whisper.cpp/ggml.c

22919 lines
742 KiB
C
Raw Normal View History

#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
#define _USE_MATH_DEFINES // For M_PI on MSVC
#include "ggml-impl.h"
#include "ggml-quants.h"
#include "ggml.h"
2023-06-25 11:22:21 +00:00
2022-10-09 14:26:37 +00:00
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
2022-10-05 18:34:41 +00:00
#include <alloca.h>
2022-10-09 14:26:37 +00:00
#endif
2022-09-25 18:23:15 +00:00
#include <assert.h>
#include <errno.h>
2022-09-25 18:23:15 +00:00
#include <time.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
2022-09-25 18:23:15 +00:00
#include <stdio.h>
#include <float.h>
#include <limits.h>
2023-06-25 11:22:21 +00:00
#include <stdarg.h>
#include <signal.h>
#if defined(__gnu_linux__)
#include <syscall.h>
#endif
2023-06-25 11:22:21 +00:00
#ifdef GGML_USE_METAL
#include <unistd.h>
#endif
2022-09-25 18:23:15 +00:00
#ifdef __ARM_FEATURE_MATMUL_INT8
#undef GGML_USE_LLAMAFILE
#endif
2024-05-11 13:25:50 +00:00
#ifdef GGML_USE_LLAMAFILE
#include "sgemm.h"
#endif
2023-06-25 11:22:21 +00:00
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
// disable POSIX deprecation warnings
// these functions are never going away, anyway
#pragma warning(disable: 4996)
2023-06-25 11:22:21 +00:00
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
typedef volatile LONG atomic_int;
typedef atomic_int atomic_bool;
typedef atomic_int atomic_flag;
#define ATOMIC_FLAG_INIT 0
static void atomic_store(atomic_int * ptr, LONG val) {
InterlockedExchange(ptr, val);
}
static LONG atomic_load(atomic_int * ptr) {
return InterlockedCompareExchange(ptr, 0, 0);
}
static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
return InterlockedExchangeAdd(ptr, inc);
}
static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
return atomic_fetch_add(ptr, -(dec));
}
static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
return InterlockedExchange(ptr, 1);
}
static void atomic_flag_clear(atomic_flag * ptr) {
InterlockedExchange(ptr, 0);
}
typedef HANDLE pthread_t;
typedef DWORD thread_ret_t;
static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
(void) unused;
2022-11-20 20:43:32 +00:00
HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
if (handle == NULL)
{
return EAGAIN;
}
*out = handle;
return 0;
}
static int pthread_join(pthread_t thread, void * unused) {
(void) unused;
int ret = (int) WaitForSingleObject(thread, INFINITE);
CloseHandle(thread);
return ret;
}
2022-10-30 17:19:24 +00:00
static int sched_yield (void) {
Sleep (0);
return 0;
}
2022-10-11 17:57:52 +00:00
#else
2022-09-25 18:23:15 +00:00
#include <pthread.h>
2022-10-11 17:57:52 +00:00
#include <stdatomic.h>
typedef void * thread_ret_t;
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
typedef pthread_t ggml_thread_t;
#ifdef GGML_USE_CPU_HBM
#include <hbwmalloc.h>
2022-10-11 17:57:52 +00:00
#endif
2022-09-25 18:23:15 +00:00
#if defined(__APPLE__)
#include <TargetConditionals.h>
2022-12-08 05:34:19 +00:00
#endif
#if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
(!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
#include <sys/wait.h>
void ggml_print_backtrace(void) {
/*
#include <execinfo.h>
#include <dlfcn.h>
void * trace[100];
int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
*/
// backtrack_symbols does not show line numbers, use gdb instead
char attach[32];
snprintf(attach, sizeof(attach), "attach %d", getpid());
int pid = fork();
if (pid == 0) {
execlp("gdb", "gdb", "--batch",
"-ex", "set style enabled on",
"-ex", attach,
"-ex", "bt -frame-info source-and-location",
"-ex", "detach",
"-ex", "quit",
(char *) NULL);
} else {
waitpid(pid, NULL, 0);
}
}
#else
void ggml_print_backtrace(void) {
// platform not supported
}
#endif
/*#define GGML_PERF*/
2022-09-25 18:23:15 +00:00
#define GGML_DEBUG 0
#define GGML_GELU_FP16
2023-06-25 11:22:21 +00:00
#define GGML_GELU_QUICK_FP16
#define GGML_SOFT_MAX_UNROLL 4
#define GGML_VEC_DOT_UNROLL 2
#define GGML_VEC_MAD_UNROLL 32
//
// logging
//
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#if (GGML_DEBUG >= 5)
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_5(...)
#endif
#if (GGML_DEBUG >= 10)
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_10(...)
