#include "llama-impl.h" #include "llama-vocab.h" #include "llama-grammar.h" #include "llama-sampling.h" #include "unicode.h" #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" #ifdef GGML_USE_RPC # include "ggml-rpc.h" #endif #ifdef GGML_USE_CUDA # include "ggml-cuda.h" #elif defined(GGML_USE_VULKAN) # include "ggml-vulkan.h" #elif defined(GGML_USE_SYCL) # include "ggml-sycl.h" #elif defined(GGML_USE_KOMPUTE) # include "ggml-kompute.h" #elif defined(GGML_USE_CANN) # include "ggml-cann.h" #endif #ifdef GGML_USE_BLAS # include "ggml-blas.h" #endif #ifdef GGML_USE_METAL # include "ggml-metal.h" #endif // TODO: replace with ggml API call #define QK_K 256 #ifdef __has_include #if __has_include() #include #if defined(_POSIX_MAPPED_FILES) #include #include #endif #if defined(_POSIX_MEMLOCK_RANGE) #include #endif #endif #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #include #endif #if __cplusplus >= 202000L #define LU8(x) (const char*)(u8##x) #else #define LU8(x) u8##x #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif // bump if necessary #define LLAMA_MAX_LAYERS 512 #define LLAMA_MAX_EXPERTS 160 // DeepSeekV2 // // helpers // // trim whitespace from the beginning and end of a string static std::string trim(const std::string & str) { size_t start = 0; size_t end = str.size(); while (start < end && isspace(str[start])) { start += 1; } while (end > start && isspace(str[end - 1])) { end -= 1; } return str.substr(start, end - start); } static bool is_float_close(float a, float b, float abs_tol) { // Check for non-negative tolerance if (abs_tol < 0.0) { throw std::invalid_argument("Tolerance must be non-negative"); } // Exact equality check if (a == b) { return true; } // Check for infinities if (std::isinf(a) || std::isinf(b)) { return false; } // Regular comparison using the provided absolute tolerance return std::fabs(b - a) <= abs_tol; } static void zeros(std::ofstream & file, size_t n) { char zero = 0; for (size_t i = 0; i < n; ++i) { file.write(&zero, 1); } } LLAMA_ATTRIBUTE_FORMAT(1, 2) static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); } // // gguf constants (sync with gguf.py) // enum llm_arch { LLM_ARCH_LLAMA, LLM_ARCH_FALCON, LLM_ARCH_BAICHUAN, LLM_ARCH_GROK, LLM_ARCH_GPT2, LLM_ARCH_GPTJ, LLM_ARCH_GPTNEOX, LLM_ARCH_MPT, LLM_ARCH_STARCODER, LLM_ARCH_REFACT, LLM_ARCH_BERT, LLM_ARCH_NOMIC_BERT, LLM_ARCH_JINA_BERT_V2, LLM_ARCH_BLOOM, LLM_ARCH_STABLELM, LLM_ARCH_QWEN, LLM_ARCH_QWEN2, LLM_ARCH_QWEN2MOE, LLM_ARCH_PHI2, LLM_ARCH_PHI3, LLM_ARCH_PLAMO, LLM_ARCH_CODESHELL, LLM_ARCH_ORION, LLM_ARCH_INTERNLM2, LLM_ARCH_MINICPM, LLM_ARCH_GEMMA, LLM_ARCH_GEMMA2, LLM_ARCH_STARCODER2, LLM_ARCH_MAMBA, LLM_ARCH_XVERSE, LLM_ARCH_COMMAND_R, LLM_ARCH_DBRX, LLM_ARCH_OLMO, LLM_ARCH_OPENELM, LLM_ARCH_ARCTIC, LLM_ARCH_DEEPSEEK2, LLM_ARCH_CHATGLM, LLM_ARCH_BITNET, LLM_ARCH_T5, LLM_ARCH_T5ENCODER, LLM_ARCH_JAIS, LLM_ARCH_NEMOTRON, LLM_ARCH_EXAONE, LLM_ARCH_UNKNOWN, }; static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_LLAMA, "llama" }, { LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_GROK, "grok" }, { LLM_ARCH_GPT2, "gpt2" }, { LLM_ARCH_GPTJ, "gptj" }, { LLM_ARCH_GPTNEOX, "gptneox" }, { LLM_ARCH_MPT, "mpt" }, { LLM_ARCH_BAICHUAN, "baichuan" }, { LLM_ARCH_STARCODER, "starcoder" }, { LLM_ARCH_REFACT, "refact" }, { LLM_ARCH_BERT, "bert" }, { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" }, { LLM_ARCH_BLOOM, "bloom" }, { LLM_ARCH_STABLELM, "stablelm" }, { LLM_ARCH_QWEN, "qwen" }, { LLM_ARCH_QWEN2, "qwen2" }, { LLM_ARCH_QWEN2MOE, "qwen2moe" }, { LLM_ARCH_PHI2, "phi2" }, { LLM_ARCH_PHI3, "phi3" }, { LLM_ARCH_PLAMO, "plamo" }, { LLM_ARCH_CODESHELL, "codeshell" }, { LLM_ARCH_ORION, "orion" }, { LLM_ARCH_INTERNLM2, "internlm2" }, { LLM_ARCH_MINICPM, "minicpm" }, { LLM_ARCH_GEMMA, "gemma" }, { LLM_ARCH_GEMMA2, "gemma2" }, { LLM_ARCH_STARCODER2, "starcoder2" }, { LLM_ARCH_MAMBA, "mamba" }, { LLM_ARCH_XVERSE, "xverse" }, { LLM_ARCH_COMMAND_R, "command-r" }, { LLM_ARCH_DBRX, "dbrx" }, { LLM_ARCH_OLMO, "olmo" }, { LLM_ARCH_OPENELM, "openelm" }, { LLM_ARCH_ARCTIC, "arctic" }, { LLM_ARCH_DEEPSEEK2, "deepseek2" }, { LLM_ARCH_CHATGLM, "chatglm" }, { LLM_ARCH_BITNET, "bitnet" }, { LLM_ARCH_T5, "t5" }, { LLM_ARCH_T5ENCODER, "t5encoder" }, { LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_NEMOTRON, "nemotron" }, { LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; enum llm_kv { LLM_KV_GENERAL_TYPE, LLM_KV_GENERAL_ARCHITECTURE, LLM_KV_GENERAL_QUANTIZATION_VERSION, LLM_KV_GENERAL_ALIGNMENT, LLM_KV_GENERAL_NAME, LLM_KV_GENERAL_AUTHOR, LLM_KV_GENERAL_VERSION, LLM_KV_GENERAL_URL, LLM_KV_GENERAL_DESCRIPTION, LLM_KV_GENERAL_LICENSE, LLM_KV_GENERAL_SOURCE_URL, LLM_KV_GENERAL_SOURCE_HF_REPO, LLM_KV_VOCAB_SIZE, LLM_KV_CONTEXT_LENGTH, LLM_KV_EMBEDDING_LENGTH, LLM_KV_BLOCK_COUNT, LLM_KV_LEADING_DENSE_BLOCK_COUNT, LLM_KV_FEED_FORWARD_LENGTH, LLM_KV_EXPERT_FEED_FORWARD_LENGTH, LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, LLM_KV_USE_PARALLEL_RESIDUAL, LLM_KV_TENSOR_DATA_LAYOUT, LLM_KV_EXPERT_COUNT, LLM_KV_EXPERT_USED_COUNT, LLM_KV_EXPERT_SHARED_COUNT, LLM_KV_EXPERT_WEIGHTS_SCALE, LLM_KV_POOLING_TYPE, LLM_KV_LOGIT_SCALE, LLM_KV_DECODER_START_TOKEN_ID, LLM_KV_ATTN_LOGIT_SOFTCAPPING, LLM_KV_FINAL_LOGIT_SOFTCAPPING, LLM_KV_ATTENTION_HEAD_COUNT, LLM_KV_ATTENTION_HEAD_COUNT_KV, LLM_KV_ATTENTION_MAX_ALIBI_BIAS, LLM_KV_ATTENTION_CLAMP_KQV, LLM_KV_ATTENTION_KEY_LENGTH, LLM_KV_ATTENTION_VALUE_LENGTH, LLM_KV_ATTENTION_LAYERNORM_EPS, LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, LLM_KV_ATTENTION_CAUSAL, LLM_KV_ATTENTION_Q_LORA_RANK, LLM_KV_ATTENTION_KV_LORA_RANK, LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, LLM_KV_ATTENTION_SLIDING_WINDOW, LLM_KV_ROPE_DIMENSION_COUNT, LLM_KV_ROPE_FREQ_BASE, LLM_KV_ROPE_SCALE_LINEAR, LLM_KV_ROPE_SCALING_TYPE, LLM_KV_ROPE_SCALING_FACTOR, LLM_KV_ROPE_SCALING_ATTN_FACTOR, LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, LLM_KV_ROPE_SCALING_FINETUNED, LLM_KV_ROPE_SCALING_YARN_LOG_MUL, LLM_KV_SPLIT_NO, LLM_KV_SPLIT_COUNT, LLM_KV_SPLIT_TENSORS_COUNT, LLM_KV_SSM_INNER_SIZE, LLM_KV_SSM_CONV_KERNEL, LLM_KV_SSM_STATE_SIZE, LLM_KV_SSM_TIME_STEP_RANK, LLM_KV_SSM_DT_B_C_RMS, LLM_KV_TOKENIZER_MODEL, LLM_KV_TOKENIZER_PRE, LLM_KV_TOKENIZER_LIST, LLM_KV_TOKENIZER_TOKEN_TYPE, LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, LLM_KV_TOKENIZER_SCORES, LLM_KV_TOKENIZER_MERGES, LLM_KV_TOKENIZER_BOS_ID, LLM_KV_TOKENIZER_EOS_ID, LLM_KV_TOKENIZER_UNK_ID, LLM_KV_TOKENIZER_SEP_ID, LLM_KV_TOKENIZER_PAD_ID, LLM_KV_TOKENIZER_CLS_ID, LLM_KV_TOKENIZER_MASK_ID, LLM_KV_TOKENIZER_ADD_BOS, LLM_KV_TOKENIZER_ADD_EOS, LLM_KV_TOKENIZER_ADD_PREFIX, LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, LLM_KV_TOKENIZER_HF_JSON, LLM_KV_TOKENIZER_RWKV, LLM_KV_TOKENIZER_PREFIX_ID, LLM_KV_TOKENIZER_SUFFIX_ID, LLM_KV_TOKENIZER_MIDDLE_ID, LLM_KV_TOKENIZER_EOT_ID, LLM_KV_TOKENIZER_EOM_ID, LLM_KV_ADAPTER_TYPE, LLM_KV_ADAPTER_LORA_ALPHA, }; static const std::map LLM_KV_NAMES = { { LLM_KV_GENERAL_TYPE, "general.type" }, { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, { LLM_KV_GENERAL_NAME, "general.name" }, { LLM_KV_GENERAL_AUTHOR, "general.author" }, { LLM_KV_GENERAL_VERSION, "general.version" }, { LLM_KV_GENERAL_URL, "general.url" }, { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, { LLM_KV_GENERAL_LICENSE, "general.license" }, { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, { LLM_KV_BLOCK_COUNT, "%s.block_count" }, { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" }, { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" }, { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" }, { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" }, { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" }, { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" }, { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" }, { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" }, { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" }, { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" }, { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" }, { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" }, { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" }, { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, { LLM_KV_SPLIT_NO, "split.no" }, { LLM_KV_SPLIT_COUNT, "split.count" }, { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" }, { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" }, { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" }, { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" }, { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, { LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" }, { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" }, { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" }, { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" }, { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" }, { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" }, { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" }, { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" }, { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" }, { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" }, { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" }, { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" }, { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" }, { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" }, { LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, "tokenizer.ggml.remove_extra_whitespaces" }, { LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" }, { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" }, { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" }, { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" }, { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" }, { LLM_KV_TOKENIZER_EOM_ID, "tokenizer.ggml.eom_token_id" }, { LLM_KV_ADAPTER_TYPE, "adapter.type" }, { LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" }, }; struct LLM_KV { LLM_KV(llm_arch arch) : arch(arch) {} llm_arch arch; std::string operator()(llm_kv kv) const { return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); } }; enum llm_tensor { LLM_TENSOR_TOKEN_EMBD, LLM_TENSOR_TOKEN_EMBD_NORM, LLM_TENSOR_TOKEN_TYPES, LLM_TENSOR_POS_EMBD, LLM_TENSOR_OUTPUT, LLM_TENSOR_OUTPUT_NORM, LLM_TENSOR_ROPE_FREQS, LLM_TENSOR_ROPE_FACTORS_LONG, LLM_TENSOR_ROPE_FACTORS_SHORT, LLM_TENSOR_ATTN_Q, LLM_TENSOR_ATTN_K, LLM_TENSOR_ATTN_V, LLM_TENSOR_ATTN_QKV, LLM_TENSOR_ATTN_OUT, LLM_TENSOR_ATTN_NORM, LLM_TENSOR_ATTN_NORM_2, LLM_TENSOR_ATTN_OUT_NORM, LLM_TENSOR_ATTN_POST_NORM, LLM_TENSOR_ATTN_ROT_EMBD, LLM_TENSOR_FFN_GATE_INP, LLM_TENSOR_FFN_GATE_INP_SHEXP, LLM_TENSOR_FFN_NORM, LLM_TENSOR_FFN_POST_NORM, LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, LLM_TENSOR_FFN_ACT, LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility LLM_TENSOR_FFN_GATE_EXP, LLM_TENSOR_FFN_UP_EXP, LLM_TENSOR_FFN_NORM_EXPS, LLM_TENSOR_FFN_DOWN_EXPS, // merged experts LLM_TENSOR_FFN_GATE_EXPS, LLM_TENSOR_FFN_UP_EXPS, LLM_TENSOR_FFN_DOWN_SHEXP, LLM_TENSOR_FFN_GATE_SHEXP, LLM_TENSOR_FFN_UP_SHEXP, LLM_TENSOR_ATTN_Q_NORM, LLM_TENSOR_ATTN_K_NORM, LLM_TENSOR_LAYER_OUT_NORM, LLM_TENSOR_SSM_IN, LLM_TENSOR_SSM_CONV1D, LLM_TENSOR_SSM_X, LLM_TENSOR_SSM_DT, LLM_TENSOR_SSM_A, LLM_TENSOR_SSM_D, LLM_TENSOR_SSM_OUT, LLM_TENSOR_ATTN_Q_A, LLM_TENSOR_ATTN_Q_B, LLM_TENSOR_ATTN_KV_A_MQA, LLM_TENSOR_ATTN_KV_B, LLM_TENSOR_ATTN_Q_A_NORM, LLM_TENSOR_ATTN_KV_A_NORM, LLM_TENSOR_ATTN_SUB_NORM, LLM_TENSOR_FFN_SUB_NORM, LLM_TENSOR_DEC_ATTN_NORM, LLM_TENSOR_DEC_ATTN_Q, LLM_TENSOR_DEC_ATTN_K, LLM_TENSOR_DEC_ATTN_V, LLM_TENSOR_DEC_ATTN_OUT, LLM_TENSOR_DEC_ATTN_REL_B, LLM_TENSOR_DEC_CROSS_ATTN_NORM, LLM_TENSOR_DEC_CROSS_ATTN_Q, LLM_TENSOR_DEC_CROSS_ATTN_K, LLM_TENSOR_DEC_CROSS_ATTN_V, LLM_TENSOR_DEC_CROSS_ATTN_OUT, LLM_TENSOR_DEC_CROSS_ATTN_REL_B, LLM_TENSOR_DEC_FFN_NORM, LLM_TENSOR_DEC_FFN_GATE, LLM_TENSOR_DEC_FFN_DOWN, LLM_TENSOR_DEC_FFN_UP, LLM_TENSOR_DEC_OUTPUT_NORM, LLM_TENSOR_ENC_ATTN_NORM, LLM_TENSOR_ENC_ATTN_Q, LLM_TENSOR_ENC_ATTN_K, LLM_TENSOR_ENC_ATTN_V, LLM_TENSOR_ENC_ATTN_OUT, LLM_TENSOR_ENC_ATTN_REL_B, LLM_TENSOR_ENC_FFN_NORM, LLM_TENSOR_ENC_FFN_GATE, LLM_TENSOR_ENC_FFN_DOWN, LLM_TENSOR_ENC_FFN_UP, LLM_TENSOR_ENC_OUTPUT_NORM, }; static const std::map> LLM_TENSOR_NAMES = { { LLM_ARCH_LLAMA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, { LLM_ARCH_BAICHUAN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_FALCON, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_GROK, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, }, }, { LLM_ARCH_GPT2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_GPTJ, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, { LLM_ARCH_GPTNEOX, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_MPT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output"}, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, }, }, { LLM_ARCH_STARCODER, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_REFACT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_BERT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_TOKEN_TYPES, "token_types" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_NOMIC_BERT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_TOKEN_TYPES, "token_types" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_JINA_BERT_V2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_TOKEN_TYPES, "token_types" }, { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_BLOOM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_STABLELM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, }, }, { LLM_ARCH_QWEN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_QWEN2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_QWEN2MOE, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, }, }, { LLM_ARCH_PHI2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_PHI3, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" }, { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_PLAMO, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_CODESHELL, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_ORION, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_INTERNLM2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_MINICPM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, }, }, { LLM_ARCH_GEMMA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_GEMMA2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" }, }, }, { LLM_ARCH_STARCODER2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_MAMBA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" }, { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" }, { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" }, { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" }, { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" }, { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" }, { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" }, }, }, { LLM_ARCH_XVERSE, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_COMMAND_R, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, }, }, { LLM_ARCH_DBRX, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, { LLM_ARCH_OLMO, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_OPENELM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_ARCTIC, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, { LLM_ARCH_DEEPSEEK2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" }, { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" }, { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" }, { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" }, { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, }, }, { LLM_ARCH_CHATGLM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_BITNET, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" }, }, }, { LLM_ARCH_T5, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_DEC_OUTPUT_NORM, "dec.output_norm" }, { LLM_TENSOR_DEC_ATTN_NORM, "dec.blk.%d.attn_norm" }, { LLM_TENSOR_DEC_ATTN_Q, "dec.blk.%d.attn_q" }, { LLM_TENSOR_DEC_ATTN_K, "dec.blk.%d.attn_k" }, { LLM_TENSOR_DEC_ATTN_V, "dec.blk.%d.attn_v" }, { LLM_TENSOR_DEC_ATTN_OUT, "dec.blk.%d.attn_o" }, { LLM_TENSOR_DEC_ATTN_REL_B, "dec.blk.%d.attn_rel_b" }, { LLM_TENSOR_DEC_CROSS_ATTN_NORM, "dec.blk.%d.cross_attn_norm" }, { LLM_TENSOR_DEC_CROSS_ATTN_Q, "dec.blk.%d.cross_attn_q" }, { LLM_TENSOR_DEC_CROSS_ATTN_K, "dec.blk.%d.cross_attn_k" }, { LLM_TENSOR_DEC_CROSS_ATTN_V, "dec.blk.%d.cross_attn_v" }, { LLM_TENSOR_DEC_CROSS_ATTN_OUT, "dec.blk.%d.cross_attn_o" }, { LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "dec.blk.%d.cross_attn_rel_b" }, { LLM_TENSOR_DEC_FFN_NORM, "dec.blk.%d.ffn_norm" }, { LLM_TENSOR_DEC_FFN_GATE, "dec.blk.%d.ffn_gate" }, { LLM_TENSOR_DEC_FFN_DOWN, "dec.blk.%d.ffn_down" }, { LLM_TENSOR_DEC_FFN_UP, "dec.blk.%d.ffn_up" }, { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" }, { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" }, { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" }, { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" }, { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" }, { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" }, { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" }, { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" }, { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" }, { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" }, { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" }, }, }, { LLM_ARCH_T5ENCODER, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" }, { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" }, { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" }, { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" }, { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" }, { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" }, { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" }, { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" }, { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" }, { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" }, { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" }, }, }, { LLM_ARCH_JAIS, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_NEMOTRON, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_EXAONE, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_UNKNOWN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, }; static llm_arch llm_arch_from_string(const std::string & name) { for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT if (kv.second == name) { return kv.first; } } return LLM_ARCH_UNKNOWN; } // helper to handle gguf constants // usage: // // const auto tn = LLM_TN(LLM_ARCH_LLAMA); // // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output" // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias" // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight" // struct LLM_TN { LLM_TN(llm_arch arch) : arch(arch) {} llm_arch arch; std::string operator()(llm_tensor tensor) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return LLM_TENSOR_NAMES.at(arch).at(tensor); } std::string operator()(llm_tensor tensor, const std::string & suffix) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix; } std::string operator()(llm_tensor tensor, int bid) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid); } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix; } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix; } }; // // gguf helpers // static const std::map LLAMA_ROPE_SCALING_TYPES = { { LLAMA_ROPE_SCALING_TYPE_NONE, "none" }, { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" }, { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" }, }; static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { if (kv.second == name) { return (llama_rope_scaling_type) kv.first; } } return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; } static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { switch (type) { case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; default: return format("unknown type %d", type); } } static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); switch (type) { case GGUF_TYPE_STRING: return gguf_get_val_str(ctx_gguf, i); case GGUF_TYPE_ARRAY: { const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); int arr_n = gguf_get_arr_n(ctx_gguf, i); const void * data = gguf_get_arr_data(ctx_gguf, i); std::stringstream ss; ss << "["; for (int j = 0; j < arr_n; j++) { if (arr_type == GGUF_TYPE_STRING) { std::string val = gguf_get_arr_str(ctx_gguf, i, j); // escape quotes replace_all(val, "\\", "\\\\"); replace_all(val, "\"", "\\\""); ss << '"' << val << '"'; } else if (arr_type == GGUF_TYPE_ARRAY) { ss << "???"; } else { ss << gguf_data_to_str(arr_type, data, j); } if (j < arr_n - 1) { ss << ", "; } } ss << "]"; return ss.str(); } default: return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); } } // // llama helpers // #if defined(_WIN32) static std::string llama_format_win_err(DWORD err) { LPSTR buf; size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL); if (!size) { return "FormatMessageA failed"; } std::string ret(buf, size); LocalFree(buf); return ret; } #endif template struct no_init { T value; no_init() { /* do nothing */ } }; struct llama_file { #if defined(_WIN32) // use FILE * so we don't have to re-open the file to mmap FILE * fp; HANDLE fp_win32; size_t size; private: std::string GetErrorMessageWin32(DWORD error_code) const { std::string ret; LPSTR lpMsgBuf = NULL; DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL); if (!bufLen) { ret = format("Win32 error code: %s", error_code); } else { ret = lpMsgBuf; LocalFree(lpMsgBuf); } return ret; } public: llama_file(const char * fname, const char * mode) { fp = ggml_fopen(fname, mode); if (fp == NULL) { throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); } fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp)); seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } size_t tell() const { // SetFilePointerEx returns the current position when seeking relative 0 bytes LARGE_INTEGER li; li.QuadPart = 0; BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT); if (!ret) { throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str())); } return li.QuadPart; } void seek(size_t offset, int whence) const { // no need to convert SEEK_* to FILE_*. The enums are the same. // Still, keep static asserts to avoid failures in the future. static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN"); static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT"); static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END"); LARGE_INTEGER li; li.QuadPart = offset; BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence); if (!ret) { throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str())); } } void read_raw(void * ptr, size_t len) const { // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus // use the Win32 API to do file io instead of the C/C++ library functions. // There are conditions under which ReadFile cannot read chunks >64MB. // Thus split the operation into smaller chunks if len exceeds this limit. size_t bytes_read = 0; while (bytes_read < len) { size_t chunk_size = std::min(len - bytes_read, 64*1024*1024); DWORD chunk_read = 0; BOOL result = ReadFile(fp_win32, reinterpret_cast(ptr) + bytes_read, chunk_size, &chunk_read, NULL); if (!result) { throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str())); } if (chunk_read < chunk_size || chunk_read == 0) { throw std::runtime_error("unexpectedly reached end of file"); } bytes_read += chunk_read; } ; } uint32_t read_u32() const { uint32_t val; read_raw(&val, sizeof(val)); return val; } void write_raw(const void * ptr, size_t len) const { // There are conditions under which WriteFile cannot write chunks >64MB. // Thus split the operation into smaller chunks if len exceeds this limit. size_t bytes_written = 0; while (bytes_written < len) { size_t chunk_size = std::min(len - bytes_written, 64*1024*1024); DWORD chunk_written = 0; BOOL result = WriteFile(fp_win32, reinterpret_cast(ptr) + bytes_written, chunk_size, &chunk_written, NULL); if (!result) { throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str())); } if (chunk_written < chunk_size || chunk_written == 0) { throw std::runtime_error("unexpectedly failed to write bytes"); } bytes_written += chunk_written; } } void write_u32(std::uint32_t val) const { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } #else // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; llama_file(const char * fname, const char * mode) { fp = ggml_fopen(fname, mode); if (fp == NULL) { throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); } seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif if (ret == -1) { throw std::runtime_error(format("ftell error: %s", strerror(errno))); } return (size_t) ret; } void seek(size_t offset, int whence) const { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif if (ret != 0) { throw std::runtime_error(format("seek error: %s", strerror(errno))); } } void read_raw(void * ptr, size_t len) const { if (len == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, len, 1, fp); if (ferror(fp)) { throw std::runtime_error(format("read error: %s", strerror(errno))); } if (ret != 1) { throw std::runtime_error("unexpectedly reached end of file"); } } uint32_t read_u32() const { uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } void write_raw(const void * ptr, size_t len) const { if (len == 0) { return; } errno = 0; size_t ret = std::fwrite(ptr, len, 1, fp); if (ret != 1) { throw std::runtime_error(format("write error: %s", strerror(errno))); } } void write_u32(std::uint32_t val) const { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } #endif }; using llama_files = std::vector>; struct llama_mmap { void * addr; size_t size; llama_mmap(const llama_mmap &) = delete; #ifdef _POSIX_MAPPED_FILES static constexpr bool SUPPORTED = true; // list of mapped fragments (first_offset, last_offset) std::vector> mapped_fragments; llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) { size = file->size; int fd = fileno(file->fp); int flags = MAP_SHARED; // prefetch/readahead impairs performance on NUMA systems if (numa) { prefetch = 0; } #ifdef __linux__ // advise the kernel to read the file sequentially (increases readahead) if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) { LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n", strerror(errno)); } if (prefetch) { flags |= MAP_POPULATE; } #endif addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); if (addr == MAP_FAILED) { // NOLINT throw std::runtime_error(format("mmap failed: %s", strerror(errno))); } if (prefetch > 0) { // advise the kernel to preload the mapped memory if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) { LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n", strerror(errno)); } } if (numa) { // advise the kernel not to use readahead // (because the next page might not belong on the same node) if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) { LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n", strerror(errno)); } } // initialize list of mapped_fragments mapped_fragments.emplace_back(0, file->size); } static void align_range(size_t * first, size_t * last, size_t page_size) { // align first to the next page size_t offset_in_page = *first & (page_size - 1); size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page; *first += offset_to_page; // align last to the previous page *last = *last & ~(page_size - 1); if (*last <= *first) { *last = *first; } } // partially unmap the file in the range [first, last) void unmap_fragment(size_t first, size_t last) { // note: this function must not be called multiple times with overlapping ranges // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings int page_size = sysconf(_SC_PAGESIZE); align_range(&first, &last, page_size); size_t len = last - first; if (len == 0) { return; } GGML_ASSERT(first % page_size == 0); GGML_ASSERT(last % page_size == 0); GGML_ASSERT(last > first); void * next_page_start = (uint8_t *) addr + first; // unmap the range if (munmap(next_page_start, len)) { LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); } // update the list of mapped fragments to avoid unmapping the same range again in the destructor std::vector> new_mapped_fragments; for (const auto & frag : mapped_fragments) { if (frag.first < first && frag.second > last) { // the range is in the middle of the fragment, split it new_mapped_fragments.emplace_back(frag.first, first); new_mapped_fragments.emplace_back(last, frag.second); } else if (frag.first < first && frag.second > first) { // the range starts in the middle of the fragment new_mapped_fragments.emplace_back(frag.first, first); } else if (frag.first < last && frag.second > last) { // the range ends in the middle of the fragment new_mapped_fragments.emplace_back(last, frag.second); } else if (frag.first >= first && frag.second <= last) { // the range covers the entire fragment } else { // the range is outside the fragment new_mapped_fragments.push_back(frag); } } mapped_fragments = std::move(new_mapped_fragments); } ~llama_mmap() { for (const auto & frag : mapped_fragments) { if (munmap((char *) addr + frag.first, frag.second - frag.first)) { LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); } } } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) { GGML_UNUSED(numa); size = file->size; HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp)); HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL); if (hMapping == NULL) { DWORD error = GetLastError(); throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str())); } addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0); DWORD error = GetLastError(); CloseHandle(hMapping); if (addr == NULL) { throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str())); } if (prefetch > 0) { #if _WIN32_WINNT >= 0x602 // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG); HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll"); // may fail on pre-Windows 8 systems pPrefetchVirtualMemory = reinterpret_cast (GetProcAddress(hKernel32, "PrefetchVirtualMemory")); if (pPrefetchVirtualMemory) { // advise the kernel to preload the mapped memory WIN32_MEMORY_RANGE_ENTRY range; range.VirtualAddress = addr; range.NumberOfBytes = (SIZE_T) std::min(size, prefetch); if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) { LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else throw std::runtime_error("PrefetchVirtualMemory unavailable"); #endif } } void unmap_fragment(size_t first, size_t last) { // not supported GGML_UNUSED(first); GGML_UNUSED(last); } ~llama_mmap() { if (!UnmapViewOfFile(addr)) { LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) { GGML_UNUSED(file); GGML_UNUSED(prefetch); GGML_UNUSED(numa); throw std::runtime_error("mmap not supported"); } void unmap_fragment(size_t first, size_t last) { GGML_UNUSED(first); GGML_UNUSED(last); throw std::runtime_error("mmap not supported"); } #endif }; using llama_mmaps = std::vector>; // Represents some region of memory being locked using mlock or VirtualLock; // will automatically unlock on destruction. struct llama_mlock { void * addr = NULL; size_t size = 0; bool failed_already = false; llama_mlock() {} llama_mlock(const llama_mlock &) = delete; ~llama_mlock() { if (size) { raw_unlock(addr, size); } } void init(void * ptr) { GGML_ASSERT(addr == NULL && size == 0); // NOLINT addr = ptr; } void grow_to(size_t target_size) { GGML_ASSERT(addr); if (failed_already) { return; } size_t granularity = lock_granularity(); target_size = (target_size + granularity - 1) & ~(granularity - 1); if (target_size > size) { if (raw_lock((uint8_t *) addr + size, target_size - size)) { size = target_size; } else { failed_already = true; } } } #ifdef _POSIX_MEMLOCK_RANGE static constexpr bool SUPPORTED = true; static size_t lock_granularity() { return (size_t) sysconf(_SC_PAGESIZE); } #ifdef __APPLE__ #define MLOCK_SUGGESTION \ "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \ "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n" #else #define MLOCK_SUGGESTION \ "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n" #endif bool raw_lock(const void * addr, size_t size) const { if (!mlock(addr, size)) { return true; } char* errmsg = std::strerror(errno); bool suggest = (errno == ENOMEM); // Check if the resource limit is fine after all struct rlimit lock_limit; if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) { suggest = false; } if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) { suggest = false; } LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : ""); return false; } #undef MLOCK_SUGGESTION static void raw_unlock(void * addr, size_t size) { if (munlock(addr, size)) { LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno)); } } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; static size_t lock_granularity() { SYSTEM_INFO si; GetSystemInfo(&si); return (size_t) si.dwPageSize; } bool raw_lock(void * ptr, size_t len) const { for (int tries = 1; ; tries++) { if (VirtualLock(ptr, len)) { return true; } if (tries == 2) { LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", len, size, llama_format_win_err(GetLastError()).c_str()); return false; } // It failed but this was only the first try; increase the working // set size and try again. SIZE_T min_ws_size, max_ws_size; if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } // Per MSDN: "The maximum number of pages that a process can lock // is equal to the number of pages in its minimum working set minus // a small overhead." // Hopefully a megabyte is enough overhead: size_t increment = len + 1048576; // The minimum must be <= the maximum, so we need to increase both: min_ws_size += increment; max_ws_size += increment; if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } } } static void raw_unlock(void * ptr, size_t len) { if (!VirtualUnlock(ptr, len)) { LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; static size_t lock_granularity() { return (size_t) 65536; } bool raw_lock(const void * addr, size_t len) const { LLAMA_LOG_WARN("warning: mlock not supported on this system\n"); return false; } static void raw_unlock(const void * addr, size_t len) {} #endif }; using llama_mlocks = std::vector>; // NOTE: avoid ever using this except for building the token_to_piece caches static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) { std::string piece; piece.resize(piece.capacity()); // using string internal cache const int n_chars = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special); if (n_chars < 0) { piece.resize(-n_chars); int check = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special); GGML_ASSERT(check == -n_chars); } else { piece.resize(n_chars); } return piece; } static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) { ggml_backend_buffer_type_t buft = nullptr; #if defined(GGML_USE_CUDA) // host buffers should only be used when data is expected to be copied to/from the GPU if (host_buffer) { buft = ggml_backend_cuda_host_buffer_type(); } #elif defined(GGML_USE_SYCL) if (host_buffer) { buft = ggml_backend_sycl_host_buffer_type(); } #elif defined(GGML_USE_CPU_HBM) buft = ggml_backend_cpu_hbm_buffer_type(); #elif defined(GGML_USE_VULKAN) if (host_buffer) { buft = ggml_backend_vk_host_buffer_type(); } #endif if (buft == nullptr) { buft = ggml_backend_cpu_buffer_type(); } return buft; GGML_UNUSED(host_buffer); } // // globals // struct llama_state { llama_state() { #ifdef GGML_USE_METAL ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data); #elif defined(GGML_USE_CUDA) ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data); #elif defined(GGML_USE_CANN) ggml_backend_cann_log_set_callback(log_callback, log_callback_user_data); #endif } // We save the log callback globally ggml_log_callback log_callback = llama_log_callback_default; void * log_callback_user_data = nullptr; }; static llama_state g_state; // available llama models enum e_model { MODEL_UNKNOWN, MODEL_14M, MODEL_17M, MODEL_22M, MODEL_33M, MODEL_60M, MODEL_70M, MODEL_80M, MODEL_109M, MODEL_137M, MODEL_160M, MODEL_220M, MODEL_250M, MODEL_270M, MODEL_335M, MODEL_410M, MODEL_450M, MODEL_770M, MODEL_780M, MODEL_0_5B, MODEL_1B, MODEL_1_3B, MODEL_1_4B, MODEL_2B, MODEL_2_8B, MODEL_3B, MODEL_4B, MODEL_6B, MODEL_6_9B, MODEL_7B, MODEL_8B, MODEL_9B, MODEL_11B, MODEL_12B, MODEL_13B, MODEL_14B, MODEL_15B, MODEL_16B, MODEL_20B, MODEL_30B, MODEL_34B, MODEL_35B, MODEL_40B, MODEL_65B, MODEL_70B, MODEL_236B, MODEL_314B, MODEL_SMALL, MODEL_MEDIUM, MODEL_LARGE, MODEL_XL, MODEL_A2_7B, MODEL_8x7B, MODEL_8x22B, MODEL_16x12B, MODEL_10B_128x3_66B, MODEL_57B_A14B, MODEL_27B, }; static const size_t kiB = 1024; static const size_t MiB = 1024*kiB; static const size_t GiB = 1024*MiB; struct llama_hparams { bool vocab_only; bool rope_finetuned; bool use_par_res; uint32_t n_vocab; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; uint32_t n_layer; uint32_t n_rot; uint32_t n_swa = 0; // sliding window attention (SWA) uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head uint32_t n_expert = 0; uint32_t n_expert_used = 0; uint32_t n_vocab_type = 0; // for BERT-style token types uint32_t n_rel_attn_bkts = 0; std::array n_head_arr; std::array n_head_kv_arr; std::array n_ff_arr; uint32_t n_layer_dense_lead = 0; uint32_t n_lora_q = 0; uint32_t n_lora_kv = 0; uint32_t n_ff_exp = 0; uint32_t n_ff_shexp = 0; uint32_t n_expert_shared = 0; float expert_weights_scale = 0.0; float f_norm_eps; float f_norm_rms_eps; float f_attn_logit_softcapping = 50.0f; float f_final_logit_softcapping = 30.0f; float rope_attn_factor = 1.0f; float rope_freq_base_train; float rope_freq_scale_train; uint32_t n_ctx_orig_yarn; float rope_yarn_log_mul; // for State Space Models uint32_t ssm_d_conv = 0; uint32_t ssm_d_inner = 0; uint32_t ssm_d_state = 0; uint32_t ssm_dt_rank = 0; bool ssm_dt_b_c_rms = false; float f_clamp_kqv = 0.0f; float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; bool causal_attn = true; bool use_alibi = false; bool attn_soft_cap = false; // needed by encoder-decoder models (e.g. T5, FLAN-T5) // ref: https://github.com/ggerganov/llama.cpp/pull/8141 llama_token dec_start_token_id = -1; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; if (this->n_vocab != other.n_vocab) return true; if (this->n_ctx_train != other.n_ctx_train) return true; if (this->n_embd != other.n_embd) return true; if (this->n_layer != other.n_layer) return true; if (this->n_rot != other.n_rot) return true; if (this->n_swa != other.n_swa) return true; if (this->n_embd_head_k != other.n_embd_head_k) return true; if (this->n_embd_head_v != other.n_embd_head_v) return true; if (this->n_expert != other.n_expert) return true; if (this->n_expert_used != other.n_expert_used) return true; if (this->n_head_arr != other.n_head_arr) return true; if (this->n_head_kv_arr != other.n_head_kv_arr) return true; if (this->n_ff_arr != other.n_ff_arr) return true; if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true; if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true; if (this->n_lora_q != other.n_lora_q) return true; if (this->n_lora_kv != other.n_lora_kv) return true; if (this->n_ff_exp != other.n_ff_exp) return true; if (this->n_ff_shexp != other.n_ff_shexp) return true; if (this->n_expert_shared != other.n_expert_shared) return true; if (this->rope_finetuned != other.rope_finetuned) return true; if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true; if (this->ssm_d_conv != other.ssm_d_conv) return true; if (this->ssm_d_inner != other.ssm_d_inner) return true; if (this->ssm_d_state != other.ssm_d_state) return true; if (this->ssm_dt_rank != other.ssm_dt_rank) return true; if (this->ssm_dt_b_c_rms != other.ssm_dt_b_c_rms) return true; if (this->dec_start_token_id != other.dec_start_token_id) return true; const float EPSILON = 1e-9f; if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true; if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true; if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true; return false; } uint32_t n_head(uint32_t il = 0) const { if (il < n_layer) { return n_head_arr[il]; } GGML_ABORT("fatal error"); } uint32_t n_head_kv(uint32_t il = 0) const { if (il < n_layer) { return n_head_kv_arr[il]; } GGML_ABORT("fatal error"); } uint32_t n_ff(uint32_t il = 0) const { if (il < n_layer) { return n_ff_arr[il]; } GGML_ABORT("fatal error"); } uint32_t n_gqa(uint32_t il = 0) const { const uint32_t n_head = this->n_head(il); const uint32_t n_head_kv = this->n_head_kv(il); if (n_head_kv == 0) { return 0; } return n_head/n_head_kv; } uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads const uint32_t n_head_kv = this->n_head_kv(il); return n_embd_head_k * n_head_kv; } uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads const uint32_t n_head_kv = this->n_head_kv(il); return n_embd_head_v * n_head_kv; } uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings // corresponds to Mamba's conv_states size // TODO: maybe support other convolution strides than 1 // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; } uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings // corresponds to Mamba's ssm_states size return ssm_d_state * ssm_d_inner; } }; static_assert(std::is_trivially_copyable::value, "llama_hparams must be trivially copyable"); struct llama_cparams { uint32_t n_ctx; // context size used during inference uint32_t n_batch; uint32_t n_ubatch; uint32_t n_seq_max; uint32_t n_threads; // number of threads to use for generation uint32_t n_threads_batch; // number of threads to use for batch processing float rope_freq_base; float rope_freq_scale; uint32_t n_ctx_orig_yarn; // These hyperparameters are not exposed in GGUF, because all // existing YaRN models use the same values for them. float yarn_ext_factor; float yarn_attn_factor; float yarn_beta_fast; float yarn_beta_slow; float defrag_thold; bool embeddings; bool causal_attn; bool offload_kqv; bool flash_attn; enum llama_pooling_type pooling_type; ggml_backend_sched_eval_callback cb_eval; void * cb_eval_user_data; }; // TODO: separate into "llama_layer_enc" and "llama_layer_dec" struct llama_layer { // normalization struct ggml_tensor * attn_norm; struct ggml_tensor * attn_norm_b; struct ggml_tensor * attn_norm_2; struct ggml_tensor * attn_norm_2_b; struct ggml_tensor * attn_q_norm; struct ggml_tensor * attn_q_norm_b; struct ggml_tensor * attn_k_norm; struct ggml_tensor * attn_k_norm_b; struct ggml_tensor * attn_out_norm; struct ggml_tensor * attn_out_norm_b; struct ggml_tensor * attn_q_a_norm; struct ggml_tensor * attn_kv_a_norm; struct ggml_tensor * attn_sub_norm; struct ggml_tensor * attn_post_norm; struct ggml_tensor * ffn_sub_norm; struct ggml_tensor * attn_norm_cross; struct ggml_tensor * attn_norm_enc; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; struct ggml_tensor * wqkv; struct ggml_tensor * wq_a; struct ggml_tensor * wq_b; struct ggml_tensor * wkv_a_mqa; struct ggml_tensor * wkv_b; struct ggml_tensor * wq_cross; struct ggml_tensor * wk_cross; struct ggml_tensor * wv_cross; struct ggml_tensor * wo_cross; struct ggml_tensor * wq_enc; struct ggml_tensor * wk_enc; struct ggml_tensor * wv_enc; struct ggml_tensor * wo_enc; // attention bias struct ggml_tensor * bq; struct ggml_tensor * bk; struct ggml_tensor * bv; struct ggml_tensor * bo; struct ggml_tensor * bqkv; // relative position bias struct ggml_tensor * attn_rel_b; struct ggml_tensor * attn_rel_b_enc; struct ggml_tensor * attn_rel_b_cross; // normalization struct ggml_tensor * ffn_norm; struct ggml_tensor * ffn_norm_b; struct ggml_tensor * ffn_post_norm; struct ggml_tensor * layer_out_norm; struct ggml_tensor * layer_out_norm_b; struct ggml_tensor * ffn_norm_exps; struct ggml_tensor * ffn_norm_enc; // ff struct ggml_tensor * ffn_gate; // w1 struct ggml_tensor * ffn_down; // w2 struct ggml_tensor * ffn_up; // w3 struct ggml_tensor * ffn_gate_enc; struct ggml_tensor * ffn_down_enc; struct ggml_tensor * ffn_up_enc; // ff MoE struct ggml_tensor * ffn_gate_inp; struct ggml_tensor * ffn_gate_exps; struct ggml_tensor * ffn_down_exps; struct ggml_tensor * ffn_up_exps ; // ff shared expert (shexp) struct ggml_tensor * ffn_gate_inp_shexp; struct ggml_tensor * ffn_gate_shexp; struct ggml_tensor * ffn_down_shexp; struct ggml_tensor * ffn_up_shexp; // ff bias struct ggml_tensor * ffn_gate_b = nullptr; struct ggml_tensor * ffn_down_b = nullptr; // b2 struct ggml_tensor * ffn_up_b = nullptr; // b3 struct ggml_tensor * ffn_act; // mamba proj struct ggml_tensor * ssm_in; struct ggml_tensor * ssm_x; struct ggml_tensor * ssm_dt; struct ggml_tensor * ssm_out; // mamba struct ggml_tensor * ssm_conv1d; struct ggml_tensor * ssm_a; struct ggml_tensor * ssm_d; // mamba bias struct ggml_tensor * ssm_conv1d_b; struct ggml_tensor * ssm_dt_b; // long rope factors struct ggml_tensor * rope_long = nullptr; struct ggml_tensor * rope_short = nullptr; struct ggml_tensor * rope_freqs = nullptr; // bitnet scale struct ggml_tensor * wq_scale; struct ggml_tensor * wk_scale; struct ggml_tensor * wv_scale; struct ggml_tensor * wo_scale; struct ggml_tensor * ffn_gate_scale; struct ggml_tensor * ffn_up_scale; struct ggml_tensor * ffn_down_scale; }; // very similar to llama_batch, // but has more metadata about sequences struct llama_ubatch { bool equal_seqs; // TODO: whole_seqs for embeddings? uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs) uint32_t n_seq_tokens; // tokens per sequence uint32_t n_seqs; llama_token * token; // [n_tokens] float * embd; // [n_embd, n_tokens] llama_pos * pos; // [n_tokens] int32_t * n_seq_id; // [n_seqs] llama_seq_id ** seq_id; // [n_seqs] int8_t * output; // [n_tokens] }; struct llama_kv_cell { llama_pos pos = -1; llama_pos delta = 0; int32_t src = -1; // used by recurrent state models to copy states int32_t tail = -1; std::set seq_id; bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } bool is_empty() const { return seq_id.empty(); } bool is_same_seq(const llama_kv_cell & other) const { return seq_id == other.seq_id; } }; // ring-buffer of cached KV data struct llama_kv_cache { bool has_shift = false; bool do_defrag = false; bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token bool v_trans = true; // the value tensor is transposed // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_internal also uses it, so it // cannot be freely changed after a slot has been allocated. uint32_t head = 0; uint32_t size = 0; uint32_t used = 0; // used cells (i.e. at least one seq_id) // computed before each graph build uint32_t n = 0; ggml_type type_k = GGML_TYPE_F16; ggml_type type_v = GGML_TYPE_F16; std::vector cells; std::vector k_l; // per layer std::vector v_l; std::vector ctxs; std::vector bufs; size_t total_size() const { size_t size = 0; for (ggml_backend_buffer_t buf : bufs) { size += ggml_backend_buffer_get_size(buf); } return size; } ~llama_kv_cache() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { ggml_backend_buffer_free(buf); } } }; struct llama_control_vector { std::vector tensors; // per layer std::vector ctxs; std::vector bufs; int32_t layer_start = -1; int32_t layer_end = -1; struct ggml_tensor * tensor_for(int il) const { if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) { return nullptr; } return tensors[il]; } struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const { ggml_tensor * layer_dir = tensor_for(il); if (layer_dir != nullptr) { cur = ggml_add(ctx, cur, layer_dir); } return cur; } ~llama_control_vector() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { ggml_backend_buffer_free(buf); } } }; struct llama_model { e_model type = MODEL_UNKNOWN; llm_arch arch = LLM_ARCH_UNKNOWN; llama_ftype ftype = LLAMA_FTYPE_ALL_F32; std::string name = "n/a"; llama_hparams hparams = {}; llama_vocab vocab; struct ggml_tensor * tok_embd; struct ggml_tensor * type_embd; struct ggml_tensor * pos_embd; struct ggml_tensor * tok_norm; struct ggml_tensor * tok_norm_b; struct ggml_tensor * output_norm; struct ggml_tensor * output_norm_b; struct ggml_tensor * output; struct ggml_tensor * output_b; struct ggml_tensor * output_norm_enc; std::vector layers; llama_split_mode split_mode; int main_gpu; int n_gpu_layers; std::vector rpc_servers; // gguf metadata std::unordered_map gguf_kv; // layer -> buffer type mapping struct layer_buft { layer_buft() : buft_matrix(nullptr), buft(nullptr) {} layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {} layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {} ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication ggml_backend_buffer_type_t buft; // everything else }; layer_buft buft_input; layer_buft buft_output; std::vector buft_layer; // contexts where the model tensors metadata is stored std::vector ctxs; // the model memory buffers for the tensor data std::vector bufs; // model memory mapped files llama_mmaps mappings; // objects representing data potentially being locked in memory llama_mlocks mlock_bufs; llama_mlocks mlock_mmaps; // for quantize-stats only std::vector> tensors_by_name; int64_t t_load_us = 0; int64_t t_start_us = 0; // keep track of loaded lora adapters std::set lora_adapters; ~llama_model() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { #ifdef GGML_USE_CUDA if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) { ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf)); } #endif ggml_backend_buffer_free(buf); } while (!lora_adapters.empty()) { llama_lora_adapter_free(*lora_adapters.begin()); } } }; struct llama_sbatch_seq { int32_t n_seq_id; llama_seq_id * seq_id; size_t offset; size_t length; // helper for smoother batch API transition -- can be deprecated in the future llama_seq_id all_seq_id; // used if seq_id == NULL }; // sequence-length-aware batch splitting struct llama_sbatch { // tokens left in this batch size_t n_tokens; size_t n_embd; bool logits_all; // TODO: remove once lctx.logits_all is removed too // sorted indices into the batch std::vector ids; // batch indices of the output std::vector out_ids; std::vector seq; const llama_batch * batch = nullptr; // buffers for the ubatch std::vector ubatch_token; std::vector ubatch_embd; std::vector ubatch_pos; std::vector ubatch_n_seq_id; std::vector ubatch_seq_id; std::vector ubatch_output; llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false) { // clear empty sequences // the previous ubatch is assumed to be gone, // so nothing should refer to values in these sequences anymore. for (size_t i = seq.size(); i-- > 0;) { if (seq[i].length == 0) { seq.pop_back(); } else { break; } } ubatch_token.resize(!has_embd ? n_ubatch : 0); ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0); ubatch_pos.resize(n_ubatch); ubatch_n_seq_id.resize(n_ubatch); ubatch_seq_id.resize(n_ubatch); ubatch_output.resize(n_ubatch); llama_ubatch ubatch = { /*equal_seqs =*/ true, /*n_tokens =*/ 0, /*n_seq_tokens =*/ 0, /*n_seqs =*/ 0, /*token =*/ !has_embd ? ubatch_token.data() : nullptr, /*embd =*/ has_embd ? ubatch_embd.data() : nullptr, /*pos =*/ ubatch_pos.data(), /*n_seq_id =*/ ubatch_n_seq_id.data(), /*seq_id =*/ ubatch_seq_id.data(), /*output =*/ ubatch_output.data(), }; return ubatch; } void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length) { GGML_ASSERT(batch != nullptr); GGML_ASSERT(length <= seq.length); // Can only add sequences of equal lengths to a batch, // otherwise it isn't clear to which sequence a token belongs GGML_ASSERT(seq.n_seq_id == 0 || ubatch.n_seqs == 0 || length == (size_t) ubatch.n_tokens / ubatch.n_seqs); GGML_ASSERT((seq.n_seq_id != 0) == ubatch.equal_seqs); // NOTE: loops are separated for cache-friendliness if (batch->token) { if (ubatch.equal_seqs) { for (size_t i = 0; i < length; ++i) { ubatch.token[ubatch.n_tokens + i] = batch->token[ids[seq.offset + i]]; } } else { // simple split ubatch.token = batch->token + seq.offset; } } else { ubatch.token = nullptr; } if (batch->embd) { if (ubatch.equal_seqs) { for (size_t i = 0; i < length; ++i) { memcpy( ubatch.embd + n_embd * (ubatch.n_tokens + i), batch->embd + n_embd * ids[seq.offset + i], n_embd * sizeof(float) ); } } else { // simple split ubatch.embd = batch->embd + (n_embd * seq.offset); } } else { ubatch.embd = nullptr; } // from here on, the else branches are deprecated; // they are helpers for smoother batch API transition if (batch->pos) { if (ubatch.equal_seqs) { for (size_t i = 0; i < length; ++i) { ubatch.pos[ubatch.n_tokens + i] = batch->pos[ids[seq.offset + i]]; } } else { // simple split ubatch.pos = batch->pos + seq.offset; } } else { for (size_t i = 0; i < length; ++i) { llama_pos bi = ids[seq.offset + i]; ubatch.pos[ubatch.n_tokens + i] = batch->all_pos_0 + (bi * batch->all_pos_1); } } if (ubatch.equal_seqs) { ubatch.n_seq_id[ubatch.n_seqs] = seq.n_seq_id; if (seq.seq_id) { ubatch.seq_id[ubatch.n_seqs] = seq.seq_id; } else { GGML_ASSERT(seq.n_seq_id == 1); ubatch.seq_id[ubatch.n_seqs] = &seq.all_seq_id; } } else { // simple split if (batch->n_seq_id) { for (size_t i = 0; i < length; ++i) { ubatch.n_seq_id = batch->n_seq_id + seq.offset; } } else { for (size_t i = 0; i < length; ++i) { ubatch.n_seq_id[ubatch.n_seqs + i] = 1; } } if (batch->seq_id) { for (size_t i = 0; i < length; ++i) { ubatch.seq_id = batch->seq_id + seq.offset; } } else { for (size_t i = 0; i < length; ++i) { ubatch.seq_id[ubatch.n_seqs + i] = &seq.all_seq_id; } } } if (logits_all) { for (size_t i = 0; i < length; ++i) { ubatch.output[ubatch.n_tokens + i] = 1; out_ids.push_back(ids[seq.offset + i]); } } else if (batch->logits) { if (ubatch.equal_seqs) { for (size_t i = 0; i < length; ++i) { size_t id = ids[seq.offset + i]; int8_t is_output = batch->logits[id]; ubatch.output[ubatch.n_tokens + i] = is_output; if (is_output) { out_ids.push_back(id); } } } else { // simple split ubatch.output = batch->logits + seq.offset; for (size_t i = 0; i < length; ++i) { if (ubatch.output[i] != 0) { out_ids.push_back(seq.offset + i); } } } } else { // only get last output for (size_t i = 0; i < length; ++i) { size_t id = ids[seq.offset + i]; int8_t is_last = id == ids.size() - 1; ubatch.output[ubatch.n_tokens + i] = is_last; if (is_last) { out_ids.push_back(id); } } } if (ubatch.n_tokens == 0 && ubatch.n_seqs == 0) { ubatch.n_seq_tokens = ubatch.equal_seqs ? length : 1; } ubatch.n_tokens += length; ubatch.n_seqs += ubatch.equal_seqs ? 1 : length; // virtual sequences for simple splits seq.offset += length; seq.length -= length; n_tokens -= length; GGML_ASSERT(ubatch.n_tokens == ubatch.n_seq_tokens * ubatch.n_seqs); } // simple split, unknown number of sequences of unequal lengths llama_ubatch split_simple(size_t n_ubatch) { n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch; llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr); ubatch.equal_seqs = false; if (!seq.empty()) { llama_sbatch_seq & s = seq[0]; size_t length = s.length < n_ubatch ? s.length : n_ubatch; GGML_ASSERT(seq.size() == 1 && s.n_seq_id == 0); // don't mix with other splits add_seq_to_ubatch(ubatch, s, length); } return ubatch; } // make batches of equal-length sequences llama_ubatch split_equal(size_t n_ubatch) { n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch; llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr); if (!seq.empty()) { size_t length = 0; size_t n_tokens_in_ubatch = 0; GGML_ASSERT(seq[0].n_seq_id > 0); // should not be mixed with simple splits // smallest first, because it's easier to split this way; // starting from the end to pop in constant time. for (size_t i = seq.size(); i-- > 0;) { llama_sbatch_seq & s = seq[i]; GGML_ASSERT(s.length > 0); if (length == 0) { length = s.length < n_ubatch ? s.length : n_ubatch; } add_seq_to_ubatch(ubatch, s, length); n_tokens_in_ubatch += length; // shared prompts can't be mixed with any of their sequences, // so it's safer to compute them in their own ubatch if (s.n_seq_id > 1) { break; } // stop when there isn't enough space for another sequence if (length + n_tokens_in_ubatch > n_ubatch) { break; } } } return ubatch; } // sequence-wise split llama_ubatch split_seq(size_t n_ubatch) { n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch; llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr); if (!seq.empty()) { llama_sbatch_seq & s = seq[seq.size() - 1]; size_t length = s.length < n_ubatch ? s.length : n_ubatch; GGML_ASSERT(s.n_seq_id > 0); // should not be mixed with simple splits add_seq_to_ubatch(ubatch, s, length); } return ubatch; } void from_batch(const llama_batch & batch, const size_t n_embd, const bool simple_split = false, const bool logits_all = false) { GGML_ASSERT(batch.n_tokens >= 0); this->batch = &batch; this->n_embd = n_embd; this->logits_all = logits_all; n_tokens = batch.n_tokens; ids.resize(n_tokens); out_ids.clear(); // TODO: reserve out_ids and seq for (size_t i = 0; i < n_tokens; ++i) { ids[i] = i; } if (simple_split) { seq.resize(1); llama_sbatch_seq & s = seq[0]; s.n_seq_id = 0; s.seq_id = nullptr; s.offset = 0; s.length = n_tokens; s.all_seq_id = batch.all_seq_id; return; } std::sort(ids.begin(), ids.end(), [&batch](size_t a, size_t b) { int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1; int32_t n_seq_b = batch.n_seq_id ? batch.n_seq_id[b] : 1; // sort by seq_id, then by pos if (n_seq_a == n_seq_b) { if (batch.seq_id) { for (int32_t i = 0; i < n_seq_a; ++i) { llama_seq_id seq_id_a = batch.seq_id[a][i]; llama_seq_id seq_id_b = batch.seq_id[b][i]; // smaller seq_ids go first if (seq_id_a != seq_id_b) { return seq_id_a < seq_id_b; } } } // when all else is equal, sort by pos if (batch.pos) { return batch.pos[a] < batch.pos[b]; } // no pos, sort by id (assuming batch.all_pos_1 is positive) return a < b; } // shared prompts go first return n_seq_a > n_seq_b; } ); // init seq llama_sbatch_seq * last_seq = nullptr; if (batch.n_seq_id != nullptr && batch.seq_id != nullptr) { for (size_t i = 0; i < n_tokens; ++i) { const size_t bi = ids[i]; const int32_t n_seqs = batch.n_seq_id[bi]; llama_seq_id * seq_ids = batch.seq_id[bi]; if (last_seq != nullptr) { bool same = n_seqs == last_seq->n_seq_id; for (int32_t j = 0; same && j < n_seqs; ++j) { if (seq_ids[j] != last_seq->seq_id[j]) { same = false; } } if (same) { last_seq->length += 1; continue; } } llama_sbatch_seq new_seq = {n_seqs, seq_ids, i, 1, batch.all_seq_id}; seq.push_back(new_seq); last_seq = &seq.back(); } } else { llama_sbatch_seq new_seq = {1, nullptr, 0, n_tokens, batch.all_seq_id}; seq.push_back(new_seq); } // keep shared prompts first at the end, then sort by length descending. std::sort(seq.begin(), seq.end(), [](llama_sbatch_seq & a, llama_sbatch_seq & b) { if (a.n_seq_id == b.n_seq_id) { return a.length > b.length; } return a.n_seq_id < b.n_seq_id; } ); } }; struct llama_context { llama_context(const llama_model & model) : model(model) , sampling(llama_n_vocab(&model)) , t_start_us(model.t_start_us) , t_load_us(model.t_load_us) {} ~llama_context() { ggml_backend_sched_free(sched); for (ggml_backend_t backend : backends) { ggml_backend_free(backend); } ggml_backend_buffer_free(buf_output); } const struct llama_model & model; struct llama_cparams cparams; struct llama_sampling sampling; struct llama_sbatch sbatch; struct llama_kv_cache kv_self; struct llama_control_vector cvec; std::unordered_map lora_adapters; std::vector backends; #ifdef GGML_USE_METAL ggml_backend_t backend_metal = nullptr; #endif #ifdef GGML_USE_BLAS ggml_backend_t backend_blas = nullptr; #endif ggml_backend_t backend_cpu = nullptr; bool has_evaluated_once = false; int64_t t_start_us; int64_t t_load_us; int64_t t_p_eval_us = 0; int64_t t_eval_us = 0; int64_t t_compute_start_us = 0; int64_t n_queued_tokens = 0; int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) int32_t n_eval = 0; // number of eval calls // host buffer for the model output (logits and embeddings) ggml_backend_buffer_t buf_output = nullptr; // decode output (2-dimensional array: [n_outputs][n_vocab]) size_t logits_size = 0; // capacity (of floats) for logits float * logits = nullptr; std::vector output_ids; // map batch token positions to ids of the logits and embd buffers size_t output_size = 0; // capacity (of tokens positions) for the output buffers int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch bool logits_all = false; // embeddings output (2-dimensional array: [n_outputs][n_embd]) // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE size_t embd_size = 0; // capacity (of floats) for embeddings float * embd = nullptr; // sequence embeddings output (map of [n_embd] vectors) // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE std::map> embd_seq; // whether we are computing encoder output or decoder output bool is_encoding = false; // output of the encoder part of the encoder-decoder models std::vector embd_enc; std::vector> seq_ids_enc; // memory buffers used to evaluate the model std::vector buf_compute_meta; ggml_backend_sched_t sched = nullptr; ggml_abort_callback abort_callback = nullptr; void * abort_callback_data = nullptr; // input tensors struct ggml_tensor * inp_tokens; // I32 [n_batch] struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch] struct ggml_tensor * inp_out_ids; // I32 [n_outputs] struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch] struct ggml_tensor * inp_K_shift; // I32 [kv_size] struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch] struct ggml_tensor * inp_s_copy; // I32 [kv_size] struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch] struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc] struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch] }; struct llama_lora_weight { struct ggml_tensor * a = nullptr; struct ggml_tensor * b = nullptr; llama_lora_weight() = default; llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b): a(a), b(b) {} }; struct llama_lora_adapter { struct llama_model * base_model; // map tensor name to lora_a_b std::unordered_map ab_map; std::vector ctxs; std::vector bufs; float alpha; llama_lora_adapter(struct llama_model * base_model): base_model(base_model) { base_model->lora_adapters.insert(this); } llama_lora_weight * get_weight(struct ggml_tensor * w) { std::string name(w->name); auto pos = ab_map.find(name); if (ab_map.find(name) != ab_map.end()) { return &pos->second; } return nullptr; } ~llama_lora_adapter() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { ggml_backend_buffer_free(buf); } auto pos = base_model->lora_adapters.find(this); if (pos != base_model->lora_adapters.end()) { base_model->lora_adapters.erase(pos); } } }; static size_t llama_get_device_count(const llama_model & model) { size_t count = 1; #if defined(GGML_USE_CUDA) count = ggml_backend_cuda_get_device_count(); #elif defined(GGML_USE_SYCL) count = ggml_backend_sycl_get_device_count(); #elif defined(GGML_USE_VULKAN) count = ggml_backend_vk_get_device_count(); #elif defined(GGML_USE_CANN) return ggml_backend_cann_get_device_count(); #endif #if defined(GGML_USE_RPC) count += model.rpc_servers.size(); #endif return count; GGML_UNUSED(model); } static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) { ggml_backend_buffer_type_t buft = nullptr; #if defined(GGML_USE_RPC) int dev_count = (int)llama_get_device_count(model); int rpc_count = (int)model.rpc_servers.size(); if (gpu >= dev_count - rpc_count) { const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str(); return ggml_backend_rpc_buffer_type(endpoint); } #endif #if defined(GGML_USE_METAL) buft = ggml_backend_metal_buffer_type(); #elif defined(GGML_USE_CUDA) buft = ggml_backend_cuda_buffer_type(gpu); #elif defined(GGML_USE_VULKAN) buft = ggml_backend_vk_buffer_type(gpu); #elif defined(GGML_USE_SYCL) buft = ggml_backend_sycl_buffer_type(gpu); #elif defined(GGML_USE_KOMPUTE) buft = ggml_backend_kompute_buffer_type(gpu); if (buft == nullptr) { LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu); } #elif defined(GGML_USE_CANN) buft = ggml_backend_cann_buffer_type(gpu); #endif if (buft == nullptr) { buft = llama_default_buffer_type_cpu(true); } return buft; GGML_UNUSED(model); GGML_UNUSED(gpu); } static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) { ggml_backend_buffer_type_t buft = nullptr; #ifdef GGML_USE_CUDA if (ggml_backend_cuda_get_device_count() > 1) { buft = ggml_backend_cuda_split_buffer_type(tensor_split); } #endif #ifdef GGML_USE_SYCL if (ggml_backend_sycl_get_device_count() > 1) { buft = ggml_backend_sycl_split_buffer_type(tensor_split); } #endif if (buft == nullptr) { buft = llama_default_buffer_type_offload(model, fallback_gpu); } return buft; GGML_UNUSED(tensor_split); } static size_t llama_get_device_memory(const llama_model & model, int device) { #if defined(GGML_USE_RPC) int dev_count = (int)llama_get_device_count(model); int rpc_count = (int)model.rpc_servers.size(); if (device >= dev_count - rpc_count) { size_t total; size_t free; const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str(); ggml_backend_rpc_get_device_memory(endpoint, &free, &total); return free; } #endif #if defined(GGML_USE_CUDA) size_t total; size_t free; ggml_backend_cuda_get_device_memory(device, &free, &total); return free; #elif defined(GGML_USE_SYCL) size_t total; size_t free; ggml_backend_sycl_get_device_memory(device, &free, &total); return free; #elif defined(GGML_USE_VULKAN) size_t total; size_t free; ggml_backend_vk_get_device_memory(device, &free, &total); return free; #elif defined(GGML_USE_CANN) size_t total; size_t free; ggml_backend_cann_get_device_memory(device, &free, &total); return free; #else return 1; #endif GGML_UNUSED(model); GGML_UNUSED(device); } // // kv cache helpers // static bool llama_kv_cache_init( struct llama_kv_cache & cache, const llama_context * ctx, ggml_type type_k, ggml_type type_v, uint32_t kv_size, bool offload) { const llama_model & model = ctx->model; const llama_cparams & cparams = ctx->cparams; const struct llama_hparams & hparams = model.hparams; const int64_t n_layer = hparams.n_layer; cache.has_shift = false; cache.recurrent = llama_model_is_recurrent(&model); cache.v_trans = !cache.recurrent && !cparams.flash_attn; cache.head = 0; cache.size = kv_size; cache.used = 0; cache.type_k = type_k; cache.type_v = type_v; cache.cells.clear(); cache.cells.resize(kv_size); // count used buffer types std::map buft_layer_count; if (offload) { for (int64_t i = 0; i < n_layer; ++i) { buft_layer_count[model.buft_layer[i].buft]++; } } else { buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer; } // create a context for each buffer type std::map ctx_map; for (auto & it : buft_layer_count) { int n_layers = it.second; struct ggml_init_params params = { /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__); return false; } ctx_map[it.first] = ctx; cache.ctxs.push_back(ctx); } cache.k_l.reserve(n_layer); cache.v_l.reserve(n_layer); for (int i = 0; i < (int) n_layer; i++) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); ggml_format_name(k, "cache_k_l%d", i); ggml_format_name(v, "cache_v_l%d", i); cache.k_l.push_back(k); cache.v_l.push_back(v); } // allocate tensors and initialize the buffers to avoid NaNs in the padding for (auto it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx = it.second; ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (!buf) { LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__); return false; } ggml_backend_buffer_clear(buf, 0); LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); cache.bufs.push_back(buf); } return true; } // find an empty slot of size "n_tokens" in the cache // updates the cache head // Note: On success, it's important that cache.head points // to the first cell of the slot. static bool llama_kv_cache_find_slot( struct llama_kv_cache & cache, const struct llama_ubatch & batch) { const uint32_t n_tokens = batch.n_tokens; const uint32_t n_seqs = batch.n_seqs; const uint32_t n_seq_tokens = batch.n_seq_tokens; if (cache.recurrent) { // For recurrent state architectures (like Mamba), // each cache cell can store the state for a whole sequence. // A slot should be always be contiguous. // can only process batches with an equal number of new tokens in each sequence GGML_ASSERT(batch.equal_seqs); int32_t min = cache.size - 1; int32_t max = 0; // everything should fit if all seq_ids are smaller than the max for (uint32_t s = 0; s < n_seqs; ++s) { const uint32_t n_seq_id = batch.n_seq_id[s]; for (uint32_t j = 0; j < n_seq_id; ++j) { const llama_seq_id seq_id = batch.seq_id[s][j]; if (seq_id < 0 || (uint32_t) seq_id >= cache.size) { // too big seq_id // TODO: would it be possible to resize the cache instead? LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size); return false; } if (j > 0) { llama_kv_cell & seq = cache.cells[seq_id]; if (seq.tail >= 0) { llama_kv_cell & cell = cache.cells[seq.tail]; // clear cells from seq_ids that become shared // (should not normally happen, but let's handle it anyway) cell.seq_id.erase(seq_id); seq.tail = -1; if (cell.seq_id.empty()) { cell.pos = -1; cell.src = -1; cache.used -= 1; } } } } } #ifndef NDEBUG { std::vector tails_verif; tails_verif.assign(cache.size, -1); for (uint32_t i = 0; i < cache.size; ++i) { llama_kv_cell & cell = cache.cells[i]; for (llama_seq_id seq_id : cell.seq_id) { if (tails_verif[seq_id] != -1) { LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]); } tails_verif[seq_id] = i; } } for (uint32_t i = 0; i < cache.size; ++i) { if (tails_verif[i] != cache.cells[i].tail) { LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]); } } } #endif // find next empty cell uint32_t next_empty_cell = cache.head; for (uint32_t i = 0; i < cache.size; ++i) { if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; } llama_kv_cell & cell = cache.cells[next_empty_cell]; if (cell.is_empty()) { break; } next_empty_cell += 1; } // find usable cell range for (uint32_t s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = batch.seq_id[s][0]; llama_kv_cell & seq_meta = cache.cells[seq_id]; bool has_cell = false; if (seq_meta.tail >= 0) { llama_kv_cell & cell = cache.cells[seq_meta.tail]; GGML_ASSERT(cell.has_seq_id(seq_id)); // does this seq_id "own" the cell? if (cell.seq_id.size() == 1) { has_cell = true; } } if (!has_cell) { llama_kv_cell & empty_cell = cache.cells[next_empty_cell]; GGML_ASSERT(empty_cell.is_empty()); // copy old tail into the empty cell if (seq_meta.tail >= 0) { llama_kv_cell & orig_cell = cache.cells[seq_meta.tail]; empty_cell.pos = orig_cell.pos; empty_cell.src = orig_cell.src; orig_cell.seq_id.erase(seq_id); empty_cell.seq_id.insert(seq_id); // will be overwritten } seq_meta.tail = next_empty_cell; // find next empty cell if (s + 1 < n_seqs) { next_empty_cell += 1; for (uint32_t i = 0; i < cache.size; ++i) { if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; } llama_kv_cell & cell = cache.cells[next_empty_cell]; if (cell.is_empty()) { break; } next_empty_cell += 1; } } } if (min > seq_meta.tail) { min = seq_meta.tail; } if (max < seq_meta.tail) { max = seq_meta.tail; } } // gather and re-order for (uint32_t s = 0; s < n_seqs; ++s) { int32_t dst_id = s + min; int32_t src_id = cache.cells[batch.seq_id[s][0]].tail; if (dst_id != src_id) { llama_kv_cell & dst_cell = cache.cells[dst_id]; llama_kv_cell & src_cell = cache.cells[src_id]; std::swap(dst_cell.pos, src_cell.pos); std::swap(dst_cell.src, src_cell.src); std::swap(dst_cell.seq_id, src_cell.seq_id); // swap tails (assuming they NEVER overlap) for (const llama_seq_id seq_id : src_cell.seq_id) { cache.cells[seq_id].tail = src_id; } for (const llama_seq_id seq_id : dst_cell.seq_id) { cache.cells[seq_id].tail = dst_id; } } } // update the pos of the used seqs for (uint32_t s = 0; s < n_seqs; ++s) { const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1]; int32_t cell_id = s + min; llama_kv_cell & cell = cache.cells[cell_id]; if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) { // What should happen when the pos backtracks or skips a value? // Clearing the state mid-batch would require special-casing which isn't done. