-06 15:22:57 +00:00
LLM_KV_ATTENTION_KEY_LENGTH,
LLM_KV_ATTENTION_VALUE_LENGTH,
LLM_KV_ATTENTION_LAYERNORM_EPS,
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
2024-02-12 08:39:58 +00:00
LLM_KV_ATTENTION_CAUSAL,
2024-06-16 10:10:54 +00:00
LLM_KV_ATTENTION_Q_LORA_RANK,
LLM_KV_ATTENTION_KV_LORA_RANK,
2024-07-08 11:14:17 +00:00
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_FREQ_BASE,
LLM_KV_ROPE_SCALE_LINEAR,
LLM_KV_ROPE_SCALING_TYPE,
LLM_KV_ROPE_SCALING_FACTOR,
2024-06-16 10:10:54 +00:00
LLM_KV_ROPE_SCALING_ATTN_FACTOR,
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
LLM_KV_ROPE_SCALING_FINETUNED,
2024-06-16 10:10:54 +00:00
LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
LLM_KV_SPLIT_NO,
LLM_KV_SPLIT_COUNT,
LLM_KV_SPLIT_TENSORS_COUNT,
2024-03-15 12:21:59 +00:00
LLM_KV_SSM_INNER_SIZE,
LLM_KV_SSM_CONV_KERNEL,
LLM_KV_SSM_STATE_SIZE,
LLM_KV_SSM_TIME_STEP_RANK,
2024-08-28 08:04:02 +00:00
LLM_KV_SSM_DT_B_C_RMS,
2024-03-15 12:21:59 +00:00
LLM_KV_TOKENIZER_MODEL,
2024-05-12 17:12:46 +00:00
LLM_KV_TOKENIZER_PRE,
LLM_KV_TOKENIZER_LIST,
LLM_KV_TOKENIZER_TOKEN_TYPE,
2024-02-12 08:39:58 +00:00
LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
LLM_KV_TOKENIZER_SCORES,
LLM_KV_TOKENIZER_MERGES,
LLM_KV_TOKENIZER_BOS_ID,
LLM_KV_TOKENIZER_EOS_ID,
LLM_KV_TOKENIZER_UNK_ID,
LLM_KV_TOKENIZER_SEP_ID,
LLM_KV_TOKENIZER_PAD_ID,
2024-05-12 17:12:46 +00:00
LLM_KV_TOKENIZER_CLS_ID,
LLM_KV_TOKENIZER_MASK_ID,
LLM_KV_TOKENIZER_ADD_BOS,
LLM_KV_TOKENIZER_ADD_EOS,
2024-02-10 08:10:59 +00:00
LLM_KV_TOKENIZER_ADD_PREFIX,
2024-07-08 11:14:17 +00:00
LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
2024-05-12 17:12:46 +00:00
LLM_KV_TOKENIZER_PREFIX_ID,
LLM_KV_TOKENIZER_SUFFIX_ID,
LLM_KV_TOKENIZER_MIDDLE_ID,
LLM_KV_TOKENIZER_EOT_ID,
2024-08-08 11:16:50 +00:00
LLM_KV_TOKENIZER_EOM_ID,
LLM_KV_ADAPTER_TYPE,
LLM_KV_ADAPTER_LORA_ALPHA,
};
2024-03-08 09:55:50 +00:00
static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
2024-08-08 11:16:50 +00:00
{ LLM_KV_GENERAL_TYPE, "general.type" },
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
{ LLM_KV_GENERAL_NAME, "general.name" },
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
2024-04-07 13:21:08 +00:00
{ LLM_KV_GENERAL_VERSION, "general.version" },
{ LLM_KV_GENERAL_URL, "general.url" },
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
{ LLM_KV_GENERAL_LICENSE, "general.license" },
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
2024-06-18 06:45:37 +00:00
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
{ LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
{ LLM_KV_BLOCK_COUNT, "%s.block_count" },
{ LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
{ LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
{ LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
{ LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
2024-07-08 11:14:17 +00:00
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
{ LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
{ LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
{ LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
{ LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
{ LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
{ LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
{ LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
{ LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
{ LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
{ LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
{ LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
{ LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
2024-06-16 10:10:54 +00:00
{ LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
{ LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
{ LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
2024-06-16 10:10:54 +00:00
{ LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
{ LLM_KV_SPLIT_NO, "split.no" },
{ LLM_KV_SPLIT_COUNT, "split.count" },
{ LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
2024-03-15 12:21:59 +00:00
{ LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
{ LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
{ LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
{ LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
2024-08-28 08:04:02 +00:00
{ LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" },
2024-03-15 12:21:59 +00:00
2024-07-08 11:14:17 +00:00
{ LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
{ LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
{ LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
{ LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
{ LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
{ LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
{ LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
{ LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
{ LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
{ LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
{ LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
{ LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
{ LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
{ LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
{ LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
{ LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
{ LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
{ LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, "tokenizer.ggml.remove_extra_whitespaces" },
{ LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
{ LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
{ LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
{ LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
{ LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
2024-08-08 11:16:50 +00:00
{ LLM_KV_TOKENIZER_EOM_ID, "tokenizer.ggml.eom_token_id" },
{ LLM_KV_ADAPTER_TYPE, "adapter.type" },
{ LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" },
};
struct LLM_KV {
LLM_KV(llm_arch arch) : arch(arch) {}
llm_arch arch;
std::string operator()(llm_kv kv) const {
2024-03-08 09:55:50 +00:00
return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
}
};
enum llm_tensor {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_TOKEN_EMBD_NORM,
2024-02-12 08:39:58 +00:00
LLM_TENSOR_TOKEN_TYPES,
LLM_TENSOR_POS_EMBD,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_ROPE_FREQS,
2024-06-16 10:10:54 +00:00
LLM_TENSOR_ROPE_FACTORS_LONG,
LLM_TENSOR_ROPE_FACTORS_SHORT,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_QKV,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
2024-02-20 10:09:57 +00:00
LLM_TENSOR_ATTN_OUT_NORM,
2024-07-08 11:14:17 +00:00
LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
2024-05-12 17:12:46 +00:00
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
2024-07-08 11:14:17 +00:00
LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
2024-01-06 15:22:57 +00:00
LLM_TENSOR_FFN_ACT,
2024-04-07 13:21:08 +00:00
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
LLM_TENSOR_FFN_GATE_EXP,
LLM_TENSOR_FFN_UP_EXP,
2024-06-16 10:10:54 +00:00
LLM_TENSOR_FFN_NORM_EXPS,
2024-04-07 13:21:08 +00:00
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
2024-05-12 17:12:46 +00:00
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
2024-02-20 10:09:57 +00:00
LLM_TENSOR_LAYER_OUT_NORM,
2024-03-15 12:21:59 +00:00
LLM_TENSOR_SSM_IN,
LLM_TENSOR_SSM_CONV1D,
LLM_TENSOR_SSM_X,
LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_OUT,
2024-06-16 10:10:54 +00:00
LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_SUB_NORM,
LLM_TENSOR_FFN_SUB_NORM,
2024-07-08 11:14:17 +00:00
LLM_TENSOR_DEC_ATTN_NORM,
LLM_TENSOR_DEC_ATTN_Q,
LLM_TENSOR_DEC_ATTN_K,
LLM_TENSOR_DEC_ATTN_V,
LLM_TENSOR_DEC_ATTN_OUT,
LLM_TENSOR_DEC_ATTN_REL_B,
LLM_TENSOR_DEC_CROSS_ATTN_NORM,
LLM_TENSOR_DEC_CROSS_ATTN_Q,
LLM_TENSOR_DEC_CROSS_ATTN_K,
LLM_TENSOR_DEC_CROSS_ATTN_V,
LLM_TENSOR_DEC_CROSS_ATTN_OUT,
LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
LLM_TENSOR_DEC_FFN_NORM,
LLM_TENSOR_DEC_FFN_GATE,
LLM_TENSOR_DEC_FFN_DOWN,
LLM_TENSOR_DEC_FFN_UP,
LLM_TENSOR_DEC_OUTPUT_NORM,
LLM_TENSOR_ENC_ATTN_NORM,
LLM_TENSOR_ENC_ATTN_Q,
LLM_TENSOR_ENC_ATTN_K,
LLM_TENSOR_ENC_ATTN_V,
LLM_TENSOR_ENC_ATTN_OUT,
LLM_TENSOR_ENC_ATTN_REL_B,
LLM_TENSOR_ENC_FFN_NORM,
LLM_TENSOR_ENC_FFN_GATE,
LLM_TENSOR_ENC_FFN_DOWN,
LLM_TENSOR_ENC_FFN_UP,
LLM_TENSOR_ENC_OUTPUT_NORM,
};
2024-03-08 09:55:50 +00:00
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
{
LLM_ARCH_LLAMA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
2024-04-07 13:21:08 +00:00
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_BAICHUAN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_FALCON,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_GROK,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
2024-04-07 13:21:08 +00:00
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
},
},
{
LLM_ARCH_GPT2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
2024-01-06 15:22:57 +00:00
{ LLM_TENSOR_POS_EMBD, "position_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
{
LLM_ARCH_GPTJ,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
{
LLM_ARCH_GPTNEOX,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_MPT,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output"},
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
2024-01-06 15:22:57 +00:00
{ LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
2024-04-07 13:21:08 +00:00
{ LLM_TENSOR_POS_EMBD, "position_embd" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
},
},
{
LLM_ARCH_STARCODER,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_POS_EMBD, "position_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
{
LLM_ARCH_REFACT,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-02-12 08:39:58 +00:00
{
LLM_ARCH_BERT,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
{ LLM_TENSOR_POS_EMBD, "position_embd" },
2024-02-20 10:09:57 +00:00
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
2024-02-12 08:39:58 +00:00
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
2024-02-20 10:09:57 +00:00
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_NOMIC_BERT,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
2024-02-12 08:39:58 +00:00
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-05-12 17:12:46 +00:00
{
LLM_ARCH_JINA_BERT_V2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
2024-06-16 10:10:54 +00:00
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
2024-05-12 17:12:46 +00:00
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_BLOOM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
{
LLM_ARCH_STABLELM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
2024-05-12 17:12:46 +00:00
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
},
},
{
LLM_ARCH_QWEN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-01-27 15:24:53 +00:00
{
LLM_ARCH_QWEN2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-05-12 17:12:46 +00:00
{
LLM_ARCH_QWEN2MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_PHI2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
2024-01-13 22:13:17 +00:00
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-05-12 17:12:46 +00:00
{
LLM_ARCH_PHI3,
{
2024-06-16 10:10:54 +00:00
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
{ LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
2024-05-12 17:12:46 +00:00
},
},
2024-01-06 15:22:57 +00:00
{
LLM_ARCH_PLAMO,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-01-27 15:24:53 +00:00
{
LLM_ARCH_CODESHELL,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-01-28 17:44:10 +00:00
{
LLM_ARCH_ORION,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-02-10 08:10:59 +00:00
{
LLM_ARCH_INTERNLM2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_MINICPM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
},
},
2024-02-22 21:30:53 +00:00
{
LLM_ARCH_GEMMA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-07-08 11:14:17 +00:00
{
LLM_ARCH_GEMMA2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
2024-03-08 09:55:50 +00:00
{
LLM_ARCH_STARCODER2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-03-15 12:21:59 +00:00
{
LLM_ARCH_MAMBA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
{ LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
},
},
2024-04-07 13:21:08 +00:00
{
LLM_ARCH_XVERSE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_COMMAND_R,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
2024-05-12 17:12:46 +00:00
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
},
},
{
LLM_ARCH_DBRX,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_OLMO,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-07-08 11:14:17 +00:00
{
LLM_ARCH_OPENELM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
2024-06-16 10:10:54 +00:00
{
LLM_ARCH_ARCTIC,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_DEEPSEEK2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
{ LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
{ LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
{ LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
{ LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
2024-07-08 11:14:17 +00:00
{
LLM_ARCH_CHATGLM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
{
LLM_ARCH_BITNET,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
},
},
2024-07-08 11:14:17 +00:00
{
LLM_ARCH_T5,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_DEC_OUTPUT_NORM, "dec.output_norm" },
{ LLM_TENSOR_DEC_ATTN_NORM, "dec.blk.%d.attn_norm" },
{ LLM_TENSOR_DEC_ATTN_Q, "dec.blk.%d.attn_q" },
{ LLM_TENSOR_DEC_ATTN_K, "dec.blk.%d.attn_k" },
{ LLM_TENSOR_DEC_ATTN_V, "dec.blk.%d.attn_v" },
{ LLM_TENSOR_DEC_ATTN_OUT, "dec.blk.%d.attn_o" },
{ LLM_TENSOR_DEC_ATTN_REL_B, "dec.blk.%d.attn_rel_b" },
{ LLM_TENSOR_DEC_CROSS_ATTN_NORM, "dec.blk.%d.cross_attn_norm" },
{ LLM_TENSOR_DEC_CROSS_ATTN_Q, "dec.blk.%d.cross_attn_q" },
{ LLM_TENSOR_DEC_CROSS_ATTN_K, "dec.blk.%d.cross_attn_k" },
{ LLM_TENSOR_DEC_CROSS_ATTN_V, "dec.blk.%d.cross_attn_v" },
{ LLM_TENSOR_DEC_CROSS_ATTN_OUT, "dec.blk.%d.cross_attn_o" },
{ LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "dec.blk.%d.cross_attn_rel_b" },
{ LLM_TENSOR_DEC_FFN_NORM, "dec.blk.%d.ffn_norm" },
{ LLM_TENSOR_DEC_FFN_GATE, "dec.blk.%d.ffn_gate" },
{ LLM_TENSOR_DEC_FFN_DOWN, "dec.blk.%d.ffn_down" },
{ LLM_TENSOR_DEC_FFN_UP, "dec.blk.%d.ffn_up" },
{ LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
{ LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
{ LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
{ LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
{ LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
{ LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
{ LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
{ LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
{ LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
{ LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
{ LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
},
},
2024-08-28 08:04:02 +00:00
{
LLM_ARCH_T5ENCODER,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
{ LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
{ LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
{ LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
{ LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
{ LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
{ LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
{ LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
{ LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
{ LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
{ LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
},
},
2024-07-08 11:14:17 +00:00
{
LLM_ARCH_JAIS,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
2024-08-28 08:04:02 +00:00
{
LLM_ARCH_NEMOTRON,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_EXAONE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_UNKNOWN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
},
},
};
static llm_arch llm_arch_from_string(const std::string & name) {
for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
if (kv.second == name) {
return kv.first;
}
}
return LLM_ARCH_UNKNOWN;
}
// helper to handle gguf constants
// usage:
//
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
//
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
//
struct LLM_TN {
LLM_TN(llm_arch arch) : arch(arch) {}
llm_arch arch;
std::string operator()(llm_tensor tensor) const {
2024-03-08 09:55:50 +00:00
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
2024-02-20 10:09:57 +00:00
return "__missing__";
}
2024-03-08 09:55:50 +00:00
return LLM_TENSOR_NAMES.at(arch).at(tensor);
}
std::string operator()(llm_tensor tensor, const std::string & suffix) const {
2024-03-08 09:55:50 +00:00
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
2024-02-20 10:09:57 +00:00
return "__missing__";
}
2024-03-08 09:55:50 +00:00
return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
}
std::string operator()(llm_tensor tensor, int bid) const {
2024-03-08 09:55:50 +00:00
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
2024-02-20 10:09:57 +00:00
return "__missing__";
}
2024-03-08 09:55:50 +00:00
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
}
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
2024-03-08 09:55:50 +00:00
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
2024-02-20 10:09:57 +00:00
return "__missing__";
}
2024-03-08 09:55:50 +00:00
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
}
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
2024-03-08 09:55:50 +00:00
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
2024-02-20 10:09:57 +00:00
return "__missing__";
}
2024-03-08 09:55:50 +00:00
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
}
};
//
// gguf helpers
//
2024-03-08 09:55:50 +00:00
static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
};
2024-03-08 09:55:50 +00:00
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
if (kv.second == name) {
2024-03-08 09:55:50 +00:00
return (llama_rope_scaling_type) kv.first;
}
}
2024-03-08 09:55:50 +00:00
return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
}
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return format("unknown type %d", type);
}
}
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
replace_all(val, "\\", "\\\\");
replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}
//
// llama helpers
//
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
template <typename T>
struct no_init {
T value;
no_init() { /* do nothing */ }
};
struct llama_file {
2024-06-18 06:45:37 +00:00
#if defined(_WIN32)
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
HANDLE fp_win32;
size_t size;
private:
std::string GetErrorMessageWin32(DWORD error_code) const {
std::string ret;
LPSTR lpMsgBuf = NULL;
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
if (!bufLen) {
ret = format("Win32 error code: %s", error_code);
} else {
ret = lpMsgBuf;
LocalFree(lpMsgBuf);
}
return ret;
}
public:
llama_file(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
// SetFilePointerEx returns the current position when seeking relative 0 bytes
LARGE_INTEGER li;
li.QuadPart = 0;
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
return li.QuadPart;
}
void seek(size_t offset, int whence) const {
// no need to convert SEEK_* to FILE_*. The enums are the same.
// Still, keep static asserts to avoid failures in the future.
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
LARGE_INTEGER li;
li.QuadPart = offset;
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
}
void read_raw(void * ptr, size_t len) const {
// On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
// use the Win32 API to do file io instead of the C/C++ library functions.
// There are conditions under which ReadFile cannot read chunks >64MB.
// Thus split the operation into smaller chunks if len exceeds this limit.
size_t bytes_read = 0;
while (bytes_read < len) {
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
DWORD chunk_read = 0;
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
if (!result) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_read < chunk_size || chunk_read == 0) {
throw std::runtime_error("unexpectedly reached end of file");
}
bytes_read += chunk_read;
} ;
}
uint32_t read_u32() const {
uint32_t val;
read_raw(&val, sizeof(val));
return val;
}
void write_raw(const void * ptr, size_t len) const {
// There are conditions under which WriteFile cannot write chunks >64MB.
// Thus split the operation into smaller chunks if len exceeds this limit.
size_t bytes_written = 0;
while (bytes_written < len) {
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
DWORD chunk_written = 0;
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
if (!result) {
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_written < chunk_size || chunk_written == 0) {
throw std::runtime_error("unexpectedly failed to write bytes");
}
bytes_written += chunk_written;
}
}
void write_u32(std::uint32_t val) const {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
#else
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
2024-06-18 06:45:37 +00:00
if (ret == -1) {
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
}
return (size_t) ret;
}
void seek(size_t offset, int whence) const {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
2024-06-18 06:45:37 +00:00
if (ret != 0) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
2024-01-06 15:22:57 +00:00
throw std::runtime_error("unexpectedly reached end of file");
}
}
uint32_t read_u32() const {
uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) const {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
2024-06-18 06:45:37 +00:00
#endif
};
using llama_files = std::vector<std::unique_ptr<llama_file>>;
struct llama_mmap {
void * addr;
size_t size;
llama_mmap(const llama_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
// list of mapped fragments (first_offset, last_offset)
std::vector<std::pair<size_t, size_t>> mapped_fragments;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
// prefetch/readahead impairs performance on NUMA systems
2024-02-20 10:09:57 +00:00
if (numa) { prefetch = 0; }
#ifdef __linux__
// advise the kernel to read the file sequentially (increases readahead)
if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
strerror(errno));
}
if (prefetch) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) { // NOLINT
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
// advise the kernel to preload the mapped memory
if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
// initialize list of mapped_fragments
mapped_fragments.emplace_back(0, file->size);
}
static void align_range(size_t * first, size_t * last, size_t page_size) {
// align first to the next page
size_t offset_in_page = *first & (page_size - 1);
size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
*first += offset_to_page;
// align last to the previous page
*last = *last & ~(page_size - 1);
if (*last <= *first) {
*last = *first;
}
}
// partially unmap the file in the range [first, last)
void unmap_fragment(size_t first, size_t last) {
// note: this function must not be called multiple times with overlapping ranges
// otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
int page_size = sysconf(_SC_PAGESIZE);
align_range(&first, &last, page_size);
size_t len = last - first;
if (len == 0) {
return;
}
GGML_ASSERT(first % page_size == 0);
GGML_ASSERT(last % page_size == 0);
GGML_ASSERT(last > first);
void * next_page_start = (uint8_t *) addr + first;
// unmap the range
if (munmap(next_page_start, len)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
// update the list of mapped fragments to avoid unmapping the same range again in the destructor
std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
for (const auto & frag : mapped_fragments) {
if (frag.first < first && frag.second > last) {
// the range is in the middle of the fragment, split it
new_mapped_fragments.emplace_back(frag.first, first);
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first < first && frag.second > first) {
// the range starts in the middle of the fragment
new_mapped_fragments.emplace_back(frag.first, first);
} else if (frag.first < last && frag.second > last) {
// the range ends in the middle of the fragment
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first >= first && frag.second <= last) {
// the range covers the entire fragment
} else {
// the range is outside the fragment
new_mapped_fragments.push_back(frag);
}
}
mapped_fragments = std::move(new_mapped_fragments);
}
~llama_mmap() {
for (const auto & frag : mapped_fragments) {
if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
2024-01-06 15:22:57 +00:00
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
GGML_UNUSED(numa);
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
if (hMapping == NULL) {
2024-01-06 15:22:57 +00:00
DWORD error = GetLastError();
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
2024-01-06 15:22:57 +00:00
DWORD error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
2024-01-06 15:22:57 +00:00
if (prefetch > 0) {
2024-01-14 09:06:28 +00:00
#if _WIN32_WINNT >= 0x602
// PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
// may fail on pre-Windows 8 systems
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
if (pPrefetchVirtualMemory) {
// advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
2024-01-06 15:22:57 +00:00
range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
2024-01-06 15:22:57 +00:00
LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
2024-01-14 09:06:28 +00:00
#else
throw std::runtime_error("PrefetchVirtualMemory unavailable");
#endif
}
}
void unmap_fragment(size_t first, size_t last) {
// not supported
GGML_UNUSED(first);
GGML_UNUSED(last);
}
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
2024-01-06 15:22:57 +00:00
LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
2024-01-06 15:22:57 +00:00
llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
GGML_UNUSED(file);
GGML_UNUSED(prefetch);
GGML_UNUSED(numa);
2024-01-06 15:22:57 +00:00
throw std::runtime_error("mmap not supported");
}
2024-01-06 15:22:57 +00:00
void unmap_fragment(size_t first, size_t last) {
GGML_UNUSED(first);
GGML_UNUSED(last);
2024-01-06 15:22:57 +00:00
throw std::runtime_error("mmap not supported");
}
#endif
};
using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
llama_mlock() {}
llama_mlock(const llama_mlock &) = delete;
~llama_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * ptr) {
GGML_ASSERT(addr == NULL && size == 0); // NOLINT
addr = ptr;
}
void grow_to(size_t target_size) {
GGML_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
static size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
2024-02-10 08:10:59 +00:00
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
2024-02-10 08:10:59 +00:00
"Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) const {
if (!mlock(addr, size)) {
return true;
}
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
// Check if the resource limit is fine after all
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
suggest = false;
}
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
suggest = false;
}
2024-01-14 09:06:28 +00:00
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
#undef MLOCK_SUGGESTION
static void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
2024-01-14 09:06:28 +00:00
LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
static size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) const {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
2024-01-14 09:06:28 +00:00
LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
2024-01-14 09:06:28 +00:00
LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = len + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
2024-01-14 09:06:28 +00:00
LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
static void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
2024-01-14 09:06:28 +00:00
LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
static size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) const {
2024-01-14 09:06:28 +00:00
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
return false;
}
static void raw_unlock(const void * addr, size_t len) {}
#endif
};
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
2024-06-16 10:10:54 +00:00
// NOTE: avoid ever using this except for building the token_to_piece caches
static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
2024-07-08 11:14:17 +00:00
std::string piece;
piece.resize(piece.capacity()); // using string internal cache
const int n_chars = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
if (n_chars < 0) {
piece.resize(-n_chars);
int check = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
GGML_ASSERT(check == -n_chars);
}
else {
2024-07-08 11:14:17 +00:00
piece.resize(n_chars);
}
2024-07-08 11:14:17 +00:00
return piece;
}
2024-01-12 20:04:51 +00:00
static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
2024-01-06 15:22:57 +00:00
ggml_backend_buffer_type_t buft = nullptr;
#if defined(GGML_USE_CUDA)
2024-01-12 20:04:51 +00:00
// host buffers should only be used when data is expected to be copied to/from the GPU
if (host_buffer) {
buft = ggml_backend_cuda_host_buffer_type();
}
2024-01-28 17:44:10 +00:00
#elif defined(GGML_USE_SYCL)
2024-03-08 09:55:50 +00:00
if (host_buffer) {
buft = ggml_backend_sycl_host_buffer_type();
}
#elif defined(GGML_USE_CPU_HBM)
2024-01-06 15:22:57 +00:00
buft = ggml_backend_cpu_hbm_buffer_type();
2024-01-28 17:44:10 +00:00
#elif defined(GGML_USE_VULKAN)
if (host_buffer) {
buft = ggml_backend_vk_host_buffer_type();
}
#endif
2024-01-06 15:22:57 +00:00
if (buft == nullptr) {
buft = ggml_backend_cpu_buffer_type();
}
2024-01-12 20:04:51 +00:00
return buft;
2024-01-06 15:22:57 +00:00
2024-01-12 20:04:51 +00:00
GGML_UNUSED(host_buffer);
}
//
// globals
//
struct llama_state {
llama_state() {
#ifdef GGML_USE_METAL
2024-01-13 22:13:17 +00:00
ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
2024-06-16 10:10:54 +00:00
#elif defined(GGML_USE_CUDA)
ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
2024-08-08 11:16:50 +00:00
#elif defined(GGML_USE_CANN)
ggml_backend_cann_log_set_callback(log_callback, log_callback_user_data);
#endif
}
// We save the log callback globally
ggml_log_callback log_callback = llama_log_callback_default;
void * log_callback_user_data = nullptr;
};
static llama_state g_state;
// available llama models
enum e_model {
MODEL_UNKNOWN,
2024-06-16 10:10:54 +00:00
MODEL_14M,
2024-02-12 08:39:58 +00:00
MODEL_17M,
MODEL_22M,
MODEL_33M,
2024-07-08 11:14:17 +00:00
MODEL_60M,
2024-06-16 10:10:54 +00:00
MODEL_70M,
2024-07-08 11:14:17 +00:00
MODEL_80M,
2024-02-12 08:39:58 +00:00
MODEL_109M,
2024-02-20 10:09:57 +00:00
MODEL_137M,
2024-06-16 10:10:54 +00:00
MODEL_160M,
2024-07-08 11:14:17 +00:00
MODEL_220M,
MODEL_250M,
MODEL_270M,
2024-02-12 08:39:58 +00:00
MODEL_335M,
2024-06-16 10:10:54 +00:00
MODEL_410M,
2024-07-08 11:14:17 +00:00
MODEL_450M,
MODEL_770M,
MODEL_780M,
2024-01-27 15:24:53 +00:00
MODEL_0_5B,
MODEL_1B,
2024-07-08 11:14:17 +00:00
MODEL_1_3B,
2024-06-16 10:10:54 +00:00
MODEL_1_4B,
2024-02-10 08:10:59 +00:00
MODEL_2B,
2024-06-16 10:10:54 +00:00
MODEL_2_8B,
MODEL_3B,
2024-01-27 15:24:53 +00:00
MODEL_4B,
2024-07-08 11:14:17 +00:00
MODEL_6B,
2024-06-16 10:10:54 +00:00
MODEL_6_9B,
MODEL_7B,
MODEL_8B,
2024-07-08 11:14:17 +00:00
MODEL_9B,
MODEL_11B,
2024-05-12 17:12:46 +00:00
MODEL_12B,
MODEL_13B,
2024-01-28 17:44:10 +00:00
MODEL_14B,
MODEL_15B,
2024-06-16 10:10:54 +00:00
MODEL_16B,
2024-02-10 08:10:59 +00:00
MODEL_20B,
MODEL_30B,
MODEL_34B,
MODEL_35B,
MODEL_40B,
MODEL_65B,
MODEL_70B,
2024-06-16 10:10:54 +00:00
MODEL_236B,
MODEL_314B,
2024-01-06 15:22:57 +00:00
MODEL_SMALL,
MODEL_MEDIUM,
MODEL_LARGE,
MODEL_XL,
2024-05-12 17:12:46 +00:00
MODEL_A2_7B,
MODEL_8x7B,
MODEL_8x22B,
MODEL_16x12B,
2024-06-16 10:10:54 +00:00
MODEL_10B_128x3_66B,
2024-07-08 11:14:17 +00:00
MODEL_57B_A14B,
MODEL_27B,
};
static const size_t kiB = 1024;
static const size_t MiB = 1024*kiB;
static const size_t GiB = 1024*MiB;
struct llama_hparams {
2024-03-08 09:55:50 +00:00
bool vocab_only;
bool rope_finetuned;
2024-06-16 10:10:54 +00:00
bool use_par_res;
2024-03-08 09:55:50 +00:00
uint32_t n_vocab;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_layer;
uint32_t n_rot;
2024-07-08 11:14:17 +00:00
uint32_t n_swa = 0; // sliding window attention (SWA)
2024-01-06 15:22:57 +00:00
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
2024-02-12 08:39:58 +00:00
uint32_t n_vocab_type = 0; // for BERT-style token types
2024-07-08 11:14:17 +00:00
uint32_t n_rel_attn_bkts = 0;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
2024-06-16 10:10:54 +00:00
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
uint32_t n_ff_exp = 0;
2024-06-18 06:45:37 +00:00
uint32_t n_ff_shexp = 0;
2024-06-16 10:10:54 +00:00
uint32_t n_expert_shared = 0;
float expert_weights_scale = 0.0;
float f_norm_eps;
float f_norm_rms_eps;
2024-07-08 11:14:17 +00:00
float f_attn_logit_softcapping = 50.0f;
float f_final_logit_softcapping = 30.0f;
2024-06-16 10:10:54 +00:00
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_scale_train;
2024-06-16 10:10:54 +00:00
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul;
2024-03-15 12:21:59 +00:00
// for State Space Models
uint32_t ssm_d_conv = 0;
uint32_t ssm_d_inner = 0;
uint32_t ssm_d_state = 0;
uint32_t ssm_dt_rank = 0;
2024-08-28 08:04:02 +00:00
bool ssm_dt_b_c_rms = false;
2024-03-15 12:21:59 +00:00
2024-02-20 10:09:57 +00:00
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
2024-07-08 11:14:17 +00:00
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = -1;
2024-02-12 08:39:58 +00:00
2024-03-08 09:55:50 +00:00
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
2024-01-06 15:22:57 +00:00
bool operator!=(const llama_hparams & other) const {
if (this->vocab_only != other.vocab_only) return true;
if (this->n_vocab != other.n_vocab) return true;
if (this->n_ctx_train != other.n_ctx_train) return true;
if (this->n_embd != other.n_embd) return true;
if (this->n_layer != other.n_layer) return true;
if (this->n_rot != other.n_rot) return true;
2024-07-08 11:14:17 +00:00
if (this->n_swa != other.n_swa) return true;
2024-01-06 15:22:57 +00:00
if (this->n_embd_head_k != other.n_embd_head_k) return true;
if (this->n_embd_head_v != other.n_embd_head_v) return true;
if (this->n_expert != other.n_expert) return true;
if (this->n_expert_used != other.n_expert_used) return true;
2024-07-08 11:14:17 +00:00
if (this->n_head_arr != other.n_head_arr) return true;
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
if (this->n_ff_arr != other.n_ff_arr) return true;
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
2024-06-16 10:10:54 +00:00
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
if (this->n_lora_q != other.n_lora_q) return true;
if (this->n_lora_kv != other.n_lora_kv) return true;
if (this->n_ff_exp != other.n_ff_exp) return true;
2024-06-18 06:45:37 +00:00
if (this->n_ff_shexp != other.n_ff_shexp) return true;
2024-06-16 10:10:54 +00:00
if (this->n_expert_shared != other.n_expert_shared) return true;
if (this->rope_finetuned != other.rope_finetuned) return true;
2024-06-16 10:10:54 +00:00
if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
2024-03-15 12:21:59 +00:00
if (this->ssm_d_conv != other.ssm_d_conv) return true;
if (this->ssm_d_inner != other.ssm_d_inner) return true;
if (this->ssm_d_state != other.ssm_d_state) return true;
if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
2024-08-28 08:04:02 +00:00
if (this->ssm_dt_b_c_rms != other.ssm_dt_b_c_rms) return true;
2024-03-15 12:21:59 +00:00
2024-07-08 11:14:17 +00:00
if (this->dec_start_token_id != other.dec_start_token_id) return true;
2024-01-06 15:22:57 +00:00
const float EPSILON = 1e-9f;
if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
2024-06-16 10:10:54 +00:00
if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
2024-06-16 10:10:54 +00:00
if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
return false;
}
2024-07-08 11:14:17 +00:00
uint32_t n_head(uint32_t il = 0) const {
if (il < n_layer) {
return n_head_arr[il];
}
2024-08-08 11:16:50 +00:00
GGML_ABORT("fatal error");
2024-07-08 11:14:17 +00:00
}
uint32_t n_head_kv(uint32_t il = 0) const {
if (il < n_layer) {
return n_head_kv_arr[il];
}
2024-08-08 11:16:50 +00:00
GGML_ABORT("fatal error");
2024-07-08 11:14:17 +00:00
}
uint32_t n_ff(uint32_t il = 0) const {
if (il < n_layer) {
return n_ff_arr[il];
}
2024-08-08 11:16:50 +00:00
GGML_ABORT("fatal error");
2024-07-08 11:14:17 +00:00
}
uint32_t n_gqa(uint32_t il = 0) const {
const uint32_t n_head = this->n_head(il);
const uint32_t n_head_kv = this->n_head_kv(il);
2024-03-15 12:21:59 +00:00
if (n_head_kv == 0) {
return 0;
}
2024-07-08 11:14:17 +00:00
return n_head/n_head_kv;
}
2024-07-08 11:14:17 +00:00
uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads
const uint32_t n_head_kv = this->n_head_kv(il);
2024-01-06 15:22:57 +00:00
return n_embd_head_k * n_head_kv;
}
2024-07-08 11:14:17 +00:00
uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads
const uint32_t n_head_kv = this->n_head_kv(il);
2024-01-06 15:22:57 +00:00
return n_embd_head_v * n_head_kv;
}
2024-03-15 12:21:59 +00:00
uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
}
uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}
};
2024-07-08 11:14:17 +00:00
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
struct llama_cparams {
2024-03-08 09:55:50 +00:00
uint32_t n_ctx; // context size used during inference
uint32_t n_batch;
2024-03-15 12:21:59 +00:00
uint32_t n_ubatch;
uint32_t n_seq_max;
uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing
2024-03-08 09:55:50 +00:00
float rope_freq_base;
float rope_freq_scale;
2024-06-16 10:10:54 +00:00
uint32_t n_ctx_orig_yarn;
// These hyperparameters are not exposed in GGUF, because all
// existing YaRN models use the same values for them.
float yarn_ext_factor;
float yarn_attn_factor;
float yarn_beta_fast;
float yarn_beta_slow;
2024-03-08 09:55:50 +00:00
float defrag_thold;
2024-03-08 09:55:50 +00:00
bool embeddings;
2024-03-15 12:21:59 +00:00
bool causal_attn;
bool offload_kqv;
2024-05-12 17:12:46 +00:00
bool flash_attn;
2024-03-08 09:55:50 +00:00
enum llama_pooling_type pooling_type;
2024-01-17 19:23:33 +00:00
ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
};
2024-07-08 11:14:17 +00:00
// TODO: separate into "llama_layer_enc" and "llama_layer_dec"
struct llama_layer {
// normalization
struct ggml_tensor * attn_norm;
struct ggml_tensor * attn_norm_b;
struct ggml_tensor * attn_norm_2;
struct ggml_tensor * attn_norm_2_b;
struct ggml_tensor * attn_q_norm;
struct ggml_tensor * attn_q_norm_b;
struct ggml_tensor * attn_k_norm;
struct ggml_tensor * attn_k_norm_b;
2024-02-20 10:09:57 +00:00
struct ggml_tensor * attn_out_norm;
struct ggml_tensor * attn_out_norm_b;
2024-06-16 10:10:54 +00:00
struct ggml_tensor * attn_q_a_norm;
struct ggml_tensor * attn_kv_a_norm;
struct ggml_tensor * attn_sub_norm;
2024-07-08 11:14:17 +00:00
struct ggml_tensor * attn_post_norm;
struct ggml_tensor * ffn_sub_norm;
2024-07-08 11:14:17 +00:00
struct ggml_tensor * attn_norm_cross;
struct ggml_tensor * attn_norm_enc;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
struct ggml_tensor * wqkv;
2024-06-16 10:10:54 +00:00
struct ggml_tensor * wq_a;
struct ggml_tensor * wq_b;
struct ggml_tensor * wkv_a_mqa;
struct ggml_tensor * wkv_b;
2024-07-08 11:14:17 +00:00
struct ggml_tensor * wq_cross;
struct ggml_tensor * wk_cross;
struct ggml_tensor * wv_cross;
struct ggml_tensor * wo_cross;
struct ggml_tensor * wq_enc;
struct ggml_tensor * wk_enc;
struct ggml_tensor * wv_enc;
struct ggml_tensor * wo_enc;
// attention bias
struct ggml_tensor * bq;
struct ggml_tensor * bk;
struct ggml_tensor * bv;
struct ggml_tensor * bo;
struct ggml_tensor * bqkv;
2024-07-08 11:14:17 +00:00
// relative position bias
struct ggml_tensor * attn_rel_b;
struct ggml_tensor * attn_rel_b_enc;
struct ggml_tensor * attn_rel_b_cross;
// normalization
struct ggml_tensor * ffn_norm;
struct ggml_tensor * ffn_norm_b;
2024-07-08 11:14:17 +00:00
struct ggml_tensor * ffn_post_norm;
2024-02-20 10:09:57 +00:00
struct ggml_tensor * layer_out_norm;
struct ggml_tensor * layer_out_norm_b;
2024-06-16 10:10:54 +00:00
struct ggml_tensor * ffn_norm_exps;
2024-07-08 11:14:17 +00:00
struct ggml_tensor * ffn_norm_enc;
// ff
struct ggml_tensor * ffn_gate; // w1
struct ggml_tensor * ffn_down; // w2
struct ggml_tensor * ffn_up; // w3
2024-07-08 11:14:17 +00:00
struct ggml_tensor * ffn_gate_enc;
struct ggml_tensor * ffn_down_enc;
struct ggml_tensor * ffn_up_enc;
// ff MoE
struct ggml_tensor * ffn_gate_inp;
2024-04-07 13:21:08 +00:00
struct ggml_tensor * ffn_gate_exps;
struct ggml_tensor * ffn_down_exps;
struct ggml_tensor * ffn_up_exps ;
2024-05-12 17:12:46 +00:00
// ff shared expert (shexp)
struct ggml_tensor * ffn_gate_inp_shexp;
struct ggml_tensor * ffn_gate_shexp;
struct ggml_tensor * ffn_down_shexp;
struct ggml_tensor * ffn_up_shexp;
// ff bias
2024-06-16 10:10:54 +00:00
struct ggml_tensor * ffn_gate_b = nullptr;
struct ggml_tensor * ffn_down_b = nullptr; // b2
struct ggml_tensor * ffn_up_b = nullptr; // b3
2024-01-06 15:22:57 +00:00
struct ggml_tensor * ffn_act;
2024-03-15 12:21:59 +00:00
// mamba proj
struct ggml_tensor * ssm_in;
struct ggml_tensor * ssm_x;
struct ggml_tensor * ssm_dt;
struct ggml_tensor * ssm_out;
// mamba
struct ggml_tensor * ssm_conv1d;
struct ggml_tensor * ssm_a;
struct ggml_tensor * ssm_d;
// mamba bias
struct ggml_tensor * ssm_conv1d_b;
struct ggml_tensor * ssm_dt_b;
2024-06-16 10:10:54 +00:00
// long rope factors
struct ggml_tensor * rope_long = nullptr;
struct ggml_tensor * rope_short = nullptr;
2024-08-08 11:16:50 +00:00
struct ggml_tensor * rope_freqs = nullptr;
// bitnet scale
struct ggml_tensor * wq_scale;
struct ggml_tensor * wk_scale;
struct ggml_tensor * wv_scale;
struct ggml_tensor * wo_scale;
struct ggml_tensor * ffn_gate_scale;
struct ggml_tensor * ffn_up_scale;
struct ggml_tensor * ffn_down_scale;
};
2024-08-28 08:04:02 +00:00
// very similar to llama_batch,
// but has more metadata about sequences
struct llama_ubatch {
bool equal_seqs;
// TODO: whole_seqs for embeddings?
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
uint32_t n_seq_tokens; // tokens per sequence
uint32_t n_seqs;
llama_token * token; // [n_tokens]
float * embd; // [n_embd, n_tokens]
llama_pos * pos; // [n_tokens]
int32_t * n_seq_id; // [n_seqs]
llama_seq_id ** seq_id; // [n_seqs]
int8_t * output; // [n_tokens]
};
struct llama_kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
2024-08-28 08:04:02 +00:00
int32_t src = -1; // used by recurrent state models to copy states
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
2024-03-08 09:55:50 +00:00
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const llama_kv_cell & other) const {
return seq_id == other.seq_id;
}
};
// ring-buffer of cached KV data
struct llama_kv_cache {
bool has_shift = false;
2024-03-08 09:55:50 +00:00
bool do_defrag = false;
2024-05-12 17:12:46 +00:00
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
bool v_trans = true; // the value tensor is transposed
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_internal also uses it, so it
// cannot be freely changed after a slot has been allocated.
uint32_t head = 0;
uint32_t size = 0;
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build
uint32_t n = 0;
2024-03-08 09:55:50 +00:00
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<llama_kv_cell> cells;
std::vector<struct ggml_tensor *> k_l; // per layer
std::vector<struct ggml_tensor *> v_l;
2024-01-12 20:04:51 +00:00
std::vector<struct ggml_context *> ctxs;
std::vector<ggml_backend_buffer_t> bufs;
2024-01-12 20:04:51 +00:00
size_t total_size() const {
size_t size = 0;
for (ggml_backend_buffer_t buf : bufs) {
size += ggml_backend_buffer_get_size(buf);
}
return size;
}
~llama_kv_cache() {
2024-01-12 20:04:51 +00:00
for (struct ggml_context * ctx : ctxs) {
ggml_free(ctx);
}
2024-01-12 20:04:51 +00:00
for (ggml_backend_buffer_t buf : bufs) {
ggml_backend_buffer_free(buf);
}
}
};
struct llama_control_vector {
std::vector<struct ggml_tensor *> tensors; // per layer
std::vector<struct ggml_context *> ctxs;
std::vector<ggml_backend_buffer_t> bufs;
int32_t layer_start = -1;
int32_t layer_end = -1;
2024-07-08 11:14:17 +00:00
struct ggml_tensor * tensor_for(int il) const {
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
return nullptr;
}
return tensors[il];
}
2024-07-08 11:14:17 +00:00
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
ggml_tensor * layer_dir = tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx, cur, layer_dir);
}
return cur;
}
~llama_control_vector() {
for (struct ggml_context * ctx : ctxs) {
ggml_free(ctx);
}
for (ggml_backend_buffer_t buf : bufs) {
ggml_backend_buffer_free(buf);
}
}
};
struct llama_model {
e_model type = MODEL_UNKNOWN;
llm_arch arch = LLM_ARCH_UNKNOWN;
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
std::string name = "n/a";
llama_hparams hparams = {};
llama_vocab vocab;
struct ggml_tensor * tok_embd;
2024-02-12 08:39:58 +00:00
struct ggml_tensor * type_embd;
struct ggml_tensor * pos_embd;
struct ggml_tensor * tok_norm;
struct ggml_tensor * tok_norm_b;
struct ggml_tensor * output_norm;
struct ggml_tensor * output_norm_b;
struct ggml_tensor * output;
struct ggml_tensor * output_b;
2024-07-08 11:14:17 +00:00
struct ggml_tensor * output_norm_enc;
std::vector<llama_layer> layers;
2024-01-12 20:04:51 +00:00
llama_split_mode split_mode;
int main_gpu;
int n_gpu_layers;
2024-06-16 10:10:54 +00:00
std::vector<std::string> rpc_servers;
// gguf metadata
std::unordered_map<std::string, std::string> gguf_kv;
2024-01-12 20:04:51 +00:00
// layer -> buffer type mapping
struct layer_buft {
layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
2024-01-12 20:04:51 +00:00
ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
ggml_backend_buffer_type_t buft; // everything else
};
layer_buft buft_input;
layer_buft buft_output;
std::vector<layer_buft> buft_layer;
// contexts where the model tensors metadata is stored
std::vector<struct ggml_context *> ctxs;
// the model memory buffers for the tensor data
std::vector<ggml_backend_buffer_t> bufs;
// model memory mapped files
llama_mmaps mappings;
// objects representing data potentially being locked in memory
llama_mlocks mlock_bufs;
llama_mlocks mlock_mmaps;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
2024-08-08 11:16:50 +00:00
// keep track of loaded lora adapters
std::set<struct llama_lora_adapter *> lora_adapters;
~llama_model() {
2024-01-12 20:04:51 +00:00
for (struct ggml_context * ctx : ctxs) {
ggml_free(ctx);
}
2024-01-12 20:04:51 +00:00
for (ggml_backend_buffer_t buf : bufs) {
#ifdef GGML_USE_CUDA
if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
}
#endif
2024-01-12 20:04:51 +00:00
ggml_backend_buffer_free(buf);
}
2024-08-08 11:16:50 +00:00
while (!lora_adapters.empty()) {
llama_lora_adapter_free(*lora_adapters.begin());
}
}
};
2024-08-28 08:04:02 +00:00
struct llama_sbatch_seq {
int32_t n_seq_id;
llama_seq_id * seq_id;
size_t offset;
size_t length;
// helper for smoother batch API transition -- can be deprecated in the future
llama_seq_id all_seq_id; // used if seq_id == NULL
};
// sequence-length-aware batch splitting
struct llama_sbatch {
// tokens left in this batch
size_t n_tokens;
size_t n_embd;
bool logits_all; // TODO: remove once lctx.logits_all is removed too
// sorted indices into the batch
std::vector<size_t> ids;
// batch indices of the output
std::vector<size_t> out_ids;
std::vector<llama_sbatch_seq> seq;
const llama_batch * batch = nullptr;
// buffers for the ubatch
std::vector<llama_token> ubatch_token;
std::vector<float> ubatch_embd;
std::vector<llama_pos> ubatch_pos;
std::vector<int32_t> ubatch_n_seq_id;
std::vector<llama_seq_id *> ubatch_seq_id;
std::vector<int8_t> ubatch_output;
llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false) {
// clear empty sequences
// the previous ubatch is assumed to be gone,
// so nothing should refer to values in these sequences anymore.
for (size_t i = seq.size(); i-- > 0;) {
if (seq[i].length == 0) {
seq.pop_back();
} else {
break;
}
}
ubatch_token.resize(!has_embd ? n_ubatch : 0);
ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0);
ubatch_pos.resize(n_ubatch);
ubatch_n_seq_id.resize(n_ubatch);
ubatch_seq_id.resize(n_ubatch);
ubatch_output.resize(n_ubatch);
llama_ubatch ubatch = {
/*equal_seqs =*/ true,
/*n_tokens =*/ 0,
/*n_seq_tokens =*/ 0,
/*n_seqs =*/ 0,
/*token =*/ !has_embd ? ubatch_token.data() : nullptr,
/*embd =*/ has_embd ? ubatch_embd.data() : nullptr,
/*pos =*/ ubatch_pos.data(),
/*n_seq_id =*/ ubatch_n_seq_id.data(),
/*seq_id =*/ ubatch_seq_id.data(),
/*output =*/ ubatch_output.data(),
};
return ubatch;
}
void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length) {
GGML_ASSERT(batch != nullptr);
GGML_ASSERT(length <= seq.length);
// Can only add sequences of equal lengths to a batch,
// otherwise it isn't clear to which sequence a token belongs
GGML_ASSERT(seq.n_seq_id == 0 || ubatch.n_seqs == 0 || length == (size_t) ubatch.n_tokens / ubatch.n_seqs);
GGML_ASSERT((seq.n_seq_id != 0) == ubatch.equal_seqs);
// NOTE: loops are separated for cache-friendliness
if (batch->token) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
ubatch.token[ubatch.n_tokens + i] = batch->token[ids[seq.offset + i]];
}
} else {
// simple split
ubatch.token = batch->token + seq.offset;
}
} else {
ubatch.token = nullptr;
}
if (batch->embd) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
memcpy(
ubatch.embd + n_embd * (ubatch.n_tokens + i),
batch->embd + n_embd * ids[seq.offset + i],
n_embd * sizeof(float)
);
}
} else {
// simple split
ubatch.embd = batch->embd + (n_embd * seq.offset);
}
} else {
ubatch.embd = nullptr;
}
// from here on, the else branches are deprecated;
// they are helpers for smoother batch API transition
if (batch->pos) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
ubatch.pos[ubatch.n_tokens + i] = batch->pos[ids[seq.offset + i]];
}
} else {
// simple split
ubatch.pos = batch->pos + seq.offset;
}
} else {
for (size_t i = 0; i < length; ++i) {
llama_pos bi = ids[seq.offset + i];
ubatch.pos[ubatch.n_tokens + i] = batch->all_pos_0 + (bi * batch->all_pos_1);
}
}
if (ubatch.equal_seqs) {
ubatch.n_seq_id[ubatch.n_seqs] = seq.n_seq_id;
if (seq.seq_id) {
ubatch.seq_id[ubatch.n_seqs] = seq.seq_id;
} else {
GGML_ASSERT(seq.n_seq_id == 1);
ubatch.seq_id[ubatch.n_seqs] = &seq.all_seq_id;
}
} else {
// simple split
if (batch->n_seq_id) {
for (size_t i = 0; i < length; ++i) {
ubatch.n_seq_id = batch->n_seq_id + seq.offset;
}
} else {
for (size_t i = 0; i < length; ++i) {
ubatch.n_seq_id[ubatch.n_seqs + i] = 1;
}
}
if (batch->seq_id) {
for (size_t i = 0; i < length; ++i) {
ubatch.seq_id = batch->seq_id + seq.offset;
}
} else {
for (size_t i = 0; i < length; ++i) {
ubatch.seq_id[ubatch.n_seqs + i] = &seq.all_seq_id;
}
}
}
if (logits_all) {
for (size_t i = 0; i < length; ++i) {
ubatch.output[ubatch.n_tokens + i] = 1;
out_ids.push_back(ids[seq.offset + i]);
}
} else if (batch->logits) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
size_t id = ids[seq.offset + i];
int8_t is_output = batch->logits[id];
ubatch.output[ubatch.n_tokens + i] = is_output;
if (is_output) { out_ids.push_back(id); }
}
} else {
// simple split
ubatch.output = batch->logits + seq.offset;
for (size_t i = 0; i < length; ++i) {
if (ubatch.output[i] != 0) { out_ids.push_back(seq.offset + i); }
}
}
} else {
// only get last output
for (size_t i = 0; i < length; ++i) {
size_t id = ids[seq.offset + i];
int8_t is_last = id == ids.size() - 1;
ubatch.output[ubatch.n_tokens + i] = is_last;
if (is_last) { out_ids.push_back(id); }
}
}
if (ubatch.n_tokens == 0 && ubatch.n_seqs == 0) {
ubatch.n_seq_tokens = ubatch.equal_seqs ? length : 1;
}
ubatch.n_tokens += length;
ubatch.n_seqs += ubatch.equal_seqs ? 1 : length; // virtual sequences for simple splits
seq.offset += length;
seq.length -= length;
n_tokens -= length;
GGML_ASSERT(ubatch.n_tokens == ubatch.n_seq_tokens * ubatch.n_seqs);
}
// simple split, unknown number of sequences of unequal lengths
llama_ubatch split_simple(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
ubatch.equal_seqs = false;
if (!seq.empty()) {
llama_sbatch_seq & s = seq[0];
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
GGML_ASSERT(seq.size() == 1 && s.n_seq_id == 0); // don't mix with other splits
add_seq_to_ubatch(ubatch, s, length);
}
return ubatch;
}
// make batches of equal-length sequences
llama_ubatch split_equal(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
if (!seq.empty()) {
size_t length = 0;
size_t n_tokens_in_ubatch = 0;
GGML_ASSERT(seq[0].n_seq_id > 0); // should not be mixed with simple splits
// smallest first, because it's easier to split this way;
// starting from the end to pop in constant time.