#endif
#define GGML_PRINT(...) printf(__VA_ARGS__)
//
// end of logging block
//
#ifdef GGML_USE_ACCELERATE
// uncomment to use vDSP for soft max computation
// note: not sure if it is actually faster
//#define GGML_SOFT_MAX_ACCELERATE
#endif
2022-10-05 18:34:41 +00:00
#if defined(_MSC_VER) || defined(__MINGW32__)
#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
#else
inline static void * ggml_aligned_malloc(size_t size) {
if (size == 0) {
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
return NULL;
}
void * aligned_memory = NULL;
#ifdef GGML_USE_CPU_HBM
int result = hbw_posix_memalign(&aligned_memory, 16, size);
#elif GGML_USE_METAL
int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
2023-06-25 11:22:21 +00:00
#else
int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
2023-06-25 11:22:21 +00:00
#endif
if (result != 0) {
// Handle allocation failure
2023-06-25 11:22:21 +00:00
const char *error_desc = "unknown allocation error";
switch (result) {
case EINVAL:
error_desc = "invalid alignment value";
break;
case ENOMEM:
error_desc = "insufficient memory";
break;
}
GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
GGML_ASSERT(false);
return NULL;
}
return aligned_memory;
}
#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
#ifdef GGML_USE_CPU_HBM
#define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
#else
#define GGML_ALIGNED_FREE(ptr) free(ptr)
#endif
#endif
inline static void * ggml_malloc(size_t size) {
if (size == 0) {
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
return NULL;
}
void * result = malloc(size);
if (result == NULL) {
GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
GGML_ASSERT(false);
}
return result;
}
// calloc
inline static void * ggml_calloc(size_t num, size_t size) {
if (num == 0 || size == 0) {
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
return NULL;
}
void * result = calloc(num, size);
if (result == NULL) {
GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
GGML_ASSERT(false);
}
return result;
}
#define GGML_MALLOC(size) ggml_malloc(size)
#define GGML_CALLOC(num, size) ggml_calloc(num, size)
#define GGML_FREE(ptr) free(ptr)
#define UNUSED GGML_UNUSED
2022-09-25 18:23:15 +00:00
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
#if defined(GGML_USE_ACCELERATE)
2022-09-25 18:23:15 +00:00
#include <Accelerate/Accelerate.h>
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
#include "ggml-opencl.h"
#endif
#elif defined(GGML_USE_OPENBLAS)
#if defined(GGML_BLAS_USE_MKL)
#include <mkl.h>
#else
#include <cblas.h>
#endif
#elif defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
2022-09-25 18:23:15 +00:00
#endif
// floating point type used to accumulate sums
typedef double ggml_float;
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
//
// global data
//
// precomputed gelu table for f16 (128 KB)
static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
2023-06-25 11:22:21 +00:00
// precomputed quick gelu table for f16 (128 KB)
static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
2023-06-25 11:22:21 +00:00
// precomputed f32 table for f16 (256 KB) (ggml-impl.h)
float ggml_table_f32_f16[1 << 16];
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
switch (status) {
case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
2024-03-04 18:53:27 +00:00
case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
case GGML_STATUS_SUCCESS: return "GGML status: success";
case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
}
2024-03-04 18:53:27 +00:00
return "GGML status: unknown";
}
float ggml_fp16_to_fp32(ggml_fp16_t x) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
#define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
return GGML_FP16_TO_FP32(x);
}
ggml_fp16_t ggml_fp32_to_fp16(float x) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
#define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
return GGML_FP32_TO_FP16(x);
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
float ggml_bf16_to_fp32(ggml_bf16_t x) {
#define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
return GGML_BF16_TO_FP32(x); // it just left shifts
}
ggml_bf16_t ggml_fp32_to_bf16(float x) {
#define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
return GGML_FP32_TO_BF16(x);
}
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
for (int64_t i = 0; i < n; i++) {
y[i] = GGML_FP16_TO_FP32(x[i]);
}
}
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
int64_t i = 0;
#if defined(__F16C__)
for (; i + 7 < n; i += 8) {
__m256 x_vec = _mm256_loadu_ps(x + i);
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storeu_si128((__m128i *)(y + i), y_vec);
}
for(; i + 3 < n; i += 4) {
__m128 x_vec = _mm_loadu_ps(x + i);
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
#endif
for (; i < n; i++) {
y[i] = GGML_FP32_TO_FP16(x[i]);
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
int64_t i = 0;
#if defined(__AVX512F__)
for (; i + 16 <= n; i += 16) {
_mm512_storeu_ps(y + i,
_mm512_castsi512_ps(
_mm512_slli_epi32(
_mm512_cvtepu16_epi32(
_mm256_loadu_si256(
(const __m256i *)(x + i))),
16)));
}
#elif defined(__AVX2__)
for (; i + 8 <= n; i += 8) {
_mm256_storeu_ps(y + i,
_mm256_castsi256_ps(
_mm256_slli_epi32(
_mm256_cvtepu16_epi32(
_mm_loadu_si128(
(const __m128i *)(x + i))),
16)));
}
#endif
for (; i < n; i++) {
y[i] = GGML_BF16_TO_FP32(x[i]);
}
}
void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
int i = 0;
#if defined(__AVX512BF16__)
for (; i + 32 <= n; i += 32) {
_mm512_storeu_si512(
(__m512i *)(y + i),
m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
_mm512_loadu_ps(x + i))));
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
}
#endif
for (; i < n; i++) {
y[i] = GGML_FP32_TO_BF16(x[i]);
}
}
bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
}
2022-09-25 18:23:15 +00:00
//
// timing
//
#if defined(_MSC_VER) || defined(__MINGW32__)
2023-06-25 11:22:21 +00:00
static int64_t timer_freq, timer_start;
2022-10-11 17:57:52 +00:00
void ggml_time_init(void) {
2023-06-25 11:22:21 +00:00
LARGE_INTEGER t;
QueryPerformanceFrequency(&t);
timer_freq = t.QuadPart;
// The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
// and the uptime is high enough.
// We subtract the program start time to reduce the likelihood of that happening.