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n", __func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens); } cell.pos = last_pos; cell.seq_id.clear(); for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) { const llama_seq_id seq_id = batch.seq_id[s][j]; cell.seq_id.insert(seq_id); cache.cells[seq_id].tail = cell_id; } } // allow getting the range of used cells, from head to head + n cache.head = min; cache.n = max - min + 1; // sanity check return cache.n >= n_seqs; } // otherwise, one cell per token. if (n_tokens > cache.size) { LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size); return false; } uint32_t n_tested = 0; while (true) { if (cache.head + n_tokens > cache.size) { n_tested += cache.size - cache.head; cache.head = 0; continue; } bool found = true; for (uint32_t i = 0; i < n_tokens; i++) { if (cache.cells[cache.head + i].pos >= 0) { found = false; cache.head += i + 1; n_tested += i + 1; break; } } if (found) { break; } if (n_tested >= cache.size) { //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); return false; } } for (uint32_t s = 0; s < n_seqs; s++) { for (uint32_t i = 0; i < n_seq_tokens; ++i) { uint32_t k = s*n_seq_tokens + i; cache.cells[cache.head + k].pos = batch.pos[k]; for (int32_t j = 0; j < batch.n_seq_id[s]; j++) { cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]); } } } cache.used += n_tokens; return true; } // find how many cells are currently in use static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { for (uint32_t i = cache.size; i > 0; --i) { const llama_kv_cell & cell = cache.cells[i - 1]; if (cell.pos >= 0 && !cell.is_empty()) { return i; } } return 0; } static void llama_kv_cache_clear(struct llama_kv_cache & cache) { for (int32_t i = 0; i < (int32_t) cache.size; ++i) { cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); cache.cells[i].src = -1; cache.cells[i].tail = -1; } cache.head = 0; cache.used = 0; for (auto & buf : cache.bufs) { ggml_backend_buffer_clear(buf, 0); } } static bool llama_kv_cache_seq_rm( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { uint32_t new_head = cache.size; if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); // models like Mamba can't have a state partially erased if (cache.recurrent) { if (seq_id >= (int64_t) cache.size) { // could be fatal return false; } if (0 <= seq_id) { int32_t & tail_id = cache.cells[seq_id].tail; if (tail_id >= 0) { const llama_kv_cell & cell = cache.cells[tail_id]; // partial intersection is invalid if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) { return false; } if (p0 <= cell.pos && p1 < cell.pos) { tail_id = -1; } } } else { // seq_id is negative, then the range should include everything or nothing if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits::max())) { return false; } } } for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { if (seq_id < 0) { cache.cells[i].seq_id.clear(); } else if (cache.cells[i].has_seq_id(seq_id)) { cache.cells[i].seq_id.erase(seq_id); } else { continue; } if (cache.cells[i].is_empty()) { // keep count of the number of used cells if (cache.cells[i].pos >= 0) cache.used--; cache.cells[i].pos = -1; cache.cells[i].src = -1; if (new_head == cache.size) new_head = i; } } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cache.size && new_head < cache.head) cache.head = new_head; return true; } static void llama_kv_cache_seq_cp( struct llama_kv_cache & cache, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); if (cache.recurrent) { if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) { llama_kv_cell & tail_src = cache.cells[seq_id_src]; llama_kv_cell & tail_dst = cache.cells[seq_id_dst]; if (tail_dst.tail >= 0) { // clear destination seq_id if it wasn't empty llama_kv_cell & cell_dst = cache.cells[tail_dst.tail]; cell_dst.seq_id.erase(seq_id_dst); tail_dst.tail = -1; if (cell_dst.seq_id.empty()) { cell_dst.pos = -1; cell_dst.delta = -1; cell_dst.src = -1; cache.used -= 1; } } if (tail_src.tail >= 0) { llama_kv_cell & cell_src = cache.cells[tail_src.tail]; cell_src.seq_id.insert(seq_id_dst); tail_dst.tail = tail_src.tail; } } return; } // otherwise, this is the KV cache of a Transformer-like model cache.head = 0; for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.insert(seq_id_dst); } } } static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { uint32_t new_head = cache.size; for (uint32_t i = 0; i < cache.size; ++i) { if (cache.recurrent && (llama_seq_id) i != seq_id) { cache.cells[i].tail = -1; } if (!cache.cells[i].has_seq_id(seq_id)) { if (cache.cells[i].pos >= 0) cache.used--; cache.cells[i].pos = -1; cache.cells[i].src = -1; cache.cells[i].seq_id.clear(); if (new_head == cache.size) new_head = i; } else { cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.insert(seq_id); } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cache.size && new_head < cache.head) cache.head = new_head; } static void llama_kv_cache_seq_add( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { uint32_t new_head = cache.size; if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); // If there is no range then return early to avoid looping over the cache. if (p0 == p1) return; if (cache.recurrent) { // for Mamba-like models, only the pos needs to be shifted if (0 <= seq_id && seq_id < (int64_t) cache.size) { const int32_t tail_id = cache.cells[seq_id].tail; if (tail_id >= 0) { llama_kv_cell & cell = cache.cells[tail_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos += delta; } } } return; } for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.has_shift = true; cache.cells[i].pos += delta; cache.cells[i].delta += delta; if (cache.cells[i].pos < 0) { if (!cache.cells[i].is_empty()) { cache.used--; } cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); if (new_head == cache.size) { new_head = i; } } } } // If we freed up a slot, set head to it so searching can start there. // Otherwise we just start the next search from the beginning. cache.head = new_head != cache.size ? new_head : 0; } static void llama_kv_cache_seq_div( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); // If there is no range then return early to avoid looping over the cache. if (p0 == p1) return; if (cache.recurrent) { // for Mamba-like models, only the pos needs to be changed if (0 <= seq_id && seq_id < (int64_t) cache.size) { const int32_t tail_id = cache.cells[seq_id].tail; if (tail_id >= 0) { llama_kv_cell & cell = cache.cells[tail_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos /= d; } } } return; } for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.has_shift = true; { llama_pos p_old = cache.cells[i].pos; cache.cells[i].pos /= d; cache.cells[i].delta += cache.cells[i].pos - p_old; } } } } static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) { llama_pos result = 0; for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id)) { result = std::max(result, cache.cells[i].pos); } } return result; } static void llama_kv_cache_defrag(struct llama_kv_cache & cache) { if (!cache.recurrent) { cache.do_defrag = true; } } static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) { // the FA kernels require padding to avoid extra runtime boundary checks return cparams.flash_attn ? 256u : 32u; } // // model loading and saving // enum llama_fver { GGUF_FILE_VERSION_V1 = 1, GGUF_FILE_VERSION_V2 = 2, GGUF_FILE_VERSION_V3 = 3, }; static const char * llama_file_version_name(llama_fver version) { switch (version) { case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)"; case GGUF_FILE_VERSION_V2: return "GGUF V2"; case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)"; } return "unknown"; } static std::string llama_format_tensor_shape(const std::vector & ne) { char buf[256]; snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0)); for (size_t i = 1; i < ne.size(); i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i)); } return buf; } static std::string llama_format_tensor_shape(const struct ggml_tensor * t) { char buf[256]; snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]); for (int i = 1; i < GGML_MAX_DIMS; i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]); } return buf; } namespace GGUFMeta { template struct GKV_Base_Type { static constexpr gguf_type gt = gt_; static T getter(const gguf_context * ctx, const int kid) { return gfun(ctx, kid); } }; template struct GKV_Base; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base { static constexpr gguf_type gt = GGUF_TYPE_STRING; static std::string getter(const gguf_context * ctx, const int kid) { return gguf_get_val_str(ctx, kid); } }; struct ArrayInfo { const gguf_type gt; const size_t length; const void * data; }; template<> struct GKV_Base { public: static constexpr gguf_type gt = GGUF_TYPE_ARRAY; static ArrayInfo getter(const gguf_context *ctx, const int k) { return ArrayInfo { gguf_get_arr_type(ctx, k), size_t(gguf_get_arr_n(ctx, k)), gguf_get_arr_data(ctx, k), }; } }; template class GKV : public GKV_Base { GKV() = delete; public: static T get_kv(const gguf_context * ctx, const int k) { const enum gguf_type kt = gguf_get_kv_type(ctx, k); if (kt != GKV::gt) { throw std::runtime_error(format("key %s has wrong type %s but expected type %s", gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt))); } return GKV::getter(ctx, k); } static const char * override_type_to_str(const llama_model_kv_override_type ty) { switch (ty) { case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; case LLAMA_KV_OVERRIDE_TYPE_STR: return "str"; } return "unknown"; } static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { if (!ovrd) { return false; } if (ovrd->tag == expected_type) { LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", __func__, override_type_to_str(ovrd->tag), ovrd->key); switch (ovrd->tag) { case LLAMA_KV_OVERRIDE_TYPE_BOOL: { LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false"); } break; case LLAMA_KV_OVERRIDE_TYPE_INT: { LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64); } break; case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64); } break; case LLAMA_KV_OVERRIDE_TYPE_STR: { LLAMA_LOG_INFO("%s\n", ovrd->val_str); } break; default: // Shouldn't be possible to end up here, but just in case... throw std::runtime_error( format("Unsupported attempt to override %s type for metadata key %s\n", override_type_to_str(ovrd->tag), ovrd->key)); } return true; } LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); return false; } template static typename std::enable_if::value, bool>::type try_override(OT & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { target = ovrd->val_bool; return true; } return false; } template static typename std::enable_if::value && std::is_integral::value, bool>::type try_override(OT & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { target = ovrd->val_i64; return true; } return false; } template static typename std::enable_if::value, bool>::type try_override(T & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { target = ovrd->val_f64; return true; } return false; } template static typename std::enable_if::value, bool>::type try_override(T & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) { target = ovrd->val_str; return true; } return false; } static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { if (try_override(target, ovrd)) { return true; } if (k < 0) { return false; } target = get_kv(ctx, k); return true; } static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { return set(ctx, gguf_find_key(ctx, key), target, ovrd); } static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { return set(ctx, key.c_str(), target, ovrd); } }; } using llama_buf_map = std::unordered_map; static size_t llama_model_max_nodes(const llama_model & model) { return std::max(8192, model.tensors_by_name.size()*5); } struct llama_model_loader { int n_kv = 0; int n_tensors = 0; int n_created = 0; int64_t n_elements = 0; size_t n_bytes = 0; bool use_mmap = false; bool check_tensors; llama_files files; llama_ftype ftype; llama_fver fver; llama_mmaps mappings; // Holds information on a model weight struct llama_tensor_weight { uint16_t idx; // source file index size_t offs; // tensor data offset in the original file ggml_tensor * tensor; llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { const int tensor_idx = gguf_find_tensor(gguf_ctx, name); offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) { throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name)); } } }; std::vector weights; std::unordered_map kv_overrides; struct gguf_context * meta = NULL; std::vector contexts; std::string arch_name; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) { int trace = 0; if (getenv("LLAMA_TRACE")) { trace = atoi(getenv("LLAMA_TRACE")); } if (param_overrides_p != nullptr) { for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) { kv_overrides.insert({std::string(p->key), *p}); } } struct ggml_context * ctx = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx, }; meta = gguf_init_from_file(fname.c_str(), params); if (!meta) { throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); } get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); llm_kv = LLM_KV(llm_arch_from_string(arch_name)); files.emplace_back(new llama_file(fname.c_str(), "rb")); contexts.emplace_back(ctx); // Save tensors data offset of the main file. // For subsidiary files, `meta` tensor data offset must not be used, // so we build a unified tensors index for weights. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { weights.emplace_back(files.back().get(), 0, cur->name, meta, cur); } uint16_t n_split = 0; get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); // Load additional GGML contexts if (n_split > 1) { uint16_t idx = 0; get_key(llm_kv(LLM_KV_SPLIT_NO), idx); if (idx != 0) { throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx)); } char split_prefix[PATH_MAX] = {0}; if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) { throw std::runtime_error(format("invalid split file: %s", fname.c_str())); } if (trace > 0) { LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split); } char split_path[PATH_MAX] = {0}; for (idx = 1; idx < n_split; idx++) { llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split); struct gguf_init_params split_params = { /*.no_alloc = */ true, /*.ctx = */ &ctx, }; struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params); if (!ctx_gguf) { throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path)); } files.emplace_back(new llama_file(split_path, "rb")); contexts.emplace_back(ctx); // Save tensors data offset info of the shard. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur); } gguf_free(ctx_gguf); } get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors); // sanity check { const int n_tensors_loaded = (int) weights.size(); if (n_tensors != n_tensors_loaded) { throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded)); } } LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1); } n_kv = gguf_get_n_kv(meta); n_tensors = weights.size(); fver = (enum llama_fver) gguf_get_version(meta); std::set tensor_names; for (auto & w : weights) { n_elements += ggml_nelements(w.tensor); n_bytes += ggml_nbytes(w.tensor); // make sure there is no duplicated tensor names const std::string name(w.tensor->name); auto found = tensor_names.find(name); if (found != tensor_names.end()) { throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name)); } tensor_names.insert(name); } LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); // determine file type based on the number of tensors for each quantization and print meta data // TODO: make optional { std::map n_type; uint32_t n_type_max = 0; enum ggml_type type_max = GGML_TYPE_F32; for (int i = 0; i < n_tensors; i++) { const ggml_tensor * tensor = weights.at(i).tensor; enum ggml_type type = tensor->type; n_type[type]++; if (n_type_max < n_type[type]) { n_type_max = n_type[type]; type_max = type; } if (trace > 0) { const uint16_t sid = weights.at(i).idx; LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); } } switch (type_max) { case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break; case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break; case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break; case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break; case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break; case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break; case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break; case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break; case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break; default: { LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); ftype = LLAMA_FTYPE_ALL_F32; } break; } // this is a way to mark that we have "guessed" the file type ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); { const int kid = gguf_find_key(meta, "general.file_type"); // TODO: use LLM_KV if (kid >= 0) { ftype = (llama_ftype) gguf_get_val_u32(meta, kid); } } LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); for (int i = 0; i < n_kv; i++) { const char * name = gguf_get_key(meta, i); const enum gguf_type type = gguf_get_kv_type(meta, i); const std::string type_name = type == GGUF_TYPE_ARRAY ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i)) : gguf_type_name(type); std::string value = gguf_kv_to_str(meta, i); const size_t MAX_VALUE_LEN = 40; if (value.size() > MAX_VALUE_LEN) { value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); } replace_all(value, "\n", "\\n"); LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); } // print type counts for (auto & kv : n_type) { if (kv.second == 0) { continue; } LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); } } if (!llama_mmap::SUPPORTED) { LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__); use_mmap = false; } this->use_mmap = use_mmap; this->check_tensors = check_tensors; } ~llama_model_loader() { if (meta) { gguf_free(meta); } for (auto * ctx : contexts) { ggml_free(ctx); } } template typename std::enable_if::value, bool>::type get_arr_n(const std::string & key, T & result, const bool required = true) { const int kid = gguf_find_key(meta, key.c_str()); if (kid < 0) { if (required) { throw std::runtime_error(format("key not found in model: %s", key.c_str())); } return false; } struct GGUFMeta::ArrayInfo arr_info = GGUFMeta::GKV::get_kv(meta, kid); result = arr_info.length; return true; } template typename std::enable_if::value, bool>::type get_arr_n(const enum llm_kv kid, T & result, const bool required = true) { return get_arr_n(llm_kv(kid), result, required); } template bool get_arr(const std::string & key, std::vector & result, const bool required = true) { const int kid = gguf_find_key(meta, key.c_str()); if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) { if (required) { throw std::runtime_error(format("array key not found in model: %s", key.c_str())); } return false; } struct GGUFMeta::ArrayInfo arr_info = GGUFMeta::GKV::get_kv(meta, kid); switch (arr_info.gt) { case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; case GGUF_TYPE_INT32: GGML_ASSERT( (std::is_same::value) || (std::is_same::value)); break; default: throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); } result.resize(arr_info.length); result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length); return true; } template bool get_arr(const std::string & key, std::array & result, const bool required = true) { const int kid = gguf_find_key(meta, key.c_str()); if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) { if (required) { throw std::runtime_error(format("array key not found in model: %s", key.c_str())); } return false; } struct GGUFMeta::ArrayInfo arr_info = GGUFMeta::GKV::get_kv(meta, kid); switch (arr_info.gt) { case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; case GGUF_TYPE_INT32: GGML_ASSERT( (std::is_same::value) || (std::is_same::value)); break; default: throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); } if (arr_info.length > N_MAX) { throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX)); } std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin()); return true; } template bool get_arr(const enum llm_kv kid, T & result, const bool required = true) { return get_arr(llm_kv(kid), result, required); } template bool get_key(const std::string & key, T & result, const bool required = true) { auto it = kv_overrides.find(key); const struct llama_model_kv_override * override = it != kv_overrides.end() ? &it->second : nullptr; const bool found = GGUFMeta::GKV::set(meta, key, result, override); if (required && !found) { throw std::runtime_error(format("key not found in model: %s", key.c_str())); } return found; } template bool get_key(const enum llm_kv kid, T & result, const bool required = true) { return get_key(llm_kv(kid), result, required); } // get array of n <= N_MAX elements, or a single element repeated n times template bool get_key_or_arr(const std::string & key, std::array & result, uint32_t n, const bool required = true) { const int kid = gguf_find_key(meta, key.c_str()); if (kid < 0) { if (required) { throw std::runtime_error(format("key not found in model: %s", key.c_str())); } return false; } if (n > N_MAX) { throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str())); } if (gguf_get_kv_type(meta, kid) == GGUF_TYPE_ARRAY) { struct GGUFMeta::ArrayInfo arr_info = GGUFMeta::GKV::get_kv(meta, kid); if (n != arr_info.length) { throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length)); } return get_arr(key, result, required); } else { T value; bool ok = get_key(key, value, required); if (!ok) { return false; } for (uint32_t i = 0; i < n; i++) { result[i] = value; } return true; } } template bool get_key_or_arr(const enum llm_kv kid, T & result, uint32_t n, const bool required = true) { return get_key_or_arr(llm_kv(kid), result, n, required); } std::string get_arch_name() const { return arch_name; } enum llm_arch get_arch() const { return llm_kv.arch; } const char * get_tensor_name(int i) const { return weights.at(i).tensor->name; } const llama_tensor_weight * get_weight(const char * name) const { for (const auto & weight : weights) { if (strcmp(name, weight.tensor->name) == 0) { return &weight; } } return nullptr; } const llama_tensor_weight * get_weight(int i) const { return get_weight(get_tensor_name(i)); } const llama_tensor_weight & require_weight(const char * name) const { const llama_tensor_weight * weight = get_weight(name); if (!weight) { throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); } return *weight; } struct ggml_tensor * get_tensor_meta(const char * name) const { const auto * weight = get_weight(name); if (!weight) { return nullptr; } return weight->tensor; } struct ggml_tensor * require_tensor_meta(const char * name) const { struct ggml_tensor * tensor = get_tensor_meta(name); if (!tensor) { throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); } return tensor; } struct ggml_tensor * get_tensor_meta(int i) const { return get_tensor_meta(get_tensor_name(i)); } struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) { struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); ggml_set_name(tensor, ggml_get_name(cur)); if (duplicated) { size_data += ggml_nbytes(cur); } else { n_created++; } return tensor; } const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector & ne, bool required) const { const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); if (cur == NULL) { if (!required) { return NULL; } throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); } { bool is_ok = true; for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { is_ok = false; break; } } if (!is_ok) { throw std::runtime_error( format("%s: tensor '%s' has wrong shape; expected %s, got %s", __func__, name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(cur).c_str())); } } return cur; } static const int TENSOR_NOT_REQUIRED = 1; static const int TENSOR_DUPLICATED = 2; struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, int flags = 0) { const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED)); if (cur == NULL) { return NULL; } return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED); } struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector & ne, size_t offset, bool required = true) { const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); if (cur == NULL) { return NULL; } if (cur->type != base->type) { throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); } std::array dims; for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { dims[i] = i < ne.size() ? ne[i] : 1; } struct ggml_tensor * tensor = ggml_view_4d(ctx, base, dims[0], dims[1], dims[2], dims[3], cur->nb[1], cur->nb[2], cur->nb[3], offset); ggml_set_name(tensor, name.c_str()); n_created++; return tensor; } void done_getting_tensors() const { if (n_created != n_tensors) { throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); } } void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) { if (use_mmap) { mappings.reserve(files.size()); mmaps_used.reserve(files.size()); for (const auto & file : files) { std::unique_ptr mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa())); mmaps_used.emplace_back(mapping->size, 0); if (mlock_mmaps) { std::unique_ptr mlock_mmap(new llama_mlock()); mlock_mmap->init(mapping->addr); mlock_mmaps->emplace_back(std::move(mlock_mmap)); } mappings.emplace_back(std::move(mapping)); } } // compute the total size of all tensors for progress reporting for (auto & w : weights) { size_data += ggml_nbytes(w.tensor); } } void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const { GGML_ASSERT(!mappings.empty()); const auto & mapping = mappings.at(idx); *first = mapping->size; *last = 0; *addr = mapping->addr; for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { try { const auto * weight = get_weight(ggml_get_name(tensor)); if (!weight) { continue; } if (weight->idx != idx) { continue; } *first = std::min(*first, weight->offs); *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); } catch(...) { // the tensor is not in the model } } } // for backwards compatibility, does not support ggml-backend void load_data_for(struct ggml_tensor * cur) const { const auto & w = require_weight(ggml_get_name(cur)); if (use_mmap) { const auto & mapping = mappings.at(w.idx); if (cur->data == nullptr) { cur->data = (uint8_t *)mapping->addr + w.offs; } else { memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur)); } } else { GGML_ASSERT(cur->data != nullptr); GGML_ASSERT(w.idx < files.size()); const auto & file = files.at(w.idx); file->seek(w.offs, SEEK_SET); file->read_raw(cur->data, ggml_nbytes(cur)); } if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) { throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); } } size_t size_done = 0; size_t size_data = 0; std::vector> mmaps_used; // Returns false if cancelled by progress_callback bool load_all_data( struct ggml_context * ctx, llama_buf_map & bufs_mmap, llama_mlocks * lmlocks, llama_progress_callback progress_callback, void * progress_callback_user_data) { GGML_ASSERT(size_data != 0 && "call init_mappings() first"); std::vector> read_buf; std::vector>> validation_result; #if defined(GGML_USE_CUDA) // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives. // NVMe raid configurations might require more / larger buffers. constexpr size_t n_buffers = 4; constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB std::vector host_buffers; std::vector host_ptrs; std::vector events; size_t buffer_idx = 0; // buffer to use for async loads ggml_backend_t cuda_backend = nullptr; if (!use_mmap && !check_tensors) { // When not using mmaped io use async uploads from pinned memory to GPU memory. // First determine if the CUDA backend is active, and if so, determine the device ID. ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr; if (buf) { ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf); for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i); if (buffer_type == cuda_buffer_type) { cuda_backend = ggml_backend_cuda_init(i); break; } } } // If the cuda backend is active create pinned memory buffers and events for synchronisation. if (cuda_backend) { for (size_t idx = 0; idx < n_buffers; ++idx) { host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size)); host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx])); events.emplace_back(ggml_backend_event_new(cuda_backend)); } } } #endif for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { const auto * weight = get_weight(ggml_get_name(cur)); if (weight == nullptr) { // this can happen with split experts models continue; } if (progress_callback) { if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { return false; } } size_t n_size = ggml_nbytes(cur); if (use_mmap) { const auto & mapping = mappings.at(weight->idx); ggml_backend_buffer_t buf_mmap = nullptr; if (bufs_mmap.count(weight->idx)) { buf_mmap = bufs_mmap.at(weight->idx); } uint8_t * data = (uint8_t *) mapping->addr + weight->offs; if (check_tensors) { validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] { return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size)); })); } GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated if (buf_mmap && cur->data == nullptr) { ggml_backend_tensor_alloc(buf_mmap, cur, data); if (lmlocks) { const auto & lmlock = lmlocks->at(weight->idx); lmlock->grow_to(weight->offs + n_size); } auto & mmap_used = mmaps_used[weight->idx]; mmap_used.first = std::min(mmap_used.first, weight->offs); mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); } else { ggml_backend_tensor_set(cur, data, 0, n_size); } } else { GGML_ASSERT(weight->idx < files.size()); const auto & file = files.at(weight->idx); if (ggml_backend_buffer_is_host(cur->buffer)) { file->seek(weight->offs, SEEK_SET); file->read_raw(cur->data, n_size); if (check_tensors) { validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] { return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)); })); } } else { #if defined(GGML_USE_CUDA) // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU. if (cuda_backend) { file->seek(weight->offs, SEEK_SET); size_t bytes_read = 0; while (bytes_read < n_size) { size_t read_iteration = std::min(buffer_size, n_size - bytes_read); ggml_backend_event_synchronize(events[buffer_idx]); file->read_raw(host_ptrs[buffer_idx], read_iteration); ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration); ggml_backend_event_record(events[buffer_idx]); bytes_read += read_iteration; ++buffer_idx; buffer_idx %= n_buffers; } } else #endif { read_buf.resize(n_size); file->seek(weight->offs, SEEK_SET); file->read_raw(read_buf.data(), n_size); ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) { throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); } } } } size_done += n_size; } #if defined(GGML_USE_CUDA) // free temporary resources used for async cuda uploads if (cuda_backend) { for (size_t idx = 0; idx < n_buffers;++idx) { ggml_backend_event_synchronize(events[idx]); ggml_backend_event_free(events[idx]); ggml_backend_buffer_free(host_buffers[idx]); } ggml_backend_free(cuda_backend); } #endif // check validation results bool validation_failed = false; for (auto & future : validation_result) { auto result = future.get(); if (!result.second) { LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first)); validation_failed = true; } } if (validation_failed) { throw std::runtime_error("found tensors with invalid data"); } // check if this is the last call and do final cleanup if (size_done >= size_data) { // unmap offloaded tensors and metadata if (use_mmap) { for (uint32_t idx = 0; idx < mappings.size(); idx++) { const auto & mmap_used = mmaps_used.at(idx); auto & mapping = mappings.at(idx); mapping->unmap_fragment(0, mmap_used.first); if (mmap_used.second != 0) { mapping->unmap_fragment(mmap_used.second, mapping->size); } } } if (progress_callback) { // Even though the model is done loading, we still honor // cancellation since we need to free allocations. return progress_callback(1.0f, progress_callback_user_data); } } return true; } }; template<> bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) { uint32_t tmp; const bool found = get_key(kid, tmp, required); if (found) { result = (enum llama_pooling_type) tmp; } else { result = LLAMA_POOLING_TYPE_UNSPECIFIED; } return found; } // // load LLaMA models // static const char * llama_model_arch_name(llm_arch arch) { auto it = LLM_ARCH_NAMES.find(arch); if (it == LLM_ARCH_NAMES.end()) { return "unknown"; } return it->second; } static std::string llama_model_ftype_name(llama_ftype ftype) { if (ftype & LLAMA_FTYPE_GUESSED) { return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; } switch (ftype) { case LLAMA_FTYPE_ALL_F32: return "all F32"; case LLAMA_FTYPE_MOSTLY_F16: return "F16"; case LLAMA_FTYPE_MOSTLY_BF16: return "BF16"; case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0"; case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1"; case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0"; case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1"; case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0"; case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small"; case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small"; case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large"; case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small"; case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small"; case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4"; case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8"; case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: return "Q4_0_8_8"; default: return "unknown, may not work"; } } static const char * llama_model_type_name(e_model type) { switch (type) { case MODEL_14M: return "14M"; case MODEL_17M: return "17M"; case MODEL_22M: return "22M"; case MODEL_33M: return "33M"; case MODEL_60M: return "60M"; case MODEL_70M: return "70M"; case MODEL_80M: return "80M"; case MODEL_109M: return "109M"; case MODEL_137M: return "137M"; case MODEL_160M: return "160M"; case MODEL_220M: return "220M"; case MODEL_250M: return "250M"; case MODEL_270M: return "270M"; case MODEL_335M: return "335M"; case MODEL_410M: return "410M"; case MODEL_450M: return "450M"; case MODEL_770M: return "770M"; case MODEL_780M: return "780M"; case MODEL_0_5B: return "0.5B"; case MODEL_1B: return "1B"; case MODEL_1_3B: return "1.3B"; case MODEL_1_4B: return "1.4B"; case MODEL_2B: return "2B"; case MODEL_2_8B: return "2.8B"; case MODEL_3B: return "3B"; case MODEL_4B: return "4B"; case MODEL_6B: return "6B"; case MODEL_6_9B: return "6.9B"; case MODEL_7B: return "7B"; case MODEL_8B: return "8B"; case MODEL_9B: return "9B"; case MODEL_11B: return "11B"; case MODEL_12B: return "12B"; case MODEL_13B: return "13B"; case MODEL_14B: return "14B"; case MODEL_15B: return "15B"; case MODEL_16B: return "16B"; case MODEL_20B: return "20B"; case MODEL_30B: return "30B"; case MODEL_34B: return "34B"; case MODEL_35B: return "35B"; case MODEL_40B: return "40B"; case MODEL_65B: return "65B"; case MODEL_70B: return "70B"; case MODEL_236B: return "236B"; case MODEL_314B: return "314B"; case MODEL_SMALL: return "0.1B"; case MODEL_MEDIUM: return "0.4B"; case MODEL_LARGE: return "0.8B"; case MODEL_XL: return "1.5B"; case MODEL_A2_7B: return "A2.7B"; case MODEL_8x7B: return "8x7B"; case MODEL_8x22B: return "8x22B"; case MODEL_16x12B: return "16x12B"; case MODEL_10B_128x3_66B: return "10B+128x3.66B"; case MODEL_57B_A14B: return "57B.A14B"; case MODEL_27B: return "27B"; default: return "?B"; } } static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ switch (type) { case LLAMA_VOCAB_TYPE_NONE: return "no vocab"; case LLAMA_VOCAB_TYPE_SPM: return "SPM"; case LLAMA_VOCAB_TYPE_BPE: return "BPE"; case LLAMA_VOCAB_TYPE_WPM: return "WPM"; case LLAMA_VOCAB_TYPE_UGM: return "UGM"; default: return "unknown"; } } static void llm_load_arch(llama_model_loader & ml, llama_model & model) { model.arch = ml.get_arch(); if (model.arch == LLM_ARCH_UNKNOWN) { throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'"); } } static void llm_load_hparams( llama_model_loader & ml, llama_model & model) { auto & hparams = model.hparams; const gguf_context * ctx = ml.meta; // get metadata as string for (int i = 0; i < gguf_get_n_kv(ctx); i++) { enum gguf_type type = gguf_get_kv_type(ctx, i); if (type == GGUF_TYPE_ARRAY) { continue; } const char * name = gguf_get_key(ctx, i); const std::string value = gguf_kv_to_str(ctx, i); model.gguf_kv.emplace(name, value); } // get general kv ml.get_key(LLM_KV_GENERAL_NAME, model.name, false); // get hparams kv ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); // everything past this point is not vocab-related if (hparams.vocab_only) { return; } ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS); GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); if (hparams.n_expert > 0) { GGML_ASSERT(hparams.n_expert_used > 0); } else { GGML_ASSERT(hparams.n_expert_used == 0); } // zero-out the per-layer hparams std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0); std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0); std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0); ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer); ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer); // n_head_kv is optional, default to n_head hparams.n_head_kv_arr = hparams.n_head_arr; ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false); bool rope_finetuned = false; ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); hparams.rope_finetuned = rope_finetuned; hparams.n_ctx_orig_yarn = hparams.n_ctx_train; ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false); // rope_freq_base (optional) hparams.rope_freq_base_train = 10000.0f; ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false); std::string rope_scaling("linear"); ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false); hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling); GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED); // rope_freq_scale (inverse of the kv) is optional float ropescale = 0.0f; if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) { // try the old key name ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false); } hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale; ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false); // non-transformer models do not have attention heads if (hparams.n_head() > 0) { // gpt-neox n_rot = rotary_pct * (n_embd / n_head) // gpt-j n_rot = rotary_dim hparams.n_embd_head_k = hparams.n_embd / hparams.n_head(); ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); hparams.n_embd_head_v = hparams.n_embd / hparams.n_head(); ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); // sanity check for n_rot (optional) hparams.n_rot = hparams.n_embd_head_k; ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { if (hparams.n_rot != hparams.n_embd_head_k) { throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k)); } } } else { hparams.n_rot = 0; hparams.n_embd_head_k = 0; hparams.n_embd_head_v = 0; } // arch-specific KVs switch (model.arch) { case LLM_ARCH_LLAMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); if (hparams.n_expert == 8) { switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_8x7B; break; case 56: model.type = e_model::MODEL_8x22B; break; default: model.type = e_model::MODEL_UNKNOWN; } } else { switch (hparams.n_layer) { case 22: model.type = e_model::MODEL_1B; break; case 26: model.type = e_model::MODEL_3B; break; // granite uses a vocab with len 49152 case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break; case 36: model.type = e_model::MODEL_8B; break; // granite case 40: model.type = e_model::MODEL_13B; break; case 48: model.type = e_model::MODEL_34B; break; case 60: model.type = e_model::MODEL_30B; break; case 80: model.type = hparams.n_head() == hparams.n_head_kv() ? e_model::MODEL_65B : e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } } } break; case LLM_ARCH_MINICPM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_2B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GROK: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 64: model.type = e_model::MODEL_314B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_FALCON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 60: model.type = e_model::MODEL_40B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_BAICHUAN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } if (model.type == e_model::MODEL_13B) { // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } } break; case LLM_ARCH_STARCODER: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 36: model.type = e_model::MODEL_3B; break; case 42: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_15B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_REFACT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_1B; break; default: model.type = e_model::MODEL_UNKNOWN; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); switch (hparams.n_layer) { case 3: model.type = e_model::MODEL_17M; break; // bge-micro case 6: model.type = e_model::MODEL_22M; break; // MiniLM-L6 case 12: switch (hparams.n_embd) { case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small case 768: model.type = e_model::MODEL_109M; break; // bge-base } break; case 24: model.type = e_model::MODEL_335M; break; // bge-large } } break; case LLM_ARCH_JINA_BERT_V2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); hparams.f_max_alibi_bias = 8.0f; switch (hparams.n_layer) { case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base } } break; case LLM_ARCH_NOMIC_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); if (hparams.n_layer == 12 && hparams.n_embd == 768) { model.type = e_model::MODEL_137M; } } break; case LLM_ARCH_BLOOM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 30: switch (hparams.n_embd) { case 2560: model.type = e_model::MODEL_3B; break; case 4096: model.type = e_model::MODEL_7B; break; } break; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_MPT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 48: model.type = e_model::MODEL_30B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_STABLELM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; case 40: model.type = e_model::MODEL_12B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_QWEN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_QWEN2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break; case 80: model.type = e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_QWEN2MOE: { ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_A2_7B; break; case 28: model.type = e_model::MODEL_57B_A14B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_PHI2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_PHI3: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; case 40: model.type = e_model::MODEL_14B; break; default: model.type = e_model::MODEL_UNKNOWN; } // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931 if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) { // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct hparams.n_swa = 2047; } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) { // default value for Phi-3-mini-128k-instruct hparams.n_swa = 262144; } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) { // default value for Phi-3-medium-128k-instruct hparams.n_swa = 131072; } bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); if (!found_swa && hparams.n_swa == 0) { throw std::runtime_error("invalid value for sliding_window"); } } break; case LLM_ARCH_PLAMO: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GPT2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 12: model.type = e_model::MODEL_SMALL; break; case 24: model.type = e_model::MODEL_MEDIUM; break; case 36: model.type = e_model::MODEL_LARGE; break; case 48: model.type = e_model::MODEL_XL; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_CODESHELL: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 42: model.type = e_model::MODEL_7B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_ORION: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_14B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_INTERNLM2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 48: model.type = e_model::MODEL_20B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GEMMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 18: model.type = e_model::MODEL_2B; break; case 28: model.type = e_model::MODEL_7B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GEMMA2: { hparams.n_swa = 4096; // default value of gemma 2 ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false); ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false); hparams.attn_soft_cap = true; switch (hparams.n_layer) { case 26: model.type = e_model::MODEL_2B; break; case 42: model.type = e_model::MODEL_9B; break; case 46: model.type = e_model::MODEL_27B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_STARCODER2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 30: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_15B; break; case 52: model.type = e_model::MODEL_20B; break; // granite case 88: model.type = e_model::MODEL_34B; break; // granite default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_MAMBA: { ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: switch (hparams.n_embd) { case 768: model.type = e_model::MODEL_SMALL; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 48: switch (hparams.n_embd) { case 1024: model.type = e_model::MODEL_MEDIUM; break; case 1536: model.type = e_model::MODEL_LARGE; break; case 2048: model.type = e_model::MODEL_XL; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 64: switch (hparams.n_embd) { case 2560: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_XVERSE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; case 80: model.type = e_model::MODEL_65B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_COMMAND_R: { ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_35B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_DBRX: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_16x12B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_OLMO: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); switch (hparams.n_layer) { case 22: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_7B; break; case 80: model.type = e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_OPENELM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 16: model.type = e_model::MODEL_270M; break; case 20: model.type = e_model::MODEL_450M; break; case 28: model.type = e_model::MODEL_1B; break; case 36: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GPTNEOX: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res); switch (hparams.n_layer) { case 6: switch (hparams.n_ff()) { case 512: model.type = e_model::MODEL_14M; break; case 2048: model.type = e_model::MODEL_70M; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 12: switch (hparams.n_ff()) { case 3072: model.type = e_model::MODEL_160M; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 16: switch (hparams.n_ff()) { case 8192: model.type = e_model::MODEL_1B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 24: switch (hparams.n_ff()) { case 4096: model.type = e_model::MODEL_410M; break; case 8192: model.type = e_model::MODEL_1_4B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 32: switch (hparams.n_ff()) { case 10240: model.type = e_model::MODEL_2_8B; break; case 16384: model.type = e_model::MODEL_6_9B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 36: switch (hparams.n_ff()) { case 20480: model.type = e_model::MODEL_12B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 44: switch (hparams.n_ff()) { case 24576: model.type = e_model::MODEL_20B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_ARCTIC: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); if (hparams.n_expert == 128) { switch (hparams.n_layer) { case 35: model.type = e_model::MODEL_10B_128x3_66B; break; default: model.type = e_model::MODEL_UNKNOWN; } } else { model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_DEEPSEEK2: { bool is_lite = (hparams.n_layer == 27); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); if (!is_lite) { ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); } ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul); switch (hparams.n_layer) { case 27: model.type = e_model::MODEL_16B; break; case 60: model.type = e_model::MODEL_236B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_CHATGLM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 28: model.type = e_model::MODEL_6B; break; case 40: model.type = e_model::MODEL_9B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_BITNET: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 26: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_T5: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts); uint32_t dec_start_token_id; if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) { hparams.dec_start_token_id = dec_start_token_id; } switch (hparams.n_layer) { case 6: model.type = e_model::MODEL_60M; break; // t5-small case 8: model.type = e_model::MODEL_80M; break; // flan-t5-small case 12: switch (hparams.n_ff()) { case 3072: model.type = e_model::MODEL_220M; break; // t5-base case 2048: model.type = e_model::MODEL_250M; break; // flan-t5-base default: model.type = e_model::MODEL_UNKNOWN; } break; case 24: switch (hparams.n_ff()) { case 4096: model.type = e_model::MODEL_770M; break; // t5-large case 2816: model.type = e_model::MODEL_780M; break; // flan-t5-large case 16384: model.type = e_model::MODEL_3B; break; // t5-3b case 5120: model.type = e_model::MODEL_3B; break; // flan-t5-xl case 65536: model.type = e_model::MODEL_11B; break; // t5-11b case 10240: model.type = e_model::MODEL_11B; break; // flan-t5-xxl default: model.type = e_model::MODEL_UNKNOWN; } break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_T5ENCODER: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts); model.type = e_model::MODEL_UNKNOWN; } break; case LLM_ARCH_JAIS: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1_3B; break; case 40: model.type = e_model::MODEL_13B; break; /* TODO: add variants */ default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_NEMOTRON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_4B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_EXAONE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_8B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; default: (void)0; } model.ftype = ml.ftype; if (hparams.f_max_alibi_bias > 0.0f) { hparams.use_alibi = true; } hparams.rope_type = llama_rope_type(&model); } static void llm_load_vocab( llama_model_loader & ml, llama_model & model) { auto & vocab = model.vocab; struct gguf_context * ctx = ml.meta; const auto kv = LLM_KV(model.arch); // determine vocab type { std::string tokenizer_model; std::string tokenizer_pre; ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model); ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); if (tokenizer_model == "no_vocab") { vocab.type = LLAMA_VOCAB_TYPE_NONE; // default special tokens vocab.special_bos_id = -1; vocab.special_eos_id = -1; vocab.special_unk_id = -1; vocab.special_sep_id = -1; vocab.special_pad_id = -1; vocab.special_cls_id = -1; vocab.special_mask_id = -1; vocab.linefeed_id = -1; return; } else if (tokenizer_model == "llama") { vocab.type = LLAMA_VOCAB_TYPE_SPM; // default special tokens vocab.special_bos_id = 1; vocab.special_eos_id = 2; vocab.special_unk_id = 0; vocab.special_sep_id = -1; vocab.special_pad_id = -1; vocab.special_cls_id = -1; vocab.special_mask_id = -1; } else if (tokenizer_model == "bert") { vocab.type = LLAMA_VOCAB_TYPE_WPM; // default special tokens vocab.special_bos_id = -1; vocab.special_eos_id = -1; vocab.special_unk_id = 100; vocab.special_sep_id = 102; vocab.special_pad_id = 0; vocab.special_cls_id = 101; vocab.special_mask_id = 103; } else if (tokenizer_model == "gpt2") { vocab.type = LLAMA_VOCAB_TYPE_BPE; // read bpe merges and populate bpe ranks const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); if (merges_keyidx == -1) { throw std::runtime_error("cannot find tokenizer merges in model file\n"); } const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); for (int i = 0; i < n_merges; i++) { const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); std::string first; std::string second; const size_t pos = word.find(' ', 1); if (pos != std::string::npos) { first = word.substr(0, pos); second = word.substr(pos + 1); } vocab.bpe_ranks.emplace(std::make_pair(first, second), i); } // default special tokens vocab.special_bos_id = 11; vocab.special_eos_id = 11; vocab.special_unk_id = -1; vocab.special_sep_id = -1; vocab.special_pad_id = -1; vocab.special_cls_id = -1; vocab.special_mask_id = -1; } else if (tokenizer_model == "t5") { vocab.type = LLAMA_VOCAB_TYPE_UGM; // default special tokens vocab.special_bos_id = -1; vocab.special_eos_id = 1; vocab.special_unk_id = 2; vocab.special_sep_id = -1; vocab.special_pad_id = 0; vocab.special_cls_id = -1; vocab.special_mask_id = -1; const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str()); if (precompiled_charsmap_keyidx != -1) { size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx); const char * precompiled_charsmap = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx); vocab.precompiled_charsmap.assign(precompiled_charsmap, precompiled_charsmap + n_precompiled_charsmap); #ifdef IS_BIG_ENDIAN // correct endiannes of data in precompiled_charsmap binary blob uint32_t * xcda_blob_size = (uint32_t *) &vocab.precompiled_charsmap[0]; *xcda_blob_size = __builtin_bswap32(*xcda_blob_size); assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap); size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t); uint32_t * xcda_array = (uint32_t *) &vocab.precompiled_charsmap[sizeof(uint32_t)]; for (size_t i = 0; i < xcda_array_size; ++i) { xcda_array[i] = __builtin_bswap32(xcda_array[i]); } #endif } } else { throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str())); } // for now, only BPE models have pre-tokenizers if (vocab.type == LLAMA_VOCAB_TYPE_BPE) { vocab.tokenizer_add_space_prefix = false; vocab.tokenizer_clean_spaces = true; if (tokenizer_pre.empty()) { LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__); LLAMA_LOG_WARN("%s: \n", __func__); LLAMA_LOG_WARN("%s: ************************************ \n", __func__); LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__); LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__); LLAMA_LOG_WARN("%s: ************************************ \n", __func__); LLAMA_LOG_WARN("%s: \n", __func__); vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; } else if (tokenizer_pre == "default") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; } else if ( tokenizer_pre == "llama3" || tokenizer_pre == "llama-v3" || tokenizer_pre == "llama-bpe") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3; vocab.tokenizer_ignore_merges = true; vocab.tokenizer_add_bos = true; } else if ( tokenizer_pre == "deepseek-llm") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM; vocab.tokenizer_clean_spaces = false; } else if ( tokenizer_pre == "deepseek-coder") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER; vocab.tokenizer_clean_spaces = false; } else if ( tokenizer_pre == "falcon") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON; } else if ( tokenizer_pre == "mpt") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT; } else if ( tokenizer_pre == "starcoder") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER; } else if ( tokenizer_pre == "gpt-2" || tokenizer_pre == "phi-2" || tokenizer_pre == "jina-es" || tokenizer_pre == "jina-de" || tokenizer_pre == "jina-v2-es" || tokenizer_pre == "jina-v2-de" || tokenizer_pre == "jina-v2-code") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2; } else if ( tokenizer_pre == "refact") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT; } else if ( tokenizer_pre == "command-r") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R; vocab.tokenizer_clean_spaces = false; } else if ( tokenizer_pre == "qwen2") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2; vocab.tokenizer_clean_spaces = false; } else if ( tokenizer_pre == "stablelm2") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2; } else if ( tokenizer_pre == "olmo") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO; } else if ( tokenizer_pre == "dbrx") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX; } else if ( tokenizer_pre == "smaug-bpe") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG; } else if ( tokenizer_pre == "poro-chat") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO; vocab.tokenizer_clean_spaces = false; } else if ( tokenizer_pre == "chatglm-bpe") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHATGLM4; vocab.special_bos_id = -1; } else if ( tokenizer_pre == "viking") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING; vocab.tokenizer_clean_spaces = false; } else if ( tokenizer_pre == "jais") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS; } else if ( tokenizer_pre == "tekken") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_TEKKEN; vocab.tokenizer_clean_spaces = false; vocab.tokenizer_ignore_merges = true; vocab.tokenizer_add_bos = true; } else if ( tokenizer_pre == "smollm") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM; vocab.tokenizer_clean_spaces = false; } else if ( tokenizer_pre == "codeshell") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL; } else if ( tokenizer_pre == "bloom") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_BLOOM; } else if ( tokenizer_pre == "gpt3-finnish") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH; } else if ( tokenizer_pre == "exaone") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE; } else { throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); } } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.tokenizer_add_space_prefix = true; vocab.tokenizer_clean_spaces = false; vocab.tokenizer_add_bos = true; vocab.tokenizer_add_eos = false; } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.tokenizer_add_space_prefix = false; vocab.tokenizer_clean_spaces = true; vocab.tokenizer_add_bos = true; vocab.tokenizer_add_eos = false; } else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.tokenizer_add_bos = false; vocab.tokenizer_add_eos = true; } else { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; } ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.tokenizer_add_space_prefix, false); ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.tokenizer_remove_extra_whitespaces, false); } const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str()); if (token_idx == -1) { throw std::runtime_error("cannot find tokenizer vocab in model file\n"); } const float * scores = nullptr; const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); if (score_idx != -1) { scores = (const float * ) gguf_get_arr_data(ctx, score_idx); } const int * toktypes = nullptr; const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); if (toktype_idx != -1) { toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); } const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); vocab.id_to_token.resize(n_vocab); for (uint32_t i = 0; i < n_vocab; i++) { std::string word = gguf_get_arr_str(ctx, token_idx, i); GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); vocab.token_to_id[word] = i; vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size()); auto & token_data = vocab.id_to_token[i]; token_data.text = std::move(word); token_data.score = scores ? scores[i] : 0.0f; token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file switch(toktypes[i]) { case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break; case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break; case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break; case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break; case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break; case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break; case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; } } } GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size()); // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { // For Fill-In-the-Middle (FIM)/infill models which where converted // prior to support of FIM special tokens in GGUF, the following // will allow those models to continue to work. The general names // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once // new versions of these models have been published. std::string gen_name; ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false); std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(), [](unsigned char c){ return std::tolower(c); }); if (gen_name.find("code") != std::string::npos) { if (model.arch == LLM_ARCH_LLAMA && 32010 < vocab.id_to_token.size() && vocab.id_to_token[32007].text.find("
") != std::string::npos
              && vocab.id_to_token[32008].text.find("") != std::string::npos
              && vocab.id_to_token[32009].text.find("") != std::string::npos
              && vocab.id_to_token[32010].text.find("") != std::string::npos) {
                vocab.special_prefix_id = 32007;
                vocab.special_suffix_id = 32008;
                vocab.special_middle_id = 32009;
                vocab.special_eot_id    = 32010;
            } else if (model.arch == LLM_ARCH_GEMMA
              && 107 < vocab.id_to_token.size()
              && vocab.id_to_token[67].text == "<|fim_prefix|>"
              && vocab.id_to_token[69].text == "<|fim_suffix|>"
              && vocab.id_to_token[68].text == "<|fim_middle|>"
              && vocab.id_to_token[107].text == "") {
                vocab.special_prefix_id = 67;
                vocab.special_suffix_id = 69;
                vocab.special_middle_id = 68;
                // TODO: this is not EOT, it is "file separator" token, needs fix
                //       https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
                //vocab.special_eot_id    = 70;
                vocab.special_eot_id    = 107;
            }
        }
        try {
            vocab.linefeed_id = llama_byte_to_token_impl(vocab, '\n');
        } catch (const std::exception & e) {
            LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
            vocab.linefeed_id = vocab.special_pad_id;
        }
    } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
        vocab.linefeed_id = vocab.special_pad_id;
    } else {
        const std::vector ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
        GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
        vocab.linefeed_id = ids[0];
    }