for (size_t i = seq.size(); i-- > 0;) {
llama_sbatch_seq & s = seq[i];
GGML_ASSERT(s.length > 0);
if (length == 0) {
length = s.length < n_ubatch ? s.length : n_ubatch;
}
add_seq_to_ubatch(ubatch, s, length);
n_tokens_in_ubatch += length;
// shared prompts can't be mixed with any of their sequences,
// so it's safer to compute them in their own ubatch
if (s.n_seq_id > 1) { break; }
// stop when there isn't enough space for another sequence
if (length + n_tokens_in_ubatch > n_ubatch) { break; }
}
}
return ubatch;
}
// sequence-wise split
llama_ubatch split_seq(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
if (!seq.empty()) {
llama_sbatch_seq & s = seq[seq.size() - 1];
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
GGML_ASSERT(s.n_seq_id > 0); // should not be mixed with simple splits
add_seq_to_ubatch(ubatch, s, length);
}
return ubatch;
}
void from_batch(const llama_batch & batch, const size_t n_embd, const bool simple_split = false, const bool logits_all = false) {
GGML_ASSERT(batch.n_tokens >= 0);
this->batch = &batch;
this->n_embd = n_embd;
this->logits_all = logits_all;
n_tokens = batch.n_tokens;
ids.resize(n_tokens);
out_ids.clear();
// TODO: reserve out_ids and seq
for (size_t i = 0; i < n_tokens; ++i) {
ids[i] = i;
}
if (simple_split) {
seq.resize(1);
llama_sbatch_seq & s = seq[0];
s.n_seq_id = 0;
s.seq_id = nullptr;
s.offset = 0;
s.length = n_tokens;
s.all_seq_id = batch.all_seq_id;
return;
}
std::sort(ids.begin(), ids.end(),
[&batch](size_t a, size_t b) {
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
int32_t n_seq_b = batch.n_seq_id ? batch.n_seq_id[b] : 1;
// sort by seq_id, then by pos
if (n_seq_a == n_seq_b) {
if (batch.seq_id) {
for (int32_t i = 0; i < n_seq_a; ++i) {
llama_seq_id seq_id_a = batch.seq_id[a][i];
llama_seq_id seq_id_b = batch.seq_id[b][i];
// smaller seq_ids go first
if (seq_id_a != seq_id_b) {
return seq_id_a < seq_id_b;
}
}
}
// when all else is equal, sort by pos
if (batch.pos) {
return batch.pos[a] < batch.pos[b];
}
// no pos, sort by id (assuming batch.all_pos_1 is positive)
return a < b;
}
// shared prompts go first
return n_seq_a > n_seq_b;
}
);
// init seq
llama_sbatch_seq * last_seq = nullptr;
if (batch.n_seq_id != nullptr && batch.seq_id != nullptr) {
for (size_t i = 0; i < n_tokens; ++i) {
const size_t bi = ids[i];
const int32_t n_seqs = batch.n_seq_id[bi];
llama_seq_id * seq_ids = batch.seq_id[bi];
if (last_seq != nullptr) {
bool same = n_seqs == last_seq->n_seq_id;
for (int32_t j = 0; same && j < n_seqs; ++j) {
if (seq_ids[j] != last_seq->seq_id[j]) {
same = false;
}
}
if (same) {
last_seq->length += 1;
continue;
}
}
llama_sbatch_seq new_seq = {n_seqs, seq_ids, i, 1, batch.all_seq_id};
seq.push_back(new_seq);
last_seq = &seq.back();
}
} else {
llama_sbatch_seq new_seq = {1, nullptr, 0, n_tokens, batch.all_seq_id};
seq.push_back(new_seq);
}
// keep shared prompts first at the end, then sort by length descending.
std::sort(seq.begin(), seq.end(),
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
if (a.n_seq_id == b.n_seq_id) {
return a.length > b.length;
}
return a.n_seq_id < b.n_seq_id;
}
);
}
};
struct llama_context {
2024-08-08 11:16:50 +00:00
llama_context(const llama_model & model)
: model(model)
, sampling(llama_n_vocab(&model))
, t_start_us(model.t_start_us)
, t_load_us(model.t_load_us) {}
~llama_context() {
2024-01-12 20:04:51 +00:00
ggml_backend_sched_free(sched);
for (ggml_backend_t backend : backends) {
ggml_backend_free(backend);
}
2024-01-27 15:24:53 +00:00
2024-03-15 12:21:59 +00:00
ggml_backend_buffer_free(buf_output);
}
2024-08-08 11:16:50 +00:00
const struct llama_model & model;
struct llama_cparams cparams;
struct llama_sampling sampling;
2024-08-28 08:04:02 +00:00
struct llama_sbatch sbatch;
2024-08-08 11:16:50 +00:00
struct llama_kv_cache kv_self;
struct llama_control_vector cvec;
std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
2024-01-12 20:04:51 +00:00
std::vector<ggml_backend_t> backends;
#ifdef GGML_USE_METAL
ggml_backend_t backend_metal = nullptr;
2024-06-16 10:10:54 +00:00
#endif
#ifdef GGML_USE_BLAS
ggml_backend_t backend_blas = nullptr;
2024-01-12 20:04:51 +00:00
#endif
ggml_backend_t backend_cpu = nullptr;
bool has_evaluated_once = false;
int64_t t_start_us;
int64_t t_load_us;
int64_t t_p_eval_us = 0;
int64_t t_eval_us = 0;
2024-03-15 12:21:59 +00:00
int64_t t_compute_start_us = 0;
int64_t n_queued_tokens = 0;
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
int32_t n_eval = 0; // number of eval calls
2024-03-15 12:21:59 +00:00
// host buffer for the model output (logits and embeddings)
ggml_backend_buffer_t buf_output = nullptr;
// decode output (2-dimensional array: [n_outputs][n_vocab])
size_t logits_size = 0; // capacity (of floats) for logits
float * logits = nullptr;
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
2024-05-12 17:12:46 +00:00
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
2024-03-15 12:21:59 +00:00
bool logits_all = false;
// embeddings output (2-dimensional array: [n_outputs][n_embd])
2024-03-08 09:55:50 +00:00
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
size_t embd_size = 0; // capacity (of floats) for embeddings
float * embd = nullptr;
2024-03-08 09:55:50 +00:00
// sequence embeddings output (map of [n_embd] vectors)
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
std::map<llama_seq_id, std::vector<float>> embd_seq;
2024-07-08 11:14:17 +00:00
// whether we are computing encoder output or decoder output
bool is_encoding = false;
// output of the encoder part of the encoder-decoder models
std::vector<float> embd_enc;
std::vector<std::set<llama_seq_id>> seq_ids_enc;
// memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta;
2024-01-12 20:04:51 +00:00
ggml_backend_sched_t sched = nullptr;
2024-03-08 09:55:50 +00:00
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
2024-01-27 15:24:53 +00:00
// input tensors
2024-07-08 11:14:17 +00:00
struct ggml_tensor * inp_tokens; // I32 [n_batch]
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
struct ggml_tensor * inp_pos; // I32 [n_batch]
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
struct ggml_tensor * inp_cls; // I32 [n_batch]
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
2024-08-08 11:16:50 +00:00
};
2024-08-08 11:16:50 +00:00
struct llama_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
llama_lora_weight() = default;
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b): a(a), b(b) {}
};
struct llama_lora_adapter {
struct llama_model * base_model;
// map tensor name to lora_a_b
std::unordered_map<std::string, struct llama_lora_weight> ab_map;
std::vector<struct ggml_context *> ctxs;
std::vector<ggml_backend_buffer_t> bufs;
float alpha;
llama_lora_adapter(struct llama_model * base_model): base_model(base_model) {
base_model->lora_adapters.insert(this);
}
llama_lora_weight * get_weight(struct ggml_tensor * w) {
std::string name(w->name);
auto pos = ab_map.find(name);
if (ab_map.find(name) != ab_map.end()) {
return &pos->second;
}
return nullptr;
}
~llama_lora_adapter() {
for (struct ggml_context * ctx : ctxs) {
ggml_free(ctx);
}
for (ggml_backend_buffer_t buf : bufs) {
ggml_backend_buffer_free(buf);
}
auto pos = base_model->lora_adapters.find(this);
if (pos != base_model->lora_adapters.end()) {
base_model->lora_adapters.erase(pos);
}
}
2024-06-16 10:10:54 +00:00
};
static size_t llama_get_device_count(const llama_model & model) {
size_t count = 1;
#if defined(GGML_USE_CUDA)
count = ggml_backend_cuda_get_device_count();
#elif defined(GGML_USE_SYCL)
count = ggml_backend_sycl_get_device_count();
#elif defined(GGML_USE_VULKAN)
count = ggml_backend_vk_get_device_count();
2024-08-08 11:16:50 +00:00
#elif defined(GGML_USE_CANN)
return ggml_backend_cann_get_device_count();
2024-06-16 10:10:54 +00:00
#endif
#if defined(GGML_USE_RPC)
count += model.rpc_servers.size();
#endif
return count;
GGML_UNUSED(model);
}
static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
ggml_backend_buffer_type_t buft = nullptr;
2024-06-16 10:10:54 +00:00
#if defined(GGML_USE_RPC)
int dev_count = (int)llama_get_device_count(model);
int rpc_count = (int)model.rpc_servers.size();
if (gpu >= dev_count - rpc_count) {
const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
return ggml_backend_rpc_buffer_type(endpoint);
}
#endif
2024-06-16 10:10:54 +00:00
#if defined(GGML_USE_METAL)
buft = ggml_backend_metal_buffer_type();
#elif defined(GGML_USE_CUDA)
buft = ggml_backend_cuda_buffer_type(gpu);
#elif defined(GGML_USE_VULKAN)
buft = ggml_backend_vk_buffer_type(gpu);
#elif defined(GGML_USE_SYCL)
buft = ggml_backend_sycl_buffer_type(gpu);
#elif defined(GGML_USE_KOMPUTE)
buft = ggml_backend_kompute_buffer_type(gpu);
if (buft == nullptr) {
LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
}
2024-08-08 11:16:50 +00:00
#elif defined(GGML_USE_CANN)
buft = ggml_backend_cann_buffer_type(gpu);
2024-06-16 10:10:54 +00:00
#endif
if (buft == nullptr) {
buft = llama_default_buffer_type_cpu(true);
}
return buft;
GGML_UNUSED(model);
GGML_UNUSED(gpu);
}
static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
ggml_backend_buffer_type_t buft = nullptr;
#ifdef GGML_USE_CUDA
if (ggml_backend_cuda_get_device_count() > 1) {
buft = ggml_backend_cuda_split_buffer_type(tensor_split);
}
#endif
#ifdef GGML_USE_SYCL
if (ggml_backend_sycl_get_device_count() > 1) {
buft = ggml_backend_sycl_split_buffer_type(tensor_split);
}
#endif
if (buft == nullptr) {
buft = llama_default_buffer_type_offload(model, fallback_gpu);
}
return buft;
GGML_UNUSED(tensor_split);
}
static size_t llama_get_device_memory(const llama_model & model, int device) {
#if defined(GGML_USE_RPC)
int dev_count = (int)llama_get_device_count(model);
int rpc_count = (int)model.rpc_servers.size();
if (device >= dev_count - rpc_count) {
size_t total;
size_t free;
const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
return free;
}
#endif
#if defined(GGML_USE_CUDA)
size_t total;
size_t free;
ggml_backend_cuda_get_device_memory(device, &free, &total);
return free;
#elif defined(GGML_USE_SYCL)
size_t total;
size_t free;
ggml_backend_sycl_get_device_memory(device, &free, &total);
return free;
#elif defined(GGML_USE_VULKAN)
size_t total;
size_t free;
ggml_backend_vk_get_device_memory(device, &free, &total);
return free;
2024-08-08 11:16:50 +00:00
#elif defined(GGML_USE_CANN)
size_t total;
size_t free;
ggml_backend_cann_get_device_memory(device, &free, &total);
return free;
2024-06-16 10:10:54 +00:00
#else
return 1;
#endif
GGML_UNUSED(model);
GGML_UNUSED(device);
}
//
// kv cache helpers
//
static bool llama_kv_cache_init(
struct llama_kv_cache & cache,
2024-05-12 17:12:46 +00:00
const llama_context * ctx,
2024-03-08 09:55:50 +00:00
ggml_type type_k,
ggml_type type_v,
2024-03-15 12:21:59 +00:00
uint32_t kv_size,
bool offload) {
2024-05-12 17:12:46 +00:00
const llama_model & model = ctx->model;
const llama_cparams & cparams = ctx->cparams;
2024-01-12 20:04:51 +00:00
const struct llama_hparams & hparams = model.hparams;
2024-07-08 11:14:17 +00:00
const int64_t n_layer = hparams.n_layer;
cache.has_shift = false;
2024-08-28 08:04:02 +00:00
cache.recurrent = llama_model_is_recurrent(&model);
2024-08-08 11:16:50 +00:00
cache.v_trans = !cache.recurrent && !cparams.flash_attn;
2024-03-15 12:21:59 +00:00
cache.head = 0;
2024-03-15 12:21:59 +00:00
cache.size = kv_size;
cache.used = 0;
2024-03-08 09:55:50 +00:00
cache.type_k = type_k;
cache.type_v = type_v;
cache.cells.clear();
2024-03-15 12:21:59 +00:00
cache.cells.resize(kv_size);
2024-01-12 20:04:51 +00:00
// count used buffer types
std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
if (offload) {
for (int64_t i = 0; i < n_layer; ++i) {
buft_layer_count[model.buft_layer[i].buft]++;
}
} else {
buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
}
2024-01-12 20:04:51 +00:00
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
for (auto & it : buft_layer_count) {
int n_layers = it.second;
struct ggml_init_params params = {
/*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
return false;
}
ctx_map[it.first] = ctx;
cache.ctxs.push_back(ctx);
}
cache.k_l.reserve(n_layer);
cache.v_l.reserve(n_layer);
for (int i = 0; i < (int) n_layer; i++) {
2024-07-08 11:14:17 +00:00
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
2024-01-12 20:04:51 +00:00
struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
2024-03-15 12:21:59 +00:00
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
cache.k_l.push_back(k);
cache.v_l.push_back(v);
}
2024-01-12 20:04:51 +00:00
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
cache.bufs.push_back(buf);
}
return true;
}
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
// Note: On success, it's important that cache.head points
// to the first cell of the slot.
static bool llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
2024-08-28 08:04:02 +00:00
const struct llama_ubatch & batch) {
const uint32_t n_tokens = batch.n_tokens;
2024-08-28 08:04:02 +00:00
const uint32_t n_seqs = batch.n_seqs;
const uint32_t n_seq_tokens = batch.n_seq_tokens;
2024-03-15 12:21:59 +00:00
if (cache.recurrent) {
// For recurrent state architectures (like Mamba),
2024-08-28 08:04:02 +00:00
// each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous.
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(batch.equal_seqs);
int32_t min = cache.size - 1;
int32_t max = 0;
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = batch.n_seq_id[s];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = batch.seq_id[s][j];
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
// too big seq_id
// TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
return false;
}
if (j > 0) {
llama_kv_cell & seq = cache.cells[seq_id];
if (seq.tail >= 0) {
llama_kv_cell & cell = cache.cells[seq.tail];
// clear cells from seq_ids that become shared
// (should not normally happen, but let's handle it anyway)
cell.seq_id.erase(seq_id);
seq.tail = -1;
if (cell.seq_id.empty()) {
cell.pos = -1;
cell.src = -1;
cache.used -= 1;
}
2024-03-15 12:21:59 +00:00
}
2024-08-28 08:04:02 +00:00
}
}
}
#ifndef NDEBUG
{
std::vector<int32_t> tails_verif;
tails_verif.assign(cache.size, -1);
for (uint32_t i = 0; i < cache.size; ++i) {
llama_kv_cell & cell = cache.cells[i];
for (llama_seq_id seq_id : cell.seq_id) {
if (tails_verif[seq_id] != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
2024-03-15 12:21:59 +00:00
}
2024-08-28 08:04:02 +00:00
tails_verif[seq_id] = i;
}
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (tails_verif[i] != cache.cells[i].tail) {
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]);
}
}
}
#endif
// find next empty cell
uint32_t next_empty_cell = cache.head;
for (uint32_t i = 0; i < cache.size; ++i) {
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
llama_kv_cell & cell = cache.cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = batch.seq_id[s][0];
llama_kv_cell & seq_meta = cache.cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
llama_kv_cell & cell = cache.cells[seq_meta.tail];
GGML_ASSERT(cell.has_seq_id(seq_id));
// does this seq_id "own" the cell?
if (cell.seq_id.size() == 1) { has_cell = true; }
}
if (!has_cell) {
llama_kv_cell & empty_cell = cache.cells[next_empty_cell];
GGML_ASSERT(empty_cell.is_empty());
// copy old tail into the empty cell
if (seq_meta.tail >= 0) {
llama_kv_cell & orig_cell = cache.cells[seq_meta.tail];
empty_cell.pos = orig_cell.pos;
empty_cell.src = orig_cell.src;
orig_cell.seq_id.erase(seq_id);
empty_cell.seq_id.insert(seq_id); // will be overwritten
}
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
next_empty_cell += 1;
for (uint32_t i = 0; i < cache.size; ++i) {
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
llama_kv_cell & cell = cache.cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
2024-03-15 12:21:59 +00:00
}
2024-08-28 08:04:02 +00:00
}
}
if (min > seq_meta.tail) { min = seq_meta.tail; }
if (max < seq_meta.tail) { max = seq_meta.tail; }
}
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
if (dst_id != src_id) {
llama_kv_cell & dst_cell = cache.cells[dst_id];
llama_kv_cell & src_cell = cache.cells[src_id];
std::swap(dst_cell.pos, src_cell.pos);
std::swap(dst_cell.src, src_cell.src);
std::swap(dst_cell.seq_id, src_cell.seq_id);
// swap tails (assuming they NEVER overlap)
for (const llama_seq_id seq_id : src_cell.seq_id) {
cache.cells[seq_id].tail = src_id;
}
for (const llama_seq_id seq_id : dst_cell.seq_id) {
cache.cells[seq_id].tail = dst_id;
2024-03-15 12:21:59 +00:00
}
}
}
2024-08-28 08:04:02 +00:00
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
llama_kv_cell & cell = cache.cells[cell_id];
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = batch.seq_id[s][j];
cell.seq_id.insert(seq_id);
cache.cells[seq_id].tail = cell_id;
}
}
2024-03-15 12:21:59 +00:00
// allow getting the range of used cells, from head to head + n
cache.head = min;
cache.n = max - min + 1;
// sanity check
2024-08-28 08:04:02 +00:00
return cache.n >= n_seqs;
2024-03-15 12:21:59 +00:00
}
// otherwise, one cell per token.
2024-06-16 10:10:54 +00:00
if (n_tokens > cache.size) {
LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
return false;
}
uint32_t n_tested = 0;
while (true) {
2024-06-16 10:10:54 +00:00
if (cache.head + n_tokens > cache.size) {
n_tested += cache.size - cache.head;
cache.head = 0;
continue;
}
bool found = true;
for (uint32_t i = 0; i < n_tokens; i++) {
if (cache.cells[cache.head + i].pos >= 0) {
found = false;
cache.head += i + 1;
n_tested += i + 1;
break;
}
}
if (found) {
break;
}
2024-06-16 10:10:54 +00:00
if (n_tested >= cache.size) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return false;
}
}
2024-08-28 08:04:02 +00:00
for (uint32_t s = 0; s < n_seqs; s++) {
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
uint32_t k = s*n_seq_tokens + i;
cache.cells[cache.head + k].pos = batch.pos[k];
2024-08-28 08:04:02 +00:00
for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
}
}
}
cache.used += n_tokens;
return true;
}
// find how many cells are currently in use
2024-03-08 09:55:50 +00:00
static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
for (uint32_t i = cache.size; i > 0; --i) {
const llama_kv_cell & cell = cache.cells[i - 1];
if (cell.pos >= 0 && !cell.is_empty()) {
return i;
}
}
return 0;
}
static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
2024-08-28 08:04:02 +00:00
cache.cells[i].src = -1;
cache.cells[i].tail = -1;
}
cache.head = 0;
cache.used = 0;
2024-05-12 17:12:46 +00:00
for (auto & buf : cache.bufs) {
ggml_backend_buffer_clear(buf, 0);
}
}
2024-03-15 12:21:59 +00:00
static bool llama_kv_cache_seq_rm(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1) {
uint32_t new_head = cache.size;
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
2024-03-15 12:21:59 +00:00
// models like Mamba can't have a state partially erased
if (cache.recurrent) {
if (seq_id >= (int64_t) cache.size) {
// could be fatal
return false;
}
if (0 <= seq_id) {
2024-08-28 08:04:02 +00:00
int32_t & tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) {
const llama_kv_cell & cell = cache.cells[tail_id];
// partial intersection is invalid
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
return false;
}
if (p0 <= cell.pos && p1 < cell.pos) {
tail_id = -1;
}
2024-03-15 12:21:59 +00:00
}
} else {
// seq_id is negative, then the range should include everything or nothing
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
return false;
}
}
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
if (seq_id < 0) {
cache.cells[i].seq_id.clear();
} else if (cache.cells[i].has_seq_id(seq_id)) {
cache.cells[i].seq_id.erase(seq_id);
} else {
continue;
}
2024-03-08 09:55:50 +00:00
if (cache.cells[i].is_empty()) {
// keep count of the number of used cells
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1;
2024-08-28 08:04:02 +00:00
cache.cells[i].src = -1;
if (new_head == cache.size) new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
2024-03-15 12:21:59 +00:00
return true;
}
static void llama_kv_cache_seq_cp(
struct llama_kv_cache & cache,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
2024-03-15 12:21:59 +00:00
if (cache.recurrent) {
if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
2024-08-28 08:04:02 +00:00
llama_kv_cell & tail_src = cache.cells[seq_id_src];
llama_kv_cell & tail_dst = cache.cells[seq_id_dst];
if (tail_dst.tail >= 0) {
// clear destination seq_id if it wasn't empty
llama_kv_cell & cell_dst = cache.cells[tail_dst.tail];
cell_dst.seq_id.erase(seq_id_dst);
tail_dst.tail = -1;
if (cell_dst.seq_id.empty()) {
cell_dst.pos = -1;
cell_dst.delta = -1;
cell_dst.src = -1;
cache.used -= 1;
}
2024-03-15 12:21:59 +00:00
}
2024-08-28 08:04:02 +00:00
if (tail_src.tail >= 0) {
llama_kv_cell & cell_src = cache.cells[tail_src.tail];
2024-03-15 12:21:59 +00:00
2024-08-28 08:04:02 +00:00
cell_src.seq_id.insert(seq_id_dst);
tail_dst.tail = tail_src.tail;
}
2024-03-15 12:21:59 +00:00
}
2024-08-28 08:04:02 +00:00
2024-03-15 12:21:59 +00:00
return;
}
// otherwise, this is the KV cache of a Transformer-like model
cache.head = 0;
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.insert(seq_id_dst);
}
}
}
static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
uint32_t new_head = cache.size;
for (uint32_t i = 0; i < cache.size; ++i) {
2024-08-28 08:04:02 +00:00
if (cache.recurrent && (llama_seq_id) i != seq_id) {
cache.cells[i].tail = -1;
}
if (!cache.cells[i].has_seq_id(seq_id)) {
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1;
2024-08-28 08:04:02 +00:00
cache.cells[i].src = -1;
cache.cells[i].seq_id.clear();
if (new_head == cache.size) new_head = i;
} else {
cache.cells[i].seq_id.clear();
cache.cells[i].seq_id.insert(seq_id);
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
}
2024-03-08 09:55:50 +00:00
static void llama_kv_cache_seq_add(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta) {
uint32_t new_head = cache.size;
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
2024-07-08 11:14:17 +00:00
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) return;
2024-03-15 12:21:59 +00:00
if (cache.recurrent) {
// for Mamba-like models, only the pos needs to be shifted
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
2024-08-28 08:04:02 +00:00
const int32_t tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cache.cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos += delta;
}
2024-03-15 12:21:59 +00:00
}
}
return;
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.has_shift = true;
cache.cells[i].pos += delta;
cache.cells[i].delta += delta;
if (cache.cells[i].pos < 0) {
2024-03-08 09:55:50 +00:00
if (!cache.cells[i].is_empty()) {
cache.used--;
}
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
2024-03-08 09:55:50 +00:00
if (new_head == cache.size) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
// Otherwise we just start the next search from the beginning.
cache.head = new_head != cache.size ? new_head : 0;
}
2024-01-11 20:10:10 +00:00
static void llama_kv_cache_seq_div(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
2024-07-08 11:14:17 +00:00
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) return;
2024-01-11 20:10:10 +00:00
2024-03-15 12:21:59 +00:00
if (cache.recurrent) {
// for Mamba-like models, only the pos needs to be changed
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
2024-08-28 08:04:02 +00:00
const int32_t tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cache.cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos /= d;
}
2024-03-15 12:21:59 +00:00
}
}
return;
}
2024-01-11 20:10:10 +00:00
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.has_shift = true;
{
llama_pos p_old = cache.cells[i].pos;
cache.cells[i].pos /= d;
cache.cells[i].delta += cache.cells[i].pos - p_old;
}
}
}
}
2024-03-08 09:55:50 +00:00
static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
llama_pos result = 0;
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id)) {
result = std::max(result, cache.cells[i].pos);
}
}
return result;
}
static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
2024-08-28 08:04:02 +00:00
if (!cache.recurrent) {
cache.do_defrag = true;
}
2024-03-08 09:55:50 +00:00
}
2024-06-16 10:10:54 +00:00
static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}
//
// model loading and saving
//
enum llama_fver {
GGUF_FILE_VERSION_V1 = 1,
GGUF_FILE_VERSION_V2 = 2,
GGUF_FILE_VERSION_V3 = 3,
};
static const char * llama_file_version_name(llama_fver version) {
switch (version) {
case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
case GGUF_FILE_VERSION_V2: return "GGUF V2";
case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
}
return "unknown";
}
static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
char buf[256];
snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
for (size_t i = 1; i < ne.size(); i++) {
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
}
return buf;
}
static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
char buf[256];
snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
}
return buf;
}
namespace GGUFMeta {
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
struct GKV_Base_Type {
static constexpr gguf_type gt = gt_;
static T getter(const gguf_context * ctx, const int kid) {
return gfun(ctx, kid);
}
};
template<typename T> struct GKV_Base;
template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
template<> struct GKV_Base<std::string> {
static constexpr gguf_type gt = GGUF_TYPE_STRING;
static std::string getter(const gguf_context * ctx, const int kid) {
return gguf_get_val_str(ctx, kid);
}
};
2024-03-08 09:55:50 +00:00
struct ArrayInfo {
const gguf_type gt;
const size_t length;
const void * data;
};
template<> struct GKV_Base<ArrayInfo> {
public:
static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
static ArrayInfo getter(const gguf_context *ctx, const int k) {
return ArrayInfo {
gguf_get_arr_type(ctx, k),
size_t(gguf_get_arr_n(ctx, k)),
gguf_get_arr_data(ctx, k),
};
}
};
template<typename T>
2024-03-08 09:55:50 +00:00
class GKV : public GKV_Base<T> {
GKV() = delete;
public:
static T get_kv(const gguf_context * ctx, const int k) {
const enum gguf_type kt = gguf_get_kv_type(ctx, k);
if (kt != GKV::gt) {
throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
}
return GKV::getter(ctx, k);
}
static const char * override_type_to_str(const llama_model_kv_override_type ty) {
switch (ty) {
2024-03-08 09:55:50 +00:00
case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
2024-05-12 17:12:46 +00:00
case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
}
return "unknown";
}
2024-03-08 09:55:50 +00:00
static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
if (!ovrd) { return false; }
if (ovrd->tag == expected_type) {
LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
2024-03-08 09:55:50 +00:00
__func__, override_type_to_str(ovrd->tag), ovrd->key);
switch (ovrd->tag) {
case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
2024-05-12 17:12:46 +00:00
LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
} break;
2024-03-08 09:55:50 +00:00
case LLAMA_KV_OVERRIDE_TYPE_INT: {
2024-05-12 17:12:46 +00:00
LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
} break;
2024-03-08 09:55:50 +00:00
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
2024-05-12 17:12:46 +00:00
LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
} break;
case LLAMA_KV_OVERRIDE_TYPE_STR: {
LLAMA_LOG_INFO("%s\n", ovrd->val_str);
} break;
default:
// Shouldn't be possible to end up here, but just in case...
throw std::runtime_error(
format("Unsupported attempt to override %s type for metadata key %s\n",
2024-03-08 09:55:50 +00:00
override_type_to_str(ovrd->tag), ovrd->key));
}
return true;
}
LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
2024-03-08 09:55:50 +00:00
__func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
return false;
}
template<typename OT>
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
2024-03-08 09:55:50 +00:00
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
2024-05-12 17:12:46 +00:00
target = ovrd->val_bool;
return true;
}
return false;
}
template<typename OT>
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
2024-03-08 09:55:50 +00:00
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
2024-05-12 17:12:46 +00:00
target = ovrd->val_i64;
return true;
}
return false;
}
template<typename OT>
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
2024-03-08 09:55:50 +00:00
try_override(T & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
2024-05-12 17:12:46 +00:00
target = ovrd->val_f64;
return true;
}
return false;
}
template<typename OT>
static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
2024-03-08 09:55:50 +00:00
try_override(T & target, const struct llama_model_kv_override * ovrd) {
2024-05-12 17:12:46 +00:00
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
target = ovrd->val_str;
return true;
}
return false;
}
2024-03-08 09:55:50 +00:00
static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
if (try_override<T>(target, ovrd)) {
return true;
}
if (k < 0) { return false; }
target = get_kv(ctx, k);
return true;
}
2024-03-08 09:55:50 +00:00
static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
return set(ctx, gguf_find_key(ctx, key), target, ovrd);
}
2024-03-08 09:55:50 +00:00
static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
return set(ctx, key.c_str(), target, ovrd);
}
};
}
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
2024-08-28 08:04:02 +00:00
static size_t llama_model_max_nodes(const llama_model & model) {
return std::max<size_t>(8192, model.tensors_by_name.size()*5);
2024-08-08 11:16:50 +00:00
}
struct llama_model_loader {
int n_kv = 0;
int n_tensors = 0;
int n_created = 0;
int64_t n_elements = 0;
size_t n_bytes = 0;
bool use_mmap = false;
2024-05-12 17:12:46 +00:00
bool check_tensors;
llama_files files;
llama_ftype ftype;
llama_fver fver;
llama_mmaps mappings;
2024-04-07 13:21:08 +00:00
// Holds information on a model weight
struct llama_tensor_weight {
uint16_t idx; // source file index
size_t offs; // tensor data offset in the original file
ggml_tensor * tensor;
2024-05-12 17:12:46 +00:00
llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
2024-05-12 17:12:46 +00:00
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
}
}
};
2024-04-07 13:21:08 +00:00
std::vector<llama_tensor_weight> weights;
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
struct gguf_context * meta = NULL;
std::vector<ggml_context *> contexts;
std::string arch_name;
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
2024-05-12 17:12:46 +00:00
llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
2024-01-14 16:08:20 +00:00
int trace = 0;
if (getenv("LLAMA_TRACE")) {
trace = atoi(getenv("LLAMA_TRACE"));
}
if (param_overrides_p != nullptr) {
2024-08-08 11:16:50 +00:00
for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) {
kv_overrides.insert({std::string(p->key), *p});
}
}
struct ggml_context * ctx = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx,
};
meta = gguf_init_from_file(fname.c_str(), params);
if (!meta) {
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
}
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
llm_kv = LLM_KV(llm_arch_from_string(arch_name));
2024-05-12 17:12:46 +00:00
files.emplace_back(new llama_file(fname.c_str(), "rb"));
contexts.emplace_back(ctx);
// Save tensors data offset of the main file.
// For subsidiary files, `meta` tensor data offset must not be used,
// so we build a unified tensors index for weights.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
2024-05-12 17:12:46 +00:00
weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
}
uint16_t n_split = 0;
get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
// Load additional GGML contexts
if (n_split > 1) {
uint16_t idx = 0;
get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
if (idx != 0) {
throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
}
char split_prefix[PATH_MAX] = {0};
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
}
if (trace > 0) {
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
}
char split_path[PATH_MAX] = {0};
for (idx = 1; idx < n_split; idx++) {
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
struct gguf_init_params split_params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx,
};
struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
if (!ctx_gguf) {
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
}
2024-05-12 17:12:46 +00:00
files.emplace_back(new llama_file(split_path, "rb"));
contexts.emplace_back(ctx);
// Save tensors data offset info of the shard.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
2024-05-12 17:12:46 +00:00
weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
}
gguf_free(ctx_gguf);
}
get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
// sanity check
{
const int n_tensors_loaded = (int) weights.size();
if (n_tensors != n_tensors_loaded) {
throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
}
}
LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
}
n_kv = gguf_get_n_kv(meta);
n_tensors = weights.size();
fver = (enum llama_fver) gguf_get_version(meta);
2024-05-12 17:12:46 +00:00
std::set<std::string> tensor_names;
for (auto & w : weights) {
n_elements += ggml_nelements(w.tensor);
n_bytes += ggml_nbytes(w.tensor);
2024-05-12 17:12:46 +00:00
// make sure there is no duplicated tensor names
const std::string name(w.tensor->name);
auto found = tensor_names.find(name);
if (found != tensor_names.end()) {
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
}
tensor_names.insert(name);
}
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
__func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
// determine file type based on the number of tensors for each quantization and print meta data
// TODO: make optional
{
std::map<enum ggml_type, uint32_t> n_type;
uint32_t n_type_max = 0;
enum ggml_type type_max = GGML_TYPE_F32;
for (int i = 0; i < n_tensors; i++) {
const ggml_tensor * tensor = weights.at(i).tensor;
enum ggml_type type = tensor->type;
n_type[type]++;
if (n_type_max < n_type[type]) {
n_type_max = n_type[type];
type_max = type;
}
2024-01-14 16:08:20 +00:00
if (trace > 0) {
const uint16_t sid = weights.at(i).idx;
LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
2024-01-14 16:08:20 +00:00
}
}
switch (type_max) {
2024-01-27 15:24:53 +00:00
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
2024-05-12 17:12:46 +00:00
case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
2024-01-27 15:24:53 +00:00
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
2024-01-11 20:10:10 +00:00
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
2024-03-08 09:55:50 +00:00
case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
2024-02-10 08:10:59 +00:00
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
2024-02-20 10:09:57 +00:00
case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
2024-02-22 21:30:53 +00:00
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
2024-03-08 09:55:50 +00:00
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
2024-08-08 11:16:50 +00:00
case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break;
case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break;
case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break;
default:
{
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
ftype = LLAMA_FTYPE_ALL_F32;
} break;
}
// this is a way to mark that we have "guessed" the file type
ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
{
2024-08-08 11:16:50 +00:00
const int kid = gguf_find_key(meta, "general.file_type"); // TODO: use LLM_KV
if (kid >= 0) {
ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
}
}
LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
for (int i = 0; i < n_kv; i++) {
const char * name = gguf_get_key(meta, i);
const enum gguf_type type = gguf_get_kv_type(meta, i);
const std::string type_name =
type == GGUF_TYPE_ARRAY
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
: gguf_type_name(type);
std::string value = gguf_kv_to_str(meta, i);
const size_t MAX_VALUE_LEN = 40;
if (value.size() > MAX_VALUE_LEN) {
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
}
replace_all(value, "\n", "\\n");
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
}
// print type counts
for (auto & kv : n_type) {
if (kv.second == 0) {
continue;
}
LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
}
}
if (!llama_mmap::SUPPORTED) {
LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
use_mmap = false;
}
this->use_mmap = use_mmap;
2024-05-12 17:12:46 +00:00
this->check_tensors = check_tensors;
}
~llama_model_loader() {
if (meta) {
gguf_free(meta);
}
for (auto * ctx : contexts) {
ggml_free(ctx);
}
}
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
get_arr_n(const std::string & key, T & result, const bool required = true) {
const int kid = gguf_find_key(meta, key.c_str());
if (kid < 0) {
if (required) {
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
}
return false;
}
struct GGUFMeta::ArrayInfo arr_info =
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
result = arr_info.length;
return true;
}
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
return get_arr_n(llm_kv(kid), result, required);
}
template<typename T>
2024-06-16 10:10:54 +00:00
bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
const int kid = gguf_find_key(meta, key.c_str());
2024-07-08 11:14:17 +00:00
if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
2024-06-16 10:10:54 +00:00
if (required) {
2024-07-08 11:14:17 +00:00
throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
2024-06-16 10:10:54 +00:00
}
return false;
}
2024-06-16 10:10:54 +00:00
struct GGUFMeta::ArrayInfo arr_info =
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
2024-07-08 11:14:17 +00:00
switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
case GGUF_TYPE_INT32: GGML_ASSERT(
(std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
}
2024-06-16 10:10:54 +00:00
result.resize(arr_info.length);
result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
return true;
}
2024-07-08 11:14:17 +00:00
template<typename T, size_t N_MAX>
bool get_arr(const std::string & key, std::array<T, N_MAX> & result, const bool required = true) {
const int kid = gguf_find_key(meta, key.c_str());
if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
if (required) {
throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
}
return false;
}
struct GGUFMeta::ArrayInfo arr_info =
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
case GGUF_TYPE_INT32: GGML_ASSERT(
(std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
}
2024-08-08 11:16:50 +00:00
if (arr_info.length > N_MAX) {
throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX));
}
2024-07-08 11:14:17 +00:00
std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
return true;
}
2024-06-16 10:10:54 +00:00
template<typename T>
2024-07-08 11:14:17 +00:00
bool get_arr(const enum llm_kv kid, T & result, const bool required = true) {
2024-06-16 10:10:54 +00:00
return get_arr(llm_kv(kid), result, required);
}
template<typename T>
bool get_key(const std::string & key, T & result, const bool required = true) {
auto it = kv_overrides.find(key);
const struct llama_model_kv_override * override =
it != kv_overrides.end() ? &it->second : nullptr;
const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
if (required && !found) {
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
}
return found;
}
template<typename T>
bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
return get_key(llm_kv(kid), result, required);
}
2024-07-08 11:14:17 +00:00
// get array of n <= N_MAX elements, or a single element repeated n times
template<typename T, size_t N_MAX>
bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, const bool required = true) {
const int kid = gguf_find_key(meta, key.c_str());
if (kid < 0) {
if (required) {
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
}
return false;
}
2024-08-08 11:16:50 +00:00
if (n > N_MAX) {
throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str()));
}
2024-07-08 11:14:17 +00:00
if (gguf_get_kv_type(meta, kid) == GGUF_TYPE_ARRAY) {
struct GGUFMeta::ArrayInfo arr_info =
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
if (n != arr_info.length) {
throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length));
}
return get_arr(key, result, required);
} else {
T value;
bool ok = get_key(key, value, required);
if (!ok) {
return false;
}
for (uint32_t i = 0; i < n; i++) {
result[i] = value;
}
return true;
}
}
template<typename T>
bool get_key_or_arr(const enum llm_kv kid, T & result, uint32_t n, const bool required = true) {
return get_key_or_arr(llm_kv(kid), result, n, required);
}
std::string get_arch_name() const {
return arch_name;
}
enum llm_arch get_arch() const {
return llm_kv.arch;
}
const char * get_tensor_name(int i) const {
return weights.at(i).tensor->name;
}
2024-04-07 13:21:08 +00:00
const llama_tensor_weight * get_weight(const char * name) const {
for (const auto & weight : weights) {
if (strcmp(name, weight.tensor->name) == 0) {
2024-04-07 13:21:08 +00:00
return &weight;
}
}
2024-04-07 13:21:08 +00:00
return nullptr;
}
2024-05-12 17:12:46 +00:00
const llama_tensor_weight * get_weight(int i) const {
return get_weight(get_tensor_name(i));
}
2024-04-07 13:21:08 +00:00
const llama_tensor_weight & require_weight(const char * name) const {
const llama_tensor_weight * weight = get_weight(name);
if (!weight) {
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
}
return *weight;
}
struct ggml_tensor * get_tensor_meta(const char * name) const {
2024-04-07 13:21:08 +00:00
const auto * weight = get_weight(name);
if (!weight) {
return nullptr;
}
2024-04-07 13:21:08 +00:00
return weight->tensor;
}
struct ggml_tensor * require_tensor_meta(const char * name) const {
struct ggml_tensor * tensor = get_tensor_meta(name);
if (!tensor) {
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
}
return tensor;
}
struct ggml_tensor * get_tensor_meta(int i) const {
return get_tensor_meta(get_tensor_name(i));
}
2024-06-16 10:10:54 +00:00
struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
ggml_set_name(tensor, ggml_get_name(cur));
2024-06-16 10:10:54 +00:00
if (duplicated) {
size_data += ggml_nbytes(cur);
} else {
n_created++;
}
return tensor;
}
2024-04-07 13:21:08 +00:00
const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
if (cur == NULL) {
if (!required) {
return NULL;
}
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
}
{
bool is_ok = true;
2024-04-07 13:21:08 +00:00
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
is_ok = false;
break;
}
}
if (!is_ok) {
throw std::runtime_error(
format("%s: tensor '%s' has wrong shape; expected %s, got %s",
__func__, name.c_str(),
llama_format_tensor_shape(ne).c_str(),
llama_format_tensor_shape(cur).c_str()));
}
}
2024-04-07 13:21:08 +00:00
return cur;
}
2024-06-16 10:10:54 +00:00
static const int TENSOR_NOT_REQUIRED = 1;
static const int TENSOR_DUPLICATED = 2;
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
2024-04-07 13:21:08 +00:00
if (cur == NULL) {
return NULL;
}
2024-06-16 10:10:54 +00:00
return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
}
2024-04-07 13:21:08 +00:00
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
if (cur == NULL) {
return NULL;
}
if (cur->type != base->type) {
throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
}
std::array<int64_t, GGML_MAX_DIMS> dims;
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
dims[i] = i < ne.size() ? ne[i] : 1;
}
struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
dims[0], dims[1], dims[2], dims[3],
cur->nb[1], cur->nb[2], cur->nb[3],
offset);
ggml_set_name(tensor, name.c_str());
n_created++;
return tensor;
}
void done_getting_tensors() const {
if (n_created != n_tensors) {
throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
}
}
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
if (use_mmap) {
mappings.reserve(files.size());
mmaps_used.reserve(files.size());
for (const auto & file : files) {
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
2024-04-07 13:21:08 +00:00
mmaps_used.emplace_back(mapping->size, 0);
if (mlock_mmaps) {
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
mlock_mmap->init(mapping->addr);
mlock_mmaps->emplace_back(std::move(mlock_mmap));
}
mappings.emplace_back(std::move(mapping));
}
2024-01-12 20:04:51 +00:00
}
2024-01-12 20:04:51 +00:00
// compute the total size of all tensors for progress reporting
for (auto & w : weights) {
size_data += ggml_nbytes(w.tensor);
}
2024-01-12 20:04:51 +00:00
}
void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
GGML_ASSERT(!mappings.empty());
const auto & mapping = mappings.at(idx);
2024-01-12 20:04:51 +00:00
*first = mapping->size;
*last = 0;
*addr = mapping->addr;
2024-01-12 20:04:51 +00:00
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
2024-04-07 13:21:08 +00:00
try {
const auto * weight = get_weight(ggml_get_name(tensor));
if (!weight) {
continue;
}
if (weight->idx != idx) {
continue;
}
*first = std::min(*first, weight->offs);
*last = std::max(*last, weight->offs + ggml_nbytes(tensor));
} catch(...) {
// the tensor is not in the model
}
}
}
// for backwards compatibility, does not support ggml-backend
void load_data_for(struct ggml_tensor * cur) const {
2024-04-07 13:21:08 +00:00
const auto & w = require_weight(ggml_get_name(cur));
if (use_mmap) {
const auto & mapping = mappings.at(w.idx);
2024-01-12 20:04:51 +00:00
if (cur->data == nullptr) {
cur->data = (uint8_t *)mapping->addr + w.offs;
2024-01-12 20:04:51 +00:00
} else {
memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
2024-01-12 20:04:51 +00:00
}
} else {
GGML_ASSERT(cur->data != nullptr);
GGML_ASSERT(w.idx < files.size());
const auto & file = files.at(w.idx);
file->seek(w.offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur));
}
2024-05-12 17:12:46 +00:00
if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
}
2024-01-12 20:04:51 +00:00
size_t size_done = 0;
size_t size_data = 0;
std::vector<std::pair<size_t, size_t>> mmaps_used;
2024-01-12 20:04:51 +00:00
// Returns false if cancelled by progress_callback
bool load_all_data(
struct ggml_context * ctx,
llama_buf_map & bufs_mmap,
llama_mlocks * lmlocks,
llama_progress_callback progress_callback,
void * progress_callback_user_data) {
GGML_ASSERT(size_data != 0 && "call init_mappings() first");
std::vector<no_init<uint8_t>> read_buf;
2024-05-12 17:12:46 +00:00
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
2024-06-18 06:45:37 +00:00
#if defined(GGML_USE_CUDA)
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
// NVMe raid configurations might require more / larger buffers.
2024-07-08 11:14:17 +00:00
constexpr size_t n_buffers = 4;
2024-06-18 06:45:37 +00:00
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
std::vector<ggml_backend_buffer_t> host_buffers;
std::vector<void*> host_ptrs;
std::vector<ggml_backend_event_t> events;
size_t buffer_idx = 0; // buffer to use for async loads
ggml_backend_t cuda_backend = nullptr;
if (!use_mmap && !check_tensors) {
// When not using mmaped io use async uploads from pinned memory to GPU memory.
// First determine if the CUDA backend is active, and if so, determine the device ID.
ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
if (buf) {
ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
if (buffer_type == cuda_buffer_type) {
cuda_backend = ggml_backend_cuda_init(i);
break;
}
}
}
// If the cuda backend is active create pinned memory buffers and events for synchronisation.
if (cuda_backend) {
2024-07-08 11:14:17 +00:00
for (size_t idx = 0; idx < n_buffers; ++idx) {
2024-06-18 06:45:37 +00:00
host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
events.emplace_back(ggml_backend_event_new(cuda_backend));
}
}
}
#endif
2024-03-08 09:55:50 +00:00
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
2024-04-07 13:21:08 +00:00
const auto * weight = get_weight(ggml_get_name(cur));
if (weight == nullptr) {
// this can happen with split experts models
continue;
}
if (progress_callback) {
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
return false;
}
}
size_t n_size = ggml_nbytes(cur);
if (use_mmap) {
2024-04-07 13:21:08 +00:00
const auto & mapping = mappings.at(weight->idx);
ggml_backend_buffer_t buf_mmap = nullptr;
2024-04-07 13:21:08 +00:00
if (bufs_mmap.count(weight->idx)) {
buf_mmap = bufs_mmap.at(weight->idx);
}
2024-05-12 17:12:46 +00:00
uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
}));
}
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
2024-01-12 20:04:51 +00:00
if (buf_mmap && cur->data == nullptr) {
2024-05-12 17:12:46 +00:00
ggml_backend_tensor_alloc(buf_mmap, cur, data);
if (lmlocks) {
2024-04-07 13:21:08 +00:00
const auto & lmlock = lmlocks->at(weight->idx);
2024-05-12 17:12:46 +00:00
lmlock->grow_to(weight->offs + n_size);
}
2024-04-07 13:21:08 +00:00
auto & mmap_used = mmaps_used[weight->idx];
mmap_used.first = std::min(mmap_used.first, weight->offs);
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
} else {
2024-05-12 17:12:46 +00:00
ggml_backend_tensor_set(cur, data, 0, n_size);
}
} else {
2024-04-07 13:21:08 +00:00
GGML_ASSERT(weight->idx < files.size());
const auto & file = files.at(weight->idx);
2024-01-12 20:04:51 +00:00
if (ggml_backend_buffer_is_host(cur->buffer)) {
2024-04-07 13:21:08 +00:00
file->seek(weight->offs, SEEK_SET);
2024-05-12 17:12:46 +00:00
file->read_raw(cur->data, n_size);
if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
}));
}
} else {
2024-06-18 06:45:37 +00:00
#if defined(GGML_USE_CUDA)
// If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
if (cuda_backend) {
file->seek(weight->offs, SEEK_SET);
size_t bytes_read = 0;
while (bytes_read < n_size) {
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
ggml_backend_event_synchronize(events[buffer_idx]);
file->read_raw(host_ptrs[buffer_idx], read_iteration);
ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
ggml_backend_event_record(events[buffer_idx]);
bytes_read += read_iteration;
++buffer_idx;
2024-07-08 11:14:17 +00:00
buffer_idx %= n_buffers;
2024-06-18 06:45:37 +00:00
}
}
else
#endif
{
read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
2024-05-12 17:12:46 +00:00
}
}
}
size_done += n_size;
}
2024-06-18 06:45:37 +00:00
#if defined(GGML_USE_CUDA)
// free temporary resources used for async cuda uploads
if (cuda_backend) {
2024-07-08 11:14:17 +00:00
for (size_t idx = 0; idx < n_buffers;++idx) {
2024-06-18 06:45:37 +00:00
ggml_backend_event_synchronize(events[idx]);
ggml_backend_event_free(events[idx]);
ggml_backend_buffer_free(host_buffers[idx]);
}
ggml_backend_free(cuda_backend);
}
#endif
2024-05-12 17:12:46 +00:00
// check validation results
bool validation_failed = false;
for (auto & future : validation_result) {
auto result = future.get();
if (!result.second) {
LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
validation_failed = true;
}
}
if (validation_failed) {
throw std::runtime_error("found tensors with invalid data");
}
2024-01-12 20:04:51 +00:00
// check if this is the last call and do final cleanup
if (size_done >= size_data) {
// unmap offloaded tensors and metadata
if (use_mmap) {
for (uint32_t idx = 0; idx < mappings.size(); idx++) {
const auto & mmap_used = mmaps_used.at(idx);
auto & mapping = mappings.at(idx);
mapping->unmap_fragment(0, mmap_used.first);
if (mmap_used.second != 0) {
mapping->unmap_fragment(mmap_used.second, mapping->size);
}
2024-01-12 20:04:51 +00:00
}
}
if (progress_callback) {
// Even though the model is done loading, we still honor
// cancellation since we need to free allocations.
return progress_callback(1.0f, progress_callback_user_data);
}
}
return true;
}
};
2024-03-08 09:55:50 +00:00
template<>
bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
uint32_t tmp;
const bool found = get_key(kid, tmp, required);
if (found) {
result = (enum llama_pooling_type) tmp;
} else {
result = LLAMA_POOLING_TYPE_UNSPECIFIED;
}
return found;
}
//
// load LLaMA models
//
2024-02-10 08:10:59 +00:00
static const char * llama_model_arch_name(llm_arch arch) {
auto it = LLM_ARCH_NAMES.find(arch);
if (it == LLM_ARCH_NAMES.end()) {
return "unknown";
}
return it->second;
}
static std::string llama_model_ftype_name(llama_ftype ftype) {
if (ftype & LLAMA_FTYPE_GUESSED) {
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
}
switch (ftype) {
2024-08-08 11:16:50 +00:00
case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4";
case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8";
case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: return "Q4_0_8_8";
default: return "unknown, may not work";
}
}
static const char * llama_model_type_name(e_model type) {
switch (type) {
2024-06-16 10:10:54 +00:00
case MODEL_14M: return "14M";
case MODEL_17M: return "17M";
case MODEL_22M: return "22M";
case MODEL_33M: return "33M";
2024-07-08 11:14:17 +00:00
case MODEL_60M: return "60M";
2024-06-16 10:10:54 +00:00
case MODEL_70M: return "70M";
2024-07-08 11:14:17 +00:00
case MODEL_80M: return "80M";
2024-06-16 10:10:54 +00:00
case MODEL_109M: return "109M";
case MODEL_137M: return "137M";
case MODEL_160M: return "160M";
2024-07-08 11:14:17 +00:00
case MODEL_220M: return "220M";
case MODEL_250M: return "250M";
case MODEL_270M: return "270M";
2024-06-16 10:10:54 +00:00
case MODEL_335M: return "335M";
case MODEL_410M: return "410M";
2024-07-08 11:14:17 +00:00
case MODEL_450M: return "450M";
case MODEL_770M: return "770M";
case MODEL_780M: return "780M";
2024-06-16 10:10:54 +00:00
case MODEL_0_5B: return "0.5B";
case MODEL_1B: return "1B";
2024-07-08 11:14:17 +00:00
case MODEL_1_3B: return "1.3B";
2024-06-16 10:10:54 +00:00
case MODEL_1_4B: return "1.4B";
case MODEL_2B: return "2B";
case MODEL_2_8B: return "2.8B";
case MODEL_3B: return "3B";
case MODEL_4B: return "4B";
2024-07-08 11:14:17 +00:00
case MODEL_6B: return "6B";
2024-06-16 10:10:54 +00:00
case MODEL_6_9B: return "6.9B";
case MODEL_7B: return "7B";
case MODEL_8B: return "8B";
2024-07-08 11:14:17 +00:00
case MODEL_9B: return "9B";
case MODEL_11B: return "11B";
2024-06-16 10:10:54 +00:00
case MODEL_12B: return "12B";
case MODEL_13B: return "13B";
case MODEL_14B: return "14B";
case MODEL_15B: return "15B";
case MODEL_16B: return "16B";
case MODEL_20B: return "20B";
case MODEL_30B: return "30B";
case MODEL_34B: return "34B";
case MODEL_35B: return "35B";
case MODEL_40B: return "40B";
case MODEL_65B: return "65B";
case MODEL_70B: return "70B";
case MODEL_236B: return "236B";
case MODEL_314B: return "314B";
case MODEL_SMALL: return "0.1B";
case MODEL_MEDIUM: return "0.4B";
case MODEL_LARGE: return "0.8B";
case MODEL_XL: return "1.5B";
case MODEL_A2_7B: return "A2.7B";
case MODEL_8x7B: return "8x7B";
case MODEL_8x22B: return "8x22B";
case MODEL_16x12B: return "16x12B";
case MODEL_10B_128x3_66B: return "10B+128x3.66B";
2024-07-08 11:14:17 +00:00
case MODEL_57B_A14B: return "57B.A14B";
case MODEL_27B: return "27B";
2024-06-16 10:10:54 +00:00
default: return "?B";
}
}
2024-03-08 09:55:50 +00:00
2024-02-10 08:10:59 +00:00
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
switch (type) {
2024-03-15 12:21:59 +00:00
case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
case LLAMA_VOCAB_TYPE_WPM: return "WPM";
2024-07-08 11:14:17 +00:00
case LLAMA_VOCAB_TYPE_UGM: return "UGM";
2024-03-15 12:21:59 +00:00
default: return "unknown";
2024-02-10 08:10:59 +00:00
}
}
static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
model.arch = ml.get_arch();
if (model.arch == LLM_ARCH_UNKNOWN) {
throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
}
}
static void llm_load_hparams(
llama_model_loader & ml,
llama_model & model) {
auto & hparams = model.hparams;
const gguf_context * ctx = ml.meta;
// get metadata as string
for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
enum gguf_type type = gguf_get_kv_type(ctx, i);
if (type == GGUF_TYPE_ARRAY) {
continue;
}
const char * name = gguf_get_key(ctx, i);
const std::string value = gguf_kv_to_str(ctx, i);
model.gguf_kv.emplace(name, value);
}
// get general kv
ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
// get hparams kv
2024-07-08 11:14:17 +00:00
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
2024-05-12 17:12:46 +00:00
// everything past this point is not vocab-related
if (hparams.vocab_only) {
return;
}
2024-07-08 11:14:17 +00:00
ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
if (hparams.n_expert > 0) {
GGML_ASSERT(hparams.n_expert_used > 0);
} else {
GGML_ASSERT(hparams.n_expert_used == 0);
}
2024-07-08 11:14:17 +00:00
// zero-out the per-layer hparams
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
// n_head_kv is optional, default to n_head
2024-07-08 11:14:17 +00:00
hparams.n_head_kv_arr = hparams.n_head_arr;
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
bool rope_finetuned = false;
ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
hparams.rope_finetuned = rope_finetuned;
2024-06-16 10:10:54 +00:00
hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
// rope_freq_base (optional)
hparams.rope_freq_base_train = 10000.0f;
ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
std::string rope_scaling("linear");
ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
2024-03-08 09:55:50 +00:00
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
// rope_freq_scale (inverse of the kv) is optional
float ropescale = 0.0f;
if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
// try the old key name
ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
}
hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
2024-06-16 10:10:54 +00:00
ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
2024-07-08 11:14:17 +00:00
// non-transformer models do not have attention heads
if (hparams.n_head() > 0) {
// gpt-neox n_rot = rotary_pct * (n_embd / n_head)
// gpt-j n_rot = rotary_dim
hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
// sanity check for n_rot (optional)
hparams.n_rot = hparams.n_embd_head_k;
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
2024-07-08 11:14:17 +00:00
if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
}
}
2024-07-08 11:14:17 +00:00
} else {
hparams.n_rot = 0;
hparams.n_embd_head_k = 0;
hparams.n_embd_head_v = 0;
}
// arch-specific KVs
switch (model.arch) {
case LLM_ARCH_LLAMA:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
2024-05-12 17:12:46 +00:00
if (hparams.n_expert == 8) {
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_8x7B; break;
case 56: model.type = e_model::MODEL_8x22B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} else {
switch (hparams.n_layer) {
case 22: model.type = e_model::MODEL_1B; break;
case 26: model.type = e_model::MODEL_3B; break;
2024-06-16 10:10:54 +00:00
// granite uses a vocab with len 49152
case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
case 36: model.type = e_model::MODEL_8B; break; // granite
2024-05-12 17:12:46 +00:00
case 40: model.type = e_model::MODEL_13B; break;
case 48: model.type = e_model::MODEL_34B; break;
case 60: model.type = e_model::MODEL_30B; break;
2024-07-08 11:14:17 +00:00
case 80: model.type = hparams.n_head() == hparams.n_head_kv() ? e_model::MODEL_65B : e_model::MODEL_70B; break;
2024-05-12 17:12:46 +00:00
default: model.type = e_model::MODEL_UNKNOWN;
}
}
} break;
2024-02-10 08:10:59 +00:00
case LLM_ARCH_MINICPM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 40: model.type = e_model::MODEL_2B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_GROK:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 64: model.type = e_model::MODEL_314B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_FALCON:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 60: model.type = e_model::MODEL_40B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_BAICHUAN:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
2024-02-20 10:09:57 +00:00
if (model.type == e_model::MODEL_13B) {
// TODO: become GGUF KV parameter
hparams.f_max_alibi_bias = 8.0f;
}
} break;
case LLM_ARCH_STARCODER:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1B; break;
case 36: model.type = e_model::MODEL_3B; break;
case 42: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_15B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_REFACT:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_1B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
2024-02-20 10:09:57 +00:00
// TODO: become GGUF KV parameter
hparams.f_max_alibi_bias = 8.0f;
} break;
2024-02-12 08:39:58 +00:00
case LLM_ARCH_BERT:
{
2024-03-08 09:55:50 +00:00
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
2024-02-12 08:39:58 +00:00
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
2024-03-08 09:55:50 +00:00
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
2024-02-12 08:39:58 +00:00
switch (hparams.n_layer) {
case 3:
model.type = e_model::MODEL_17M; break; // bge-micro
case 6:
model.type = e_model::MODEL_22M; break; // MiniLM-L6
case 12:
switch (hparams.n_embd) {
case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
case 768: model.type = e_model::MODEL_109M; break; // bge-base
} break;
case 24:
model.type = e_model::MODEL_335M; break; // bge-large
}
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_JINA_BERT_V2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
hparams.f_max_alibi_bias = 8.0f;
switch (hparams.n_layer) {
case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
}
} break;
2024-02-20 10:09:57 +00:00
case LLM_ARCH_NOMIC_BERT:
{
2024-03-08 09:55:50 +00:00
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
2024-02-20 10:09:57 +00:00
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
2024-03-08 09:55:50 +00:00
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
2024-02-20 10:09:57 +00:00
if (hparams.n_layer == 12 && hparams.n_embd == 768) {
model.type = e_model::MODEL_137M;
}
} break;
case LLM_ARCH_BLOOM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1B; break;
case 30:
switch (hparams.n_embd) {
case 2560: model.type = e_model::MODEL_3B; break;
case 4096: model.type = e_model::MODEL_7B; break;
} break;
}
2024-02-20 10:09:57 +00:00
// TODO: become GGUF KV parameter
hparams.f_max_alibi_bias = 8.0f;
} break;
case LLM_ARCH_MPT:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 48: model.type = e_model::MODEL_30B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_STABLELM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
2024-01-27 15:24:53 +00:00
case 24: model.type = e_model::MODEL_1B; break;
case 32: model.type = e_model::MODEL_3B; break;
2024-05-12 17:12:46 +00:00
case 40: model.type = e_model::MODEL_12B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_QWEN:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-01-27 15:24:53 +00:00
case LLM_ARCH_QWEN2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
case 32: model.type = e_model::MODEL_7B; break;
2024-07-08 11:14:17 +00:00
case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
2024-01-27 15:24:53 +00:00
case 80: model.type = e_model::MODEL_70B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_QWEN2MOE:
{
2024-06-18 06:45:37 +00:00
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
2024-05-12 17:12:46 +00:00
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_A2_7B; break;
2024-07-08 11:14:17 +00:00
case 28: model.type = e_model::MODEL_57B_A14B; break;
2024-05-12 17:12:46 +00:00
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_PHI2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
2024-05-12 17:12:46 +00:00
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1B; break;
case 32: model.type = e_model::MODEL_3B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_PHI3:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
2024-01-11 20:10:10 +00:00
case 24: model.type = e_model::MODEL_1B; break;
case 32: model.type = e_model::MODEL_3B; break;
2024-06-16 10:10:54 +00:00
case 40: model.type = e_model::MODEL_14B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
2024-08-28 08:04:02 +00:00
// for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
// default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
hparams.n_swa = 2047;
} else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
// default value for Phi-3-mini-128k-instruct
hparams.n_swa = 262144;
} else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
// default value for Phi-3-medium-128k-instruct
hparams.n_swa = 131072;
}
bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
if (!found_swa && hparams.n_swa == 0) {
throw std::runtime_error("invalid value for sliding_window");
}
} break;
2024-01-06 15:22:57 +00:00
case LLM_ARCH_PLAMO:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 40: model.type = e_model::MODEL_13B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_GPT2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 12: model.type = e_model::MODEL_SMALL; break;
case 24: model.type = e_model::MODEL_MEDIUM; break;
case 36: model.type = e_model::MODEL_LARGE; break;
case 48: model.type = e_model::MODEL_XL; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-01-27 15:24:53 +00:00
case LLM_ARCH_CODESHELL:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
2024-08-08 11:16:50 +00:00
case 42: model.type = e_model::MODEL_7B; break;
2024-01-27 15:24:53 +00:00
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-01-28 17:44:10 +00:00
case LLM_ARCH_ORION:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
2024-01-28 17:44:10 +00:00
switch (hparams.n_layer) {
case 40: model.type = e_model::MODEL_14B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-02-10 08:10:59 +00:00
case LLM_ARCH_INTERNLM2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 48: model.type = e_model::MODEL_20B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-02-22 21:30:53 +00:00
case LLM_ARCH_GEMMA:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 18: model.type = e_model::MODEL_2B; break;
case 28: model.type = e_model::MODEL_7B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_GEMMA2:
{
hparams.n_swa = 4096; // default value of gemma 2
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
hparams.attn_soft_cap = true;
switch (hparams.n_layer) {
2024-08-08 11:16:50 +00:00
case 26: model.type = e_model::MODEL_2B; break;
2024-07-08 11:14:17 +00:00
case 42: model.type = e_model::MODEL_9B; break;
case 46: model.type = e_model::MODEL_27B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-03-08 09:55:50 +00:00
case LLM_ARCH_STARCODER2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 30: model.type = e_model::MODEL_3B; break;
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_15B; break;
2024-06-16 10:10:54 +00:00
case 52: model.type = e_model::MODEL_20B; break; // granite
case 88: model.type = e_model::MODEL_34B; break; // granite
2024-03-08 09:55:50 +00:00
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-03-15 12:21:59 +00:00
case LLM_ARCH_MAMBA:
{
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
2024-08-28 08:04:02 +00:00
ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
2024-03-15 12:21:59 +00:00
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 24:
switch (hparams.n_embd) {
case 768: model.type = e_model::MODEL_SMALL; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 48:
switch (hparams.n_embd) {
case 1024: model.type = e_model::MODEL_MEDIUM; break;
case 1536: model.type = e_model::MODEL_LARGE; break;
case 2048: model.type = e_model::MODEL_XL; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 64:
switch (hparams.n_embd) {
case 2560: model.type = e_model::MODEL_3B; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-04-07 13:21:08 +00:00
case LLM_ARCH_XVERSE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
case 80: model.type = e_model::MODEL_65B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_COMMAND_R:
{
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 40: model.type = e_model::MODEL_35B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_DBRX:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
switch (hparams.n_layer) {
case 40: model.type = e_model::MODEL_16x12B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_OLMO:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
switch (hparams.n_layer) {
case 22: model.type = e_model::MODEL_1B; break;
case 32: model.type = e_model::MODEL_7B; break;
case 80: model.type = e_model::MODEL_70B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_OPENELM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 16: model.type = e_model::MODEL_270M; break;
case 20: model.type = e_model::MODEL_450M; break;
case 28: model.type = e_model::MODEL_1B; break;
case 36: model.type = e_model::MODEL_3B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-06-16 10:10:54 +00:00
case LLM_ARCH_GPTNEOX:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
switch (hparams.n_layer) {
case 6:
2024-07-08 11:14:17 +00:00
switch (hparams.n_ff()) {
2024-06-16 10:10:54 +00:00
case 512: model.type = e_model::MODEL_14M; break;
case 2048: model.type = e_model::MODEL_70M; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 12:
2024-07-08 11:14:17 +00:00
switch (hparams.n_ff()) {
2024-06-16 10:10:54 +00:00
case 3072: model.type = e_model::MODEL_160M; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 16:
2024-07-08 11:14:17 +00:00
switch (hparams.n_ff()) {
2024-06-16 10:10:54 +00:00
case 8192: model.type = e_model::MODEL_1B; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 24:
2024-07-08 11:14:17 +00:00
switch (hparams.n_ff()) {
2024-06-16 10:10:54 +00:00
case 4096: model.type = e_model::MODEL_410M; break;
case 8192: model.type = e_model::MODEL_1_4B; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 32:
2024-07-08 11:14:17 +00:00
switch (hparams.n_ff()) {
2024-06-16 10:10:54 +00:00
case 10240: model.type = e_model::MODEL_2_8B; break;
case 16384: model.type = e_model::MODEL_6_9B; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 36:
2024-07-08 11:14:17 +00:00
switch (hparams.n_ff()) {
2024-06-16 10:10:54 +00:00
case 20480: model.type = e_model::MODEL_12B; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 44:
2024-07-08 11:14:17 +00:00
switch (hparams.n_ff()) {
2024-06-16 10:10:54 +00:00
case 24576: model.type = e_model::MODEL_20B; break;
default: model.type = e_model::MODEL_UNKNOWN;
} break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_ARCTIC:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
if (hparams.n_expert == 128) {
switch (hparams.n_layer) {
case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} else {
model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_DEEPSEEK2:
{
bool is_lite = (hparams.n_layer == 27);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
if (!is_lite) {
ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
}
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
switch (hparams.n_layer) {
case 27: model.type = e_model::MODEL_16B; break;
case 60: model.type = e_model::MODEL_236B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_CHATGLM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 28: model.type = e_model::MODEL_6B; break;
case 40: model.type = e_model::MODEL_9B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_BITNET:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 26: model.type = e_model::MODEL_3B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_T5:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
uint32_t dec_start_token_id;
if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
hparams.dec_start_token_id = dec_start_token_id;
}
switch (hparams.n_layer) {
case 6: model.type = e_model::MODEL_60M; break; // t5-small
case 8: model.type = e_model::MODEL_80M; break; // flan-t5-small
case 12:
switch (hparams.n_ff()) {
case 3072: model.type = e_model::MODEL_220M; break; // t5-base
case 2048: model.type = e_model::MODEL_250M; break; // flan-t5-base
default: model.type = e_model::MODEL_UNKNOWN;
} break;
case 24:
switch (hparams.n_ff()) {
case 4096: model.type = e_model::MODEL_770M; break; // t5-large
case 2816: model.type = e_model::MODEL_780M; break; // flan-t5-large
case 16384: model.type = e_model::MODEL_3B; break; // t5-3b
case 5120: model.type = e_model::MODEL_3B; break; // flan-t5-xl
case 65536: model.type = e_model::MODEL_11B; break; // t5-11b
case 10240: model.type = e_model::MODEL_11B; break; // flan-t5-xxl
default: model.type = e_model::MODEL_UNKNOWN;
} break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-08-28 08:04:02 +00:00
case LLM_ARCH_T5ENCODER:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
model.type = e_model::MODEL_UNKNOWN;
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_JAIS:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1_3B; break;
case 40: model.type = e_model::MODEL_13B; break;
/* TODO: add variants */
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
2024-08-28 08:04:02 +00:00
case LLM_ARCH_NEMOTRON:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_4B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_EXAONE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_8B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
}
model.ftype = ml.ftype;
2024-02-20 10:09:57 +00:00
if (hparams.f_max_alibi_bias > 0.0f) {
2024-05-12 17:12:46 +00:00
hparams.use_alibi = true;
2024-02-20 10:09:57 +00:00
}
2024-03-08 09:55:50 +00:00
hparams.rope_type = llama_rope_type(&model);
}
static void llm_load_vocab(
llama_model_loader & ml,
llama_model & model) {
auto & vocab = model.vocab;
struct gguf_context * ctx = ml.meta;
const auto kv = LLM_KV(model.arch);
// determine vocab type
{
2024-05-12 17:12:46 +00:00
std::string tokenizer_model;
std::string tokenizer_pre;
2024-05-12 17:12:46 +00:00
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
2024-05-12 17:12:46 +00:00
if (tokenizer_model == "no_vocab") {
2024-03-15 12:21:59 +00:00
vocab.type = LLAMA_VOCAB_TYPE_NONE;
// default special tokens
2024-05-12 17:12:46 +00:00
vocab.special_bos_id = -1;
vocab.special_eos_id = -1;
vocab.special_unk_id = -1;
vocab.special_sep_id = -1;
vocab.special_pad_id = -1;
vocab.special_cls_id = -1;
vocab.special_mask_id = -1;
vocab.linefeed_id = -1;
2024-03-15 12:21:59 +00:00
return;
2024-05-12 17:12:46 +00:00
} else if (tokenizer_model == "llama") {
vocab.type = LLAMA_VOCAB_TYPE_SPM;
// default special tokens
2024-05-12 17:12:46 +00:00
vocab.special_bos_id = 1;
vocab.special_eos_id = 2;
vocab.special_unk_id = 0;
vocab.special_sep_id = -1;
vocab.special_pad_id = -1;
vocab.special_cls_id = -1;
vocab.special_mask_id = -1;
} else if (tokenizer_model == "bert") {
vocab.type = LLAMA_VOCAB_TYPE_WPM;
2024-05-12 17:12:46 +00:00
// default special tokens
vocab.special_bos_id = -1;
vocab.special_eos_id = -1;
vocab.special_unk_id = 100;
vocab.special_sep_id = 102;
vocab.special_pad_id = 0;
vocab.special_cls_id = 101;
vocab.special_mask_id = 103;
2024-06-16 10:10:54 +00:00
} else if (tokenizer_model == "gpt2") {
vocab.type = LLAMA_VOCAB_TYPE_BPE;
// read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
if (merges_keyidx == -1) {
throw std::runtime_error("cannot find tokenizer merges in model file\n");
}
2024-08-08 11:16:50 +00:00
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
for (int i = 0; i < n_merges; i++) {
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
2024-03-15 12:21:59 +00:00
GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
std::string first;
std::string second;
const size_t pos = word.find(' ', 1);
if (pos != std::string::npos) {
first = word.substr(0, pos);
second = word.substr(pos + 1);
}
vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
}
// default special tokens
2024-05-12 17:12:46 +00:00
vocab.special_bos_id = 11;
vocab.special_eos_id = 11;
vocab.special_unk_id = -1;
vocab.special_sep_id = -1;
vocab.special_pad_id = -1;
vocab.special_cls_id = -1;
vocab.special_mask_id = -1;
2024-07-08 11:14:17 +00:00
} else if (tokenizer_model == "t5") {
vocab.type = LLAMA_VOCAB_TYPE_UGM;
// default special tokens
vocab.special_bos_id = -1;
vocab.special_eos_id = 1;
vocab.special_unk_id = 2;
vocab.special_sep_id = -1;
vocab.special_pad_id = 0;
vocab.special_cls_id = -1;
vocab.special_mask_id = -1;
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) {
size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
const char * precompiled_charsmap = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
vocab.precompiled_charsmap.assign(precompiled_charsmap, precompiled_charsmap + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN
// correct endiannes of data in precompiled_charsmap binary blob
uint32_t * xcda_blob_size = (uint32_t *) &vocab.precompiled_charsmap[0];
*xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
uint32_t * xcda_array = (uint32_t *) &vocab.precompiled_charsmap[sizeof(uint32_t)];
for (size_t i = 0; i < xcda_array_size; ++i) {
xcda_array[i] = __builtin_bswap32(xcda_array[i]);
}
#endif
}
2024-06-16 10:10:54 +00:00
} else {
throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
2024-05-12 17:12:46 +00:00
}
// for now, only BPE models have pre-tokenizers
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
2024-07-08 11:14:17 +00:00
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
2024-05-12 17:12:46 +00:00
if (tokenizer_pre.empty()) {
LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
LLAMA_LOG_WARN("%s: \n", __func__);
LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
LLAMA_LOG_WARN("%s: \n", __func__);
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
2024-06-16 10:10:54 +00:00
} else if (tokenizer_pre == "default") {
2024-05-12 17:12:46 +00:00
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
tokenizer_pre == "llama-v3" ||
tokenizer_pre == "llama-bpe") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
vocab.tokenizer_ignore_merges = true;
vocab.tokenizer_add_bos = true;
2024-05-12 17:12:46 +00:00
} else if (
tokenizer_pre == "deepseek-llm") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
2024-07-08 11:14:17 +00:00
vocab.tokenizer_clean_spaces = false;
2024-05-12 17:12:46 +00:00
} else if (
tokenizer_pre == "deepseek-coder") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
2024-07-08 11:14:17 +00:00
vocab.tokenizer_clean_spaces = false;
2024-05-12 17:12:46 +00:00
} else if (
tokenizer_pre == "falcon") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
} else if (
tokenizer_pre == "mpt") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
} else if (
tokenizer_pre == "starcoder") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
} else if (
tokenizer_pre == "gpt-2" ||
2024-07-08 11:14:17 +00:00
tokenizer_pre == "phi-2" ||
2024-05-12 17:12:46 +00:00
tokenizer_pre == "jina-es" ||
2024-06-16 10:10:54 +00:00
tokenizer_pre == "jina-de" ||
tokenizer_pre == "jina-v2-es" ||
tokenizer_pre == "jina-v2-de" ||
tokenizer_pre == "jina-v2-code") {
2024-05-12 17:12:46 +00:00
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
} else if (
tokenizer_pre == "refact") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
} else if (
tokenizer_pre == "command-r") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
2024-08-08 11:16:50 +00:00
vocab.tokenizer_clean_spaces = false;
2024-05-12 17:12:46 +00:00
} else if (
tokenizer_pre == "qwen2") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
2024-07-08 11:14:17 +00:00
vocab.tokenizer_clean_spaces = false;
2024-06-16 10:10:54 +00:00
} else if (
tokenizer_pre == "stablelm2") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
2024-05-12 17:12:46 +00:00
} else if (
tokenizer_pre == "olmo") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
} else if (
tokenizer_pre == "dbrx") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
2024-06-16 10:10:54 +00:00
} else if (
tokenizer_pre == "smaug-bpe") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
} else if (
tokenizer_pre == "poro-chat") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
2024-07-08 11:14:17 +00:00
vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "chatglm-bpe") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
vocab.special_bos_id = -1;
} else if (
tokenizer_pre == "viking") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING;
vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "jais") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
2024-08-08 11:16:50 +00:00
} else if (
tokenizer_pre == "tekken") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
vocab.tokenizer_clean_spaces = false;
vocab.tokenizer_ignore_merges = true;
vocab.tokenizer_add_bos = true;
} else if (
tokenizer_pre == "smollm") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "codeshell") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
2024-08-28 08:04:02 +00:00
} else if (
tokenizer_pre == "bloom") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_BLOOM;
} else if (
tokenizer_pre == "gpt3-finnish") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
} else if (
tokenizer_pre == "exaone") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE;
2024-05-12 17:12:46 +00:00
} else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
}
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
2024-07-08 11:14:17 +00:00
vocab.tokenizer_add_space_prefix = true;
vocab.tokenizer_clean_spaces = false;
vocab.tokenizer_add_bos = true;
vocab.tokenizer_add_eos = false;
} else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
2024-07-08 11:14:17 +00:00
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
vocab.tokenizer_add_bos = true;
vocab.tokenizer_add_eos = false;
2024-07-08 11:14:17 +00:00
} else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
vocab.tokenizer_add_bos = false;
vocab.tokenizer_add_eos = true;
} else {
2024-05-12 17:12:46 +00:00
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
}
2024-07-08 11:14:17 +00:00
2024-08-08 11:16:50 +00:00
ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.tokenizer_add_space_prefix, false);
ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.tokenizer_remove_extra_whitespaces, false);
}
2024-03-15 12:21:59 +00:00
const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
if (token_idx == -1) {
throw std::runtime_error("cannot find tokenizer vocab in model file\n");
}
const float * scores = nullptr;
const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
if (score_idx != -1) {
scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
}
const int * toktypes = nullptr;
const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
if (toktype_idx != -1) {
toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
}
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
vocab.id_to_token.resize(n_vocab);
for (uint32_t i = 0; i < n_vocab; i++) {
std::string word = gguf_get_arr_str(ctx, token_idx, i);
2024-03-15 12:21:59 +00:00
GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
vocab.token_to_id[word] = i;
vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
auto & token_data = vocab.id_to_token[i];
token_data.text = std::move(word);
token_data.score = scores ? scores[i] : 0.0f;
2024-06-16 10:10:54 +00:00
token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
switch(toktypes[i]) {
case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
}
}
}
GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
// determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
2024-06-16 10:10:54 +00:00
// For Fill-In-the-Middle (FIM)/infill models which where converted
// prior to support of FIM special tokens in GGUF, the following
// will allow those models to continue to work. The general names
// of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
// CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
// new versions of these models have been published.
std::string gen_name;
ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
[](unsigned char c){ return std::tolower(c); });
if (gen_name.find("code") != std::string::npos) {
if (model.arch == LLM_ARCH_LLAMA
&& 32010 < vocab.id_to_token.size()
2024-07-08 11:14:17 +00:00
&& vocab.id_to_token[32007].text.find("<PRE>") != std::string::npos
&& vocab.id_to_token[32008].text.find("<SUF>") != std::string::npos
&& vocab.id_to_token[32009].text.find("<MID>") != std::string::npos
&& vocab.id_to_token[32010].text.find("<EOT>") != std::string::npos) {
2024-06-16 10:10:54 +00:00
vocab.special_prefix_id = 32007;
vocab.special_suffix_id = 32008;
vocab.special_middle_id = 32009;
vocab.special_eot_id = 32010;
} else if (model.arch == LLM_ARCH_GEMMA
&& 107 < vocab.id_to_token.size()
&& vocab.id_to_token[67].text == "<|fim_prefix|>"
&& vocab.id_to_token[69].text == "<|fim_suffix|>"
&& vocab.id_to_token[68].text == "<|fim_middle|>"
&& vocab.id_to_token[107].text == "<end_of_turn>") {
vocab.special_prefix_id = 67;
vocab.special_suffix_id = 69;
vocab.special_middle_id = 68;
// TODO: this is not EOT, it is "file separator" token, needs fix
// https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
//vocab.special_eot_id = 70;
vocab.special_eot_id = 107;
}
}
2024-02-20 10:09:57 +00:00
try {
2024-08-08 11:16:50 +00:00
vocab.linefeed_id = llama_byte_to_token_impl(vocab, '\n');
2024-02-20 10:09:57 +00:00
} catch (const std::exception & e) {
LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
vocab.linefeed_id = vocab.special_pad_id;
}
2024-02-12 08:39:58 +00:00
} else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
vocab.linefeed_id = vocab.special_pad_id;
} else {
const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
vocab.linefeed_id = ids[0];
}
// special tokens
{
const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
2024-05-12 17:12:46 +00:00
{ LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
{ LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
{ LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
{ LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
{ LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
{ LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
{ LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
{ LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
{ LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
{ LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
{ LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
2024-08-08 11:16:50 +00:00
{ LLM_KV_TOKENIZER_EOM_ID, vocab.special_eom_id },
};
2024-05-12 17:12:46 +00:00
for (const auto & it : special_token_types) {
const std::string & key = kv(std::get<0>(it));
int32_t & id = std::get<1>(it);
uint32_t new_id;
if (!ml.get_key(std::get<0>(it), new_id, false)) {
continue;
}
if (new_id >= vocab.id_to_token.size()) {
LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
__func__, key.c_str(), new_id, id);
} else {
id = new_id;
}
}
// Handle add_bos_token and add_eos_token
{
bool temp = true;
if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
vocab.tokenizer_add_bos = temp;
}
if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
vocab.tokenizer_add_eos = temp;
}
}
2024-05-12 17:12:46 +00:00
// find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
//
// TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
// for now, we apply this workaround to find the EOT token based on its text
if (vocab.special_eot_id == -1) {
for (const auto & t : vocab.token_to_id) {
if (
// TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
// need to fix convert script
//vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
(t.first == "<|eot_id|>" ||
t.first == "<|im_end|>" ||
t.first == "<|end|>" ||
2024-06-16 10:10:54 +00:00
t.first == "<end_of_turn>" ||
t.first == "<|endoftext|>"
2024-05-12 17:12:46 +00:00
)
) {
vocab.special_eot_id = t.second;
break;
}
}
}
2024-08-08 11:16:50 +00:00
// find EOM token: "<|eom_id|>"
//
// TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOM_ID
// for now, we apply this workaround to find the EOM token based on its text
if (vocab.special_eom_id == -1) {
const auto & t = vocab.token_to_id.find("<|eom_id|>");
if (t != vocab.token_to_id.end()) {
vocab.special_eom_id = t->second;
}
}
}
// build special tokens cache
{
2024-06-16 10:10:54 +00:00
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
2024-08-08 11:16:50 +00:00
if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
2024-06-16 10:10:54 +00:00
vocab.cache_special_tokens.push_back(id);
}
}
2024-07-08 11:14:17 +00:00
std::sort(vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
2024-06-16 10:10:54 +00:00
[&] (const llama_vocab::id a, const llama_vocab::id b) {
return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
}
);
2024-06-16 10:10:54 +00:00
LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
}
2024-06-16 10:10:54 +00:00
// build token to piece cache
{
size_t size_cache = 0;
2024-06-16 10:10:54 +00:00
std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
2024-06-16 10:10:54 +00:00
for (uint32_t id = 0; id < n_vocab; ++id) {
cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
2024-06-16 10:10:54 +00:00
size_cache += cache_token_to_piece[id].size();
}
2024-06-16 10:10:54 +00:00
std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
2024-06-16 10:10:54 +00:00
LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
}
// Handle per token attributes
//NOTE: Each model customizes per token attributes.
//NOTE: Per token attributes are missing from the GGUF file.
//TODO: Extract attributes from GGUF file.