QueryPerformanceCounter(&t);
timer_start = t.QuadPart;
2022-10-11 17:57:52 +00:00
}
int64_t ggml_time_ms(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
2023-06-25 11:22:21 +00:00
return ((t.QuadPart-timer_start) * 1000) / timer_freq;
2022-10-11 17:57:52 +00:00
}
int64_t ggml_time_us(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
2023-06-25 11:22:21 +00:00
return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
2022-10-11 17:57:52 +00:00
}
#else
void ggml_time_init(void) {}
2022-09-25 18:23:15 +00:00
int64_t ggml_time_ms(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
}
int64_t ggml_time_us(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
}
2022-10-11 17:57:52 +00:00
#endif
2022-09-25 18:23:15 +00:00
int64_t ggml_cycles(void) {
return clock();
}
int64_t ggml_cycles_per_ms(void) {
return CLOCKS_PER_SEC/1000;
}
#ifdef GGML_PERF
#define ggml_perf_time_ms() ggml_time_ms()
#define ggml_perf_time_us() ggml_time_us()
#define ggml_perf_cycles() ggml_cycles()
#define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
#else
#define ggml_perf_time_ms() 0
#define ggml_perf_time_us() 0
#define ggml_perf_cycles() 0
#define ggml_perf_cycles_per_ms() 0
#endif
//
// cross-platform UTF-8 file paths
//
#ifdef _WIN32
static wchar_t * ggml_mbstowcs(const char * mbs) {
int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
if (!wlen) {
errno = EINVAL;
return NULL;
}
wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
if (!wlen) {
GGML_FREE(wbuf);
errno = EINVAL;
return NULL;
}
return wbuf;
}
#endif
FILE * ggml_fopen(const char * fname, const char * mode) {
#ifdef _WIN32
FILE * file = NULL;
// convert fname (UTF-8)
wchar_t * wfname = ggml_mbstowcs(fname);
if (wfname) {
// convert mode (ANSI)
wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
wchar_t * wmode_p = wmode;
do {
*wmode_p++ = (wchar_t)*mode;
} while (*mode++);
// open file
file = _wfopen(wfname, wmode);
GGML_FREE(wfname);
GGML_FREE(wmode);
}
return file;
#else
return fopen(fname, mode);
#endif
}
2022-09-25 18:23:15 +00:00
//
// cache line
//
#if defined(__cpp_lib_hardware_interference_size)
#define CACHE_LINE_SIZE hardware_destructive_interference_size
2022-09-25 18:23:15 +00:00
#else
#if defined(__POWER9_VECTOR__)
#define CACHE_LINE_SIZE 128
#else
#define CACHE_LINE_SIZE 64
2022-09-25 18:23:15 +00:00
#endif
#endif
2022-09-25 18:23:15 +00:00
static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
2022-09-25 18:23:15 +00:00
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
[GGML_TYPE_I8] = {
.type_name = "i8",
.blck_size = 1,
.type_size = sizeof(int8_t),
.is_quantized = false,
},
[GGML_TYPE_I16] = {
.type_name = "i16",
.blck_size = 1,
.type_size = sizeof(int16_t),
.is_quantized = false,
},
[GGML_TYPE_I32] = {
.type_name = "i32",
.blck_size = 1,
.type_size = sizeof(int32_t),
.is_quantized = false,
},
[GGML_TYPE_I64] = {
.type_name = "i64",
.blck_size = 1,
.type_size = sizeof(int64_t),
.is_quantized = false,
},
[GGML_TYPE_F64] = {
.type_name = "f64",
.blck_size = 1,
.type_size = sizeof(double),
.is_quantized = false,
.nrows = 1,
},
[GGML_TYPE_F32] = {
.type_name = "f32",
.blck_size = 1,
.type_size = sizeof(float),
.is_quantized = false,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
.vec_dot_type = GGML_TYPE_F32,
.nrows = 1,
},
[GGML_TYPE_F16] = {
.type_name = "f16",
.blck_size = 1,
.type_size = sizeof(ggml_fp16_t),
.is_quantized = false,
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
.from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
.vec_dot_type = GGML_TYPE_F16,
.nrows = 1,
},
[GGML_TYPE_Q4_0] = {
.type_name = "q4_0",
.blck_size = QK4_0,
.type_size = sizeof(block_q4_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_0,
.from_float = quantize_row_q4_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
.vec_dot = ggml_vec_dot_q4_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
#if defined (__ARM_FEATURE_MATMUL_INT8)
.nrows = 2,
#else
.nrows = 1,
#endif
},
[GGML_TYPE_Q4_1] = {
.type_name = "q4_1",
.blck_size = QK4_1,
.type_size = sizeof(block_q4_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_1,
.from_float = quantize_row_q4_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
.vec_dot = ggml_vec_dot_q4_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
#if defined (__ARM_FEATURE_MATMUL_INT8)
.nrows = 2,
#else
.nrows = 1,
#endif
},
[4] = { // GGML_TYPE_Q4_2
.type_name = "DEPRECATED",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
.to_float = NULL,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = NULL,
.vec_dot_type = GGML_TYPE_COUNT,
.nrows = 1,
},
[5] = { // GGML_TYPE_Q4_3
.type_name = "DEPRECATED",
.blck_size = 0,
.type_size = 0,
.is_quantized = false,
.to_float = NULL,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = NULL,
.vec_dot_type = GGML_TYPE_COUNT,
.nrows = 1,
},
[GGML_TYPE_Q5_0] = {
.type_name = "q5_0",
.blck_size = QK5_0,
.type_size = sizeof(block_q5_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_0,
.from_float = quantize_row_q5_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
.vec_dot = ggml_vec_dot_q5_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
},
[GGML_TYPE_Q5_1] = {
.type_name = "q5_1",
.blck_size = QK5_1,
.type_size = sizeof(block_q5_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_1,
.from_float = quantize_row_q5_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
.vec_dot = ggml_vec_dot_q5_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
.nrows = 1,
},
[GGML_TYPE_Q8_0] = {
.type_name = "q8_0",
.blck_size = QK8_0,
.type_size = sizeof(block_q8_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q8_0,
.from_float = quantize_row_q8_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
.vec_dot = ggml_vec_dot_q8_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
#if defined (__ARM_FEATURE_MATMUL_INT8)
.nrows = 2,
#else
.nrows = 1,
#endif
},
[GGML_TYPE_Q8_1] = {
.type_name = "q8_1",
.blck_size = QK8_1,
.type_size = sizeof(block_q8_1),
.is_quantized = true,