    // special tokens
    {
        const std::vector> special_token_types = {
            { LLM_KV_TOKENIZER_BOS_ID,    vocab.special_bos_id    },
            { LLM_KV_TOKENIZER_EOS_ID,    vocab.special_eos_id    },
            { LLM_KV_TOKENIZER_UNK_ID,    vocab.special_unk_id    },
            { LLM_KV_TOKENIZER_SEP_ID,    vocab.special_sep_id    },
            { LLM_KV_TOKENIZER_PAD_ID,    vocab.special_pad_id    },
            { LLM_KV_TOKENIZER_CLS_ID,    vocab.special_cls_id    },
            { LLM_KV_TOKENIZER_MASK_ID,   vocab.special_mask_id   },
            { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
            { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
            { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
            { LLM_KV_TOKENIZER_EOT_ID,    vocab.special_eot_id    },
            { LLM_KV_TOKENIZER_EOM_ID,    vocab.special_eom_id    },
        };

        for (const auto & it : special_token_types) {
            const std::string & key = kv(std::get<0>(it));
            int32_t & id = std::get<1>(it);

            uint32_t new_id;
            if (!ml.get_key(std::get<0>(it), new_id, false)) {
                continue;
            }
            if (new_id >= vocab.id_to_token.size()) {
                LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
                    __func__, key.c_str(), new_id, id);
            } else {
                id = new_id;
            }
        }

        // Handle add_bos_token and add_eos_token
        {
            bool temp = true;

            if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
                vocab.tokenizer_add_bos = temp;
            }
            if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
                vocab.tokenizer_add_eos = temp;
            }
        }

        // find EOT token: "<|eot_id|>", "<|im_end|>", "", etc.
        //
        // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
        //       for now, we apply this workaround to find the EOT token based on its text
        if (vocab.special_eot_id == -1) {
            for (const auto & t : vocab.token_to_id) {
                if (
                        // TODO: gemma "" is exported as a normal token, so the following check does not work
                        //       need to fix convert script
                        //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
                        (t.first == "<|eot_id|>" ||
                         t.first == "<|im_end|>" ||
                         t.first == "<|end|>" ||
                         t.first == "" ||
                         t.first == "<|endoftext|>"
                        )
                   ) {
                    vocab.special_eot_id = t.second;
                    break;
                }
            }
        }

        // find EOM token: "<|eom_id|>"
        //
        // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOM_ID
        //       for now, we apply this workaround to find the EOM token based on its text
        if (vocab.special_eom_id == -1) {
            const auto & t = vocab.token_to_id.find("<|eom_id|>");
            if (t != vocab.token_to_id.end()) {
                vocab.special_eom_id = t->second;
            }
        }
    }

    // build special tokens cache
    {
        for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
            if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
                vocab.cache_special_tokens.push_back(id);
            }
        }

        std::sort(vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
            [&] (const llama_vocab::id a, const llama_vocab::id b) {
                return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
            }
        );

        LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
    }

    // build token to piece cache
    {
        size_t size_cache = 0;

        std::vector cache_token_to_piece(n_vocab);

        for (uint32_t id = 0; id < n_vocab; ++id) {
            cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);

            size_cache += cache_token_to_piece[id].size();
        }

        std::swap(vocab.cache_token_to_piece, cache_token_to_piece);

        LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
    }

    // Handle per token attributes
    //NOTE: Each model customizes per token attributes.
    //NOTE: Per token attributes are missing from the GGUF file.
    //TODO: Extract attributes from GGUF file.
    {
        auto _contains_any = [] (const std::string &str, const std::vector &substrs) -> bool {
            for (auto substr : substrs) {
                if (str.find(substr) < std::string::npos) {
                    return true;
                }
            }
            return false;
        };

        auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
            uint32_t current = vocab.id_to_token.at(id).attr;
            current = value ? (current | attr) : (current & ~attr);
            vocab.id_to_token[id].attr = (llama_token_attr) current;
        };

        auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
            _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
        };

        std::string model_name;
        std::string tokenizer_pre;

        ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
        ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);

        // model name to lowercase
        std::transform(model_name.begin(), model_name.end(), model_name.begin(),
            [] (const std::string::value_type x) {
                return std::tolower(x);
            }
        );

        // set attributes by model/tokenizer name
        if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
            _set_token_attr("", LLAMA_TOKEN_ATTR_LSTRIP, true);
        } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
            for (auto id : vocab.cache_special_tokens) {
                _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
            }
            for (auto token : {""}) {
                _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
            }
            for (auto token : {"", "", "<|endoftext|>"}) {
                _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
            }
        }
    }
}

static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
    const auto & hparams = model.hparams;
    const auto & vocab   = model.vocab;

    const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);

    auto print_f = [](const std::function & f, uint32_t n) {
        bool is_var = false;

        std::vector v;
        for (uint32_t i = 0; i < n; ++i) {
            v.push_back(f(i));
            if (v[i] != v[0]) {
                is_var = true;
            }
        }

        std::stringstream ss;

        if (is_var) {
            ss << "[";
            for (uint32_t i = 0; i < n; ++i) {
                ss << v[i];
                if (i < n - 1) {
                    ss << ", ";
                }
            }
            ss << "]";
        } else {
            ss << v[0];
        }

        return ss.str();
    };

    // hparams
    LLAMA_LOG_INFO("%s: format           = %s\n",     __func__, llama_file_version_name(ml.fver));
    LLAMA_LOG_INFO("%s: arch             = %s\n",     __func__, LLM_ARCH_NAMES.at(model.arch));
    LLAMA_LOG_INFO("%s: vocab type       = %s\n",     __func__, llama_model_vocab_type_name(vocab.type));
    LLAMA_LOG_INFO("%s: n_vocab          = %u\n",     __func__, hparams.n_vocab);
    LLAMA_LOG_INFO("%s: n_merges         = %u\n",     __func__, (int) vocab.bpe_ranks.size());
    LLAMA_LOG_INFO("%s: vocab_only       = %d\n",     __func__, hparams.vocab_only);

    if (!hparams.vocab_only) {
        LLAMA_LOG_INFO("%s: n_ctx_train      = %u\n",     __func__, hparams.n_ctx_train);
        LLAMA_LOG_INFO("%s: n_embd           = %u\n",     __func__, hparams.n_embd);
        LLAMA_LOG_INFO("%s: n_layer          = %u\n",     __func__, hparams.n_layer);
        LLAMA_LOG_INFO("%s: n_head           = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_head(il);    }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_head_kv        = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_rot            = %u\n",     __func__, hparams.n_rot);
        LLAMA_LOG_INFO("%s: n_swa            = %u\n",     __func__, hparams.n_swa);
        LLAMA_LOG_INFO("%s: n_embd_head_k    = %u\n",     __func__, hparams.n_embd_head_k);
        LLAMA_LOG_INFO("%s: n_embd_head_v    = %u\n",     __func__, hparams.n_embd_head_v);
        LLAMA_LOG_INFO("%s: n_gqa            = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il);        }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_embd_k_gqa     = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_embd_v_gqa     = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: f_norm_eps       = %.1e\n",   __func__, hparams.f_norm_eps);
        LLAMA_LOG_INFO("%s: f_norm_rms_eps   = %.1e\n",   __func__, hparams.f_norm_rms_eps);
        LLAMA_LOG_INFO("%s: f_clamp_kqv      = %.1e\n",   __func__, hparams.f_clamp_kqv);
        LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n",   __func__, hparams.f_max_alibi_bias);
        LLAMA_LOG_INFO("%s: f_logit_scale    = %.1e\n",   __func__, hparams.f_logit_scale);
        LLAMA_LOG_INFO("%s: n_ff             = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
        LLAMA_LOG_INFO("%s: n_expert         = %u\n",     __func__, hparams.n_expert);
        LLAMA_LOG_INFO("%s: n_expert_used    = %u\n",     __func__, hparams.n_expert_used);
        LLAMA_LOG_INFO("%s: causal attn      = %d\n",     __func__, hparams.causal_attn);
        LLAMA_LOG_INFO("%s: pooling type     = %d\n",     __func__, hparams.pooling_type);
        LLAMA_LOG_INFO("%s: rope type        = %d\n",     __func__, hparams.rope_type);
        LLAMA_LOG_INFO("%s: rope scaling     = %s\n",     __func__, rope_scaling_type);
        LLAMA_LOG_INFO("%s: freq_base_train  = %.1f\n",   __func__, hparams.rope_freq_base_train);
        LLAMA_LOG_INFO("%s: freq_scale_train = %g\n",     __func__, hparams.rope_freq_scale_train);
        LLAMA_LOG_INFO("%s: n_ctx_orig_yarn  = %u\n",     __func__, hparams.n_ctx_orig_yarn);
        LLAMA_LOG_INFO("%s: rope_finetuned   = %s\n",     __func__, hparams.rope_finetuned ? "yes" : "unknown");
        LLAMA_LOG_INFO("%s: ssm_d_conv       = %u\n",     __func__, hparams.ssm_d_conv);
        LLAMA_LOG_INFO("%s: ssm_d_inner      = %u\n",     __func__, hparams.ssm_d_inner);
        LLAMA_LOG_INFO("%s: ssm_d_state      = %u\n",     __func__, hparams.ssm_d_state);
        LLAMA_LOG_INFO("%s: ssm_dt_rank      = %u\n",     __func__, hparams.ssm_dt_rank);
        LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms   = %d\n",     __func__, hparams.ssm_dt_b_c_rms);
    }

    LLAMA_LOG_INFO("%s: model type       = %s\n",     __func__, llama_model_type_name(model.type));
    LLAMA_LOG_INFO("%s: model ftype      = %s\n",     __func__, llama_model_ftype_name(model.ftype).c_str());
    if (ml.n_elements >= 1e12) {
        LLAMA_LOG_INFO("%s: model params     = %.2f T\n", __func__, ml.n_elements*1e-12);
    } else if (ml.n_elements >= 1e9) {
        LLAMA_LOG_INFO("%s: model params     = %.2f B\n", __func__, ml.n_elements*1e-9);
    } else if (ml.n_elements >= 1e6) {
        LLAMA_LOG_INFO("%s: model params     = %.2f M\n", __func__, ml.n_elements*1e-6);
    } else {
        LLAMA_LOG_INFO("%s: model params     = %.2f K\n", __func__, ml.n_elements*1e-3);
    }
    if (ml.n_bytes < GiB) {
        LLAMA_LOG_INFO("%s: model size       = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0,        ml.n_bytes*8.0/ml.n_elements);
    } else {
        LLAMA_LOG_INFO("%s: model size       = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
    }

    // general kv
    LLAMA_LOG_INFO("%s: general.name     = %s\n",    __func__, model.name.c_str());

    // special tokens
    if (vocab.special_bos_id    != -1) { LLAMA_LOG_INFO( "%s: BOS token        = %d '%s'\n", __func__, vocab.special_bos_id,  vocab.id_to_token[vocab.special_bos_id].text.c_str() );  }
    if (vocab.special_eos_id    != -1) { LLAMA_LOG_INFO( "%s: EOS token        = %d '%s'\n", __func__, vocab.special_eos_id,  vocab.id_to_token[vocab.special_eos_id].text.c_str() );  }
    if (vocab.special_unk_id    != -1) { LLAMA_LOG_INFO( "%s: UNK token        = %d '%s'\n", __func__, vocab.special_unk_id,  vocab.id_to_token[vocab.special_unk_id].text.c_str() );  }
    if (vocab.special_sep_id    != -1) { LLAMA_LOG_INFO( "%s: SEP token        = %d '%s'\n", __func__, vocab.special_sep_id,  vocab.id_to_token[vocab.special_sep_id].text.c_str() );  }
    if (vocab.special_pad_id    != -1) { LLAMA_LOG_INFO( "%s: PAD token        = %d '%s'\n", __func__, vocab.special_pad_id,  vocab.id_to_token[vocab.special_pad_id].text.c_str() );  }
    if (vocab.special_cls_id    != -1) { LLAMA_LOG_INFO( "%s: CLS token        = %d '%s'\n", __func__, vocab.special_cls_id,  vocab.id_to_token[vocab.special_cls_id].text.c_str() );  }
    if (vocab.special_mask_id   != -1) { LLAMA_LOG_INFO( "%s: MASK token       = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }

    if (vocab.linefeed_id       != -1) { LLAMA_LOG_INFO( "%s: LF token         = %d '%s'\n", __func__, vocab.linefeed_id,       vocab.id_to_token[vocab.linefeed_id].text.c_str() );       }
    if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token        = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
    if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token        = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
    if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token        = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
    if (vocab.special_eot_id    != -1) { LLAMA_LOG_INFO( "%s: EOT token        = %d '%s'\n", __func__, vocab.special_eot_id,    vocab.id_to_token[vocab.special_eot_id].text.c_str() );    }

    LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);

    if (model.arch == LLM_ARCH_DEEPSEEK2) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_lora_q             = %d\n",     __func__, hparams.n_lora_q);
        LLAMA_LOG_INFO("%s: n_lora_kv            = %d\n",     __func__, hparams.n_lora_kv);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
        LLAMA_LOG_INFO("%s: rope_yarn_log_mul    = %.4f\n",   __func__, hparams.rope_yarn_log_mul);
    }

    if (model.arch == LLM_ARCH_QWEN2MOE) {
        LLAMA_LOG_INFO("%s: n_ff_exp         = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_ff_shexp       = %d\n",     __func__, hparams.n_ff_shexp);
    }
}

// Returns false if cancelled by progress_callback
static bool llm_load_tensors(
        llama_model_loader & ml,
        llama_model & model,
        int n_gpu_layers,
        enum llama_split_mode split_mode,
        int main_gpu,
        const float * tensor_split,
        bool use_mlock,
        llama_progress_callback progress_callback,
        void * progress_callback_user_data) {
    model.t_start_us = ggml_time_us();

    auto & hparams = model.hparams;

    model.split_mode   = split_mode;
    model.main_gpu     = main_gpu;
    model.n_gpu_layers = n_gpu_layers;

    const int n_layer     = hparams.n_layer;
    const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
    bool use_mmap_buffer = true;

    // there is very little benefit to offloading the input layer, so always keep it on the CPU
    model.buft_input = llama_default_buffer_type_cpu(true);
    //model.buft_input = llama_default_buffer_type_offload(main_gpu);

    model.buft_layer.resize(n_layer);

    // assign cpu layers
    for (int i = 0; i < i_gpu_start; ++i) {
        model.buft_layer[i] = llama_default_buffer_type_cpu(true);
    }

    if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
        // calculate the split points
        int device_count = llama_get_device_count(model);
        bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
        std::vector splits(device_count);
        if (all_zero) {
            // default split, by free memory
            for (int i = 0; i < device_count; ++i) {
                splits[i] = llama_get_device_memory(model, i);
            }
        } else {
            std::copy(tensor_split, tensor_split + device_count, splits.begin());
        }

        // sum and normalize the splits to get the split points
        float split_sum = 0.0f;
        for (int i = 0; i < device_count; ++i) {
            split_sum += splits[i];
            splits[i] = split_sum;
        }
        for (int i = 0; i < device_count; ++i) {
            splits[i] /= split_sum;
        }

        // assign the repeating layers to the devices according to the splits
        int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
        for (int i = i_gpu_start; i < n_layer; ++i) {
            int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
            model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
        }
        // assign the output layer
        if (n_gpu_layers > n_layer) {
            int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
            model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
        } else {
            model.buft_output = llama_default_buffer_type_cpu(true);
        }
    } else {
        ggml_backend_buffer_type_t split_buft;
        if (split_mode == LLAMA_SPLIT_MODE_ROW) {
            split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
        } else {
            // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
            split_buft = llama_default_buffer_type_offload(model, main_gpu);
        }
        // assign the repeating layers
        for (int i = i_gpu_start; i < n_layer; ++i) {
            model.buft_layer[i] = {
                split_buft,
                llama_default_buffer_type_offload(model, main_gpu)
            };
        }
        // assign the output layer
        if (n_gpu_layers > n_layer) {
            model.buft_output = {
                split_buft,
                llama_default_buffer_type_offload(model, main_gpu)
            };
        } else {
            model.buft_output = llama_default_buffer_type_cpu(true);
        }
    }

    // count used buffer types
    std::map buft_layer_count;
    buft_layer_count[model.buft_input.buft]++;
    buft_layer_count[model.buft_input.buft_matrix]++;
    buft_layer_count[model.buft_output.buft]++;
    buft_layer_count[model.buft_output.buft_matrix]++;
    for (int i = 0; i < n_layer; ++i) {
        buft_layer_count[model.buft_layer[i].buft]++;
        buft_layer_count[model.buft_layer[i].buft_matrix]++;
    }

    // create one context per buffer type
    size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output