{
auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
for (auto substr : substrs) {
if (str.find(substr) < std::string::npos) {
return true;
}
2024-06-16 10:10:54 +00:00
}
return false;
};
2024-06-16 10:10:54 +00:00
auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
uint32_t current = vocab.id_to_token.at(id).attr;
current = value ? (current | attr) : (current & ~attr);
vocab.id_to_token[id].attr = (llama_token_attr) current;
};
2024-06-16 10:10:54 +00:00
auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
_set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
};
2024-06-16 10:10:54 +00:00
std::string model_name;
std::string tokenizer_pre;
2024-06-16 10:10:54 +00:00
ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
2024-06-16 10:10:54 +00:00
// model name to lowercase
std::transform(model_name.begin(), model_name.end(), model_name.begin(),
[] (const std::string::value_type x) {
return std::tolower(x);
}
2024-06-16 10:10:54 +00:00
);
2024-06-16 10:10:54 +00:00
// set attributes by model/tokenizer name
if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
2024-06-16 10:10:54 +00:00
_set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
} else if (_contains_any(model_name, {"phi-3", "phi3"})) {
for (auto id : vocab.cache_special_tokens) {
_set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
}
for (auto token : {"</s>"}) {
_set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
}
for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
_set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
}
}
}
}
static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
const auto & hparams = model.hparams;
const auto & vocab = model.vocab;
2024-02-10 08:10:59 +00:00
const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
2024-07-08 11:14:17 +00:00
auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
bool is_var = false;
std::vector<uint32_t> v;
for (uint32_t i = 0; i < n; ++i) {
v.push_back(f(i));
if (v[i] != v[0]) {
is_var = true;
}
}
std::stringstream ss;
if (is_var) {
ss << "[";
for (uint32_t i = 0; i < n; ++i) {
ss << v[i];
if (i < n - 1) {
ss << ", ";
}
}
ss << "]";
} else {
ss << v[0];
}
return ss.str();
};
// hparams
LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
if (!hparams.vocab_only) {
LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
2024-08-28 08:04:02 +00:00
LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
2024-07-08 11:14:17 +00:00
}
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
if (ml.n_elements >= 1e12) {
LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
2024-01-11 20:10:10 +00:00
} else if (ml.n_elements >= 1e9) {
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
} else if (ml.n_elements >= 1e6) {
LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
} else {
LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
}
if (ml.n_bytes < GiB) {
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
} else {
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
}
// general kv
LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
// special tokens
2024-05-12 17:12:46 +00:00
if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
2024-06-16 10:10:54 +00:00
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
2024-06-16 10:10:54 +00:00
if (model.arch == LLM_ARCH_DEEPSEEK2) {
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
}
2024-06-18 06:45:37 +00:00
if (model.arch == LLM_ARCH_QWEN2MOE) {
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
}
}
// Returns false if cancelled by progress_callback
static bool llm_load_tensors(
llama_model_loader & ml,
llama_model & model,
int n_gpu_layers,
2024-01-12 20:04:51 +00:00
enum llama_split_mode split_mode,
int main_gpu,
const float * tensor_split,
bool use_mlock,
llama_progress_callback progress_callback,
void * progress_callback_user_data) {
model.t_start_us = ggml_time_us();
auto & hparams = model.hparams;
2024-01-12 20:04:51 +00:00
model.split_mode = split_mode;
model.main_gpu = main_gpu;
model.n_gpu_layers = n_gpu_layers;
2024-07-08 11:14:17 +00:00
const int n_layer = hparams.n_layer;
const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
2024-04-07 13:21:08 +00:00
bool use_mmap_buffer = true;
2024-01-12 20:04:51 +00:00
// there is very little benefit to offloading the input layer, so always keep it on the CPU
model.buft_input = llama_default_buffer_type_cpu(true);
2024-03-15 12:21:59 +00:00
//model.buft_input = llama_default_buffer_type_offload(main_gpu);
2024-01-12 20:04:51 +00:00
model.buft_layer.resize(n_layer);
// assign cpu layers
2024-07-08 11:14:17 +00:00
for (int i = 0; i < i_gpu_start; ++i) {
2024-01-12 20:04:51 +00:00
model.buft_layer[i] = llama_default_buffer_type_cpu(true);
}
2024-03-08 09:55:50 +00:00
if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
2024-01-12 20:04:51 +00:00
// calculate the split points
2024-06-16 10:10:54 +00:00
int device_count = llama_get_device_count(model);
2024-01-12 20:04:51 +00:00
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
2024-02-10 08:10:59 +00:00
std::vector<float> splits(device_count);
2024-01-12 20:04:51 +00:00
if (all_zero) {
// default split, by free memory
for (int i = 0; i < device_count; ++i) {
2024-06-16 10:10:54 +00:00
splits[i] = llama_get_device_memory(model, i);
2024-01-12 20:04:51 +00:00
}
} else {
2024-02-10 08:10:59 +00:00
std::copy(tensor_split, tensor_split + device_count, splits.begin());
2024-01-12 20:04:51 +00:00
}
// sum and normalize the splits to get the split points
float split_sum = 0.0f;
for (int i = 0; i < device_count; ++i) {
split_sum += splits[i];
splits[i] = split_sum;
}
for (int i = 0; i < device_count; ++i) {
splits[i] /= split_sum;
}
2024-01-12 20:04:51 +00:00
// assign the repeating layers to the devices according to the splits
int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
2024-07-08 11:14:17 +00:00
for (int i = i_gpu_start; i < n_layer; ++i) {
2024-02-10 08:10:59 +00:00
int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
2024-06-16 10:10:54 +00:00
model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
2024-01-12 20:04:51 +00:00
}
// assign the output layer
if (n_gpu_layers > n_layer) {
2024-02-10 08:10:59 +00:00
int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
2024-06-16 10:10:54 +00:00
model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
2024-01-12 20:04:51 +00:00
} else {
model.buft_output = llama_default_buffer_type_cpu(true);
}
2024-02-10 08:10:59 +00:00
} else {
2024-01-12 20:04:51 +00:00
ggml_backend_buffer_type_t split_buft;
2024-03-08 09:55:50 +00:00
if (split_mode == LLAMA_SPLIT_MODE_ROW) {
2024-06-16 10:10:54 +00:00
split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
2024-01-12 20:04:51 +00:00
} else {
2024-03-08 09:55:50 +00:00
// LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
2024-06-16 10:10:54 +00:00
split_buft = llama_default_buffer_type_offload(model, main_gpu);
2024-01-12 20:04:51 +00:00
}
// assign the repeating layers
2024-07-08 11:14:17 +00:00
for (int i = i_gpu_start; i < n_layer; ++i) {
2024-01-12 20:04:51 +00:00
model.buft_layer[i] = {
split_buft,
2024-06-16 10:10:54 +00:00
llama_default_buffer_type_offload(model, main_gpu)
2024-01-12 20:04:51 +00:00
};
}
// assign the output layer
if (n_gpu_layers > n_layer) {
model.buft_output = {
split_buft,
2024-06-16 10:10:54 +00:00
llama_default_buffer_type_offload(model, main_gpu)
2024-01-12 20:04:51 +00:00
};
} else {
model.buft_output = llama_default_buffer_type_cpu(true);
}
}
// count used buffer types
std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
buft_layer_count[model.buft_input.buft]++;
buft_layer_count[model.buft_input.buft_matrix]++;
buft_layer_count[model.buft_output.buft]++;
buft_layer_count[model.buft_output.buft_matrix]++;
2024-07-08 11:14:17 +00:00
for (int i = 0; i < n_layer; ++i) {
2024-01-12 20:04:51 +00:00
buft_layer_count[model.buft_layer[i].buft]++;
buft_layer_count[model.buft_layer[i].buft_matrix]++;
}
// create one context per buffer type
2024-03-08 09:55:50 +00:00
size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
2024-04-07 13:21:08 +00:00
// for moe merged tensors
2024-05-12 17:12:46 +00:00
ctx_size += ggml_tensor_overhead()*n_layer*3;
2024-04-07 13:21:08 +00:00
2024-01-12 20:04:51 +00:00
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
for (auto & it : buft_layer_count) {
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
2024-01-12 20:04:51 +00:00
ggml_context * ctx = ggml_init(params);
if (!ctx) {
throw std::runtime_error(format("failed to create context"));
}
2024-01-12 20:04:51 +00:00
ctx_map[it.first] = ctx;
model.ctxs.push_back(ctx);
}
2024-01-12 20:04:51 +00:00
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
// create tensors for the weights
{
2024-07-08 11:14:17 +00:00
// note: cast to int64_t since we will use these for the tensor dimensions
const int64_t n_head = hparams.n_head();
const int64_t n_head_kv = hparams.n_head_kv();
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const int64_t n_embd_head_k = hparams.n_embd_head_k;
const int64_t n_embd_head_v = hparams.n_embd_head_v;
const int64_t n_ff = hparams.n_ff();
const int64_t n_embd_gqa = n_embd_v_gqa;
const int64_t n_vocab = hparams.n_vocab;
const int64_t n_vocab_type = hparams.n_vocab_type;
2024-08-28 08:04:02 +00:00
const int64_t n_rot = hparams.n_rot;
2024-07-08 11:14:17 +00:00
const int64_t n_expert = hparams.n_expert;
const int64_t n_expert_used = hparams.n_expert_used;
const int64_t n_ctx_train = hparams.n_ctx_train;
2024-04-07 13:21:08 +00:00
if (n_expert > 0 && hparams.n_expert_used == 0) {
throw std::runtime_error("model has expert layers but no expert layers are used");
}
2024-01-12 20:04:51 +00:00
ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
2024-07-08 11:14:17 +00:00
auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
2024-01-12 20:04:51 +00:00
model.layers.resize(n_layer);
const auto tn = LLM_TN(model.arch);
switch (model.arch) {
case LLM_ARCH_LLAMA:
case LLM_ARCH_REFACT:
2024-02-10 08:10:59 +00:00
case LLM_ARCH_MINICPM:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
2024-01-12 20:04:51 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
2024-07-08 11:14:17 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-06-16 10:10:54 +00:00
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
2024-02-10 08:10:59 +00:00
}
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-01-12 20:04:51 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-08-08 11:16:50 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
// optional bias tensors
2024-06-16 10:10:54 +00:00
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-01-12 20:04:51 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
2024-08-28 08:04:02 +00:00
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
2024-08-08 11:16:50 +00:00
2024-04-07 13:21:08 +00:00
if (n_expert == 0) {
2024-01-12 20:04:51 +00:00
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
2024-06-16 10:10:54 +00:00
// optional MLP bias
2024-08-28 08:04:02 +00:00
layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
} else {
2024-04-07 13:21:08 +00:00
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
2024-06-16 10:10:54 +00:00
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-04-07 13:21:08 +00:00
if (layer.ffn_gate_exps) {
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
} else {
// merge split expert into a single tensor for compatibility with older models
// requires disabling mmap
use_mmap_buffer = false;
ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
for (uint32_t x = 0; x < n_expert; ++x) {
// the individual experts are loaded into a view of the merged tensor
ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
}
}
}
}
} break;
case LLM_ARCH_GROK:
{
2024-04-07 13:21:08 +00:00
if (n_expert == 0) {
throw std::runtime_error("Grok model cannot have zero experts");
}
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-07-08 11:14:17 +00:00
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
2024-07-08 11:14:17 +00:00
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
2024-06-16 10:10:54 +00:00
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-07-08 11:14:17 +00:00
2024-04-07 13:21:08 +00:00
if (layer.ffn_gate_exps) {
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
} else {
// merge split expert into a single tensor for compatibility with older models
// requires disabling mmap
use_mmap_buffer = false;
ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
for (uint32_t x = 0; x < n_expert; ++x) {
// the individual experts are loaded into a view of the merged tensor
ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
}
}
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
}
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_DBRX:
{
if (n_expert == 0) {
throw std::runtime_error("DBRX model cannot have zero experts");
}
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-07-08 11:14:17 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-05-12 17:12:46 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-07-08 11:14:17 +00:00
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
2024-05-12 17:12:46 +00:00
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
}
} break;
case LLM_ARCH_BAICHUAN:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
{
2024-01-12 20:04:51 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-01-12 20:04:51 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
case LLM_ARCH_FALCON:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
2024-07-08 11:14:17 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
2024-07-08 11:14:17 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
if (!model.output) {
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
2024-01-27 15:24:53 +00:00
}
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-01-12 20:04:51 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
2024-06-16 10:10:54 +00:00
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-01-12 20:04:51 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
case LLM_ARCH_STARCODER:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
2024-07-08 11:14:17 +00:00
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
// output
{
2024-01-12 20:04:51 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
if (!model.output) {
// needs to be on GPU
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-01-12 20:04:51 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
2024-07-08 11:14:17 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
2024-07-08 11:14:17 +00:00
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
}
} break;
2024-02-12 08:39:58 +00:00
case LLM_ARCH_BERT:
2024-02-20 10:09:57 +00:00
case LLM_ARCH_NOMIC_BERT:
{
2024-02-20 10:09:57 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
2024-07-08 11:14:17 +00:00
2024-02-20 10:09:57 +00:00
if (model.arch == LLM_ARCH_BERT) {
2024-07-08 11:14:17 +00:00
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
2024-02-20 10:09:57 +00:00
}
2024-02-12 08:39:58 +00:00
model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-02-20 10:09:57 +00:00
if (model.arch == LLM_ARCH_BERT) {
2024-07-08 11:14:17 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
2024-02-12 08:39:58 +00:00
2024-07-08 11:14:17 +00:00
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
2024-02-12 08:39:58 +00:00
2024-07-08 11:14:17 +00:00
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
2024-02-20 10:09:57 +00:00
} else {
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
}
2024-02-12 08:39:58 +00:00
2024-07-08 11:14:17 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-02-12 08:39:58 +00:00
2024-02-20 10:09:57 +00:00
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
2024-02-12 08:39:58 +00:00
2024-07-08 11:14:17 +00:00
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
2024-02-12 08:39:58 +00:00
2024-02-20 10:09:57 +00:00
if (model.arch == LLM_ARCH_BERT) {
2024-07-08 11:14:17 +00:00
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
2024-02-20 10:09:57 +00:00
} else {
2024-06-16 10:10:54 +00:00
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
2024-02-20 10:09:57 +00:00
}
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
2024-02-12 08:39:58 +00:00
}
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_JINA_BERT_V2:
{
2024-07-08 11:14:17 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); // token_type_embeddings
2024-05-12 17:12:46 +00:00
model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i]; // JinaBertLayer
2024-07-08 11:14:17 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
2024-05-12 17:12:46 +00:00
2024-06-16 10:10:54 +00:00
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-07-08 11:14:17 +00:00
layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-05-12 17:12:46 +00:00
2024-07-08 11:14:17 +00:00
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
2024-05-12 17:12:46 +00:00
2024-06-16 10:10:54 +00:00
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-07-08 11:14:17 +00:00
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-05-12 17:12:46 +00:00
2024-07-08 11:14:17 +00:00
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
2024-05-12 17:12:46 +00:00
2024-07-08 11:14:17 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
2024-08-28 08:04:02 +00:00
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
2024-05-12 17:12:46 +00:00
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
2024-07-08 11:14:17 +00:00
layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
2024-05-12 17:12:46 +00:00
2024-06-16 10:10:54 +00:00
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-07-08 11:14:17 +00:00
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-06-16 10:10:54 +00:00
2024-07-08 11:14:17 +00:00
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
2024-05-12 17:12:46 +00:00
2024-07-08 11:14:17 +00:00
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
2024-05-12 17:12:46 +00:00
2024-07-08 11:14:17 +00:00
layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
2024-05-12 17:12:46 +00:00
}
} break;
2024-02-12 08:39:58 +00:00
case LLM_ARCH_BLOOM:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
// output
{
2024-01-12 20:04:51 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-01-12 20:04:51 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-07-08 11:14:17 +00:00
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
2024-07-08 11:14:17 +00:00
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
2024-01-12 20:04:51 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-07-08 11:14:17 +00:00
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
2024-07-08 11:14:17 +00:00
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
2024-07-08 11:14:17 +00:00
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
2024-07-08 11:14:17 +00:00
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
}
} break;
case LLM_ARCH_MPT:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
2024-07-08 11:14:17 +00:00
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-01-12 20:04:51 +00:00
// output
{
2024-07-08 11:14:17 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-03-08 09:55:50 +00:00
2024-07-08 11:14:17 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
if (!model.output) {
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
}
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-03-08 09:55:50 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-06-16 10:10:54 +00:00
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-01-12 20:04:51 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
2024-06-16 10:10:54 +00:00
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-03-08 09:55:50 +00:00
2024-01-12 20:04:51 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-06-16 10:10:54 +00:00
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-02-22 21:30:53 +00:00
2024-03-08 09:55:50 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
2024-06-16 10:10:54 +00:00
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-03-08 09:55:50 +00:00
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
2024-06-16 10:10:54 +00:00
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-03-08 09:55:50 +00:00
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
2024-06-16 10:10:54 +00:00
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-01-06 15:22:57 +00:00
2024-06-16 10:10:54 +00:00
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-04-07 13:21:08 +00:00
2024-06-16 10:10:54 +00:00
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-04-07 13:21:08 +00:00
2024-01-06 15:22:57 +00:00
// AWQ ScaleActivation layer
2024-06-16 10:10:54 +00:00
layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
}
} break;
case LLM_ARCH_STABLELM:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
2024-01-12 20:04:51 +00:00
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-01-12 20:04:51 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-01-27 15:24:53 +00:00
// optional bias tensors, present in Stable LM 2 1.6B
2024-06-16 10:10:54 +00:00
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-01-27 15:24:53 +00:00
2024-05-12 17:12:46 +00:00
// optional q and k layernorms, present in StableLM 2 12B
2024-07-08 11:14:17 +00:00
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-05-12 17:12:46 +00:00
// optional FFN norm, not present in StableLM 2 12B which uses parallel residual
2024-06-16 10:10:54 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-01-12 20:04:51 +00:00
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
case LLM_ARCH_QWEN:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
2024-01-12 20:04:51 +00:00
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-01-12 20:04:51 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
}
} break;
2024-01-27 15:24:53 +00:00
case LLM_ARCH_QWEN2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-05-12 17:12:46 +00:00
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
2024-05-12 17:12:46 +00:00
}
2024-01-27 15:24:53 +00:00
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
// optional bias tensors
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_QWEN2MOE:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
2024-05-12 17:12:46 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-05-12 17:12:46 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-05-12 17:12:46 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-01-13 22:13:17 +00:00
2024-05-12 17:12:46 +00:00
// optional bias tensors
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
2024-01-13 22:13:17 +00:00
2024-05-12 17:12:46 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
2024-07-08 11:14:17 +00:00
GGML_ASSERT(n_expert > 0);
GGML_ASSERT(n_expert_used > 0);
2024-05-12 17:12:46 +00:00
// MoE branch
2024-07-08 11:14:17 +00:00
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
2024-05-12 17:12:46 +00:00
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
// Shared expert branch
2024-07-08 11:14:17 +00:00
const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
2024-05-12 17:12:46 +00:00
layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
2024-07-08 11:14:17 +00:00
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp});
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp});
2024-05-12 17:12:46 +00:00
}
} break;
case LLM_ARCH_PHI2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
2024-06-16 10:10:54 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-05-12 17:12:46 +00:00
if (layer.wqkv == nullptr) {
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
2024-01-13 22:13:17 +00:00
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
}
2024-01-12 20:04:51 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
2024-01-12 20:04:51 +00:00
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
}
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_PHI3:
{
2024-07-08 11:14:17 +00:00
const int64_t n_embd_head = n_embd / n_head;
2024-05-12 17:12:46 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
}
for (int i = 0; i < n_layer; ++i) {
2024-07-08 11:14:17 +00:00
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
2024-05-12 17:12:46 +00:00
2024-06-16 10:10:54 +00:00
auto & layer = model.layers[i];
2024-05-12 17:12:46 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
2024-06-16 10:10:54 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
2024-05-12 17:12:46 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
2024-06-16 10:10:54 +00:00
layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
2024-05-12 17:12:46 +00:00
}
} break;
2024-01-06 15:22:57 +00:00
case LLM_ARCH_PLAMO:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
2024-01-06 15:22:57 +00:00
// output
{
2024-01-12 20:04:51 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
2024-01-06 15:22:57 +00:00
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
2024-01-06 15:22:57 +00:00
auto & layer = model.layers[i];
2024-01-12 20:04:51 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-01-06 15:22:57 +00:00
2024-01-12 20:04:51 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-01-06 15:22:57 +00:00
2024-01-12 20:04:51 +00:00
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
2024-01-06 15:22:57 +00:00
}
} break;
case LLM_ARCH_GPT2:
{
2024-01-12 20:04:51 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
2024-07-08 11:14:17 +00:00
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
2024-01-06 15:22:57 +00:00
// output
{
2024-01-12 20:04:51 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
2024-01-06 15:22:57 +00:00
}
2024-01-12 20:04:51 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
2024-01-06 15:22:57 +00:00
auto & layer = model.layers[i];
2024-01-12 20:04:51 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
2024-01-06 15:22:57 +00:00
2024-01-12 20:04:51 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
2024-01-06 15:22:57 +00:00
2024-01-12 20:04:51 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
2024-01-06 15:22:57 +00:00
2024-01-12 20:04:51 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
2024-01-06 15:22:57 +00:00
2024-01-12 20:04:51 +00:00
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
2024-01-06 15:22:57 +00:00
2024-01-12 20:04:51 +00:00
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
2024-01-06 15:22:57 +00:00
}
} break;
2024-01-27 15:24:53 +00:00
case LLM_ARCH_CODESHELL:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
}
} break;
2024-01-28 17:44:10 +00:00
case LLM_ARCH_ORION:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
2024-02-10 08:10:59 +00:00
case LLM_ARCH_INTERNLM2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-01-28 17:44:10 +00:00
2024-02-10 08:10:59 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
// layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
2024-01-28 17:44:10 +00:00
2024-02-10 08:10:59 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
2024-02-22 21:30:53 +00:00
case LLM_ARCH_GEMMA:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
2024-02-22 21:30:53 +00:00
2024-07-08 11:14:17 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
}
} break;
case LLM_ARCH_GEMMA2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
2024-02-22 21:30:53 +00:00
2024-07-08 11:14:17 +00:00
for (int i = 0; i < n_layer; ++i) {
2024-02-22 21:30:53 +00:00
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-07-08 11:14:17 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
2024-02-22 21:30:53 +00:00
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
2024-07-08 11:14:17 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
2024-02-22 21:30:53 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
2024-07-08 11:14:17 +00:00
layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
2024-02-22 21:30:53 +00:00
}
} break;
2024-03-08 09:55:50 +00:00
case LLM_ARCH_STARCODER2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-03-08 09:55:50 +00:00
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
2024-03-08 09:55:50 +00:00
}
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
// optional bias tensors
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
// optional bias tensors
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
}
} break;
2024-03-15 12:21:59 +00:00
case LLM_ARCH_MAMBA:
{
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
2024-07-08 11:14:17 +00:00
2024-03-15 12:21:59 +00:00
// only an expansion factor of 2 is supported for now
GGML_ASSERT(2 * n_embd == d_inner);
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-03-15 12:21:59 +00:00
// if output is NULL, init from the input tok embed, duplicated to allow offloading
if (model.output == NULL) {
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
2024-03-15 12:21:59 +00:00
}
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
// norm
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
// no "weight" suffix for these
layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
// out_proj
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
}
} break;
2024-04-07 13:21:08 +00:00
case LLM_ARCH_XVERSE:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
2024-07-08 11:14:17 +00:00
2024-04-07 13:21:08 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
2024-07-08 11:14:17 +00:00
2024-04-07 13:21:08 +00:00
auto & layer = model.layers[i];
2024-07-08 11:14:17 +00:00
2024-04-07 13:21:08 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-07-08 11:14:17 +00:00
2024-04-07 13:21:08 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
2024-07-08 11:14:17 +00:00
2024-04-07 13:21:08 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
case LLM_ARCH_COMMAND_R:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
// init output from the input tok embed
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-05-12 17:12:46 +00:00
if (n_layer >= 64){
2024-07-08 11:14:17 +00:00
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
2024-05-12 17:12:46 +00:00
}
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-05-12 17:12:46 +00:00
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
2024-06-16 10:10:54 +00:00
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
2024-05-12 17:12:46 +00:00
}
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_OPENELM:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
// init output from the input tok embed
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
const int64_t n_head = hparams.n_head(i);
const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
const int64_t n_ff = hparams.n_ff(i);
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k});
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
2024-06-16 10:10:54 +00:00
case LLM_ARCH_GPTNEOX:
{
2024-07-08 11:14:17 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
2024-06-16 10:10:54 +00:00
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
2024-06-16 10:10:54 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
2024-06-16 10:10:54 +00:00
auto & layer = model.layers[i];
2024-06-16 10:10:54 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
2024-06-16 10:10:54 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
2024-06-16 10:10:54 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
2024-06-16 10:10:54 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
2024-06-16 10:10:54 +00:00
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
}
} break;
case LLM_ARCH_ARCTIC:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
2024-07-08 11:14:17 +00:00
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
2024-06-16 10:10:54 +00:00
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
}
} break;
case LLM_ARCH_DEEPSEEK2:
{
2024-07-08 11:14:17 +00:00
const bool is_lite = (hparams.n_layer == 27);
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
2024-06-16 10:10:54 +00:00
2024-07-08 11:14:17 +00:00
const int64_t q_lora_rank = hparams.n_lora_q;
const int64_t kv_lora_rank = hparams.n_lora_kv;
const int64_t n_ff_exp = hparams.n_ff_exp;
const int64_t n_expert_shared = hparams.n_expert_shared;
2024-06-16 10:10:54 +00:00
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
if (!is_lite) {
layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
}
2024-07-08 11:14:17 +00:00
2024-06-16 10:10:54 +00:00
layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
if (!is_lite) {
2024-07-08 11:14:17 +00:00
layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k});
2024-06-16 10:10:54 +00:00
} else {
2024-07-08 11:14:17 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
2024-06-16 10:10:54 +00:00
}
2024-07-08 11:14:17 +00:00
layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)});
layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd});
2024-06-16 10:10:54 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
2024-07-08 11:14:17 +00:00
if (i < (int) hparams.n_layer_dense_lead) {
2024-06-16 10:10:54 +00:00
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
} else {
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
2024-07-08 11:14:17 +00:00
GGML_ASSERT(n_expert > 0);
GGML_ASSERT(n_expert_used > 0);
2024-06-16 10:10:54 +00:00
// MoE branch
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
// Shared expert branch
2024-07-08 11:14:17 +00:00
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd});
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
2024-06-16 10:10:54 +00:00
}
}
} break;
case LLM_ARCH_BITNET:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
2024-07-08 11:14:17 +00:00
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
2024-07-08 11:14:17 +00:00
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1});
2024-07-08 11:14:17 +00:00
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
2024-07-08 11:14:17 +00:00
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
}
} break;
case LLM_ARCH_T5:
{
const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd});
layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
layer.attn_norm_cross = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd});
// this tensor seems to be unused in HF transformers implementation
layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
layer.wv_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
layer.wo_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
2024-08-28 08:04:02 +00:00
case LLM_ARCH_T5ENCODER:
{
const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_JAIS:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// Output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
}
} break;
case LLM_ARCH_CHATGLM:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
2024-08-28 08:04:02 +00:00
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
2024-07-08 11:14:17 +00:00
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
}
} break;
2024-08-28 08:04:02 +00:00
case LLM_ARCH_NEMOTRON:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
2024-06-16 10:10:54 +00:00
2024-08-28 08:04:02 +00:00
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
2024-06-16 10:10:54 +00:00
2024-08-28 08:04:02 +00:00
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
// optional bias tensors
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
// optional MLP bias
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
}
} break;
case LLM_ARCH_EXAONE:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
default:
throw std::runtime_error("unknown architecture");
}
}
ml.done_getting_tensors();
ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
model.mappings.reserve(ml.mappings.size());
2024-06-16 10:10:54 +00:00
// create the backend buffers
std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
ctx_bufs.reserve(ctx_map.size());
// Ensure we have enough capacity for the maximum backend buffer we will potentially create
size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
model.bufs.reserve(n_max_backend_buffer);
for (auto & it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx = it.second;
llama_buf_map bufs;
bufs.reserve(n_max_backend_buffer);
// only the mmap region containing the tensors in the model is mapped to the backend buffer
// this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
// this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
void * addr = nullptr;
size_t first, last;
ml.get_mapping_range(&first, &last, &addr, idx, ctx);
if (first >= last) {
continue;
}
ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
if (buf == nullptr) {
throw std::runtime_error("unable to allocate backend CPU buffer");
}
model.bufs.push_back(buf);
bufs.emplace(idx, buf);
#ifdef GGML_USE_CUDA
if (n_layer >= n_gpu_layers) {
ggml_backend_cuda_register_host_buffer(
ggml_backend_buffer_get_base(buf),
ggml_backend_buffer_get_size(buf));
}
#endif
}
}
#ifdef GGML_USE_METAL
else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
const size_t max_size = ggml_get_max_tensor_size(ctx);
void * addr = nullptr;
size_t first, last;
ml.get_mapping_range(&first, &last, &addr, idx, ctx);
if (first >= last) {
continue;
}
ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
if (buf == nullptr) {
throw std::runtime_error("unable to allocate backend metal buffer");
}
model.bufs.push_back(buf);
bufs.emplace(idx, buf);
}
}
#endif
else {
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (buf == nullptr) {
throw std::runtime_error("unable to allocate backend buffer");
}
model.bufs.push_back(buf);
if (use_mlock && ggml_backend_buffer_is_host(buf)) {
model.mlock_bufs.emplace_back(new llama_mlock);
2024-01-27 15:24:53 +00:00
auto & mlock_buf = model.mlock_bufs.back();
mlock_buf->init (ggml_backend_buffer_get_base(buf));
mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
}
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
bufs.emplace(idx, buf);
}
}
if (bufs.empty()) {
2024-01-12 20:04:51 +00:00
throw std::runtime_error("failed to allocate buffer");
}
for (auto & buf : bufs) {
// indicate that this buffer contains weights
// this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
}
ctx_bufs.emplace_back(ctx, bufs);
}
2024-02-10 08:10:59 +00:00
if (llama_supports_gpu_offload()) {
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
if (n_gpu_layers > (int) hparams.n_layer) {
LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
}
const int max_backend_supported_layers = hparams.n_layer + 1;
const int max_offloadable_layers = hparams.n_layer + 1;
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
2024-02-10 08:10:59 +00:00
}
2024-02-10 08:10:59 +00:00
// print memory requirements
for (ggml_backend_buffer_t buf : model.bufs) {
LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
2024-01-12 20:04:51 +00:00
}
// populate tensors_by_name
2024-01-12 20:04:51 +00:00
for (ggml_context * ctx : model.ctxs) {
for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
}
}
2024-01-12 20:04:51 +00:00
// load tensor data
for (auto & it : ctx_bufs) {
ggml_context * ctx = it.first;
auto & bufs = it.second;
if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
2024-01-12 20:04:51 +00:00
return false;
}
}
2024-04-07 13:21:08 +00:00
if (use_mmap_buffer) {
for (auto & mapping : ml.mappings) {
model.mappings.emplace_back(std::move(mapping));
}
}
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
model.t_load_us = ggml_time_us() - model.t_start_us;
return true;
}
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
2024-02-10 08:10:59 +00:00
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
try {
2024-05-12 17:12:46 +00:00
llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
model.hparams.vocab_only = params.vocab_only;
2024-02-20 10:09:57 +00:00
try {
llm_load_arch(ml, model);
} catch(const std::exception & e) {
throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
}
try {
llm_load_hparams(ml, model);
} catch(const std::exception & e) {
throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
}
try {
llm_load_vocab(ml, model);
} catch(const std::exception & e) {
throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
}
llm_load_print_meta(ml, model);
2024-03-15 12:21:59 +00:00
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
throw std::runtime_error("vocab size mismatch");
}
if (params.vocab_only) {
LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
return 0;
}
2024-02-10 08:10:59 +00:00
#ifdef GGML_USE_KOMPUTE
if (params.n_gpu_layers > 0 && (
!(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
|| !(
model.ftype == LLAMA_FTYPE_ALL_F32 ||
model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
2024-05-12 17:12:46 +00:00
model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
2024-02-10 08:10:59 +00:00
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
)
)) {
// TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
params.n_gpu_layers = 0;
}
#endif
if (!llm_load_tensors(
2024-01-12 20:04:51 +00:00
ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
params.progress_callback, params.progress_callback_user_data
)) {
return -2;
}
} catch (const std::exception & err) {
2024-01-12 20:04:51 +00:00
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
return -1;
}
return 0;
}
//
// llm_build
//
using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
enum llm_ffn_op_type {
LLM_FFN_SILU,
LLM_FFN_GELU,
LLM_FFN_RELU,
LLM_FFN_RELU_SQR,
2024-07-08 11:14:17 +00:00
LLM_FFN_SWIGLU,
};
enum llm_ffn_gate_type {
LLM_FFN_SEQ,
LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
};
enum llm_norm_type {
LLM_NORM,
LLM_NORM_RMS,
};
static struct ggml_tensor * llm_build_inp_embd(
struct ggml_context * ctx,
2024-03-15 12:21:59 +00:00
struct llama_context & lctx,
const llama_hparams & hparams,
2024-08-28 08:04:02 +00:00
const llama_ubatch & batch,
struct ggml_tensor * tok_embd,
const llm_build_cb & cb) {
const int64_t n_embd = hparams.n_embd;
struct ggml_tensor * inpL;
if (batch.token) {
2024-03-15 12:21:59 +00:00
lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
cb(lctx.inp_tokens, "inp_tokens", -1);
ggml_set_input(lctx.inp_tokens);
2024-03-15 12:21:59 +00:00
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
} else {
2024-06-16 10:10:54 +00:00
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
2024-03-15 12:21:59 +00:00
inpL = lctx.inp_embd;
ggml_set_input(lctx.inp_embd);
}
2024-03-15 12:21:59 +00:00
cb(inpL, "inp_embd", -1);
return inpL;
}
static void llm_build_kv_store(
struct ggml_context * ctx,
const llama_hparams & hparams,
2024-05-12 17:12:46 +00:00
const llama_cparams & cparams,
const llama_kv_cache & kv,
struct ggml_cgraph * graph,
struct ggml_tensor * k_cur,
struct ggml_tensor * v_cur,
int32_t n_tokens,
int32_t kv_head,
const llm_build_cb & cb,
int64_t il) {
2024-05-12 17:12:46 +00:00
const int64_t n_ctx = cparams.n_ctx;
2024-07-08 11:14:17 +00:00
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
2024-03-15 12:21:59 +00:00
GGML_ASSERT(kv.size == n_ctx);
2024-01-06 15:22:57 +00:00
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
(ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
cb(k_cache_view, "k_cache_view", il);
2024-05-12 17:12:46 +00:00
// note: storing RoPE-ed version of K in the KV cache
ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
struct ggml_tensor * v_cache_view = nullptr;
if (cparams.flash_attn) {
v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
(kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
} else {
// note: the V cache is transposed when not using flash attention
v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
( n_ctx)*ggml_element_size(kv.v_l[il]),
(kv_head)*ggml_element_size(kv.v_l[il]));
v_cur = ggml_transpose(ctx, v_cur);
}
cb(v_cache_view, "v_cache_view", il);
2024-05-12 17:12:46 +00:00
ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
}
2024-08-08 11:16:50 +00:00
// do mat_mul, while optionally apply lora
static struct ggml_tensor * llm_build_lora_mm(
struct llama_context & lctx,
struct ggml_context * ctx0,
struct ggml_tensor * w,
struct ggml_tensor * cur) {
struct ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
for (auto & it : lctx.lora_adapters) {
struct llama_lora_weight * lora = it.first->get_weight(w);
if (lora == nullptr) {
continue;
}
const float alpha = it.first->alpha;
const float rank = (float) lora->b->ne[0];
const float scale = alpha ? it.second * alpha / rank : it.second;
struct ggml_tensor * ab_cur = ggml_mul_mat(
ctx0, lora->b,
ggml_mul_mat(ctx0, lora->a, cur)
);
ab_cur = ggml_scale(ctx0, ab_cur, scale);
res = ggml_add(ctx0, res, ab_cur);
}
return res;
}
// do mat_mul_id, while optionally apply lora
static struct ggml_tensor * llm_build_lora_mm_id(
struct llama_context & lctx,
struct ggml_context * ctx0,
struct ggml_tensor * w, // struct ggml_tensor * as
struct ggml_tensor * cur, // struct ggml_tensor * b
struct ggml_tensor * ids) {
struct ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
for (auto & it : lctx.lora_adapters) {
struct llama_lora_weight * lora = it.first->get_weight(w);
if (lora == nullptr) {
continue;
}
const float alpha = it.first->alpha;
const float rank = (float) lora->b->ne[0];
const float scale = alpha ? it.second * alpha / rank : it.second;
struct ggml_tensor * ab_cur = ggml_mul_mat_id(
ctx0, lora->b,
ggml_mul_mat_id(ctx0, lora->a, cur, ids),
ids
);
ab_cur = ggml_scale(ctx0, ab_cur, scale);
res = ggml_add(ctx0, res, ab_cur);
}
return res;
}
static struct ggml_tensor * llm_build_norm(
struct ggml_context * ctx,
struct ggml_tensor * cur,
const llama_hparams & hparams,
struct ggml_tensor * mw,
struct ggml_tensor * mb,
llm_norm_type type,
const llm_build_cb & cb,
int il) {
switch (type) {
case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
}
if (mw || mb) {
cb(cur, "norm", il);
}
if (mw) {
cur = ggml_mul(ctx, cur, mw);
if (mb) {
cb(cur, "norm_w", il);
}
}
if (mb) {
cur = ggml_add(ctx, cur, mb);
}
return cur;
}
static struct ggml_tensor * llm_build_ffn(
struct ggml_context * ctx,
2024-08-08 11:16:50 +00:00
struct llama_context & lctx,
struct ggml_tensor * cur,
struct ggml_tensor * up,
struct ggml_tensor * up_b,
2024-07-08 11:14:17 +00:00
struct ggml_tensor * up_s,
struct ggml_tensor * gate,
struct ggml_tensor * gate_b,
2024-07-08 11:14:17 +00:00
struct ggml_tensor * gate_s,
struct ggml_tensor * down,
struct ggml_tensor * down_b,
2024-07-08 11:14:17 +00:00
struct ggml_tensor * down_s,
2024-01-06 15:22:57 +00:00
struct ggml_tensor * act_scales,
llm_ffn_op_type type_op,
llm_ffn_gate_type type_gate,
const llm_build_cb & cb,
int il) {
2024-08-08 11:16:50 +00:00
struct ggml_tensor * tmp = up ? llm_build_lora_mm(lctx, ctx, up, cur) : cur;
cb(tmp, "ffn_up", il);
if (up_b) {
tmp = ggml_add(ctx, tmp, up_b);
cb(tmp, "ffn_up_b", il);
}
2024-07-08 11:14:17 +00:00
if (up_s) {
tmp = ggml_mul(ctx, tmp, up_s);
cb(tmp, "ffn_up_s", il);
}
if (gate) {
switch (type_gate) {
case LLM_FFN_SEQ:
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx, gate, tmp);
cb(cur, "ffn_gate", il);
} break;
case LLM_FFN_PAR:
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx, gate, cur);
cb(cur, "ffn_gate", il);
} break;
}
if (gate_b) {
cur = ggml_add(ctx, cur, gate_b);
cb(cur, "ffn_gate_b", il);
}
2024-07-08 11:14:17 +00:00
if (gate_s) {
cur = ggml_mul(ctx, cur, gate_s);
cb(cur, "ffn_gate_s", il);
}
} else {
cur = tmp;
}
switch (type_op) {
case LLM_FFN_SILU:
{
cur = ggml_silu(ctx, cur);
cb(cur, "ffn_silu", il);
} break;
case LLM_FFN_GELU:
{
cur = ggml_gelu(ctx, cur);
cb(cur, "ffn_gelu", il);
2024-01-06 15:22:57 +00:00
if (act_scales != NULL) {
cur = ggml_div(ctx, cur, act_scales);
cb(cur, "ffn_act", il);
}
} break;
case LLM_FFN_RELU:
{
cur = ggml_relu(ctx, cur);
cb(cur, "ffn_relu", il);
} break;
case LLM_FFN_RELU_SQR:
{
cur = ggml_relu(ctx, cur);
cb(cur, "ffn_relu", il);
cur = ggml_sqr(ctx, cur);
cb(cur, "ffn_sqr(relu)", il);
} break;
2024-07-08 11:14:17 +00:00
case LLM_FFN_SWIGLU:
{
// Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
int64_t split_point = cur->ne[0] / 2;
struct ggml_tensor * x0 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], 0));
struct ggml_tensor * x1 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
x0 = ggml_silu(ctx, x0);
cb(cur, "ffn_silu", il);
cur = ggml_mul(ctx, x0, x1);
cb(cur, "ffn_mul", il);
} break;
}
if (type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx, cur, tmp);
cb(cur, "ffn_gate_par", il);
}
2024-07-08 11:14:17 +00:00
if (down) {
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx, down, cur);
2024-07-08 11:14:17 +00:00
}
if (down_b) {
cb(cur, "ffn_down", il);
}
if (down_b) {
cur = ggml_add(ctx, cur, down_b);
}
2024-07-08 11:14:17 +00:00
if (down_s) {
cur = ggml_mul(ctx, cur, down_s);
cb(cur, "ffn_down_s", il);
}
return cur;
}
2024-05-12 17:12:46 +00:00
static struct ggml_tensor * llm_build_moe_ffn(
struct ggml_context * ctx,
2024-08-08 11:16:50 +00:00
struct llama_context & lctx,
2024-05-12 17:12:46 +00:00
struct ggml_tensor * cur,
struct ggml_tensor * gate_inp,
struct ggml_tensor * up_exps,
struct ggml_tensor * gate_exps,
struct ggml_tensor * down_exps,
int64_t n_expert,
int64_t n_expert_used,
llm_ffn_op_type type_op,
bool norm_w,
2024-06-16 10:10:54 +00:00
bool scale_w,
float w_scale,
2024-05-12 17:12:46 +00:00
const llm_build_cb & cb,
int il) {
int64_t n_embd = cur->ne[0];
int64_t n_tokens = cur->ne[1];
2024-08-08 11:16:50 +00:00
ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens]
2024-05-12 17:12:46 +00:00
cb(logits, "ffn_moe_logits", il);
ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
cb(probs, "ffn_moe_probs", il);
// select experts
ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
cb(selected_experts->src[0], "ffn_moe_argsort", il);
cb(selected_experts, "ffn_moe_topk", il);
ggml_tensor * weights = ggml_get_rows(ctx,
ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights", il);
if (norm_w) {
weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
cb(weights_sum, "ffn_moe_weights_sum", il);
weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights_norm", il);
weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
}
2024-06-16 10:10:54 +00:00
if (scale_w) {
weights = ggml_scale(ctx, weights, w_scale);
cb(weights, "ffn_moe_weights_scaled", il);
}
2024-05-12 17:12:46 +00:00
cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
2024-08-08 11:16:50 +00:00
ggml_tensor * up = llm_build_lora_mm_id(lctx, ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
2024-05-12 17:12:46 +00:00
cb(up, "ffn_moe_up", il);
2024-08-08 11:16:50 +00:00
ggml_tensor * gate = llm_build_lora_mm_id(lctx, ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
2024-05-12 17:12:46 +00:00
cb(gate, "ffn_moe_gate", il);
switch (type_op) {
case LLM_FFN_SILU:
{
gate = ggml_silu(ctx, gate);
cb(gate, "ffn_moe_silu", il);
} break;
case LLM_FFN_GELU:
{
gate = ggml_gelu(ctx, gate);
cb(gate, "ffn_moe_gelu", il);
} break;
default:
2024-08-08 11:16:50 +00:00
GGML_ABORT("fatal error");
2024-05-12 17:12:46 +00:00
}
ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
cb(par, "ffn_moe_gate_par", il);
2024-08-08 11:16:50 +00:00
ggml_tensor * experts = llm_build_lora_mm_id(lctx, ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
2024-05-12 17:12:46 +00:00
cb(experts, "ffn_moe_down", il);
experts = ggml_mul(ctx, experts, weights);
// aggregate experts
ggml_tensor * moe_out = nullptr;
for (int i = 0; i < n_expert_used; ++i) {
ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
experts->nb[2], i*experts->nb[1]);
if (i == 0) {
moe_out = cur_expert;
} else {
moe_out = ggml_add(ctx, moe_out, cur_expert);
}
}
if (n_expert_used == 1) {
// avoid returning a non-contiguous tensor
moe_out = ggml_cont(ctx, moe_out);
}
return moe_out;
}
static struct ggml_tensor * llm_build_kqv(
struct ggml_context * ctx,
2024-08-08 11:16:50 +00:00
struct llama_context & lctx,
const llama_kv_cache & kv,
2024-01-27 15:24:53 +00:00
struct ggml_cgraph * graph,
struct ggml_tensor * wo,
struct ggml_tensor * wo_b,
struct ggml_tensor * q_cur,
struct ggml_tensor * kq_mask,
int32_t n_tokens,
int32_t n_kv,
float kq_scale,
const llm_build_cb & cb,
int il) {
2024-08-08 11:16:50 +00:00
const llama_model & model = lctx.model;
const llama_hparams & hparams = lctx.model.hparams;
const llama_cparams & cparams = lctx.cparams;
2024-05-12 17:12:46 +00:00
const int64_t n_ctx = cparams.n_ctx;
2024-07-08 11:14:17 +00:00
const int64_t n_head = hparams.n_head(il);
const int64_t n_head_kv = hparams.n_head_kv(il);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head_k = hparams.n_embd_head_k;
2024-07-08 11:14:17 +00:00
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head_v = hparams.n_embd_head_v;
2024-07-08 11:14:17 +00:00
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
cb(q, "q", il);
struct ggml_tensor * k =
ggml_view_3d(ctx, kv.k_l[il],
2024-01-06 15:22:57 +00:00
n_embd_head_k, n_kv, n_head_kv,
ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
0);
cb(k, "k", il);
2024-05-12 17:12:46 +00:00
struct ggml_tensor * cur;
2024-05-12 17:12:46 +00:00
if (cparams.flash_attn) {
GGML_UNUSED(model);
GGML_UNUSED(n_ctx);
2024-05-12 17:12:46 +00:00
// split cached v into n_head heads (not transposed)
struct ggml_tensor * v =
ggml_view_3d(ctx, kv.v_l[il],
n_embd_head_v, n_kv, n_head_kv,
2024-06-16 10:10:54 +00:00
ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
2024-05-12 17:12:46 +00:00
0);
cb(v, "v", il);
2024-08-28 08:04:02 +00:00
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
2024-08-28 08:04:02 +00:00
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
2024-05-12 17:12:46 +00:00
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
}
2024-06-16 10:10:54 +00:00
cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
2024-05-12 17:12:46 +00:00
} else {
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il);
2024-08-28 08:04:02 +00:00
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
2024-05-12 17:12:46 +00:00
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
}
2024-05-12 17:12:46 +00:00
if (model.arch == LLM_ARCH_GROK) {
// need to do the following:
// multiply by attn_output_multiplyer of 0.08838834764831845
// and then :
// kq = 30 * tanh(kq / 30)
// before the softmax below
2024-05-12 17:12:46 +00:00
//try from phi2
//ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
2024-05-12 17:12:46 +00:00
kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
kq = ggml_scale(ctx, kq, 30);
}
2024-07-08 11:14:17 +00:00
if (hparams.attn_soft_cap) {
kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping);
kq = ggml_tanh(ctx, kq);
kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping);
}
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
cb(kq, "kq_soft_max_ext", il);
2024-05-12 17:12:46 +00:00
GGML_ASSERT(kv.size == n_ctx);
2024-03-15 12:21:59 +00:00
2024-05-12 17:12:46 +00:00
// split cached v into n_head heads
struct ggml_tensor * v =
ggml_view_3d(ctx, kv.v_l[il],
n_kv, n_embd_head_v, n_head_kv,
ggml_element_size(kv.v_l[il])*n_ctx,
ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
0);
cb(v, "v", il);
2024-05-12 17:12:46 +00:00
struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
cb(kqv, "kqv", il);
2024-05-12 17:12:46 +00:00
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il);
2024-06-16 10:10:54 +00:00
cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
2024-05-12 17:12:46 +00:00
cb(cur, "kqv_merged_cont", il);
}
2024-01-27 15:24:53 +00:00
ggml_build_forward_expand(graph, cur);
if (wo) {
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx, wo, cur);
}
if (wo_b) {
cb(cur, "kqv_wo", il);
}
if (wo_b) {
cur = ggml_add(ctx, cur, wo_b);
}
return cur;
}
2024-01-27 15:24:53 +00:00
static struct ggml_tensor * llm_build_kv(
struct ggml_context * ctx,
2024-08-08 11:16:50 +00:00
struct llama_context & lctx,
2024-01-27 15:24:53 +00:00
const llama_kv_cache & kv,
struct ggml_cgraph * graph,
struct ggml_tensor * wo,
struct ggml_tensor * wo_b,
struct ggml_tensor * k_cur,
struct ggml_tensor * v_cur,
struct ggml_tensor * q_cur,
struct ggml_tensor * kq_mask,
int32_t n_tokens,
int32_t kv_head,
int32_t n_kv,
float kq_scale,
const llm_build_cb & cb,
int il) {
2024-08-08 11:16:50 +00:00
const llama_hparams & hparams = lctx.model.hparams;
const llama_cparams & cparams = lctx.cparams;
2024-01-27 15:24:53 +00:00
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(graph, q_cur);
ggml_build_forward_expand(graph, k_cur);
ggml_build_forward_expand(graph, v_cur);
2024-05-12 17:12:46 +00:00
llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
2024-01-27 15:24:53 +00:00
struct ggml_tensor * cur;
2024-03-08 09:55:50 +00:00
2024-08-08 11:16:50 +00:00
cur = llm_build_kqv(ctx, lctx, kv, graph, wo, wo_b,
2024-05-12 17:12:46 +00:00
q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
2024-01-27 15:24:53 +00:00
cb(cur, "kqv_out", il);
return cur;
}
2024-08-28 08:04:02 +00:00
static struct ggml_tensor * llm_build_copy_mask_state(
struct ggml_context * ctx,
struct ggml_cgraph * graph,
struct ggml_tensor * s,
struct ggml_tensor * state_copy,
struct ggml_tensor * state_mask,
int32_t n_state,
int32_t kv_size,
int32_t kv_head,
int32_t n_kv,
int32_t n_seqs) {
struct ggml_tensor * states = ggml_reshape_2d(ctx, s, n_state, kv_size);
// copy states
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
// this shrinks the tensors's ne[1] to n_kv
states = ggml_get_rows(ctx, states, state_copy);
// clear states of sequences which are starting at the beginning of this batch
// FIXME: zero-out NANs?
states = ggml_mul(ctx, states, state_mask);
// copy states which won't be changed further (between n_seqs and n_rs)
ggml_build_forward_expand(graph,
ggml_cpy(ctx,
ggml_view_1d(ctx, states, n_state*(n_kv - n_seqs), n_seqs*n_state*ggml_element_size(states)),
ggml_view_1d(ctx, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));
// the part of the states that will be used and modified
return ggml_view_2d(ctx, states, n_state, n_seqs, states->nb[1], 0);
}
// TODO: split
static struct ggml_tensor * llm_build_mamba(
struct ggml_context * ctx,
struct llama_context & lctx,
const llama_ubatch & batch,
struct ggml_cgraph * graph,
struct ggml_tensor * cur,
struct ggml_tensor * state_copy,
struct ggml_tensor * state_mask,
int32_t kv_head,
int32_t n_kv,
const llm_build_cb & cb,
int il) {
const llama_model & model = lctx.model;
const llama_hparams & hparams = model.hparams;
const llama_kv_cache & kv = lctx.kv_self;
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
const int64_t n_seqs = batch.n_seqs;
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
// Use the same RMS norm as the final layer norm
const float norm_rms_eps = hparams.f_norm_rms_eps;
const int64_t n_seq_tokens = batch.n_seq_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(batch.equal_seqs);
GGML_ASSERT(batch.n_tokens == n_seq_tokens * n_seqs);
struct ggml_tensor * conv_states_all = kv.k_l[il];
struct ggml_tensor * ssm_states_all = kv.v_l[il];
// (ab)using the KV cache to store the states
struct ggml_tensor * conv = llm_build_copy_mask_state(ctx,
graph, conv_states_all, state_copy, state_mask,
hparams.n_embd_k_s(), kv.size, kv_head, n_kv, n_seqs);
conv = ggml_reshape_3d(ctx, conv, d_conv - 1, d_inner, n_seqs);
struct ggml_tensor * ssm = llm_build_copy_mask_state(ctx,
graph, ssm_states_all, state_copy, state_mask,
hparams.n_embd_v_s(), kv.size, kv_head, n_kv, n_seqs);
ssm = ggml_reshape_3d(ctx, ssm, d_state, d_inner, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx, cur, cur->ne[0], n_seq_tokens, n_seqs);
// {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
struct ggml_tensor * xz = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_in, cur);
// split the above in two
// => {d_inner, n_seq_tokens, n_seqs}
struct ggml_tensor * x = ggml_view_3d(ctx, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
struct ggml_tensor * z = ggml_view_3d(ctx, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
// conv
{
// => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
struct ggml_tensor * conv_x = ggml_concat(ctx, conv, ggml_transpose(ctx, x), 0);
// copy last (d_conv - 1) columns back into the state cache
struct ggml_tensor * last_conv = ggml_view_3d(ctx, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
ggml_build_forward_expand(graph,
ggml_cpy(ctx, last_conv,
ggml_view_1d(ctx, conv_states_all,
(d_conv - 1)*(d_inner)*(n_seqs),
kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
// 1D convolution
// The equivalent is to make a self-overlapping view of conv_x
// over d_conv columns at each stride in the 3rd dimension,
// then element-wise multiply that with the conv1d weight,
// then sum the elements of each row,
// (the last two steps are a dot product over rows (also doable with mul_mat))
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// For simultaneous sequences, all sequences need to have the same length.