.from_float = quantize_row_q8_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
.vec_dot_type = GGML_TYPE_Q8_1,
.nrows = 1,
},
2023-06-25 11:22:21 +00:00
[GGML_TYPE_Q2_K] = {
.type_name = "q2_K",
.blck_size = QK_K,
.type_size = sizeof(block_q2_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q2_K,
.from_float = quantize_row_q2_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
.vec_dot = ggml_vec_dot_q2_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
[GGML_TYPE_Q3_K] = {
.type_name = "q3_K",
.blck_size = QK_K,
.type_size = sizeof(block_q3_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q3_K,
.from_float = quantize_row_q3_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
.vec_dot = ggml_vec_dot_q3_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
[GGML_TYPE_Q4_K] = {
.type_name = "q4_K",
.blck_size = QK_K,
.type_size = sizeof(block_q4_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_K,
.from_float = quantize_row_q4_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
.vec_dot = ggml_vec_dot_q4_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
[GGML_TYPE_Q5_K] = {
.type_name = "q5_K",
.blck_size = QK_K,
.type_size = sizeof(block_q5_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_K,
.from_float = quantize_row_q5_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
.vec_dot = ggml_vec_dot_q5_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
[GGML_TYPE_Q6_K] = {
.type_name = "q6_K",
.blck_size = QK_K,
.type_size = sizeof(block_q6_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q6_K,
.from_float = quantize_row_q6_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
.vec_dot = ggml_vec_dot_q6_K_q8_K,
2023-06-25 11:22:21 +00:00
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
2023-06-25 11:22:21 +00:00
},
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
[GGML_TYPE_IQ2_XXS] = {
.type_name = "iq2_xxs",
.blck_size = QK_K,
.type_size = sizeof(block_iq2_xxs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
.from_float = NULL,
.from_float_reference = NULL,
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
.vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
},
[GGML_TYPE_IQ2_XS] = {
.type_name = "iq2_xs",
.blck_size = QK_K,
.type_size = sizeof(block_iq2_xs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = ggml_vec_dot_iq2_xs_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_IQ3_XXS] = {
.type_name = "iq3_xxs",
.blck_size = QK_K,
.type_size = sizeof(block_iq3_xxs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
.from_float = quantize_row_iq3_xxs,
.from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
.vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
[GGML_TYPE_IQ3_S] = {
.type_name = "iq3_s",
.blck_size = QK_K,
.type_size = sizeof(block_iq3_s),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq3_s,
.from_float = quantize_row_iq3_s,
.from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
.vec_dot = ggml_vec_dot_iq3_s_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_IQ2_S] = {
.type_name = "iq2_s",
.blck_size = QK_K,
.type_size = sizeof(block_iq2_s),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_s,
.from_float = quantize_row_iq2_s,
.from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
.vec_dot = ggml_vec_dot_iq2_s_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_IQ1_S] = {
.type_name = "iq1_s",
.blck_size = QK_K,
.type_size = sizeof(block_iq1_s),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq1_s,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = ggml_vec_dot_iq1_s_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_IQ1_M] = {
.type_name = "iq1_m",
.blck_size = QK_K,
.type_size = sizeof(block_iq1_m),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq1_m,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = ggml_vec_dot_iq1_m_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
2024-02-21 14:19:39 +00:00
[GGML_TYPE_IQ4_NL] = {
.type_name = "iq4_nl",
.blck_size = QK4_NL,
.type_size = sizeof(block_iq4_nl),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
.from_float = quantize_row_iq4_nl,
.from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
.vec_dot = ggml_vec_dot_iq4_nl_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
},
[GGML_TYPE_IQ4_XS] = {
.type_name = "iq4_xs",
.blck_size = QK_K,
.type_size = sizeof(block_iq4_xs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
.from_float = quantize_row_iq4_xs,
.from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
.vec_dot = ggml_vec_dot_iq4_xs_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_Q8_K] = {
.type_name = "q8_K",
.blck_size = QK_K,
.type_size = sizeof(block_q8_K),
.is_quantized = true,
.from_float = quantize_row_q8_K,
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
},
[GGML_TYPE_BF16] = {
.type_name = "bf16",
.blck_size = 1,
.type_size = sizeof(ggml_bf16_t),
.is_quantized = false,
.to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
.from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
.from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
.vec_dot_type = GGML_TYPE_BF16,
.nrows = 1,
}
};
// For internal test use
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
GGML_ASSERT(type < GGML_TYPE_COUNT);
return type_traits[type];
}
2022-09-25 18:23:15 +00:00
//
// simd mappings
2022-09-25 18:23:15 +00:00
//
// we define a common set of C macros which map to specific intrinsics based on the current architecture
// we then implement the fundamental computation operations below using only these macros
// adding support for new architectures requires to define the corresponding SIMD macros
//
// GGML_F32_STEP / GGML_F16_STEP
// number of elements to process in a single step
//
// GGML_F32_EPR / GGML_F16_EPR
// number of elements to fit in a single register
//
2022-09-25 18:23:15 +00:00
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
2022-09-25 18:23:15 +00:00
#define GGML_SIMD
2022-09-25 18:23:15 +00:00
// F32 NEON
2022-09-25 18:23:15 +00:00