    // for moe merged tensors
    ctx_size += ggml_tensor_overhead()*n_layer*3;

    std::map ctx_map;
    for (auto & it : buft_layer_count) {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx_size,
            /*.mem_buffer =*/ NULL,
            /*.no_alloc   =*/ true,
        };
        ggml_context * ctx = ggml_init(params);
        if (!ctx) {
            throw std::runtime_error(format("failed to create context"));
        }
        ctx_map[it.first] = ctx;
        model.ctxs.push_back(ctx);
    }

    LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);

    // create tensors for the weights
    {
        // note: cast to int64_t since we will use these for the tensor dimensions
        const int64_t n_head        = hparams.n_head();
        const int64_t n_head_kv     = hparams.n_head_kv();
        const int64_t n_embd        = hparams.n_embd;
        const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
        const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();
        const int64_t n_embd_head_k = hparams.n_embd_head_k;
        const int64_t n_embd_head_v = hparams.n_embd_head_v;
        const int64_t n_ff          = hparams.n_ff();
        const int64_t n_embd_gqa    = n_embd_v_gqa;
        const int64_t n_vocab       = hparams.n_vocab;
        const int64_t n_vocab_type  = hparams.n_vocab_type;
        const int64_t n_rot         = hparams.n_rot;
        const int64_t n_expert      = hparams.n_expert;
        const int64_t n_expert_used = hparams.n_expert_used;
        const int64_t n_ctx_train   = hparams.n_ctx_train;

        if (n_expert > 0 && hparams.n_expert_used == 0) {
            throw std::runtime_error("model has expert layers but no expert layers are used");
        }

        ggml_context * ctx_input        = ctx_map.at(model.buft_input.buft);
        ggml_context * ctx_output       = ctx_map.at(model.buft_output.buft);
        ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);

        auto ctx_for_layer       = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
        auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };

        model.layers.resize(n_layer);

        const auto tn = LLM_TN(model.arch);
        switch (model.arch) {
            case LLM_ARCH_LLAMA:
            case LLM_ARCH_REFACT:
            case LLM_ARCH_MINICPM:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});

                        // optional bias tensors
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));

                        if (n_expert == 0) {
                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});

                            // optional MLP bias
                            layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                            layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                            layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        } else {
                            layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});

                            layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
                            if (layer.ffn_gate_exps) {
                                layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
                                layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
                            } else {
                                // merge split expert into a single tensor for compatibility with older models
                                // requires disabling mmap
                                use_mmap_buffer = false;

                                ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
                                ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
                                ggml_type type_up   = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, 0).c_str())->type;

                                layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd,   n_ff, n_expert);
                                layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down,   n_ff, n_embd, n_expert);
                                layer.ffn_up_exps   = ggml_new_tensor_3d(ctx_split, type_up,   n_embd,   n_ff, n_expert);

                                ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
                                ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
                                ggml_set_name(layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i).c_str());

                                for (uint32_t x = 0; x < n_expert; ++x) {
                                    // the individual experts are loaded into a view of the merged tensor
                                    ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
                                    ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
                                    ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
                                }
                            }
                        }
                    }
                } break;
            case LLM_ARCH_GROK:
                {
                    if (n_expert == 0) {
                        throw std::runtime_error("Grok model cannot have zero experts");
                    }

                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate_inp  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert});
                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        if (layer.ffn_gate_exps) {
                            layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
                            layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
                        } else {
                            // merge split expert into a single tensor for compatibility with older models
                            // requires disabling mmap
                            use_mmap_buffer = false;

                            ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
                            ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
                            ggml_type type_up   = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, 0).c_str())->type;

                            layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd,   n_ff, n_expert);
                            layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down,   n_ff, n_embd, n_expert);
                            layer.ffn_up_exps   = ggml_new_tensor_3d(ctx_split, type_up,   n_embd,   n_ff, n_expert);

                            ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
                            ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
                            ggml_set_name(layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i).c_str());

                            for (uint32_t x = 0; x < n_expert; ++x) {
                                // the individual experts are loaded into a view of the merged tensor
                                ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
                                ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
                                ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
                            }
                        }

                        layer.layer_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
                    }
                } break;
            case LLM_ARCH_DBRX:
            {
                if (n_expert == 0) {
                    throw std::runtime_error("DBRX model cannot have zero experts");
                }

                model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                // output
                {
                    model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                    model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                }

                for (int i = 0; i < n_layer; ++i) {
                    ggml_context * ctx_layer = ctx_for_layer(i);
                    ggml_context * ctx_split = ctx_for_layer_split(i);

                    auto & layer = model.layers[i];

                    layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                    layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                    layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                    layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});

                    layer.ffn_gate_inp  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert});
                    layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert});
                    layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert});
                    layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert});
                }
            } break;
            case LLM_ARCH_BAICHUAN:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_FALCON:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});

                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        if (!model.output) {
                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.attn_norm_2   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_STARCODER:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        if (!model.output) {
                            // needs to be on GPU
                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }

                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff});
                        layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff});
                    }
                } break;
            case LLM_ARCH_BERT:
            case LLM_ARCH_NOMIC_BERT:
                {
                    model.tok_embd     = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab});
                    model.type_embd    = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});

                    if (model.arch == LLM_ARCH_BERT) {
                        model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,    "weight"), {n_embd, n_ctx_train});
                    }

                    model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
                    model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd});

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        if (model.arch == LLM_ARCH_BERT) {
                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                            layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i),   {n_embd});

                            layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                            layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i),   {n_embd_gqa});

                            layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                            layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i),   {n_embd_gqa});
                        } else {
                            layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        }

                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {n_embd, n_embd});

                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
                        layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i),   {n_embd});

                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,        "weight", i), {n_embd, n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN,      "weight", i), {n_ff, n_embd});

                        if (model.arch == LLM_ARCH_BERT) {
                            layer.bo         = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
                            layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff});
                            layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
                        } else {
                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
                        }

                        layer.layer_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
                        layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i),   {n_embd});
                    }
                } break;
            case LLM_ARCH_JINA_BERT_V2:
                {
                    model.tok_embd  = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}); // word_embeddings
                    model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); // token_type_embeddings

                    model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
                    model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd}); //LayerNorm bias

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i]; // JinaBertLayer

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd});

                        layer.attn_q_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias",   i), {n_embd_gqa});

                        layer.attn_k_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias",   i), {n_embd_gqa});

                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd}); //output_dens

                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
                        layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias",   i), {n_embd});

                        layer.attn_norm_2   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd});

                        layer.layer_out_norm   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
                        layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias",   i), {n_embd});
                    }
                } break;
            case LLM_ARCH_BLOOM:
                {
                    model.tok_embd   = ml.create_tensor(ctx_input,  tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab});
                    model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
                    model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias",   i), {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias",   i), {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias",   i), {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias",   i), {n_ff});
                    }
                } break;
            case LLM_ARCH_MPT:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        if (!model.output) {
                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.attn_q_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.attn_k_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        // AWQ ScaleActivation layer
                        layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_STABLELM:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm =   ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors, present in Stable LM 2 1.6B
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        // optional q and k layernorms, present in StableLM 2 12B
                        layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head},    llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_QWEN:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd*3});
                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff/2});
                    }
                } break;
            case LLM_ARCH_QWEN2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_QWEN2MOE:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});

                        GGML_ASSERT(n_expert      > 0);
                        GGML_ASSERT(n_expert_used > 0);

                        // MoE branch
                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;

                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert});
                        layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert});
                        layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert});

                        // Shared expert branch
                        const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;

                        layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
                        layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {    n_embd, n_ff_shexp});
                        layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp,     n_embd});
                        layer.ffn_up_shexp   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, n_ff_shexp});
                    }
                } break;
            case LLM_ARCH_PHI2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                        model.output_b      = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT,      "bias"),   {n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        if (layer.wqkv == nullptr) {
                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
                            layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd});

                            layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
                            layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i),   {n_embd_gqa});

                            layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
                            layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i),   {n_embd_gqa});
                        }

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
                    }
                } break;
            case LLM_ARCH_PHI3:
                {
                    const int64_t n_embd_head = n_embd / n_head;

                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });

                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
                        layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });

                        layer.rope_long  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
                        layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
                    }
                } break;
            case LLM_ARCH_PLAMO:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_GPT2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
                    }
                } break;
            case LLM_ARCH_CODESHELL:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff});
                    }
                } break;
            case LLM_ARCH_ORION:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }
                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_INTERNLM2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});

                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_GEMMA:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                    model.output      = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                    }
                } break;
            case LLM_ARCH_GEMMA2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                    model.output      = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
                        layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
                    }
                } break;
            case LLM_ARCH_STARCODER2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});

                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }

                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});
                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});

                        // optional bias tensors
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP ,  "bias", i), {  n_ff});
                    }
                } break;
            case LLM_ARCH_MAMBA:
                {
                    const int64_t d_conv  = hparams.ssm_d_conv;
                    const int64_t d_inner = hparams.ssm_d_inner;
                    const int64_t d_state = hparams.ssm_d_state;
                    const int64_t dt_rank = hparams.ssm_dt_rank;

                    // only an expansion factor of 2 is supported for now
                    GGML_ASSERT(2 * n_embd == d_inner);

                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});

                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        // norm
                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});

                        layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
                        layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});

                        layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});

                        layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
                        layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});

                        // no "weight" suffix for these
                        layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
                        layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});

                        // out_proj
                        layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
                    }
                } break;
            case LLM_ARCH_XVERSE:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_COMMAND_R:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        // init output from the input tok embed
                        model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        if (n_layer >= 64){
                            layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
                            layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
                        }

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_OLMO:  // adapted from LLM_ARCH_LLAMA with norm params removed
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_OPENELM:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        // init output from the input tok embed
                        model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        const int64_t n_head      =   hparams.n_head(i);
                        const int64_t n_head_qkv  = 2*hparams.n_head_kv(i) + n_head;
                        const int64_t n_ff        =   hparams.n_ff(i);

                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k});
                        layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
                        layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                    }
                } break;
            case LLM_ARCH_GPTNEOX:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
                    }
                } break;
            case LLM_ARCH_ARCTIC:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_embd});

                        layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
                        layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, false);
                        layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
                        layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
                    }
                } break;
            case LLM_ARCH_DEEPSEEK2:
                {
                    const bool is_lite = (hparams.n_layer == 27);

                    const int64_t n_embd_head_qk_rope = hparams.n_rot;
                    const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;

                    const int64_t q_lora_rank  = hparams.n_lora_q;
                    const int64_t kv_lora_rank = hparams.n_lora_kv;

                    const int64_t n_ff_exp        = hparams.n_ff_exp;
                    const int64_t n_expert_shared = hparams.n_expert_shared;

                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        if (!is_lite) {
                            layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
                        }

                        layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});

                        if (!is_lite) {
                            layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
                            layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k});
                        } else {
                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
                        }

                        layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)});
                        layer.wkv_b     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B,     "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)});
                        layer.wo        = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {              n_head * (                      n_embd_head_v), n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        if (i < (int) hparams.n_layer_dense_lead) {
                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                        } else {
                            layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});

                            GGML_ASSERT(n_expert      > 0);
                            GGML_ASSERT(n_expert_used > 0);

                            // MoE branch
                            layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert});
                            layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert});
                            layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert});

                            // Shared expert branch
                            layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
                            layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd});
                            layer.ffn_up_shexp   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared});
                        }
                    }
                } break;
            case LLM_ARCH_BITNET:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm     = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,     "weight", i), {n_embd});
                        layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});

                        layer.wq       = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "scale",  i), {1});
                        layer.wk       = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "scale",  i), {1});
                        layer.wv       = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "scale",  i), {1});
                        layer.wo       = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale",  i), {1});

                        layer.ffn_norm     = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM,     "weight", i), {n_embd});
                        layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});

                        layer.ffn_gate       = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
                        layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale",  i), {1});
                        layer.ffn_down       = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale",  i), {1});
                        layer.ffn_up         = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_up_scale   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "scale",  i), {1});
                    }
                } break;
            case LLM_ARCH_T5:
                {
                    const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;

                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm     = ml.create_tensor(ctx_output, tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd});

                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm_enc  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM,  "weight", i), {n_embd});
                        layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
                        layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});

                        layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd,   n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up_enc   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP,   "weight", i), {n_embd,   n_ff});

                        layer.attn_norm  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM,  "weight", i), {n_embd});
                        layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});

                        layer.attn_norm_cross  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM,  "weight", i), {n_embd});
                        // this tensor seems to be unused in HF transformers implementation
                        layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wv_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
                        layer.wo_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd,   n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_T5ENCODER:
                {
                    const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;

                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm_enc  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM,  "weight", i), {n_embd});
                        layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
                        layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});

                        layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd,   n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up_enc   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_JAIS:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // Output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_gate   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE,   "weight", i), {n_embd, n_ff});
                        layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE,   "bias", i),   {n_ff});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
                    }
                } break;
            case LLM_ARCH_CHATGLM:
                {
                    model.tok_embd   = ml.create_tensor(ctx_input,  tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff * 2});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                    }
                } break;
            case LLM_ARCH_NEMOTRON:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,   tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split,  tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});

                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});

                        // optional MLP bias
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_EXAONE:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            default:
                throw std::runtime_error("unknown architecture");
        }
    }

    ml.done_getting_tensors();

    ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
    model.mappings.reserve(ml.mappings.size());

    // create the backend buffers
    std::vector> ctx_bufs;
    ctx_bufs.reserve(ctx_map.size());

    // Ensure we have enough capacity for the maximum backend buffer we will potentially create
    size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
    model.bufs.reserve(n_max_backend_buffer);

    for (auto & it : ctx_map) {
        ggml_backend_buffer_type_t buft = it.first;
        ggml_context * ctx              = it.second;

        llama_buf_map bufs;
        bufs.reserve(n_max_backend_buffer);

        // only the mmap region containing the tensors in the model is mapped to the backend buffer
        // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
        // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
        if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                void * addr = nullptr;
                size_t first, last;
                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
                if (first >= last) {
                    continue;
                }
                ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
                if (buf == nullptr) {
                    throw std::runtime_error("unable to allocate backend CPU buffer");
                }
                model.bufs.push_back(buf);
                bufs.emplace(idx, buf);
#ifdef GGML_USE_CUDA
                if (n_layer >= n_gpu_layers) {
                    ggml_backend_cuda_register_host_buffer(
                        ggml_backend_buffer_get_base(buf),
                        ggml_backend_buffer_get_size(buf));
                }
#endif
            }
        }
#ifdef GGML_USE_METAL
        else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                const size_t max_size = ggml_get_max_tensor_size(ctx);
                void * addr = nullptr;
                size_t first, last;
                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
                if (first >= last) {
                    continue;
                }
                ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
                if (buf == nullptr) {
                    throw std::runtime_error("unable to allocate backend metal buffer");
                }
                model.bufs.push_back(buf);
                bufs.emplace(idx, buf);
            }
        }
#endif
        else {
            ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
            if (buf == nullptr) {
                throw std::runtime_error("unable to allocate backend buffer");
            }
            model.bufs.push_back(buf);
            if (use_mlock && ggml_backend_buffer_is_host(buf)) {
                model.mlock_bufs.emplace_back(new llama_mlock);
                auto & mlock_buf = model.mlock_bufs.back();
                mlock_buf->init   (ggml_backend_buffer_get_base(buf));
                mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
            }
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                bufs.emplace(idx, buf);
            }
        }

        if (bufs.empty()) {
            throw std::runtime_error("failed to allocate buffer");
        }

        for (auto & buf : bufs) {
            // indicate that this buffer contains weights
            // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
            ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
        }

        ctx_bufs.emplace_back(ctx, bufs);
    }

    if (llama_supports_gpu_offload()) {
        const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));

        LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
        if (n_gpu_layers > (int) hparams.n_layer) {
            LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
        }

        const int max_backend_supported_layers = hparams.n_layer + 1;
        const int max_offloadable_layers       = hparams.n_layer + 1;

        LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
    }

    // print memory requirements
    for (ggml_backend_buffer_t buf : model.bufs) {
        LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
    }

    // populate tensors_by_name
    for (ggml_context * ctx : model.ctxs) {
        for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
            model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
        }
    }

    // load tensor data
    for (auto & it : ctx_bufs) {
        ggml_context * ctx = it.first;
        auto & bufs = it.second;
        if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
            return false;
        }
    }

    if (use_mmap_buffer) {
        for (auto & mapping : ml.mappings) {
            model.mappings.emplace_back(std::move(mapping));
        }
    }

    // loading time will be recalculate after the first eval, so
    // we take page faults deferred by mmap() into consideration
    model.t_load_us = ggml_time_us() - model.t_start_us;
    return true;
}

// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
    try {
        llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);

        model.hparams.vocab_only = params.vocab_only;

        try {
            llm_load_arch(ml, model);
        } catch(const std::exception & e) {
            throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
        }
        try {
            llm_load_hparams(ml, model);
        } catch(const std::exception & e) {
            throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
        }
        try {
            llm_load_vocab(ml, model);
        } catch(const std::exception & e) {
            throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
        }

        llm_load_print_meta(ml, model);

        if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
            model.hparams.n_vocab != model.vocab.id_to_token.size()) {
            throw std::runtime_error("vocab size mismatch");
        }

        if (params.vocab_only) {
            LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
            return 0;
        }

#ifdef GGML_USE_KOMPUTE
        if (params.n_gpu_layers > 0 && (
            !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
            || !(
                model.ftype == LLAMA_FTYPE_ALL_F32 ||
                model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
                model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
                model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
                model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
            )
        )) {
            // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
            LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
            params.n_gpu_layers = 0;
        }
#endif

        if (!llm_load_tensors(
            ml, model, params.n_gpu_layers, params.split_mode,  params.main_gpu, params.tensor_split, params.use_mlock,
            params.progress_callback, params.progress_callback_user_data
        )) {
            return -2;
        }
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
        return -1;
    }

    return 0;
}

//
// llm_build
//

using llm_build_cb = std::function;

enum llm_ffn_op_type {
    LLM_FFN_SILU,
    LLM_FFN_GELU,
    LLM_FFN_RELU,
    LLM_FFN_RELU_SQR,
    LLM_FFN_SWIGLU,
};

enum llm_ffn_gate_type {
    LLM_FFN_SEQ,
    LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
};

enum llm_norm_type {
    LLM_NORM,
    LLM_NORM_RMS,
};

static struct ggml_tensor * llm_build_inp_embd(
        struct ggml_context * ctx,
       struct llama_context & lctx,
        const llama_hparams & hparams,
         const llama_ubatch & batch,
         struct ggml_tensor * tok_embd,
         const llm_build_cb & cb) {
    const int64_t n_embd = hparams.n_embd;

    struct ggml_tensor * inpL;

    if (batch.token) {
        lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
        cb(lctx.inp_tokens, "inp_tokens", -1);
        ggml_set_input(lctx.inp_tokens);

        inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
    } else {
       lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
        inpL = lctx.inp_embd;
        ggml_set_input(lctx.inp_embd);
    }

    cb(inpL, "inp_embd", -1);

    return inpL;
}

static void llm_build_kv_store(
        struct ggml_context * ctx,
        const llama_hparams & hparams,
        const llama_cparams & cparams,
       const llama_kv_cache & kv,
         struct ggml_cgraph * graph,
         struct ggml_tensor * k_cur,
         struct ggml_tensor * v_cur,
                    int32_t   n_tokens,
                    int32_t   kv_head,
         const llm_build_cb & cb,
                    int64_t   il) {
    const int64_t n_ctx = cparams.n_ctx;

    const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
    const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

    GGML_ASSERT(kv.size == n_ctx);

    struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
            (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
    cb(k_cache_view, "k_cache_view", il);

    // note: storing RoPE-ed version of K in the KV cache
    ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));

    assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);

    struct ggml_tensor * v_cache_view = nullptr;

    if (cparams.flash_attn) {
        v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
                (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
    } else {
        // note: the V cache is transposed when not using flash attention
        v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
                (  n_ctx)*ggml_element_size(kv.v_l[il]),
                (kv_head)*ggml_element_size(kv.v_l[il]));

        v_cur = ggml_transpose(ctx, v_cur);
    }
    cb(v_cache_view, "v_cache_view", il);

    ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
}

// do mat_mul, while optionally apply lora
static struct ggml_tensor * llm_build_lora_mm(
        struct llama_context & lctx,
         struct ggml_context * ctx0,
          struct ggml_tensor * w,
          struct ggml_tensor * cur) {
    struct ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
    for (auto & it : lctx.lora_adapters) {
        struct llama_lora_weight * lora = it.first->get_weight(w);
        if (lora == nullptr) {
            continue;
        }
        const float alpha = it.first->alpha;
        const float rank  = (float) lora->b->ne[0];
        const float scale = alpha ? it.second * alpha / rank : it.second;
        struct ggml_tensor * ab_cur = ggml_mul_mat(
            ctx0, lora->b,
            ggml_mul_mat(ctx0, lora->a, cur)
        );
        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }
    return res;
}

// do mat_mul_id, while optionally apply lora
static struct ggml_tensor * llm_build_lora_mm_id(
        struct llama_context & lctx,
         struct ggml_context * ctx0,
          struct ggml_tensor * w,   // struct ggml_tensor * as
          struct ggml_tensor * cur, // struct ggml_tensor * b
          struct ggml_tensor * ids) {
    struct ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
    for (auto & it : lctx.lora_adapters) {
        struct llama_lora_weight * lora = it.first->get_weight(w);
        if (lora == nullptr) {
            continue;
        }
        const float alpha = it.first->alpha;
        const float rank  = (float) lora->b->ne[0];
        const float scale = alpha ? it.second * alpha / rank : it.second;
        struct ggml_tensor * ab_cur = ggml_mul_mat_id(
            ctx0, lora->b,
            ggml_mul_mat_id(ctx0, lora->a, cur, ids),
            ids
        );
        ab_cur = ggml_scale(ctx0, ab_cur, scale);
        res = ggml_add(ctx0, res, ab_cur);
    }
    return res;
}

static struct ggml_tensor * llm_build_norm(
        struct ggml_context * ctx,
         struct ggml_tensor * cur,
        const llama_hparams & hparams,
         struct ggml_tensor * mw,
         struct ggml_tensor * mb,
              llm_norm_type   type,
         const llm_build_cb & cb,
                        int   il) {
    switch (type) {
        case LLM_NORM:     cur = ggml_norm    (ctx, cur, hparams.f_norm_eps);     break;
        case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
    }

    if (mw || mb) {
        cb(cur, "norm", il);
    }

    if (mw) {
        cur = ggml_mul(ctx, cur, mw);
        if (mb) {
            cb(cur, "norm_w", il);
        }
    }

    if (mb) {
        cur = ggml_add(ctx, cur, mb);
    }

    return cur;
}

static struct ggml_tensor * llm_build_ffn(
        struct ggml_context * ctx,
       struct llama_context & lctx,
         struct ggml_tensor * cur,
         struct ggml_tensor * up,
         struct ggml_tensor * up_b,
         struct ggml_tensor * up_s,
         struct ggml_tensor * gate,
         struct ggml_tensor * gate_b,
         struct ggml_tensor * gate_s,
         struct ggml_tensor * down,
         struct ggml_tensor * down_b,
         struct ggml_tensor * down_s,
         struct ggml_tensor * act_scales,
            llm_ffn_op_type   type_op,
          llm_ffn_gate_type   type_gate,
         const llm_build_cb & cb,
                        int   il) {
    struct ggml_tensor * tmp = up ? llm_build_lora_mm(lctx, ctx, up, cur) : cur;
    cb(tmp, "ffn_up", il);

    if (up_b) {
        tmp = ggml_add(ctx, tmp, up_b);
        cb(tmp, "ffn_up_b", il);
    }

    if (up_s) {
        tmp = ggml_mul(ctx, tmp, up_s);
        cb(tmp, "ffn_up_s", il);
    }

    if (gate) {
        switch (type_gate) {
            case LLM_FFN_SEQ:
                {
                    cur = llm_build_lora_mm(lctx, ctx, gate, tmp);
                    cb(cur, "ffn_gate", il);
                } break;
            case LLM_FFN_PAR:
                {
                    cur = llm_build_lora_mm(lctx, ctx, gate, cur);
                    cb(cur, "ffn_gate", il);
                } break;
        }

        if (gate_b) {
            cur = ggml_add(ctx, cur, gate_b);
            cb(cur, "ffn_gate_b", il);
        }

        if (gate_s) {
            cur = ggml_mul(ctx, cur, gate_s);
            cb(cur, "ffn_gate_s", il);
        }

    } else {
        cur = tmp;
    }

    switch (type_op) {
        case LLM_FFN_SILU:
            {
                cur = ggml_silu(ctx, cur);
                cb(cur, "ffn_silu", il);
            } break;
        case LLM_FFN_GELU:
            {
                cur = ggml_gelu(ctx, cur);
                cb(cur, "ffn_gelu", il);
                if (act_scales != NULL) {
                    cur = ggml_div(ctx, cur, act_scales);
                    cb(cur, "ffn_act", il);
                }
            } break;
        case LLM_FFN_RELU:
            {
                cur = ggml_relu(ctx, cur);
                cb(cur, "ffn_relu", il);
            } break;
        case LLM_FFN_RELU_SQR:
            {
                cur = ggml_relu(ctx, cur);
                cb(cur, "ffn_relu", il);

                cur = ggml_sqr(ctx, cur);
                cb(cur, "ffn_sqr(relu)", il);
            } break;
        case LLM_FFN_SWIGLU:
            {
                // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
                int64_t split_point = cur->ne[0] / 2;
                struct ggml_tensor * x0 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], 0));
                struct ggml_tensor * x1 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));

                x0 = ggml_silu(ctx, x0);
                cb(cur, "ffn_silu", il);

                cur = ggml_mul(ctx, x0, x1);
                cb(cur, "ffn_mul", il);
            } break;
    }

    if (type_gate == LLM_FFN_PAR) {
        cur = ggml_mul(ctx, cur, tmp);
        cb(cur, "ffn_gate_par", il);
    }

    if (down) {
        cur = llm_build_lora_mm(lctx, ctx, down, cur);
    }

    if (down_b) {
        cb(cur, "ffn_down", il);
    }

    if (down_b) {
        cur = ggml_add(ctx, cur, down_b);
    }

    if (down_s) {
        cur = ggml_mul(ctx, cur, down_s);
        cb(cur, "ffn_down_s", il);
    }

    return cur;
}

static struct ggml_tensor * llm_build_moe_ffn(
        struct ggml_context * ctx,
       struct llama_context & lctx,
         struct ggml_tensor * cur,
         struct ggml_tensor * gate_inp,
         struct ggml_tensor * up_exps,
         struct ggml_tensor * gate_exps,
         struct ggml_tensor * down_exps,
                    int64_t   n_expert,
                    int64_t   n_expert_used,
            llm_ffn_op_type   type_op,
                       bool   norm_w,
                       bool   scale_w,
                      float   w_scale,
         const llm_build_cb & cb,
                        int   il) {
    int64_t n_embd = cur->ne[0];
    int64_t n_tokens = cur->ne[1];

    ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens]
    cb(logits, "ffn_moe_logits", il);

    ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
    cb(probs, "ffn_moe_probs", il);

    // select experts
    ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
    cb(selected_experts->src[0], "ffn_moe_argsort", il);
    cb(selected_experts, "ffn_moe_topk", il);

    ggml_tensor * weights = ggml_get_rows(ctx,
            ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
    cb(weights, "ffn_moe_weights", il);

    if (norm_w) {
        weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);

        ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
        cb(weights_sum, "ffn_moe_weights_sum", il);

        weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
        cb(weights, "ffn_moe_weights_norm", il);

        weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
    }
    if (scale_w) {
        weights = ggml_scale(ctx, weights, w_scale);
        cb(weights, "ffn_moe_weights_scaled", il);
    }

    cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
    ggml_tensor * up = llm_build_lora_mm_id(lctx, ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
    cb(up, "ffn_moe_up", il);

    ggml_tensor * gate = llm_build_lora_mm_id(lctx, ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
    cb(gate, "ffn_moe_gate", il);

    switch (type_op) {
        case LLM_FFN_SILU:
            {
                gate = ggml_silu(ctx, gate);
                cb(gate, "ffn_moe_silu", il);
            } break;
        case LLM_FFN_GELU:
            {
                gate = ggml_gelu(ctx, gate);
                cb(gate, "ffn_moe_gelu", il);
            } break;
        default:
            GGML_ABORT("fatal error");
    }

    ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
    cb(par, "ffn_moe_gate_par", il);

    ggml_tensor * experts = llm_build_lora_mm_id(lctx, ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
    cb(experts, "ffn_moe_down", il);

    experts = ggml_mul(ctx, experts, weights);

    // aggregate experts
    ggml_tensor * moe_out = nullptr;
    for (int i = 0; i < n_expert_used; ++i) {
        ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
                experts->nb[2], i*experts->nb[1]);

        if (i == 0) {
            moe_out = cur_expert;
        } else {
            moe_out = ggml_add(ctx, moe_out, cur_expert);
        }
    }

    if (n_expert_used == 1) {
        // avoid returning a non-contiguous tensor
        moe_out = ggml_cont(ctx, moe_out);
    }

    return moe_out;
}

static struct ggml_tensor * llm_build_kqv(
        struct ggml_context * ctx,
       struct llama_context & lctx,
       const llama_kv_cache & kv,
         struct ggml_cgraph * graph,
         struct ggml_tensor * wo,
         struct ggml_tensor * wo_b,
         struct ggml_tensor * q_cur,
         struct ggml_tensor * kq_mask,
                    int32_t   n_tokens,
                    int32_t   n_kv,
                    float     kq_scale,
         const llm_build_cb & cb,
                    int       il) {
    const llama_model   & model   = lctx.model;
    const llama_hparams & hparams = lctx.model.hparams;
    const llama_cparams & cparams = lctx.cparams;

    const int64_t n_ctx         = cparams.n_ctx;
    const int64_t n_head        = hparams.n_head(il);
    const int64_t n_head_kv     = hparams.n_head_kv(il);
    const int64_t n_embd_head_k = hparams.n_embd_head_k;
    const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa(il);
    const int64_t n_embd_head_v = hparams.n_embd_head_v;
    const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa(il);

    struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
    cb(q, "q", il);

    struct ggml_tensor * k =
        ggml_view_3d(ctx, kv.k_l[il],
                n_embd_head_k, n_kv, n_head_kv,
                ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
                ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
                0);
    cb(k, "k", il);

    struct ggml_tensor * cur;

    if (cparams.flash_attn) {
        GGML_UNUSED(model);
        GGML_UNUSED(n_ctx);

        // split cached v into n_head heads (not transposed)
        struct ggml_tensor * v =
            ggml_view_3d(ctx, kv.v_l[il],
                    n_embd_head_v, n_kv, n_head_kv,
                    ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
                    ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
                    0);
        cb(v, "v", il);

        cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
                                  hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);

        if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
            ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
        }

        cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
    } else {
        struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
        cb(kq, "kq", il);

        if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
            // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
            // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
            ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
        }

        if (model.arch == LLM_ARCH_GROK) {
            // need to do the following:
            // multiply by attn_output_multiplyer of 0.08838834764831845
            // and then :
            // kq = 30 * tanh(kq / 30)
            // before the softmax below

            //try from phi2
            //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

            kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
            kq = ggml_scale(ctx, kq, 30);
        }

        if (hparams.attn_soft_cap) {
            kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping);
            kq = ggml_tanh(ctx, kq);
            kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping);
        }

        kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
        cb(kq, "kq_soft_max_ext", il);

        GGML_ASSERT(kv.size == n_ctx);

        // split cached v into n_head heads
        struct ggml_tensor * v =
            ggml_view_3d(ctx, kv.v_l[il],
                    n_kv, n_embd_head_v, n_head_kv,
                    ggml_element_size(kv.v_l[il])*n_ctx,
                    ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
                    0);
        cb(v, "v", il);

        struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
        cb(kqv, "kqv", il);

        struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
        cb(kqv_merged, "kqv_merged", il);

        cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
        cb(cur, "kqv_merged_cont", il);
    }

    ggml_build_forward_expand(graph, cur);

    if (wo) {
        cur = llm_build_lora_mm(lctx, ctx, wo, cur);
    }

    if (wo_b) {
        cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx, cur, wo_b);
    }

    return cur;
}

static struct ggml_tensor * llm_build_kv(
        struct ggml_context * ctx,
       struct llama_context & lctx,
       const llama_kv_cache & kv,
         struct ggml_cgraph * graph,
         struct ggml_tensor * wo,
         struct ggml_tensor * wo_b,
         struct ggml_tensor * k_cur,
         struct ggml_tensor * v_cur,
         struct ggml_tensor * q_cur,
         struct ggml_tensor * kq_mask,
                    int32_t   n_tokens,
                    int32_t   kv_head,
                    int32_t   n_kv,
                    float     kq_scale,
         const llm_build_cb & cb,
                    int       il) {
    const llama_hparams & hparams = lctx.model.hparams;
    const llama_cparams & cparams = lctx.cparams;

    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(graph, q_cur);
    ggml_build_forward_expand(graph, k_cur);
    ggml_build_forward_expand(graph, v_cur);

    llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);

    struct ggml_tensor * cur;

    cur  = llm_build_kqv(ctx, lctx, kv, graph, wo, wo_b,
            q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
    cb(cur, "kqv_out", il);

    return cur;
}

static struct ggml_tensor * llm_build_copy_mask_state(
        struct ggml_context * ctx,
         struct ggml_cgraph * graph,
         struct ggml_tensor * s,
         struct ggml_tensor * state_copy,
         struct ggml_tensor * state_mask,
                    int32_t   n_state,
                    int32_t   kv_size,
                    int32_t   kv_head,
                    int32_t   n_kv,
                    int32_t   n_seqs) {
    struct ggml_tensor * states = ggml_reshape_2d(ctx, s, n_state, kv_size);

    // copy states
    // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
    // this shrinks the tensors's ne[1] to n_kv
    states = ggml_get_rows(ctx, states, state_copy);

    // clear states of sequences which are starting at the beginning of this batch
    // FIXME: zero-out NANs?
    states = ggml_mul(ctx, states, state_mask);

    // copy states which won't be changed further (between n_seqs and n_rs)
    ggml_build_forward_expand(graph,
        ggml_cpy(ctx,
            ggml_view_1d(ctx, states, n_state*(n_kv - n_seqs), n_seqs*n_state*ggml_element_size(states)),
            ggml_view_1d(ctx, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));

    // the part of the states that will be used and modified
    return ggml_view_2d(ctx, states, n_state, n_seqs, states->nb[1], 0);
}

// TODO: split
static struct ggml_tensor * llm_build_mamba(
        struct ggml_context * ctx,
       struct llama_context & lctx,
         const llama_ubatch & batch,
         struct ggml_cgraph * graph,
         struct ggml_tensor * cur,
         struct ggml_tensor * state_copy,
         struct ggml_tensor * state_mask,
                    int32_t   kv_head,
                    int32_t   n_kv,
         const llm_build_cb & cb,
                    int       il) {
    const llama_model    & model   = lctx.model;
    const llama_hparams  & hparams = model.hparams;
    const llama_kv_cache & kv      = lctx.kv_self;
    const int64_t d_conv  = hparams.ssm_d_conv;
    const int64_t d_inner = hparams.ssm_d_inner;
    const int64_t d_state = hparams.ssm_d_state;
    const int64_t dt_rank = hparams.ssm_dt_rank;
    const int64_t n_seqs  = batch.n_seqs;
    // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
    const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
    // Use the same RMS norm as the final layer norm
    const float norm_rms_eps = hparams.f_norm_rms_eps;

    const int64_t n_seq_tokens = batch.n_seq_tokens;

    GGML_ASSERT(n_seqs != 0);
    GGML_ASSERT(batch.equal_seqs);
    GGML_ASSERT(batch.n_tokens == n_seq_tokens * n_seqs);

    struct ggml_tensor * conv_states_all = kv.k_l[il];
    struct ggml_tensor * ssm_states_all  = kv.v_l[il];

    // (ab)using the KV cache to store the states
    struct ggml_tensor * conv = llm_build_copy_mask_state(ctx,
            graph, conv_states_all, state_copy, state_mask,
            hparams.n_embd_k_s(), kv.size, kv_head, n_kv, n_seqs);
    conv = ggml_reshape_3d(ctx, conv, d_conv - 1, d_inner, n_seqs);
    struct ggml_tensor * ssm = llm_build_copy_mask_state(ctx,
            graph, ssm_states_all, state_copy, state_mask,
            hparams.n_embd_v_s(), kv.size, kv_head, n_kv, n_seqs);
    ssm = ggml_reshape_3d(ctx, ssm, d_state, d_inner, n_seqs);

    // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
    cur = ggml_reshape_3d(ctx, cur, cur->ne[0], n_seq_tokens, n_seqs);

    // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
    struct ggml_tensor * xz = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_in, cur);
    // split the above in two
    // => {d_inner, n_seq_tokens, n_seqs}
    struct ggml_tensor * x = ggml_view_3d(ctx, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
    struct ggml_tensor * z = ggml_view_3d(ctx, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));

    // conv
    {
        // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
        struct ggml_tensor * conv_x = ggml_concat(ctx, conv, ggml_transpose(ctx, x), 0);

        // copy last (d_conv - 1) columns back into the state cache
        struct ggml_tensor * last_conv = ggml_view_3d(ctx, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));

        ggml_build_forward_expand(graph,
            ggml_cpy(ctx, last_conv,
                ggml_view_1d(ctx, conv_states_all,
                    (d_conv - 1)*(d_inner)*(n_seqs),
                    kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));

        // 1D convolution
        // The equivalent is to make a self-overlapping view of conv_x
        // over d_conv columns at each stride in the 3rd dimension,
        // then element-wise multiply that with the conv1d weight,
        // then sum the elements of each row,
        // (the last two steps are a dot product over rows (also doable with mul_mat))
        // then permute away the ne[0] dimension,
        // and then you're left with the resulting x tensor.
        // For simultaneous sequences, all sequences need to have the same length.
        x = ggml_ssm_conv(ctx, conv_x, model.layers[il].ssm_conv1d);

        // bias
        x = ggml_add(ctx, x, model.layers[il].ssm_conv1d_b);

        x = ggml_silu(ctx, x);
    }

    // ssm
    {
        // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
        struct ggml_tensor * x_db = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_x, x);
        // split
        struct ggml_tensor * dt = ggml_view_3d(ctx, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
        struct ggml_tensor * B  = ggml_view_3d(ctx, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
        struct ggml_tensor * C  = ggml_view_3d(ctx, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));

        // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
        if (ssm_dt_b_c_rms) {
            dt = ggml_rms_norm(ctx, dt, norm_rms_eps);
            B = ggml_rms_norm(ctx, B, norm_rms_eps);
            C = ggml_rms_norm(ctx, C, norm_rms_eps);
        }

        // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
        dt = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_dt, dt);
        dt = ggml_add(ctx, dt, model.layers[il].ssm_dt_b);

        // Custom operator to optimize the parallel associative scan
        // as described in the Annex D of the Mamba paper.
        // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
        struct ggml_tensor * y_ssm = ggml_ssm_scan(ctx, ssm, x, dt, model.layers[il].ssm_a, B, C);

        // store last states
        ggml_build_forward_expand(graph,
            ggml_cpy(ctx,
                ggml_view_1d(ctx, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
                ggml_view_1d(ctx, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));

        struct ggml_tensor * y = ggml_view_3d(ctx, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);

        // TODO: skip computing output earlier for unused tokens

        // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
        y = ggml_add(ctx, y, ggml_mul(ctx, x, model.layers[il].ssm_d));
        y = ggml_mul(ctx, y, ggml_silu(ctx, ggml_cont(ctx, z)));

        // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
        cur = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_out, y);
    }

    // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
    cur = ggml_reshape_2d(ctx, cur, cur->ne[0], n_seq_tokens * n_seqs);
    cb(cur, "mamba_out", il);

    return cur;
}

struct llm_build_context {
    const llama_model    & model;
          llama_context  & lctx;
    const llama_hparams  & hparams;
    const llama_cparams  & cparams;
    const llama_ubatch   & batch;
    const llama_kv_cache & kv_self;

    const int64_t n_embd;
    const int64_t n_layer;
    const int64_t n_rot;
    const int64_t n_ctx;       // user-specified context size (can be different from n_ctx_train)
    const int64_t n_head;
    const int64_t n_head_kv;
    const int64_t n_embd_head_k;
    const int64_t n_embd_k_gqa;
    const int64_t n_embd_head_v;
    const int64_t n_embd_v_gqa;
    const int64_t n_expert;
    const int64_t n_expert_used;

    const float freq_base;
    const float freq_scale;
    const float ext_factor;
    const float attn_factor;
    const float beta_fast;
    const float beta_slow;
    const float norm_eps;
    const float norm_rms_eps;

    const int32_t n_tokens;
    const int32_t n_kv;     // size of KV cache to consider (n_kv <= kv_self.size)
    const int32_t n_outputs;
    const int32_t n_outputs_enc;
    const int32_t kv_head;  // index of where we store new KV data in the cache
    const int32_t n_ctx_orig;

    const bool flash_attn;

    const enum llama_pooling_type pooling_type;
    const enum llama_rope_type    rope_type;

    const llm_build_cb & cb;

    std::vector & buf_compute_meta;

    struct ggml_context * ctx0 = nullptr;

    // TODO: consider making the entire interface noexcept
    llm_build_context(
        llama_context  & lctx,
    const llama_ubatch & batch,
    const llm_build_cb & cb,
                  bool   worst_case) :
        model            (lctx.model),
        lctx             (lctx),
        hparams          (model.hparams),
        cparams          (lctx.cparams),
        batch            (batch),
        kv_self          (lctx.kv_self),
        n_embd           (hparams.n_embd),
        n_layer          (hparams.n_layer),
        n_rot            (hparams.n_rot),
        n_ctx            (cparams.n_ctx),
        n_head           (hparams.n_head()),
        n_head_kv        (hparams.n_head_kv()),
        n_embd_head_k    (hparams.n_embd_head_k),
        n_embd_k_gqa     (hparams.n_embd_k_gqa()),
        n_embd_head_v    (hparams.n_embd_head_v),
        n_embd_v_gqa     (hparams.n_embd_v_gqa()),
        n_expert         (hparams.n_expert),
        n_expert_used    (hparams.n_expert_used),
        freq_base        (cparams.rope_freq_base),
        freq_scale       (cparams.rope_freq_scale),
        ext_factor       (cparams.yarn_ext_factor),
        attn_factor      (cparams.yarn_attn_factor),
        beta_fast        (cparams.yarn_beta_fast),
        beta_slow        (cparams.yarn_beta_slow),
        norm_eps         (hparams.f_norm_eps),
        norm_rms_eps     (hparams.f_norm_rms_eps),
        n_tokens         (batch.n_tokens),
        n_kv             (worst_case ? kv_self.size : kv_self.n),
        n_outputs        (worst_case ? n_tokens : lctx.n_outputs),
        n_outputs_enc    (worst_case ? n_tokens : lctx.embd_enc.size() / hparams.n_embd),
        kv_head          (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
        n_ctx_orig       (cparams.n_ctx_orig_yarn),
        flash_attn       (cparams.flash_attn),
        pooling_type     (cparams.pooling_type),
        rope_type        (hparams.rope_type),
        cb               (cb),
        buf_compute_meta (lctx.buf_compute_meta) {
            // all initializations should be done in init()
        }

    void init() {
        struct ggml_init_params params = {
            /*.mem_size   =*/ buf_compute_meta.size(),
            /*.mem_buffer =*/ buf_compute_meta.data(),
            /*.no_alloc   =*/ true,
        };

        ctx0 = ggml_init(params);

        lctx.inp_tokens      = nullptr;
        lctx.inp_embd        = nullptr;
        lctx.inp_pos         = nullptr;
        lctx.inp_out_ids     = nullptr;
        lctx.inp_KQ_mask     = nullptr;
        lctx.inp_KQ_mask_swa = nullptr;
        lctx.inp_K_shift     = nullptr;
        lctx.inp_mean        = nullptr;
        lctx.inp_cls         = nullptr;
        lctx.inp_s_copy      = nullptr;
        lctx.inp_s_mask      = nullptr;
        lctx.inp_s_seq       = nullptr;
        lctx.inp_pos_bucket    = nullptr;
        lctx.inp_embd_enc      = nullptr;
        lctx.inp_KQ_mask_cross = nullptr;
    }

    void free() {
        if (ctx0) {
            ggml_free(ctx0);
            ctx0 = nullptr;
        }
    }

    struct ggml_cgraph * build_k_shift() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        GGML_ASSERT(kv_self.size == n_ctx);

        lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
        cb(lctx.inp_K_shift, "K_shift", -1);
        ggml_set_input(lctx.inp_K_shift);

        for (int il = 0; il < n_layer; ++il) {
            const int64_t n_head_kv = hparams.n_head_kv(il);
            const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
            struct ggml_tensor * rope_factors = build_rope_factors(il);
            struct ggml_tensor * tmp =
                // we rotate only the first n_rot dimensions
                ggml_rope_ext_inplace(ctx0,
                        ggml_view_3d(ctx0, kv_self.k_l[il],
                            n_embd_head_k, n_head_kv, n_ctx,
                            ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
                            ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
                            0),
                        lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);

            cb(tmp, "K_shifted", il);
            ggml_build_forward_expand(gf, tmp);
        }

        return gf;
    }

    struct ggml_cgraph * build_defrag(const std::vector & ids) {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        for (uint32_t i = 0; i < ids.size(); ++i) {
            const uint32_t id = ids[i];

            if (i == id || id == ids.size()) {
                continue;
            }

            uint32_t nm = 1;

            while (i + nm < ids.size() && ids[i + nm] == id + nm) {
                nm++;
            }

            for (int il = 0; il < n_layer; ++il) {
                const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
                const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

                ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
                        n_embd_k_gqa, nm,
                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));

                ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
                        n_embd_k_gqa, nm,
                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));

                ggml_tensor * view_v_src;
                ggml_tensor * view_v_dst;

                if (flash_attn) {
                    // NOTE: the V cache is not transposed when using flash attention
                    view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
                            n_embd_v_gqa, nm,
                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));

                    view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
                            n_embd_v_gqa, nm,
                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
                } else {
                    view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
                            nm, n_embd_v_gqa,
                            ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
                            ggml_row_size(kv_self.v_l[il]->type, i));

                    view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
                            nm, n_embd_v_gqa,
                            ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
                            ggml_row_size(kv_self.v_l[il]->type, id));
                }

                ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
                ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
            }

            i += nm - 1;
        }

        //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);

        return gf;
    }

    struct ggml_tensor * build_inp_pos() {
        lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
        cb(lctx.inp_pos, "inp_pos", -1);
        ggml_set_input(lctx.inp_pos);
        return lctx.inp_pos;
    }

    struct ggml_tensor * build_rope_factors(int il) {
        // choose long/short freq factors based on the context size
        const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;

        if (model.layers[il].rope_freqs != nullptr) {
            return model.layers[il].rope_freqs;
        }

        if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
            return model.layers[il].rope_long;
        }

        return model.layers[il].rope_short;
    }

    struct ggml_tensor * build_inp_out_ids() {
        lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
        cb(lctx.inp_out_ids, "inp_out_ids", -1);
        ggml_set_input(lctx.inp_out_ids);
        return lctx.inp_out_ids;
    }

    struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
        lctx.inp_KQ_mask = causal
            ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv,     GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
            : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
        cb(lctx.inp_KQ_mask, "KQ_mask", -1);
        ggml_set_input(lctx.inp_KQ_mask);

        return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
    }

    struct ggml_tensor * build_inp_KQ_mask_swa(bool causal = true) {
        GGML_ASSERT(hparams.n_swa > 0);

        lctx.inp_KQ_mask_swa = causal
            ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv,     GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
            : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
        cb(lctx.inp_KQ_mask_swa, "KQ_mask_swa", -1);
        ggml_set_input(lctx.inp_KQ_mask_swa);

        return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask_swa, GGML_TYPE_F16) : lctx.inp_KQ_mask_swa;
    }

    struct ggml_tensor * build_inp_mean() {
        lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
        cb(lctx.inp_mean, "inp_mean", -1);
        ggml_set_input(lctx.inp_mean);
        return lctx.inp_mean;
    }

    struct ggml_tensor * build_inp_cls() {
        lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
        cb(lctx.inp_cls, "inp_cls", -1);
        ggml_set_input(lctx.inp_cls);
        return lctx.inp_cls;
    }

    struct ggml_tensor * build_inp_s_copy() {
        lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv);
        cb(lctx.inp_s_copy, "inp_s_copy", -1);
        ggml_set_input(lctx.inp_s_copy);
        return lctx.inp_s_copy;
    }

    struct ggml_tensor * build_inp_s_mask() {
        lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
        cb(lctx.inp_s_mask, "inp_s_mask", -1);
        ggml_set_input(lctx.inp_s_mask);
        return lctx.inp_s_mask;
    }

    struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
        // find result_norm tensor for input
        struct ggml_tensor * inp = nullptr;
        for (int i = gf->n_nodes - 1; i >= 0; --i) {
            inp = gf->nodes[i];
            if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
                break;
            } else {
                inp = nullptr;
            }
        }
        GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");

        struct ggml_tensor * cur;

        switch (pooling_type) {
            case LLAMA_POOLING_TYPE_MEAN:
                {
                    struct ggml_tensor * inp_mean = build_inp_mean();
                    cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
                } break;
            case LLAMA_POOLING_TYPE_CLS:
            case LLAMA_POOLING_TYPE_LAST:
                {
                    struct ggml_tensor * inp_cls = build_inp_cls();
                    cur = ggml_get_rows(ctx0, inp, inp_cls);
                } break;
            case LLAMA_POOLING_TYPE_NONE:
                {
                    cur = inp;
                } break;
            default:
                {
                    GGML_ABORT("unknown pooling type");
                }
        }

        cb(cur, "result_embd_pooled", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_tensor * llm_build_pos_bucket(bool causal) {
        if (causal) {
            lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv,     n_tokens);
        } else {
            lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
        }

        ggml_set_input(lctx.inp_pos_bucket);
        cb(lctx.inp_pos_bucket, "pos_bucket", -1);

        return lctx.inp_pos_bucket;
    }

    struct ggml_tensor * llm_build_pos_bias(struct ggml_tensor * pos_bucket, struct ggml_tensor * attn_rel_b) {
        struct ggml_tensor * pos_bucket_1d = ggml_view_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1], 0);
        cb(pos_bucket_1d, "pos_bucket_1d", -1);

        struct ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
        cb(pos_bias, "pos_bias", -1);

        pos_bias = ggml_view_3d(ctx0, pos_bias, pos_bias->ne[0], lctx.inp_pos_bucket->ne[0], lctx.inp_pos_bucket->ne[1], ggml_element_size(pos_bias) * pos_bias->ne[0], ggml_element_size(pos_bias) * pos_bias->ne[0] * lctx.inp_pos_bucket->ne[0],  0);
        cb(pos_bias, "pos_bias", -1);

        pos_bias = ggml_permute(ctx0, pos_bias, 2, 0, 1, 3);
        cb(pos_bias, "pos_bias", -1);

        pos_bias = ggml_cont(ctx0, pos_bias);
        cb(pos_bias, "pos_bias", -1);

        return pos_bias;
    }

    struct ggml_tensor * llm_build_inp_embd_enc() {
        const int64_t n_embd = hparams.n_embd;
        lctx.inp_embd_enc = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_outputs_enc);
        ggml_set_input(lctx.inp_embd_enc);
        cb(lctx.inp_embd_enc, "embd_enc", -1);
        return lctx.inp_embd_enc;
    }

    struct ggml_tensor * llm_build_inp_KQ_mask_cross() {
        lctx.inp_KQ_mask_cross = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_outputs_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
        ggml_set_input(lctx.inp_KQ_mask_cross);
        cb(lctx.inp_KQ_mask_cross, "KQ_mask_cross", -1);
        return lctx.inp_KQ_mask_cross;
    }

    struct ggml_cgraph * build_llama() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // rope freq factors for llama3; may return nullptr for llama2 and other models
                struct ggml_tensor * rope_factors = build_rope_factors(il);

                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            if (model.layers[il].ffn_gate_inp == nullptr) {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            } else {
                // MoE branch
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_moe_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_gate_inp,
                        model.layers[il].ffn_up_exps,
                        model.layers[il].ffn_gate_exps,
                        model.layers[il].ffn_down_exps,
                        n_expert, n_expert_used,
                        LLM_FFN_SILU, true,
                        false, 0.0,
                        cb, il);
                cb(cur, "ffn_moe_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_baichuan() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                switch (model.type) {
                    case MODEL_7B:
                        Qcur = ggml_rope_ext(
                            ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                            ext_factor, attn_factor, beta_fast, beta_slow
                        );
                        Kcur = ggml_rope_ext(
                            ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                            ext_factor, attn_factor, beta_fast, beta_slow
                        );
                        break;
                    case MODEL_13B:
                        Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
                        Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
                        break;
                    default:
                        GGML_ABORT("fatal error");
                }
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_xverse() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);
                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,      cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_falcon() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * attn_norm;

            attn_norm = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(attn_norm, "attn_norm", il);

            // self-attention
            {
                if (model.layers[il].attn_norm_2) {
                    // Falcon-40B
                    cur = llm_build_norm(ctx0, inpL, hparams,
                            model.layers[il].attn_norm_2,
                            model.layers[il].attn_norm_2_b,
                            LLM_NORM, cb, il);
                    cb(cur, "attn_norm_2", il);
                } else {
                    cur = attn_norm;
                }

                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                // using mode = 2 for neox mode
                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur       = ggml_get_rows(ctx0,       cur, inp_out_ids);
                inpL      = ggml_get_rows(ctx0,      inpL, inp_out_ids);
                attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = cur;

            // feed forward
            {
                cur = llm_build_ffn(ctx0, lctx, attn_norm, // !! use the attn norm, not the result
                        model.layers[il].ffn_up,   NULL, NULL,
                        NULL,                      NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = ggml_add(ctx0, cur, inpL);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        // norm
        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_grok() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // multiply by embedding_multiplier_scale of 78.38367176906169
        inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);


            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            // Grok
            // if attn_out_norm is present then apply it before adding the input
            if (model.layers[il].attn_out_norm) {
                cur = llm_build_norm(ctx0, cur, hparams,
                        model.layers[il].attn_out_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "attn_out_norm", il);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            // MoE branch
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_moe_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_gate_inp,
                    model.layers[il].ffn_up_exps,
                    model.layers[il].ffn_gate_exps,
                    model.layers[il].ffn_down_exps,
                    n_expert, n_expert_used,
                    LLM_FFN_GELU, true,
                    false, 0.0,
                    cb, il);
            cb(cur, "ffn_moe_out", il);

            // Grok
            // if layer_out_norm is present then apply it before adding the input
            // Idea: maybe ffn_out_norm is a better name
            if (model.layers[il].layer_out_norm) {
                cur = llm_build_norm(ctx0, cur, hparams,
                        model.layers[il].layer_out_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "layer_out_norm", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);

        // Grok
        // multiply logits by output_multiplier_scale of 0.5773502691896257

        cur = ggml_scale(ctx0, cur, 0.5773502691896257f);

        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_dbrx() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                                 model.layers[il].attn_norm, NULL,
                                 LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = nullptr;
                struct ggml_tensor * Kcur = nullptr;
                struct ggml_tensor * Vcur = nullptr;

                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                cb(cur, "wqkv_clamped", il);

                Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            // MoE branch
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                                 model.layers[il].attn_out_norm, NULL,
                                 LLM_NORM, cb, il);
            cb(cur, "attn_out_norm", il);

            cur = llm_build_moe_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_gate_inp,
                    model.layers[il].ffn_up_exps,
                    model.layers[il].ffn_gate_exps,
                    model.layers[il].ffn_down_exps,
                    n_expert, n_expert_used,
                    LLM_FFN_SILU, true,
                    false, 0.0,
                    cb, il);
            cb(cur, "ffn_moe_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                             model.output_norm, NULL,
                             LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);

        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_starcoder() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
        cb(pos, "pos_embd", -1);

        inpL = ggml_add(ctx0, inpL, pos);
        cb(inpL, "inpL", -1);

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_refact() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
                cb(Kcur, "Kcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                cb(Qcur, "Qcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_bert() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();

        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;
        struct ggml_tensor * inp_pos = nullptr;

        if (model.arch != LLM_ARCH_JINA_BERT_V2) {
            inp_pos = build_inp_pos();
        }

        // construct input embeddings (token, type, position)
        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // token types are hardcoded to zero ("Sentence A")
        struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
        inpL = ggml_add(ctx0, inpL, type_row0);
        if (model.arch == LLM_ARCH_BERT) {
            inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
        }
        cb(inpL, "inp_embd", -1);

        // embed layer norm
        inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
        cb(inpL, "inp_norm", -1);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);

        // iterate layers
        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * cur = inpL;

            struct ggml_tensor * Qcur;
            struct ggml_tensor * Kcur;
            struct ggml_tensor * Vcur;

            // self-attention
            if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
                Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur), model.layers[il].bq);
                cb(Qcur, "Qcur", il);

                if (model.layers[il].attn_q_norm) {
                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
                            model.layers[il].attn_q_norm,
                            model.layers[il].attn_q_norm_b,
                            LLM_NORM, cb, il);
                }

                Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur), model.layers[il].bk);
                cb(Kcur, "Kcur", il);

                if (model.layers[il].attn_k_norm) {
                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
                            model.layers[il].attn_k_norm,
                            model.layers[il].attn_k_norm_b,
                            LLM_NORM, cb, il);
                }
                Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur), model.layers[il].bv);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
            } else {
                // compute Q and K and RoPE them
                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);
            }

            struct ggml_tensor * q =                 ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
            struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));

            struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
            cb(kq, "kq", il);

            kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
            cb(kq, "kq_soft_max_ext", il);

            struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
            cb(v, "v", il);

            struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
            cb(kqv, "kqv", il);

            struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
            cb(kqv_merged, "kqv_merged", il);

            cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
            cb(cur, "kqv_merged_cont", il);

            ggml_build_forward_expand(gf, cur);

            cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
            if (model.layers[il].bo) {
                cb(cur, "kqv_wo", il);
            }

            if (model.layers[il].bo) {
                cur = ggml_add(ctx0, cur, model.layers[il].bo);
            }
            cb(cur, "kqv_out", il);

            if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // re-add the layer input
            cur = ggml_add(ctx0, cur, inpL);

            // attention layer norm
            cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);

            if (model.layers[il].attn_norm_2 != nullptr) {
                cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
                cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
            }

            struct ggml_tensor * ffn_inp = cur;
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            if (model.arch == LLM_ARCH_BERT) {
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
            } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL,                        NULL,
                        model.layers[il].ffn_gate, NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
            } else {
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            }
            cb(cur, "ffn_out", il);

            // attentions bypass the intermediate layer
            cur = ggml_add(ctx0, cur, ffn_inp);

            // output layer norm
            cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);

            // input for next layer
            inpL = cur;
        }

        // final output
        cur = inpL;
        cb(cur, "result_embd", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_bloom() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        inpL = llm_build_norm(ctx0, inpL, hparams,
                model.tok_norm,
                model.tok_norm_b,
                LLM_NORM, cb, -1);
        cb(inpL, "inp_norm", -1);

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // Add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_mpt() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * pos;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        if (model.pos_embd) {
            // inp_pos - contains the positions
            struct ggml_tensor * inp_pos = build_inp_pos();
            pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
            cb(pos, "pos_embd", -1);

            inpL = ggml_add(ctx0, inpL, pos);
            cb(inpL, "inpL", -1);
        }

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * attn_norm;

            attn_norm = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(attn_norm, "attn_norm", il);

            // self-attention
            {
                cur = attn_norm;

                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                if (model.layers[il].bqkv){
                    cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                    cb(cur, "bqkv", il);
                }

                if (hparams.f_clamp_kqv > 0.0f) {
                    cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                    cb(cur, "wqkv_clamped", il);
                }

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // Q/K Layernorm
                if (model.layers[il].attn_q_norm) {
                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
                            model.layers[il].attn_q_norm,
                            model.layers[il].attn_q_norm_b,
                            LLM_NORM, cb, il);
                    cb(Qcur, "Qcur", il);

                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
                            model.layers[il].attn_k_norm,
                            model.layers[il].attn_k_norm_b,
                            LLM_NORM, cb, il);
                    cb(Kcur, "Kcur", il);

                    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                    cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                            model.layers[il].wo, model.layers[il].bo,
                            Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
                } else {
                    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                    cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                            model.layers[il].wo, model.layers[il].bo,
                            Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
                }
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // Add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // feed forward
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        model.layers[il].ffn_act,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_stablelm() {
        struct ggml_cgraph * gf = ggml_new_graph(ctx0);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {


            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            struct ggml_tensor * inpSA = cur;

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                cb(Qcur, "Qcur", il);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
                cb(Kcur, "Kcur", il);

                if (model.layers[il].attn_q_norm) {
                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
                            model.layers[il].attn_q_norm,
                            NULL,
                            LLM_NORM, cb, il);
                    cb(Qcur, "Qcur", il);
                }
                if (model.layers[il].attn_k_norm) {
                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
                            model.layers[il].attn_k_norm,
                            NULL,
                            LLM_NORM, cb, il);
                    cb(Kcur, "Kcur", il);
                }


                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpL  = ggml_get_rows(ctx0,  inpL, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                if (model.layers[il].ffn_norm) {
                    cur = llm_build_norm(ctx0, ffn_inp, hparams,
                            model.layers[il].ffn_norm,
                            model.layers[il].ffn_norm_b,
                            LLM_NORM, cb, il);
                    cb(cur, "ffn_norm", il);
                } else {
                    // parallel residual
                    cur = inpSA;
                }
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_qwen() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                // using mode = 2 for neox mode
                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward forward
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_qwen2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_up,   NULL, NULL,
                    model.layers[il].ffn_gate, NULL, NULL,
                    model.layers[il].ffn_down, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_qwen2moe() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self_attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // MoE branch
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            ggml_tensor * moe_out =
                    llm_build_moe_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_gate_inp,
                        model.layers[il].ffn_up_exps,
                        model.layers[il].ffn_gate_exps,
                        model.layers[il].ffn_down_exps,
                        n_expert, n_expert_used,
                        LLM_FFN_SILU, false,
                        false, 0.0,
                        cb, il);
            cb(cur, "ffn_moe_out", il);

            // FFN shared expert
            {
                ggml_tensor * cur_gate_inp = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
                cb(cur_gate_inp, "ffn_shexp_gate_inp", il);

                // sigmoid
                ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
                cb(cur_gate, "ffn_shexp_gate", il);

                ggml_tensor * cur_ffn = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up_shexp,   NULL, NULL,
                        model.layers[il].ffn_gate_shexp, NULL, NULL,
                        model.layers[il].ffn_down_shexp, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur_ffn, "ffn_shexp", il);

                ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
                cb(ffn_shexp_out, "ffn_shexp_out", il);

                moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
                cb(moe_out, "ffn_out", il);

                cur = moe_out;
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_phi2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * attn_norm_output;
        struct ggml_tensor * ffn_output;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(attn_norm_output, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = nullptr;
                struct ggml_tensor * Kcur = nullptr;
                struct ggml_tensor * Vcur = nullptr;

                if (model.layers[il].wqkv) {
                    cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
                    cb(cur, "wqkv", il);

                    cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                    cb(cur, "bqkv", il);

                    Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                    Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                    Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
                } else {
                    Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
                    Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
                    Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
                }

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                // with phi2, we scale the Q to avoid precision issues
                // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
                Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur              = ggml_get_rows(ctx0,              cur, inp_out_ids);
                inpL             = ggml_get_rows(ctx0,             inpL, inp_out_ids);
                attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
            }

            // FF
            {
                ffn_output = llm_build_ffn(ctx0, lctx, attn_norm_output,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(ffn_output, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_output);
            cur = ggml_add(ctx0, cur, inpL);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output_no_bias", -1);

        cur = ggml_add(ctx0, cur, model.output_b);
        cb(cur, "result_output", -1);
        ggml_build_forward_expand(gf, cur);
        return gf;
    }

    struct ggml_cgraph * build_phi3() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();

        for (int il = 0; il < n_layer; ++il) {
            auto residual = inpL;

            // self-attention
            {
                // rope freq factors for 128k context
                struct ggml_tensor * rope_factors = build_rope_factors(il);

                struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    NULL,
                    LLM_NORM_RMS, cb, il);
                cb(attn_norm_output, "attn_norm", il);

                struct ggml_tensor * Qcur = nullptr;
                struct ggml_tensor * Kcur = nullptr;
                struct ggml_tensor * Vcur = nullptr;

                if (model.layers[il].wqkv) {
                    cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
                    cb(cur, "wqkv", il);

                    Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
                    Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
                    Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
                }
                else {
                    Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
                    Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
                    Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
                }

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor* inp_out_ids = build_inp_out_ids();
                cur = ggml_get_rows(ctx0, cur, inp_out_ids);
                residual = ggml_get_rows(ctx0, residual, inp_out_ids);
            }

            cur = ggml_add(ctx0, cur, residual);
            residual = cur;

            cur = llm_build_norm(ctx0, cur, hparams,
                model.layers[il].ffn_norm, NULL,
                LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            // FF
            // special-case: the up and gate tensors are merged into a single tensor
            // TOOD: support into llm_build_ffn
            {
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        NULL,                      NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, residual, cur);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
            model.output_norm,
            NULL,
            LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }


    struct ggml_cgraph * build_plamo() {
        struct ggml_cgraph * gf = ggml_new_graph(ctx0);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            struct ggml_tensor * attention_norm = cur;

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head,    n_tokens), inp_pos, nullptr,
                        n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
                        n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }
            struct ggml_tensor * sa_out = cur;

            cur = attention_norm;

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur    = ggml_get_rows(ctx0,    cur, inp_out_ids);
                sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
                inpL   = ggml_get_rows(ctx0,   inpL, inp_out_ids);
            }

            // feed-forward network
            {
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, sa_out);
            cur = ggml_add(ctx0, cur, inpL);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_gpt2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * pos;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
        cb(pos, "pos_embd", -1);

        inpL = ggml_add(ctx0, inpL, pos);
        cb(inpL, "inpL", -1);

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_codeshell() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(tmpq, "tmpq", il);
                cb(tmpk, "tmpk", il);
                cb(Vcur, "Vcur", il);

                struct ggml_tensor * Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_orion() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                // if (model.layers[il].bq) {
                //     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                //     cb(Qcur, "Qcur", il);
                // }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                // if (model.layers[il].bk) {
                //     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                //     cb(Kcur, "Kcur", il);
                // }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                // if (model.layers[il].bv) {
                //     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                //     cb(Vcur, "Vcur", il);
                // }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_up,   NULL, NULL,
                    model.layers[il].ffn_gate, NULL, NULL,
                    model.layers[il].ffn_down, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_internlm2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_up,   NULL, NULL,
                    model.layers[il].ffn_gate, NULL, NULL,
                    model.layers[il].ffn_down, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    // ref: https://arxiv.org/abs/2203.03466
    //      https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
    // based on the original build_llama() function
    struct ggml_cgraph * build_minicpm() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        const int64_t n_embd = hparams.n_embd;
        //TODO: if the model varies, these parameters need to be read from the model
        const int64_t n_embd_base = 256;
        const float scale_embd  = 12.0f;
        const float scale_depth = 1.4f;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // scale the input embeddings
        inpL = ggml_scale(ctx0, inpL, scale_embd);
        cb(inpL, "inp_scaled", -1);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            // scale_res - scale the hidden states for residual connection
            const float scale_res = scale_depth/sqrtf(float(n_layer));
            cur = ggml_scale(ctx0, cur, scale_res);
            cb(cur, "hidden_scaled", -1);

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            // scale the hidden states for residual connection
            cur = ggml_scale(ctx0, cur, scale_res);
            cb(cur, "hidden_scaled_ffn", -1);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head scaling
        const float scale_lmhead = float(n_embd_base)/float(n_embd);
        cur = ggml_scale(ctx0, cur, scale_lmhead);
        cb(cur, "lmhead_scaling", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_gemma() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head_k = hparams.n_embd_head_k;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
        cb(inpL, "inp_scaled", -1);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head,    n_tokens), inp_pos, nullptr,
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Qcur, "Qcur", il);

                Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
                cb(Qcur, "Qcur_scaled", il);

                Kcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
            cb(sa_out, "sa_out", il);

            cur = llm_build_norm(ctx0, sa_out, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            // feed-forward network
            {
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, sa_out);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_gemma2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head_k = hparams.n_embd_head_k;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
        cb(inpL, "inp_scaled", -1);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        // gemma 2 requires different mask for layers using sliding window (SWA)
        struct ggml_tensor * KQ_mask     = build_inp_KQ_mask(true);
        struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);

        for (int il = 0; il < n_layer; ++il) {
            // (il % 2) layers use SWA
            struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head,    n_tokens), inp_pos, nullptr,
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Qcur, "Qcur", il);

                // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
                switch (model.type) {
                    case e_model::MODEL_2B:
                    case e_model::MODEL_9B:  Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));   break;
                    case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
                    default: GGML_ABORT("fatal error");
                };
                cb(Qcur, "Qcur_scaled", il);

                Kcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f, cb, il);
            }

            cur = llm_build_norm(ctx0, cur, hparams,
                    model.layers[il].attn_post_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_post_norm", il);

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
            cb(sa_out, "sa_out", il);

            cur = llm_build_norm(ctx0, sa_out, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            // feed-forward network
            {
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = llm_build_norm(ctx0, cur, hparams,
                model.layers[il].ffn_post_norm, NULL,
                LLM_NORM_RMS, cb, -1);
            cb(cur, "ffn_post_norm", -1);

            cur = ggml_add(ctx0, cur, sa_out);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);

        // final logit soft-capping
        cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
        cur = ggml_tanh(ctx0, cur);
        cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);

        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }


    struct ggml_cgraph * build_starcoder2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network

            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_mamba() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        // {n_embd, n_tokens}
        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        struct ggml_tensor * state_copy = build_inp_s_copy();
        struct ggml_tensor * state_mask = build_inp_s_mask();

        for (int il = 0; il < n_layer; ++il) {
            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            cur = llm_build_mamba(ctx0, lctx, batch, gf, cur,
                    state_copy, state_mask,
                    kv_head, n_kv, cb, il);

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // residual
            cur = ggml_add(ctx0, cur, inpL);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        // final rmsnorm
        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_command_r() {

        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        const float f_logit_scale = hparams.f_logit_scale;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);
            struct ggml_tensor * ffn_inp = cur;

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                if (model.layers[il].attn_q_norm) {
                    Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
                                ggml_element_size(Qcur) * n_embd_head,
                                ggml_element_size(Qcur) * n_embd_head * n_head,
                                0);
                    cb(Qcur, "Qcur", il);
                    Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
                                ggml_element_size(Kcur) * n_embd_head,
                                ggml_element_size(Kcur) * n_embd_head * n_head_kv,
                                0);
                    cb(Kcur, "Kcur", il);

                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
                                model.layers[il].attn_q_norm,
                                NULL,
                                LLM_NORM, cb, il);
                    cb(Qcur, "Qcur", il);

                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
                            model.layers[il].attn_k_norm,
                            NULL,
                            LLM_NORM, cb, il);
                    cb(Kcur, "Kcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur     = ggml_get_rows(ctx0,     cur, inp_out_ids);
                inpL    = ggml_get_rows(ctx0,    inpL, inp_out_ids);
                ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
            }

            struct ggml_tensor * attn_out = cur;

            // feed-forward network
            {
                cur = llm_build_ffn(ctx0, lctx, ffn_inp,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            // add together residual + FFN + self-attention
            cur = ggml_add(ctx0, cur, inpL);
            cur = ggml_add(ctx0, cur, attn_out);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);

        if (f_logit_scale) {
            cur = ggml_scale(ctx0, cur, f_logit_scale);
        }

        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;

    }

    // ref: https://allenai.org/olmo
    // based on the original build_llama() function, changes:
    //   * non-parametric layer norm
    //   * clamp qkv
    //   * removed bias
    //   * removed MoE
    struct ggml_cgraph * build_olmo() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    NULL, NULL,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (hparams.f_clamp_kqv > 0.0f) {
                    Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (hparams.f_clamp_kqv > 0.0f) {
                    Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (hparams.f_clamp_kqv > 0.0f) {
                    Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, nullptr,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    NULL, NULL,
                    LLM_NORM, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_up,   NULL, NULL,
                    model.layers[il].ffn_gate, NULL, NULL,
                    model.layers[il].ffn_down, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                NULL, NULL,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_openelm() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;
        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            const int64_t n_head    = hparams.n_head(il);
            const int64_t n_head_kv = hparams.n_head_kv(il);
            const int64_t n_head_qkv = 2*n_head_kv + n_head;

            cur = inpL;
            struct ggml_tensor * residual = cur;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
                cb(Vcur, "Vcur", il);

                Qcur = llm_build_norm(ctx0, Qcur, hparams,
                        model.layers[il].attn_q_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(Qcur, "Qcur", il);

                Kcur = llm_build_norm(ctx0, Kcur, hparams,
                        model.layers[il].attn_k_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(Kcur, "Kcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                Vcur = ggml_reshape_2d(ctx0, Vcur, n_embd_head * n_head_kv, n_tokens);
                cb(Qcur, "Vcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                residual = ggml_get_rows(ctx0, residual, inp_out_ids);
                cur = ggml_get_rows(ctx0, cur, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            inpL = cur;
        }

        cur = inpL;

        // norm
        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_gptneox() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // ffn
            if (hparams.use_par_res) {
                // attention and ffn are computed in parallel
                // x = x + attn(ln1(x)) + ffn(ln2(x))

                struct ggml_tensor * attn_out = cur;

                cur = llm_build_norm(ctx0, inpL, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);

                cur = ggml_add(ctx0, cur, inpL);
                cb(cur, "ffn_out", il);

                cur = ggml_add(ctx0, cur, attn_out);
                cur = lctx.cvec.apply_to(ctx0, cur, il);
                cb(cur, "l_out", il);

                // input for next layer
                inpL = cur;
            } else {
                // attention and ffn are computed sequentially
                // x = x + attn(ln1(x))
                // x = x + ffn(ln2(x))

                struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
                cb(ffn_inp, "ffn_inp", il);

                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        NULL,                      NULL,                        NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);

                cur = ggml_add(ctx0, cur, ffn_inp);
                cur = lctx.cvec.apply_to(ctx0, cur, il);
                cb(cur, "l_out", il);

                // input for next layer
                inpL = cur;
            }
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_arctic() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_up,   NULL, NULL,
                    model.layers[il].ffn_gate, NULL, NULL,
                    model.layers[il].ffn_down, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
            cb(ffn_out, "ffn_out", il);

            // MoE
            cur = llm_build_norm(ctx0, inpSA, hparams,
                    model.layers[il].ffn_norm_exps, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm_exps", il);

            cur = llm_build_moe_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_gate_inp,
                    model.layers[il].ffn_up_exps,
                    model.layers[il].ffn_gate_exps,
                    model.layers[il].ffn_down_exps,
                    n_expert, n_expert_used,
                    LLM_FFN_SILU, true,
                    false, 0.0,
                    cb, il);
            cb(cur, "ffn_moe_out", il);

            cur = ggml_add(ctx0, cur, ffn_out);
            cb(cur, "ffn_out", il);

            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_deepseek2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        bool is_lite = (hparams.n_layer == 27);

        // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
        // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
        const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
        const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
        const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));

        const uint32_t n_embd_head_qk_rope = hparams.n_rot;
        const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
        const uint32_t kv_lora_rank = hparams.n_lora_kv;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        // {n_embd, n_tokens}
        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self_attention
            {
                struct ggml_tensor * q = NULL;
                if (!is_lite) {
                    // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
                    q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
                    cb(q, "q", il);

                    q = llm_build_norm(ctx0, q, hparams,
                            model.layers[il].attn_q_a_norm, NULL,
                            LLM_NORM_RMS, cb, il);
                    cb(q, "q", il);

                    // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
                    q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
                    cb(q, "q", il);
                } else {
                    q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                    cb(q, "q", il);
                }

                // split into {n_head * n_embd_head_qk_nope, n_tokens}
                struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
                        ggml_row_size(q->type, hparams.n_embd_head_k),
                        ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
                        0);
                cb(q_nope, "q_nope", il);

                // and {n_head * n_embd_head_qk_rope, n_tokens}
                struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
                        ggml_row_size(q->type, hparams.n_embd_head_k),
                        ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
                        ggml_row_size(q->type, n_embd_head_qk_nope));
                cb(q_pe, "q_pe", il);

                // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
                struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
                cb(kv_pe_compresseed, "kv_pe_compresseed", il);

                // split into {kv_lora_rank, n_tokens}
                struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
                        kv_pe_compresseed->nb[1],
                        0);
                cb(kv_compressed, "kv_compressed", il);

                // and {n_embd_head_qk_rope, n_tokens}
                struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
                        kv_pe_compresseed->nb[1],
                        kv_pe_compresseed->nb[1],
                        ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
                cb(k_pe, "k_pe", il);

                kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
                kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
                        model.layers[il].attn_kv_a_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(kv_compressed, "kv_compressed", il);

                // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
                struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
                cb(kv, "kv", il);

                // split into {n_head * n_embd_head_qk_nope, n_tokens}
                struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
                        ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
                        ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
                        0);
                cb(k_nope, "k_nope", il);

                // and {n_head * n_embd_head_v, n_tokens}
                struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
                        ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
                        ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
                        ggml_row_size(kv->type, (n_embd_head_qk_nope)));
                cb(v_states, "v_states", il);

                v_states = ggml_cont(ctx0, v_states);
                cb(v_states, "v_states", il);

                v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
                    ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
                    0);
                cb(v_states, "v_states", il);

                q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
                q_pe = ggml_rope_ext(
                    ctx0, q_pe, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor_scaled, beta_fast, beta_slow
                );
                cb(q_pe, "q_pe", il);

                // shared RoPE key
                k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
                k_pe = ggml_rope_ext(
                    ctx0, k_pe, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor_scaled, beta_fast, beta_slow
                );
                cb(k_pe, "k_pe", il);

                struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
                cb(q_states, "q_states", il);

                struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
                cb(k_states, "k_states", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            if ((uint32_t) il < hparams.n_layer_dense_lead) {
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            } else {
                // MoE branch
                ggml_tensor * moe_out =
                        llm_build_moe_ffn(ctx0, lctx, cur,
                            model.layers[il].ffn_gate_inp,
                            model.layers[il].ffn_up_exps,
                            model.layers[il].ffn_gate_exps,
                            model.layers[il].ffn_down_exps,
                            n_expert, n_expert_used,
                            LLM_FFN_SILU, false,
                            true, hparams.expert_weights_scale,
                            cb, il);
                cb(moe_out, "ffn_moe_out", il);

                // FFN shared expert
                {
                    ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, cur,
                            model.layers[il].ffn_up_shexp,   NULL, NULL,
                            model.layers[il].ffn_gate_shexp, NULL, NULL,
                            model.layers[il].ffn_down_shexp, NULL, NULL,
                            NULL,
                            LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                    cb(ffn_shexp, "ffn_shexp", il);

                    cur = ggml_add(ctx0, moe_out, ffn_shexp);
                    cb(cur, "ffn_out", il);
                }
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_bitnet() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                // B1.K
                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                // B1.V
                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        NULL, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);

                cur = llm_build_norm(ctx0, cur, hparams,
                        model.layers[il].attn_sub_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "attn_sub_norm", il);

                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
                cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
                if (model.layers[il].bo) {
                    cur = ggml_add(ctx0, cur, model.layers[il].bo);
                }
                cb(cur, "attn_o_out", il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward forward
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_up,   NULL, model.layers[il].ffn_up_scale,
                    model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
                    NULL,                      NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_sub_out", il);

            cur = llm_build_norm(ctx0, cur, hparams,
                            model.layers[il].ffn_sub_norm, NULL,
                            LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_sub_norm", il);

            cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_down, cur);
            cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
            cb(cur, "ffn_down", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.tok_embd, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);
        return gf;
    }

    struct ggml_cgraph * build_t5_encoder() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        GGML_ASSERT(lctx.is_encoding);
        struct ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm_enc, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_enc, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_enc, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_enc, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                struct ggml_tensor * q =                 ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
                struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));

                struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
                cb(kq, "kq", il);

                struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
                struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
                struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
                cb(kq_b, "kq_b", il);

                kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
                cb(kq, "kq_soft_max_ext", il);

                struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
                cb(v, "v", il);

                struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
                cb(kqv, "kqv", il);

                struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
                cb(kqv_merged, "kqv_merged", il);

                cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
                cb(cur, "kqv_merged_cont", il);

                ggml_build_forward_expand(gf, cur);

                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_enc, cur);
                cb(cur, "kqv_out", il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm_enc, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                // T5 uses relu, flan-T5 uses gelu-gated
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up_enc,   NULL, NULL,
                        model.layers[il].ffn_gate_enc, NULL, NULL,
                        model.layers[il].ffn_down_enc, NULL, NULL,
                        NULL,
                        model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
                        model.layers[il].ffn_gate_enc ? LLM_FFN_PAR  : LLM_FFN_SEQ,
                        cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
            if (layer_dir != nullptr) {
                cur = ggml_add(ctx0, cur, layer_dir);
            }
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;
        cb(cur, "result_embd", -1);

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm_enc, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_t5_decoder() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        GGML_ASSERT(!lctx.is_encoding);
        GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");

        struct ggml_tensor * embd_enc       = llm_build_inp_embd_enc();
        struct ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);

        struct ggml_tensor * KQ_mask_dec   = build_inp_KQ_mask();
        struct ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);

                struct ggml_tensor * k =
                    ggml_view_3d(ctx0, kv_self.k_l[il],
                            n_embd_head_k, n_kv, n_head_kv,
                            ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
                            ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
                            0);
                cb(k, "k", il);

                struct ggml_tensor * v =
                    ggml_view_3d(ctx0, kv_self.v_l[il],
                            n_kv, n_embd_head_v, n_head_kv,
                            ggml_element_size(kv_self.v_l[il])*n_ctx,
                            ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
                            0);
                cb(v, "v", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);

                struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
                cb(kq, "kq", il);

                struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
                struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
                struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
                cb(kq_b, "kq_b", il);

                kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
                cb(kq, "kq_soft_max_ext", il);

                struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
                cb(kqv, "kqv", il);

                struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
                cb(kqv_merged, "kqv_merged", il);

                cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
                cb(cur, "kqv_merged_cont", il);

                ggml_build_forward_expand(gf, cur);

                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
                cb(cur, "kqv_out", il);
            }

            cur = ggml_add(ctx0, cur, inpSA);
            cb(cur, "cross_inp", il);

            struct ggml_tensor * inpCA = cur;

            // norm
            cur = llm_build_norm(ctx0, cur, hparams,
                    model.layers[il].attn_norm_cross, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm_cross", il);

            // cross-attention
            {
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_cross, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_cross, embd_enc);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_cross, embd_enc);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);

                struct ggml_tensor * q =                 ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
                struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));

                struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
                cb(kq, "kq", il);

                kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
                cb(kq, "kq_soft_max_ext", il);

                struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
                cb(v, "v", il);

                struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
                cb(kqv, "kqv", il);

                struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
                cb(kqv_merged, "kqv_merged", il);

                cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
                cb(cur, "kqv_merged_cont", il);

                ggml_build_forward_expand(gf, cur);

                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_cross, cur);
                cb(cur, "kqv_out", il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
                inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                // T5 uses relu, flan-T5 uses gelu-gated
                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        model.layers[il].ffn_gate, NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
                        model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
                        cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
            if (layer_dir != nullptr) {
                cur = ggml_add(ctx0, cur, layer_dir);
            }
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;
        cb(cur, "result_embd", -1);

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_jais() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/float(n_embd_head), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            inpL = ggml_add(ctx0, cur, ffn_inp);
            cb(inpL, "l_out", il);
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);

        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_chatglm() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = nullptr;
                struct ggml_tensor * Kcur = nullptr;
                struct ggml_tensor * Vcur = nullptr;

                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
                //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur_rope", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur_rope", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);

            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            // Add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, lctx, cur,
                        model.layers[il].ffn_up,   NULL, NULL,
                        NULL,                      NULL, NULL,
                        model.layers[il].ffn_down, NULL, NULL,
                        NULL,
                        LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);

            }

            inpL = ggml_add(ctx0, cur, ffn_inp);
            cb(inpL, "l_out", il);
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_nemotron() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        //GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm,
                    model.layers[il].ffn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                    NULL,                      NULL,                        NULL,
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                    NULL,
                    LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_exaone() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // rope freq factors for llama3; may return nullptr for llama2 and other models
                struct ggml_tensor * rope_factors = build_rope_factors(il);

                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, lctx, cur,
                    model.layers[il].ffn_up,   NULL, NULL,
                    model.layers[il].ffn_gate, NULL, NULL,
                    model.layers[il].ffn_down, NULL, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            cur = lctx.cvec.apply_to(ctx0, cur, il);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }
};

static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) {
    llama_ubatch dummy = {};
    dummy.equal_seqs = true;

    llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };

    struct llm_build_context llm(lctx, dummy, cb, false);

    llm.init();

    struct ggml_cgraph * result = llm.build_defrag(ids);

    llm.free();

    return result;
}

static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
    llama_ubatch dummy = {};
    dummy.equal_seqs = true;

    llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };

    struct llm_build_context llm(lctx, dummy, cb, false);

    llm.init();

    struct ggml_cgraph * result = llm.build_k_shift();

    llm.free();

    return result;
}

static struct ggml_cgraph * llama_build_graph(
         llama_context & lctx,
    const llama_ubatch & batch,
                  bool   worst_case) {
    const auto & model = lctx.model;

    // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
    llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
        if (il >= 0) {
            ggml_format_name(cur, "%s-%d", name, il);
        } else {
            ggml_set_name(cur, name);
        }

        if (!lctx.cparams.offload_kqv) {
            if (strcmp(name, "kqv_merged_cont") == 0) {
                // all nodes between the KV store and the attention output are run on the CPU
                ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
            }
        }

        // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
        // FIXME: fix in ggml_backend_sched
        const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
        if (batch.n_tokens < 32 || full_offload) {
            if (il != -1 && strcmp(name, "norm") == 0) {
                for (auto * backend : lctx.backends) {
                    if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
                        (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
                        ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
                        break;
                    }
                }
            }
        }
    };

    struct ggml_cgraph * result = NULL;

    struct llm_build_context llm(lctx, batch, cb, worst_case);

    llm.init();

    switch (model.arch) {
        case LLM_ARCH_LLAMA:
            {
                result = llm.build_llama();
            } break;
        case LLM_ARCH_BAICHUAN:
            {
                result = llm.build_baichuan();
            } break;
        case LLM_ARCH_FALCON:
            {
                result = llm.build_falcon();
            } break;
        case LLM_ARCH_GROK:
            {
                result = llm.build_grok();
            } break;
        case LLM_ARCH_STARCODER:
            {
                result = llm.build_starcoder();
            } break;
        case LLM_ARCH_REFACT:
            {
                result = llm.build_refact();
            } break;
        case LLM_ARCH_BERT:
        case LLM_ARCH_JINA_BERT_V2:
        case LLM_ARCH_NOMIC_BERT:
            {
                result = llm.build_bert();
            } break;
        case LLM_ARCH_BLOOM:
            {
                result = llm.build_bloom();
            } break;
        case LLM_ARCH_MPT:
            {
                result = llm.build_mpt();
            } break;
         case LLM_ARCH_STABLELM:
            {
                result = llm.build_stablelm();
            } break;
        case LLM_ARCH_QWEN:
            {
                result = llm.build_qwen();
            } break;
        case LLM_ARCH_QWEN2:
            {
                result = llm.build_qwen2();
            } break;
        case LLM_ARCH_QWEN2MOE:
            {
                result = llm.build_qwen2moe();
            } break;
        case LLM_ARCH_PHI2:
            {
                result = llm.build_phi2();
            } break;
        case LLM_ARCH_PHI3:
            {
                result = llm.build_phi3();
            } break;
        case LLM_ARCH_PLAMO:
            {
                result = llm.build_plamo();
            } break;
        case LLM_ARCH_GPT2:
            {
                result = llm.build_gpt2();
            } break;
        case LLM_ARCH_CODESHELL:
            {
                result = llm.build_codeshell();
            } break;
        case LLM_ARCH_ORION:
            {
                result = llm.build_orion();
            } break;
        case LLM_ARCH_INTERNLM2:
            {
                result = llm.build_internlm2();
            } break;
        case LLM_ARCH_MINICPM:
            {
                result = llm.build_minicpm();
            } break;
        case LLM_ARCH_GEMMA:
            {
                result = llm.build_gemma();
            } break;
        case LLM_ARCH_GEMMA2:
            {
                result = llm.build_gemma2();
            } break;
        case LLM_ARCH_STARCODER2:
            {
                result = llm.build_starcoder2();
            } break;
        case LLM_ARCH_MAMBA:
            {
                result = llm.build_mamba();
            } break;
        case LLM_ARCH_XVERSE:
            {
                result = llm.build_xverse();
            } break;
        case LLM_ARCH_COMMAND_R:
            {
                result = llm.build_command_r();
            } break;
        case LLM_ARCH_DBRX:
            {
                result = llm.build_dbrx();
            } break;
        case LLM_ARCH_OLMO:
            {
                result = llm.build_olmo();
            } break;
        case LLM_ARCH_OPENELM:
            {
                result = llm.build_openelm();
            } break;
        case LLM_ARCH_GPTNEOX:
            {
                result = llm.build_gptneox();
            } break;
        case LLM_ARCH_ARCTIC:
            {
                result = llm.build_arctic();
            } break;
        case LLM_ARCH_DEEPSEEK2:
            {
                result = llm.build_deepseek2();
            } break;
        case LLM_ARCH_CHATGLM:
            {
                result = llm.build_chatglm();
            } break;
        case LLM_ARCH_BITNET:
            {
                result = llm.build_bitnet();
            } break;
        case LLM_ARCH_T5:
            {
                if (lctx.is_encoding) {
                    result = llm.build_t5_encoder();
                } else {
                    result = llm.build_t5_decoder();
                }
            } break;
        case LLM_ARCH_T5ENCODER:
            {
                result = llm.build_t5_encoder();
            } break;
        case LLM_ARCH_JAIS:
            {
                result = llm.build_jais();
            } break;
        case LLM_ARCH_NEMOTRON:
            {
                result = llm.build_nemotron();
            } break;
        case LLM_ARCH_EXAONE:
            {
                result = llm.build_exaone();
            } break;
        default:
            GGML_ABORT("fatal error");
    }

    // add on pooling layer
    if (lctx.cparams.embeddings) {
        result = llm.append_pooling(result);
    }

    llm.free();

    return result;
}

static void llama_set_k_shift(llama_context & lctx) {
    const int64_t kv_size = lctx.kv_self.size;

    assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));

    int32_t * data = (int32_t *) lctx.inp_K_shift->data;

    for (int i = 0; i < kv_size; ++i) {
        data[i] = lctx.kv_self.cells[i].delta;
    }
}

static void llama_set_s_copy(llama_context & lctx) {
    const int64_t kv_size = lctx.kv_self.size;

    assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));

    int32_t * data = (int32_t *) lctx.inp_s_copy->data;

    for (int i = 0; i < kv_size; ++i) {
        data[i] = lctx.kv_self.cells[i].src;
    }
}

static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
    // TODO move to hparams if a T5 variant appears that uses a different value
    const int64_t max_distance = 128;

    if (bidirectional) {
        n_buckets >>= 1;
    }

    const int64_t max_exact = n_buckets >> 1;

    int32_t relative_position = x - y;
    int32_t relative_bucket = 0;
    if (bidirectional) {
        relative_bucket += (relative_position > 0) * n_buckets;
        relative_position = abs(relative_position);
    } else {
        relative_position = -std::min(relative_position, 0);
    }
    int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
    relative_position_if_large = std::min(relative_position_if_large, n_buckets - 1);
    relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
    return relative_bucket;
}

static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
    //
    // set input data
    //

    const auto & hparams = lctx.model.hparams;
    const auto & cparams = lctx.cparams;
    const auto & kv_self = lctx.kv_self;

    if (batch.token) {
        const int64_t n_tokens = batch.n_tokens;

        ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
    }

    if (batch.embd) {
        const int64_t n_embd   = hparams.n_embd;
        const int64_t n_tokens = batch.n_tokens;

        ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
    }

    if (batch.pos && lctx.inp_pos) {
        const int64_t n_tokens = batch.n_tokens;

        ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
    }

    if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
        GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
        const int64_t n_tokens = batch.n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
        int32_t * data = (int32_t *) lctx.inp_out_ids->data;

        if (lctx.n_outputs == n_tokens) {
            for (int i = 0; i < n_tokens; ++i) {
                data[i] = i;
            }
        } else if (batch.output) {
            int32_t n_outputs = 0;
            for (int i = 0; i < n_tokens; ++i) {
                if (batch.output[i]) {
                    data[n_outputs++] = i;
                }
            }
            // the graph needs to have been passed the correct number of outputs
            GGML_ASSERT(lctx.n_outputs == n_outputs);
        } else if (lctx.n_outputs == 1) {
            // only keep last output
            data[0] = n_tokens - 1;
        } else {
            GGML_ASSERT(lctx.n_outputs == 0);
        }
    }

    GGML_ASSERT(
        // (!a || b) is a logical implication (a -> b)
        // !hparams.causal_attn -> !cparams.causal_attn
        (hparams.causal_attn || !cparams.causal_attn) &&
        "causal attention is not supported by this model"
    );

    if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) {
        // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
        if (cparams.causal_attn && !lctx.is_encoding) {
            const int64_t n_kv         = kv_self.n;
            const int64_t n_tokens     = batch.n_tokens;
            const int64_t n_seq_tokens = batch.n_seq_tokens;
            const int64_t n_seqs       = batch.n_seqs;


            float * data     = nullptr;
            float * data_swa = nullptr;

            if (lctx.inp_KQ_mask) {
                GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
                data = (float *) lctx.inp_KQ_mask->data;
            }

            if (lctx.inp_KQ_mask_swa) {
                GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer));
                data_swa = (float *) lctx.inp_KQ_mask_swa->data;
            }

            // For causal attention, use only the previous KV cells
            // of the correct sequence for each token of the batch.
            // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
            for (int h = 0; h < 1; ++h) {
                for (int s = 0; s < n_seqs; ++s) {
                    const llama_seq_id seq_id = batch.seq_id[s][0];

                    for (int j = 0; j < n_seq_tokens; ++j) {
                        const llama_pos pos = batch.pos[s*n_seq_tokens + j];

                        for (int i = 0; i < n_kv; ++i) {
                            float f;
                            if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
                                f = -INFINITY;
                            } else {
                                if (hparams.use_alibi) {
                                    f = -std::abs(kv_self.cells[i].pos - pos);
                                } else {
                                    f = 0.0f;
                                }
                            }

                            if (data) {
                                data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
                            }

                            // may need to cut off old tokens for sliding window
                            if (data_swa) {
                                if (pos - kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
                                    f = -INFINITY;
                                }
                                data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
                            }
                        }
                    }
                }

                if (data) {
                    for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
                        for (int j = 0; j < n_kv; ++j) {
                            data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
                        }
                    }
                }

                if (data_swa) {
                    for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
                        for (int j = 0; j < n_kv; ++j) {
                            data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
                        }
                    }
                }
            }
        } else {
            const int64_t n_tokens     = batch.n_tokens;
            const int64_t n_seq_tokens = batch.n_seq_tokens;
            const int64_t n_seqs       = batch.n_seqs;
            // when using kv cache, the mask needs to match the kv cache size
            const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens;

            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));

            float * data = (float *) lctx.inp_KQ_mask->data;

            for (int h = 0; h < 1; ++h) {
                for (int s1 = 0; s1 < n_seqs; ++s1) {
                    const llama_seq_id seq_id = batch.seq_id[s1][0];

                    for (int j = 0; j < n_seq_tokens; ++j) {
                        const int32_t tj = s1*n_seq_tokens + j;

                        for (int s0 = 0; s0 < n_seqs; ++s0) {
                            for (int i = 0; i < n_seq_tokens; ++i) {
                                const int32_t ti = s0*n_seq_tokens + i;
                                float f = -INFINITY;

                                for (int s = 0; s < batch.n_seq_id[s0]; ++s) {
                                    if (batch.seq_id[s0][s] == seq_id) {
                                        if (hparams.use_alibi) {
                                            f = -std::abs(batch.pos[ti] - batch.pos[tj]);
                                        } else {
                                            f = 0.0f;
                                        }
                                        break;
                                    }
                                }

                                data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
                            }
                        }

                        for (int i = n_tokens; i < n_stride; ++i) {
                            data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
                        }
                    }
                }
            }
        }
    }

    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
        const int64_t n_tokens     = batch.n_tokens;
        const int64_t n_seq_tokens = batch.n_seq_tokens;
        const int64_t n_seqs       = batch.n_seqs;

        GGML_ASSERT(lctx.inp_mean);
        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));

        float * data = (float *) lctx.inp_mean->data;
        memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));

        std::vector sum(n_tokens, 0);

        for (int s = 0; s < n_seqs; ++s) {
            const llama_seq_id seq_id = batch.seq_id[s][0];

            // TODO: adapt limits to n_seqs when batch.equal_seqs is true
            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");

            sum[seq_id] += batch.n_seq_tokens;
        }

        std::vector div(n_tokens, 0.0f);
        for (int i = 0; i < n_tokens; ++i) {
            const uint64_t s = sum[i];
            if (s > 0) {
                div[i] = 1.0f/float(s);
            }
        }

        for (int s = 0; s < n_seqs; ++s) {
            const llama_seq_id seq_id = batch.seq_id[s][0];

            for (int i = 0; i < n_seq_tokens; ++i) {
                data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
            }
        }
    }

    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
        const int64_t n_tokens     = batch.n_tokens;
        const int64_t n_seq_tokens = batch.n_seq_tokens;
        const int64_t n_seqs       = batch.n_seqs;

        GGML_ASSERT(lctx.inp_cls);
        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));

        uint32_t * data = (uint32_t *) lctx.inp_cls->data;
        memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));

        for (int s = 0; s < n_seqs; ++s) {
            const llama_seq_id seq_id = batch.seq_id[s][0];

            // TODO: adapt limits to n_seqs when batch.equal_seqs is true
            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");

            for (int i = 0; i < n_seq_tokens; ++i) {
                const llama_pos pos = batch.pos[s*n_seq_tokens + i];

                if (pos == 0) {
                    data[seq_id] = s*n_seq_tokens + i;
                }
            }
        }
    }

    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
        const int64_t n_tokens     = batch.n_tokens;
        const int64_t n_seq_tokens = batch.n_seq_tokens;
        const int64_t n_seqs       = batch.n_seqs;

        GGML_ASSERT(lctx.inp_cls);
        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));

        uint32_t * data = (uint32_t *) lctx.inp_cls->data;
        memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));

        std::vector last_pos(n_tokens, -1);
        std::vector last_row(n_tokens, -1);

        for (int s = 0; s < n_seqs; ++s) {
            const llama_seq_id seq_id = batch.seq_id[s][0];

            // TODO: adapt limits to n_seqs when batch.equal_seqs is true
            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");

            for (int i = 0; i < n_seq_tokens; ++i) {
                const llama_pos pos = batch.pos[s*n_seq_tokens + i];

                if (pos >= last_pos[seq_id]) {
                    last_pos[seq_id] = pos;
                    last_row[seq_id] = s*n_seq_tokens + i;
                }
            }
        }

        for (int i = 0; i < n_tokens; ++i) {
            if (last_row[i] >= 0) {
                data[i] = last_row[i];
            }
        }
    }

    if (kv_self.recurrent) {
        const int64_t n_kv = kv_self.n;

        if (lctx.inp_s_mask) {
            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
            float * data = (float *) lctx.inp_s_mask->data;

            // clear unused states
            for (int i = 0; i < n_kv; ++i) {
                uint32_t        cell_id = i + kv_self.head;
                llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];

                data[i] = (float) (kv_cell.src >= 0);

                // only clear once
                if (kv_cell.src < 0) {
                    kv_cell.src = cell_id;
                }
            }
        }

        if (lctx.inp_s_copy) {
            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
            int32_t * data = (int32_t *) lctx.inp_s_copy->data;

            // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
            for (uint32_t i = 0; i < n_kv; ++i) {
                const uint32_t  cell_id = i + kv_self.head;
                llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];

                // prevent out-of-bound sources
                if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self.size) {
                    kv_cell.src = cell_id;
                }

                data[i] = kv_cell.src;

                // ensure copy only happens once
                if (kv_cell.src != (int32_t) cell_id) {
                    kv_cell.src = cell_id;
                }
            }
        }
    }

    if (lctx.inp_pos_bucket) {
        const int64_t n_tokens = batch.n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer));
        GGML_ASSERT(!batch.equal_seqs); // TODO: use batch.n_seqs instead of failing

        int32_t * data = (int32_t *) lctx.inp_pos_bucket->data;

        if (!lctx.is_encoding) {
            const int64_t n_kv = kv_self.n;
            for (int h = 0; h < 1; ++h) {
                for (int j = 0; j < n_tokens; ++j) {
                    for (int i = 0; i < n_kv; ++i) {
                        data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
                    }
                }
            }
        } else {
            for (int h = 0; h < 1; ++h) {
                for (int j = 0; j < n_tokens; ++j) {
                    for (int i = 0; i < n_tokens; ++i) {
                        data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(batch.pos[i], batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
                    }
                }
            }
        }
    }

    if (!lctx.is_encoding && lctx.inp_embd_enc) {
        assert(lctx.inp_embd_enc->type == GGML_TYPE_F32);
        assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size());

        ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc));
    }

    if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) {
        const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd;
        const int64_t n_tokens = batch.n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer));
        GGML_ASSERT(!batch.equal_seqs); // TODO: use batch.n_seqs instead of failing

        float * data = (float *) lctx.inp_KQ_mask_cross->data;

        for (int h = 0; h < 1; ++h) {
            for (int j = 0; j < n_tokens; ++j) {
                for (int i = 0; i < n_output_enc; ++i) {
                    float f = -INFINITY;
                    for (int s = 0; s < batch.n_seq_id[j]; ++s) {
                        const llama_seq_id seq_id = batch.seq_id[j][s];
                        if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) {
                            f = 0.0f;
                        }
                    }
                    data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f;
                }
            }

            for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
                for (int j = 0; j < n_output_enc; ++j) {
                    data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY;
                }
            }
        }
    }
}

// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
    const auto & cparams = lctx.cparams;
    const auto & hparams = lctx.model.hparams;

    const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);

    const auto n_batch = cparams.n_batch;
    const auto n_vocab = hparams.n_vocab;
    const auto n_embd  = hparams.n_embd;

    // TODO: use a per-batch flag for logits presence instead
    const bool has_logits = !cparams.embeddings;
    const bool has_embd   =  cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);

    const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
    const size_t embd_size   = has_embd   ?  n_embd*n_outputs_max : 0;

    if (lctx.output_ids.empty()) {
        // init, never resized afterwards
        lctx.output_ids.resize(n_batch);
    }

    const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
    const size_t new_size  = (logits_size + embd_size) * sizeof(float);

    // alloc only when more than the current capacity is required
    // TODO: also consider shrinking the buffer
    if (!lctx.buf_output || prev_size < new_size) {
        if (lctx.buf_output) {
#ifndef NDEBUG
            // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
            LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
            ggml_backend_buffer_free(lctx.buf_output);
            lctx.buf_output = nullptr;
            lctx.logits = nullptr;
            lctx.embd = nullptr;
        }

        lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
        if (lctx.buf_output == nullptr) {
            LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
            return 0;
        }
    }

    float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);

    lctx.logits = has_logits ? output_base               : nullptr;
    lctx.embd   = has_embd   ? output_base + logits_size : nullptr;

    lctx.output_size = n_outputs_max;
    lctx.logits_size = logits_size;
    lctx.embd_size   = embd_size;

    // set all ids as invalid (negative)
    std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);

    ggml_backend_buffer_clear(lctx.buf_output, 0);

    lctx.n_outputs = 0;

    return n_outputs_max;
}

// make the outputs have the same order they had in the user-provided batch
static void llama_output_reorder(struct llama_context * ctx) {
    std::vector & out_ids = ctx->sbatch.out_ids;
    if (!out_ids.empty()) {
        uint32_t n_vocab = ctx->model.hparams.n_vocab;
        uint32_t n_embd  = ctx->model.hparams.n_embd;
        int32_t n_outputs = ctx->n_outputs;
        GGML_ASSERT((size_t) n_outputs == out_ids.size());
        // TODO: is there something more efficient which also minimizes swaps?
        // selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
        for (int32_t i = 0; i < n_outputs - 1; ++i) {
            int32_t j_min = i;
            for (int32_t j = i + 1; j < n_outputs; ++j) {
                if (out_ids[j] < out_ids[j_min]) {
                    j_min = j;
                }
            }
            if (j_min == i) { continue; }
            std::swap(out_ids[i], out_ids[j_min]);
            if (ctx->logits_size > 0) {
                for (uint32_t k = 0; k < n_vocab; k++) {
                    std::swap(ctx->logits[i*n_vocab + k], ctx->logits[j_min*n_vocab + k]);
                }
            }
            if (ctx->embd_size > 0) {
                for (uint32_t k = 0; k < n_embd; k++) {
                    std::swap(ctx->embd[i*n_embd + k], ctx->embd[j_min*n_embd + k]);
                }
            }
        }
        std::fill(ctx->output_ids.begin(), ctx->output_ids.end(), -1);
        for (int32_t i = 0; i < n_outputs; ++i) {
            ctx->output_ids[out_ids[i]] = i;
        }
        out_ids.clear();
    }
}

static void llama_graph_compute(
        llama_context & lctx,
          ggml_cgraph * gf,
                  int   n_threads) {
#ifdef GGML_USE_METAL
    if (ggml_backend_is_metal(lctx.backend_metal)) {
        ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
    }
#endif

    if (lctx.backend_cpu != nullptr) {
        ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
        ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
    }
#ifdef GGML_USE_BLAS
    if (lctx.backend_blas != nullptr) {
        ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
    }
#endif

    ggml_backend_sched_graph_compute_async(lctx.sched, gf);

    // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
}

// decode a batch of tokens by evaluating the transformer
//
//   - lctx:      llama context
//   - batch:     batch to evaluate
//
// return 0 on success
// return positive int on warning
// return negative int on error
//
static int llama_decode_internal(
         llama_context & lctx,
           llama_batch   batch_all) { // TODO: rename back to batch

    lctx.is_encoding = false;
    const uint32_t n_tokens_all = batch_all.n_tokens;

    if (n_tokens_all == 0) {
        LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
        return -1;
    }

    const auto & model   = lctx.model;
    const auto & hparams = model.hparams;
    const auto & cparams = lctx.cparams;

    GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT

    GGML_ASSERT(n_tokens_all <= cparams.n_batch);

    GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");

    if (lctx.t_compute_start_us == 0) {
        lctx.t_compute_start_us = ggml_time_us();
    }
    lctx.n_queued_tokens += n_tokens_all;

    auto & kv_self = lctx.kv_self;

    const int64_t n_embd  = hparams.n_embd;
    const int64_t n_vocab = hparams.n_vocab;

    uint32_t n_outputs = 0;
    uint32_t n_outputs_prev = 0;

    const auto n_ubatch = cparams.n_ubatch;

    // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
    const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;

    lctx.embd_seq.clear();

    // count outputs
    if (batch_all.logits && !embd_pooled) {
        for (uint32_t i = 0; i < n_tokens_all; ++i) {
            n_outputs += batch_all.logits[i] != 0;
        }
    } else if (lctx.logits_all || embd_pooled) {
        n_outputs = n_tokens_all;
    } else {
        // keep last output only
        n_outputs = 1;
    }

    lctx.sbatch.from_batch(batch_all, n_embd,
        /* simple_split */ !kv_self.recurrent,
        /* logits_all   */ n_outputs == n_tokens_all);

    // reserve output buffer
    if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
        return -2;
    };

    while (lctx.sbatch.n_tokens > 0) {
        llama_ubatch ubatch;
        if (kv_self.recurrent) {
            if (embd_pooled) {
                // Pooled embeddings cannot be split across ubatches (yet)
                ubatch = lctx.sbatch.split_seq(n_ubatch);
            } else {
                // recurrent model architectures are easier to implement
                // with equal-length sequences
                ubatch = lctx.sbatch.split_equal(n_ubatch);
            }
        } else {
            ubatch = lctx.sbatch.split_simple(n_ubatch);
        }
        const uint32_t n_tokens = ubatch.n_tokens;

        // count the outputs in this u_batch
        {
            int32_t n_outputs_new = 0;

            if (n_outputs == n_tokens_all) {
                n_outputs_new = n_tokens;
            } else {
                GGML_ASSERT(ubatch.output);
                for (uint32_t i = 0; i < n_tokens; i++) {
                    n_outputs_new += (int32_t) (ubatch.output[i] != 0);
                }
            }

            // needs to happen before the graph is built
            lctx.n_outputs = n_outputs_new;
        }

        int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
        GGML_ASSERT(n_threads > 0);

        // non-causal masks do not use the KV cache
        if (hparams.causal_attn) {
            llama_kv_cache_update(&lctx);

            // if we have enough unused cells before the current head ->
            //   better to start searching from the beginning of the cache, hoping to fill it
            if (kv_self.head > kv_self.used + 2*n_tokens) {
                kv_self.head = 0;
            }

            if (!llama_kv_cache_find_slot(kv_self, ubatch)) {
                return 1;
            }

            if (!kv_self.recurrent) {
                // a heuristic, to avoid attending the full cache if it is not yet utilized
                // after enough generations, the benefit from this heuristic disappears
                // if we start defragmenting the cache, the benefit from this will be more important
                const uint32_t pad = llama_kv_cache_get_padding(cparams);
                kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
                //kv_self.n = llama_kv_cache_cell_max(kv_self);
            }
        }

        //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);

        ggml_backend_sched_reset(lctx.sched);
        ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);

        ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);

        // the output is always the last tensor in the graph
        struct ggml_tensor * res  = gf->nodes[gf->n_nodes - 1];
        struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];

        if (lctx.n_outputs == 0) {
            // no output
            res  = nullptr;
            embd = nullptr;
        } else if (cparams.embeddings) {
            res  = nullptr; // do not extract logits for embedding case
            embd = nullptr;
            for (int i = gf->n_nodes - 1; i >= 0; --i) {
                if (strcmp(gf->nodes[i]->name, "result_embd_pooled") == 0) {
                    embd = gf->nodes[i];
                    break;
                }
            }
            GGML_ASSERT(embd != nullptr && "missing embeddings tensor");
        } else {
            embd = nullptr; // do not extract embeddings when not needed
            GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
        }
        // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);

        ggml_backend_sched_alloc_graph(lctx.sched, gf);

        llama_set_inputs(lctx, ubatch);

        llama_graph_compute(lctx, gf, n_threads);

        // update the kv ring buffer
        {
            kv_self.head += n_tokens;

            // Ensure kv cache head points to a valid index.
            if (kv_self.head >= kv_self.size) {
                kv_self.head = 0;
            }
        }

        // plot the computation graph in dot format (for debugging purposes)
        //if (n_past%100 == 0) {
        //    ggml_graph_dump_dot(gf, NULL, "llama.dot");
        //}

        // extract logits
        if (res) {
            ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
            GGML_ASSERT(backend_res != nullptr);
            GGML_ASSERT(lctx.logits != nullptr);

            float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
            const int32_t n_outputs_new = lctx.n_outputs;

            if (n_outputs_new) {
                GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
                GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
                ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
            }
        }

        // extract embeddings
        if (embd) {
            ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
            GGML_ASSERT(backend_embd != nullptr);

            switch (cparams.pooling_type) {
                case LLAMA_POOLING_TYPE_NONE:
                    {
                        // extract token embeddings
                        GGML_ASSERT(lctx.embd != nullptr);
                        float * embd_out = lctx.embd + n_outputs_prev*n_embd;
                        const int32_t n_outputs_new = lctx.n_outputs;

                        if (n_outputs_new) {
                            GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
                            GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
                            ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_MEAN:
                case LLAMA_POOLING_TYPE_CLS:
                case LLAMA_POOLING_TYPE_LAST:
                    {
                        // extract sequence embeddings (cleared before processing each batch)
                        auto & embd_seq_out = lctx.embd_seq;

                        for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
                            const llama_seq_id seq_id = ubatch.seq_id[s][0];
                            if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                                continue;
                            }
                            embd_seq_out[seq_id].resize(n_embd);
                            ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_UNSPECIFIED:
                    {
                        GGML_ABORT("unknown pooling type");
                    }
            }
        }
        n_outputs_prev += lctx.n_outputs;
    }

    // set output mappings
    {
        bool sorted_output = true;

        GGML_ASSERT(lctx.sbatch.out_ids.size() == n_outputs);

        for (size_t i = 0; i < n_outputs; ++i) {
            size_t out_id = lctx.sbatch.out_ids[i];
            lctx.output_ids[out_id] = i;
            if (out_id != i) {
                sorted_output = false;
            }
        }

        if (sorted_output) {
            lctx.sbatch.out_ids.clear();
        }
    }

    // set to total number of outputs in the batch, for use in llama_get_logits_ith
    lctx.n_outputs = n_outputs;

    // wait for the computation to finish (automatically done when obtaining the model output)
    //llama_synchronize(&lctx);

    // decide if we need to defrag the kv cache
    if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
        const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;

        // queue defragmentation for next llama_kv_cache_update
        if (fragmentation > cparams.defrag_thold) {
            //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);

            llama_kv_cache_defrag(kv_self);
        }
    }

    // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
    // overlap with device computation.
    ggml_backend_sched_reset(lctx.sched);

    return 0;
}

// encode a batch of tokens by evaluating the encoder part of the transformer
//
//   - lctx:      llama context
//   - batch:     batch to evaluate
//
// return 0 on success
// return positive int on warning
// return negative int on error
//
static int llama_encode_internal(
         llama_context & lctx,
           llama_batch   batch) {

    lctx.is_encoding = true;

    const uint32_t n_tokens = batch.n_tokens;

    if (n_tokens == 0) {
        LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
        return -1;
    }

    const auto & model   = lctx.model;
    const auto & hparams = model.hparams;
    const auto & cparams = lctx.cparams;

    GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT

    // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
    GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");

    if (lctx.t_compute_start_us == 0) {
        lctx.t_compute_start_us = ggml_time_us();
    }

    lctx.n_queued_tokens += n_tokens;

    const int64_t n_embd = hparams.n_embd;

    lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);

    const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);

    // reserve output buffer
    if (llama_output_reserve(lctx, n_tokens) < n_tokens) {
        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
        return -2;
    };

    for (uint32_t i = 0; i < n_tokens; ++i) {
        lctx.output_ids[i] = i;
    }

    lctx.inp_embd_enc = NULL;
    lctx.n_outputs = n_tokens;

    const int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
    GGML_ASSERT(n_threads > 0);

    ggml_backend_sched_reset(lctx.sched);
    ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);

    ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);

    // the output embeddings after the final encoder normalization
    struct ggml_tensor * embd = nullptr;

    // there are two cases here
    if (llama_model_has_decoder(&lctx.model)) {
        // first case is an encoder-decoder T5 model where embeddings are passed to decoder
        embd = gf->nodes[gf->n_nodes - 1];
        GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor");
    } else {
        // second case is an encoder-only T5 model
        if (cparams.embeddings) {
            // only output embeddings if required
            embd = gf->nodes[gf->n_nodes - 1];
            if (strcmp(embd->name, "result_embd_pooled") != 0) {
                embd = gf->nodes[gf->n_nodes - 2];
            }
            GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
        }
    }

    ggml_backend_sched_alloc_graph(lctx.sched, gf);

    llama_set_inputs(lctx, ubatch);

    llama_graph_compute(lctx, gf, n_threads);

    // extract embeddings
    if (embd) {
        ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
        GGML_ASSERT(backend_embd != nullptr);

        if (llama_model_has_decoder(&lctx.model)) {
            lctx.embd_enc.resize(n_tokens*n_embd);
            float * embd_out = lctx.embd_enc.data();

            ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
            GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits

            // remember the sequence ids used during the encoding - needed for cross attention later
            lctx.seq_ids_enc.resize(n_tokens);
            for (uint32_t i = 0; i < n_tokens; i++) {
                for (int s = 0; s < ubatch.n_seq_id[i]; s++) {
                    llama_seq_id seq_id = ubatch.seq_id[i][s];
                    lctx.seq_ids_enc[i].insert(seq_id);
                }
            }
        } else {
            GGML_ASSERT(lctx.embd != nullptr);

            switch (cparams.pooling_type) {
                case LLAMA_POOLING_TYPE_NONE:
                    {
                        // extract token embeddings
                        GGML_ASSERT(lctx.embd != nullptr);
                        float * embd_out = lctx.embd;

                        GGML_ASSERT(n_tokens*n_embd <= (int64_t) lctx.embd_size);
                        ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
                    } break;
                case LLAMA_POOLING_TYPE_MEAN:
                case LLAMA_POOLING_TYPE_CLS:
                case LLAMA_POOLING_TYPE_LAST:
                    {
                        // extract sequence embeddings
                        auto & embd_seq_out = lctx.embd_seq;
                        embd_seq_out.clear();

                        GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits

                        for (uint32_t i = 0; i < n_tokens; i++) {
                            const llama_seq_id seq_id = ubatch.seq_id[i][0];
                            if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                                continue;
                            }
                            embd_seq_out[seq_id].resize(n_embd);
                            ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_UNSPECIFIED:
                    {
                        GGML_ABORT("unknown pooling type");
                    }
            }
        }
    }

    // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
    // overlap with device computation.
    ggml_backend_sched_reset(lctx.sched);

    return 0;
}

// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
    auto & kv_self = lctx.kv_self;

    const auto & hparams = lctx.model.hparams;

    const uint32_t n_layer = hparams.n_layer;

    const uint32_t n_kv   = llama_kv_cache_cell_max(kv_self);
    const uint32_t n_used = kv_self.used;

    assert(n_used <= n_kv);

    //const int64_t t_start = ggml_time_us();

    // number of cells moved
    uint32_t n_moves = 0;

    // each move requires 6*n_layer tensors (see build_defrag)
    //   - source view, destination view, copy operation
    //   - x2 for keys and values
    //const uint32_t max_moves = llama_model_max_nodes(model)/(6*n_layer);
    // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
    const uint32_t max_moves = (llama_model_max_nodes(lctx.model) - 2*n_layer)/(6*n_layer);

    // determine which KV cells to move where
    //
    //  cell i moves to ids[i]
    //
    //  if ids[i] == i || ids[i] == n_kv, then cell i is not moved
    //
    std::vector ids(n_kv, n_kv);

    for (uint32_t i0 = 0; i0 < n_used; ++i0) {
        const auto & cell0 = kv_self.cells[i0];

        if (!cell0.is_empty()) {
            ids[i0] = i0;

            continue;
        }

        // found a hole - fill it with data from the end of the cache

        uint32_t nh = 1;

        // determine the size of the hole
        while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
            nh++;
        }

        uint32_t nf = 0;
        uint32_t is = n_kv - 1;

        // starting from the end, find nh non-empty cells
        for (; is > i0; --is) {
            const auto & cell1 = kv_self.cells[is];

            if (cell1.is_empty() || ids[is] != n_kv) {
                continue;
            }

            // non-empty cell which is not yet moved
            nf++;

            if (nf == nh) {
                break;
            }
        }

        // this can only happen if `n_used` is not accurate, which would be a bug
        GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");

        nf = 0;

        uint32_t i1 = is;

        // are we moving a continuous block of memory?
        bool cont = false;

        // should we stop searching for the next move?
        bool stop = false;

        // go back and move the nf cells to the hole
        for (; i1 < n_kv; ++i1) {
            auto & cell1 = kv_self.cells[i1];

            if (cell1.is_empty() || ids[i1] != n_kv) {
                if (n_moves == max_moves) {
                    stop = true;
                    break;
                }

                cont = false;
                continue;
            }

            // this cell goes to (i0 + nf)
            ids[i1] = i0 + nf;

            // move the cell meta data
            kv_self.cells[i0 + nf] = cell1;

            // clear the old cell and move the head there
            cell1 = llama_kv_cell();
            kv_self.head = n_used;

            if (!cont) {
                n_moves++;
                cont = true;
            }

            nf++;

            if (nf == nh) {
                break;
            }
        }

        if (stop || n_moves == max_moves) {
            break;
        }

        //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);

        i0 += nh - 1;
    }

    if (n_moves == 0) {
        return;
    }

    //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);

    //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);

#if 0
    // CPU defrag
    //
    // TODO: optimizations are possible:
    //       - multiple threads
    //       - avoid copying to the host memory when already there
    //
    // likely not worth the effort, as we have ggml_graph based defrag
    //

    const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
    const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();

    const uint32_t kv_size = kv_self.size;

    std::vector buf_k;
    std::vector buf_v;

    for (uint32_t il = 0; il < n_layer; ++il) {
        const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
        const size_t k_size     = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);

        const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
        const size_t v_size    = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);

        buf_k.resize(k_size);
        buf_v.resize(v_size);

        ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
        ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());

        // batch move [i, i+nm) to [id, id+nm)
        // note: cells can move only to a lower index
        for (uint32_t i = 0; i < n_kv; ++i) {
            const uint32_t id = ids[i];

            if (i == id || id == n_kv) {
                continue;
            }

            uint32_t nm = 1;

            while (i + nm < n_kv && ids[i + nm] == id + nm) {
                nm++;
            }

            // move keys
            {
                const int64_t os =  i*k_size_row;
                const int64_t od = id*k_size_row;

                memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
            }

            // move values (note: they are transposed)
            {
                const int64_t os =  i;
                const int64_t od = id;

                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                    memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
                }
            }

            i += nm - 1;
        }

        ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
        ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
    }
#else
    // ggml_graph defrag

    ggml_backend_sched_reset(lctx.sched);

    ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);

    llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
#endif

    //const int64_t t_end = ggml_time_us();

    //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
}

static void llama_kv_cache_update_internal(struct llama_context & lctx) {
    bool need_reserve = false;

    // apply K-shift if needed
    if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
        if (lctx.model.arch == LLM_ARCH_DEEPSEEK2) { // not supported due to MLA
            GGML_ABORT("Deepseek2 does not support K-shift");
        }

        {
            ggml_backend_sched_reset(lctx.sched);

            ggml_cgraph * gf = llama_build_graph_k_shift(lctx);

            ggml_backend_sched_alloc_graph(lctx.sched, gf);

            llama_set_k_shift(lctx);

            llama_graph_compute(lctx, gf, lctx.cparams.n_threads);

            need_reserve = true;
        }

        {
            auto & kv_self = lctx.kv_self;

            kv_self.has_shift = false;

            for (uint32_t i = 0; i < kv_self.size; ++i) {
                kv_self.cells[i].delta = 0;
            }
        }
    }

    // defragment the KV cache if needed
    if (lctx.kv_self.do_defrag) {
        llama_kv_cache_defrag_internal(lctx);

        need_reserve = true;

        lctx.kv_self.do_defrag = false;
    }

    // reserve a worst case graph again
    if (need_reserve) {
        // TODO: extract to a function
        // build worst-case graph
        uint32_t n_seqs = 1; // TODO: worst-case number of sequences
        uint32_t n_tokens = std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
        llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
        llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
        ggml_cgraph * gf = llama_build_graph(lctx, ubatch, true);

        // initialize scheduler with the worst-case graph
        ggml_backend_sched_reset(lctx.sched);
        if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
            LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
        }
    }
}

//
// quantization
//

struct quantize_state_internal {
    const llama_model                 & model;
    const llama_model_quantize_params * params;

    int n_attention_wv    = 0;
    int n_ffn_down        = 0;
    int n_ffn_gate        = 0;
    int n_ffn_up          = 0;
    int i_attention_wv    = 0;
    int i_ffn_down        = 0;
    int i_ffn_gate        = 0;
    int i_ffn_up          = 0;

    int n_k_quantized     = 0;
    int n_fallback        = 0;

    bool has_imatrix      = false;

    // used to figure out if a model shares tok_embd with the output weight
    bool has_output       = false;

    quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
        : model(model)
        , params(params)
        {}
};

static void llama_tensor_dequantize_internal(
    struct ggml_tensor * tensor, std::vector> & output, std::vector & workers,
    const size_t nelements, const int nthread
) {
    if (output.size() < nelements) {
        output.resize(nelements);
    }
    float * f32_output = (float *) output.data();

    ggml_type_traits_t qtype;
    if (ggml_is_quantized(tensor->type)) {
        qtype = ggml_internal_get_type_traits(tensor->type);
        if (qtype.to_float == NULL) {
            throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
        }
    } else if (tensor->type != GGML_TYPE_F16 &&
               tensor->type != GGML_TYPE_BF16) {
        throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
    }

    if (nthread < 2) {
        if (tensor->type == GGML_TYPE_F16) {
            ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
        } else if (tensor->type == GGML_TYPE_BF16) {
            ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
        } else if (ggml_is_quantized(tensor->type)) {
            qtype.to_float(tensor->data, f32_output, nelements);
        } else {
            GGML_ABORT("fatal error"); // unreachable
        }
        return;
    }

    size_t block_size;
    if (tensor->type == GGML_TYPE_F16 ||
        tensor->type == GGML_TYPE_BF16) {
        block_size = 1;
    } else {
        block_size = (size_t)ggml_blck_size(tensor->type);
    }

    size_t block_size_bytes = ggml_type_size(tensor->type);

    GGML_ASSERT(nelements % block_size == 0);
    size_t nblocks = nelements / block_size;
    size_t blocks_per_thread = nblocks / nthread;
    size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count

    size_t in_buff_offs = 0;
    size_t out_buff_offs = 0;

    for (int tnum = 0; tnum < nthread; tnum++) {
        size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
        size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
        size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread

        auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
            if (typ == GGML_TYPE_F16) {
                ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
            } else if (typ == GGML_TYPE_BF16) {
                ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
            } else {
                qtype.to_float(inbuf, outbuf, nels);
            }
        };
        workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
        in_buff_offs += thr_block_bytes;
        out_buff_offs += thr_elems;
    }
    for (auto & w : workers) { w.join(); }
    workers.clear();
}

static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
    const std::string name = ggml_get_name(tensor);

    // TODO: avoid hardcoded tensor names - use the TN_* constants
    const llm_arch arch = qs.model.arch;
    const auto       tn = LLM_TN(arch);

    auto use_more_bits = [](int i_layer, int n_layers) -> bool {
        return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
    };
    const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
    auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
        if (n_expert > 1) {
            // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
            // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
            // for getting the current layer as I initially thought, and we need to resort to parsing the
            // tensor name.
            if (sscanf(name, "blk.%d.", &i_layer) != 1) {
                throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
            }
            if (i_layer < 0 || i_layer >= n_layer) {
                throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
            }
        }
        return std::make_pair(i_layer, n_layer);
    };

    // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
    // with the quantization of the output tensor
    if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
        if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
            new_type = qs.params->output_tensor_type;
        } else {
            int nx = tensor->ne[0];
            if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
                new_type = GGML_TYPE_Q8_0;
            }
            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S  || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M   ||
                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
                new_type = GGML_TYPE_Q5_K;
            }
            else if (new_type != GGML_TYPE_Q8_0) {
                new_type = GGML_TYPE_Q6_K;
            }
        }
    } else if (name == "token_embd.weight") {
        if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
            new_type = qs.params->token_embedding_type;
        } else {
            if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
                ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
                new_type = GGML_TYPE_Q2_K;
            }
            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
                new_type = GGML_TYPE_IQ3_S;
            }
            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
                new_type = GGML_TYPE_IQ3_S;
            }
            else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
                     new_type == GGML_TYPE_Q4_0_8_8) {
                new_type = GGML_TYPE_Q4_0;
            }
        }
    } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
               ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M    || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
        if (name.find("attn_v.weight") != std::string::npos) {
            if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
            else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
            ++qs.i_attention_wv;
        }
        else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (name.find("ffn_down") != std::string::npos) {
            if (qs.i_ffn_down < qs.n_ffn_down/8) {
                new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
            }
            ++qs.i_ffn_down;
        }
        else if (name.find("attn_output.weight") != std::string::npos) {
            if (qs.model.hparams.n_expert == 8) {
                new_type = GGML_TYPE_Q5_K;
            } else {
                if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
            }
        }
    } else if (name.find("attn_v.weight") != std::string::npos) {
        if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
            new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
            new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
        }
        else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
            new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
        else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
            new_type = GGML_TYPE_Q5_K;
        }
        else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
                use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
        if (qs.model.type == MODEL_70B) {
            // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
            // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
            // nearly negligible increase in model size by quantizing this tensor with more bits:
            if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
        }
        if (qs.model.hparams.n_expert == 8) {
            // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
            // TODO: explore better strategies
            new_type = GGML_TYPE_Q8_0;
        }
        ++qs.i_attention_wv;
    } else if (name.find("attn_k.weight") != std::string::npos) {
        if (qs.model.hparams.n_expert == 8) {
            // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
            // TODO: explore better strategies
            new_type = GGML_TYPE_Q8_0;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
            new_type = GGML_TYPE_IQ3_XXS;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
            new_type = GGML_TYPE_IQ2_S;
        }
    } else if (name.find("attn_q.weight") != std::string::npos) {
        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
            new_type = GGML_TYPE_IQ3_XXS;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
            new_type = GGML_TYPE_IQ2_S;
        }
    } else if (name.find("ffn_down") != std::string::npos) {
        auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
        int i_layer = info.first, n_layer = info.second;
        if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
            if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
            new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
            new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
                     : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
                     : GGML_TYPE_Q3_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
                    (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
            new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
            if (arch == LLM_ARCH_FALCON) {
                new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
                           use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
            } else {
                if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
            }
        }
        else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
            new_type = GGML_TYPE_Q5_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
            new_type = GGML_TYPE_Q5_K;
        }
        else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
                && qs.has_imatrix && i_layer < n_layer/8) {
            // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
            // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
            // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
            new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
        }
        ++qs.i_ffn_down;
    } else if (name.find("attn_output.weight") != std::string::npos) {
        if (arch != LLM_ARCH_FALCON) {
            if (qs.model.hparams.n_expert == 8) {
                if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
                    ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL  ||
                    ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S  ||
                    ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
                    new_type = GGML_TYPE_Q5_K;
                }
            } else {
                if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   ) new_type = GGML_TYPE_Q3_K;
                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  ) new_type = GGML_TYPE_Q4_K;
            }
        } else {
            if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
        }
    }
    else if (name.find("attn_qkv.weight") != std::string::npos) {
        if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
    }
    else if (name.find("ffn_gate") != std::string::npos) {
        auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
        int i_layer = info.first, n_layer = info.second;
        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
            new_type = GGML_TYPE_IQ3_XXS;
        }
        ++qs.i_ffn_gate;
    }
    else if (name.find("ffn_up") != std::string::npos) {
        auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
        int i_layer = info.first, n_layer = info.second;
        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
            new_type = GGML_TYPE_IQ3_XXS;
        }
        ++qs.i_ffn_up;
    }

    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
    //}
    // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
    //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
    //}
    // This can be used to reduce the size of the Q5_K_S model.
    // The associated PPL increase is fully in line with the size reduction
    //else {
    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
    //}
    bool convert_incompatible_tensor = false;
    if (new_type == GGML_TYPE_Q2_K    || new_type == GGML_TYPE_Q3_K    || new_type == GGML_TYPE_Q4_K   ||
        new_type == GGML_TYPE_Q5_K    || new_type == GGML_TYPE_Q6_K    || new_type == GGML_TYPE_IQ4_XS ||
        new_type == GGML_TYPE_IQ2_XS  || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S  ||
        new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S   || new_type == GGML_TYPE_IQ3_S  ||
        new_type == GGML_TYPE_IQ1_M) {
        int nx = tensor->ne[0];
        int ny = tensor->ne[1];
        if (nx % QK_K != 0) {
            LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
            convert_incompatible_tensor = true;
        } else {
            ++qs.n_k_quantized;
        }
    }
    if (convert_incompatible_tensor) {
        switch (new_type) {
            case GGML_TYPE_IQ2_XXS:
            case GGML_TYPE_IQ2_XS:
            case GGML_TYPE_IQ2_S:
            case GGML_TYPE_IQ3_XXS:
            case GGML_TYPE_IQ3_S:
            case GGML_TYPE_IQ1_S:
            case GGML_TYPE_IQ1_M:
            case GGML_TYPE_Q2_K:
            case GGML_TYPE_Q3_K:
            case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
            case GGML_TYPE_Q4_K:   new_type = GGML_TYPE_Q5_0;   break;
            case GGML_TYPE_Q5_K:   new_type = GGML_TYPE_Q5_1;   break;
            case GGML_TYPE_Q6_K:   new_type = GGML_TYPE_Q8_0;   break;
            default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
        }
        if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
            new_type = GGML_TYPE_F16;
        }
        LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
        ++qs.n_fallback;
    }

    return new_type;
}

static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector & workers, const int nthread) {
    if (nthread < 2) {
        // single-thread
        size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
        if (!ggml_validate_row_data(new_type, new_data, new_size)) {
            throw std::runtime_error("quantized data validation failed");
        }
        return new_size;
    }

    std::mutex mutex;
    int64_t counter = 0;
    size_t new_size = 0;
    bool valid = true;
    auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
            nrows, n_per_row, imatrix]() {
        const int64_t nrows_per_chunk = chunk_size / n_per_row;
        size_t local_size = 0;
        while (true) {
            std::unique_lock lock(mutex);
            int64_t first_row = counter; counter += nrows_per_chunk;
            if (first_row >= nrows) {
                if (local_size > 0) {
                    new_size += local_size;
                }
                break;
            }
            lock.unlock();
            const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
            size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
            local_size += this_size;

            // validate the quantized data
            const size_t row_size  = ggml_row_size(new_type, n_per_row);
            void * this_data = (char *) new_data + first_row * row_size;
            if (!ggml_validate_row_data(new_type, this_data, this_size)) {
                std::unique_lock lock(mutex);
                valid = false;
                break;
            }
        }
    };
    for (int it = 0; it < nthread - 1; ++it) {
        workers.emplace_back(compute);
    }
    compute();
    for (auto & w : workers) { w.join(); }
    workers.clear();
    if (!valid) {
        throw std::runtime_error("quantized data validation failed");
    }
    return new_size;
}

static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
    ggml_type default_type;
    llama_ftype ftype = params->ftype;

    switch (params->ftype) {
        case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
        case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
        case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
        case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
        case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
        case LLAMA_FTYPE_MOSTLY_F16:  default_type = GGML_TYPE_F16;  break;
        case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
        case LLAMA_FTYPE_ALL_F32:     default_type = GGML_TYPE_F32;  break;

        // K-quants
        case LLAMA_FTYPE_MOSTLY_Q2_K_S:
        case LLAMA_FTYPE_MOSTLY_Q2_K:    default_type = GGML_TYPE_Q2_K;    break;
        case LLAMA_FTYPE_MOSTLY_IQ3_XS:  default_type = GGML_TYPE_IQ3_S;   break;
        case LLAMA_FTYPE_MOSTLY_Q3_K_S:
        case LLAMA_FTYPE_MOSTLY_Q3_K_M:
        case LLAMA_FTYPE_MOSTLY_Q3_K_L:  default_type = GGML_TYPE_Q3_K;    break;
        case LLAMA_FTYPE_MOSTLY_Q4_K_S:
        case LLAMA_FTYPE_MOSTLY_Q4_K_M:  default_type = GGML_TYPE_Q4_K;    break;
        case LLAMA_FTYPE_MOSTLY_Q5_K_S:
        case LLAMA_FTYPE_MOSTLY_Q5_K_M:  default_type = GGML_TYPE_Q5_K;    break;
        case LLAMA_FTYPE_MOSTLY_Q6_K:    default_type = GGML_TYPE_Q6_K;    break;
        case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
        case LLAMA_FTYPE_MOSTLY_IQ2_XS:  default_type = GGML_TYPE_IQ2_XS;  break;
        case LLAMA_FTYPE_MOSTLY_IQ2_S:   default_type = GGML_TYPE_IQ2_XS;  break;
        case LLAMA_FTYPE_MOSTLY_IQ2_M:   default_type = GGML_TYPE_IQ2_S;   break;
        case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
        case LLAMA_FTYPE_MOSTLY_IQ1_S:   default_type = GGML_TYPE_IQ1_S;   break;
        case LLAMA_FTYPE_MOSTLY_IQ1_M:   default_type = GGML_TYPE_IQ1_M;   break;
        case LLAMA_FTYPE_MOSTLY_IQ4_NL:  default_type = GGML_TYPE_IQ4_NL;  break;
        case LLAMA_FTYPE_MOSTLY_IQ4_XS:  default_type = GGML_TYPE_IQ4_XS;  break;
        case LLAMA_FTYPE_MOSTLY_IQ3_S:   default_type = GGML_TYPE_IQ3_S;   break;
        case LLAMA_FTYPE_MOSTLY_IQ3_M:   default_type = GGML_TYPE_IQ3_S;   break;
        case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;
        case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break;
        case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: default_type = GGML_TYPE_Q4_0_8_8; break;

        default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
    }

    int nthread = params->nthread;

    if (nthread <= 0) {
        nthread = std::thread::hardware_concurrency();
    }

    // mmap consistently increases speed Linux, and also increases speed on Windows with
    // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
#if defined(__linux__) || defined(_WIN32)
    constexpr bool use_mmap = true;
#else
    constexpr bool use_mmap = false;
#endif

    llama_model_kv_override * kv_overrides = nullptr;
    if (params->kv_overrides) {
        auto v = (std::vector*)params->kv_overrides;
        kv_overrides = v->data();
    }
    llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
    ml.init_mappings(false); // no prefetching

    llama_model model;
    llm_load_arch(ml, model);
    llm_load_hparams(ml, model);

    struct quantize_state_internal qs(model, params);

    if (params->only_copy) {
        ftype = model.ftype;
    }
    const std::unordered_map> * imatrix_data = nullptr;
    if (params->imatrix) {
        imatrix_data = static_cast>*>(params->imatrix);
        if (imatrix_data) {
            LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
            qs.has_imatrix = true;
            // check imatrix for nans or infs
            for (const auto & kv : *imatrix_data) {
                for (float f : kv.second) {
                    if (!std::isfinite(f)) {
                        throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
                    }
                }
            }
        }
    }

    const size_t align = GGUF_DEFAULT_ALIGNMENT;
    struct gguf_context * ctx_out = gguf_init_empty();

    // copy the KV pairs from the input file
    gguf_set_kv     (ctx_out, ml.meta);
    gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
    gguf_set_val_u32(ctx_out, "general.file_type", ftype); // TODO: use LLM_KV

    // Remove split metadata
    gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
    gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
    gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());

    if (params->kv_overrides) {
        const std::vector & overrides = *(const std::vector *)params->kv_overrides;
        for (auto & o : overrides) {
            if (o.key[0] == 0) break;
            if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
                gguf_set_val_f32(ctx_out, o.key, o.val_f64);
            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
                gguf_set_val_i32(ctx_out, o.key, o.val_i64);
            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
                gguf_set_val_bool(ctx_out, o.key, o.val_bool);
            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
                gguf_set_val_str(ctx_out, o.key, o.val_str);
            } else {
                LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
            }
        }
    }

    for (int i = 0; i < ml.n_tensors; ++i) {
        const struct ggml_tensor * meta = ml.get_tensor_meta(i);

        const std::string name = ggml_get_name(meta);

        // TODO: avoid hardcoded tensor names - use the TN_* constants
        if (name.find("attn_v.weight")   != std::string::npos ||
            name.find("attn_qkv.weight") != std::string::npos ||
            name.find("attn_kv_b.weight")!= std::string::npos) {
            ++qs.n_attention_wv;
        } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
            qs.has_output = true;
        }
    }

    qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;

    // sanity checks
    {
        const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
        // attention layers have a non-zero number of kv heads
        int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
        if (llama_model_has_encoder(&model)) {
            n_attn_layer *= 3;
        }
        GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
    }

    size_t total_size_org = 0;
    size_t total_size_new = 0;

    std::vector workers;
    workers.reserve(nthread);

    int idx = 0;

    std::vector> read_data;
    std::vector> work;
    std::vector> f32_conv_buf;

    uint16_t n_split = 1;
    // Assume split index is continuous
    if (params->keep_split) {
        for (int i = 0; i < ml.n_tensors; ++i) {
            n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
        }
    }
    std::vector ctx_outs(n_split, NULL);
    ctx_outs[0] = ctx_out;

    // populate the original tensors so we get an initial meta data
    for (int i = 0; i < ml.n_tensors; ++i) {
        auto weight = ml.get_weight(i);
        uint16_t i_split = params->keep_split ? weight->idx : 0;
        struct ggml_tensor * tensor = weight->tensor;
        if (ctx_outs[i_split] == NULL) {
            ctx_outs[i_split] = gguf_init_empty();
        }
        gguf_add_tensor(ctx_outs[i_split], tensor);
    }

    // Set split info if needed
    if (n_split > 1) {
        for (size_t i = 0; i < ctx_outs.size(); ++i) {
            gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
            gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
            gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
        }
    }

    int cur_split = -1;
    std::ofstream fout;
    auto close_ofstream = [&]() {
        // Write metadata and close file handler
        if (fout.is_open()) {
            fout.seekp(0);
            std::vector data(gguf_get_meta_size(ctx_outs[cur_split]));
            gguf_get_meta_data(ctx_outs[cur_split], data.data());
            fout.write((const char *) data.data(), data.size());
            fout.close();
        }
    };
    auto new_ofstream = [&](int index) {
        cur_split = index;
        GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
        std::string fname = fname_out;
        if (params->keep_split) {
            char split_path[PATH_MAX] = {0};
            llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
            fname = std::string(split_path);
        }

        fout = std::ofstream(fname, std::ios::binary);
        fout.exceptions(std::ofstream::failbit); // fail fast on write errors
        const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
        // placeholder for the meta data
        ::zeros(fout, meta_size);
    };

    const auto tn = LLM_TN(model.arch);
    new_ofstream(0);
    for (int i = 0; i < ml.n_tensors; ++i) {
        auto weight = ml.get_weight(i);
        struct ggml_tensor * tensor = weight->tensor;
        if (weight->idx != cur_split && params->keep_split) {
            close_ofstream();
            new_ofstream(weight->idx);
        }

        const std::string name = ggml_get_name(tensor);

        if (!ml.use_mmap) {
            if (read_data.size() < ggml_nbytes(tensor)) {
                read_data.resize(ggml_nbytes(tensor));
            }
            tensor->data = read_data.data();
        }
        ml.load_data_for(tensor);

        LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
               ++idx, ml.n_tensors,
               ggml_get_name(tensor),
               llama_format_tensor_shape(tensor).c_str(),
               ggml_type_name(tensor->type));

        // This used to be a regex, but  has an extreme cost to compile times.
        bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?