x = ggml_ssm_conv(ctx, conv_x, model.layers[il].ssm_conv1d);
// bias
x = ggml_add(ctx, x, model.layers[il].ssm_conv1d_b);
x = ggml_silu(ctx, x);
}
// ssm
{
// {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
struct ggml_tensor * x_db = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_x, x);
// split
struct ggml_tensor * dt = ggml_view_3d(ctx, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
struct ggml_tensor * B = ggml_view_3d(ctx, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
struct ggml_tensor * C = ggml_view_3d(ctx, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
// Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
if (ssm_dt_b_c_rms) {
dt = ggml_rms_norm(ctx, dt, norm_rms_eps);
B = ggml_rms_norm(ctx, B, norm_rms_eps);
C = ggml_rms_norm(ctx, C, norm_rms_eps);
}
// {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
dt = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx, dt, model.layers[il].ssm_dt_b);
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
struct ggml_tensor * y_ssm = ggml_ssm_scan(ctx, ssm, x, dt, model.layers[il].ssm_a, B, C);
// store last states
ggml_build_forward_expand(graph,
ggml_cpy(ctx,
ggml_view_1d(ctx, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
ggml_view_1d(ctx, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
struct ggml_tensor * y = ggml_view_3d(ctx, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
// TODO: skip computing output earlier for unused tokens
// {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
y = ggml_add(ctx, y, ggml_mul(ctx, x, model.layers[il].ssm_d));
y = ggml_mul(ctx, y, ggml_silu(ctx, ggml_cont(ctx, z)));
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
cur = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_out, y);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx, cur, cur->ne[0], n_seq_tokens * n_seqs);
cb(cur, "mamba_out", il);
return cur;
}
struct llm_build_context {
const llama_model & model;
2024-03-15 12:21:59 +00:00
llama_context & lctx;
const llama_hparams & hparams;
const llama_cparams & cparams;
2024-08-28 08:04:02 +00:00
const llama_ubatch & batch;
const llama_kv_cache & kv_self;
const int64_t n_embd;
const int64_t n_layer;
2024-03-08 09:55:50 +00:00
const int64_t n_rot;
const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
const int64_t n_head;
const int64_t n_head_kv;
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head_k;
const int64_t n_embd_k_gqa;
const int64_t n_embd_head_v;
const int64_t n_embd_v_gqa;
const int64_t n_expert;
const int64_t n_expert_used;
const float freq_base;
const float freq_scale;
const float ext_factor;
const float attn_factor;
const float beta_fast;
const float beta_slow;
const float norm_eps;
const float norm_rms_eps;
const int32_t n_tokens;
const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
const int32_t n_outputs;
2024-07-08 11:14:17 +00:00
const int32_t n_outputs_enc;
const int32_t kv_head; // index of where we store new KV data in the cache
2024-06-16 10:10:54 +00:00
const int32_t n_ctx_orig;
2024-05-12 17:12:46 +00:00
const bool flash_attn;
2024-03-08 09:55:50 +00:00
const enum llama_pooling_type pooling_type;
const enum llama_rope_type rope_type;
const llm_build_cb & cb;
std::vector<uint8_t> & buf_compute_meta;
struct ggml_context * ctx0 = nullptr;
// TODO: consider making the entire interface noexcept
llm_build_context(
llama_context & lctx,
2024-08-28 08:04:02 +00:00
const llama_ubatch & batch,
const llm_build_cb & cb,
bool worst_case) :
model (lctx.model),
2024-01-27 15:24:53 +00:00
lctx (lctx),
hparams (model.hparams),
cparams (lctx.cparams),
batch (batch),
kv_self (lctx.kv_self),
n_embd (hparams.n_embd),
n_layer (hparams.n_layer),
2024-03-08 09:55:50 +00:00
n_rot (hparams.n_rot),
n_ctx (cparams.n_ctx),
2024-07-08 11:14:17 +00:00
n_head (hparams.n_head()),
n_head_kv (hparams.n_head_kv()),
2024-01-06 15:22:57 +00:00
n_embd_head_k (hparams.n_embd_head_k),
n_embd_k_gqa (hparams.n_embd_k_gqa()),
n_embd_head_v (hparams.n_embd_head_v),
n_embd_v_gqa (hparams.n_embd_v_gqa()),
n_expert (hparams.n_expert),
n_expert_used (hparams.n_expert_used),
freq_base (cparams.rope_freq_base),
freq_scale (cparams.rope_freq_scale),
ext_factor (cparams.yarn_ext_factor),
attn_factor (cparams.yarn_attn_factor),
beta_fast (cparams.yarn_beta_fast),
beta_slow (cparams.yarn_beta_slow),
norm_eps (hparams.f_norm_eps),
norm_rms_eps (hparams.f_norm_rms_eps),
n_tokens (batch.n_tokens),
2024-03-15 12:21:59 +00:00
n_kv (worst_case ? kv_self.size : kv_self.n),
n_outputs (worst_case ? n_tokens : lctx.n_outputs),
2024-07-08 11:14:17 +00:00
n_outputs_enc (worst_case ? n_tokens : lctx.embd_enc.size() / hparams.n_embd),
2024-03-15 12:21:59 +00:00
kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
2024-06-16 10:10:54 +00:00
n_ctx_orig (cparams.n_ctx_orig_yarn),
2024-05-12 17:12:46 +00:00
flash_attn (cparams.flash_attn),
2024-03-08 09:55:50 +00:00
pooling_type (cparams.pooling_type),
rope_type (hparams.rope_type),
cb (cb),
buf_compute_meta (lctx.buf_compute_meta) {
// all initializations should be done in init()
}
void init() {
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute_meta.size(),
/*.mem_buffer =*/ buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
ctx0 = ggml_init(params);
2024-03-15 12:21:59 +00:00
2024-07-08 11:14:17 +00:00
lctx.inp_tokens = nullptr;
lctx.inp_embd = nullptr;
lctx.inp_pos = nullptr;
lctx.inp_out_ids = nullptr;
lctx.inp_KQ_mask = nullptr;
lctx.inp_KQ_mask_swa = nullptr;
lctx.inp_K_shift = nullptr;
lctx.inp_mean = nullptr;
lctx.inp_cls = nullptr;
lctx.inp_s_copy = nullptr;
lctx.inp_s_mask = nullptr;
lctx.inp_s_seq = nullptr;
lctx.inp_pos_bucket = nullptr;
lctx.inp_embd_enc = nullptr;
lctx.inp_KQ_mask_cross = nullptr;
}
void free() {
if (ctx0) {
ggml_free(ctx0);
ctx0 = nullptr;
}
}
2024-03-08 09:55:50 +00:00
struct ggml_cgraph * build_k_shift() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-03-08 09:55:50 +00:00
2024-03-15 12:21:59 +00:00
GGML_ASSERT(kv_self.size == n_ctx);
lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
cb(lctx.inp_K_shift, "K_shift", -1);
ggml_set_input(lctx.inp_K_shift);
2024-03-08 09:55:50 +00:00
for (int il = 0; il < n_layer; ++il) {
2024-07-08 11:14:17 +00:00
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
2024-06-16 10:10:54 +00:00
struct ggml_tensor * rope_factors = build_rope_factors(il);
2024-03-08 09:55:50 +00:00
struct ggml_tensor * tmp =
// we rotate only the first n_rot dimensions
2024-06-16 10:10:54 +00:00
ggml_rope_ext_inplace(ctx0,
2024-03-08 09:55:50 +00:00
ggml_view_3d(ctx0, kv_self.k_l[il],
n_embd_head_k, n_head_kv, n_ctx,
ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
0),
2024-06-16 10:10:54 +00:00
lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-03-08 09:55:50 +00:00
ext_factor, attn_factor, beta_fast, beta_slow);
2024-06-16 10:10:54 +00:00
2024-03-08 09:55:50 +00:00
cb(tmp, "K_shifted", il);
ggml_build_forward_expand(gf, tmp);
}
return gf;
}
struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-03-08 09:55:50 +00:00
for (uint32_t i = 0; i < ids.size(); ++i) {
const uint32_t id = ids[i];
if (i == id || id == ids.size()) {
continue;
}
uint32_t nm = 1;
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
nm++;
}
for (int il = 0; il < n_layer; ++il) {
2024-07-08 11:14:17 +00:00
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
2024-03-08 09:55:50 +00:00
ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
n_embd_k_gqa, nm,
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
n_embd_k_gqa, nm,
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
2024-05-12 17:12:46 +00:00
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
2024-03-08 09:55:50 +00:00
2024-05-12 17:12:46 +00:00
if (flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
n_embd_v_gqa, nm,
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
n_embd_v_gqa, nm,
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
} else {
view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
nm, n_embd_v_gqa,
ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
ggml_row_size(kv_self.v_l[il]->type, i));
view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
nm, n_embd_v_gqa,
ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
ggml_row_size(kv_self.v_l[il]->type, id));
}
2024-03-08 09:55:50 +00:00
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
}
i += nm - 1;
}
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
return gf;
}
2024-03-15 12:21:59 +00:00
struct ggml_tensor * build_inp_pos() {
lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(lctx.inp_pos, "inp_pos", -1);
ggml_set_input(lctx.inp_pos);
return lctx.inp_pos;
}
2024-06-16 10:10:54 +00:00
struct ggml_tensor * build_rope_factors(int il) {
// choose long/short freq factors based on the context size
const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
2024-08-08 11:16:50 +00:00
if (model.layers[il].rope_freqs != nullptr) {
return model.layers[il].rope_freqs;
}
2024-06-16 10:10:54 +00:00
if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
return model.layers[il].rope_long;
}
return model.layers[il].rope_short;
}
struct ggml_tensor * build_inp_out_ids() {
lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
cb(lctx.inp_out_ids, "inp_out_ids", -1);
ggml_set_input(lctx.inp_out_ids);
return lctx.inp_out_ids;
}
2024-03-15 12:21:59 +00:00
struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
2024-07-08 11:14:17 +00:00
lctx.inp_KQ_mask = causal
? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
: ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
2024-03-15 12:21:59 +00:00
cb(lctx.inp_KQ_mask, "KQ_mask", -1);
ggml_set_input(lctx.inp_KQ_mask);
2024-07-08 11:14:17 +00:00
2024-05-12 17:12:46 +00:00
return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
2024-03-15 12:21:59 +00:00
}
2024-07-08 11:14:17 +00:00
struct ggml_tensor * build_inp_KQ_mask_swa(bool causal = true) {
GGML_ASSERT(hparams.n_swa > 0);
lctx.inp_KQ_mask_swa = causal
? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
: ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
cb(lctx.inp_KQ_mask_swa, "KQ_mask_swa", -1);
ggml_set_input(lctx.inp_KQ_mask_swa);
return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask_swa, GGML_TYPE_F16) : lctx.inp_KQ_mask_swa;
}
2024-03-15 12:21:59 +00:00
struct ggml_tensor * build_inp_mean() {
lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
cb(lctx.inp_mean, "inp_mean", -1);
ggml_set_input(lctx.inp_mean);
return lctx.inp_mean;
}
struct ggml_tensor * build_inp_cls() {
lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(lctx.inp_cls, "inp_cls", -1);
ggml_set_input(lctx.inp_cls);
return lctx.inp_cls;
}
struct ggml_tensor * build_inp_s_copy() {
2024-08-28 08:04:02 +00:00
lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv);
2024-03-15 12:21:59 +00:00
cb(lctx.inp_s_copy, "inp_s_copy", -1);
ggml_set_input(lctx.inp_s_copy);
return lctx.inp_s_copy;
}
struct ggml_tensor * build_inp_s_mask() {
lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
cb(lctx.inp_s_mask, "inp_s_mask", -1);
ggml_set_input(lctx.inp_s_mask);
return lctx.inp_s_mask;
}
struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
// find result_norm tensor for input
struct ggml_tensor * inp = nullptr;
for (int i = gf->n_nodes - 1; i >= 0; --i) {
inp = gf->nodes[i];
if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
break;
} else {
inp = nullptr;
}
}
GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
struct ggml_tensor * cur;
switch (pooling_type) {
case LLAMA_POOLING_TYPE_MEAN:
{
struct ggml_tensor * inp_mean = build_inp_mean();
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
} break;
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_LAST:
{
struct ggml_tensor * inp_cls = build_inp_cls();
cur = ggml_get_rows(ctx0, inp, inp_cls);
} break;
case LLAMA_POOLING_TYPE_NONE:
{
cur = inp;
} break;
default:
{
2024-08-08 11:16:50 +00:00
GGML_ABORT("unknown pooling type");
}
}
cb(cur, "result_embd_pooled", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-07-08 11:14:17 +00:00
struct ggml_tensor * llm_build_pos_bucket(bool causal) {
if (causal) {
lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
} else {
lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
}
ggml_set_input(lctx.inp_pos_bucket);
cb(lctx.inp_pos_bucket, "pos_bucket", -1);
return lctx.inp_pos_bucket;
}
struct ggml_tensor * llm_build_pos_bias(struct ggml_tensor * pos_bucket, struct ggml_tensor * attn_rel_b) {
struct ggml_tensor * pos_bucket_1d = ggml_view_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1], 0);
cb(pos_bucket_1d, "pos_bucket_1d", -1);
struct ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
cb(pos_bias, "pos_bias", -1);
pos_bias = ggml_view_3d(ctx0, pos_bias, pos_bias->ne[0], lctx.inp_pos_bucket->ne[0], lctx.inp_pos_bucket->ne[1], ggml_element_size(pos_bias) * pos_bias->ne[0], ggml_element_size(pos_bias) * pos_bias->ne[0] * lctx.inp_pos_bucket->ne[0], 0);
cb(pos_bias, "pos_bias", -1);
pos_bias = ggml_permute(ctx0, pos_bias, 2, 0, 1, 3);
cb(pos_bias, "pos_bias", -1);
pos_bias = ggml_cont(ctx0, pos_bias);
cb(pos_bias, "pos_bias", -1);
return pos_bias;
}
struct ggml_tensor * llm_build_inp_embd_enc() {
const int64_t n_embd = hparams.n_embd;
lctx.inp_embd_enc = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_outputs_enc);
ggml_set_input(lctx.inp_embd_enc);
cb(lctx.inp_embd_enc, "embd_enc", -1);
return lctx.inp_embd_enc;
}
struct ggml_tensor * llm_build_inp_KQ_mask_cross() {
lctx.inp_KQ_mask_cross = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_outputs_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
ggml_set_input(lctx.inp_KQ_mask_cross);
cb(lctx.inp_KQ_mask_cross, "KQ_mask_cross", -1);
return lctx.inp_KQ_mask_cross;
}
struct ggml_cgraph * build_llama() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
// rope freq factors for llama3; may return nullptr for llama2 and other models
struct ggml_tensor * rope_factors = build_rope_factors(il);
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
2024-08-08 11:16:50 +00:00
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
2024-06-16 10:10:54 +00:00
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
2024-08-08 11:16:50 +00:00
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
2024-06-16 10:10:54 +00:00
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-01-06 15:22:57 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_moe_ffn(ctx0, lctx, cur,
2024-05-12 17:12:46 +00:00
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
2024-06-16 10:10:54 +00:00
false, 0.0,
2024-05-12 17:12:46 +00:00
cb, il);
cb(cur, "ffn_moe_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_baichuan() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
2024-01-12 20:04:51 +00:00
GGML_ASSERT(n_embd_head == hparams.n_rot);
2024-01-06 15:22:57 +00:00
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
switch (model.type) {
case MODEL_7B:
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
break;
case MODEL_13B:
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
break;
default:
2024-08-08 11:16:50 +00:00
GGML_ABORT("fatal error");
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, NULL,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-01-06 15:22:57 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-04-07 13:21:08 +00:00
struct ggml_cgraph * build_xverse() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-04-07 13:21:08 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-04-07 13:21:08 +00:00
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-04-07 13:21:08 +00:00
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-04-07 13:21:08 +00:00
cb(Vcur, "Vcur", il);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-04-07 13:21:08 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-04-07 13:21:08 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-04-07 13:21:08 +00:00
model.layers[il].wo, NULL,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-04-07 13:21:08 +00:00
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-04-07 13:21:08 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-04-07 13:21:08 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-04-07 13:21:08 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_falcon() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
2024-01-12 20:04:51 +00:00
GGML_ASSERT(n_embd_head == hparams.n_rot);
2024-01-06 15:22:57 +00:00
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * attn_norm;
attn_norm = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(attn_norm, "attn_norm", il);
// self-attention
{
if (model.layers[il].attn_norm_2) {
// Falcon-40B
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm_2,
model.layers[il].attn_norm_2_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm_2", il);
} else {
cur = attn_norm;
}
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
// using mode = 2 for neox mode
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, NULL,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
}
struct ggml_tensor * ffn_inp = cur;
// feed forward
{
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, attn_norm, // !! use the attn norm, not the result
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-01-06 15:22:57 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = ggml_add(ctx0, cur, inpL);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
// norm
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_grok() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// multiply by embedding_multiplier_scale of 78.38367176906169
inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// Grok
// if attn_out_norm is present then apply it before adding the input
if (model.layers[il].attn_out_norm) {
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].attn_out_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_out_norm", il);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
// MoE branch
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_moe_ffn(ctx0, lctx, cur,
2024-05-12 17:12:46 +00:00
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
n_expert, n_expert_used,
LLM_FFN_GELU, true,
2024-06-16 10:10:54 +00:00
false, 0.0,
2024-05-12 17:12:46 +00:00
cb, il);
cb(cur, "ffn_moe_out", il);
// Grok
// if layer_out_norm is present then apply it before adding the input
// Idea: maybe ffn_out_norm is a better name
if (model.layers[il].layer_out_norm) {
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].layer_out_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "layer_out_norm", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
// Grok
// multiply logits by output_multiplier_scale of 0.5773502691896257
cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-05-12 17:12:46 +00:00
struct ggml_cgraph * build_dbrx() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-05-12 17:12:46 +00:00
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
2024-01-06 15:22:57 +00:00
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
2024-05-12 17:12:46 +00:00
GGML_ASSERT(n_embd_head == hparams.n_rot);
2024-01-06 15:22:57 +00:00
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
2024-05-12 17:12:46 +00:00
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
2024-05-12 17:12:46 +00:00
model.layers[il].attn_norm, NULL,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-05-12 17:12:46 +00:00
struct ggml_tensor * Qcur = nullptr;
struct ggml_tensor * Kcur = nullptr;
struct ggml_tensor * Vcur = nullptr;
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
2024-05-12 17:12:46 +00:00
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(cur, "wqkv_clamped", il);
2024-05-12 17:12:46 +00:00
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-05-12 17:12:46 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-05-12 17:12:46 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-05-12 17:12:46 +00:00
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
2024-05-12 17:12:46 +00:00
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-05-12 17:12:46 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
2024-05-12 17:12:46 +00:00
// feed-forward network
// MoE branch
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].attn_out_norm, NULL,
LLM_NORM, cb, il);
cb(cur, "attn_out_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_moe_ffn(ctx0, lctx, cur,
2024-05-12 17:12:46 +00:00
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
2024-06-16 10:10:54 +00:00
false, 0.0,
2024-05-12 17:12:46 +00:00
cb, il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-05-12 17:12:46 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-05-12 17:12:46 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_starcoder() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-05-12 17:12:46 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
cb(pos, "pos_embd", -1);
inpL = ggml_add(ctx0, inpL, pos);
cb(inpL, "inpL", -1);
for (int il = 0; il < n_layer; ++il) {
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
2024-05-12 17:12:46 +00:00
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-05-12 17:12:46 +00:00
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// add the input
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-01-06 15:22:57 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
}
2024-07-08 11:14:17 +00:00
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-06-16 10:10:54 +00:00
struct ggml_cgraph * build_refact() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
2024-06-16 10:10:54 +00:00
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
2024-06-16 10:10:54 +00:00
struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams,
2024-06-16 10:10:54 +00:00
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
2024-06-16 10:10:54 +00:00
// self-attention
{
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-06-16 10:10:54 +00:00
cb(Vcur, "Vcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
cb(Kcur, "Kcur", il);
2024-06-16 10:10:54 +00:00
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-06-16 10:10:54 +00:00
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
2024-06-16 10:10:54 +00:00
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-06-16 10:10:54 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
2024-06-16 10:10:54 +00:00
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-01-06 15:22:57 +00:00
NULL,
2024-06-16 10:10:54 +00:00
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
2024-06-16 10:10:54 +00:00
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
2024-06-16 10:10:54 +00:00
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
2024-06-16 10:10:54 +00:00
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-02-12 08:39:58 +00:00
struct ggml_cgraph * build_bert() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-02-12 08:39:58 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
2024-02-20 10:09:57 +00:00
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
2024-03-08 09:55:50 +00:00
2024-02-12 08:39:58 +00:00
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-05-12 17:12:46 +00:00
struct ggml_tensor * inp_pos = nullptr;
2024-02-12 08:39:58 +00:00
2024-05-12 17:12:46 +00:00
if (model.arch != LLM_ARCH_JINA_BERT_V2) {
inp_pos = build_inp_pos();
}
2024-02-12 08:39:58 +00:00
// construct input embeddings (token, type, position)
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-02-20 10:09:57 +00:00
2024-02-12 08:39:58 +00:00
// token types are hardcoded to zero ("Sentence A")
struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
inpL = ggml_add(ctx0, inpL, type_row0);
2024-02-20 10:09:57 +00:00
if (model.arch == LLM_ARCH_BERT) {
inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
}
2024-02-12 08:39:58 +00:00
cb(inpL, "inp_embd", -1);
// embed layer norm
inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
cb(inpL, "inp_norm", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
2024-02-12 08:39:58 +00:00
// iterate layers
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur = inpL;
2024-03-08 09:55:50 +00:00
struct ggml_tensor * Qcur;
struct ggml_tensor * Kcur;
struct ggml_tensor * Vcur;
2024-02-12 08:39:58 +00:00
// self-attention
2024-05-12 17:12:46 +00:00
if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
2024-08-08 11:16:50 +00:00
Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur), model.layers[il].bq);
2024-02-12 08:39:58 +00:00
cb(Qcur, "Qcur", il);
2024-05-12 17:12:46 +00:00
if (model.layers[il].attn_q_norm) {
Qcur = llm_build_norm(ctx0, Qcur, hparams,
model.layers[il].attn_q_norm,
model.layers[il].attn_q_norm_b,
LLM_NORM, cb, il);
}
2024-08-08 11:16:50 +00:00
Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur), model.layers[il].bk);
2024-02-12 08:39:58 +00:00
cb(Kcur, "Kcur", il);
2024-05-12 17:12:46 +00:00
if (model.layers[il].attn_k_norm) {
Kcur = llm_build_norm(ctx0, Kcur, hparams,
model.layers[il].attn_k_norm,
model.layers[il].attn_k_norm_b,
LLM_NORM, cb, il);
}
2024-08-08 11:16:50 +00:00
Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur), model.layers[il].bv);
2024-02-12 08:39:58 +00:00
cb(Vcur, "Vcur", il);
2024-03-08 09:55:50 +00:00
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
2024-02-20 10:09:57 +00:00
} else {
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
2024-02-20 10:09:57 +00:00
cb(cur, "wqkv", il);
2024-03-08 09:55:50 +00:00
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
2024-02-20 10:09:57 +00:00
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-20 10:09:57 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-20 10:09:57 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-03-08 09:55:50 +00:00
}
2024-02-20 10:09:57 +00:00
2024-03-08 09:55:50 +00:00
struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
cb(kq, "kq", il);
2024-05-12 17:12:46 +00:00
kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
2024-03-08 09:55:50 +00:00
cb(kq, "kq_soft_max_ext", il);
struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
cb(v, "v", il);
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
cb(kqv, "kqv", il);
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il);
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
cb(cur, "kqv_merged_cont", il);
ggml_build_forward_expand(gf, cur);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
2024-03-08 09:55:50 +00:00
if (model.layers[il].bo) {
cb(cur, "kqv_wo", il);
}
if (model.layers[il].bo) {
cur = ggml_add(ctx0, cur, model.layers[il].bo);
2024-02-12 08:39:58 +00:00
}
2024-03-08 09:55:50 +00:00
cb(cur, "kqv_out", il);
2024-02-12 08:39:58 +00:00
if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
2024-02-12 08:39:58 +00:00
// re-add the layer input
cur = ggml_add(ctx0, cur, inpL);
// attention layer norm
2024-02-20 10:09:57 +00:00
cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
2024-02-12 08:39:58 +00:00
2024-06-16 10:10:54 +00:00
if (model.layers[il].attn_norm_2 != nullptr) {
cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
}
2024-02-12 08:39:58 +00:00
struct ggml_tensor * ffn_inp = cur;
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
2024-02-20 10:09:57 +00:00
if (model.arch == LLM_ARCH_BERT) {
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-02-20 10:09:57 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
2024-05-12 17:12:46 +00:00
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-05-12 17:12:46 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
2024-02-20 10:09:57 +00:00
} else {
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-02-20 10:09:57 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
}
2024-02-12 08:39:58 +00:00
cb(cur, "ffn_out", il);
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, cur, ffn_inp);
// output layer norm
2024-02-20 10:09:57 +00:00
cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
2024-02-12 08:39:58 +00:00
// input for next layer
inpL = cur;
}
// final output
cur = inpL;
2024-03-08 09:55:50 +00:00
cb(cur, "result_embd", -1);
2024-02-12 08:39:58 +00:00
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_bloom() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
inpL = llm_build_norm(ctx0, inpL, hparams,
model.tok_norm,
model.tok_norm_b,
LLM_NORM, cb, -1);
cb(inpL, "inp_norm", -1);
for (int il = 0; il < n_layer; ++il) {
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// Add the input
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-01-06 15:22:57 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
}
2024-07-08 11:14:17 +00:00
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_mpt() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
2024-04-07 13:21:08 +00:00
struct ggml_tensor * pos;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-04-07 13:21:08 +00:00
if (model.pos_embd) {
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
cb(pos, "pos_embd", -1);
inpL = ggml_add(ctx0, inpL, pos);
cb(inpL, "inpL", -1);
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * attn_norm;
attn_norm = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
2024-03-08 09:55:50 +00:00
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(attn_norm, "attn_norm", il);
// self-attention
{
cur = attn_norm;
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
2024-03-08 09:55:50 +00:00
if (model.layers[il].bqkv){
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
if (hparams.f_clamp_kqv > 0.0f) {
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(cur, "wqkv_clamped", il);
}
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
2024-04-07 13:21:08 +00:00
// Q/K Layernorm
if (model.layers[il].attn_q_norm) {
Qcur = llm_build_norm(ctx0, Qcur, hparams,
model.layers[il].attn_q_norm,
model.layers[il].attn_q_norm_b,
LLM_NORM, cb, il);
cb(Qcur, "Qcur", il);
2024-04-07 13:21:08 +00:00
Kcur = llm_build_norm(ctx0, Kcur, hparams,
model.layers[il].attn_k_norm,
model.layers[il].attn_k_norm_b,
LLM_NORM, cb, il);
cb(Kcur, "Kcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-05-12 17:12:46 +00:00
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-04-07 13:21:08 +00:00
} else {
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-04-07 13:21:08 +00:00
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-04-07 13:21:08 +00:00
}
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// Add the input
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// feed forward
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
2024-03-08 09:55:50 +00:00
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-01-06 15:22:57 +00:00
model.layers[il].ffn_act,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm,
2024-03-08 09:55:50 +00:00
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_stablelm() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
2024-05-12 17:12:46 +00:00
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
2024-05-12 17:12:46 +00:00
struct ggml_tensor * inpSA = cur;
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
2024-01-27 15:24:53 +00:00
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
2024-01-27 15:24:53 +00:00
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
2024-01-27 15:24:53 +00:00
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
2024-05-12 17:12:46 +00:00
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
cb(Qcur, "Qcur", il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
cb(Kcur, "Kcur", il);
if (model.layers[il].attn_q_norm) {
Qcur = llm_build_norm(ctx0, Qcur, hparams,
model.layers[il].attn_q_norm,
NULL,
LLM_NORM, cb, il);
cb(Qcur, "Qcur", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = llm_build_norm(ctx0, Kcur, hparams,
model.layers[il].attn_k_norm,
NULL,
LLM_NORM, cb, il);
cb(Kcur, "Kcur", il);
}
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, NULL,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
2024-05-12 17:12:46 +00:00
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-05-12 17:12:46 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
2024-05-12 17:12:46 +00:00
if (model.layers[il].ffn_norm) {
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
} else {
// parallel residual
cur = inpSA;
}
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-01-06 15:22:57 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_qwen() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
// using mode = 2 for neox mode
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, NULL,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward forward
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-01-06 15:22:57 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-01-27 15:24:53 +00:00
struct ggml_cgraph * build_qwen2() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-01-27 15:24:53 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-01-27 15:24:53 +00:00
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
2024-01-27 15:24:53 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-01-27 15:24:53 +00:00
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-01-27 15:24:53 +00:00
cb(Qcur, "Qcur", il);
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-01-27 15:24:53 +00:00
cb(Kcur, "Kcur", il);
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-01-27 15:24:53 +00:00
cb(Vcur, "Vcur", il);
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-01-27 15:24:53 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-01-27 15:24:53 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-01-27 15:24:53 +00:00
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-01-27 15:24:53 +00:00
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-01-27 15:24:53 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-01-27 15:24:53 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-01-27 15:24:53 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-01-27 15:24:53 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-05-12 17:12:46 +00:00
struct ggml_cgraph * build_qwen2moe() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-05-12 17:12:46 +00:00
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
2024-05-12 17:12:46 +00:00
GGML_ASSERT(n_embd_head == hparams.n_rot);
2024-01-06 15:22:57 +00:00
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
2024-05-12 17:12:46 +00:00
struct ggml_tensor * inpSA = inpL;
2024-01-13 22:13:17 +00:00
2024-05-12 17:12:46 +00:00
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
2024-05-12 17:12:46 +00:00
// self_attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-05-12 17:12:46 +00:00
cb(Qcur, "Qcur", il);
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-05-12 17:12:46 +00:00
cb(Kcur, "Kcur", il);
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-05-12 17:12:46 +00:00
cb(Vcur, "Vcur", il);
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-05-12 17:12:46 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-05-12 17:12:46 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
2024-05-12 17:12:46 +00:00
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-05-12 17:12:46 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
2024-08-08 11:16:50 +00:00
llm_build_moe_ffn(ctx0, lctx, cur,
2024-05-12 17:12:46 +00:00
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
2024-06-16 10:10:54 +00:00
false, 0.0,
2024-05-12 17:12:46 +00:00
cb, il);
cb(cur, "ffn_moe_out", il);
// FFN shared expert
{
2024-08-08 11:16:50 +00:00
ggml_tensor * cur_gate_inp = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
2024-05-12 17:12:46 +00:00
cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
// sigmoid
ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
cb(cur_gate, "ffn_shexp_gate", il);
2024-08-08 11:16:50 +00:00
ggml_tensor * cur_ffn = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
2024-01-06 15:22:57 +00:00
NULL,
2024-05-12 17:12:46 +00:00
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur_ffn, "ffn_shexp", il);
ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
cb(ffn_shexp_out, "ffn_shexp_out", il);
moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
cb(moe_out, "ffn_out", il);
cur = moe_out;
}
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-05-12 17:12:46 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-05-12 17:12:46 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_phi2() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-05-12 17:12:46 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * attn_norm_output;
struct ggml_tensor * ffn_output;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(attn_norm_output, "attn_norm", il);
// self-attention
{
struct ggml_tensor * Qcur = nullptr;
struct ggml_tensor * Kcur = nullptr;
struct ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv) {
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
2024-05-12 17:12:46 +00:00
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
} else {
2024-08-08 11:16:50 +00:00
Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
2024-05-12 17:12:46 +00:00
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
2024-05-12 17:12:46 +00:00
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
// with phi2, we scale the Q to avoid precision issues
// ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
2024-05-12 17:12:46 +00:00
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-05-12 17:12:46 +00:00
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
}
// FF
{
2024-08-08 11:16:50 +00:00
ffn_output = llm_build_ffn(ctx0, lctx, attn_norm_output,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-05-12 17:12:46 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(ffn_output, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_output);
cur = ggml_add(ctx0, cur, inpL);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
2024-07-08 11:14:17 +00:00
// input for next layer
inpL = cur;
}
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output_no_bias", -1);
cur = ggml_add(ctx0, cur, model.output_b);
cb(cur, "result_output", -1);
2024-05-12 17:12:46 +00:00
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_phi3() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-05-12 17:12:46 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-08-08 11:16:50 +00:00
struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
2024-05-12 17:12:46 +00:00
for (int il = 0; il < n_layer; ++il) {
auto residual = inpL;
// self-attention
{
2024-06-16 10:10:54 +00:00
// rope freq factors for 128k context
struct ggml_tensor * rope_factors = build_rope_factors(il);
2024-05-12 17:12:46 +00:00
struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
NULL,
LLM_NORM_RMS, cb, il);
cb(attn_norm_output, "attn_norm", il);
struct ggml_tensor * Qcur = nullptr;
struct ggml_tensor * Kcur = nullptr;
struct ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv) {
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
2024-05-12 17:12:46 +00:00
cb(cur, "wqkv", il);
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
}
else {
2024-08-08 11:16:50 +00:00
Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
2024-05-12 17:12:46 +00:00
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
2024-05-12 17:12:46 +00:00
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
2024-05-12 17:12:46 +00:00
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-05-12 17:12:46 +00:00
model.layers[il].wo, model.layers[il].bo,
2024-08-08 11:16:50 +00:00
Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
2024-05-12 17:12:46 +00:00
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor* inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
}
cur = ggml_add(ctx0, cur, residual);
residual = cur;
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
// FF
// special-case: the up and gate tensors are merged into a single tensor
// TOOD: support into llm_build_ffn
{
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
2024-05-12 17:12:46 +00:00
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, residual, cur);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-05-12 17:12:46 +00:00
cb(cur, "l_out", il);
2024-07-08 11:14:17 +00:00
// input for next layer
2024-05-12 17:12:46 +00:00
inpL = cur;
}
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-05-12 17:12:46 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-01-06 15:22:57 +00:00
2024-05-12 17:12:46 +00:00
2024-01-06 15:22:57 +00:00
struct ggml_cgraph * build_plamo() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
2024-01-12 20:04:51 +00:00
GGML_ASSERT(n_embd_head == hparams.n_rot);
2024-01-06 15:22:57 +00:00
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-01-06 15:22:57 +00:00
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
2024-01-06 15:22:57 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-01-06 15:22:57 +00:00
for (int il = 0; il < n_layer; ++il) {
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
struct ggml_tensor * attention_norm = cur;
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-01-06 15:22:57 +00:00
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-01-06 15:22:57 +00:00
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-01-06 15:22:57 +00:00
cb(Vcur, "Vcur", il);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-01-06 15:22:57 +00:00
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-01-06 15:22:57 +00:00
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-01-06 15:22:57 +00:00
model.layers[il].wo, NULL,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-01-06 15:22:57 +00:00
}
struct ggml_tensor * sa_out = cur;
cur = attention_norm;
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
2024-01-06 15:22:57 +00:00
// feed-forward network
{
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-01-06 15:22:57 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, sa_out);
cur = ggml_add(ctx0, cur, inpL);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-01-06 15:22:57 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-01-06 15:22:57 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_gpt2() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-01-06 15:22:57 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * pos;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-01-06 15:22:57 +00:00
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
2024-01-06 15:22:57 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-01-06 15:22:57 +00:00
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
cb(pos, "pos_embd", -1);
inpL = ggml_add(ctx0, inpL, pos);
cb(inpL, "inpL", -1);
for (int il = 0; il < n_layer; ++il) {
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
2024-01-06 15:22:57 +00:00
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-01-27 15:24:53 +00:00
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-01-27 15:24:53 +00:00
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
2024-01-27 15:24:53 +00:00
// add the input
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-01-27 15:24:53 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
}
2024-07-08 11:14:17 +00:00
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
2024-01-27 15:24:53 +00:00
}
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-01-27 15:24:53 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_codeshell() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-01-27 15:24:53 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-01-27 15:24:53 +00:00
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
2024-01-27 15:24:53 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-01-27 15:24:53 +00:00
for (int il = 0; il < n_layer; ++il) {
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
2024-01-27 15:24:53 +00:00
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(tmpq, "tmpq", il);
cb(tmpk, "tmpk", il);
cb(Vcur, "Vcur", il);
2024-06-16 10:10:54 +00:00
struct ggml_tensor * Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-01-27 15:24:53 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
struct ggml_tensor * Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-01-27 15:24:53 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-01-06 15:22:57 +00:00
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-01-06 15:22:57 +00:00
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-01-06 15:22:57 +00:00
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
2024-01-06 15:22:57 +00:00
// add the input
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-01-06 15:22:57 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
}
2024-07-08 11:14:17 +00:00
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
2024-01-06 15:22:57 +00:00
}
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-01-06 15:22:57 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-02-10 08:10:59 +00:00
struct ggml_cgraph * build_orion() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-02-10 08:10:59 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
2024-02-10 08:10:59 +00:00
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-02-10 08:10:59 +00:00
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
2024-02-10 08:10:59 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-02-10 08:10:59 +00:00
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-02-10 08:10:59 +00:00
cb(Qcur, "Qcur", il);
// if (model.layers[il].bq) {
// Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
// cb(Qcur, "Qcur", il);
// }
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-02-10 08:10:59 +00:00
cb(Kcur, "Kcur", il);
// if (model.layers[il].bk) {
// Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
// cb(Kcur, "Kcur", il);
// }
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-02-10 08:10:59 +00:00
cb(Vcur, "Vcur", il);
// if (model.layers[il].bv) {
// Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
// cb(Vcur, "Vcur", il);
// }
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-10 08:10:59 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-10 08:10:59 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-02-10 08:10:59 +00:00
model.layers[il].wo, NULL,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-02-10 08:10:59 +00:00
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-02-10 08:10:59 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-02-10 08:10:59 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-02-10 08:10:59 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-02-10 08:10:59 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_internlm2() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-02-10 08:10:59 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-02-10 08:10:59 +00:00
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
2024-02-10 08:10:59 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-02-10 08:10:59 +00:00
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-02-10 08:10:59 +00:00
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-02-10 08:10:59 +00:00
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-02-10 08:10:59 +00:00
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-10 08:10:59 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-10 08:10:59 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-02-10 08:10:59 +00:00
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-02-10 08:10:59 +00:00
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-02-10 08:10:59 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-02-10 08:10:59 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-02-10 08:10:59 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-02-10 08:10:59 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
// ref: https://arxiv.org/abs/2203.03466
// https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
// based on the original build_llama() function
struct ggml_cgraph * build_minicpm() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-02-10 08:10:59 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
const int64_t n_embd = hparams.n_embd;
//TODO: if the model varies, these parameters need to be read from the model
const int64_t n_embd_base = 256;
const float scale_embd = 12.0f;
const float scale_depth = 1.4f;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-02-10 08:10:59 +00:00
// scale the input embeddings
inpL = ggml_scale(ctx0, inpL, scale_embd);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
2024-02-10 08:10:59 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-02-10 08:10:59 +00:00
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-02-10 08:10:59 +00:00
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-02-10 08:10:59 +00:00
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-02-10 08:10:59 +00:00
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-10 08:10:59 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-10 08:10:59 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-02-10 08:10:59 +00:00
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
2024-02-10 08:10:59 +00:00
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-02-10 08:10:59 +00:00
// scale_res - scale the hidden states for residual connection
const float scale_res = scale_depth/sqrtf(float(n_layer));
cur = ggml_scale(ctx0, cur, scale_res);
cb(cur, "hidden_scaled", -1);
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-02-10 08:10:59 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
// scale the hidden states for residual connection
cur = ggml_scale(ctx0, cur, scale_res);
cb(cur, "hidden_scaled_ffn", -1);
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-02-10 08:10:59 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head scaling
const float scale_lmhead = float(n_embd_base)/float(n_embd);
cur = ggml_scale(ctx0, cur, scale_lmhead);
cb(cur, "lmhead_scaling", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-02-10 08:10:59 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-02-22 21:30:53 +00:00
struct ggml_cgraph * build_gemma() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-02-22 21:30:53 +00:00
const int64_t n_embd_head_k = hparams.n_embd_head_k;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-03-08 09:55:50 +00:00
2024-02-22 21:30:53 +00:00
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
2024-02-22 21:30:53 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-02-22 21:30:53 +00:00
for (int il = 0; il < n_layer; ++il) {
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-02-22 21:30:53 +00:00
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-02-22 21:30:53 +00:00
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-02-22 21:30:53 +00:00
cb(Vcur, "Vcur", il);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
2024-07-08 11:14:17 +00:00
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-22 21:30:53 +00:00
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
2024-03-08 09:55:50 +00:00
2024-02-22 21:30:53 +00:00
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
cb(Qcur, "Qcur_scaled", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
2024-07-08 11:14:17 +00:00
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-02-22 21:30:53 +00:00
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-02-22 21:30:53 +00:00
model.layers[il].wo, NULL,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
2024-02-22 21:30:53 +00:00
}
2024-03-08 09:55:50 +00:00
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
2024-02-22 21:30:53 +00:00
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = llm_build_norm(ctx0, sa_out, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, sa_out);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-07-08 11:14:17 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_gemma2() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-07-08 11:14:17 +00:00
const int64_t n_embd_head_k = hparams.n_embd_head_k;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
// gemma 2 requires different mask for layers using sliding window (SWA)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask(true);
struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);
for (int il = 0; il < n_layer; ++il) {
// (il % 2) layers use SWA
struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-07-08 11:14:17 +00:00
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-07-08 11:14:17 +00:00
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-07-08 11:14:17 +00:00
cb(Vcur, "Vcur", il);
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
// ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
switch (model.type) {
case e_model::MODEL_2B:
case e_model::MODEL_9B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
default: GGML_ABORT("fatal error");
};
2024-07-08 11:14:17 +00:00
cb(Qcur, "Qcur_scaled", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-07-08 11:14:17 +00:00
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f, cb, il);
}
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_post_norm", il);
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = llm_build_norm(ctx0, sa_out, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-02-22 21:30:53 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
2024-07-08 11:14:17 +00:00
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "ffn_post_norm", -1);
2024-02-22 21:30:53 +00:00
cur = ggml_add(ctx0, cur, sa_out);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-02-22 21:30:53 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-07-08 11:14:17 +00:00
// final logit soft-capping
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
cur = ggml_tanh(ctx0, cur);
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
2024-03-08 09:55:50 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-07-08 11:14:17 +00:00
2024-03-08 09:55:50 +00:00
struct ggml_cgraph * build_starcoder2() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-03-08 09:55:50 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-15 12:21:59 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-03-08 09:55:50 +00:00
// inp_pos - contains the positions
2024-03-15 12:21:59 +00:00
struct ggml_tensor * inp_pos = build_inp_pos();
2024-03-08 09:55:50 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
2024-03-15 12:21:59 +00:00
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-03-08 09:55:50 +00:00
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-03-08 09:55:50 +00:00
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-03-08 09:55:50 +00:00
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-03-08 09:55:50 +00:00
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-03-08 09:55:50 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-03-08 09:55:50 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-03-08 09:55:50 +00:00
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
2024-03-08 09:55:50 +00:00
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-03-08 09:55:50 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
2024-07-08 11:14:17 +00:00
2024-03-08 09:55:50 +00:00
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-03-08 09:55:50 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-02-22 21:30:53 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-03-15 12:21:59 +00:00
struct ggml_cgraph * build_mamba() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-03-15 12:21:59 +00:00
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-08-28 08:04:02 +00:00
struct ggml_tensor * state_copy = build_inp_s_copy();
2024-03-15 12:21:59 +00:00
struct ggml_tensor * state_mask = build_inp_s_mask();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
2024-08-28 08:04:02 +00:00
cur = llm_build_mamba(ctx0, lctx, batch, gf, cur,
state_copy, state_mask,
kv_head, n_kv, cb, il);
2024-03-15 12:21:59 +00:00
2024-08-28 08:04:02 +00:00
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
2024-03-15 12:21:59 +00:00
}
// residual
cur = ggml_add(ctx0, cur, inpL);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-03-15 12:21:59 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
// final rmsnorm
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-03-15 12:21:59 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_command_r() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
const float f_logit_scale = hparams.f_logit_scale;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
struct ggml_tensor * ffn_inp = cur;
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
2024-05-12 17:12:46 +00:00
if (model.layers[il].attn_q_norm) {
Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
ggml_element_size(Qcur) * n_embd_head,
ggml_element_size(Qcur) * n_embd_head * n_head,
0);
cb(Qcur, "Qcur", il);
Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
ggml_element_size(Kcur) * n_embd_head,
ggml_element_size(Kcur) * n_embd_head * n_head_kv,
0);
cb(Kcur, "Kcur", il);
Qcur = llm_build_norm(ctx0, Qcur, hparams,
model.layers[il].attn_q_norm,
NULL,
LLM_NORM, cb, il);
cb(Qcur, "Qcur", il);
Kcur = llm_build_norm(ctx0, Kcur, hparams,
model.layers[il].attn_k_norm,
NULL,
LLM_NORM, cb, il);
cb(Kcur, "Kcur", il);
}
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
2024-05-12 17:12:46 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
2024-04-07 13:21:08 +00:00
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
struct ggml_tensor * attn_out = cur;
// feed-forward network
{
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, ffn_inp,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
// add together residual + FFN + self-attention
cur = ggml_add(ctx0, cur, inpL);
cur = ggml_add(ctx0, cur, attn_out);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
if (f_logit_scale) {
cur = ggml_scale(ctx0, cur, f_logit_scale);
}
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-02-10 08:10:59 +00:00
2024-05-12 17:12:46 +00:00
// ref: https://allenai.org/olmo
// based on the original build_llama() function, changes:
// * non-parametric layer norm
// * clamp qkv
// * removed bias
// * removed MoE
struct ggml_cgraph * build_olmo() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-03-08 09:55:50 +00:00
2024-05-12 17:12:46 +00:00
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
2024-03-08 09:55:50 +00:00
2024-05-12 17:12:46 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
2024-03-08 09:55:50 +00:00
2024-05-12 17:12:46 +00:00
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-03-08 09:55:50 +00:00
2024-05-12 17:12:46 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-03-08 09:55:50 +00:00
2024-05-12 17:12:46 +00:00
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
2024-03-08 09:55:50 +00:00
2024-05-12 17:12:46 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
2024-03-08 09:55:50 +00:00
2024-05-12 17:12:46 +00:00
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
NULL, NULL,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-05-12 17:12:46 +00:00
cb(Qcur, "Qcur", il);
if (hparams.f_clamp_kqv > 0.0f) {
Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(Qcur, "Qcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-05-12 17:12:46 +00:00
cb(Kcur, "Kcur", il);
if (hparams.f_clamp_kqv > 0.0f) {
Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(Kcur, "Kcur", il);
}
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-05-12 17:12:46 +00:00
cb(Vcur, "Vcur", il);
if (hparams.f_clamp_kqv > 0.0f) {
Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(Vcur, "Vcur", il);
}
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-05-12 17:12:46 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
2024-06-16 10:10:54 +00:00
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
2024-05-12 17:12:46 +00:00
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-05-12 17:12:46 +00:00
model.layers[il].wo, nullptr,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
NULL, NULL,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-05-12 17:12:46 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-05-12 17:12:46 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
NULL, NULL,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-05-12 17:12:46 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-06-16 10:10:54 +00:00
2024-07-08 11:14:17 +00:00
struct ggml_cgraph * build_openelm() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-06-16 10:10:54 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
2024-07-08 11:14:17 +00:00
const int64_t n_head = hparams.n_head(il);
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head_qkv = 2*n_head_kv + n_head;
cur = inpL;
struct ggml_tensor * residual = cur;
// norm
2024-06-16 10:10:54 +00:00
cur = llm_build_norm(ctx0, inpL, hparams,
2024-07-08 11:14:17 +00:00
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
2024-06-16 10:10:54 +00:00
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
2024-06-16 10:10:54 +00:00
cb(cur, "wqkv", il);
2024-07-08 11:14:17 +00:00
cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
2024-06-16 10:10:54 +00:00
2024-07-08 11:14:17 +00:00
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
2024-06-16 10:10:54 +00:00
cb(Qcur, "Qcur", il);
2024-07-08 11:14:17 +00:00
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
2024-06-16 10:10:54 +00:00
cb(Kcur, "Kcur", il);
2024-07-08 11:14:17 +00:00
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
2024-06-16 10:10:54 +00:00
cb(Vcur, "Vcur", il);
2024-07-08 11:14:17 +00:00
Qcur = llm_build_norm(ctx0, Qcur, hparams,
model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(Qcur, "Qcur", il);
Kcur = llm_build_norm(ctx0, Kcur, hparams,
model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(Kcur, "Kcur", il);
2024-06-16 10:10:54 +00:00
Qcur = ggml_rope_ext(
2024-07-08 11:14:17 +00:00
ctx0, Qcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
2024-06-16 10:10:54 +00:00
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
2024-07-08 11:14:17 +00:00
ctx0, Kcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
2024-06-16 10:10:54 +00:00
);
cb(Kcur, "Kcur", il);
2024-07-08 11:14:17 +00:00
Vcur = ggml_reshape_2d(ctx0, Vcur, n_embd_head * n_head_kv, n_tokens);
cb(Qcur, "Vcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-07-08 11:14:17 +00:00
model.layers[il].wo, NULL,
2024-06-16 10:10:54 +00:00
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
2024-07-08 11:14:17 +00:00
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
2024-06-16 10:10:54 +00:00
}
2024-07-08 11:14:17 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
cb(ffn_inp, "ffn_inp", il);
2024-06-16 10:10:54 +00:00
2024-07-08 11:14:17 +00:00
// feed-forward network
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
2024-06-16 10:10:54 +00:00
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-06-16 10:10:54 +00:00
NULL,
2024-07-08 11:14:17 +00:00
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
2024-06-16 10:10:54 +00:00
cb(cur, "ffn_out", il);
2024-07-08 11:14:17 +00:00
}
2024-06-16 10:10:54 +00:00
2024-07-08 11:14:17 +00:00
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
2024-06-16 10:10:54 +00:00
2024-07-08 11:14:17 +00:00
inpL = cur;
}
cur = inpL;
// norm
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-07-08 11:14:17 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_gptneox() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-07-08 11:14:17 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
2024-07-08 11:14:17 +00:00
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-07-08 11:14:17 +00:00
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// ffn
if (hparams.use_par_res) {
// attention and ffn are computed in parallel
// x = x + attn(ln1(x)) + ffn(ln2(x))
struct ggml_tensor * attn_out = cur;
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, inpL);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, attn_out);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
} else {
// attention and ffn are computed sequentially
// x = x + attn(ln1(x))
// x = x + ffn(ln2(x))
2024-06-16 10:10:54 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
2024-06-16 10:10:54 +00:00
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
2024-07-08 11:14:17 +00:00
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
2024-06-16 10:10:54 +00:00
}
}
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-06-16 10:10:54 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_arctic() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-06-16 10:10:54 +00:00
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-06-16 10:10:54 +00:00
cb(Qcur, "Qcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-06-16 10:10:54 +00:00
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-06-16 10:10:54 +00:00
cb(Vcur, "Vcur", il);
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-06-16 10:10:54 +00:00
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-06-16 10:10:54 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
cb(ffn_out, "ffn_out", il);
// MoE
cur = llm_build_norm(ctx0, inpSA, hparams,
model.layers[il].ffn_norm_exps, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm_exps", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_moe_ffn(ctx0, lctx, cur,
2024-06-16 10:10:54 +00:00
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
cb, il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_out);
cb(cur, "ffn_out", il);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-06-16 10:10:54 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-06-16 10:10:54 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_deepseek2() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-06-16 10:10:54 +00:00
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
bool is_lite = (hparams.n_layer == 27);
// We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self_attention
{