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
2022-09-25 18:23:15 +00:00
#define GGML_F32x4 float32x4_t
#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
#define GGML_F32x4_LOAD vld1q_f32
#define GGML_F32x4_STORE vst1q_f32
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32x4_ADD vaddq_f32
#define GGML_F32x4_MUL vmulq_f32
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
#define GGML_F32x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \
} \
res = GGML_F32x4_REDUCE_ONE(x[0]); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 NEON
2022-09-25 18:23:15 +00:00
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
#define GGML_F16x8 float16x8_t
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
#define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
#define GGML_F16x8_STORE vst1q_f16
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
#define GGML_F16x8_ADD vaddq_f16
#define GGML_F16x8_MUL vmulq_f16
#define GGML_F16x8_REDUCE(res, x) \
do { \
2023-06-25 11:22:21 +00:00
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \
} \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
} while (0)
#define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
#else
// if FP16 vector arithmetic is not supported, we use FP32 instead
// and take advantage of the vcvt_ functions to convert to/from FP16
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
#define GGML_F32Cx4 float32x4_t
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32Cx4_ADD vaddq_f32
#define GGML_F32Cx4_MUL vmulq_f32
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
2022-09-25 18:23:15 +00:00
#elif defined(__AVX512F__)
#define GGML_SIMD
// F32 AVX512
#define GGML_F32_STEP 64
#define GGML_F32_EPR 16
#define GGML_F32x16 __m512
#define GGML_F32x16_ZERO _mm512_setzero_ps()
#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
#define GGML_F32x16_LOAD _mm512_loadu_ps
#define GGML_F32x16_STORE _mm512_storeu_ps
// _mm512_fmadd_ps is defined in AVX512F so no guard is required
#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32x16_ADD _mm512_add_ps
#define GGML_F32x16_MUL _mm512_mul_ps
#define GGML_F32x16_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
res = _mm512_reduce_add_ps(x[0]); \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x16
#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
#define GGML_F32_VEC_STORE GGML_F32x16_STORE
#define GGML_F32_VEC_FMA GGML_F32x16_FMA
#define GGML_F32_VEC_ADD GGML_F32x16_ADD
#define GGML_F32_VEC_MUL GGML_F32x16_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
// F16 AVX512
// F16 AVX
#define GGML_F16_STEP 64
#define GGML_F16_EPR 16
// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
#define GGML_F32Cx16 __m512
#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
// so F16C guard isn't required
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32Cx16_ADD _mm512_add_ps
#define GGML_F32Cx16_MUL _mm512_mul_ps
#define GGML_F32Cx16_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
res = _mm512_reduce_add_ps(x[0]); \
} while (0)
#define GGML_F16_VEC GGML_F32Cx16
#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
#elif defined(__AVX__)
2022-09-25 18:23:15 +00:00
#define GGML_SIMD
2022-09-25 18:23:15 +00:00
// F32 AVX
2022-09-25 18:23:15 +00:00
#define GGML_F32_STEP 32
#define GGML_F32_EPR 8
2022-09-25 18:23:15 +00:00
#define GGML_F32x8 __m256
#define GGML_F32x8_ZERO _mm256_setzero_ps()
#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
#define GGML_F32x8_LOAD _mm256_loadu_ps
#define GGML_F32x8_STORE _mm256_storeu_ps
#if defined(__FMA__)
#define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
#else
#define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
#endif
#define GGML_F32x8_ADD _mm256_add_ps
#define GGML_F32x8_MUL _mm256_mul_ps
#define GGML_F32x8_REDUCE(res, x) \
do { \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
_mm256_extractf128_ps(x[0], 1)); \
const __m128 t1 = _mm_hadd_ps(t0, t0); \
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x8
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
// F16 AVX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
// F16 arithmetic is not supported by AVX, so we use F32 instead
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
#if defined(__F16C__)
// the _mm256_cvt intrinsics require F16C
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
#else
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
float tmp[8];
for (int i = 0; i < 8; i++) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
}
return _mm256_loadu_ps(tmp);
}
static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
float arr[8];
_mm256_storeu_ps(arr, y);
for (int i = 0; i < 8; i++)
x[i] = GGML_FP32_TO_FP16(arr[i]);
}
#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
#endif
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
#define GGML_F32Cx8_ADD _mm256_add_ps
#define GGML_F32Cx8_MUL _mm256_mul_ps
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
#define GGML_F16_VEC GGML_F32Cx8
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
2022-09-25 18:23:15 +00:00
#elif defined(__POWER9_VECTOR__)
2022-09-25 18:23:15 +00:00
#define GGML_SIMD
// F32 POWER9
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 vector float
#define GGML_F32x4_ZERO 0.0f
#define GGML_F32x4_SET1 vec_splats
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
#define GGML_F32x4_ADD vec_add
#define GGML_F32x4_MUL vec_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
res = vec_extract(x[0], 0) + \
vec_extract(x[0], 1) + \
vec_extract(x[0], 2) + \
vec_extract(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 POWER9
#define GGML_F16_STEP GGML_F32_STEP
#define GGML_F16_EPR GGML_F32_EPR
#define GGML_F16_VEC GGML_F32x4
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
2024-05-12 17:36:31 +00:00
#define GGML_F16_VEC_ADD GGML_F32x4_ADD
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
// Use vec_xl, not vec_ld, in case the load address is not aligned.