        // quantize only 2D and 3D tensors (experts)
        quantize &= (ggml_n_dims(tensor) >= 2);

        // do not quantize norm tensors
        quantize &= name.find("_norm.weight") == std::string::npos;

        quantize &= params->quantize_output_tensor || name != "output.weight";
        quantize &= !params->only_copy;

        // do not quantize expert gating tensors
        // NOTE: can't use LLM_TN here because the layer number is not known
        quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;

        // do not quantize positional embeddings and token types (BERT)
        quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD,    "weight");
        quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");

        // do not quantize Mamba's small yet 2D weights
        // NOTE: can't use LLM_TN here because the layer number is not known
        quantize &= name.find("ssm_conv1d.weight") == std::string::npos;

        // do not quantize relative position bias (T5)
        quantize &= name.find("attn_rel_b.weight") == std::string::npos;

        enum ggml_type new_type;
        void * new_data;
        size_t new_size;

        if (quantize) {
            new_type = default_type;

            // get more optimal quantization type based on the tensor shape, layer, etc.
            if (!params->pure && ggml_is_quantized(default_type)) {
                new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
            }
            if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
                new_type = params->token_embedding_type;
            }
            if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
                new_type = params->output_tensor_type;
            }

            // If we've decided to quantize to the same type the tensor is already
            // in then there's nothing to do.
            quantize = tensor->type != new_type;
        }

        if (!quantize) {
            new_type = tensor->type;
            new_data = tensor->data;
            new_size = ggml_nbytes(tensor);
            LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
        } else {
            const int64_t nelements = ggml_nelements(tensor);

            const float * imatrix = nullptr;
            if (imatrix_data) {
                auto it = imatrix_data->find(tensor->name);
                if (it == imatrix_data->end()) {
                    LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
                } else {
                    if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
                        imatrix = it->second.data();
                    } else {
                        LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
                                int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);

                        // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
                        // this is a significant error and it may be good idea to abort the process if this happens,
                        // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
                        // tok_embd should be ignored in this case, since it always causes this warning
                        if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
                            throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
                                    int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
                        }
                    }
                }
            }
            if ((new_type == GGML_TYPE_IQ2_XXS ||
                 new_type == GGML_TYPE_IQ2_XS  ||
                 new_type == GGML_TYPE_IQ2_S   ||
                 new_type == GGML_TYPE_IQ1_S   ||
                (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight"))  ||
                (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
                LLAMA_LOG_ERROR("\n\n============================================================\n");
                LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
                LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
                LLAMA_LOG_ERROR("============================================================\n\n");
                throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
            }

            float * f32_data;

            if (tensor->type == GGML_TYPE_F32) {
                f32_data = (float *) tensor->data;
            } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
                throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
            } else {
                llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
                f32_data = (float *) f32_conv_buf.data();
            }

            int chunk_size_multiplier = 1;
            if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 || new_type == GGML_TYPE_Q4_0_8_8) {
                if ((new_type == GGML_TYPE_Q4_0_8_8) && (tensor->ne[1] % 8 != 0)) new_type = GGML_TYPE_Q4_0;
                else if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
                if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
                else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
            }

            LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
            fflush(stdout);

            if (work.size() < (size_t)nelements * 4) {
                work.resize(nelements * 4); // upper bound on size
            }
            new_data = work.data();

            const int64_t n_per_row = tensor->ne[0];
            const int64_t nrows = tensor->ne[1];

            static const int64_t min_chunk_size = 32 * 512;
            const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)) *
                                       chunk_size_multiplier;

            const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
            const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
            const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;

            // quantize each expert separately since they have different importance matrices
            new_size = 0;
            for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
                const float * f32_data_03 = f32_data + i03 * nelements_matrix;
                void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
                const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;

                new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
            }
            LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
        }
        total_size_org += ggml_nbytes(tensor);
        total_size_new += new_size;

        // update the gguf meta data as we go
        gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
        gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);

        // write tensor data + padding
        fout.write((const char *) new_data, new_size);
        zeros(fout, GGML_PAD(new_size, align) - new_size);
    }
    close_ofstream();
    for (auto & c:ctx_outs) {
        gguf_free(c);
    }

    LLAMA_LOG_INFO("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
    LLAMA_LOG_INFO("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);

    if (qs.n_fallback > 0) {
        LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
                __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
    }
}

static void llama_lora_adapter_init_internal(struct llama_model * model, const char * path_lora, struct llama_lora_adapter & adapter) {
    LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);

    ggml_context * ctx = nullptr;
    struct gguf_init_params meta_gguf_params = {
        /* .no_alloc = */ true,
        /* .ctx      = */ &ctx,
    };
    struct gguf_context * ctx_gguf = gguf_init_from_file(path_lora, meta_gguf_params);
    if (!ctx_gguf) {
        throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
    }

    // check metadata
    {
        auto get_kv_str = [&](const std::string & key) -> std::string {
            int id = gguf_find_key(ctx_gguf, key.c_str());
            return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
        };
        auto get_kv_f32 = [&](const std::string & key) -> float {
            int id = gguf_find_key(ctx_gguf, key.c_str());
            return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
        };
        LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);

        auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
        if (general_type != "adapter") {
            gguf_free(ctx_gguf);
            throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
        }

        auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
        auto general_arch = llm_arch_from_string(general_arch_str);
        if (general_arch != model->arch) {
            gguf_free(ctx_gguf);
            throw std::runtime_error("model arch and LoRA arch mismatch");
        }

        auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
        if (adapter_type != "lora") {
            gguf_free(ctx_gguf);
            throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
        }

        adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
    }

    int n_tensors = gguf_get_n_tensors(ctx_gguf);

    // contexts for each buffer type
    std::map ctx_map;
    auto get_ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
        auto it = ctx_map.find(buft);
        if (it == ctx_map.end()) {
            // add a new context
            struct ggml_init_params params = {
                /*.mem_size   =*/ n_tensors*ggml_tensor_overhead(),
                /*.mem_buffer =*/ NULL,
                /*.no_alloc   =*/ true,
            };
            ggml_context * buft_ctx = ggml_init(params);
            ctx_map[buft] = buft_ctx;
            return buft_ctx;
        };
        return it->second;
    };

    // bundle lora_a and lora_b into pairs
    std::map ab_map;
    auto str_endswith = [](const std::string & str, const std::string & suffix) {
        return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
    };
    for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
        std::string name(cur->name);
        if (str_endswith(name, ".lora_a")) {
            replace_all(name, ".lora_a", "");
            if (ab_map.find(name) == ab_map.end()) {
                ab_map[name] = llama_lora_weight(cur, nullptr);
            } else {
                ab_map[name].a = cur;
            }
        } else if (str_endswith(name, ".lora_b")) {
            replace_all(name, ".lora_b", "");
            if (ab_map.find(name) == ab_map.end()) {
                ab_map[name] = llama_lora_weight(nullptr, cur);
            } else {
                ab_map[name].b = cur;
            }
        } else {
            gguf_free(ctx_gguf);
            ggml_free(ctx);
            throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
        }
    }

    // add tensors
    for (auto & it : ab_map) {
        const std::string & name = it.first;
        llama_lora_weight & w = it.second;

        if (!w.a || !w.b) {
            gguf_free(ctx_gguf);
            ggml_free(ctx);
            throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
        }

        // device buft and device ctx
        auto * model_tensor = llama_get_model_tensor(model, name.c_str());
        if (!model_tensor) {
            gguf_free(ctx_gguf);
            ggml_free(ctx);
            throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
        }
        struct ggml_context * dev_ctx = get_ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
        // validate tensor shape
        if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
            gguf_free(ctx_gguf);
            ggml_free(ctx);
            throw std::runtime_error("tensor '" + name + "' has incorrect shape");
        }
        if (w.a->ne[1] != w.b->ne[0]) {
            gguf_free(ctx_gguf);
            ggml_free(ctx);
            throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
        }
        // save tensor to adapter
        struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
        struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
        ggml_set_name(tensor_a, w.a->name);
        ggml_set_name(tensor_b, w.b->name);
        adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
    }

    // allocate tensors / buffers and zero
    {
        adapter.ctxs.reserve(ctx_map.size());
        adapter.bufs.reserve(ctx_map.size());
        for (auto it : ctx_map) {
            ggml_backend_buffer_type_t buft = it.first;
            ggml_context * ctx_dev = it.second;
            ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft);
            if (!buf) {
                gguf_free(ctx_gguf);
                ggml_free(ctx);
                throw std::runtime_error("failed to allocate buffer for lora adapter\n");
            }
            LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
            adapter.ctxs.push_back(ctx_dev);
            adapter.bufs.push_back(buf);
        }
    }

    // set tensor data
    {
        llama_file gguf_file(path_lora, "rb");
        std::vector read_buf;
        auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
            size_t offs = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, gguf_find_tensor(ctx_gguf, orig->name));
            size_t size = ggml_nbytes(orig);
            read_buf.resize(size);
            gguf_file.seek(offs, SEEK_SET);
            gguf_file.read_raw(read_buf.data(), size);
            ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
        };
        for (auto & it : adapter.ab_map) {
            auto orig = ab_map[it.first];
            auto dev  = it.second;
            set_tensor(orig.a, dev.a);
            set_tensor(orig.b, dev.b);
        }
    }

    LLAMA_LOG_INFO("%s: loaded %ld tensors from lora file\n", __func__, adapter.ab_map.size()*2);

    // free ctx for reading gguf
    gguf_free(ctx_gguf);
    ggml_free(ctx);
}

int32_t llama_lora_adapter_set(
            struct llama_context * ctx,
            struct llama_lora_adapter * adapter,
            float scale) {
    if (ctx->cparams.flash_attn) {
        LLAMA_LOG_ERROR("%s: flash_attn is not compatible with LoRA\n", __func__);
        return -1;
    }
    ctx->lora_adapters[adapter] = scale;
    return 0;
}

int32_t llama_lora_adapter_remove(
            struct llama_context * ctx,
            struct llama_lora_adapter * adapter) {
    auto pos = ctx->lora_adapters.find(adapter);
    if (pos != ctx->lora_adapters.end()) {
        ctx->lora_adapters.erase(pos);
        return 0;
    }
    return -1;
}

void llama_lora_adapter_clear(struct llama_context * ctx) {
    ctx->lora_adapters.clear();
}

void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
    delete adapter;
}

//
// interface implementation
//
struct llama_model_params llama_model_default_params() {
    struct llama_model_params result = {
        /*.n_gpu_layers                =*/ 0,
        /*.split_mode                  =*/ LLAMA_SPLIT_MODE_LAYER,
        /*.main_gpu                    =*/ 0,
        /*.tensor_split                =*/ nullptr,
        /*.rpc_servers                 =*/ nullptr,
        /*.progress_callback           =*/ nullptr,
        /*.progress_callback_user_data =*/ nullptr,
        /*.kv_overrides                =*/ nullptr,
        /*.vocab_only                  =*/ false,
        /*.use_mmap                    =*/ true,
        /*.use_mlock                   =*/ false,
        /*.check_tensors               =*/ false,
    };

#ifdef GGML_USE_METAL
    // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
    result.n_gpu_layers = 999;
#endif

    return result;
}

struct llama_context_params llama_context_default_params() {
    struct llama_context_params result = {
        /*.seed                        =*/ LLAMA_DEFAULT_SEED,
        /*.n_ctx                       =*/ 512,
        /*.n_batch                     =*/ 2048,
        /*.n_ubatch                    =*/ 512,
        /*.n_seq_max                   =*/ 1,
        /*.n_threads                   =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
        /*.n_threads_batch             =*/ GGML_DEFAULT_N_THREADS,
        /*.rope_scaling_type           =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
        /*.pooling_type                =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
        /*.attention_type              =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
        /*.rope_freq_base              =*/ 0.0f,
        /*.rope_freq_scale             =*/ 0.0f,
        /*.yarn_ext_factor             =*/ -1.0f,
        /*.yarn_attn_factor            =*/ 1.0f,
        /*.yarn_beta_fast              =*/ 32.0f,
        /*.yarn_beta_slow              =*/ 1.0f,
        /*.yarn_orig_ctx               =*/ 0,
        /*.defrag_thold                =*/ -1.0f,
        /*.cb_eval                     =*/ nullptr,
        /*.cb_eval_user_data           =*/ nullptr,
        /*.type_k                      =*/ GGML_TYPE_F16,
        /*.type_v                      =*/ GGML_TYPE_F16,
        /*.logits_all                  =*/ false,
        /*.embeddings                  =*/ false,
        /*.offload_kqv                 =*/ true,
        /*.flash_attn                  =*/ false,
        /*.abort_callback              =*/ nullptr,
        /*.abort_callback_data         =*/ nullptr,
    };

    return result;
}

struct llama_model_quantize_params llama_model_quantize_default_params() {
    struct llama_model_quantize_params result = {
        /*.nthread                     =*/ 0,
        /*.ftype                       =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
        /*.output_tensor_type          =*/ GGML_TYPE_COUNT,
        /*.token_embedding_type        =*/ GGML_TYPE_COUNT,
        /*.allow_requantize            =*/ false,
        /*.quantize_output_tensor      =*/ true,
        /*.only_copy                   =*/ false,
        /*.pure                        =*/ false,
        /*.keep_split                  =*/ false,
        /*.imatrix                     =*/ nullptr,
        /*.kv_overrides                =*/ nullptr,
    };

    return result;
}

size_t llama_max_devices(void) {
#if defined(GGML_USE_RPC)
    return GGML_RPC_MAX_SERVERS;
#elif defined(GGML_USE_METAL)
    return 1;
#elif defined(GGML_USE_CUDA)
    return GGML_CUDA_MAX_DEVICES;
#elif defined(GGML_USE_SYCL)
    return GGML_SYCL_MAX_DEVICES;
#elif defined(GGML_USE_VULKAN)
    return GGML_VK_MAX_DEVICES;
#elif defined(GGML_USE_CANN)
    return GGML_CANN_MAX_DEVICES;
#else
    return 1;
#endif
}

bool llama_supports_mmap(void) {
    return llama_mmap::SUPPORTED;
}

bool llama_supports_mlock(void) {
    return llama_mlock::SUPPORTED;
}

bool llama_supports_gpu_offload(void) {
#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL)   || defined(GGML_USE_VULKAN) || \
    defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
    // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
    return true;
#else
    return false;
#endif
}

void llama_backend_init(void) {
    ggml_time_init();

    // needed to initialize f16 tables
    {
        struct ggml_init_params params = { 0, NULL, false };
        struct ggml_context * ctx = ggml_init(params);
        ggml_free(ctx);
    }
}

void llama_numa_init(enum ggml_numa_strategy numa) {
    if (numa != GGML_NUMA_STRATEGY_DISABLED) {
        ggml_numa_init(numa);
    }
}

void llama_backend_free(void) {
    ggml_quantize_free();
}

int64_t llama_time_us(void) {
    return ggml_time_us();
}

struct llama_model * llama_load_model_from_file(
        const char * path_model,
        struct llama_model_params   params) {
    ggml_time_init();

    llama_model * model = new llama_model;

    unsigned cur_percentage = 0;
    if (params.progress_callback == NULL) {
        params.progress_callback_user_data = &cur_percentage;
        params.progress_callback = [](float progress, void * ctx) {
            unsigned * cur_percentage_p = (unsigned *) ctx;
            unsigned percentage = (unsigned) (100 * progress);
            while (percentage > *cur_percentage_p) {
                *cur_percentage_p = percentage;
                LLAMA_LOG_INFO(".");
                if (percentage >= 100) {
                    LLAMA_LOG_INFO("\n");
                }
            }
            return true;
        };
    }
    if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
        // split the servers set them into model->rpc_servers
        std::string servers(params.rpc_servers);
        size_t pos = 0;
        while ((pos = servers.find(",")) != std::string::npos) {
            std::string server = servers.substr(0, pos);
            model->rpc_servers.push_back(server);
            servers.erase(0, pos + 1);
        }
        model->rpc_servers.push_back(servers);
    }
    int status = llama_model_load(path_model, *model, params);
    GGML_ASSERT(status <= 0);
    if (status < 0) {
        if (status == -1) {
            LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
        } else if (status == -2) {
            LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
        }
        delete model;
        return nullptr;
    }

    return model;
}

void llama_free_model(struct llama_model * model) {
    delete model;
}

struct llama_context * llama_new_context_with_model(
                 struct llama_model * model,
        struct llama_context_params   params) {

    if (!model) {
        LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
        return nullptr;
    }

    if (params.n_batch == 0 && params.n_ubatch == 0) {
        LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
        return nullptr;
    }

    if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
        LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
        return nullptr;
    }

    if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
        LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
        params.flash_attn = false;
    }

    if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
        LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
        params.flash_attn = false;
    }

    if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
        LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
        return nullptr;
    }

    llama_context * ctx = new llama_context(*model);

    const auto & hparams = model->hparams;
    auto       & cparams = ctx->cparams;

    cparams.n_seq_max        = std::max(1u, params.n_seq_max);
    cparams.n_threads        = params.n_threads;
    cparams.n_threads_batch  = params.n_threads_batch;
    cparams.yarn_ext_factor  = params.yarn_ext_factor;
    cparams.yarn_attn_factor = params.yarn_attn_factor;
    cparams.yarn_beta_fast   = params.yarn_beta_fast;
    cparams.yarn_beta_slow   = params.yarn_beta_slow;
    cparams.defrag_thold     = params.defrag_thold;
    cparams.embeddings       = params.embeddings;
    cparams.offload_kqv      = params.offload_kqv;
    cparams.flash_attn       = params.flash_attn;
    cparams.pooling_type     = params.pooling_type;

    cparams.n_ctx            = params.n_ctx           == 0    ? hparams.n_ctx_train           : params.n_ctx;
    cparams.rope_freq_base   = params.rope_freq_base  == 0.0f ? hparams.rope_freq_base_train  : params.rope_freq_base;
    cparams.rope_freq_scale  = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;

    // this is necessary due to kv_self.n being padded later during inference
    cparams.n_ctx            = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));

    // with causal attention, the batch size is limited by the context size
    cparams.n_batch          = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;

    // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
    // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
    // ref: https://github.com/ggerganov/llama.cpp/pull/5021
    if (cparams.n_batch < GGML_KQ_MASK_PAD) {
        LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
        cparams.n_batch = GGML_KQ_MASK_PAD;
    }

    cparams.n_ubatch         = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);

    cparams.n_ctx_orig_yarn  = params.yarn_orig_ctx    != 0 ? params.yarn_orig_ctx    :
                               hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
                                                              hparams.n_ctx_train;

    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;

    auto rope_scaling_type = params.rope_scaling_type;
    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
        rope_scaling_type = hparams.rope_scaling_type_train;
    }

    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
        cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
    }

    if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
        cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
    }

    cparams.yarn_attn_factor *= hparams.rope_attn_factor;

    if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
        if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
            cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
        } else {
            cparams.pooling_type = hparams.pooling_type;
        }
    }

    if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
        cparams.causal_attn = hparams.causal_attn;
    } else {
        cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
    }

    if (params.seed == LLAMA_DEFAULT_SEED) {
        params.seed = time(NULL);
    }

    LLAMA_LOG_INFO("%s: n_ctx      = %u\n",     __func__, cparams.n_ctx);
    LLAMA_LOG_INFO("%s: n_batch    = %u\n",     __func__, cparams.n_batch);
    LLAMA_LOG_INFO("%s: n_ubatch   = %u\n",     __func__, cparams.n_ubatch);
    LLAMA_LOG_INFO("%s: flash_attn = %d\n",     __func__, cparams.flash_attn);
    LLAMA_LOG_INFO("%s: freq_base  = %.1f\n",   __func__, cparams.rope_freq_base);
    LLAMA_LOG_INFO("%s: freq_scale = %g\n",     __func__, cparams.rope_freq_scale);

    ctx->abort_callback      = params.abort_callback;
    ctx->abort_callback_data = params.abort_callback_data;

    ctx->sampling.rng = std::mt19937(params.seed);
    ctx->logits_all   = params.logits_all;
    // build worst-case graph for encoder if a model contains encoder
    ctx->is_encoding  = llama_model_has_encoder(model);

    uint32_t kv_size = cparams.n_ctx;
    ggml_type type_k = params.type_k;
    ggml_type type_v = params.type_v;

    // Mamba only needs a constant number of KV cache cells per sequence
    if (llama_model_is_recurrent(model)) {
        // Mamba needs at least as many KV cells as there are sequences kept at any time
        kv_size = std::max((uint32_t) 1, params.n_seq_max);
        // it's probably best to keep as much precision as possible for the states
        type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
        type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
    }

    GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
    GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);

    if (!hparams.vocab_only) {
        // initialize backends
#if defined(GGML_USE_METAL)
        if (model->n_gpu_layers > 0) {
            ctx->backend_metal = ggml_backend_metal_init();
            if (ctx->backend_metal == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(ctx->backend_metal);
        }
#elif defined(GGML_USE_CUDA)
        if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
            // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
            ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
            if (backend == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(backend);
        } else {
            // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
            for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
                ggml_backend_t backend = ggml_backend_cuda_init(device);
                if (backend == nullptr) {
                    LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
                    llama_free(ctx);
                    return nullptr;
                }
                ctx->backends.push_back(backend);
            }
        }
#elif defined(GGML_USE_VULKAN)
        if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
            LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
            llama_free(ctx);
            return nullptr;
        }
        if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
            ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
            if (backend == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(backend);
        } else {
            for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
                ggml_backend_t backend = ggml_backend_vk_init(device);
                if (backend == nullptr) {
                    LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
                    llama_free(ctx);
                    return nullptr;
                }
                ctx->backends.push_back(backend);
            }
        }
#elif defined(GGML_USE_SYCL)
        // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
        if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
            ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
            if (backend == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(backend);
        } else {
            // LLAMA_SPLIT_LAYER requires a backend for each GPU
            for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
                ggml_backend_t backend = ggml_backend_sycl_init(i);
                if (backend == nullptr) {
                    LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d for No.%d backend\n", __func__, i, i);
                    llama_free(ctx);
                    return nullptr;
                }
                ctx->backends.push_back(backend);
            }
        }
#elif defined(GGML_USE_KOMPUTE)
        if (model->n_gpu_layers > 0) {
            auto * backend = ggml_backend_kompute_init(model->main_gpu);
            if (backend == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(backend);
        }
#elif defined(GGML_USE_CANN)
    // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
    // TODO: ggml_backend_cann is not support split tensor now, just leave code here.
    if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
        ggml_backend_t backend = ggml_backend_cann_init(model->main_gpu);
        if (backend == nullptr) {
            LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, model->main_gpu);
            llama_free(ctx);
            return nullptr;
        }
        ctx->backends.push_back(backend);
    } else {
        // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
        // TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
        for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
            ggml_backend_t backend = ggml_backend_cann_init(device);
            if (backend == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(backend);
        }
    }
#endif

#ifdef GGML_USE_BLAS
        ctx->backend_blas = ggml_backend_blas_init();
        if (ctx->backend_blas == nullptr) {
            LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
        } else {
            ctx->backends.push_back(ctx->backend_blas);
        }
#endif

#if defined(GGML_USE_RPC)
        if (model->n_gpu_layers > 0) {
            for (const auto & endpoint : model->rpc_servers) {
                ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
                if (backend == nullptr) {
                    LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
                    llama_free(ctx);
                    return nullptr;
                }
                ctx->backends.push_back(backend);
            }
        }
#endif
        ctx->backend_cpu = ggml_backend_cpu_init();
        if (ctx->backend_cpu == nullptr) {
            LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
            llama_free(ctx);
            return nullptr;
        }
        ctx->backends.push_back(ctx->backend_cpu);

        if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
            LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
            llama_free(ctx);
            return nullptr;
        }

        {
            size_t memory_size_k = 0;
            size_t memory_size_v = 0;

            for (auto & k : ctx->kv_self.k_l) {
                memory_size_k += ggml_nbytes(k);
            }

            for (auto & v : ctx->kv_self.v_l) {
                memory_size_v += ggml_nbytes(v);
            }

            LLAMA_LOG_INFO("%s: KV self size  = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
                (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
                ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
                ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
        }

        // graph outputs buffer
        {
            // resized during inference when a batch uses more outputs
            if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
                LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
                llama_free(ctx);
                return nullptr;
            }

            LLAMA_LOG_INFO("%s: %10s  output buffer size = %8.2f MiB\n", __func__,
                    ggml_backend_buffer_name(ctx->buf_output),
                    ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
        }

        // scheduler and compute buffers
        {
            // buffer types used for the compute buffer of each backend
            std::vector backend_buft;
            for (auto * backend : ctx->backends) {
                if (ggml_backend_is_cpu(backend)) {
                    // use host buffers for the CPU backend compute buffer
                    backend_buft.push_back(llama_default_buffer_type_cpu(true));
                } else {
                    backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
                }
            }

            const size_t max_nodes = llama_model_max_nodes(*model);

            // buffer used to store the computation graph and the tensor meta data
            ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));

            // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
            bool pipeline_parallel =
                llama_get_device_count(*model) > 1 &&
                model->n_gpu_layers > (int)model->hparams.n_layer &&
                model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
                params.offload_kqv;
#ifndef GGML_USE_CUDA
            // pipeline parallelism requires support for async compute and events
            // currently this is only implemented in the CUDA backend
            pipeline_parallel = false;
#endif
            ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel);

            if (pipeline_parallel) {
                LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
            }

            // build worst-case graph
            uint32_t n_seqs = 1; // TODO: worst-case number of sequences
            uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
            llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
            llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
            ggml_cgraph * gf = llama_build_graph(*ctx, ubatch, true);

            // initialize scheduler with the worst-case graph
            if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
                LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
                llama_free(ctx);
                return nullptr;
            }

            for (size_t i = 0; i < ctx->backends.size(); i++) {
                ggml_backend_t backend = ctx->backends[i];
                ggml_backend_buffer_type_t buft = backend_buft[i];
                size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
                if (size > 1) {
                    LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                            ggml_backend_buft_name(buft),
                            size / 1024.0 / 1024.0);
                }
            }

            // note: the number of splits during measure is higher than during inference due to the kv shift
            int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
            LLAMA_LOG_INFO("%s: graph nodes  = %d\n", __func__, gf->n_nodes);
            LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
        }
    }

    return ctx;
}

void llama_free(struct llama_context * ctx) {
    delete ctx;
}

const struct llama_model * llama_get_model(const struct llama_context * ctx) {
    return &ctx->model;
}

const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx) {
    return &ctx->model.vocab;
}

uint32_t llama_n_ctx(const struct llama_context * ctx) {
    return ctx->cparams.n_ctx;
}

uint32_t llama_n_batch(const struct llama_context * ctx) {
    return ctx->cparams.n_batch;
}

uint32_t llama_n_ubatch(const struct llama_context * ctx) {
    return ctx->cparams.n_ubatch;
}

uint32_t llama_n_seq_max(const struct llama_context * ctx) {
    return ctx->kv_self.size;
}

enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
    return model->vocab.type;
}

enum llama_rope_type llama_rope_type(const struct llama_model * model) {
    switch (model->arch) {
        // these models do not use RoPE
        case LLM_ARCH_GPT2:
        case LLM_ARCH_GPTJ:
        case LLM_ARCH_MPT:
        case LLM_ARCH_REFACT:
        case LLM_ARCH_BLOOM:
        case LLM_ARCH_MAMBA:
        case LLM_ARCH_JINA_BERT_V2:
        case LLM_ARCH_T5:
        case LLM_ARCH_T5ENCODER:
        case LLM_ARCH_JAIS:
            return LLAMA_ROPE_TYPE_NONE;

        // use what we call a normal RoPE, operating on pairs of consecutive head values
        case LLM_ARCH_LLAMA:
        case LLM_ARCH_BAICHUAN:
        case LLM_ARCH_STARCODER:
        case LLM_ARCH_PLAMO:
        case LLM_ARCH_ORION:
        case LLM_ARCH_INTERNLM2:
        case LLM_ARCH_MINICPM:
        case LLM_ARCH_XVERSE:
        case LLM_ARCH_COMMAND_R:
        case LLM_ARCH_OLMO:
        case LLM_ARCH_ARCTIC:
        case LLM_ARCH_DEEPSEEK2:
        case LLM_ARCH_CHATGLM:
            return LLAMA_ROPE_TYPE_NORM;

        // the pairs of head values are offset by n_rot/2
        case LLM_ARCH_FALCON:
        case LLM_ARCH_GROK:
        case LLM_ARCH_DBRX:
        case LLM_ARCH_BERT:
        case LLM_ARCH_NOMIC_BERT:
        case LLM_ARCH_STABLELM:
        case LLM_ARCH_BITNET:
        case LLM_ARCH_QWEN:
        case LLM_ARCH_QWEN2:
        case LLM_ARCH_QWEN2MOE:
        case LLM_ARCH_PHI2:
        case LLM_ARCH_PHI3:
        case LLM_ARCH_GEMMA:
        case LLM_ARCH_GEMMA2:
        case LLM_ARCH_STARCODER2:
        case LLM_ARCH_OPENELM:
        case LLM_ARCH_GPTNEOX:
        case LLM_ARCH_CODESHELL:
        case LLM_ARCH_NEMOTRON:
        case LLM_ARCH_EXAONE:
            return LLAMA_ROPE_TYPE_NEOX;

        // all model arches should be listed explicitly here
        case LLM_ARCH_UNKNOWN:
            GGML_ABORT("unknown architecture");
    }

    return LLAMA_ROPE_TYPE_NONE;
}

enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
    return ctx->cparams.pooling_type;
}

int32_t llama_n_vocab(const struct llama_model * model) {
    return model->hparams.n_vocab;
}

int32_t llama_n_ctx_train(const struct llama_model * model) {
    return model->hparams.n_ctx_train;
}

int32_t llama_n_embd(const struct llama_model * model) {
    return model->hparams.n_embd;
}

int32_t llama_n_layer(const struct llama_model * model) {
    return model->hparams.n_layer;
}

float llama_rope_freq_scale_train(const struct llama_model * model) {
    return model->hparams.rope_freq_scale_train;
}

int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
    const auto & it = model->gguf_kv.find(key);
    if (it == model->gguf_kv.end()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    return snprintf(buf, buf_size, "%s", it->second.c_str());
}

int32_t llama_model_meta_count(const struct llama_model * model) {
    return (int)model->gguf_kv.size();
}

int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
    if (i < 0 || i >= (int)model->gguf_kv.size()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    auto it = model->gguf_kv.begin();
    std::advance(it, i);
    return snprintf(buf, buf_size, "%s", it->first.c_str());
}

int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
    if (i < 0 || i >= (int)model->gguf_kv.size()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    auto it = model->gguf_kv.begin();
    std::advance(it, i);
    return snprintf(buf, buf_size, "%s", it->second.c_str());
}

int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
    return snprintf(buf, buf_size, "%s %s %s",
            llama_model_arch_name(model->arch),
            llama_model_type_name(model->type),
            llama_model_ftype_name(model->ftype).c_str());
}

uint64_t llama_model_size(const struct llama_model * model) {
    uint64_t size = 0;
    for (const auto & it : model->tensors_by_name) {
        size += ggml_nbytes(it.second);
    }
    return size;
}

uint64_t llama_model_n_params(const struct llama_model * model) {
    uint64_t nparams = 0;
    for (const auto & it : model->tensors_by_name) {
        nparams += ggml_nelements(it.second);
    }
    return nparams;
}

struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
    auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
            [name](const std::pair & it) {
                return it.first == name;
            });
    if (it == model->tensors_by_name.end()) {
        return nullptr;
    }
    return it->second;
}

bool llama_model_has_encoder(const struct llama_model * model) {
    switch (model->arch) {
        case LLM_ARCH_T5:        return true;
        case LLM_ARCH_T5ENCODER: return true;
        default:                 return false;
    }
}

bool llama_model_has_decoder(const struct llama_model * model) {
    switch (model->arch) {
        case LLM_ARCH_T5ENCODER: return false;
        default:                 return true;
    }
}

llama_token llama_model_decoder_start_token(const struct llama_model * model) {
    return model->hparams.dec_start_token_id;
}

bool llama_model_is_recurrent(const struct llama_model * model) {
    switch (model->arch) {
        case LLM_ARCH_MAMBA:  return true;
        default:              return false;
    }
}

uint32_t llama_model_quantize(
        const char * fname_inp,
        const char * fname_out,
        const llama_model_quantize_params * params) {
    try {
        llama_model_quantize_internal(fname_inp, fname_out, params);
        return 0;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
        return 1;
    }
}

struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
    try {
        struct llama_lora_adapter * adapter = new llama_lora_adapter(model);
        llama_lora_adapter_init_internal(model, path_lora, *adapter);
        return adapter;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
        return nullptr;
    }
}

static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
    GGML_ASSERT(cvec.tensors.empty());
    GGML_ASSERT(cvec.ctxs.empty());
    GGML_ASSERT(cvec.bufs.empty());

    // count layer buffer types
    std::map buft_layer_count;
    for (int64_t i = 0; i < model.hparams.n_layer; i++) {
        buft_layer_count[model.buft_layer[i].buft]++;
    }

    // allocate contexts
    std::map ctx_map;
    for (auto & it : buft_layer_count) {
        int n_layers = it.second;
        struct ggml_init_params params = {
            /*.mem_size   =*/ n_layers * ggml_tensor_overhead(),
            /*.mem_buffer =*/ NULL,
            /*.no_alloc   =*/ true,
        };
        ggml_context * ctx = ggml_init(params);
        if (!ctx) {
            LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
            return 1;
        }
        ctx_map[it.first] = ctx;
    }

    // make tensors
    cvec.tensors.reserve(model.hparams.n_layer);
    cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
    for (size_t il = 1; il < model.hparams.n_layer; il++) {
        struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
        ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
        cvec.tensors.push_back(tensor);
    }

    // allocate tensors / buffers and zero
    cvec.ctxs.reserve(ctx_map.size());
    cvec.bufs.reserve(ctx_map.size());
    for (auto it : ctx_map) {
        ggml_backend_buffer_type_t buft = it.first;
        ggml_context * ctx = it.second;
        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
        if (!buf) {
            LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
            return false;
        }
        ggml_backend_buffer_clear(buf, 0);
        cvec.ctxs.push_back(ctx);
        cvec.bufs.push_back(buf);
    }

    return true;
}

int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
    const llama_model & model = lctx->model;
    llama_control_vector & cvec = lctx->cvec;

    if (data == nullptr) {
        // disable the current control vector (but leave allocated for later)
        cvec.layer_start = -1;
        cvec.layer_end   = -1;
        return 0;
    }

    if (n_embd != (int) model.hparams.n_embd) {
        LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
        return 1;
    }

    if (cvec.tensors.empty()) {
        if (!llama_control_vector_init(cvec, model)) {
            return 1;
        }
    }

    cvec.layer_start = il_start;
    cvec.layer_end   = il_end;

    for (size_t il = 1; il < model.hparams.n_layer; il++) {
        assert(cvec.tensors[il] != nullptr);

        const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
        if (off + n_embd <= len) {
            ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
        }
    }

    return 0;
}

struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
    struct llama_kv_cache_view result = {
        /*.n_cells            = */ 0,
        /*.n_seq_max          = */ n_seq_max,
        /*.token_count        = */ 0,
        /*.used_cells         = */ llama_get_kv_cache_used_cells(ctx),
        /*.max_contiguous     = */ 0,
        /*.max_contiguous_idx = */ -1,
        /*.cells              = */ nullptr,
        /*.cells_sequences    = */ nullptr,
    };
    return result;
}

void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
    if (view->cells != nullptr) {
        free(view->cells);
        view->cells = nullptr;
    }
    if (view->cells_sequences != nullptr) {
        free(view->cells_sequences);
        view->cells_sequences = nullptr;
    }
}

void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
    if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
        view->n_cells = int32_t(ctx->kv_self.size);
        void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
        GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
        view->cells = (struct llama_kv_cache_view_cell *)p;
        p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
        GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
        view->cells_sequences = (llama_seq_id *)p;
    }

    const std::vector & kv_cells = ctx->kv_self.cells;
    llama_kv_cache_view_cell * c_curr = view->cells;
    llama_seq_id * cs_curr = view->cells_sequences;
    int32_t used_cells = 0;
    int32_t token_count = 0;
    int32_t curr_contig_idx = -1;
    uint32_t max_contig = 0;
    int32_t max_contig_idx = -1;

    for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
        const size_t curr_size = kv_cells[i].seq_id.size();
        token_count += curr_size;
        c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;

        if (curr_size > 0) {
            if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
                max_contig = i - curr_contig_idx;
                max_contig_idx = curr_contig_idx;
            }
            curr_contig_idx = -1;
        } else if (curr_contig_idx < 0) {
            curr_contig_idx = i;
        }

        int seq_idx = 0;
        for (const llama_seq_id it : kv_cells[i].seq_id) {
            if (seq_idx >= view->n_seq_max) {
                break;
            }
            cs_curr[seq_idx] = it;
            seq_idx++;
        }
        if (seq_idx != 0) {
            used_cells++;
        }
        for (; seq_idx < view->n_seq_max; seq_idx++) {
            cs_curr[seq_idx] = -1;
        }
    }
    if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
        max_contig_idx = curr_contig_idx;
        max_contig = kv_cells.size() - curr_contig_idx;
    }
    view->max_contiguous = max_contig;
    view->max_contiguous_idx = max_contig_idx;
    view->token_count = token_count;
    view->used_cells = used_cells;
    if (uint32_t(used_cells) != ctx->kv_self.used) {
        LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
            __func__, ctx->kv_self.used, used_cells);
    }
}

int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
    int result = 0;

    for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
        result += ctx->kv_self.cells[i].seq_id.size();
    }

    return result;
}

int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
    return ctx->kv_self.used;
}

void llama_kv_cache_clear(struct llama_context * ctx) {
    llama_kv_cache_clear(ctx->kv_self);
}

bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
    return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
}

void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
    if (seq_id_src == seq_id_dst) {
        return;
    }
    llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
}

void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
    llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
}

void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
    if (delta == 0) {
        return;
    }

    llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
}

void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
    if (d == 1) {
        return;
    }

    llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
}

llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
    return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
}

void llama_kv_cache_defrag(struct llama_context * ctx) {
    llama_kv_cache_defrag(ctx->kv_self);
}

void llama_kv_cache_update(struct llama_context * ctx) {
    llama_kv_cache_update_internal(*ctx);
}

// deprecated
size_t llama_get_state_size(struct llama_context * ctx) {
    return llama_state_get_size(ctx);
}

// deprecated
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
    return llama_state_get_data(ctx, dst, -1);
}

// deprecated
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
    return llama_state_set_data(ctx, src, -1);
}

// deprecated
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
}

// deprecated
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    return llama_state_save_file(ctx, path_session, tokens, n_token_count);
}

// TODO: replace all non-fatal assertions with returned errors or exceptions
struct llama_data_write {
    virtual void write(const void * src, size_t size) = 0;
    virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0;
    virtual size_t get_size_written() = 0;
    virtual ~llama_data_write() = default;

    void write_string(const std::string & str) {
        uint32_t str_size = str.size();

        write(&str_size,  sizeof(str_size));
        write(str.data(), str_size);
    }

    void write_model_info(const struct llama_context * ctx) {
        std::string arch_str = LLM_ARCH_NAMES.at(ctx->model.arch);
        write_string(arch_str);
        // TODO: add more model-specific info which should prevent loading the session file if not identical
    }

    void write_rng(const std::mt19937 & rng) {
        std::ostringstream rng_ss;
        rng_ss << rng;

        const std::string & rng_str = rng_ss.str();

        write_string(rng_str);
    }

    void write_output_ids(struct llama_context * ctx) {
        llama_output_reorder(ctx);

        const uint32_t n_outputs = ctx->n_outputs;

        std::vector output_pos;

        const size_t    n_batch = ctx->cparams.n_batch;
        const auto & output_ids = ctx->output_ids;

        GGML_ASSERT(n_outputs <= ctx->output_size);

        output_pos.resize(n_outputs);

        // build a more compact representation of the output ids
        for (size_t i = 0; i < n_batch; ++i) {
            // map an output id to a position in the batch
            int32_t pos = output_ids[i];
            if (pos >= 0) {
                GGML_ASSERT((uint32_t) pos < n_outputs);
                output_pos[pos] = i;
            }
        }

        write(&n_outputs, sizeof(n_outputs));

        if (n_outputs) {
            write(output_pos.data(), n_outputs * sizeof(int32_t));
        }
    }

    void write_logits(const struct llama_context * ctx) {
        const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_vocab);

        write(&logits_size, sizeof(logits_size));

        if (logits_size) {
            write(ctx->logits, logits_size * sizeof(float));
        }
    }

    void write_embeddings(const struct llama_context * ctx) {
        const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_embd);

        write(&embeddings_size, sizeof(embeddings_size));

        if (embeddings_size) {
            write(ctx->embd, embeddings_size * sizeof(float));
        }
    }

    void write_kv_cache_meta(const llama_kv_cache & kv_self, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) {

        for (const auto & range : cell_ranges) {
            for (uint32_t i = range.first; i < range.second; ++i) {
                const auto & cell = kv_self.cells[i];
                const llama_pos pos      = cell.pos;
                const uint32_t  n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;

                write(&pos,      sizeof(pos));
                write(&n_seq_id, sizeof(n_seq_id));

                if (n_seq_id) {
                    for (auto seq_id : cell.seq_id) {
                        write(&seq_id, sizeof(seq_id));
                    }
                }
            }
        }
    }

    void write_kv_cache_data(const struct llama_context * ctx, const std::vector> & cell_ranges) {
        const struct llama_kv_cache & kv_self = ctx->kv_self;
        const struct llama_hparams & hparams = ctx->model.hparams;

        const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
        const uint32_t n_layer = hparams.n_layer;

        write(&v_trans, sizeof(v_trans));
        write(&n_layer, sizeof(n_layer));

        std::vector tmp_buf;