struct ggml_tensor * q = NULL;
if (!is_lite) {
// {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
cb(q, "q", il);
q = llm_build_norm(ctx0, q, hparams,
model.layers[il].attn_q_a_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(q, "q", il);
// {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
cb(q, "q", il);
} else {
q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(q, "q", il);
}
// split into {n_head * n_embd_head_qk_nope, n_tokens}
struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
0);
cb(q_nope, "q_nope", il);
// and {n_head * n_embd_head_qk_rope, n_tokens}
struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
// split into {kv_lora_rank, n_tokens}
struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
kv_pe_compresseed->nb[1],
0);
cb(kv_compressed, "kv_compressed", il);
// and {n_embd_head_qk_rope, n_tokens}
struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
kv_pe_compresseed->nb[1],
kv_pe_compresseed->nb[1],
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(kv_compressed, "kv_compressed", il);
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
cb(kv, "kv", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
0);
cb(k_nope, "k_nope", il);
// and {n_head * n_embd_head_v, n_tokens}
struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
cb(v_states, "v_states", il);
v_states = ggml_cont(ctx0, v_states);
cb(v_states, "v_states", il);
v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
0);
cb(v_states, "v_states", il);
q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
q_pe = ggml_rope_ext(
ctx0, q_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor_scaled, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
// shared RoPE key
k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
k_pe = ggml_rope_ext(
ctx0, k_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor_scaled, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
cb(q_states, "q_states", il);
struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
cb(k_states, "k_states", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-06-16 10:10:54 +00:00
model.layers[il].wo, NULL,
k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-06-16 10:10:54 +00:00
2024-08-08 11:16:50 +00:00
if ((uint32_t) il < hparams.n_layer_dense_lead) {
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
2024-06-16 10:10:54 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
ggml_tensor * moe_out =
2024-08-08 11:16:50 +00:00
llm_build_moe_ffn(ctx0, lctx, cur,
2024-06-16 10:10:54 +00:00
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
true, hparams.expert_weights_scale,
cb, il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
2024-08-08 11:16:50 +00:00
ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
2024-06-16 10:10:54 +00:00
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
2024-07-08 11:14:17 +00:00
cur = lctx.cvec.apply_to(ctx0, cur, il);
2024-06-16 10:10:54 +00:00
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
2024-07-08 11:14:17 +00:00
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_bitnet() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-07-08 11:14:17 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
2024-07-08 11:14:17 +00:00
Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
// B1.K
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
2024-07-08 11:14:17 +00:00
Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
// B1.V
2024-08-08 11:16:50 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
2024-07-08 11:14:17 +00:00
Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-07-08 11:14:17 +00:00
NULL, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].attn_sub_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_sub_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
2024-07-08 11:14:17 +00:00
cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
if (model.layers[il].bo) {
cur = ggml_add(ctx0, cur, model.layers[il].bo);
}
cb(cur, "attn_o_out", il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward forward
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
NULL, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_sub_out", il);
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].ffn_sub_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_sub_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_down, cur);
2024-07-08 11:14:17 +00:00
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
cb(cur, "ffn_down", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.tok_embd, cur);
2024-07-08 11:14:17 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-08-28 08:04:02 +00:00
struct ggml_cgraph * build_t5_encoder() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-07-08 11:14:17 +00:00
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-08-28 08:04:02 +00:00
GGML_ASSERT(lctx.is_encoding);
struct ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm_enc, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// self-attention
{
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_enc, cur);
cb(Qcur, "Qcur", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_enc, cur);
cb(Kcur, "Kcur", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_enc, cur);
cb(Vcur, "Vcur", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
cb(kq, "kq", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
cb(kq_b, "kq_b", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
cb(kq, "kq_soft_max_ext", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
cb(v, "v", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
cb(kqv, "kqv", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
cb(cur, "kqv_merged_cont", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
ggml_build_forward_expand(gf, cur);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_enc, cur);
cb(cur, "kqv_out", il);
}
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// feed-forward network
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm_enc, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// T5 uses relu, flan-T5 uses gelu-gated
cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up_enc, NULL, NULL,
model.layers[il].ffn_gate_enc, NULL, NULL,
model.layers[il].ffn_down_enc, NULL, NULL,
NULL,
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
cb, il);
2024-07-08 11:14:17 +00:00
cb(cur, "ffn_out", il);
2024-08-28 08:04:02 +00:00
}
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx0, cur, layer_dir);
2024-07-08 11:14:17 +00:00
}
2024-08-28 08:04:02 +00:00
cb(cur, "l_out", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// input for next layer
inpL = cur;
}
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
cur = inpL;
cb(cur, "result_embd", -1);
2024-08-08 11:16:50 +00:00
2024-08-28 08:04:02 +00:00
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm_enc, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
ggml_build_forward_expand(gf, cur);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
return gf;
}
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_cgraph * build_t5_decoder() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
GGML_ASSERT(!lctx.is_encoding);
GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * embd_enc = llm_build_inp_embd_enc();
struct ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * KQ_mask_dec = build_inp_KQ_mask();
struct ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// self-attention
{
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * k =
ggml_view_3d(ctx0, kv_self.k_l[il],
n_embd_head_k, n_kv, n_head_kv,
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
0);
cb(k, "k", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * v =
ggml_view_3d(ctx0, kv_self.v_l[il],
n_kv, n_embd_head_v, n_head_kv,
ggml_element_size(kv_self.v_l[il])*n_ctx,
ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
0);
cb(v, "v", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
cb(kq, "kq", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
cb(kq_b, "kq_b", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
cb(kq, "kq_soft_max_ext", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
cb(kqv, "kqv", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
cb(cur, "kqv_merged_cont", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
ggml_build_forward_expand(gf, cur);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
cb(cur, "kqv_out", il);
}
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
cur = ggml_add(ctx0, cur, inpSA);
cb(cur, "cross_inp", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * inpCA = cur;
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// norm
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].attn_norm_cross, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm_cross", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// cross-attention
{
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_cross, cur);
cb(Qcur, "Qcur", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_cross, embd_enc);
cb(Kcur, "Kcur", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_cross, embd_enc);
cb(Vcur, "Vcur", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
cb(kq, "kq", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
cb(kq, "kq_soft_max_ext", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
cb(v, "v", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
cb(kqv, "kqv", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
cb(cur, "kqv_merged_cont", il);
ggml_build_forward_expand(gf, cur);
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_cross, cur);
cb(cur, "kqv_out", il);
2024-07-08 11:14:17 +00:00
}
2024-08-28 08:04:02 +00:00
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
}
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
cb(ffn_inp, "ffn_inp", il);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// feed-forward network
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
// T5 uses relu, flan-T5 uses gelu-gated
cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx0, cur, layer_dir);
}
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
2024-07-08 11:14:17 +00:00
}
2024-08-28 08:04:02 +00:00
cur = inpL;
cb(cur, "result_embd", -1);
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
2024-07-08 11:14:17 +00:00
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_jais() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
2024-07-08 11:14:17 +00:00
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
2024-07-08 11:14:17 +00:00
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-07-08 11:14:17 +00:00
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/float(n_embd_head), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// add the input
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
2024-06-16 10:10:54 +00:00
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
2024-07-08 11:14:17 +00:00
2024-06-16 10:10:54 +00:00
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-07-08 11:14:17 +00:00
struct ggml_cgraph * build_chatglm() {
2024-08-08 11:16:50 +00:00
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v;
2024-07-08 11:14:17 +00:00
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams,
2024-07-08 11:14:17 +00:00
model.layers[il].attn_norm,
NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
2024-07-08 11:14:17 +00:00
struct ggml_tensor * Qcur = nullptr;
struct ggml_tensor * Kcur = nullptr;
struct ggml_tensor * Vcur = nullptr;
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
2024-07-08 11:14:17 +00:00
cb(cur, "wqkv", il);
2024-07-08 11:14:17 +00:00
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
2024-07-08 11:14:17 +00:00
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
//printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
2024-07-08 11:14:17 +00:00
cb(Qcur, "Qcur_rope", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
2024-07-08 11:14:17 +00:00
cb(Kcur, "Kcur_rope", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
2024-07-08 11:14:17 +00:00
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
2024-07-08 11:14:17 +00:00
// Add the input
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
2024-07-08 11:14:17 +00:00
// FF
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_norm,
NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
2024-08-08 11:16:50 +00:00
cur = llm_build_ffn(ctx0, lctx, cur,
2024-07-08 11:14:17 +00:00
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
}
2024-07-08 11:14:17 +00:00
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
2024-07-08 11:14:17 +00:00
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
2024-08-08 11:16:50 +00:00
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
2024-07-08 11:14:17 +00:00
return gf;
}
2024-08-28 08:04:02 +00:00
struct ggml_cgraph * build_nemotron() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
//GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_exaone() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
struct ggml_tensor * rope_factors = build_rope_factors(il);
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
2024-05-12 17:12:46 +00:00
};
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
2024-08-28 08:04:02 +00:00
llama_ubatch dummy = {};
dummy.equal_seqs = true;
2024-05-12 17:12:46 +00:00
llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
struct llm_build_context llm(lctx, dummy, cb, false);
llm.init();
struct ggml_cgraph * result = llm.build_defrag(ids);
llm.free();
return result;
}
static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
2024-08-28 08:04:02 +00:00
llama_ubatch dummy = {};
dummy.equal_seqs = true;
2024-03-08 09:55:50 +00:00
llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
struct llm_build_context llm(lctx, dummy, cb, false);
llm.init();
struct ggml_cgraph * result = llm.build_k_shift();
llm.free();
return result;
}
2024-02-10 08:10:59 +00:00
static struct ggml_cgraph * llama_build_graph(
llama_context & lctx,
2024-08-28 08:04:02 +00:00
const llama_ubatch & batch,
2024-02-12 08:39:58 +00:00
bool worst_case) {
2024-02-10 08:10:59 +00:00
const auto & model = lctx.model;
// this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
if (il >= 0) {
ggml_format_name(cur, "%s-%d", name, il);
} else {
ggml_set_name(cur, name);
}
2024-01-27 15:24:53 +00:00
if (!lctx.cparams.offload_kqv) {
if (strcmp(name, "kqv_merged_cont") == 0) {
// all nodes between the KV store and the attention output are run on the CPU
2024-03-15 12:21:59 +00:00
ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
}
}
// norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
// FIXME: fix in ggml_backend_sched
const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
if (batch.n_tokens < 32 || full_offload) {
if (il != -1 && strcmp(name, "norm") == 0) {
for (auto * backend : lctx.backends) {
2024-06-16 10:10:54 +00:00
if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
(ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
break;
}
2024-03-15 12:21:59 +00:00
}
}
}
2024-01-27 15:24:53 +00:00
};
struct ggml_cgraph * result = NULL;
2024-01-27 15:24:53 +00:00
struct llm_build_context llm(lctx, batch, cb, worst_case);
llm.init();
switch (model.arch) {
case LLM_ARCH_LLAMA:
{
result = llm.build_llama();
} break;
case LLM_ARCH_BAICHUAN:
{
result = llm.build_baichuan();
} break;
case LLM_ARCH_FALCON:
{
result = llm.build_falcon();
} break;
case LLM_ARCH_GROK:
{
result = llm.build_grok();
} break;
case LLM_ARCH_STARCODER:
{
result = llm.build_starcoder();
} break;
case LLM_ARCH_REFACT:
{
result = llm.build_refact();
} break;
2024-02-12 08:39:58 +00:00
case LLM_ARCH_BERT:
2024-05-12 17:12:46 +00:00
case LLM_ARCH_JINA_BERT_V2:
2024-02-20 10:09:57 +00:00
case LLM_ARCH_NOMIC_BERT:
2024-02-12 08:39:58 +00:00
{
result = llm.build_bert();
} break;
case LLM_ARCH_BLOOM:
{
result = llm.build_bloom();
} break;
case LLM_ARCH_MPT:
{
result = llm.build_mpt();
} break;
case LLM_ARCH_STABLELM:
{
result = llm.build_stablelm();
} break;
case LLM_ARCH_QWEN:
{
result = llm.build_qwen();
} break;
2024-01-27 15:24:53 +00:00
case LLM_ARCH_QWEN2:
{
result = llm.build_qwen2();
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_QWEN2MOE:
{
result = llm.build_qwen2moe();
} break;
case LLM_ARCH_PHI2:
{
result = llm.build_phi2();
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_PHI3:
{
result = llm.build_phi3();
} break;
2024-01-06 15:22:57 +00:00
case LLM_ARCH_PLAMO:
{
result = llm.build_plamo();
} break;
case LLM_ARCH_GPT2:
{
result = llm.build_gpt2();
} break;
2024-01-27 15:24:53 +00:00
case LLM_ARCH_CODESHELL:
{
result = llm.build_codeshell();
} break;
2024-01-28 17:44:10 +00:00
case LLM_ARCH_ORION:
{
result = llm.build_orion();
} break;
2024-02-10 08:10:59 +00:00
case LLM_ARCH_INTERNLM2:
{
result = llm.build_internlm2();
} break;
case LLM_ARCH_MINICPM:
{
result = llm.build_minicpm();
} break;
2024-02-22 21:30:53 +00:00
case LLM_ARCH_GEMMA:
{
result = llm.build_gemma();
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_GEMMA2:
{
result = llm.build_gemma2();
} break;
2024-03-08 09:55:50 +00:00
case LLM_ARCH_STARCODER2:
{
result = llm.build_starcoder2();
} break;
2024-03-15 12:21:59 +00:00
case LLM_ARCH_MAMBA:
{
result = llm.build_mamba();
} break;
2024-04-07 13:21:08 +00:00
case LLM_ARCH_XVERSE:
{
result = llm.build_xverse();
} break;
case LLM_ARCH_COMMAND_R:
{
result = llm.build_command_r();
} break;
2024-05-12 17:12:46 +00:00
case LLM_ARCH_DBRX:
{
result = llm.build_dbrx();
} break;
case LLM_ARCH_OLMO:
{
result = llm.build_olmo();
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_OPENELM:
{
result = llm.build_openelm();
} break;
2024-06-16 10:10:54 +00:00
case LLM_ARCH_GPTNEOX:
{
result = llm.build_gptneox();
} break;
case LLM_ARCH_ARCTIC:
{
result = llm.build_arctic();
} break;
case LLM_ARCH_DEEPSEEK2:
{
result = llm.build_deepseek2();
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_CHATGLM:
{
result = llm.build_chatglm();
} break;
case LLM_ARCH_BITNET:
{
result = llm.build_bitnet();
} break;
2024-07-08 11:14:17 +00:00
case LLM_ARCH_T5:
{
2024-08-28 08:04:02 +00:00
if (lctx.is_encoding) {
result = llm.build_t5_encoder();
} else {
result = llm.build_t5_decoder();
}
} break;
case LLM_ARCH_T5ENCODER:
{
result = llm.build_t5_encoder();
2024-07-08 11:14:17 +00:00
} break;
case LLM_ARCH_JAIS:
{
result = llm.build_jais();
} break;
2024-08-28 08:04:02 +00:00
case LLM_ARCH_NEMOTRON:
{
result = llm.build_nemotron();
} break;
case LLM_ARCH_EXAONE:
{
result = llm.build_exaone();
} break;
default:
2024-08-08 11:16:50 +00:00
GGML_ABORT("fatal error");
}
// add on pooling layer
if (lctx.cparams.embeddings) {
result = llm.append_pooling(result);
}
llm.free();
return result;
}
2024-03-08 09:55:50 +00:00
static void llama_set_k_shift(llama_context & lctx) {
2024-03-15 12:21:59 +00:00
const int64_t kv_size = lctx.kv_self.size;
2024-03-08 09:55:50 +00:00
assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
int32_t * data = (int32_t *) lctx.inp_K_shift->data;
2024-03-15 12:21:59 +00:00
for (int i = 0; i < kv_size; ++i) {
2024-03-08 09:55:50 +00:00
data[i] = lctx.kv_self.cells[i].delta;
}
}
2024-03-15 12:21:59 +00:00
static void llama_set_s_copy(llama_context & lctx) {
const int64_t kv_size = lctx.kv_self.size;
assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
int32_t * data = (int32_t *) lctx.inp_s_copy->data;
for (int i = 0; i < kv_size; ++i) {
data[i] = lctx.kv_self.cells[i].src;
}
}
2024-07-08 11:14:17 +00:00
static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
// TODO move to hparams if a T5 variant appears that uses a different value
const int64_t max_distance = 128;
if (bidirectional) {
n_buckets >>= 1;
}
const int64_t max_exact = n_buckets >> 1;
int32_t relative_position = x - y;
int32_t relative_bucket = 0;
if (bidirectional) {
relative_bucket += (relative_position > 0) * n_buckets;
relative_position = abs(relative_position);
} else {
relative_position = -std::min<int32_t>(relative_position, 0);
}
int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
return relative_bucket;
}
2024-08-28 08:04:02 +00:00
static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
2024-02-12 08:39:58 +00:00
//
// set input data
//
const auto & hparams = lctx.model.hparams;
const auto & cparams = lctx.cparams;
const auto & kv_self = lctx.kv_self;
if (batch.token) {
const int64_t n_tokens = batch.n_tokens;
ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
}
if (batch.embd) {
const int64_t n_embd = hparams.n_embd;
const int64_t n_tokens = batch.n_tokens;
ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
}
2024-03-15 12:21:59 +00:00
if (batch.pos && lctx.inp_pos) {
2024-02-12 08:39:58 +00:00
const int64_t n_tokens = batch.n_tokens;
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
}
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
const int64_t n_tokens = batch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
int32_t * data = (int32_t *) lctx.inp_out_ids->data;
if (lctx.n_outputs == n_tokens) {
for (int i = 0; i < n_tokens; ++i) {
data[i] = i;
}
2024-08-28 08:04:02 +00:00
} else if (batch.output) {
int32_t n_outputs = 0;
for (int i = 0; i < n_tokens; ++i) {
2024-08-28 08:04:02 +00:00
if (batch.output[i]) {
data[n_outputs++] = i;
}
}
// the graph needs to have been passed the correct number of outputs
GGML_ASSERT(lctx.n_outputs == n_outputs);
} else if (lctx.n_outputs == 1) {
// only keep last output
data[0] = n_tokens - 1;
} else {
GGML_ASSERT(lctx.n_outputs == 0);
}
}
2024-03-15 12:21:59 +00:00
GGML_ASSERT(
// (!a || b) is a logical implication (a -> b)
// !hparams.causal_attn -> !cparams.causal_attn
2024-03-15 12:21:59 +00:00
(hparams.causal_attn || !cparams.causal_attn) &&
"causal attention is not supported by this model"
2024-03-15 12:21:59 +00:00
);
2024-02-12 08:39:58 +00:00
2024-08-08 11:16:50 +00:00
if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) {
2024-03-15 12:21:59 +00:00
// NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
2024-07-08 11:14:17 +00:00
if (cparams.causal_attn && !lctx.is_encoding) {
2024-08-28 08:04:02 +00:00
const int64_t n_kv = kv_self.n;
const int64_t n_tokens = batch.n_tokens;
const int64_t n_seq_tokens = batch.n_seq_tokens;
const int64_t n_seqs = batch.n_seqs;
2024-02-12 08:39:58 +00:00
2024-08-08 11:16:50 +00:00
float * data = nullptr;
2024-07-08 11:14:17 +00:00
float * data_swa = nullptr;
2024-08-08 11:16:50 +00:00
if (lctx.inp_KQ_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
data = (float *) lctx.inp_KQ_mask->data;
}
2024-07-08 11:14:17 +00:00
if (lctx.inp_KQ_mask_swa) {
2024-08-08 11:16:50 +00:00
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer));
2024-07-08 11:14:17 +00:00
data_swa = (float *) lctx.inp_KQ_mask_swa->data;
}
2024-02-12 08:39:58 +00:00
2024-03-15 12:21:59 +00:00
// For causal attention, use only the previous KV cells
// of the correct sequence for each token of the batch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
for (int h = 0; h < 1; ++h) {
2024-08-28 08:04:02 +00:00
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = batch.seq_id[s][0];
2024-03-15 12:21:59 +00:00
2024-08-28 08:04:02 +00:00
for (int j = 0; j < n_seq_tokens; ++j) {
const llama_pos pos = batch.pos[s*n_seq_tokens + j];
for (int i = 0; i < n_kv; ++i) {
float f;
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
f = -INFINITY;
2024-05-12 17:12:46 +00:00
} else {
2024-08-28 08:04:02 +00:00
if (hparams.use_alibi) {
f = -std::abs(kv_self.cells[i].pos - pos);
} else {
f = 0.0f;
}
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
2024-08-28 08:04:02 +00:00
if (data) {
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// may need to cut off old tokens for sliding window
if (data_swa) {
if (pos - kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
f = -INFINITY;
}
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
2024-07-08 11:14:17 +00:00
}
}
2024-02-12 08:39:58 +00:00
}
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
if (data) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
if (data_swa) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
2024-05-12 17:12:46 +00:00
}
}
2024-02-12 08:39:58 +00:00
}
2024-03-15 12:21:59 +00:00
} else {
2024-08-28 08:04:02 +00:00
const int64_t n_tokens = batch.n_tokens;
const int64_t n_seq_tokens = batch.n_seq_tokens;
const int64_t n_seqs = batch.n_seqs;
2024-03-15 12:21:59 +00:00
// when using kv cache, the mask needs to match the kv cache size
2024-07-08 11:14:17 +00:00
const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens;
2024-03-08 09:55:50 +00:00
2024-03-15 12:21:59 +00:00
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
2024-03-08 09:55:50 +00:00
2024-03-15 12:21:59 +00:00
float * data = (float *) lctx.inp_KQ_mask->data;
2024-03-08 09:55:50 +00:00
2024-03-15 12:21:59 +00:00
for (int h = 0; h < 1; ++h) {
2024-08-28 08:04:02 +00:00
for (int s1 = 0; s1 < n_seqs; ++s1) {
const llama_seq_id seq_id = batch.seq_id[s1][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const int32_t tj = s1*n_seq_tokens + j;
for (int s0 = 0; s0 < n_seqs; ++s0) {
for (int i = 0; i < n_seq_tokens; ++i) {
const int32_t ti = s0*n_seq_tokens + i;
float f = -INFINITY;
for (int s = 0; s < batch.n_seq_id[s0]; ++s) {
if (batch.seq_id[s0][s] == seq_id) {
if (hparams.use_alibi) {
f = -std::abs(batch.pos[ti] - batch.pos[tj]);
} else {
f = 0.0f;
}
break;
}
2024-05-12 17:12:46 +00:00
}
2024-08-28 08:04:02 +00:00
data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
2024-03-15 12:21:59 +00:00
}
2024-03-08 09:55:50 +00:00
}
2024-03-15 12:21:59 +00:00
2024-08-28 08:04:02 +00:00
for (int i = n_tokens; i < n_stride; ++i) {
data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
}
2024-03-15 12:21:59 +00:00
}
2024-03-08 09:55:50 +00:00
}
}
}
2024-02-12 08:39:58 +00:00
}
2024-07-08 11:14:17 +00:00
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
2024-08-28 08:04:02 +00:00
const int64_t n_tokens = batch.n_tokens;
const int64_t n_seq_tokens = batch.n_seq_tokens;
const int64_t n_seqs = batch.n_seqs;
2024-02-20 10:09:57 +00:00
2024-03-15 12:21:59 +00:00
GGML_ASSERT(lctx.inp_mean);
2024-02-20 10:09:57 +00:00
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
2024-03-08 09:55:50 +00:00
float * data = (float *) lctx.inp_mean->data;
2024-02-20 10:09:57 +00:00
memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
std::vector<uint64_t> sum(n_tokens, 0);
2024-03-08 09:55:50 +00:00
2024-08-28 08:04:02 +00:00
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = batch.seq_id[s][0];
// TODO: adapt limits to n_seqs when batch.equal_seqs is true
2024-03-08 09:55:50 +00:00
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
2024-08-28 08:04:02 +00:00
sum[seq_id] += batch.n_seq_tokens;
2024-02-20 10:09:57 +00:00
}
std::vector<float> div(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const uint64_t s = sum[i];
if (s > 0) {
div[i] = 1.0f/float(s);
}
}
2024-08-28 08:04:02 +00:00
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = batch.seq_id[s][0];
for (int i = 0; i < n_seq_tokens; ++i) {
data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
}
2024-02-20 10:09:57 +00:00
}
}
2024-07-08 11:14:17 +00:00
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
2024-08-28 08:04:02 +00:00
const int64_t n_tokens = batch.n_tokens;
const int64_t n_seq_tokens = batch.n_seq_tokens;
const int64_t n_seqs = batch.n_seqs;
2024-02-20 10:09:57 +00:00
2024-03-15 12:21:59 +00:00
GGML_ASSERT(lctx.inp_cls);
2024-02-20 10:09:57 +00:00
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
2024-03-08 09:55:50 +00:00
2024-02-20 10:09:57 +00:00
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
2024-03-08 09:55:50 +00:00
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
2024-02-20 10:09:57 +00:00
2024-08-28 08:04:02 +00:00
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = batch.seq_id[s][0];
2024-03-08 09:55:50 +00:00
2024-08-28 08:04:02 +00:00
// TODO: adapt limits to n_seqs when batch.equal_seqs is true
2024-03-08 09:55:50 +00:00
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
2024-08-28 08:04:02 +00:00
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = batch.pos[s*n_seq_tokens + i];
if (pos == 0) {
data[seq_id] = s*n_seq_tokens + i;
}
2024-02-20 10:09:57 +00:00
}
}
}
2024-03-15 12:21:59 +00:00
2024-07-08 11:14:17 +00:00
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
2024-08-28 08:04:02 +00:00
const int64_t n_tokens = batch.n_tokens;
const int64_t n_seq_tokens = batch.n_seq_tokens;
const int64_t n_seqs = batch.n_seqs;
GGML_ASSERT(lctx.inp_cls);
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
std::vector<int> last_pos(n_tokens, -1);
std::vector<int> last_row(n_tokens, -1);
2024-08-28 08:04:02 +00:00
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = batch.seq_id[s][0];
2024-08-28 08:04:02 +00:00
// TODO: adapt limits to n_seqs when batch.equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
2024-08-28 08:04:02 +00:00
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = batch.pos[s*n_seq_tokens + i];
if (pos >= last_pos[seq_id]) {
last_pos[seq_id] = pos;
last_row[seq_id] = s*n_seq_tokens + i;
}
}
}
for (int i = 0; i < n_tokens; ++i) {
if (last_row[i] >= 0) {
data[i] = last_row[i];
}
}
}
2024-03-15 12:21:59 +00:00
if (kv_self.recurrent) {
const int64_t n_kv = kv_self.n;
if (lctx.inp_s_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
float * data = (float *) lctx.inp_s_mask->data;
2024-08-28 08:04:02 +00:00
// clear unused states
2024-03-15 12:21:59 +00:00
for (int i = 0; i < n_kv; ++i) {
2024-08-28 08:04:02 +00:00
uint32_t cell_id = i + kv_self.head;
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
2024-03-15 12:21:59 +00:00
2024-08-28 08:04:02 +00:00
data[i] = (float) (kv_cell.src >= 0);
2024-03-15 12:21:59 +00:00
2024-08-28 08:04:02 +00:00
// only clear once
if (kv_cell.src < 0) {
kv_cell.src = cell_id;
2024-03-15 12:21:59 +00:00
}
}
}
2024-08-28 08:04:02 +00:00
if (lctx.inp_s_copy) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
int32_t * data = (int32_t *) lctx.inp_s_copy->data;
2024-03-15 12:21:59 +00:00
2024-08-28 08:04:02 +00:00
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self.head;
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
2024-03-15 12:21:59 +00:00
2024-08-28 08:04:02 +00:00
// prevent out-of-bound sources
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self.size) {
kv_cell.src = cell_id;
}
data[i] = kv_cell.src;
// ensure copy only happens once
if (kv_cell.src != (int32_t) cell_id) {
kv_cell.src = cell_id;
2024-03-15 12:21:59 +00:00
}
}
}
}
2024-07-08 11:14:17 +00:00
if (lctx.inp_pos_bucket) {
const int64_t n_tokens = batch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer));
2024-08-28 08:04:02 +00:00
GGML_ASSERT(!batch.equal_seqs); // TODO: use batch.n_seqs instead of failing
2024-07-08 11:14:17 +00:00
int32_t * data = (int32_t *) lctx.inp_pos_bucket->data;
if (!lctx.is_encoding) {
const int64_t n_kv = kv_self.n;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_kv; ++i) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
}
}
}
} else {
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_tokens; ++i) {
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(batch.pos[i], batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
}
}
}
}
}
if (!lctx.is_encoding && lctx.inp_embd_enc) {
assert(lctx.inp_embd_enc->type == GGML_TYPE_F32);
assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size());
ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc));
}
if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) {
const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd;
const int64_t n_tokens = batch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer));
2024-08-28 08:04:02 +00:00
GGML_ASSERT(!batch.equal_seqs); // TODO: use batch.n_seqs instead of failing
2024-07-08 11:14:17 +00:00
float * data = (float *) lctx.inp_KQ_mask_cross->data;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_output_enc; ++i) {
float f = -INFINITY;
for (int s = 0; s < batch.n_seq_id[j]; ++s) {
const llama_seq_id seq_id = batch.seq_id[j][s];
if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) {
f = 0.0f;
}
}
data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f;
}
}
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_output_enc; ++j) {
data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY;
}
}
}
}
2024-02-12 08:39:58 +00:00
}
// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
const auto & cparams = lctx.cparams;
const auto & hparams = lctx.model.hparams;
const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
const auto n_batch = cparams.n_batch;
const auto n_vocab = hparams.n_vocab;
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
const bool has_logits = !cparams.embeddings;
2024-08-28 08:04:02 +00:00
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
if (lctx.output_ids.empty()) {
// init, never resized afterwards
lctx.output_ids.resize(n_batch);
}
const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
const size_t new_size = (logits_size + embd_size) * sizeof(float);
// alloc only when more than the current capacity is required
// TODO: also consider shrinking the buffer
if (!lctx.buf_output || prev_size < new_size) {
if (lctx.buf_output) {
#ifndef NDEBUG
// This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
ggml_backend_buffer_free(lctx.buf_output);
lctx.buf_output = nullptr;
lctx.logits = nullptr;
lctx.embd = nullptr;
}
lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
if (lctx.buf_output == nullptr) {
LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
return 0;
}
}
float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
lctx.logits = has_logits ? output_base : nullptr;
lctx.embd = has_embd ? output_base + logits_size : nullptr;
lctx.output_size = n_outputs_max;
lctx.logits_size = logits_size;
lctx.embd_size = embd_size;
// set all ids as invalid (negative)
std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
ggml_backend_buffer_clear(lctx.buf_output, 0);
lctx.n_outputs = 0;
return n_outputs_max;
}
2024-08-28 08:04:02 +00:00
// make the outputs have the same order they had in the user-provided batch
static void llama_output_reorder(struct llama_context * ctx) {
std::vector<size_t> & out_ids = ctx->sbatch.out_ids;
if (!out_ids.empty()) {
uint32_t n_vocab = ctx->model.hparams.n_vocab;
uint32_t n_embd = ctx->model.hparams.n_embd;
int32_t n_outputs = ctx->n_outputs;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps?
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
for (int32_t i = 0; i < n_outputs - 1; ++i) {
int32_t j_min = i;
for (int32_t j = i + 1; j < n_outputs; ++j) {
if (out_ids[j] < out_ids[j_min]) {
j_min = j;
}
}
if (j_min == i) { continue; }
std::swap(out_ids[i], out_ids[j_min]);
if (ctx->logits_size > 0) {
for (uint32_t k = 0; k < n_vocab; k++) {
std::swap(ctx->logits[i*n_vocab + k], ctx->logits[j_min*n_vocab + k]);
}
}
if (ctx->embd_size > 0) {
for (uint32_t k = 0; k < n_embd; k++) {
std::swap(ctx->embd[i*n_embd + k], ctx->embd[j_min*n_embd + k]);
}
}
}
std::fill(ctx->output_ids.begin(), ctx->output_ids.end(), -1);
for (int32_t i = 0; i < n_outputs; ++i) {
ctx->output_ids[out_ids[i]] = i;
}
out_ids.clear();
}
}
2024-03-08 09:55:50 +00:00
static void llama_graph_compute(
llama_context & lctx,
ggml_cgraph * gf,
int n_threads) {
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(lctx.backend_metal)) {
ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
}
#endif
if (lctx.backend_cpu != nullptr) {
ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
}
2024-06-16 10:10:54 +00:00
#ifdef GGML_USE_BLAS
if (lctx.backend_blas != nullptr) {
ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
}
#endif
2024-03-08 09:55:50 +00:00
2024-03-15 12:21:59 +00:00
ggml_backend_sched_graph_compute_async(lctx.sched, gf);
2024-03-08 09:55:50 +00:00
// fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
}
// decode a batch of tokens by evaluating the transformer
//
// - lctx: llama context
// - batch: batch to evaluate
//
// return 0 on success
// return positive int on warning
// return negative int on error
//
static int llama_decode_internal(
llama_context & lctx,
2024-03-15 12:21:59 +00:00
llama_batch batch_all) { // TODO: rename back to batch
2024-07-08 11:14:17 +00:00
lctx.is_encoding = false;
2024-03-15 12:21:59 +00:00
const uint32_t n_tokens_all = batch_all.n_tokens;
if (n_tokens_all == 0) {
LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
return -1;
}
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & cparams = lctx.cparams;
2024-03-15 12:21:59 +00:00
GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
2024-03-15 12:21:59 +00:00
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
2024-03-15 12:21:59 +00:00
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
2024-03-15 12:21:59 +00:00
if (lctx.t_compute_start_us == 0) {
lctx.t_compute_start_us = ggml_time_us();
}
lctx.n_queued_tokens += n_tokens_all;
auto & kv_self = lctx.kv_self;
const int64_t n_embd = hparams.n_embd;
const int64_t n_vocab = hparams.n_vocab;
uint32_t n_outputs = 0;
uint32_t n_outputs_prev = 0;
2024-03-15 12:21:59 +00:00
const auto n_ubatch = cparams.n_ubatch;
2024-07-08 11:14:17 +00:00
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
2024-08-28 08:04:02 +00:00
lctx.embd_seq.clear();
// count outputs
2024-07-08 11:14:17 +00:00
if (batch_all.logits && !embd_pooled) {
for (uint32_t i = 0; i < n_tokens_all; ++i) {
n_outputs += batch_all.logits[i] != 0;
}
2024-07-08 11:14:17 +00:00
} else if (lctx.logits_all || embd_pooled) {
n_outputs = n_tokens_all;
} else {
// keep last output only
n_outputs = 1;
}
2024-08-28 08:04:02 +00:00
lctx.sbatch.from_batch(batch_all, n_embd,
/* simple_split */ !kv_self.recurrent,
/* logits_all */ n_outputs == n_tokens_all);
// reserve output buffer
if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
return -2;
};
2024-08-28 08:04:02 +00:00
while (lctx.sbatch.n_tokens > 0) {
llama_ubatch ubatch;
if (kv_self.recurrent) {
if (embd_pooled) {
// Pooled embeddings cannot be split across ubatches (yet)
ubatch = lctx.sbatch.split_seq(n_ubatch);
} else {
// recurrent model architectures are easier to implement
// with equal-length sequences
ubatch = lctx.sbatch.split_equal(n_ubatch);
}
2024-08-28 08:04:02 +00:00
} else {
ubatch = lctx.sbatch.split_simple(n_ubatch);
}
2024-08-28 08:04:02 +00:00
const uint32_t n_tokens = ubatch.n_tokens;
2024-03-15 12:21:59 +00:00
// count the outputs in this u_batch
{
int32_t n_outputs_new = 0;
2024-08-28 08:04:02 +00:00
if (n_outputs == n_tokens_all) {
n_outputs_new = n_tokens;
} else {
2024-08-28 08:04:02 +00:00
GGML_ASSERT(ubatch.output);
for (uint32_t i = 0; i < n_tokens; i++) {
n_outputs_new += (int32_t) (ubatch.output[i] != 0);
}
}
// needs to happen before the graph is built
lctx.n_outputs = n_outputs_new;
}
2024-03-15 12:21:59 +00:00
int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
GGML_ASSERT(n_threads > 0);
// non-causal masks do not use the KV cache
if (hparams.causal_attn) {
llama_kv_cache_update(&lctx);
2024-03-15 12:21:59 +00:00
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (kv_self.head > kv_self.used + 2*n_tokens) {
kv_self.head = 0;
}
2024-08-28 08:04:02 +00:00
if (!llama_kv_cache_find_slot(kv_self, ubatch)) {
2024-03-15 12:21:59 +00:00
return 1;
}
2024-03-08 09:55:50 +00:00
2024-03-15 12:21:59 +00:00
if (!kv_self.recurrent) {
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
2024-06-16 10:10:54 +00:00
const uint32_t pad = llama_kv_cache_get_padding(cparams);
kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
2024-03-15 12:21:59 +00:00
//kv_self.n = llama_kv_cache_cell_max(kv_self);
}
2024-03-08 09:55:50 +00:00
}
2024-03-15 12:21:59 +00:00
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
2024-03-15 12:21:59 +00:00
ggml_backend_sched_reset(lctx.sched);
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
2024-08-28 08:04:02 +00:00
ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
2024-03-15 12:21:59 +00:00
// the output is always the last tensor in the graph
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
2024-03-08 09:55:50 +00:00
if (lctx.n_outputs == 0) {
// no output
res = nullptr;
embd = nullptr;
} else if (cparams.embeddings) {
2024-08-28 08:04:02 +00:00
res = nullptr; // do not extract logits for embedding case
embd = nullptr;
for (int i = gf->n_nodes - 1; i >= 0; --i) {
if (strcmp(gf->nodes[i]->name, "result_embd_pooled") == 0) {
embd = gf->nodes[i];
break;
}
2024-03-15 12:21:59 +00:00
}
2024-08-28 08:04:02 +00:00
GGML_ASSERT(embd != nullptr && "missing embeddings tensor");
} else {
embd = nullptr; // do not extract embeddings when not needed
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
2024-03-08 09:55:50 +00:00
}
2024-03-15 12:21:59 +00:00
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
2024-02-12 08:39:58 +00:00
2024-03-15 12:21:59 +00:00
ggml_backend_sched_alloc_graph(lctx.sched, gf);
2024-08-28 08:04:02 +00:00
llama_set_inputs(lctx, ubatch);
2024-03-15 12:21:59 +00:00
llama_graph_compute(lctx, gf, n_threads);
2024-03-08 09:55:50 +00:00
2024-03-15 12:21:59 +00:00
// update the kv ring buffer
{
kv_self.head += n_tokens;
2024-03-08 09:55:50 +00:00
2024-03-15 12:21:59 +00:00
// Ensure kv cache head points to a valid index.
if (kv_self.head >= kv_self.size) {
kv_self.head = 0;
}
2024-03-08 09:55:50 +00:00
}
2024-03-15 12:21:59 +00:00
// plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) {
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
//}
// extract logits
if (res) {
ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
GGML_ASSERT(backend_res != nullptr);
GGML_ASSERT(lctx.logits != nullptr);
float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
const int32_t n_outputs_new = lctx.n_outputs;
if (n_outputs_new) {
GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
2024-03-15 12:21:59 +00:00
}
}
2024-03-15 12:21:59 +00:00
// extract embeddings
if (embd) {
2024-03-15 12:21:59 +00:00
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
GGML_ASSERT(backend_embd != nullptr);
2024-03-08 09:55:50 +00:00
2024-03-15 12:21:59 +00:00
switch (cparams.pooling_type) {
case LLAMA_POOLING_TYPE_NONE:
{
// extract token embeddings
GGML_ASSERT(lctx.embd != nullptr);
float * embd_out = lctx.embd + n_outputs_prev*n_embd;
const int32_t n_outputs_new = lctx.n_outputs;
if (n_outputs_new) {
GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
2024-03-08 09:55:50 +00:00
}
2024-03-15 12:21:59 +00:00
} break;
case LLAMA_POOLING_TYPE_MEAN:
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_LAST:
2024-03-15 12:21:59 +00:00
{
2024-08-28 08:04:02 +00:00
// extract sequence embeddings (cleared before processing each batch)
2024-03-15 12:21:59 +00:00
auto & embd_seq_out = lctx.embd_seq;
2024-03-08 09:55:50 +00:00
2024-08-28 08:04:02 +00:00
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
2024-03-15 12:21:59 +00:00
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
continue;
}
embd_seq_out[seq_id].resize(n_embd);
ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
2024-03-08 09:55:50 +00:00
}
2024-03-15 12:21:59 +00:00
} break;
case LLAMA_POOLING_TYPE_UNSPECIFIED:
{
2024-08-08 11:16:50 +00:00
GGML_ABORT("unknown pooling type");
}
2024-03-15 12:21:59 +00:00
}
2024-03-08 09:55:50 +00:00
}
n_outputs_prev += lctx.n_outputs;
}
2024-08-28 08:04:02 +00:00
// set output mappings
{
bool sorted_output = true;
GGML_ASSERT(lctx.sbatch.out_ids.size() == n_outputs);
for (size_t i = 0; i < n_outputs; ++i) {
size_t out_id = lctx.sbatch.out_ids[i];
lctx.output_ids[out_id] = i;
if (out_id != i) {
sorted_output = false;
}
}
if (sorted_output) {
lctx.sbatch.out_ids.clear();
}
}
2024-05-12 17:12:46 +00:00
// set to total number of outputs in the batch, for use in llama_get_logits_ith
lctx.n_outputs = n_outputs;
2024-03-15 12:21:59 +00:00
// wait for the computation to finish (automatically done when obtaining the model output)
//llama_synchronize(&lctx);
2024-03-15 12:21:59 +00:00
// decide if we need to defrag the kv cache
if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
// queue defragmentation for next llama_kv_cache_update
if (fragmentation > cparams.defrag_thold) {
//LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
llama_kv_cache_defrag(kv_self);
}
2024-03-08 09:55:50 +00:00
}
2024-05-12 17:12:46 +00:00
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
// overlap with device computation.
ggml_backend_sched_reset(lctx.sched);
2024-03-08 09:55:50 +00:00
return 0;
}
2024-07-08 11:14:17 +00:00
// encode a batch of tokens by evaluating the encoder part of the transformer
//
// - lctx: llama context
// - batch: batch to evaluate
//
// return 0 on success
// return positive int on warning
// return negative int on error
//
static int llama_encode_internal(
llama_context & lctx,
llama_batch batch) {
lctx.is_encoding = true;
const uint32_t n_tokens = batch.n_tokens;
if (n_tokens == 0) {
LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
return -1;
}
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & cparams = lctx.cparams;
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
// micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
if (lctx.t_compute_start_us == 0) {
lctx.t_compute_start_us = ggml_time_us();
}
lctx.n_queued_tokens += n_tokens;
const int64_t n_embd = hparams.n_embd;
2024-08-28 08:04:02 +00:00
lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
2024-07-08 11:14:17 +00:00
// reserve output buffer
if (llama_output_reserve(lctx, n_tokens) < n_tokens) {
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
return -2;
};
for (uint32_t i = 0; i < n_tokens; ++i) {
lctx.output_ids[i] = i;
}
lctx.inp_embd_enc = NULL;
lctx.n_outputs = n_tokens;
const int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
GGML_ASSERT(n_threads > 0);
ggml_backend_sched_reset(lctx.sched);
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
2024-08-28 08:04:02 +00:00
ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
2024-07-08 11:14:17 +00:00
// the output embeddings after the final encoder normalization
2024-08-28 08:04:02 +00:00
struct ggml_tensor * embd = nullptr;
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// there are two cases here
if (llama_model_has_decoder(&lctx.model)) {
// first case is an encoder-decoder T5 model where embeddings are passed to decoder
embd = gf->nodes[gf->n_nodes - 1];
GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor");
} else {
// second case is an encoder-only T5 model
if (cparams.embeddings) {
// only output embeddings if required
embd = gf->nodes[gf->n_nodes - 1];
if (strcmp(embd->name, "result_embd_pooled") != 0) {
embd = gf->nodes[gf->n_nodes - 2];
}
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
}
}
2024-07-08 11:14:17 +00:00
ggml_backend_sched_alloc_graph(lctx.sched, gf);
2024-08-28 08:04:02 +00:00
llama_set_inputs(lctx, ubatch);
2024-07-08 11:14:17 +00:00
llama_graph_compute(lctx, gf, n_threads);
// extract embeddings
if (embd) {
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
GGML_ASSERT(backend_embd != nullptr);
2024-08-28 08:04:02 +00:00
if (llama_model_has_decoder(&lctx.model)) {
lctx.embd_enc.resize(n_tokens*n_embd);
float * embd_out = lctx.embd_enc.data();
ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
// remember the sequence ids used during the encoding - needed for cross attention later
lctx.seq_ids_enc.resize(n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
for (int s = 0; s < ubatch.n_seq_id[i]; s++) {
llama_seq_id seq_id = ubatch.seq_id[i][s];
lctx.seq_ids_enc[i].insert(seq_id);
}
}
} else {
GGML_ASSERT(lctx.embd != nullptr);
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
switch (cparams.pooling_type) {
case LLAMA_POOLING_TYPE_NONE:
{
// extract token embeddings
GGML_ASSERT(lctx.embd != nullptr);
float * embd_out = lctx.embd;
2024-07-08 11:14:17 +00:00
2024-08-28 08:04:02 +00:00
GGML_ASSERT(n_tokens*n_embd <= (int64_t) lctx.embd_size);
ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
} break;
case LLAMA_POOLING_TYPE_MEAN:
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_LAST:
{
// extract sequence embeddings
auto & embd_seq_out = lctx.embd_seq;
embd_seq_out.clear();
GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits
for (uint32_t i = 0; i < n_tokens; i++) {
const llama_seq_id seq_id = ubatch.seq_id[i][0];
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
continue;
}
embd_seq_out[seq_id].resize(n_embd);
ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_UNSPECIFIED:
{
GGML_ABORT("unknown pooling type");
}
2024-07-08 11:14:17 +00:00
}
}
}
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
// overlap with device computation.
ggml_backend_sched_reset(lctx.sched);
return 0;
}
2024-03-15 12:21:59 +00:00
2024-03-08 09:55:50 +00:00
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
auto & kv_self = lctx.kv_self;
const auto & hparams = lctx.model.hparams;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
const uint32_t n_used = kv_self.used;
assert(n_used <= n_kv);
//const int64_t t_start = ggml_time_us();
// number of cells moved
uint32_t n_moves = 0;
2024-03-15 12:21:59 +00:00
// each move requires 6*n_layer tensors (see build_defrag)
// - source view, destination view, copy operation
// - x2 for keys and values
2024-08-08 11:16:50 +00:00
//const uint32_t max_moves = llama_model_max_nodes(model)/(6*n_layer);
2024-05-12 17:12:46 +00:00
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
2024-08-08 11:16:50 +00:00
const uint32_t max_moves = (llama_model_max_nodes(lctx.model) - 2*n_layer)/(6*n_layer);
2024-03-15 12:21:59 +00:00
2024-03-08 09:55:50 +00:00
// determine which KV cells to move where
//
// cell i moves to ids[i]
//
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
//
std::vector<uint32_t> ids(n_kv, n_kv);
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
const auto & cell0 = kv_self.cells[i0];
if (!cell0.is_empty()) {
ids[i0] = i0;
continue;
}
// found a hole - fill it with data from the end of the cache
uint32_t nh = 1;
// determine the size of the hole
while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
nh++;
}
uint32_t nf = 0;
uint32_t is = n_kv - 1;
// starting from the end, find nh non-empty cells
for (; is > i0; --is) {
const auto & cell1 = kv_self.cells[is];
if (cell1.is_empty() || ids[is] != n_kv) {
continue;
}
// non-empty cell which is not yet moved
nf++;
if (nf == nh) {
break;
}
}
// this can only happen if `n_used` is not accurate, which would be a bug
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
nf = 0;
uint32_t i1 = is;
// are we moving a continuous block of memory?
bool cont = false;
2024-03-15 12:21:59 +00:00
// should we stop searching for the next move?
bool stop = false;
2024-03-08 09:55:50 +00:00
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
auto & cell1 = kv_self.cells[i1];
if (cell1.is_empty() || ids[i1] != n_kv) {
2024-03-15 12:21:59 +00:00
if (n_moves == max_moves) {
stop = true;
break;
}
2024-03-08 09:55:50 +00:00
cont = false;
continue;
}
// this cell goes to (i0 + nf)
ids[i1] = i0 + nf;
// move the cell meta data
kv_self.cells[i0 + nf] = cell1;
// clear the old cell and move the head there
cell1 = llama_kv_cell();
kv_self.head = n_used;
if (!cont) {
n_moves++;
cont = true;
}
nf++;
if (nf == nh) {
break;
}
}
2024-03-15 12:21:59 +00:00
if (stop || n_moves == max_moves) {
break;
}
2024-03-08 09:55:50 +00:00
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
i0 += nh - 1;
}
if (n_moves == 0) {
return;
}
//LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
//LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
#if 0
// CPU defrag
//
// TODO: optimizations are possible:
// - multiple threads
// - avoid copying to the host memory when already there
//
// likely not worth the effort, as we have ggml_graph based defrag
//
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const uint32_t kv_size = kv_self.size;
std::vector<uint8_t> buf_k;
std::vector<uint8_t> buf_v;
for (uint32_t il = 0; il < n_layer; ++il) {
const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
buf_k.resize(k_size);
buf_v.resize(v_size);
ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
// batch move [i, i+nm) to [id, id+nm)
// note: cells can move only to a lower index
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t id = ids[i];
if (i == id || id == n_kv) {
continue;
}
uint32_t nm = 1;
while (i + nm < n_kv && ids[i + nm] == id + nm) {
nm++;
}
// move keys
{
const int64_t os = i*k_size_row;
const int64_t od = id*k_size_row;
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
}
// move values (note: they are transposed)
{
const int64_t os = i;
const int64_t od = id;
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
}
}
i += nm - 1;
}
ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
// ggml_graph defrag
2024-03-15 12:21:59 +00:00
ggml_backend_sched_reset(lctx.sched);
2024-03-08 09:55:50 +00:00
ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
#endif
//const int64_t t_end = ggml_time_us();
//LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
}
static void llama_kv_cache_update_internal(struct llama_context & lctx) {
2024-03-15 12:21:59 +00:00
bool need_reserve = false;
2024-03-08 09:55:50 +00:00
// apply K-shift if needed
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
2024-08-08 11:16:50 +00:00
if (lctx.model.arch == LLM_ARCH_DEEPSEEK2) { // not supported due to MLA
GGML_ABORT("Deepseek2 does not support K-shift");
}
2024-03-08 09:55:50 +00:00
{
2024-03-15 12:21:59 +00:00
ggml_backend_sched_reset(lctx.sched);
2024-03-08 09:55:50 +00:00
ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
2024-03-15 12:21:59 +00:00
ggml_backend_sched_alloc_graph(lctx.sched, gf);
llama_set_k_shift(lctx);
2024-03-08 09:55:50 +00:00
llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
2024-03-15 12:21:59 +00:00
need_reserve = true;
2024-03-08 09:55:50 +00:00
}
{
auto & kv_self = lctx.kv_self;
kv_self.has_shift = false;
for (uint32_t i = 0; i < kv_self.size; ++i) {
kv_self.cells[i].delta = 0;
}
}
}
2024-03-08 09:55:50 +00:00
// defragment the KV cache if needed
if (lctx.kv_self.do_defrag) {
llama_kv_cache_defrag_internal(lctx);
2024-03-15 12:21:59 +00:00
need_reserve = true;
2024-03-08 09:55:50 +00:00
lctx.kv_self.do_defrag = false;
}
2024-03-15 12:21:59 +00:00
// reserve a worst case graph again
if (need_reserve) {
// TODO: extract to a function
// build worst-case graph
2024-08-28 08:04:02 +00:00
uint32_t n_seqs = 1; // TODO: worst-case number of sequences
uint32_t n_tokens = std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
2024-03-15 12:21:59 +00:00
llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
2024-08-28 08:04:02 +00:00
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
ggml_cgraph * gf = llama_build_graph(lctx, ubatch, true);
2024-03-15 12:21:59 +00:00
// initialize scheduler with the worst-case graph
ggml_backend_sched_reset(lctx.sched);
if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
}
}
}
//
2024-08-08 11:16:50 +00:00
// quantization
//
2024-08-08 11:16:50 +00:00
struct quantize_state_internal {
const llama_model & model;
const llama_model_quantize_params * params;
2024-08-08 11:16:50 +00:00
int n_attention_wv = 0;
int n_ffn_down = 0;
int n_ffn_gate = 0;
int n_ffn_up = 0;
int i_attention_wv = 0;
int i_ffn_down = 0;
int i_ffn_gate = 0;
int i_ffn_up = 0;
2024-08-08 11:16:50 +00:00
int n_k_quantized = 0;
int n_fallback = 0;
2024-08-08 11:16:50 +00:00
bool has_imatrix = false;
2024-08-08 11:16:50 +00:00
// used to figure out if a model shares tok_embd with the output weight
bool has_output = false;
2024-08-08 11:16:50 +00:00
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
: model(model)
, params(params)
{}
};
2024-03-08 09:55:50 +00:00
static void llama_tensor_dequantize_internal(
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
const size_t nelements, const int nthread
) {
if (output.size() < nelements) {
output.resize(nelements);
}
float * f32_output = (float *) output.data();
ggml_type_traits_t qtype;
if (ggml_is_quantized(tensor->type)) {
qtype = ggml_internal_get_type_traits(tensor->type);
if (qtype.to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
}
2024-05-12 17:12:46 +00:00
} else if (tensor->type != GGML_TYPE_F16 &&
tensor->type != GGML_TYPE_BF16) {
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
}
if (nthread < 2) {
if (tensor->type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
2024-05-12 17:12:46 +00:00
} else if (tensor->type == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
} else if (ggml_is_quantized(tensor->type)) {
qtype.to_float(tensor->data, f32_output, nelements);
} else {
2024-08-08 11:16:50 +00:00
GGML_ABORT("fatal error"); // unreachable
}
return;
}
2024-05-12 17:12:46 +00:00
size_t block_size;
if (tensor->type == GGML_TYPE_F16 ||
tensor->type == GGML_TYPE_BF16) {
block_size = 1;
} else {
block_size = (size_t)ggml_blck_size(tensor->type);
}
size_t block_size_bytes = ggml_type_size(tensor->type);
GGML_ASSERT(nelements % block_size == 0);
size_t nblocks = nelements / block_size;
size_t blocks_per_thread = nblocks / nthread;
size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
size_t in_buff_offs = 0;
size_t out_buff_offs = 0;
for (int tnum = 0; tnum < nthread; tnum++) {
size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
2024-05-12 17:12:46 +00:00
} else if (typ == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
} else {
qtype.to_float(inbuf, outbuf, nels);
}
};
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
in_buff_offs += thr_block_bytes;
out_buff_offs += thr_elems;
}
for (auto & w : workers) { w.join(); }
workers.clear();
}
2024-03-15 12:21:59 +00:00
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
const llm_arch arch = qs.model.arch;
const auto tn = LLM_TN(arch);
2024-07-08 11:14:17 +00:00
auto use_more_bits = [](int i_layer, int n_layers) -> bool {
return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
};
2024-01-27 15:24:53 +00:00
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
if (n_expert > 1) {
2024-08-28 08:04:02 +00:00
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
2024-01-27 15:24:53 +00:00
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
// for getting the current layer as I initially thought, and we need to resort to parsing the
// tensor name.
if (sscanf(name, "blk.%d.", &i_layer) != 1) {
throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
}
if (i_layer < 0 || i_layer >= n_layer) {
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
}
}
return std::make_pair(i_layer, n_layer);
};
2024-03-08 09:55:50 +00:00
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
// with the quantization of the output tensor
2024-03-15 12:21:59 +00:00
if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
new_type = qs.params->output_tensor_type;
} else {
int nx = tensor->ne[0];
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
new_type = GGML_TYPE_Q8_0;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
new_type = GGML_TYPE_Q5_K;
}
else if (new_type != GGML_TYPE_Q8_0) {
new_type = GGML_TYPE_Q6_K;
}
}
2024-02-10 08:10:59 +00:00
} else if (name == "token_embd.weight") {
if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
new_type = qs.params->token_embedding_type;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
new_type = GGML_TYPE_Q2_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
new_type = GGML_TYPE_IQ3_S;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ3_S;
}
2024-08-08 11:16:50 +00:00
else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
new_type == GGML_TYPE_Q4_0_8_8) {
new_type = GGML_TYPE_Q4_0;
}
2024-02-10 08:10:59 +00:00
}
2024-03-08 09:55:50 +00:00
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
2024-01-14 09:06:28 +00:00
if (name.find("attn_v.weight") != std::string::npos) {
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
2024-03-08 09:55:50 +00:00
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
2024-01-14 09:06:28 +00:00
++qs.i_attention_wv;
}
2024-03-08 09:55:50 +00:00
else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
new_type = GGML_TYPE_Q4_K;
}
2024-01-14 09:06:28 +00:00
else if (name.find("ffn_down") != std::string::npos) {
2024-03-08 09:55:50 +00:00
if (qs.i_ffn_down < qs.n_ffn_down/8) {
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
}
2024-01-27 15:24:53 +00:00
++qs.i_ffn_down;
2024-01-14 09:06:28 +00:00
}
2024-02-20 10:09:57 +00:00
else if (name.find("attn_output.weight") != std::string::npos) {
2024-03-08 09:55:50 +00:00
if (qs.model.hparams.n_expert == 8) {
new_type = GGML_TYPE_Q5_K;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
2024-03-08 09:55:50 +00:00
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
}
2024-02-20 10:09:57 +00:00
}
} else if (name.find("attn_v.weight") != std::string::npos) {
2024-01-17 19:23:33 +00:00
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
new_type = GGML_TYPE_Q4_K;
}
2024-02-10 08:10:59 +00:00
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
2024-03-08 09:55:50 +00:00
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
2024-03-08 09:55:50 +00:00
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
new_type = GGML_TYPE_Q4_K;
2024-02-25 18:00:10 +00:00
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
2024-03-08 09:55:50 +00:00
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
2024-02-22 21:30:53 +00:00
new_type = GGML_TYPE_Q5_K;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
if (qs.model.type == MODEL_70B) {
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// nearly negligible increase in model size by quantizing this tensor with more bits:
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
}
if (qs.model.hparams.n_expert == 8) {
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
// TODO: explore better strategies
new_type = GGML_TYPE_Q8_0;
}
++qs.i_attention_wv;
} else if (name.find("attn_k.weight") != std::string::npos) {
if (qs.model.hparams.n_expert == 8) {
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
// TODO: explore better strategies
new_type = GGML_TYPE_Q8_0;
}
2024-03-08 09:55:50 +00:00
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
new_type = GGML_TYPE_IQ3_XXS;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ2_S;
}
} else if (name.find("attn_q.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
new_type = GGML_TYPE_IQ3_XXS;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ2_S;
2024-02-28 11:04:05 +00:00
}
2024-01-27 15:24:53 +00:00
} else if (name.find("ffn_down") != std::string::npos) {
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
int i_layer = info.first, n_layer = info.second;
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
2024-03-08 09:55:50 +00:00
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
2024-01-14 09:06:28 +00:00
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
2024-01-11 20:10:10 +00:00
}
2024-02-10 08:10:59 +00:00
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
2024-01-14 09:06:28 +00:00
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
: GGML_TYPE_Q3_K;
}
2024-03-08 09:55:50 +00:00
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
(qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
if (arch == LLM_ARCH_FALCON) {
2024-01-14 09:06:28 +00:00
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
} else {
2024-01-14 09:06:28 +00:00
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
}
}
2024-03-08 09:55:50 +00:00
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
new_type = GGML_TYPE_Q5_K;
2024-02-22 21:30:53 +00:00
}
2024-01-14 09:06:28 +00:00
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
new_type = GGML_TYPE_Q5_K;
}
2024-01-17 19:23:33 +00:00
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
&& qs.has_imatrix && i_layer < n_layer/8) {
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
}
2024-01-27 15:24:53 +00:00
++qs.i_ffn_down;
} else if (name.find("attn_output.weight") != std::string::npos) {
if (arch != LLM_ARCH_FALCON) {
2024-01-14 09:06:28 +00:00
if (qs.model.hparams.n_expert == 8) {
2024-03-08 09:55:50 +00:00
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
2024-02-22 21:30:53 +00:00
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
2024-03-08 09:55:50 +00:00
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
2024-01-14 09:06:28 +00:00
new_type = GGML_TYPE_Q5_K;
}
} else {
2024-03-08 09:55:50 +00:00
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
2024-01-14 09:06:28 +00:00
}
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
}
}
else if (name.find("attn_qkv.weight") != std::string::npos) {
2024-03-08 09:55:50 +00:00
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
}
2024-01-27 15:24:53 +00:00
else if (name.find("ffn_gate") != std::string::npos) {
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
int i_layer = info.first, n_layer = info.second;
2024-03-08 09:55:50 +00:00
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
new_type = GGML_TYPE_IQ3_XXS;
2024-01-27 15:24:53 +00:00
}
++qs.i_ffn_gate;
}
else if (name.find("ffn_up") != std::string::npos) {
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
int i_layer = info.first, n_layer = info.second;
2024-03-08 09:55:50 +00:00
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
new_type = GGML_TYPE_IQ3_XXS;
2024-01-27 15:24:53 +00:00
}
++qs.i_ffn_up;
}
2024-02-20 10:09:57 +00:00
2024-01-27 15:24:53 +00:00
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
//}
2024-01-11 20:10:10 +00:00
// IK: let's remove this, else Q2_K is almost the same as Q3_K_S
//else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
//}
// This can be used to reduce the size of the Q5_K_S model.