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
vec_extract_fp32_from_shortl(vec_xl(0, p))
#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
#define GGML_F16_VEC_STORE(p, r, i) \
if (i & 0x1) \
vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
r[i - GGML_ENDIAN_BYTE(0)]), \
0, p - GGML_F16_EPR)
2022-09-25 18:23:15 +00:00
#elif defined(__wasm_simd128__)
2022-09-25 18:23:15 +00:00
#define GGML_SIMD
// F32 WASM
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 v128_t
#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F32x4_LOAD wasm_v128_load
#define GGML_F32x4_STORE wasm_v128_store
#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
#define GGML_F32x4_ADD wasm_f32x4_add
#define GGML_F32x4_MUL wasm_f32x4_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 WASM
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(p[0]);
tmp[1] = GGML_FP16_TO_FP32(p[1]);
tmp[2] = GGML_FP16_TO_FP32(p[2]);
tmp[3] = GGML_FP16_TO_FP32(p[3]);
return wasm_v128_load(tmp);
}
inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
float tmp[4];
wasm_v128_store(tmp, x);
p[0] = GGML_FP32_TO_FP16(tmp[0]);
p[1] = GGML_FP32_TO_FP16(tmp[1]);
p[2] = GGML_FP32_TO_FP16(tmp[2]);
p[3] = GGML_FP32_TO_FP16(tmp[3]);
}
#define GGML_F16x4 v128_t
#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
#define GGML_F16x4_FMA GGML_F32x4_FMA
#define GGML_F16x4_ADD wasm_f32x4_add
#define GGML_F16x4_MUL wasm_f32x4_mul
#define GGML_F16x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3); \
}
#define GGML_F16_VEC GGML_F16x4
#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F16x4_FMA
#define GGML_F16_VEC_ADD GGML_F16x4_ADD
#define GGML_F16_VEC_MUL GGML_F16x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
2022-11-23 11:23:24 +00:00
#elif defined(__SSE3__)
#define GGML_SIMD
// F32 SSE
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 __m128
#define GGML_F32x4_ZERO _mm_setzero_ps()
#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
#define GGML_F32x4_LOAD _mm_loadu_ps
#define GGML_F32x4_STORE _mm_storeu_ps
#if defined(__FMA__)
// TODO: Does this work?
#define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
#else
#define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
#endif
#define GGML_F32x4_ADD _mm_add_ps
#define GGML_F32x4_MUL _mm_mul_ps
#define GGML_F32x4_REDUCE(res, x) \
{ \
2023-06-25 11:22:21 +00:00
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
2023-06-25 11:22:21 +00:00
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
}
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 SSE
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]);
tmp[1] = GGML_FP16_TO_FP32(x[1]);
tmp[2] = GGML_FP16_TO_FP32(x[2]);
tmp[3] = GGML_FP16_TO_FP32(x[3]);
return _mm_loadu_ps(tmp);
}
static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
float arr[4];
_mm_storeu_ps(arr, y);
x[0] = GGML_FP32_TO_FP16(arr[0]);
x[1] = GGML_FP32_TO_FP16(arr[1]);
x[2] = GGML_FP32_TO_FP16(arr[2]);
x[3] = GGML_FP32_TO_FP16(arr[3]);
}
#define GGML_F32Cx4 __m128
#define GGML_F32Cx4_ZERO _mm_setzero_ps()
#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
#define GGML_F32Cx4_ADD _mm_add_ps
#define GGML_F32Cx4_MUL _mm_mul_ps
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#elif defined(__loongarch_asx)
#define GGML_SIMD
// F32 LASX
#define GGML_F32_STEP 32
#define GGML_F32_EPR 8
#define GGML_F32x8 __m256
#define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
#define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
#define GGML_F32x8_ADD __lasx_xvfadd_s
#define GGML_F32x8_MUL __lasx_xvfmul_s
#define GGML_F32x8_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
} \
float *tmp_p = (float *)&x[0]; \
res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x8
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
// F16 LASX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
// F16 arithmetic is not supported by AVX, so we use F32 instead
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t *x) {
float tmp[8];
for (int i = 0; i < 8; i++) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
}
return (__m256)__lasx_xvld(tmp, 0);
}
static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
float arr[8];
__lasx_xvst(y, arr, 0);
for (int i = 0; i < 8; i++)
x[i] = GGML_FP32_TO_FP16(arr[i]);
}
#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
#define GGML_F32Cx8_ADD __lasx_xvfadd_s
#define GGML_F32Cx8_MUL __lasx_xvfmul_s
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
#define GGML_F16_VEC GGML_F32Cx8
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
#elif defined(__loongarch_sx)
#define GGML_SIMD
// F32 LSX
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 __m128
#define GGML_F32x4_ZERO __lsx_vldi(0)
#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
#define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
#define GGML_F32x4_ADD __lsx_vfadd_s
#define GGML_F32x4_MUL __lsx_vfmul_s
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
} \
__m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
tmp = __lsx_vsrli_d((__m128i)t0, 32); \
tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 LSX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]);
tmp[1] = GGML_FP16_TO_FP32(x[1]);
tmp[2] = GGML_FP16_TO_FP32(x[2]);
tmp[3] = GGML_FP16_TO_FP32(x[3]);
return __lsx_vld(tmp, 0);
}
static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
float arr[4];
__lsx_vst(y, arr, 0);
x[0] = GGML_FP32_TO_FP16(arr[0]);
x[1] = GGML_FP32_TO_FP16(arr[1]);
x[2] = GGML_FP32_TO_FP16(arr[2]);
x[3] = GGML_FP32_TO_FP16(arr[3]);
}
#define GGML_F32Cx4 __m128
#define GGML_F32Cx4_ZERO __lsx_vldi(0)
#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
#define GGML_F32Cx4_ADD __lsx_vfadd_s
#define GGML_F32Cx4_MUL __lsx_vfmul_s
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
// GGML_F32_ARR / GGML_F16_ARR
// number of registers to use per step
#ifdef GGML_SIMD
#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
#endif
//
// ggml context
//
struct ggml_context {
size_t mem_size;
void* mem_buffer;
bool mem_buffer_owned;
bool no_alloc;
bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
int n_objects;
struct ggml_object* objects_begin;
struct ggml_object* objects_end;
struct ggml_scratch scratch;
struct ggml_scratch scratch_save;
};
struct ggml_context_container {
bool used;
struct ggml_context context;
};
struct ggml_compute_state_shared {
const struct ggml_cgraph* cgraph;
const struct ggml_cplan* cplan;
int64_t perf_node_start_cycles;
int64_t perf_node_start_time_us;
const int n_threads;
// synchronization primitives
atomic_int n_active; // num active threads
atomic_int node_n; // active graph node
atomic_int node_task; // active graph node task phase
ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