        // Iterate and write all the keys first, each row is a cell
        // Get whole range at a time
        for (uint32_t il = 0; il < n_layer; ++il) {
            const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();

            // Write key type
            const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
            write(&k_type_i, sizeof(k_type_i));

            // Write row size of key
            const uint64_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
            write(&k_size_row, sizeof(k_size_row));

            // Read each range of cells of k_size length each into tmp_buf and write out
            for (const auto & range : cell_ranges) {
                const size_t range_size = range.second - range.first;
                const size_t buf_size = range_size * k_size_row;
                write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
            }
        }

        if (!kv_self.v_trans) {
            for (uint32_t il = 0; il < n_layer; ++il) {
                const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();

                // Write value type
                const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
                write(&v_type_i, sizeof(v_type_i));

                // Write row size of value
                const uint64_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
                write(&v_size_row, sizeof(v_size_row));

                // Read each range of cells of v_size length each into tmp_buf and write out
                for (const auto & range : cell_ranges) {
                    const size_t range_size = range.second - range.first;
                    const size_t buf_size = range_size * v_size_row;
                    write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
                }
            }
        } else {
            // When v is transposed, we also need the element size and get the element ranges from each row
            const uint32_t kv_size = kv_self.size;
            for (uint32_t il = 0; il < n_layer; ++il) {
                const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();

                // Write value type
                const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
                write(&v_type_i, sizeof(v_type_i));

                // Write element size
                const uint32_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
                write(&v_size_el, sizeof(v_size_el));

                // Write GQA embedding size
                write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));

                // For each row, we get the element values of each cell
                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                    // Read each range of cells of v_size_el length each into tmp_buf and write out
                    for (const auto & range : cell_ranges) {
                        const size_t range_size = range.second - range.first;
                        const size_t src_offset = (range.first + j * kv_size) * v_size_el;
                        const size_t buf_size = range_size * v_size_el;
                        write_tensor_data(kv_self.v_l[il], src_offset, buf_size);
                    }
                }
            }
        }
    }

    void write_kv_cache(const struct llama_context * ctx, llama_seq_id seq_id = -1) {
        const struct llama_kv_cache & kv_self = ctx->kv_self;
        std::vector> cell_ranges; // ranges, from inclusive, to exclusive
        uint32_t cell_count = 0;

        // Count the number of cells with the specified seq_id
        // Find all the ranges of cells with this seq id (or all, when -1)
        uint32_t cell_range_begin = kv_self.size;
        for (uint32_t i = 0; i < kv_self.size; ++i) {
            const auto & cell = kv_self.cells[i];
            if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
                ++cell_count;
                if (cell_range_begin == kv_self.size) {
                    cell_range_begin = i;
                }
            } else {
                if (cell_range_begin != kv_self.size) {
                    cell_ranges.emplace_back(cell_range_begin, i);
                    cell_range_begin = kv_self.size;
                }
            }
        }
        if (cell_range_begin != kv_self.size) {
            cell_ranges.emplace_back(cell_range_begin, kv_self.size);
        }

        // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
        uint32_t cell_count_check = 0;
        for (const auto & range : cell_ranges) {
            cell_count_check += range.second - range.first;
        }
        GGML_ASSERT(cell_count == cell_count_check);

        write(&cell_count, sizeof(cell_count));

        write_kv_cache_meta(kv_self, cell_ranges, seq_id);
        write_kv_cache_data(ctx, cell_ranges);
    }
};

struct llama_data_read {
    virtual const uint8_t * read(size_t size) = 0;
    virtual void read_to(void * dst, size_t size) = 0;
    virtual size_t get_size_read() = 0;
    virtual ~llama_data_read() = default;

    void read_string(std::string & str) {
        uint32_t str_size;
        read_to(&str_size, sizeof(str_size));

        str.assign((const char *) read(str_size), str_size);
    }

    // validate model information
    void read_model_info(const struct llama_context * ctx) {
        std::string cur_arch_str = LLM_ARCH_NAMES.at(ctx->model.arch);
        std::string arch_str;
        read_string(arch_str);
        if (cur_arch_str != arch_str) {
            throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str()));
        }
        // TODO: add more info which needs to be identical but which is not verified otherwise
    }

    void read_rng(std::mt19937 & rng) {
        std::string rng_str;
        read_string(rng_str);

        std::istringstream rng_ss(rng_str);
        rng_ss >> rng;

        if (rng_ss.fail()) {
            throw std::runtime_error("failed to load RNG state");
        }
    }

    void read_output_ids(struct llama_context * ctx) {
        std::vector output_pos;

        uint32_t n_outputs;
        read_to(&n_outputs, sizeof(n_outputs));

        if (n_outputs > llama_output_reserve(*ctx, n_outputs)) {
            throw std::runtime_error("could not reserve outputs");
        }

        if (n_outputs) {
            output_pos.resize(n_outputs);
            read_to(output_pos.data(), n_outputs * sizeof(int32_t));

            for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
                int32_t id = output_pos[i];
                if ((uint32_t) id >= ctx->cparams.n_batch) {
                    throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, ctx->cparams.n_batch));
                }
                ctx->output_ids[id] = i;
            }

            ctx->n_outputs = n_outputs;
        }
    }

    void read_logits(struct llama_context * ctx) {
        uint64_t logits_size;
        read_to(&logits_size, sizeof(logits_size));

        if (ctx->logits_size < logits_size) {
            throw std::runtime_error("logits buffer too small");
        }

        if (logits_size) {
            read_to(ctx->logits, logits_size * sizeof(float));
        }
    }

    void read_embeddings(struct llama_context * ctx) {
        uint64_t embeddings_size;
        read_to(&embeddings_size, sizeof(embeddings_size));

        if (ctx->embd_size < embeddings_size) {
            throw std::runtime_error("embeddings buffer too small");
        }

        if (embeddings_size) {
            read_to(ctx->embd, embeddings_size * sizeof(float));
        }
    }

    bool read_kv_cache_meta(struct llama_context * ctx, uint32_t cell_count, llama_seq_id dest_seq_id = -1) {
        struct llama_kv_cache & kv_self = ctx->kv_self;

        if (dest_seq_id != -1) {
            // single sequence

            llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);

            llama_ubatch batch = ctx->sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
            batch.n_tokens = cell_count;
            batch.n_seq_tokens = cell_count;
            batch.n_seqs = 1;

            for (uint32_t i = 0; i < cell_count; ++i) {
                llama_pos pos;
                uint32_t n_seq_id;

                read_to(&pos, sizeof(pos));
                read_to(&n_seq_id, sizeof(n_seq_id));

                if (n_seq_id != 0) {
                    LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
                    return false;
                }

                batch.pos[i] = pos;
            }
            batch.n_seq_id[0] = 1;
            batch.seq_id[0] = &dest_seq_id;
            if (!llama_kv_cache_find_slot(kv_self, batch)) {
                LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
                return false;
            }

            // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
            // Assume that this is one contiguous block of cells
            GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
            GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
            GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
            GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
            GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
        } else {
            // whole KV cache restore

            if (cell_count > kv_self.size) {
                LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
                return false;
            }

            llama_kv_cache_clear(kv_self);

            for (uint32_t i = 0; i < cell_count; ++i) {
                llama_kv_cell & cell = kv_self.cells[i];

                llama_pos pos;
                uint32_t  n_seq_id;

                read_to(&pos,      sizeof(pos));
                read_to(&n_seq_id, sizeof(n_seq_id));

                cell.pos = pos;

                for (uint32_t j = 0; j < n_seq_id; ++j) {
                    llama_seq_id seq_id;
                    read_to(&seq_id, sizeof(seq_id));

                    if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
                        LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
                        return false;
                    }

                    cell.seq_id.insert(seq_id);

                    if (kv_self.recurrent) {
                        int32_t & tail = kv_self.cells[seq_id].tail;
                        if (tail != -1) {
                            LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
                            return false;
                        }
                        tail = i;
                    }
                }
            }

            kv_self.head = 0;
            kv_self.used = cell_count;
        }

        if (kv_self.recurrent) {
            for (uint32_t i = 0; i < cell_count; ++i) {
                uint32_t cell_id = kv_self.head + i;
                // make sure the recurrent states will keep their restored state
                kv_self.cells[cell_id].src = cell_id;
            }
        }

        return true;
    }

    bool read_kv_cache_data(struct llama_context * ctx, uint32_t cell_count) {
        const struct llama_hparams & hparams = ctx->model.hparams;
        struct llama_kv_cache & kv_self = ctx->kv_self;
        uint32_t v_trans;
        uint32_t n_layer;
        read_to(&v_trans, sizeof(v_trans));
        read_to(&n_layer, sizeof(n_layer));

        if (n_layer != hparams.n_layer) {
            LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
            return false;
        }
        if (cell_count > kv_self.size) {
            LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, kv_self.size);
            return false;
        }
        if (kv_self.v_trans != (bool) v_trans) {
            LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
            return false;
        }

        // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
        for (uint32_t il = 0; il < n_layer; ++il) {
            const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();

            // Read type of key
            int32_t k_type_i_ref;
            read_to(&k_type_i_ref, sizeof(k_type_i_ref));
            const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
            if (k_type_i != k_type_i_ref) {
                LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
                return false;
            }

            // Read row size of key
            uint64_t k_size_row_ref;
            read_to(&k_size_row_ref, sizeof(k_size_row_ref));
            const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
            if (k_size_row != k_size_row_ref) {
                LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
                return false;
            }

            if (cell_count) {
                // Read and set the keys for the whole cell range
                ggml_backend_tensor_set(kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head * k_size_row, cell_count * k_size_row);
            }
        }

        if (!kv_self.v_trans) {
            for (uint32_t il = 0; il < n_layer; ++il) {
                const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();

                // Read type of value
                int32_t v_type_i_ref;
                read_to(&v_type_i_ref, sizeof(v_type_i_ref));
                const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
                if (v_type_i != v_type_i_ref) {
                    LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                    return false;
                }

                // Read row size of value
                uint64_t v_size_row_ref;
                read_to(&v_size_row_ref, sizeof(v_size_row_ref));
                const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
                if (v_size_row != v_size_row_ref) {
                    LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
                    return false;
                }

                if (cell_count) {
                    // Read and set the values for the whole cell range
                    ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head * v_size_row, cell_count * v_size_row);
                }
            }
        } else {
            // For each layer, read the values for each cell (transposed)
            for (uint32_t il = 0; il < n_layer; ++il) {
                const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();

                // Read type of value
                int32_t v_type_i_ref;
                read_to(&v_type_i_ref, sizeof(v_type_i_ref));
                const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
                if (v_type_i != v_type_i_ref) {
                    LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                    return false;
                }

                // Read element size of value
                uint32_t v_size_el_ref;
                read_to(&v_size_el_ref, sizeof(v_size_el_ref));
                const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
                if (v_size_el != v_size_el_ref) {
                    LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
                    return false;
                }

                // Read GQA embedding size
                uint32_t n_embd_v_gqa_ref;
                read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
                if (n_embd_v_gqa != n_embd_v_gqa_ref) {
                    LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
                    return false;
                }

                if (cell_count) {
                    // For each row in the transposed matrix, read the values for the whole cell range
                    for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                        const size_t dst_offset = (kv_self.head + j * kv_self.size) * v_size_el;
                        ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
                    }
                }
            }
        }
        return true;
    }

    void read_kv_cache(struct llama_context * ctx, llama_seq_id seq_id = -1) {
        uint32_t cell_count;
        read_to(&cell_count, sizeof(cell_count));

        bool res = read_kv_cache_meta(ctx, cell_count, seq_id) && read_kv_cache_data(ctx, cell_count);

        if (!res) {
            if (seq_id == -1) {
                llama_kv_cache_clear(ctx);
            } else {
                llama_kv_cache_seq_rm(ctx, seq_id, -1, -1);
            }
            throw std::runtime_error("failed to restore kv cache");
        }
    }
};

struct llama_data_write_dummy : llama_data_write {
    size_t size_written = 0;

    llama_data_write_dummy() {}

    void write(const void * /* src */, size_t size) override {
        size_written += size;
    }

    void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
        size_written += size;
    }

    size_t get_size_written() override {
        return size_written;
    }
};

struct llama_data_write_buffer : llama_data_write {
    uint8_t * ptr;
    size_t buf_size = 0;
    size_t size_written = 0;

    llama_data_write_buffer(uint8_t * p, size_t len) : ptr(p), buf_size(len) {}

    void write(const void * src, size_t size) override {
        if (size > buf_size) {
            throw std::runtime_error("unexpectedly reached end of buffer");
        }
        memcpy(ptr, src, size);
        ptr += size;
        size_written += size;
        buf_size -= size;
    }

    void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
        if (size > buf_size) {
            throw std::runtime_error("unexpectedly reached end of buffer");
        }
        ggml_backend_tensor_get(tensor, ptr, offset, size);
        ptr += size;
        size_written += size;
        buf_size -= size;
    }

    size_t get_size_written() override {
        return size_written;
    }
};

struct llama_data_read_buffer : llama_data_read {
    const uint8_t * ptr;
    size_t buf_size = 0;
    size_t size_read = 0;

    llama_data_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {}

    const uint8_t * read(size_t size) override {
        const uint8_t * base_ptr = ptr;
        if (size > buf_size) {
            throw std::runtime_error("unexpectedly reached end of buffer");
        }
        ptr += size;
        size_read += size;
        buf_size -= size;
        return base_ptr;
    }

    void read_to(void * dst, size_t size) override {
        memcpy(dst, read(size), size);
    }

    size_t get_size_read() override {
        return size_read;
    }
};

struct llama_data_write_file : llama_data_write {
    llama_file * file;
    size_t size_written = 0;
    std::vector temp_buffer;

    llama_data_write_file(llama_file * f) : file(f) {}

    void write(const void * src, size_t size) override {
        file->write_raw(src, size);
        size_written += size;
    }

    void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
        temp_buffer.resize(size);
        ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
        write(temp_buffer.data(), temp_buffer.size());
    }

    size_t get_size_written() override {
        return size_written;
    }
};

struct llama_data_read_file : llama_data_read {
    llama_file * file;
    size_t size_read = 0;
    std::vector temp_buffer;

    llama_data_read_file(llama_file * f) : file(f) {}

    void read_to(void * dst, size_t size) override {
        file->read_raw(dst, size);
        size_read += size;
    }

    const uint8_t * read(size_t size) override {
        temp_buffer.resize(size);
        read_to(temp_buffer.data(), size);
        return temp_buffer.data();
    }

    size_t get_size_read() override {
        return size_read;
    }
};

/** copy state data into either a buffer or file depending on the passed in context
 *
 * file context:
 * llama_file file("/path", "wb");
 * llama_data_write_file data_ctx(&file);
 * llama_state_get_data_internal(ctx, data_ctx);
 *
 * buffer context:
 * std::vector buf(max_size, 0);
 * llama_data_write_buffer data_ctx(buf.data(), max_size);
 * llama_state_get_data_internal(ctx, data_ctx);
 *
*/
static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx) {
    llama_synchronize(ctx);

    data_ctx.write_model_info(ctx);

    data_ctx.write_rng(ctx->sampling.rng);

    // copy outputs
    data_ctx.write_output_ids(ctx);
    data_ctx.write_logits(ctx);
    data_ctx.write_embeddings(ctx);

    data_ctx.write_kv_cache(ctx);

    return data_ctx.get_size_written();
}

size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst, size_t size) {
    llama_data_write_buffer data_ctx(dst, size);
    try {
        return llama_state_get_data_internal(ctx, data_ctx);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what());
        return 0;
    }
}

// Returns the *actual* size of the state.
// Intended to be used when saving to state to a buffer.
size_t llama_state_get_size(struct llama_context * ctx) {
    llama_data_write_dummy data_ctx;
    try {
        return llama_state_get_data_internal(ctx, data_ctx);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what());
        return 0;
    }
}

static size_t llama_state_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx) {
    llama_synchronize(ctx);

    data_ctx.read_model_info(ctx);

    // set rng
    data_ctx.read_rng(ctx->sampling.rng);

    // set outputs
    data_ctx.read_output_ids(ctx);
    data_ctx.read_logits(ctx);
    data_ctx.read_embeddings(ctx);

    data_ctx.read_kv_cache(ctx);

    return data_ctx.get_size_read();
}

// Sets the state reading from the specified source address
size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src, size_t size) {
    llama_data_read_buffer data_ctx(src, size);
    try {
        return llama_state_set_data_internal(ctx, data_ctx);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what());
        return 0;
    }
}

static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    llama_file file(path_session, "rb");

    // sanity checks
    {
        const uint32_t magic   = file.read_u32();
        const uint32_t version = file.read_u32();

        if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
            LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
            return false;
        }
    }

    // load the prompt
    {
        const uint32_t n_token_count = file.read_u32();

        if (n_token_count > n_token_capacity) {
            LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
            return false;
        }

        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
        *n_token_count_out = n_token_count;
    }

    // restore the context state
    {
        const size_t n_state_size_cur = file.size - file.tell();

        llama_data_read_file data_ctx(&file);
        const size_t n_read = llama_state_set_data_internal(ctx, data_ctx);

        if (n_read != n_state_size_cur) {
            LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read);
            return false;
        }
    }
    return true;
}

bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    try {
        return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what());
        return false;
    }
}

static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    llama_file file(path_session, "wb");

    file.write_u32(LLAMA_SESSION_MAGIC);
    file.write_u32(LLAMA_SESSION_VERSION);

    // save the prompt
    file.write_u32((uint32_t) n_token_count);
    file.write_raw(tokens, sizeof(llama_token) * n_token_count);

    // save the context state using stream saving
    llama_data_write_file data_ctx(&file);
    llama_state_get_data_internal(ctx, data_ctx);

    return true;
}

bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    try {
        return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what());
        return false;
    }
}

static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx, llama_seq_id seq_id) {
    llama_synchronize(ctx);

    data_ctx.write_kv_cache(ctx, seq_id);

    return data_ctx.get_size_written();
}

size_t llama_state_seq_get_size(struct llama_context * ctx, llama_seq_id seq_id) {
    llama_data_write_dummy data_ctx;
    return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
}

size_t llama_state_seq_get_data(struct llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) {
    llama_data_write_buffer data_ctx(dst, size);
    try {
        return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving sequence state: %s\n", __func__, err.what());
        return 0;
    }
}

static size_t llama_state_seq_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx, llama_seq_id dest_seq_id) {
    llama_synchronize(ctx);

    data_ctx.read_kv_cache(ctx, dest_seq_id);

    return data_ctx.get_size_read();
}

size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id dest_seq_id) {
    llama_data_read_buffer data_ctx(src, size);
    try {
        return llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading sequence state: %s\n", __func__, err.what());
        return 0;
    }
}

static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
    llama_file file(filepath, "wb");

    file.write_u32(LLAMA_STATE_SEQ_MAGIC);
    file.write_u32(LLAMA_STATE_SEQ_VERSION);

    // save the prompt
    file.write_u32((uint32_t) n_token_count);
    file.write_raw(tokens, sizeof(llama_token) * n_token_count);

    // save the context state using stream saving
    llama_data_write_file data_ctx(&file);
    llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);

    const size_t res = file.tell();
    GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
    return res;
}

static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    llama_file file(filepath, "rb");

    // version checks
    {
        const uint32_t magic   = file.read_u32();
        const uint32_t version = file.read_u32();

        if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
            LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
            return 0;
        }
    }

    // load the prompt
    {
        const uint32_t n_token_count = file.read_u32();

        if (n_token_count > n_token_capacity) {
            LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
            return 0;
        }

        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
        *n_token_count_out = n_token_count;
    }

    // restore the context state
    {
        const size_t state_size = file.size - file.tell();
        llama_data_read_file data_ctx(&file);
        const size_t nread = llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
        if (!nread) {
            LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
            return 0;
        }
        GGML_ASSERT(nread <= state_size);
        GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
    }

    return file.tell();
}

size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
    try {
        return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what());
        return 0;
    }
}

size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    try {
        return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what());
        return 0;
    }
}

void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
    ctx->cparams.n_threads       = n_threads;
    ctx->cparams.n_threads_batch = n_threads_batch;
}

uint32_t llama_n_threads(struct llama_context * ctx) {
    return ctx->cparams.n_threads;
}

uint32_t llama_n_threads_batch(struct llama_context * ctx) {
    return ctx->cparams.n_threads_batch;
}

void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
    ctx->abort_callback      = abort_callback;
    ctx->abort_callback_data = abort_callback_data;
}

void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
    ctx->cparams.embeddings = embeddings;
}

void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
    ctx->cparams.causal_attn = causal_attn;
}

struct llama_batch llama_batch_get_one(
             llama_token * tokens,
                 int32_t   n_tokens,
               llama_pos   pos_0,
            llama_seq_id   seq_id) {
    return {
        /*n_tokens       =*/ n_tokens,
        /*tokens         =*/ tokens,
        /*embd           =*/ nullptr,
        /*pos            =*/ nullptr,
        /*n_seq_id       =*/ nullptr,
        /*seq_id         =*/ nullptr,
        /*logits         =*/ nullptr,
        /*all_pos_0      =*/ pos_0,
        /*all_pos_1      =*/ 1,
        /*all_seq_id     =*/ seq_id,
    };
}

struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
    llama_batch batch = {
        /*n_tokens       =*/ 0,
        /*tokens         =*/ nullptr,
        /*embd           =*/ nullptr,
        /*pos            =*/ nullptr,
        /*n_seq_id       =*/ nullptr,
        /*seq_id         =*/ nullptr,
        /*logits         =*/ nullptr,
        /*all_pos_0      =*/ 0,
        /*all_pos_1      =*/ 0,
        /*all_seq_id     =*/ 0,
    };

    if (embd) {
        batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
    } else {
        batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
    }

    batch.pos      = (llama_pos *)     malloc(sizeof(llama_pos)      * n_tokens_alloc);
    batch.n_seq_id = (int32_t *)       malloc(sizeof(int32_t)        * n_tokens_alloc);
    batch.seq_id   = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
    for (int i = 0; i < n_tokens_alloc; ++i) {
        batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
    }
    batch.seq_id[n_tokens_alloc] = nullptr;

    batch.logits   = (int8_t *)        malloc(sizeof(int8_t)         * n_tokens_alloc);

    return batch;
}

void llama_batch_free(struct llama_batch batch) {
    if (batch.token)    free(batch.token);
    if (batch.embd)     free(batch.embd);
    if (batch.pos)      free(batch.pos);
    if (batch.n_seq_id) free(batch.n_seq_id);
    if (batch.seq_id) {
        for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
            free(batch.seq_id[i]);
        }
        free(batch.seq_id);
    }
    if (batch.logits)   free(batch.logits);
}

int32_t llama_encode(
        struct llama_context * ctx,
          struct llama_batch   batch) {
    const int ret = llama_encode_internal(*ctx, batch);
    if (ret < 0) {
        LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
    }

    return ret;
}

int32_t llama_decode(
        struct llama_context * ctx,
          struct llama_batch   batch) {
    const int ret = llama_decode_internal(*ctx, batch);
    if (ret < 0) {
        LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
    }

    return ret;
}

void llama_synchronize(struct llama_context * ctx) {
    ggml_backend_sched_synchronize(ctx->sched);

    // FIXME: if multiple single tokens are evaluated without a synchronization,
    // the stats will be added to the prompt evaluation stats
    // this should only happen when using batch size 1 to evaluate a batch

    // add the evaluation to the stats
    if (ctx->n_queued_tokens == 1) {
        ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
        ctx->n_eval++;
    } else if (ctx->n_queued_tokens > 1) {
        ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
        ctx->n_p_eval += ctx->n_queued_tokens;
    }

    // get a more accurate load time, upon first eval
    if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
        ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
        ctx->has_evaluated_once = true;
    }

    ctx->n_queued_tokens = 0;
    ctx->t_compute_start_us = 0;
}

float * llama_get_logits(struct llama_context * ctx) {
    llama_synchronize(ctx);

    // reorder logits for backward compatibility
    // TODO: maybe deprecate this
    llama_output_reorder(ctx);

    return ctx->logits;
}

float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
    int32_t j = -1;
    llama_synchronize(ctx);

    try {
        if (ctx->logits == nullptr) {
            throw std::runtime_error("no logits");
        }

        if (i < 0) {
            j = ctx->n_outputs + i;
            if (j < 0) {
                throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
            }
        } else if ((size_t) i >= ctx->output_ids.size()) {
            throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
        } else {
            j = ctx->output_ids[i];
        }

        if (j < 0) {
            throw std::runtime_error(format("batch.logits[%d] != true", i));
        }
        if (j >= ctx->n_outputs) {
            // This should not happen
            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
        }

        return ctx->logits + j*ctx->model.hparams.n_vocab;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
        GGML_ABORT("fatal error");
#endif
        return nullptr;
    }
}

float * llama_get_embeddings(struct llama_context * ctx) {
    llama_synchronize(ctx);

    // reorder embeddings for backward compatibility
    // TODO: maybe deprecate this
    llama_output_reorder(ctx);

    return ctx->embd;
}

float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
    int32_t j = -1;

    llama_synchronize(ctx);

    try {
        if (ctx->embd == nullptr) {
            throw std::runtime_error("no embeddings");
        }

        if (i < 0) {
            j = ctx->n_outputs + i;
            if (j < 0) {
                throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
            }
        } else if ((size_t) i >= ctx->output_ids.size()) {
            throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
        } else {
            j = ctx->output_ids[i];
        }

        if (j < 0) {
            throw std::runtime_error(format("batch.logits[%d] != true", i));
        }
        if (j >= ctx->n_outputs) {
            // This should not happen
            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
        }

        return ctx->embd + j*ctx->model.hparams.n_embd;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
        GGML_ABORT("fatal error");
#endif
        return nullptr;
    }
}

float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
    llama_synchronize(ctx);

    auto it = ctx->embd_seq.find(seq_id);
    if (it == ctx->embd_seq.end()) {
        return nullptr;
    }

    return it->second.data();
}

//
// vocab
//

const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
    return llama_token_get_text_impl(model->vocab, token);
}

float llama_token_get_score(const struct llama_model * model, llama_token token) {
    return llama_token_get_score_impl(model->vocab, token);
}

enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
    return llama_token_get_attr_impl(model->vocab, token);
}

bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
    return llama_token_is_eog_impl(model->vocab, token);
}

bool llama_token_is_control(const struct llama_model * model, llama_token token) {
    return llama_token_is_control_impl(model->vocab, token);
}

llama_token llama_token_bos(const struct llama_model * model) {
    return llama_token_bos_impl(model->vocab);
}

llama_token llama_token_eos(const struct llama_model * model) {
    return llama_token_eos_impl(model->vocab);
}

llama_token llama_token_cls(const struct llama_model * model) {
    return llama_token_cls_impl(model->vocab);
}

llama_token llama_token_sep(const struct llama_model * model) {
    return llama_token_sep_impl(model->vocab);
}

llama_token llama_token_nl (const struct llama_model * model) {
    return llama_token_nl_impl(model->vocab);
}

llama_token llama_token_pad(const struct llama_model * model) {
    return llama_token_pad_impl(model->vocab);
}

bool llama_add_bos_token(const struct llama_model * model) {
    return llama_add_bos_token_impl(model->vocab);
}

bool llama_add_eos_token(const struct llama_model * model) {
    return llama_add_eos_token_impl(model->vocab);
}

llama_token llama_token_prefix(const struct llama_model * model) {
    return llama_token_prefix_impl(model->vocab);
}

llama_token llama_token_middle(const struct llama_model * model) {
    return llama_token_middle_impl(model->vocab);
}

llama_token llama_token_suffix(const struct llama_model * model) {
    return llama_token_suffix_impl(model->vocab);
}

llama_token llama_token_eot(const struct llama_model * model) {
    return llama_token_eot_impl(model->vocab);
}

//
// tokenization
//

int32_t llama_tokenize(
    const struct llama_model * model,
                  const char * text,
                     int32_t   text_len,
                 llama_token * tokens,
                     int32_t   n_tokens_max,
                        bool   add_special,
                        bool   parse_special) {
    return llama_tokenize_impl(model->vocab, text, text_len, tokens, n_tokens_max, add_special, parse_special);
}

int32_t llama_token_to_piece(
    const struct llama_model * model,
                 llama_token   token,
                        char * buf,
                     int32_t   length,
                     int32_t   lstrip,
                        bool   special) {
    return llama_token_to_piece_impl(model->vocab, token, buf, length, lstrip, special);
}

int32_t llama_detokenize(
    const struct llama_model * model,
           const llama_token * tokens,
                     int32_t   n_tokens,
                        char * text,
                     int32_t   text_len_max,
                        bool   remove_special,
                        bool   unparse_special) {
    return llama_detokenize_impl(model->vocab, tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
}

//
// chat templates
//

// Simple version of "llama_apply_chat_template" that only works with strings
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
static int32_t llama_chat_apply_template_internal(
    const std::string & tmpl,
    const std::vector & chat,
    std::string & dest, bool add_ass) {
    // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
    std::stringstream ss;
    auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
        return tmpl.find(haystack) != std::string::npos;
    };
    if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
        // chatml template
        for (auto message : chat) {
            ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
        }
        if (add_ass) {
            ss << "<|im_start|>assistant\n";
        }
    } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) {
        // llama2 template and its variants
        // [variant] support system message
        bool support_system_message = tmpl_contains("<>") || tmpl == "mistral";
        // [variant] space before + after response
        bool space_around_response = tmpl_contains("' ' + eos_token");
        // [variant] add BOS inside history
        bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
        // [variant] trim spaces from the input message
        bool strip_message = tmpl_contains("content.strip()");
        // construct the prompt
        bool is_inside_turn = true; // skip BOS at the beginning
        ss << "[INST] ";
        for (auto message : chat) {
            std::string content = strip_message ? trim(message->content) : message->content;
            std::string role(message->role);
            if (!is_inside_turn) {
                is_inside_turn = true;
                ss << (add_bos_inside_history ? "[INST] " : "[INST] ");
            }
            if (role == "system") {
                if (support_system_message) {
                    ss << "<>\n" << content << "\n<>\n\n";
                } else {
                    // if the model does not support system message, we still include it in the first message, but without <>
                    ss << content << "\n";
                }
            } else if (role == "user") {
                ss << content << " [/INST]";
            } else {
                ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "";
                is_inside_turn = false;
            }
        }
        // llama2 templates seem to not care about "add_generation_prompt"
    } else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
        // Phi 3
        for (auto message : chat) {
            std::string role(message->role);
            ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
        }
        if (add_ass) {
            ss << "<|assistant|>\n";
        }
    } else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
        // zephyr template
        for (auto message : chat) {
            ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
        }
        if (add_ass) {
            ss << "<|assistant|>\n";
        }
    } else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
        // mlabonne/AlphaMonarch-7B template (the  is included inside history)
        for (auto message : chat) {
            std::string bos = (message == chat.front()) ? "" : ""; // skip BOS for first message
            ss << bos << message->role << "\n" << message->content << "\n";
        }
        if (add_ass) {
            ss << "assistant\n";
        }
    } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("")) {
        // google/gemma-7b-it
        std::string system_prompt = "";
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
                system_prompt = trim(message->content);
                continue;
            }
            // in gemma, "assistant" is "model"
            role = role == "assistant" ? "model" : message->role;
            ss << "" << role << "\n";
            if (!system_prompt.empty() && role != "model") {
                ss << system_prompt << "\n\n";
                system_prompt = "";
            }
            ss << trim(message->content) << "\n";
        }
        if (add_ass) {
            ss << "model\n";
        }
    } else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
        // OrionStarAI/Orion-14B-Chat
        std::string system_prompt = "";
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                // there is no system message support, we will merge it with user prompt
                system_prompt = message->content;
                continue;
            } else if (role == "user") {
                ss << "Human: ";
                if (!system_prompt.empty()) {
                    ss << system_prompt << "\n\n";
                    system_prompt = "";
                }
                ss << message->content << "\n\nAssistant: ";
            } else {
                ss << message->content << "";
            }
        }
    } else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
        // openchat/openchat-3.5-0106,
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                ss << message->content << "<|end_of_turn|>";
            } else {
                role[0] = toupper(role[0]);
                ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
            }
        }
        if (add_ass) {
            ss << "GPT4 Correct Assistant:";
        }
    } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
        // eachadea/vicuna-13b-1.1 (and Orca variant)
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                // Orca-Vicuna variant uses a system prefix
                if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
                    ss << "SYSTEM: " << message->content << "\n";
                } else {
                    ss << message->content << "\n\n";
                }
            } else if (role == "user") {
                ss << "USER: " << message->content << "\n";
            } else if (role == "assistant") {
                ss << "ASSISTANT: " << message->content << "\n";
            }
        }
        if (add_ass) {
            ss << "ASSISTANT:";
        }
    } else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
        // deepseek-ai/deepseek-coder-33b-instruct
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                ss << message->content;
            } else if (role == "user") {
                ss << "### Instruction:\n" << message->content << "\n";
            } else if (role == "assistant") {
                ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
            }
        }
        if (add_ass) {
            ss << "### Response:\n";
        }
    } else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
        // CohereForAI/c4ai-command-r-plus
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
            } else if (role == "user") {
                ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
            } else if (role == "assistant") {
                ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
            }
        }
        if (add_ass) {
            ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
        }
    } else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
        // Llama 3
        for (auto message : chat) {
            std::string role(message->role);
            ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
        }
        if (add_ass) {
            ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
        }
    } else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
        // chatglm3-6b
        ss << "[gMASK]" << "sop";
        for (auto message : chat) {
            std::string role(message->role);
            ss << "<|" << role << "|>" << "\n " << message->content;
        }
        if (add_ass) {
            ss << "<|assistant|>";
        }
    } else if (tmpl == "chatglm4" || tmpl_contains("[gMASK]")) {
        ss << "[gMASK]" << "";
        for (auto message : chat) {
            std::string role(message->role);
            ss << "<|" << role << "|>" << "\n" << message->content;
        }
        if (add_ass) {
            ss << "<|assistant|>";
        }
    } else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
        // MiniCPM-3B-OpenHermes-2.5-v2-GGUF
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "user") {
                ss << LU8("<用户>");
                ss << trim(message->content);
                ss << "";
            } else {
                ss << trim(message->content);
            }
        }
    } else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
        // DeepSeek-V2
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                ss << message->content << "\n\n";
            } else if (role == "user") {
                ss << "User: " << message->content << "\n\n";
            } else if (role == "assistant") {
                ss << "Assistant: " << message->content << LU8("<|end▁of▁sentence|>");
            }
        }
        if (add_ass) {
            ss << "Assistant:";
        }
    } else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) {
        // ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
        // EXAONE-3.0-7.8B-Instruct
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
            } else if (role == "user") {
                ss << "[|user|]" << trim(message->content) << "\n";
            } else if (role == "assistant") {
                ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
            }
        }
        if (add_ass) {
            ss << "[|assistant|]";
        }
    } else {
        // template not supported
        return -1;
    }
    dest = ss.str();
    return dest.size();
}

int32_t llama_chat_apply_template(
                const struct llama_model * model,
                              const char * tmpl,
         const struct llama_chat_message * chat,
                                  size_t   n_msg,
                                    bool   add_ass,
                                    char * buf,
                                 int32_t   length) {
    std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
    if (tmpl == nullptr) {
        GGML_ASSERT(model != nullptr);
        // load template from model
        std::vector model_template(2048, 0); // longest known template is about 1200 bytes
        std::string template_key = "tokenizer.chat_template";
        int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
        if (res < 0) {
            // worst case: there is no information about template, we will use chatml by default
            curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
        } else {
            curr_tmpl = std::string(model_template.data(), model_template.size());
        }
    }

    // format the chat to string
    std::vector chat_vec;
    chat_vec.resize(n_msg);
    for (size_t i = 0; i < n_msg; i++) {
        chat_vec[i] = &chat[i];
    }

    std::string formatted_chat;
    int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
    if (res < 0) {
        return res;
    }
    if (buf && length > 0) {
        strncpy(buf, formatted_chat.c_str(), length);
    }
    return res;
}

//
// grammar
//

struct llama_grammar * llama_grammar_init(
        const llama_grammar_element ** rules,
        size_t    n_rules,
        size_t    start_rule_index) {
    return llama_grammar_init_impl(rules, n_rules, start_rule_index);
}

void llama_grammar_free(struct llama_grammar * grammar) {
    llama_grammar_free_impl(grammar);
}

struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
    return llama_grammar_copy_impl(grammar);
}

void llama_grammar_sample(
      const struct llama_grammar * grammar,
      const struct llama_context * ctx,
          llama_token_data_array * candidates) {
    llama_grammar_sample_impl(grammar, &ctx->model.vocab, &ctx->sampling, candidates);
}

void llama_sample_grammar(
            struct llama_context * ctx,
          llama_token_data_array * candidates,
      const struct llama_grammar * grammar) {
    llama_grammar_sample(grammar, ctx, candidates);
}

void llama_grammar_accept_token(
            struct llama_grammar * grammar,
            struct llama_context * ctx,
                     llama_token   token) {
    llama_grammar_accept_token_impl(grammar, &ctx->model.vocab, &ctx->sampling, token);
}

//
// sampling
//

void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
    llama_set_rng_seed_impl(&ctx->sampling, seed);
}

void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
    llama_sample_softmax_impl(ctx ? &ctx->sampling : nullptr, candidates);
}

void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
    llama_sample_top_k_impl(ctx ? &ctx->sampling : nullptr, candidates, k, min_keep);
}

void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
    llama_sample_top_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
}

void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
    llama_sample_min_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
}

void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
    llama_sample_tail_free_impl(ctx ? &ctx->sampling : nullptr, candidates, z, min_keep);
}

void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
    llama_sample_typical_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
}

void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
    llama_sample_entropy_impl(ctx ? &ctx->sampling : nullptr, candidates_p, min_temp, max_temp, exponent_val);
}

void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
    llama_sample_temp_impl(ctx ? &ctx->sampling : nullptr, candidates_p, temp);
}

void llama_sample_repetition_penalties(
            struct llama_context * ctx,
          llama_token_data_array * candidates,
               const llama_token * last_tokens,
                          size_t   penalty_last_n,
                           float   penalty_repeat,
                           float   penalty_freq,
                           float   penalty_present) {
    llama_sample_repetition_penalties_impl(ctx ? &ctx->sampling : nullptr, candidates, last_tokens, penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
}

void llama_sample_apply_guidance(
          struct llama_context * ctx,
                         float * logits,
                         float * logits_guidance,
                         float   scale) {
    llama_sample_apply_guidance_impl(&ctx->sampling, logits, logits_guidance, scale);
}

llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
    return llama_sample_token_mirostat_impl(&ctx->sampling, candidates, tau, eta, m, mu);
}

llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
    return llama_sample_token_mirostat_v2_impl(ctx ? &ctx->sampling : nullptr, candidates, tau, eta, mu);
}

llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
    return llama_sample_token_greedy_impl(ctx ? &ctx->sampling : nullptr, candidates);
}

llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
    return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, rng);
}

llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
    return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, ctx->sampling.rng);
}

int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
    static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
    if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
        return strlen(split_path);
    }
    return 0;
}

int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
    std::string str_split_path(split_path);
    char postfix[32];
    snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
    std::string str_postfix(postfix);

    // check if dest ends with postfix
    int size_prefix = str_split_path.size() - str_postfix.size();
    if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
        snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
        return size_prefix;
    }

    return 0;
}

struct llama_timings llama_get_timings(struct llama_context * ctx) {
    struct llama_timings result = {
        /*.t_start_ms  =*/ 1e-3 * ctx->t_start_us,
        /*.t_end_ms    =*/ 1.00 * ggml_time_ms(),
        /*.t_load_ms   =*/ 1e-3 * ctx->t_load_us,
        /*.t_sample_ms =*/ 1e-3 * ctx->sampling.t_sample_us,
        /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
        /*.t_eval_ms   =*/ 1e-3 * ctx->t_eval_us,

        /*.n_sample =*/ std::max(1, ctx->sampling.n_sample),
        /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
        /*.n_eval   =*/ std::max(1, ctx->n_eval),
    };

    return result;
}

void llama_print_timings(struct llama_context * ctx) {
    const llama_timings timings = llama_get_timings(ctx);

    LLAMA_LOG_INFO("\n");
    LLAMA_LOG_INFO("%s:        load time = %10.2f ms\n", __func__, timings.t_load_ms);
    LLAMA_LOG_INFO("%s:      sample time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
    LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
    LLAMA_LOG_INFO("%s:        eval time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
    LLAMA_LOG_INFO("%s:       total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
}

void llama_reset_timings(struct llama_context * ctx) {
    ctx->t_start_us  = ggml_time_us();
    ctx->t_eval_us   = ctx->n_eval   = 0;
    ctx->t_p_eval_us = ctx->n_p_eval = 0;

    ctx->sampling.reset_timings();
}

const char * llama_print_system_info(void) {
    static std::string s;

    s  = "";
    s += "AVX = "         + std::to_string(ggml_cpu_has_avx())         + " | ";
    s += "AVX_VNNI = "    + std::to_string(ggml_cpu_has_avx_vnni())    + " | ";
    s += "AVX2 = "        + std::to_string(ggml_cpu_has_avx2())        + " | ";
    s += "AVX512 = "      + std::to_string(ggml_cpu_has_avx512())      + " | ";
    s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
    s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
    s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
    s += "FMA = "         + std::to_string(ggml_cpu_has_fma())         + " | ";
    s += "NEON = "        + std::to_string(ggml_cpu_has_neon())        + " | ";
    s += "SVE = "         + std::to_string(ggml_cpu_has_sve())         + " | ";
    s += "ARM_FMA = "     + std::to_string(ggml_cpu_has_arm_fma())     + " | ";
    s += "F16C = "        + std::to_string(ggml_cpu_has_f16c())        + " | ";
    s += "FP16_VA = "     + std::to_string(ggml_cpu_has_fp16_va())     + " | ";
    s += "WASM_SIMD = "   + std::to_string(ggml_cpu_has_wasm_simd())   + " | ";
    s += "BLAS = "        + std::to_string(ggml_cpu_has_blas())        + " | ";
    s += "SSE3 = "        + std::to_string(ggml_cpu_has_sse3())        + " | ";
    s += "SSSE3 = "       + std::to_string(ggml_cpu_has_ssse3())       + " | ";
    s += "VSX = "         + std::to_string(ggml_cpu_has_vsx())         + " | ";
    s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
    s += "LLAMAFILE = "   + std::to_string(ggml_cpu_has_llamafile())   + " | ";

    return s.c_str();
}

void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
    fprintf(stream, "\n");
    fprintf(stream, "###########\n");
    fprintf(stream, "# Timings #\n");
    fprintf(stream, "###########\n");
    fprintf(stream, "\n");

    fprintf(stream, "mst_eval: %.2f  # ms / token during generation\n",
            1.0e-3 * ctx->t_eval_us / ctx->n_eval);
    fprintf(stream, "mst_p_eval: %.2f  # ms / token during prompt processing\n",
            1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
    fprintf(stream, "mst_sample: %.2f  # ms / token during sampling\n",
            1.0e-3 * ctx->sampling.t_sample_us / ctx->sampling.n_sample);
    fprintf(stream, "n_eval: %d  # number of tokens generated (excluding the first one)\n", ctx->n_eval);
    fprintf(stream, "n_p_eval: %d  # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
    fprintf(stream, "n_sample: %d  # number of sampled tokens\n", ctx->sampling.n_sample);
    fprintf(stream, "t_eval_us: %" PRId64 "  # total microseconds spent generating tokens\n", ctx->t_eval_us);
    fprintf(stream, "t_load_us: %" PRId64 "  # total microseconds spent loading the model\n", ctx->t_load_us);
    fprintf(stream, "t_p_eval_us: %" PRId64 "  # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
    fprintf(stream, "t_sample_us: %" PRId64 "  # total microseconds spent sampling\n", ctx->sampling.t_sample_us);
    fprintf(stream, "ts_eval: %.2f  # tokens / second during generation\n",
            1.0e6 * ctx->n_eval / ctx->t_eval_us);
    fprintf(stream, "ts_p_eval: %.2f  # tokens / second during prompt processing\n",
            1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
    fprintf(stream, "ts_sample: %.2f  # tokens / second during sampling\n",
            1.0e6 * ctx->sampling.n_sample / ctx->sampling.t_sample_us);
}

// For internal test use
const std::vector> & llama_internal_get_tensor_map(
    struct llama_context * ctx
) {
    return ctx->model.tensors_by_name;
}

void llama_log_set(ggml_log_callback log_callback, void * user_data) {
    g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
    g_state.log_callback_user_data = user_data;
#ifdef GGML_USE_METAL
    ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
#elif defined(GGML_USE_CUDA)
    ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
#elif defined(GGML_USE_CANN)
    ggml_backend_cann_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
#endif
}

static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
    va_list args_copy;
    va_copy(args_copy, args);
    char buffer[128];
    int len = vsnprintf(buffer, 128, format, args);
    if (len < 128) {
        g_state.log_callback(level, buffer, g_state.log_callback_user_data);
    } else {
        char* buffer2 = new char[len+1];
        vsnprintf(buffer2, len+1, format, args_copy);
        buffer2[len] = 0;
        g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
        delete[] buffer2;
    }
    va_end(args_copy);
}

void llama_log_internal(ggml_log_level level, const char * format, ...) {
    va_list args;
    va_start(args, format);
    llama_log_internal_v(level, format, args);
    va_end(args);
}

void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
    (void) level;
    (void) user_data;
    fputs(text, stderr);
    fflush(stderr);
}