// The associated PPL increase is fully in line with the size reduction
//else {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
//}
bool convert_incompatible_tensor = false;
2024-08-08 11:16:50 +00:00
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
new_type == GGML_TYPE_IQ1_M) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
convert_incompatible_tensor = true;
} else {
++qs.n_k_quantized;
}
}
if (convert_incompatible_tensor) {
switch (new_type) {
2024-01-17 19:23:33 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
2024-03-08 09:55:50 +00:00
case GGML_TYPE_IQ2_S:
2024-02-10 08:10:59 +00:00
case GGML_TYPE_IQ3_XXS:
2024-03-08 09:55:50 +00:00
case GGML_TYPE_IQ3_S:
2024-02-20 10:09:57 +00:00
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
2024-02-22 21:30:53 +00:00
case GGML_TYPE_Q2_K:
2024-03-08 09:55:50 +00:00
case GGML_TYPE_Q3_K:
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
}
2024-08-28 08:04:02 +00:00
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
new_type = GGML_TYPE_F16;
}
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
++qs.n_fallback;
}
return new_type;
}
2024-05-12 17:12:46 +00:00
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
2024-03-08 09:55:50 +00:00
if (nthread < 2) {
// single-thread
2024-05-12 17:12:46 +00:00
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
if (!ggml_validate_row_data(new_type, new_data, new_size)) {
throw std::runtime_error("quantized data validation failed");
}
return new_size;
2024-03-08 09:55:50 +00:00
}
2024-05-12 17:12:46 +00:00
std::mutex mutex;
int64_t counter = 0;
size_t new_size = 0;
bool valid = true;
auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
2024-03-08 09:55:50 +00:00
nrows, n_per_row, imatrix]() {
2024-05-12 17:12:46 +00:00
const int64_t nrows_per_chunk = chunk_size / n_per_row;
2024-03-08 09:55:50 +00:00
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
2024-05-12 17:12:46 +00:00
int64_t first_row = counter; counter += nrows_per_chunk;
2024-03-08 09:55:50 +00:00
if (first_row >= nrows) {
if (local_size > 0) {
new_size += local_size;
}
break;
}
lock.unlock();
2024-05-12 17:12:46 +00:00
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
local_size += this_size;
// validate the quantized data
const size_t row_size = ggml_row_size(new_type, n_per_row);
void * this_data = (char *) new_data + first_row * row_size;
if (!ggml_validate_row_data(new_type, this_data, this_size)) {
std::unique_lock<std::mutex> lock(mutex);
valid = false;
break;
}
2024-03-08 09:55:50 +00:00
}
};
for (int it = 0; it < nthread - 1; ++it) {
workers.emplace_back(compute);
}
compute();
for (auto & w : workers) { w.join(); }
workers.clear();
2024-05-12 17:12:46 +00:00
if (!valid) {
throw std::runtime_error("quantized data validation failed");
}
2024-03-08 09:55:50 +00:00
return new_size;
}
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
2024-03-15 12:21:59 +00:00
ggml_type default_type;
llama_ftype ftype = params->ftype;
switch (params->ftype) {
2024-03-15 12:21:59 +00:00
case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
2024-05-12 17:12:46 +00:00
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
2024-03-15 12:21:59 +00:00
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
// K-quants
2024-01-27 15:24:53 +00:00
case LLAMA_FTYPE_MOSTLY_Q2_K_S:
2024-03-15 12:21:59 +00:00
case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
2024-03-15 12:21:59 +00:00
case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
2024-03-15 12:21:59 +00:00
case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
2024-03-15 12:21:59 +00:00
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
2024-03-15 12:21:59 +00:00
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
2024-08-08 11:16:50 +00:00
case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;
case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break;
case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: default_type = GGML_TYPE_Q4_0_8_8; break;
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
int nthread = params->nthread;
if (nthread <= 0) {
nthread = std::thread::hardware_concurrency();
}
// mmap consistently increases speed Linux, and also increases speed on Windows with
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
#if defined(__linux__) || defined(_WIN32)
constexpr bool use_mmap = true;
#else
constexpr bool use_mmap = false;
#endif
llama_model_kv_override * kv_overrides = nullptr;
if (params->kv_overrides) {
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
2024-05-12 17:12:46 +00:00
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
2024-04-07 13:21:08 +00:00
ml.init_mappings(false); // no prefetching
llama_model model;
llm_load_arch(ml, model);
llm_load_hparams(ml, model);
struct quantize_state_internal qs(model, params);
if (params->only_copy) {
ftype = model.ftype;
}
2024-01-14 09:06:28 +00:00
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
if (params->imatrix) {
imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
if (imatrix_data) {
LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
2024-01-17 19:23:33 +00:00
qs.has_imatrix = true;
2024-06-16 10:10:54 +00:00
// check imatrix for nans or infs
for (const auto & kv : *imatrix_data) {
for (float f : kv.second) {
if (!std::isfinite(f)) {
throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
}
}
}
2024-01-14 09:06:28 +00:00
}
}
const size_t align = GGUF_DEFAULT_ALIGNMENT;
struct gguf_context * ctx_out = gguf_init_empty();
// copy the KV pairs from the input file
gguf_set_kv (ctx_out, ml.meta);
2024-08-08 11:16:50 +00:00
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
gguf_set_val_u32(ctx_out, "general.file_type", ftype); // TODO: use LLM_KV
2024-05-12 17:12:46 +00:00
// Remove split metadata
gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
if (params->kv_overrides) {
const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
for (auto & o : overrides) {
if (o.key[0] == 0) break;
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
2024-05-12 17:12:46 +00:00
gguf_set_val_f32(ctx_out, o.key, o.val_f64);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
2024-05-12 17:12:46 +00:00
gguf_set_val_i32(ctx_out, o.key, o.val_i64);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
2024-05-12 17:12:46 +00:00
gguf_set_val_bool(ctx_out, o.key, o.val_bool);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
gguf_set_val_str(ctx_out, o.key, o.val_str);
} else {
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
}
}
}
for (int i = 0; i < ml.n_tensors; ++i) {
const struct ggml_tensor * meta = ml.get_tensor_meta(i);
const std::string name = ggml_get_name(meta);
// TODO: avoid hardcoded tensor names - use the TN_* constants
2024-05-12 17:12:46 +00:00
if (name.find("attn_v.weight") != std::string::npos ||
2024-08-28 08:04:02 +00:00
name.find("attn_qkv.weight") != std::string::npos ||
name.find("attn_kv_b.weight")!= std::string::npos) {
++qs.n_attention_wv;
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
2024-03-15 12:21:59 +00:00
qs.has_output = true;
}
}
2024-04-07 13:21:08 +00:00
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks
2024-08-28 08:04:02 +00:00
{
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
// attention layers have a non-zero number of kv heads
int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
if (llama_model_has_encoder(&model)) {
n_attn_layer *= 3;
}
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
}
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<std::thread> workers;
workers.reserve(nthread);
int idx = 0;
std::vector<no_init<uint8_t>> read_data;
std::vector<no_init<uint8_t>> work;
std::vector<no_init<float>> f32_conv_buf;
2024-05-12 17:12:46 +00:00
uint16_t n_split = 1;
// Assume split index is continuous
if (params->keep_split) {
for (int i = 0; i < ml.n_tensors; ++i) {
n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
}
}
std::vector<gguf_context*> ctx_outs(n_split, NULL);
ctx_outs[0] = ctx_out;
// populate the original tensors so we get an initial meta data
for (int i = 0; i < ml.n_tensors; ++i) {
2024-05-12 17:12:46 +00:00
auto weight = ml.get_weight(i);
uint16_t i_split = params->keep_split ? weight->idx : 0;
struct ggml_tensor * tensor = weight->tensor;
if (ctx_outs[i_split] == NULL) {
ctx_outs[i_split] = gguf_init_empty();
}
gguf_add_tensor(ctx_outs[i_split], tensor);
}
2024-05-12 17:12:46 +00:00
// Set split info if needed
if (n_split > 1) {
for (size_t i = 0; i < ctx_outs.size(); ++i) {
gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
}
}
2024-05-12 17:12:46 +00:00
int cur_split = -1;
std::ofstream fout;
auto close_ofstream = [&]() {
// Write metadata and close file handler
if (fout.is_open()) {
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
gguf_get_meta_data(ctx_outs[cur_split], data.data());
fout.write((const char *) data.data(), data.size());
fout.close();
}
};
auto new_ofstream = [&](int index) {
cur_split = index;
GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
std::string fname = fname_out;
if (params->keep_split) {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
fname = std::string(split_path);
}
2024-05-12 17:12:46 +00:00
fout = std::ofstream(fname, std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
// placeholder for the meta data
::zeros(fout, meta_size);
};
2024-04-07 13:21:08 +00:00
2024-05-12 17:12:46 +00:00
const auto tn = LLM_TN(model.arch);
new_ofstream(0);
for (int i = 0; i < ml.n_tensors; ++i) {
2024-05-12 17:12:46 +00:00
auto weight = ml.get_weight(i);
struct ggml_tensor * tensor = weight->tensor;
if (weight->idx != cur_split && params->keep_split) {
close_ofstream();
new_ofstream(weight->idx);
}
const std::string name = ggml_get_name(tensor);
if (!ml.use_mmap) {
if (read_data.size() < ggml_nbytes(tensor)) {
read_data.resize(ggml_nbytes(tensor));
}
tensor->data = read_data.data();
}
ml.load_data_for(tensor);
LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
++idx, ml.n_tensors,
ggml_get_name(tensor),
llama_format_tensor_shape(tensor).c_str(),
ggml_type_name(tensor->type));
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
2024-04-07 13:21:08 +00:00
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);
2024-05-12 17:12:46 +00:00
// do not quantize norm tensors
quantize &= name.find("_norm.weight") == std::string::npos;
quantize &= params->quantize_output_tensor || name != "output.weight";
quantize &= !params->only_copy;
// do not quantize expert gating tensors
2024-03-08 09:55:50 +00:00
// NOTE: can't use LLM_TN here because the layer number is not known
quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
2024-02-20 10:09:57 +00:00
// do not quantize positional embeddings and token types (BERT)
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
2024-03-15 12:21:59 +00:00
// do not quantize Mamba's small yet 2D weights
// NOTE: can't use LLM_TN here because the layer number is not known
quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
2024-07-08 11:14:17 +00:00
// do not quantize relative position bias (T5)
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
enum ggml_type new_type;
void * new_data;
size_t new_size;
if (quantize) {
2024-03-15 12:21:59 +00:00
new_type = default_type;
// get more optimal quantization type based on the tensor shape, layer, etc.
if (!params->pure && ggml_is_quantized(default_type)) {
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
}
2024-05-12 17:12:46 +00:00
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
new_type = params->token_embedding_type;
}
2024-05-12 17:12:46 +00:00
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
new_type = params->output_tensor_type;
}
// If we've decided to quantize to the same type the tensor is already
// in then there's nothing to do.
quantize = tensor->type != new_type;
}
2024-03-15 12:21:59 +00:00
if (!quantize) {
new_type = tensor->type;
new_data = tensor->data;
new_size = ggml_nbytes(tensor);
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
} else {
2024-05-12 17:12:46 +00:00
const int64_t nelements = ggml_nelements(tensor);
2024-01-14 09:06:28 +00:00
const float * imatrix = nullptr;
if (imatrix_data) {
auto it = imatrix_data->find(tensor->name);
if (it == imatrix_data->end()) {
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
} else {
2024-04-07 13:21:08 +00:00
if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
2024-01-14 09:06:28 +00:00
imatrix = it->second.data();
} else {
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
2024-04-07 13:21:08 +00:00
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
// this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
// this is a significant error and it may be good idea to abort the process if this happens,
// since many people will miss the error and not realize that most of the model is being quantized without an imatrix
// tok_embd should be ignored in this case, since it always causes this warning
if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
}
2024-01-14 09:06:28 +00:00
}
}
}
if ((new_type == GGML_TYPE_IQ2_XXS ||
new_type == GGML_TYPE_IQ2_XS ||
2024-03-08 09:55:50 +00:00
new_type == GGML_TYPE_IQ2_S ||
2024-02-20 10:09:57 +00:00
new_type == GGML_TYPE_IQ1_S ||
(new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
2024-01-14 09:06:28 +00:00
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
LLAMA_LOG_ERROR("\n\n============================================================\n");
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
LLAMA_LOG_ERROR("============================================================\n\n");
throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
}
float * f32_data;
if (tensor->type == GGML_TYPE_F32) {
f32_data = (float *) tensor->data;
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else {
2024-03-08 09:55:50 +00:00
llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
f32_data = (float *) f32_conv_buf.data();
}
2024-08-08 11:16:50 +00:00
int chunk_size_multiplier = 1;
if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 || new_type == GGML_TYPE_Q4_0_8_8) {
if ((new_type == GGML_TYPE_Q4_0_8_8) && (tensor->ne[1] % 8 != 0)) new_type = GGML_TYPE_Q4_0;
else if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
}
2024-03-15 12:21:59 +00:00
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
fflush(stdout);
2024-05-12 17:12:46 +00:00
if (work.size() < (size_t)nelements * 4) {
work.resize(nelements * 4); // upper bound on size
}
new_data = work.data();
2024-05-12 17:12:46 +00:00
const int64_t n_per_row = tensor->ne[0];
const int64_t nrows = tensor->ne[1];
2024-01-14 09:06:28 +00:00
2024-05-12 17:12:46 +00:00
static const int64_t min_chunk_size = 32 * 512;
2024-08-08 11:16:50 +00:00
const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)) *
chunk_size_multiplier;
2024-01-14 09:06:28 +00:00
2024-05-12 17:12:46 +00:00
const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
2024-04-07 13:21:08 +00:00
// quantize each expert separately since they have different importance matrices
new_size = 0;
for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
const float * f32_data_03 = f32_data + i03 * nelements_matrix;
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
}
2024-03-15 12:21:59 +00:00
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
}
total_size_org += ggml_nbytes(tensor);
total_size_new += new_size;
// update the gguf meta data as we go
2024-05-12 17:12:46 +00:00
gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
// write tensor data + padding
fout.write((const char *) new_data, new_size);
zeros(fout, GGML_PAD(new_size, align) - new_size);
}
2024-05-12 17:12:46 +00:00
close_ofstream();
for (auto & c:ctx_outs) {
gguf_free(c);
}
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
if (qs.n_fallback > 0) {
2024-03-15 12:21:59 +00:00
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
}
}
2024-08-08 11:16:50 +00:00
static void llama_lora_adapter_init_internal(struct llama_model * model, const char * path_lora, struct llama_lora_adapter & adapter) {
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
2024-08-08 11:16:50 +00:00
ggml_context * ctx = nullptr;
struct gguf_init_params meta_gguf_params = {
/* .no_alloc = */ true,
/* .ctx = */ &ctx,
2024-01-12 20:04:51 +00:00
};
2024-08-08 11:16:50 +00:00
struct gguf_context * ctx_gguf = gguf_init_from_file(path_lora, meta_gguf_params);
if (!ctx_gguf) {
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
}
2024-08-08 11:16:50 +00:00
// check metadata
{
auto get_kv_str = [&](const std::string & key) -> std::string {
int id = gguf_find_key(ctx_gguf, key.c_str());
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
};
auto get_kv_f32 = [&](const std::string & key) -> float {
int id = gguf_find_key(ctx_gguf, key.c_str());
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
};
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
2024-08-08 11:16:50 +00:00
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
if (general_type != "adapter") {
gguf_free(ctx_gguf);
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
}
2024-08-08 11:16:50 +00:00
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
auto general_arch = llm_arch_from_string(general_arch_str);
if (general_arch != model->arch) {
gguf_free(ctx_gguf);
throw std::runtime_error("model arch and LoRA arch mismatch");
}
2024-08-08 11:16:50 +00:00
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
if (adapter_type != "lora") {
gguf_free(ctx_gguf);
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
}
2024-08-08 11:16:50 +00:00
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
2024-01-12 20:04:51 +00:00
}
2024-08-08 11:16:50 +00:00
int n_tensors = gguf_get_n_tensors(ctx_gguf);
2024-08-08 11:16:50 +00:00
// contexts for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto get_ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
// add a new context
struct ggml_init_params params = {
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * buft_ctx = ggml_init(params);
ctx_map[buft] = buft_ctx;
return buft_ctx;
2024-01-12 20:04:51 +00:00
};
2024-08-08 11:16:50 +00:00
return it->second;
};
2024-08-08 11:16:50 +00:00
// bundle lora_a and lora_b into pairs
std::map<std::string, llama_lora_weight> ab_map;
auto str_endswith = [](const std::string & str, const std::string & suffix) {
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
};
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
std::string name(cur->name);
if (str_endswith(name, ".lora_a")) {
replace_all(name, ".lora_a", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_lora_weight(cur, nullptr);
} else {
ab_map[name].a = cur;
}
} else if (str_endswith(name, ".lora_b")) {
replace_all(name, ".lora_b", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_lora_weight(nullptr, cur);
} else {
ab_map[name].b = cur;
}
2024-01-12 20:04:51 +00:00
} else {
2024-08-08 11:16:50 +00:00
gguf_free(ctx_gguf);
ggml_free(ctx);
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
2024-01-12 20:04:51 +00:00
}
2024-08-08 11:16:50 +00:00
}
2024-08-08 11:16:50 +00:00
// add tensors
for (auto & it : ab_map) {
const std::string & name = it.first;
llama_lora_weight & w = it.second;
2024-08-08 11:16:50 +00:00
if (!w.a || !w.b) {
gguf_free(ctx_gguf);
ggml_free(ctx);
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
2024-01-12 20:04:51 +00:00
}
2024-08-08 11:16:50 +00:00
// device buft and device ctx
auto * model_tensor = llama_get_model_tensor(model, name.c_str());
if (!model_tensor) {
gguf_free(ctx_gguf);
ggml_free(ctx);
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
2024-01-12 20:04:51 +00:00
}
2024-08-08 11:16:50 +00:00
struct ggml_context * dev_ctx = get_ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
// validate tensor shape
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
gguf_free(ctx_gguf);
ggml_free(ctx);
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
2024-01-12 20:04:51 +00:00
}
2024-08-08 11:16:50 +00:00
if (w.a->ne[1] != w.b->ne[0]) {
gguf_free(ctx_gguf);
ggml_free(ctx);
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
}
// save tensor to adapter
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
ggml_set_name(tensor_a, w.a->name);
ggml_set_name(tensor_b, w.b->name);
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
}
2024-08-08 11:16:50 +00:00
// allocate tensors / buffers and zero
{
adapter.ctxs.reserve(ctx_map.size());
adapter.bufs.reserve(ctx_map.size());
for (auto it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx_dev = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft);
if (!buf) {
gguf_free(ctx_gguf);
ggml_free(ctx);
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
}
2024-08-08 11:16:50 +00:00
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
adapter.ctxs.push_back(ctx_dev);
adapter.bufs.push_back(buf);
}
}
2024-08-08 11:16:50 +00:00
// set tensor data
{
llama_file gguf_file(path_lora, "rb");
std::vector<uint8_t> read_buf;
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
size_t offs = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, gguf_find_tensor(ctx_gguf, orig->name));
size_t size = ggml_nbytes(orig);
read_buf.resize(size);
gguf_file.seek(offs, SEEK_SET);
gguf_file.read_raw(read_buf.data(), size);
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
2024-01-12 20:04:51 +00:00
};
2024-08-08 11:16:50 +00:00
for (auto & it : adapter.ab_map) {
auto orig = ab_map[it.first];
auto dev = it.second;
set_tensor(orig.a, dev.a);
set_tensor(orig.b, dev.b);
2024-01-12 20:04:51 +00:00
}
2024-08-08 11:16:50 +00:00
}
2024-08-08 11:16:50 +00:00
LLAMA_LOG_INFO("%s: loaded %ld tensors from lora file\n", __func__, adapter.ab_map.size()*2);
2024-01-12 20:04:51 +00:00
2024-08-08 11:16:50 +00:00
// free ctx for reading gguf
gguf_free(ctx_gguf);
ggml_free(ctx);
}
2024-01-12 20:04:51 +00:00
2024-08-08 11:16:50 +00:00
int32_t llama_lora_adapter_set(
struct llama_context * ctx,
struct llama_lora_adapter * adapter,
float scale) {
if (ctx->cparams.flash_attn) {
LLAMA_LOG_ERROR("%s: flash_attn is not compatible with LoRA\n", __func__);
return -1;
}
2024-08-08 11:16:50 +00:00
ctx->lora_adapters[adapter] = scale;
return 0;
}
2024-08-08 11:16:50 +00:00
int32_t llama_lora_adapter_remove(
struct llama_context * ctx,
struct llama_lora_adapter * adapter) {
auto pos = ctx->lora_adapters.find(adapter);
if (pos != ctx->lora_adapters.end()) {
ctx->lora_adapters.erase(pos);
return 0;
}
return -1;
}
2024-01-12 20:04:51 +00:00
2024-08-08 11:16:50 +00:00
void llama_lora_adapter_clear(struct llama_context * ctx) {
ctx->lora_adapters.clear();
}
2024-08-08 11:16:50 +00:00
void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
delete adapter;
}
//
// interface implementation
//
struct llama_model_params llama_model_default_params() {
struct llama_model_params result = {
/*.n_gpu_layers =*/ 0,
2024-03-08 09:55:50 +00:00
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ nullptr,
2024-06-16 10:10:54 +00:00
/*.rpc_servers =*/ nullptr,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.kv_overrides =*/ nullptr,
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
2024-05-12 17:12:46 +00:00
/*.check_tensors =*/ false,
};
#ifdef GGML_USE_METAL
2024-01-12 20:04:51 +00:00
// note: we usually have plenty of VRAM, so by default offload all layers to the GPU
result.n_gpu_layers = 999;
#endif
return result;
}
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.seed =*/ LLAMA_DEFAULT_SEED,
/*.n_ctx =*/ 512,
2024-03-15 12:21:59 +00:00
/*.n_batch =*/ 2048,
/*.n_ubatch =*/ 512,
/*.n_seq_max =*/ 1,
/*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
/*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
2024-03-08 09:55:50 +00:00
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
/*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
2024-07-08 11:14:17 +00:00
/*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
/*.rope_freq_base =*/ 0.0f,
/*.rope_freq_scale =*/ 0.0f,
/*.yarn_ext_factor =*/ -1.0f,
/*.yarn_attn_factor =*/ 1.0f,
/*.yarn_beta_fast =*/ 32.0f,
/*.yarn_beta_slow =*/ 1.0f,
/*.yarn_orig_ctx =*/ 0,
2024-03-08 09:55:50 +00:00
/*.defrag_thold =*/ -1.0f,
2024-01-17 19:23:33 +00:00
/*.cb_eval =*/ nullptr,
/*.cb_eval_user_data =*/ nullptr,
/*.type_k =*/ GGML_TYPE_F16,
/*.type_v =*/ GGML_TYPE_F16,
/*.logits_all =*/ false,
2024-03-08 09:55:50 +00:00
/*.embeddings =*/ false,
/*.offload_kqv =*/ true,
2024-05-12 17:12:46 +00:00
/*.flash_attn =*/ false,
2024-03-08 09:55:50 +00:00
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
};
return result;
}
struct llama_model_quantize_params llama_model_quantize_default_params() {
struct llama_model_quantize_params result = {
/*.nthread =*/ 0,
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
/*.output_tensor_type =*/ GGML_TYPE_COUNT,
/*.token_embedding_type =*/ GGML_TYPE_COUNT,
/*.allow_requantize =*/ false,
/*.quantize_output_tensor =*/ true,
/*.only_copy =*/ false,
/*.pure =*/ false,
2024-05-12 17:12:46 +00:00
/*.keep_split =*/ false,
2024-01-14 09:06:28 +00:00
/*.imatrix =*/ nullptr,
/*.kv_overrides =*/ nullptr,
};
return result;
}
2024-02-10 08:10:59 +00:00
size_t llama_max_devices(void) {
2024-06-16 10:10:54 +00:00
#if defined(GGML_USE_RPC)
return GGML_RPC_MAX_SERVERS;
#elif defined(GGML_USE_METAL)
2024-02-10 08:10:59 +00:00
return 1;
#elif defined(GGML_USE_CUDA)
2024-02-10 08:10:59 +00:00
return GGML_CUDA_MAX_DEVICES;
#elif defined(GGML_USE_SYCL)
return GGML_SYCL_MAX_DEVICES;
#elif defined(GGML_USE_VULKAN)
return GGML_VK_MAX_DEVICES;
2024-08-08 11:16:50 +00:00
#elif defined(GGML_USE_CANN)
return GGML_CANN_MAX_DEVICES;
2024-02-10 08:10:59 +00:00
#else
return 1;
#endif
}
2024-02-10 08:10:59 +00:00
bool llama_supports_mmap(void) {
return llama_mmap::SUPPORTED;
}
2024-02-10 08:10:59 +00:00
bool llama_supports_mlock(void) {
return llama_mlock::SUPPORTED;
}
2024-02-10 08:10:59 +00:00
bool llama_supports_gpu_offload(void) {
2024-06-16 10:10:54 +00:00
#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
2024-02-10 08:10:59 +00:00
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
return true;
#else
return false;
#endif
}
2024-02-20 10:09:57 +00:00
void llama_backend_init(void) {
ggml_time_init();
// needed to initialize f16 tables
{
struct ggml_init_params params = { 0, NULL, false };
struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx);
}
}
2024-02-20 10:09:57 +00:00
void llama_numa_init(enum ggml_numa_strategy numa) {
if (numa != GGML_NUMA_STRATEGY_DISABLED) {
ggml_numa_init(numa);
}
}
void llama_backend_free(void) {
2024-01-17 19:23:33 +00:00
ggml_quantize_free();
}
int64_t llama_time_us(void) {
return ggml_time_us();
}
struct llama_model * llama_load_model_from_file(
2024-02-10 08:10:59 +00:00
const char * path_model,
struct llama_model_params params) {
ggml_time_init();
llama_model * model = new llama_model;
unsigned cur_percentage = 0;
if (params.progress_callback == NULL) {
params.progress_callback_user_data = &cur_percentage;
params.progress_callback = [](float progress, void * ctx) {
unsigned * cur_percentage_p = (unsigned *) ctx;
unsigned percentage = (unsigned) (100 * progress);
while (percentage > *cur_percentage_p) {
*cur_percentage_p = percentage;
LLAMA_LOG_INFO(".");
if (percentage >= 100) {
LLAMA_LOG_INFO("\n");
}
}
return true;
};
}
2024-06-16 10:10:54 +00:00
if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
// split the servers set them into model->rpc_servers
std::string servers(params.rpc_servers);
size_t pos = 0;
while ((pos = servers.find(",")) != std::string::npos) {
std::string server = servers.substr(0, pos);
model->rpc_servers.push_back(server);
servers.erase(0, pos + 1);
}
model->rpc_servers.push_back(servers);
}
int status = llama_model_load(path_model, *model, params);
GGML_ASSERT(status <= 0);
if (status < 0) {
if (status == -1) {
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
} else if (status == -2) {
LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
}
delete model;
return nullptr;
}
return model;
}
void llama_free_model(struct llama_model * model) {
delete model;
}
struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params) {
if (!model) {
2024-03-15 12:21:59 +00:00
LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
return nullptr;
}
if (params.n_batch == 0 && params.n_ubatch == 0) {
LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
return nullptr;
}
if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
return nullptr;
}
2024-06-16 10:10:54 +00:00
if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
params.flash_attn = false;
}
2024-06-18 06:45:37 +00:00
if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
params.flash_attn = false;
}
2024-06-16 10:10:54 +00:00
if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
return nullptr;
}
llama_context * ctx = new llama_context(*model);
const auto & hparams = model->hparams;
auto & cparams = ctx->cparams;
cparams.n_seq_max = std::max(1u, params.n_seq_max);
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch;
cparams.yarn_ext_factor = params.yarn_ext_factor;
cparams.yarn_attn_factor = params.yarn_attn_factor;
cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow;
2024-03-08 09:55:50 +00:00
cparams.defrag_thold = params.defrag_thold;
cparams.embeddings = params.embeddings;
cparams.offload_kqv = params.offload_kqv;
2024-05-12 17:12:46 +00:00
cparams.flash_attn = params.flash_attn;
2024-03-08 09:55:50 +00:00
cparams.pooling_type = params.pooling_type;
cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
// this is necessary due to kv_self.n being padded later during inference
2024-06-16 10:10:54 +00:00
cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
2024-03-15 12:21:59 +00:00
// with causal attention, the batch size is limited by the context size
cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
2024-05-12 17:12:46 +00:00
// the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
// this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
// ref: https://github.com/ggerganov/llama.cpp/pull/5021
if (cparams.n_batch < GGML_KQ_MASK_PAD) {
LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
cparams.n_batch = GGML_KQ_MASK_PAD;
}
cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
2024-03-15 12:21:59 +00:00
2024-06-16 10:10:54 +00:00
cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
hparams.n_ctx_train;
2024-01-17 19:23:33 +00:00
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
auto rope_scaling_type = params.rope_scaling_type;
2024-03-08 09:55:50 +00:00
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
rope_scaling_type = hparams.rope_scaling_type_train;
}
2024-03-08 09:55:50 +00:00
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
}
if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
2024-03-08 09:55:50 +00:00
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
}
2024-06-16 10:10:54 +00:00
cparams.yarn_attn_factor *= hparams.rope_attn_factor;
2024-03-15 12:21:59 +00:00
2024-03-08 09:55:50 +00:00
if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
} else {
cparams.pooling_type = hparams.pooling_type;
}
}
2024-07-08 11:14:17 +00:00
if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
cparams.causal_attn = hparams.causal_attn;
} else {
cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
}
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
2024-03-15 12:21:59 +00:00
LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
2024-05-12 17:12:46 +00:00
LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
2024-03-08 09:55:50 +00:00
ctx->abort_callback = params.abort_callback;
ctx->abort_callback_data = params.abort_callback_data;
2024-08-08 11:16:50 +00:00
ctx->sampling.rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
2024-08-28 08:04:02 +00:00
// build worst-case graph for encoder if a model contains encoder
ctx->is_encoding = llama_model_has_encoder(model);
2024-03-15 12:21:59 +00:00
uint32_t kv_size = cparams.n_ctx;
ggml_type type_k = params.type_k;
ggml_type type_v = params.type_v;
// Mamba only needs a constant number of KV cache cells per sequence
2024-08-28 08:04:02 +00:00
if (llama_model_is_recurrent(model)) {
2024-03-15 12:21:59 +00:00
// Mamba needs at least as many KV cells as there are sequences kept at any time
kv_size = std::max((uint32_t) 1, params.n_seq_max);
// it's probably best to keep as much precision as possible for the states
type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
}
2024-01-06 15:22:57 +00:00
GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
if (!hparams.vocab_only) {
2024-01-12 20:04:51 +00:00
// initialize backends
2024-06-16 10:10:54 +00:00
#if defined(GGML_USE_METAL)
if (model->n_gpu_layers > 0) {
2024-01-12 20:04:51 +00:00
ctx->backend_metal = ggml_backend_metal_init();
if (ctx->backend_metal == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
2024-01-12 20:04:51 +00:00
llama_free(ctx);
return nullptr;
}
2024-01-12 20:04:51 +00:00
ctx->backends.push_back(ctx->backend_metal);
}
#elif defined(GGML_USE_CUDA)
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
2024-03-08 09:55:50 +00:00
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
} else {
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
ggml_backend_t backend = ggml_backend_cuda_init(device);
2024-01-12 20:04:51 +00:00
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
2024-01-12 20:04:51 +00:00
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
}
2024-01-28 17:44:10 +00:00
#elif defined(GGML_USE_VULKAN)
2024-04-07 13:21:08 +00:00
if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
llama_free(ctx);
return nullptr;
}
if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
2024-06-16 10:10:54 +00:00
ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
2024-04-07 13:21:08 +00:00
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
} else {
2024-02-10 08:10:59 +00:00
for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
ggml_backend_t backend = ggml_backend_vk_init(device);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
}
#elif defined(GGML_USE_SYCL)
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
if (backend == nullptr) {
2024-06-16 10:10:54 +00:00
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
} else {
// LLAMA_SPLIT_LAYER requires a backend for each GPU
for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
ggml_backend_t backend = ggml_backend_sycl_init(i);
2024-03-08 09:55:50 +00:00
if (backend == nullptr) {
2024-08-08 11:16:50 +00:00
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d for No.%d backend\n", __func__, i, i);
2024-03-08 09:55:50 +00:00
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
2024-01-28 17:44:10 +00:00
}
}
2024-02-10 08:10:59 +00:00
#elif defined(GGML_USE_KOMPUTE)
2024-01-28 17:44:10 +00:00
if (model->n_gpu_layers > 0) {
2024-02-10 08:10:59 +00:00
auto * backend = ggml_backend_kompute_init(model->main_gpu);
2024-01-28 17:44:10 +00:00
if (backend == nullptr) {
2024-02-10 08:10:59 +00:00
LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
2024-01-28 17:44:10 +00:00
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
2024-08-08 11:16:50 +00:00
#elif defined(GGML_USE_CANN)
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
// TODO: ggml_backend_cann is not support split tensor now, just leave code here.
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
ggml_backend_t backend = ggml_backend_cann_init(model->main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, model->main_gpu);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
} else {
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
// TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
ggml_backend_t backend = ggml_backend_cann_init(device);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
}
#endif
2024-06-16 10:10:54 +00:00
#ifdef GGML_USE_BLAS
ctx->backend_blas = ggml_backend_blas_init();
if (ctx->backend_blas == nullptr) {
LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
} else {
ctx->backends.push_back(ctx->backend_blas);
}
#endif
#if defined(GGML_USE_RPC)
if (model->n_gpu_layers > 0) {
for (const auto & endpoint : model->rpc_servers) {
ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
}
#endif
2024-01-12 20:04:51 +00:00
ctx->backend_cpu = ggml_backend_cpu_init();
if (ctx->backend_cpu == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
llama_free(ctx);
return nullptr;
}
2024-01-12 20:04:51 +00:00
ctx->backends.push_back(ctx->backend_cpu);
2024-05-12 17:12:46 +00:00
if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
llama_free(ctx);
return nullptr;
}
{
size_t memory_size_k = 0;
size_t memory_size_v = 0;
for (auto & k : ctx->kv_self.k_l) {
memory_size_k += ggml_nbytes(k);
}
for (auto & v : ctx->kv_self.v_l) {
memory_size_v += ggml_nbytes(v);
}
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
2024-03-15 12:21:59 +00:00
// graph outputs buffer
{
// resized during inference when a batch uses more outputs
if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
2024-03-15 12:21:59 +00:00
llama_free(ctx);
return nullptr;
}
LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
ggml_backend_buffer_name(ctx->buf_output),
ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
2024-01-27 15:24:53 +00:00
}
// scheduler and compute buffers
{
2024-01-12 20:04:51 +00:00
// buffer types used for the compute buffer of each backend
std::vector<ggml_backend_buffer_type_t> backend_buft;
for (auto * backend : ctx->backends) {
if (ggml_backend_is_cpu(backend)) {
// use host buffers for the CPU backend compute buffer
backend_buft.push_back(llama_default_buffer_type_cpu(true));
} else {
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
}
}
2024-08-08 11:16:50 +00:00
const size_t max_nodes = llama_model_max_nodes(*model);
2024-01-12 20:04:51 +00:00
// buffer used to store the computation graph and the tensor meta data
2024-08-08 11:16:50 +00:00
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
2024-03-15 12:21:59 +00:00
// enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
2024-06-16 10:10:54 +00:00
bool pipeline_parallel =
llama_get_device_count(*model) > 1 &&
model->n_gpu_layers > (int)model->hparams.n_layer &&
model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
params.offload_kqv;
#ifndef GGML_USE_CUDA
2024-03-15 12:21:59 +00:00
// pipeline parallelism requires support for async compute and events
// currently this is only implemented in the CUDA backend
pipeline_parallel = false;
#endif
2024-08-08 11:16:50 +00:00
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel);
2024-03-15 12:21:59 +00:00
if (pipeline_parallel) {
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
}
// build worst-case graph
2024-08-28 08:04:02 +00:00
uint32_t n_seqs = 1; // TODO: worst-case number of sequences
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
2024-08-28 08:04:02 +00:00
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
ggml_cgraph * gf = llama_build_graph(*ctx, ubatch, true);
2024-01-12 20:04:51 +00:00
// initialize scheduler with the worst-case graph
2024-02-12 08:39:58 +00:00
if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
llama_free(ctx);
return nullptr;
}
2024-02-12 08:39:58 +00:00
for (size_t i = 0; i < ctx->backends.size(); i++) {
ggml_backend_t backend = ctx->backends[i];
ggml_backend_buffer_type_t buft = backend_buft[i];
size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
if (size > 1) {
LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
ggml_backend_buft_name(buft),
size / 1024.0 / 1024.0);
}
}
2024-01-27 15:24:53 +00:00
// note: the number of splits during measure is higher than during inference due to the kv shift
int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
}
}
return ctx;
}
void llama_free(struct llama_context * ctx) {
delete ctx;
}
2024-08-08 11:16:50 +00:00
const struct llama_model * llama_get_model(const struct llama_context * ctx) {
return &ctx->model;
}
2024-08-08 11:16:50 +00:00
const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx) {
return &ctx->model.vocab;
}
uint32_t llama_n_ctx(const struct llama_context * ctx) {
return ctx->cparams.n_ctx;
}
uint32_t llama_n_batch(const struct llama_context * ctx) {
return ctx->cparams.n_batch;
}
2024-03-15 12:21:59 +00:00
uint32_t llama_n_ubatch(const struct llama_context * ctx) {
return ctx->cparams.n_ubatch;
}
uint32_t llama_n_seq_max(const struct llama_context * ctx) {
return ctx->kv_self.size;
}
enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
return model->vocab.type;
}
2024-03-08 09:55:50 +00:00
enum llama_rope_type llama_rope_type(const struct llama_model * model) {
switch (model->arch) {
// these models do not use RoPE
case LLM_ARCH_GPT2:
case LLM_ARCH_GPTJ:
case LLM_ARCH_MPT:
case LLM_ARCH_REFACT:
case LLM_ARCH_BLOOM:
2024-03-15 12:21:59 +00:00
case LLM_ARCH_MAMBA:
2024-05-12 17:12:46 +00:00
case LLM_ARCH_JINA_BERT_V2:
2024-07-08 11:14:17 +00:00
case LLM_ARCH_T5:
2024-08-28 08:04:02 +00:00
case LLM_ARCH_T5ENCODER:
2024-07-08 11:14:17 +00:00
case LLM_ARCH_JAIS:
2024-03-08 09:55:50 +00:00
return LLAMA_ROPE_TYPE_NONE;
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
case LLM_ARCH_PLAMO:
case LLM_ARCH_ORION:
case LLM_ARCH_INTERNLM2:
case LLM_ARCH_MINICPM:
2024-04-07 13:21:08 +00:00
case LLM_ARCH_XVERSE:
case LLM_ARCH_COMMAND_R:
2024-05-12 17:12:46 +00:00
case LLM_ARCH_OLMO:
2024-06-16 10:10:54 +00:00
case LLM_ARCH_ARCTIC:
case LLM_ARCH_DEEPSEEK2:
2024-07-08 11:14:17 +00:00
case LLM_ARCH_CHATGLM:
2024-03-08 09:55:50 +00:00
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
case LLM_ARCH_FALCON:
case LLM_ARCH_GROK:
2024-05-12 17:12:46 +00:00
case LLM_ARCH_DBRX:
2024-03-08 09:55:50 +00:00
case LLM_ARCH_BERT:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_STABLELM:
case LLM_ARCH_BITNET:
2024-03-08 09:55:50 +00:00
case LLM_ARCH_QWEN:
case LLM_ARCH_QWEN2:
2024-05-12 17:12:46 +00:00
case LLM_ARCH_QWEN2MOE:
2024-03-08 09:55:50 +00:00
case LLM_ARCH_PHI2:
2024-05-12 17:12:46 +00:00
case LLM_ARCH_PHI3:
2024-03-08 09:55:50 +00:00
case LLM_ARCH_GEMMA:
2024-07-08 11:14:17 +00:00
case LLM_ARCH_GEMMA2:
2024-03-08 09:55:50 +00:00
case LLM_ARCH_STARCODER2:
2024-07-08 11:14:17 +00:00
case LLM_ARCH_OPENELM:
2024-06-16 10:10:54 +00:00
case LLM_ARCH_GPTNEOX:
2024-08-08 11:16:50 +00:00
case LLM_ARCH_CODESHELL:
2024-08-28 08:04:02 +00:00
case LLM_ARCH_NEMOTRON:
case LLM_ARCH_EXAONE:
2024-03-08 09:55:50 +00:00
return LLAMA_ROPE_TYPE_NEOX;
// all model arches should be listed explicitly here
case LLM_ARCH_UNKNOWN:
2024-08-08 11:16:50 +00:00
GGML_ABORT("unknown architecture");
2024-03-08 09:55:50 +00:00
}
return LLAMA_ROPE_TYPE_NONE;
}
2024-05-12 17:12:46 +00:00
enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
return ctx->cparams.pooling_type;
}
2024-01-06 15:22:57 +00:00
int32_t llama_n_vocab(const struct llama_model * model) {
2024-03-15 12:21:59 +00:00
return model->hparams.n_vocab;
}
2024-01-06 15:22:57 +00:00
int32_t llama_n_ctx_train(const struct llama_model * model) {
return model->hparams.n_ctx_train;
}
2024-01-06 15:22:57 +00:00
int32_t llama_n_embd(const struct llama_model * model) {
return model->hparams.n_embd;
}
int32_t llama_n_layer(const struct llama_model * model) {
return model->hparams.n_layer;
}
float llama_rope_freq_scale_train(const struct llama_model * model) {
return model->hparams.rope_freq_scale_train;
}
2024-01-06 15:22:57 +00:00
int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
const auto & it = model->gguf_kv.find(key);
if (it == model->gguf_kv.end()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
return snprintf(buf, buf_size, "%s", it->second.c_str());
}
2024-01-06 15:22:57 +00:00
int32_t llama_model_meta_count(const struct llama_model * model) {
return (int)model->gguf_kv.size();
}
2024-01-06 15:22:57 +00:00
int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
if (i < 0 || i >= (int)model->gguf_kv.size()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
auto it = model->gguf_kv.begin();
std::advance(it, i);
return snprintf(buf, buf_size, "%s", it->first.c_str());
}
2024-01-06 15:22:57 +00:00
int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
if (i < 0 || i >= (int)model->gguf_kv.size()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
auto it = model->gguf_kv.begin();
std::advance(it, i);
return snprintf(buf, buf_size, "%s", it->second.c_str());
}
2024-01-06 15:22:57 +00:00
int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
2024-01-12 20:04:51 +00:00
return snprintf(buf, buf_size, "%s %s %s",
2024-02-10 08:10:59 +00:00
llama_model_arch_name(model->arch),
llama_model_type_name(model->type),
llama_model_ftype_name(model->ftype).c_str());
}
uint64_t llama_model_size(const struct llama_model * model) {
uint64_t size = 0;
for (const auto & it : model->tensors_by_name) {
size += ggml_nbytes(it.second);
}
return size;
}
uint64_t llama_model_n_params(const struct llama_model * model) {
uint64_t nparams = 0;
for (const auto & it : model->tensors_by_name) {
nparams += ggml_nelements(it.second);
}
return nparams;
}
struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
2024-01-12 20:04:51 +00:00
auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
[name](const std::pair<std::string, struct ggml_tensor *> & it) {
return it.first == name;
});
if (it == model->tensors_by_name.end()) {
return nullptr;
}
return it->second;
}
2024-07-08 11:14:17 +00:00
bool llama_model_has_encoder(const struct llama_model * model) {
switch (model->arch) {
2024-08-28 08:04:02 +00:00
case LLM_ARCH_T5: return true;
case LLM_ARCH_T5ENCODER: return true;
default: return false;
}
}
bool llama_model_has_decoder(const struct llama_model * model) {
switch (model->arch) {
case LLM_ARCH_T5ENCODER: return false;
default: return true;
2024-07-08 11:14:17 +00:00
}
}
llama_token llama_model_decoder_start_token(const struct llama_model * model) {
return model->hparams.dec_start_token_id;
}
2024-08-28 08:04:02 +00:00
bool llama_model_is_recurrent(const struct llama_model * model) {
switch (model->arch) {
case LLM_ARCH_MAMBA: return true;
default: return false;
}
}
2024-01-06 15:22:57 +00:00
uint32_t llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params) {
try {
llama_model_quantize_internal(fname_inp, fname_out, params);
return 0;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
return 1;
}
}
2024-08-08 11:16:50 +00:00
struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
try {
2024-08-08 11:16:50 +00:00
struct llama_lora_adapter * adapter = new llama_lora_adapter(model);
llama_lora_adapter_init_internal(model, path_lora, *adapter);
return adapter;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
2024-08-08 11:16:50 +00:00
return nullptr;
}
}
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
GGML_ASSERT(cvec.tensors.empty());
GGML_ASSERT(cvec.ctxs.empty());
GGML_ASSERT(cvec.bufs.empty());
// count layer buffer types
std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
for (int64_t i = 0; i < model.hparams.n_layer; i++) {
buft_layer_count[model.buft_layer[i].buft]++;
}
// allocate contexts
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
for (auto & it : buft_layer_count) {
int n_layers = it.second;
struct ggml_init_params params = {
/*.mem_size =*/ n_layers * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
return 1;
}
ctx_map[it.first] = ctx;
}
// make tensors
2024-06-16 10:10:54 +00:00
cvec.tensors.reserve(model.hparams.n_layer);
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
for (size_t il = 1; il < model.hparams.n_layer; il++) {
struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
cvec.tensors.push_back(tensor);
}
// allocate tensors / buffers and zero
2024-06-16 10:10:54 +00:00
cvec.ctxs.reserve(ctx_map.size());
cvec.bufs.reserve(ctx_map.size());
for (auto it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
cvec.ctxs.push_back(ctx);
cvec.bufs.push_back(buf);
}
return true;
}
int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
const llama_model & model = lctx->model;
llama_control_vector & cvec = lctx->cvec;
if (data == nullptr) {
// disable the current control vector (but leave allocated for later)
cvec.layer_start = -1;
cvec.layer_end = -1;
return 0;
}
if (n_embd != (int) model.hparams.n_embd) {
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
return 1;
}
if (cvec.tensors.empty()) {
if (!llama_control_vector_init(cvec, model)) {
return 1;
}
}
cvec.layer_start = il_start;
cvec.layer_end = il_end;
for (size_t il = 1; il < model.hparams.n_layer; il++) {
assert(cvec.tensors[il] != nullptr);
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
if (off + n_embd <= len) {
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
}
}
return 0;
}
2024-03-15 12:21:59 +00:00
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
struct llama_kv_cache_view result = {
/*.n_cells = */ 0,
2024-03-15 12:21:59 +00:00
/*.n_seq_max = */ n_seq_max,
/*.token_count = */ 0,
/*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
/*.max_contiguous = */ 0,
/*.max_contiguous_idx = */ -1,
/*.cells = */ nullptr,
/*.cells_sequences = */ nullptr,
};
return result;
}
void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
if (view->cells != nullptr) {
free(view->cells);
view->cells = nullptr;
}
if (view->cells_sequences != nullptr) {
free(view->cells_sequences);
view->cells_sequences = nullptr;
}
}
void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
view->n_cells = int32_t(ctx->kv_self.size);
void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
view->cells = (struct llama_kv_cache_view_cell *)p;
2024-03-15 12:21:59 +00:00
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
view->cells_sequences = (llama_seq_id *)p;
}
const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
llama_kv_cache_view_cell * c_curr = view->cells;
llama_seq_id * cs_curr = view->cells_sequences;
int32_t used_cells = 0;
int32_t token_count = 0;
int32_t curr_contig_idx = -1;
uint32_t max_contig = 0;
int32_t max_contig_idx = -1;
2024-03-15 12:21:59 +00:00
for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
const size_t curr_size = kv_cells[i].seq_id.size();
token_count += curr_size;
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
if (curr_size > 0) {
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
max_contig = i - curr_contig_idx;
max_contig_idx = curr_contig_idx;
}
curr_contig_idx = -1;
} else if (curr_contig_idx < 0) {
curr_contig_idx = i;
}
int seq_idx = 0;
for (const llama_seq_id it : kv_cells[i].seq_id) {
2024-03-15 12:21:59 +00:00
if (seq_idx >= view->n_seq_max) {
break;
}
cs_curr[seq_idx] = it;
seq_idx++;
}
if (seq_idx != 0) {
used_cells++;
}
2024-03-15 12:21:59 +00:00
for (; seq_idx < view->n_seq_max; seq_idx++) {
cs_curr[seq_idx] = -1;
}
}
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
max_contig_idx = curr_contig_idx;
max_contig = kv_cells.size() - curr_contig_idx;
}
view->max_contiguous = max_contig;
view->max_contiguous_idx = max_contig_idx;
view->token_count = token_count;
view->used_cells = used_cells;
if (uint32_t(used_cells) != ctx->kv_self.used) {
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
__func__, ctx->kv_self.used, used_cells);
}
}
2024-01-06 15:22:57 +00:00
int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
int result = 0;
for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
result += ctx->kv_self.cells[i].seq_id.size();
}
return result;
}
2024-01-06 15:22:57 +00:00
int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
return ctx->kv_self.used;
}
void llama_kv_cache_clear(struct llama_context * ctx) {
llama_kv_cache_clear(ctx->kv_self);
}
2024-03-15 12:21:59 +00:00
bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
}
void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
if (seq_id_src == seq_id_dst) {
return;
}
llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
}
void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
}
2024-03-08 09:55:50 +00:00
void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
2024-01-11 20:10:10 +00:00
if (delta == 0) {
return;
}
2024-03-08 09:55:50 +00:00
llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
}
2024-01-11 20:10:10 +00:00
void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
if (d == 1) {
return;
}
llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
}
2024-03-08 09:55:50 +00:00
llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
}
void llama_kv_cache_defrag(struct llama_context * ctx) {
llama_kv_cache_defrag(ctx->kv_self);
}
void llama_kv_cache_update(struct llama_context * ctx) {
llama_kv_cache_update_internal(*ctx);
}
2024-05-12 17:12:46 +00:00
// deprecated
2024-08-08 11:16:50 +00:00
size_t llama_get_state_size(struct llama_context * ctx) {
2024-05-12 17:12:46 +00:00
return llama_state_get_size(ctx);
}
// deprecated
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
2024-08-08 11:16:50 +00:00
return llama_state_get_data(ctx, dst, -1);
2024-05-12 17:12:46 +00:00
}
// deprecated
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
2024-08-08 11:16:50 +00:00
return llama_state_set_data(ctx, src, -1);
2024-05-12 17:12:46 +00:00
}
// deprecated
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
}
// deprecated
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
return llama_state_save_file(ctx, path_session, tokens, n_token_count);
}
2024-03-08 09:55:50 +00:00
2024-08-08 11:16:50 +00:00
// TODO: replace all non-fatal assertions with returned errors or exceptions
struct llama_data_write {
virtual void write(const void * src, size_t size) = 0;
2024-08-28 08:04:02 +00:00
virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0;
virtual size_t get_size_written() = 0;
2024-08-08 11:16:50 +00:00
virtual ~llama_data_write() = default;
2024-08-08 11:16:50 +00:00
void write_string(const std::string & str) {
uint32_t str_size = str.size();
2024-08-08 11:16:50 +00:00
write(&str_size, sizeof(str_size));
write(str.data(), str_size);
}