void* abort_callback_data;
atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
};
struct ggml_compute_state {
ggml_thread_t thrd;
int ith;
struct ggml_compute_state_shared* shared;
enum ggml_status ec;
};
//
// fundamental operations
//
inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
#if defined(GGML_SIMD)
float sumf = 0.0f;
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F32_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += x[i]*y[i];
}
#else
// scalar
ggml_float sumf = 0.0;
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(x[i]*y[i]);
}
#endif
*s = sumf;
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
int i = 0;
ggml_float sumf = 0;
#if defined(__AVX512BF16__)
__m512 c1 = _mm512_setzero_ps();
__m512 c2 = _mm512_setzero_ps();
for (; i + 64 <= n; i += 64) {
c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
m512bh(_mm512_loadu_si512((y + i))));
c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
m512bh(_mm512_loadu_si512((y + i + 32))));
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
}
sumf += (ggml_float)_mm512_reduce_add_ps(c1);
sumf += (ggml_float)_mm512_reduce_add_ps(c2);
#elif defined(__AVX512F__)
#define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
__m512 c1 = _mm512_setzero_ps();
__m512 c2 = _mm512_setzero_ps();
for (; i + 32 <= n; i += 32) {
c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
}
sumf += (ggml_float)_mm512_reduce_add_ps(c1);
sumf += (ggml_float)_mm512_reduce_add_ps(c2);
#undef LOAD
#elif defined(__AVX2__)
#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
__m256 c1 = _mm256_setzero_ps();
__m256 c2 = _mm256_setzero_ps();
__m256 c3 = _mm256_setzero_ps();
__m256 c4 = _mm256_setzero_ps();
for (; i + 32 <= n; i += 32) {
c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
}
__m128 g;
c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
_mm256_add_ps(c2, c4));
g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
_mm256_castps256_ps128(c1));
g = _mm_add_ps(g, _mm_movehl_ps(g, g));
g = _mm_add_ss(g, _mm_movehdup_ps(g));
sumf += (ggml_float)_mm_cvtss_f32(g);
#undef LOAD
#endif
for (; i < n; ++i) {
sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
GGML_BF16_TO_FP32(y[i]));
}
*s = sumf;
}
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
ggml_float sumf = 0.0;
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F16_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
}
#else
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
}
#endif
*s = sumf;
}
// compute GGML_VEC_DOT_UNROLL dot products at once
// xs - x row stride in bytes
inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
}
}
}
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
}
}
#else
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
}
}
#endif
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
s[i] = sumf[i];
}
}
inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] += x[i]*v;
}
#endif
}
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
}
#endif
}
// xs and vs are byte strides of x and v
inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
const float * restrict x[GGML_VEC_MAD_UNROLL];
const float * restrict v[GGML_VEC_MAD_UNROLL];
for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
x[i] = (const float *) ((const char *) xv + i*xs);
v[i] = (const float *) ((const char *) vv + i*vs);
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
}
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
}
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = np; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#else
// scalar
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = 0; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#endif
}
//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmul(y, 1, &v, y, 1, n);
#elif defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] *= v;
}
#endif
}
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
}
#endif
}
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
2022-09-25 18:23:15 +00:00
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
2022-09-25 18:23:15 +00:00
inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
2022-09-25 18:23:15 +00:00
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
// TODO: optimize performance
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
2022-09-25 18:23:15 +00:00
static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f;
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
2022-09-25 18:23:15 +00:00
inline static float ggml_gelu_f32(float x) {
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
const uint16_t * i16 = (const uint16_t *) x;
2022-09-25 18:23:15 +00:00
for (int i = 0; i < n; ++i) {
y[i] = ggml_table_gelu_f16[i16[i]];
}
}
#ifdef GGML_GELU_FP16
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
if (x[i] <= -10.0f) {
y[i] = 0.0f;
} else if (x[i] >= 10.0f) {
y[i] = x[i];
} else {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
}
}
}
#else
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_f32(x[i]);
}
}
#endif
2023-06-25 11:22:21 +00:00
inline static float ggml_gelu_quick_f32(float x) {
return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
}
//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
// const uint16_t * i16 = (const uint16_t *) x;
// for (int i = 0; i < n; ++i) {
// y[i] = ggml_table_gelu_quick_f16[i16[i]];
2023-06-25 11:22:21 +00:00
// }
//}
#ifdef GGML_GELU_QUICK_FP16
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
2023-06-25 11:22:21 +00:00
}
}
#else
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_quick_f32(x[i]);
}
}
#endif
// Sigmoid Linear Unit (SiLU) function
inline static float ggml_silu_f32(float x) {
return x/(1.0f + expf(-x));
}
#if defined(__ARM_NEON) && defined(__aarch64__)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static float32x4_t ggml_v_expf(float32x4_t x) {
const float32x4_t r = vdupq_n_f32(0x1.8p23f);
const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
const float32x4_t n = vsubq_f32(z, r);
const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
vdupq_n_f32(0x1.7f7d1cp-20f));
const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
const float32x4_t u = vmulq_f32(b, b);
const float32x4_t j = vfmaq_f32(
vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
return vfmaq_f32(k, j, k);
const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static float32x4_t ggml_v_silu(float32x4_t x) {
const float32x4_t one = vdupq_n_f32(1.0f);
const float32x4_t zero = vdupq_n_f32(0.0f);
const float32x4_t neg_x = vsubq_f32(zero, x);
const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
return vdivq_f32(x, one_plus_exp_neg_x);
}
#elif defined(__AVX512F__) && defined(__AVX512DQ__)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static __m512 ggml_v_expf(__m512 x) {