2024-08-08 11:16:50 +00:00
void write_model_info(const struct llama_context * ctx) {
std::string arch_str = LLM_ARCH_NAMES.at(ctx->model.arch);
write_string(arch_str);
// TODO: add more model-specific info which should prevent loading the session file if not identical
}
2024-08-08 11:16:50 +00:00
void write_rng(const std::mt19937 & rng) {
std::ostringstream rng_ss;
rng_ss << rng;
2024-08-08 11:16:50 +00:00
const std::string & rng_str = rng_ss.str();
2024-08-08 11:16:50 +00:00
write_string(rng_str);
}
2024-08-28 08:04:02 +00:00
void write_output_ids(struct llama_context * ctx) {
llama_output_reorder(ctx);
2024-08-08 11:16:50 +00:00
const uint32_t n_outputs = ctx->n_outputs;
2024-08-08 11:16:50 +00:00
std::vector<int32_t> output_pos;
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
const size_t n_batch = ctx->cparams.n_batch;
const auto & output_ids = ctx->output_ids;
GGML_ASSERT(n_outputs <= ctx->output_size);
2024-08-08 11:16:50 +00:00
output_pos.resize(n_outputs);
2024-08-08 11:16:50 +00:00
// build a more compact representation of the output ids
for (size_t i = 0; i < n_batch; ++i) {
// map an output id to a position in the batch
int32_t pos = output_ids[i];
if (pos >= 0) {
GGML_ASSERT((uint32_t) pos < n_outputs);
output_pos[pos] = i;
}
}
2024-08-08 11:16:50 +00:00
write(&n_outputs, sizeof(n_outputs));
if (n_outputs) {
write(output_pos.data(), n_outputs * sizeof(int32_t));
}
}
2024-08-08 11:16:50 +00:00
void write_logits(const struct llama_context * ctx) {
const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_vocab);
2024-08-08 11:16:50 +00:00
write(&logits_size, sizeof(logits_size));
if (logits_size) {
write(ctx->logits, logits_size * sizeof(float));
}
}
2024-08-08 11:16:50 +00:00
void write_embeddings(const struct llama_context * ctx) {
const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_embd);
2024-08-08 11:16:50 +00:00
write(&embeddings_size, sizeof(embeddings_size));
2024-08-08 11:16:50 +00:00
if (embeddings_size) {
write(ctx->embd, embeddings_size * sizeof(float));
}
}
void write_kv_cache_meta(const llama_kv_cache & kv_self, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) {
for (const auto & range : cell_ranges) {
for (uint32_t i = range.first; i < range.second; ++i) {
const auto & cell = kv_self.cells[i];
const llama_pos pos = cell.pos;
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
write(&pos, sizeof(pos));
write(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id) {
for (auto seq_id : cell.seq_id) {
write(&seq_id, sizeof(seq_id));
}
}
}
2024-08-08 11:16:50 +00:00
}
}
2024-08-08 11:16:50 +00:00
void write_kv_cache_data(const struct llama_context * ctx, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) {
const struct llama_kv_cache & kv_self = ctx->kv_self;
const struct llama_hparams & hparams = ctx->model.hparams;
2024-08-08 11:16:50 +00:00
const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
const uint32_t n_layer = hparams.n_layer;
2024-08-08 11:16:50 +00:00
write(&v_trans, sizeof(v_trans));
write(&n_layer, sizeof(n_layer));
2024-08-08 11:16:50 +00:00
std::vector<uint8_t> tmp_buf;
2024-08-08 11:16:50 +00:00
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
2024-08-08 11:16:50 +00:00
// Write key type
const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
write(&k_type_i, sizeof(k_type_i));
2024-08-08 11:16:50 +00:00
// Write row size of key
const uint64_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
write(&k_size_row, sizeof(k_size_row));
2024-08-08 11:16:50 +00:00
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
2024-08-28 08:04:02 +00:00
const size_t buf_size = range_size * k_size_row;
write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
}
}
2024-08-08 11:16:50 +00:00
if (!kv_self.v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
2024-07-08 11:14:17 +00:00
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
2024-08-08 11:16:50 +00:00
// Write value type
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
write(&v_type_i, sizeof(v_type_i));
2024-03-08 09:55:50 +00:00
2024-08-08 11:16:50 +00:00
// Write row size of value
const uint64_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
write(&v_size_row, sizeof(v_size_row));
2024-08-08 11:16:50 +00:00
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
2024-08-28 08:04:02 +00:00
const size_t buf_size = range_size * v_size_row;
write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
2024-03-15 12:21:59 +00:00
}
2024-08-08 11:16:50 +00:00
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = kv_self.size;
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
write(&v_type_i, sizeof(v_type_i));
2024-03-15 12:21:59 +00:00
2024-08-08 11:16:50 +00:00
// Write element size
const uint32_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
write(&v_size_el, sizeof(v_size_el));
2024-03-08 09:55:50 +00:00
2024-08-08 11:16:50 +00:00
// Write GQA embedding size
write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
2024-08-28 08:04:02 +00:00
const size_t buf_size = range_size * v_size_el;
write_tensor_data(kv_self.v_l[il], src_offset, buf_size);
2024-08-08 11:16:50 +00:00
}
2024-01-12 20:04:51 +00:00
}
}
}
2024-08-08 11:16:50 +00:00
}
2024-08-08 11:16:50 +00:00
void write_kv_cache(const struct llama_context * ctx, llama_seq_id seq_id = -1) {
const struct llama_kv_cache & kv_self = ctx->kv_self;
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
uint32_t cell_count = 0;
2024-08-08 11:16:50 +00:00
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = kv_self.size;
for (uint32_t i = 0; i < kv_self.size; ++i) {
const auto & cell = kv_self.cells[i];
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
++cell_count;
if (cell_range_begin == kv_self.size) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != kv_self.size) {
cell_ranges.emplace_back(cell_range_begin, i);
cell_range_begin = kv_self.size;
}
}
}
2024-08-08 11:16:50 +00:00
if (cell_range_begin != kv_self.size) {
cell_ranges.emplace_back(cell_range_begin, kv_self.size);
}
2024-08-08 11:16:50 +00:00
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cell_ranges) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
2024-08-08 11:16:50 +00:00
write(&cell_count, sizeof(cell_count));
2024-08-08 11:16:50 +00:00
write_kv_cache_meta(kv_self, cell_ranges, seq_id);
write_kv_cache_data(ctx, cell_ranges);
}
};
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
struct llama_data_read {
virtual const uint8_t * read(size_t size) = 0;
virtual void read_to(void * dst, size_t size) = 0;
virtual size_t get_size_read() = 0;
virtual ~llama_data_read() = default;
2024-08-08 11:16:50 +00:00
void read_string(std::string & str) {
uint32_t str_size;
read_to(&str_size, sizeof(str_size));
str.assign((const char *) read(str_size), str_size);
}
2024-08-08 11:16:50 +00:00
// validate model information
void read_model_info(const struct llama_context * ctx) {
std::string cur_arch_str = LLM_ARCH_NAMES.at(ctx->model.arch);
std::string arch_str;
read_string(arch_str);
if (cur_arch_str != arch_str) {
throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str()));
}
// TODO: add more info which needs to be identical but which is not verified otherwise
}
2024-08-08 11:16:50 +00:00
void read_rng(std::mt19937 & rng) {
std::string rng_str;
read_string(rng_str);
2024-01-13 22:13:17 +00:00
std::istringstream rng_ss(rng_str);
2024-08-08 11:16:50 +00:00
rng_ss >> rng;
2024-08-08 11:16:50 +00:00
if (rng_ss.fail()) {
throw std::runtime_error("failed to load RNG state");
}
}
2024-08-08 11:16:50 +00:00
void read_output_ids(struct llama_context * ctx) {
std::vector<int32_t> output_pos;
2024-08-08 11:16:50 +00:00
uint32_t n_outputs;
read_to(&n_outputs, sizeof(n_outputs));
2024-08-08 11:16:50 +00:00
if (n_outputs > llama_output_reserve(*ctx, n_outputs)) {
throw std::runtime_error("could not reserve outputs");
}
if (n_outputs) {
output_pos.resize(n_outputs);
2024-08-08 11:16:50 +00:00
read_to(output_pos.data(), n_outputs * sizeof(int32_t));
for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
int32_t id = output_pos[i];
2024-08-08 11:16:50 +00:00
if ((uint32_t) id >= ctx->cparams.n_batch) {
throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, ctx->cparams.n_batch));
}
ctx->output_ids[id] = i;
}
2024-05-12 17:12:46 +00:00
ctx->n_outputs = n_outputs;
}
}
2024-08-08 11:16:50 +00:00
void read_logits(struct llama_context * ctx) {
uint64_t logits_size;
read_to(&logits_size, sizeof(logits_size));
2024-08-08 11:16:50 +00:00
if (ctx->logits_size < logits_size) {
throw std::runtime_error("logits buffer too small");
}
if (logits_size) {
2024-08-08 11:16:50 +00:00
read_to(ctx->logits, logits_size * sizeof(float));
}
}
2024-08-08 11:16:50 +00:00
void read_embeddings(struct llama_context * ctx) {
uint64_t embeddings_size;
read_to(&embeddings_size, sizeof(embeddings_size));
2024-08-08 11:16:50 +00:00
if (ctx->embd_size < embeddings_size) {
throw std::runtime_error("embeddings buffer too small");
}
2024-03-08 09:55:50 +00:00
if (embeddings_size) {
2024-08-08 11:16:50 +00:00
read_to(ctx->embd, embeddings_size * sizeof(float));
}
}
2024-08-08 11:16:50 +00:00
bool read_kv_cache_meta(struct llama_context * ctx, uint32_t cell_count, llama_seq_id dest_seq_id = -1) {
struct llama_kv_cache & kv_self = ctx->kv_self;
2024-08-08 11:16:50 +00:00
if (dest_seq_id != -1) {
// single sequence
2024-08-08 11:16:50 +00:00
llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
2024-08-28 08:04:02 +00:00
llama_ubatch batch = ctx->sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
2024-08-08 11:16:50 +00:00
batch.n_tokens = cell_count;
2024-08-28 08:04:02 +00:00
batch.n_seq_tokens = cell_count;
batch.n_seqs = 1;
2024-08-08 11:16:50 +00:00
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
read_to(&pos, sizeof(pos));
read_to(&n_seq_id, sizeof(n_seq_id));
2024-08-08 11:16:50 +00:00
if (n_seq_id != 0) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
2024-08-08 11:16:50 +00:00
batch.pos[i] = pos;
}
2024-08-28 08:04:02 +00:00
batch.n_seq_id[0] = 1;
batch.seq_id[0] = &dest_seq_id;
2024-08-08 11:16:50 +00:00
if (!llama_kv_cache_find_slot(kv_self, batch)) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
2024-08-08 11:16:50 +00:00
// DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
} else {
// whole KV cache restore
2024-08-08 11:16:50 +00:00
if (cell_count > kv_self.size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
2024-08-08 11:16:50 +00:00
llama_kv_cache_clear(kv_self);
2024-07-08 11:14:17 +00:00
2024-08-08 11:16:50 +00:00
for (uint32_t i = 0; i < cell_count; ++i) {
llama_kv_cell & cell = kv_self.cells[i];
2024-03-08 09:55:50 +00:00
2024-08-08 11:16:50 +00:00
llama_pos pos;
uint32_t n_seq_id;
2024-01-12 20:04:51 +00:00
2024-08-08 11:16:50 +00:00
read_to(&pos, sizeof(pos));
read_to(&n_seq_id, sizeof(n_seq_id));
2024-03-15 12:21:59 +00:00
2024-08-08 11:16:50 +00:00
cell.pos = pos;
2024-03-15 12:21:59 +00:00
2024-08-08 11:16:50 +00:00
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
read_to(&seq_id, sizeof(seq_id));
2024-03-08 09:55:50 +00:00
2024-08-08 11:16:50 +00:00
if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
return false;
}
cell.seq_id.insert(seq_id);
2024-08-28 08:04:02 +00:00
if (kv_self.recurrent) {
int32_t & tail = kv_self.cells[seq_id].tail;
if (tail != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
return false;
}
tail = i;
}
2024-01-12 20:04:51 +00:00
}
}
2024-08-08 11:16:50 +00:00
kv_self.head = 0;
kv_self.used = cell_count;
}
2024-08-28 08:04:02 +00:00
if (kv_self.recurrent) {
for (uint32_t i = 0; i < cell_count; ++i) {
uint32_t cell_id = kv_self.head + i;
// make sure the recurrent states will keep their restored state
kv_self.cells[cell_id].src = cell_id;
}
}
2024-08-08 11:16:50 +00:00
return true;
}
bool read_kv_cache_data(struct llama_context * ctx, uint32_t cell_count) {
const struct llama_hparams & hparams = ctx->model.hparams;
struct llama_kv_cache & kv_self = ctx->kv_self;
uint32_t v_trans;
uint32_t n_layer;
read_to(&v_trans, sizeof(v_trans));
read_to(&n_layer, sizeof(n_layer));
2024-08-08 11:16:50 +00:00
if (n_layer != hparams.n_layer) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
return false;
}
if (cell_count > kv_self.size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, kv_self.size);
return false;
}
if (kv_self.v_trans != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
2024-08-08 11:16:50 +00:00
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
2024-08-08 11:16:50 +00:00
// Read type of key
int32_t k_type_i_ref;
read_to(&k_type_i_ref, sizeof(k_type_i_ref));
const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
if (k_type_i != k_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
return false;
}
2024-08-08 11:16:50 +00:00
// Read row size of key
uint64_t k_size_row_ref;
read_to(&k_size_row_ref, sizeof(k_size_row_ref));
const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
if (k_size_row != k_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
return false;
}
2024-08-08 11:16:50 +00:00
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head * k_size_row, cell_count * k_size_row);
}
}
2024-08-08 11:16:50 +00:00
if (!kv_self.v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
2024-08-08 11:16:50 +00:00
// Read type of value
int32_t v_type_i_ref;
read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
2024-08-08 11:16:50 +00:00
// Read row size of value
uint64_t v_size_row_ref;
read_to(&v_size_row_ref, sizeof(v_size_row_ref));
const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
if (v_size_row != v_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
return false;
}
2024-08-08 11:16:50 +00:00
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head * v_size_row, cell_count * v_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
2024-08-08 11:16:50 +00:00
// Read type of value
int32_t v_type_i_ref;
read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
2024-08-08 11:16:50 +00:00
// Read element size of value
uint32_t v_size_el_ref;
read_to(&v_size_el_ref, sizeof(v_size_el_ref));
const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
if (v_size_el != v_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
return false;
}
2024-08-08 11:16:50 +00:00
// Read GQA embedding size
uint32_t n_embd_v_gqa_ref;
read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
return false;
}
2024-08-08 11:16:50 +00:00
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (kv_self.head + j * kv_self.size) * v_size_el;
ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
}
}
}
2024-08-08 11:16:50 +00:00
return true;
}
2024-08-08 11:16:50 +00:00
void read_kv_cache(struct llama_context * ctx, llama_seq_id seq_id = -1) {
uint32_t cell_count;
read_to(&cell_count, sizeof(cell_count));
2024-08-08 11:16:50 +00:00
bool res = read_kv_cache_meta(ctx, cell_count, seq_id) && read_kv_cache_data(ctx, cell_count);
2024-08-08 11:16:50 +00:00
if (!res) {
if (seq_id == -1) {
llama_kv_cache_clear(ctx);
} else {
llama_kv_cache_seq_rm(ctx, seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
2024-08-08 11:16:50 +00:00
};
2024-08-08 11:16:50 +00:00
struct llama_data_write_dummy : llama_data_write {
size_t size_written = 0;
2024-08-08 11:16:50 +00:00
llama_data_write_dummy() {}
2024-08-08 11:16:50 +00:00
void write(const void * /* src */, size_t size) override {
size_written += size;
}
2024-08-28 08:04:02 +00:00
void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
size_written += size;
}
2024-08-08 11:16:50 +00:00
size_t get_size_written() override {
return size_written;
}
2024-08-08 11:16:50 +00:00
};
2024-08-08 11:16:50 +00:00
struct llama_data_write_buffer : llama_data_write {
uint8_t * ptr;
size_t buf_size = 0;
size_t size_written = 0;
2024-08-08 11:16:50 +00:00
llama_data_write_buffer(uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
2024-08-08 11:16:50 +00:00
void write(const void * src, size_t size) override {
if (size > buf_size) {
throw std::runtime_error("unexpectedly reached end of buffer");
}
memcpy(ptr, src, size);
ptr += size;
size_written += size;
buf_size -= size;
}
2024-08-28 08:04:02 +00:00
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
if (size > buf_size) {
throw std::runtime_error("unexpectedly reached end of buffer");
}
ggml_backend_tensor_get(tensor, ptr, offset, size);
ptr += size;
size_written += size;
buf_size -= size;
}
2024-08-08 11:16:50 +00:00
size_t get_size_written() override {
return size_written;
}
};
2024-08-08 11:16:50 +00:00
struct llama_data_read_buffer : llama_data_read {
const uint8_t * ptr;
size_t buf_size = 0;
size_t size_read = 0;
2024-08-08 11:16:50 +00:00
llama_data_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
2024-08-08 11:16:50 +00:00
const uint8_t * read(size_t size) override {
const uint8_t * base_ptr = ptr;
if (size > buf_size) {
throw std::runtime_error("unexpectedly reached end of buffer");
}
ptr += size;
size_read += size;
buf_size -= size;
return base_ptr;
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
void read_to(void * dst, size_t size) override {
memcpy(dst, read(size), size);
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
size_t get_size_read() override {
return size_read;
}
};
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
struct llama_data_write_file : llama_data_write {
llama_file * file;
size_t size_written = 0;
2024-08-28 08:04:02 +00:00
std::vector<uint8_t> temp_buffer;
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
llama_data_write_file(llama_file * f) : file(f) {}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
void write(const void * src, size_t size) override {
file->write_raw(src, size);
size_written += size;
2024-05-12 17:12:46 +00:00
}
2024-08-28 08:04:02 +00:00
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
temp_buffer.resize(size);
ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
write(temp_buffer.data(), temp_buffer.size());
}
2024-08-08 11:16:50 +00:00
size_t get_size_written() override {
return size_written;
}
};
2024-07-08 11:14:17 +00:00
2024-08-08 11:16:50 +00:00
struct llama_data_read_file : llama_data_read {
llama_file * file;
size_t size_read = 0;
std::vector<uint8_t> temp_buffer;
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
llama_data_read_file(llama_file * f) : file(f) {}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
void read_to(void * dst, size_t size) override {
file->read_raw(dst, size);
size_read += size;
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
const uint8_t * read(size_t size) override {
temp_buffer.resize(size);
read_to(temp_buffer.data(), size);
return temp_buffer.data();
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
size_t get_size_read() override {
return size_read;
}
};
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
/** copy state data into either a buffer or file depending on the passed in context
*
* file context:
* llama_file file("/path", "wb");
* llama_data_write_file data_ctx(&file);
* llama_state_get_data_internal(ctx, data_ctx);
*
* buffer context:
* std::vector<uint8_t> buf(max_size, 0);
* llama_data_write_buffer data_ctx(buf.data(), max_size);
* llama_state_get_data_internal(ctx, data_ctx);
*
*/
static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx) {
2024-05-12 17:12:46 +00:00
llama_synchronize(ctx);
2024-08-08 11:16:50 +00:00
data_ctx.write_model_info(ctx);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
data_ctx.write_rng(ctx->sampling.rng);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
// copy outputs
data_ctx.write_output_ids(ctx);
data_ctx.write_logits(ctx);
data_ctx.write_embeddings(ctx);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
data_ctx.write_kv_cache(ctx);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
return data_ctx.get_size_written();
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst, size_t size) {
llama_data_write_buffer data_ctx(dst, size);
try {
return llama_state_get_data_internal(ctx, data_ctx);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what());
return 0;
2024-07-08 11:14:17 +00:00
}
2024-08-08 11:16:50 +00:00
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
// Returns the *actual* size of the state.
// Intended to be used when saving to state to a buffer.
size_t llama_state_get_size(struct llama_context * ctx) {
llama_data_write_dummy data_ctx;
try {
return llama_state_get_data_internal(ctx, data_ctx);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what());
return 0;
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
static size_t llama_state_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx) {
llama_synchronize(ctx);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
data_ctx.read_model_info(ctx);
2024-07-08 11:14:17 +00:00
2024-08-08 11:16:50 +00:00
// set rng
data_ctx.read_rng(ctx->sampling.rng);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
// set outputs
data_ctx.read_output_ids(ctx);
data_ctx.read_logits(ctx);
data_ctx.read_embeddings(ctx);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
data_ctx.read_kv_cache(ctx);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
return data_ctx.get_size_read();
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
// Sets the state reading from the specified source address
size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src, size_t size) {
llama_data_read_buffer data_ctx(src, size);
try {
return llama_state_set_data_internal(ctx, data_ctx);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what());
return 0;
}
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
llama_file file(path_session, "rb");
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
// sanity checks
{
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
return false;
}
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
// load the prompt
{
const uint32_t n_token_count = file.read_u32();
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
if (n_token_count > n_token_capacity) {
LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
return false;
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
// restore the context state
{
const size_t n_state_size_cur = file.size - file.tell();
2024-07-08 11:14:17 +00:00
2024-08-08 11:16:50 +00:00
llama_data_read_file data_ctx(&file);
const size_t n_read = llama_state_set_data_internal(ctx, data_ctx);
2024-07-08 11:14:17 +00:00
2024-08-08 11:16:50 +00:00
if (n_read != n_state_size_cur) {
LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read);
return false;
}
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
return true;
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
try {
return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what());
return false;
}
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
llama_file file(path_session, "wb");
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
file.write_u32(LLAMA_SESSION_MAGIC);
file.write_u32(LLAMA_SESSION_VERSION);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
// save the prompt
file.write_u32((uint32_t) n_token_count);
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
// save the context state using stream saving
llama_data_write_file data_ctx(&file);
llama_state_get_data_internal(ctx, data_ctx);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
return true;
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
try {
return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what());
return false;
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx, llama_seq_id seq_id) {
llama_synchronize(ctx);
2024-07-08 11:14:17 +00:00
2024-08-08 11:16:50 +00:00
data_ctx.write_kv_cache(ctx, seq_id);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
return data_ctx.get_size_written();
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
size_t llama_state_seq_get_size(struct llama_context * ctx, llama_seq_id seq_id) {
llama_data_write_dummy data_ctx;
return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
}
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
size_t llama_state_seq_get_data(struct llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) {
llama_data_write_buffer data_ctx(dst, size);
try {
return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error saving sequence state: %s\n", __func__, err.what());
return 0;
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
}
static size_t llama_state_seq_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx, llama_seq_id dest_seq_id) {
llama_synchronize(ctx);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
data_ctx.read_kv_cache(ctx, dest_seq_id);
2024-05-12 17:12:46 +00:00
2024-08-08 11:16:50 +00:00
return data_ctx.get_size_read();
}
size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id dest_seq_id) {
llama_data_read_buffer data_ctx(src, size);
try {
return llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading sequence state: %s\n", __func__, err.what());
return 0;
}
2024-05-12 17:12:46 +00:00
}
static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
llama_file file(filepath, "wb");
file.write_u32(LLAMA_STATE_SEQ_MAGIC);
file.write_u32(LLAMA_STATE_SEQ_VERSION);
// save the prompt
2024-08-08 11:16:50 +00:00
file.write_u32((uint32_t) n_token_count);
2024-05-12 17:12:46 +00:00
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
// save the context state using stream saving
2024-08-08 11:16:50 +00:00
llama_data_write_file data_ctx(&file);
2024-05-12 17:12:46 +00:00
llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
const size_t res = file.tell();
GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
return res;
}
static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
llama_file file(filepath, "rb");
// version checks
{
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
return 0;
}
}
// load the prompt
{
const uint32_t n_token_count = file.read_u32();
if (n_token_count > n_token_capacity) {
LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
return 0;
}
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
}
// restore the context state
{
const size_t state_size = file.size - file.tell();
2024-08-08 11:16:50 +00:00
llama_data_read_file data_ctx(&file);
const size_t nread = llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
2024-05-12 17:12:46 +00:00
if (!nread) {
LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
return 0;
}
GGML_ASSERT(nread <= state_size);
GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
}
return file.tell();
}
size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
try {
return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
} catch (const std::exception & err) {
2024-08-08 11:16:50 +00:00
LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what());
2024-05-12 17:12:46 +00:00
return 0;
}
}
size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
try {
return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
} catch (const std::exception & err) {
2024-08-08 11:16:50 +00:00
LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what());
2024-05-12 17:12:46 +00:00
return 0;
}
}
void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
ctx->cparams.n_threads = n_threads;
ctx->cparams.n_threads_batch = n_threads_batch;
}
2024-06-16 10:10:54 +00:00
uint32_t llama_n_threads(struct llama_context * ctx) {
return ctx->cparams.n_threads;
}
uint32_t llama_n_threads_batch(struct llama_context * ctx) {
return ctx->cparams.n_threads_batch;
}
2024-03-08 09:55:50 +00:00
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
ctx->abort_callback = abort_callback;
ctx->abort_callback_data = abort_callback_data;
}
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
ctx->cparams.embeddings = embeddings;
}
2024-03-15 12:21:59 +00:00
void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.causal_attn = causal_attn;
}
struct llama_batch llama_batch_get_one(
llama_token * tokens,
int32_t n_tokens,
llama_pos pos_0,
llama_seq_id seq_id) {
return {
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
/*logits =*/ nullptr,
/*all_pos_0 =*/ pos_0,
/*all_pos_1 =*/ 1,
/*all_seq_id =*/ seq_id,
};
}
2024-02-10 08:10:59 +00:00
struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
2024-08-28 08:04:02 +00:00
llama_batch batch = {
/*n_tokens =*/ 0,
/*tokens =*/ nullptr,
/*embd =*/ nullptr,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
/*logits =*/ nullptr,
/*all_pos_0 =*/ 0,
/*all_pos_1 =*/ 0,
/*all_seq_id =*/ 0,
};
if (embd) {
2024-02-10 08:10:59 +00:00
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
} else {
2024-02-10 08:10:59 +00:00
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}
2024-02-10 08:10:59 +00:00
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
for (int i = 0; i < n_tokens_alloc; ++i) {
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
}
2024-02-10 08:10:59 +00:00
batch.seq_id[n_tokens_alloc] = nullptr;
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
return batch;
}
void llama_batch_free(struct llama_batch batch) {
if (batch.token) free(batch.token);
if (batch.embd) free(batch.embd);
if (batch.pos) free(batch.pos);
if (batch.n_seq_id) free(batch.n_seq_id);
if (batch.seq_id) {
2024-02-10 08:10:59 +00:00
for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
free(batch.seq_id[i]);
}
free(batch.seq_id);
}
if (batch.logits) free(batch.logits);
}
2024-07-08 11:14:17 +00:00
int32_t llama_encode(
struct llama_context * ctx,
struct llama_batch batch) {
const int ret = llama_encode_internal(*ctx, batch);
if (ret < 0) {
LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
}
return ret;
}
2024-01-06 15:22:57 +00:00
int32_t llama_decode(
struct llama_context * ctx,
struct llama_batch batch) {
const int ret = llama_decode_internal(*ctx, batch);
if (ret < 0) {
LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
}
return ret;
}
2024-03-15 12:21:59 +00:00
void llama_synchronize(struct llama_context * ctx) {
ggml_backend_sched_synchronize(ctx->sched);
// FIXME: if multiple single tokens are evaluated without a synchronization,
// the stats will be added to the prompt evaluation stats
// this should only happen when using batch size 1 to evaluate a batch
// add the evaluation to the stats
if (ctx->n_queued_tokens == 1) {
ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
ctx->n_eval++;
} else if (ctx->n_queued_tokens > 1) {
ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
ctx->n_p_eval += ctx->n_queued_tokens;
}
// get a more accurate load time, upon first eval
if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
ctx->has_evaluated_once = true;
}
ctx->n_queued_tokens = 0;
ctx->t_compute_start_us = 0;
}
float * llama_get_logits(struct llama_context * ctx) {
2024-03-15 12:21:59 +00:00
llama_synchronize(ctx);
2024-08-28 08:04:02 +00:00
// reorder logits for backward compatibility
// TODO: maybe deprecate this
llama_output_reorder(ctx);
2024-03-15 12:21:59 +00:00
return ctx->logits;
}
float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
2024-05-12 17:12:46 +00:00
int32_t j = -1;
2024-03-15 12:21:59 +00:00
llama_synchronize(ctx);
try {
if (ctx->logits == nullptr) {
throw std::runtime_error("no logits");
}
2024-05-12 17:12:46 +00:00
if (i < 0) {
j = ctx->n_outputs + i;
if (j < 0) {
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
}
} else if ((size_t) i >= ctx->output_ids.size()) {
throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
2024-05-12 17:12:46 +00:00
} else {
j = ctx->output_ids[i];
}
if (j < 0) {
throw std::runtime_error(format("batch.logits[%d] != true", i));
}
2024-05-12 17:12:46 +00:00
if (j >= ctx->n_outputs) {
// This should not happen
2024-05-12 17:12:46 +00:00
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
}
return ctx->logits + j*ctx->model.hparams.n_vocab;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
2024-08-08 11:16:50 +00:00
GGML_ABORT("fatal error");
#endif
return nullptr;
}
}
float * llama_get_embeddings(struct llama_context * ctx) {
2024-03-15 12:21:59 +00:00
llama_synchronize(ctx);
2024-08-28 08:04:02 +00:00
// reorder embeddings for backward compatibility
// TODO: maybe deprecate this
llama_output_reorder(ctx);
2024-03-15 12:21:59 +00:00
return ctx->embd;
}
2024-02-20 10:09:57 +00:00
float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
2024-05-12 17:12:46 +00:00
int32_t j = -1;
2024-03-15 12:21:59 +00:00
llama_synchronize(ctx);
try {
if (ctx->embd == nullptr) {
throw std::runtime_error("no embeddings");
}
2024-05-12 17:12:46 +00:00
if (i < 0) {
j = ctx->n_outputs + i;
if (j < 0) {
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
}
} else if ((size_t) i >= ctx->output_ids.size()) {
throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
2024-05-12 17:12:46 +00:00
} else {
j = ctx->output_ids[i];
}
if (j < 0) {
throw std::runtime_error(format("batch.logits[%d] != true", i));
}
2024-05-12 17:12:46 +00:00
if (j >= ctx->n_outputs) {
// This should not happen
2024-05-12 17:12:46 +00:00
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
}
return ctx->embd + j*ctx->model.hparams.n_embd;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
2024-08-08 11:16:50 +00:00
GGML_ABORT("fatal error");
#endif
return nullptr;
}
2024-03-08 09:55:50 +00:00
}
float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
2024-03-15 12:21:59 +00:00
llama_synchronize(ctx);
2024-03-08 09:55:50 +00:00
auto it = ctx->embd_seq.find(seq_id);
if (it == ctx->embd_seq.end()) {
return nullptr;
}
return it->second.data();
2024-02-20 10:09:57 +00:00
}
2024-08-08 11:16:50 +00:00
//
// vocab
//
const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
2024-08-08 11:16:50 +00:00
return llama_token_get_text_impl(model->vocab, token);
}
float llama_token_get_score(const struct llama_model * model, llama_token token) {
2024-08-08 11:16:50 +00:00
return llama_token_get_score_impl(model->vocab, token);
}
2024-08-08 11:16:50 +00:00
enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
return llama_token_get_attr_impl(model->vocab, token);
}
2024-05-12 17:12:46 +00:00
bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
2024-08-08 11:16:50 +00:00
return llama_token_is_eog_impl(model->vocab, token);
2024-05-12 17:12:46 +00:00
}
2024-06-16 10:10:54 +00:00
bool llama_token_is_control(const struct llama_model * model, llama_token token) {
2024-08-08 11:16:50 +00:00
return llama_token_is_control_impl(model->vocab, token);
2024-06-16 10:10:54 +00:00
}
llama_token llama_token_bos(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_token_bos_impl(model->vocab);
}
llama_token llama_token_eos(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_token_eos_impl(model->vocab);
}
2024-05-12 17:12:46 +00:00
llama_token llama_token_cls(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_token_cls_impl(model->vocab);
2024-05-12 17:12:46 +00:00
}
llama_token llama_token_sep(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_token_sep_impl(model->vocab);
}
llama_token llama_token_nl (const struct llama_model * model) {
return llama_token_nl_impl(model->vocab);
2024-05-12 17:12:46 +00:00
}
2024-08-08 11:16:50 +00:00
llama_token llama_token_pad(const struct llama_model * model) {
return llama_token_pad_impl(model->vocab);
}
2024-08-28 08:04:02 +00:00
bool llama_add_bos_token(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_add_bos_token_impl(model->vocab);
}
2024-08-28 08:04:02 +00:00
bool llama_add_eos_token(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_add_eos_token_impl(model->vocab);
}
llama_token llama_token_prefix(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_token_prefix_impl(model->vocab);
}
llama_token llama_token_middle(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_token_middle_impl(model->vocab);
}
llama_token llama_token_suffix(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_token_suffix_impl(model->vocab);
}
llama_token llama_token_eot(const struct llama_model * model) {
2024-08-08 11:16:50 +00:00
return llama_token_eot_impl(model->vocab);
}
2024-08-08 11:16:50 +00:00
//
// tokenization
//
2024-07-08 11:14:17 +00:00
2024-01-06 15:22:57 +00:00
int32_t llama_tokenize(
const struct llama_model * model,
const char * text,
2024-01-06 15:22:57 +00:00
int32_t text_len,
llama_token * tokens,
2024-03-15 12:21:59 +00:00
int32_t n_tokens_max,
2024-05-12 17:12:46 +00:00
bool add_special,
bool parse_special) {
2024-08-08 11:16:50 +00:00
return llama_tokenize_impl(model->vocab, text, text_len, tokens, n_tokens_max, add_special, parse_special);
}
2024-08-08 11:16:50 +00:00
int32_t llama_token_to_piece(
const struct llama_model * model,
llama_token token,
char * buf,
int32_t length,
int32_t lstrip,
bool special) {
return llama_token_to_piece_impl(model->vocab, token, buf, length, lstrip, special);
}
2024-07-08 11:14:17 +00:00
int32_t llama_detokenize(
2024-08-08 11:16:50 +00:00
const struct llama_model * model,
const llama_token * tokens,
int32_t n_tokens,
char * text,
int32_t text_len_max,
bool remove_special,
bool unparse_special) {
return llama_detokenize_impl(model->vocab, tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
2024-07-08 11:14:17 +00:00
}
2024-08-08 11:16:50 +00:00
//
// chat templates
//
2024-02-20 10:09:57 +00:00
// Simple version of "llama_apply_chat_template" that only works with strings
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
static int32_t llama_chat_apply_template_internal(
const std::string & tmpl,
const std::vector<const llama_chat_message *> & chat,
std::string & dest, bool add_ass) {
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
std::stringstream ss;
2024-07-08 11:14:17 +00:00
auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
return tmpl.find(haystack) != std::string::npos;
};
if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
2024-02-20 10:09:57 +00:00
// chatml template
for (auto message : chat) {
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
}
if (add_ass) {
ss << "<|im_start|>assistant\n";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) {
2024-02-20 10:09:57 +00:00
// llama2 template and its variants
// [variant] support system message
2024-07-08 11:14:17 +00:00
bool support_system_message = tmpl_contains("<<SYS>>") || tmpl == "mistral";
2024-02-20 10:09:57 +00:00
// [variant] space before + after response
2024-07-08 11:14:17 +00:00
bool space_around_response = tmpl_contains("' ' + eos_token");
2024-02-20 10:09:57 +00:00
// [variant] add BOS inside history
2024-07-08 11:14:17 +00:00
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
2024-02-20 10:09:57 +00:00
// [variant] trim spaces from the input message
2024-07-08 11:14:17 +00:00
bool strip_message = tmpl_contains("content.strip()");
2024-02-20 10:09:57 +00:00
// construct the prompt
bool is_inside_turn = true; // skip BOS at the beginning
ss << "[INST] ";
for (auto message : chat) {
std::string content = strip_message ? trim(message->content) : message->content;
std::string role(message->role);
if (!is_inside_turn) {
is_inside_turn = true;
ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
}
if (role == "system") {
if (support_system_message) {
ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
} else {
// if the model does not support system message, we still include it in the first message, but without <<SYS>>
ss << content << "\n";
}
} else if (role == "user") {
ss << content << " [/INST]";
} else {
ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
is_inside_turn = false;
}
}
// llama2 templates seem to not care about "add_generation_prompt"
2024-07-08 11:14:17 +00:00
} else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
2024-06-16 10:10:54 +00:00
// Phi 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
2024-02-20 10:09:57 +00:00
// zephyr template
for (auto message : chat) {
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
2024-03-08 09:55:50 +00:00
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
for (auto message : chat) {
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
ss << bos << message->role << "\n" << message->content << "</s>\n";
}
if (add_ass) {
ss << "<s>assistant\n";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("<start_of_turn>")) {
2024-03-08 09:55:50 +00:00
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
system_prompt = trim(message->content);
continue;
}
// in gemma, "assistant" is "model"
role = role == "assistant" ? "model" : message->role;
ss << "<start_of_turn>" << role << "\n";
if (!system_prompt.empty() && role != "model") {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << trim(message->content) << "<end_of_turn>\n";
}
if (add_ass) {
ss << "<start_of_turn>model\n";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
2024-03-15 12:21:59 +00:00
// OrionStarAI/Orion-14B-Chat
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message support, we will merge it with user prompt
system_prompt = message->content;
continue;
} else if (role == "user") {
ss << "Human: ";
if (!system_prompt.empty()) {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << message->content << "\n\nAssistant: </s>";
} else {
ss << message->content << "</s>";
}
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
2024-04-07 13:21:08 +00:00
// openchat/openchat-3.5-0106,
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "<|end_of_turn|>";
} else {
role[0] = toupper(role[0]);
ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
}
}
if (add_ass) {
ss << "GPT4 Correct Assistant:";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
2024-04-07 13:21:08 +00:00
// eachadea/vicuna-13b-1.1 (and Orca variant)
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// Orca-Vicuna variant uses a system prefix
2024-07-08 11:14:17 +00:00
if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
2024-04-07 13:21:08 +00:00
ss << "SYSTEM: " << message->content << "\n";
} else {
ss << message->content << "\n\n";
}
} else if (role == "user") {
ss << "USER: " << message->content << "\n";
} else if (role == "assistant") {
ss << "ASSISTANT: " << message->content << "</s>\n";
}
}
if (add_ass) {
ss << "ASSISTANT:";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
2024-04-07 13:21:08 +00:00
// deepseek-ai/deepseek-coder-33b-instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content;
} else if (role == "user") {
ss << "### Instruction:\n" << message->content << "\n";
} else if (role == "assistant") {
ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
}
}
if (add_ass) {
ss << "### Response:\n";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
2024-05-12 17:12:46 +00:00
// CohereForAI/c4ai-command-r-plus
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "user") {
ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "assistant") {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
}
}
if (add_ass) {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
2024-05-12 17:12:46 +00:00
// Llama 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
}
if (add_ass) {
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
}
2024-07-08 11:14:17 +00:00
} else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
// chatglm3-6b
ss << "[gMASK]" << "sop";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n " << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
2024-08-08 11:16:50 +00:00
} else if (tmpl == "chatglm4" || tmpl_contains("[gMASK]<sop>")) {
2024-07-08 11:14:17 +00:00
ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
2024-08-08 11:16:50 +00:00
} else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
2024-07-08 11:14:17 +00:00
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
for (auto message : chat) {
std::string role(message->role);
if (role == "user") {
2024-08-08 11:16:50 +00:00
ss << LU8("<用户>");
2024-07-08 11:14:17 +00:00
ss << trim(message->content);
ss << "<AI>";
} else {
ss << trim(message->content);
}
}
} else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
// DeepSeek-V2
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << "User: " << message->content << "\n\n";
} else if (role == "assistant") {
2024-08-08 11:16:50 +00:00
ss << "Assistant: " << message->content << LU8("<end▁of▁sentence>");
2024-07-08 11:14:17 +00:00
}
}
if (add_ass) {
ss << "Assistant:";
}
2024-08-28 08:04:02 +00:00
} else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
} else if (role == "user") {
ss << "[|user|]" << trim(message->content) << "\n";
} else if (role == "assistant") {
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
}
}
if (add_ass) {
ss << "[|assistant|]";
}
2024-02-20 10:09:57 +00:00
} else {
// template not supported
return -1;
}
dest = ss.str();
return dest.size();
}
2024-08-08 11:16:50 +00:00
int32_t llama_chat_apply_template(
2024-02-20 10:09:57 +00:00
const struct llama_model * model,
const char * tmpl,
const struct llama_chat_message * chat,
size_t n_msg,
bool add_ass,
char * buf,
int32_t length) {
std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
if (tmpl == nullptr) {
GGML_ASSERT(model != nullptr);
// load template from model
std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
std::string template_key = "tokenizer.chat_template";
2024-02-22 21:30:53 +00:00
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
2024-02-20 10:09:57 +00:00
if (res < 0) {
// worst case: there is no information about template, we will use chatml by default
2024-03-08 09:55:50 +00:00
curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
2024-02-20 10:09:57 +00:00
} else {
curr_tmpl = std::string(model_template.data(), model_template.size());
}
}
2024-03-08 09:55:50 +00:00
2024-02-20 10:09:57 +00:00
// format the chat to string
std::vector<const llama_chat_message *> chat_vec;
chat_vec.resize(n_msg);
for (size_t i = 0; i < n_msg; i++) {
chat_vec[i] = &chat[i];
}
2024-03-08 09:55:50 +00:00
2024-02-20 10:09:57 +00:00
std::string formatted_chat;
int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
if (res < 0) {
return res;
}
2024-03-08 09:55:50 +00:00
if (buf && length > 0) {
strncpy(buf, formatted_chat.c_str(), length);
}
2024-02-20 10:09:57 +00:00
return res;
}
2024-08-08 11:16:50 +00:00
//
// grammar
//
struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index) {
return llama_grammar_init_impl(rules, n_rules, start_rule_index);
}
void llama_grammar_free(struct llama_grammar * grammar) {
llama_grammar_free_impl(grammar);
}
struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
return llama_grammar_copy_impl(grammar);
}
void llama_grammar_sample(
const struct llama_grammar * grammar,
const struct llama_context * ctx,
llama_token_data_array * candidates) {
llama_grammar_sample_impl(grammar, &ctx->model.vocab, &ctx->sampling, candidates);
}
void llama_sample_grammar(
struct llama_context * ctx,
llama_token_data_array * candidates,
const struct llama_grammar * grammar) {
llama_grammar_sample(grammar, ctx, candidates);
}
void llama_grammar_accept_token(
struct llama_grammar * grammar,
struct llama_context * ctx,
llama_token token) {
llama_grammar_accept_token_impl(grammar, &ctx->model.vocab, &ctx->sampling, token);
}
//
// sampling
//
void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
llama_set_rng_seed_impl(&ctx->sampling, seed);
}
void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
llama_sample_softmax_impl(ctx ? &ctx->sampling : nullptr, candidates);
}
void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
llama_sample_top_k_impl(ctx ? &ctx->sampling : nullptr, candidates, k, min_keep);
}
void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
llama_sample_top_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
}
void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
llama_sample_min_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
}
void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
llama_sample_tail_free_impl(ctx ? &ctx->sampling : nullptr, candidates, z, min_keep);
}
void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
llama_sample_typical_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
}
void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
llama_sample_entropy_impl(ctx ? &ctx->sampling : nullptr, candidates_p, min_temp, max_temp, exponent_val);
}
void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
llama_sample_temp_impl(ctx ? &ctx->sampling : nullptr, candidates_p, temp);
}
void llama_sample_repetition_penalties(
struct llama_context * ctx,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t penalty_last_n,
float penalty_repeat,
float penalty_freq,
float penalty_present) {
llama_sample_repetition_penalties_impl(ctx ? &ctx->sampling : nullptr, candidates, last_tokens, penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
}
void llama_sample_apply_guidance(
struct llama_context * ctx,
float * logits,
float * logits_guidance,
float scale) {
llama_sample_apply_guidance_impl(&ctx->sampling, logits, logits_guidance, scale);
}
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
return llama_sample_token_mirostat_impl(&ctx->sampling, candidates, tau, eta, m, mu);
}
llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
return llama_sample_token_mirostat_v2_impl(ctx ? &ctx->sampling : nullptr, candidates, tau, eta, mu);
}
llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
return llama_sample_token_greedy_impl(ctx ? &ctx->sampling : nullptr, candidates);
}
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, rng);
}
llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, ctx->sampling.rng);
}
int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
return strlen(split_path);
}
return 0;
}
int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
std::string str_split_path(split_path);
char postfix[32];
snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
std::string str_postfix(postfix);
// check if dest ends with postfix
int size_prefix = str_split_path.size() - str_postfix.size();
if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
return size_prefix;
}
return 0;
}
struct llama_timings llama_get_timings(struct llama_context * ctx) {
struct llama_timings result = {
/*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
/*.t_end_ms =*/ 1.00 * ggml_time_ms(),
/*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
2024-08-08 11:16:50 +00:00
/*.t_sample_ms =*/ 1e-3 * ctx->sampling.t_sample_us,
/*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
/*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
2024-08-08 11:16:50 +00:00
/*.n_sample =*/ std::max(1, ctx->sampling.n_sample),
2024-05-12 17:12:46 +00:00
/*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
/*.n_eval =*/ std::max(1, ctx->n_eval),
};
return result;
}
void llama_print_timings(struct llama_context * ctx) {
const llama_timings timings = llama_get_timings(ctx);
LLAMA_LOG_INFO("\n");
LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
2024-01-11 20:10:10 +00:00
LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
}
void llama_reset_timings(struct llama_context * ctx) {
2024-08-08 11:16:50 +00:00
ctx->t_start_us = ggml_time_us();
ctx->t_eval_us = ctx->n_eval = 0;
ctx->t_p_eval_us = ctx->n_p_eval = 0;
2024-08-08 11:16:50 +00:00
ctx->sampling.reset_timings();
}
const char * llama_print_system_info(void) {
static std::string s;
s = "";
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
2024-01-06 15:22:57 +00:00
s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
2024-06-16 10:10:54 +00:00
s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
2024-06-16 10:10:54 +00:00
s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
2024-02-12 08:39:58 +00:00
s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
2024-08-08 11:16:50 +00:00
s += "LLAMAFILE = " + std::to_string(ggml_cpu_has_llamafile()) + " | ";
return s.c_str();
}
void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
fprintf(stream, "\n");
fprintf(stream, "###########\n");
fprintf(stream, "# Timings #\n");
fprintf(stream, "###########\n");
fprintf(stream, "\n");
fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
1.0e-3 * ctx->t_eval_us / ctx->n_eval);
fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
2024-08-08 11:16:50 +00:00
1.0e-3 * ctx->sampling.t_sample_us / ctx->sampling.n_sample);
fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
2024-08-08 11:16:50 +00:00
fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->sampling.n_sample);
fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
2024-08-08 11:16:50 +00:00
fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->sampling.t_sample_us);
fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
1.0e6 * ctx->n_eval / ctx->t_eval_us);
fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
2024-08-08 11:16:50 +00:00
1.0e6 * ctx->sampling.n_sample / ctx->sampling.t_sample_us);
}
// For internal test use
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
) {
return ctx->model.tensors_by_name;
}
void llama_log_set(ggml_log_callback log_callback, void * user_data) {
g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
g_state.log_callback_user_data = user_data;
#ifdef GGML_USE_METAL
2024-01-13 22:13:17 +00:00
ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
2024-06-16 10:10:54 +00:00
#elif defined(GGML_USE_CUDA)
ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
2024-08-08 11:16:50 +00:00
#elif defined(GGML_USE_CANN)
ggml_backend_cann_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
#endif
}
static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
g_state.log_callback(level, buffer, g_state.log_callback_user_data);
} else {
char* buffer2 = new char[len+1];
vsnprintf(buffer2, len+1, format, args_copy);
buffer2[len] = 0;
g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
delete[] buffer2;
}
va_end(args_copy);
}
2024-08-08 11:16:50 +00:00
void llama_log_internal(ggml_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
llama_log_internal_v(level, format, args);
va_end(args);
}
2024-08-08 11:16:50 +00:00
void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}