const __m512 r = _mm512_set1_ps(0x1.8p23f);
const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
const __m512 n = _mm512_sub_ps(z, r);
const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
const __m512 u = _mm512_mul_ps(b, b);
const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
_mm512_set1_ps(0x1.573e2ep-5f)), u,
_mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
_mm512_set1_ps(0x1.fffdb6p-2f))),
u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
if (_mm512_kortestz(c, c))
return _mm512_fmadd_ps(j, k, k);
const __m512i g = _mm512_and_si512(
_mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
_mm512_set1_epi32(0x82000000u));
const __m512 s1 =
_mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
const __mmask16 d =
_mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
return _mm512_mask_blend_ps(
d, _mm512_mask_blend_ps(
c, _mm512_fmadd_ps(k, j, k),
_mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
_mm512_mul_ps(s1, s1));
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static __m512 ggml_v_silu(__m512 x) {
const __m512 one = _mm512_set1_ps(1);
const __m512 zero = _mm512_setzero_ps();
const __m512 neg_x = _mm512_sub_ps(zero, x);
const __m512 exp_neg_x = ggml_v_expf(neg_x);
const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
return _mm512_div_ps(x, one_plus_exp_neg_x);
}
#elif defined(__AVX2__) && defined(__FMA__)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static __m256 ggml_v_expf(__m256 x) {
const __m256 r = _mm256_set1_ps(0x1.8p23f);
const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
const __m256 n = _mm256_sub_ps(z, r);
const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
_mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
const __m256 k = _mm256_castsi256_ps(
_mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
const __m256i c = _mm256_castps_si256(
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
_mm256_set1_ps(126), _CMP_GT_OQ));
const __m256 u = _mm256_mul_ps(b, b);
const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
_mm256_set1_ps(0x1.573e2ep-5f)), u,
_mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
_mm256_set1_ps(0x1.fffdb6p-2f))),
u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
return _mm256_fmadd_ps(j, k, k);
const __m256i g = _mm256_and_si256(
_mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
_mm256_set1_epi32(0x82000000u));
const __m256 s1 =
_mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
const __m256i d = _mm256_castps_si256(
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
_mm256_set1_ps(192), _CMP_GT_OQ));
return _mm256_or_ps(
_mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
_mm256_andnot_ps(
_mm256_castsi256_ps(d),
_mm256_or_ps(
_mm256_and_ps(_mm256_castsi256_ps(c),
_mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
_mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static __m256 ggml_v_silu(__m256 x) {
const __m256 one = _mm256_set1_ps(1);
const __m256 zero = _mm256_setzero_ps();
const __m256 neg_x = _mm256_sub_ps(zero, x);
const __m256 exp_neg_x = ggml_v_expf(neg_x);
const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
return _mm256_div_ps(x, one_plus_exp_neg_x);
}
#elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
#if defined(__FMA__)
#define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
#define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
#else
#define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
#define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
#endif
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static __m128 ggml_v_expf(__m128 x) {
const __m128 r = _mm_set1_ps(0x1.8p23f);
const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
const __m128 n = _mm_sub_ps(z, r);
const __m128 b =
NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
const __m128i c =
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
const __m128 u = _mm_mul_ps(b, b);
const __m128 j =
MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
if (!_mm_movemask_epi8(c))
return MADD128(j, k, k);
const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
_mm_set1_epi32(0x82000000u));
const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
const __m128i d =
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
return _mm_or_ps(
_mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
_mm_andnot_ps(_mm_castsi128_ps(d),
_mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
_mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static __m128 ggml_v_silu(__m128 x) {
const __m128 one = _mm_set1_ps(1);
const __m128 zero = _mm_setzero_ps();
const __m128 neg_x = _mm_sub_ps(zero, x);
const __m128 exp_neg_x = ggml_v_expf(neg_x);
const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
return _mm_div_ps(x, one_plus_exp_neg_x);
}
#endif // __ARM_NEON / __AVX2__ / __SSE2__
static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
int i = 0;
#if defined(__AVX512F__) && defined(__AVX512DQ__)
for (; i + 15 < n; i += 16) {
_mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
}
#elif defined(__AVX2__) && defined(__FMA__)
for (; i + 7 < n; i += 8) {
_mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
}
#elif defined(__SSE2__)
for (; i + 3 < n; i += 4) {
_mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
}
#endif
for (; i < n; ++i) {
y[i] = ggml_silu_f32(x[i]);
}
}
static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
int i = 0;
ggml_float sum = 0;
#if defined(__AVX512F__) && defined(__AVX512DQ__)
for (; i + 15 < n; i += 16) {
__m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
_mm512_set1_ps(max)));
_mm512_storeu_ps(y + i, val);
sum += (ggml_float)_mm512_reduce_add_ps(val);
}
#elif defined(__AVX2__) && defined(__FMA__)
for (; i + 7 < n; i += 8) {
__m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
_mm256_set1_ps(max)));
_mm256_storeu_ps(y + i, val);
__m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
_mm256_castps256_ps128(val));
val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
sum += (ggml_float)_mm_cvtss_f32(val2);
}
#elif defined(__SSE2__)
for (; i + 3 < n; i += 4) {
__m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
_mm_set1_ps(max)));
_mm_storeu_ps(y + i, val);
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
val = _mm_add_ps(val, _mm_movehl_ps(val, val));
val = _mm_add_ss(val, _mm_movehdup_ps(val));
#else
__m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
val = _mm_add_ps(val, tmp);
tmp = _mm_movehl_ps(tmp, val);
val = _mm_add_ss(val, tmp);
#endif
sum += (ggml_float)_mm_cvtss_f32(val);
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
vdupq_n_f32(max)));
vst1q_f32(y + i, val);
sum += (ggml_float)vaddvq_f32(val);
}
#endif
for (; i < n; ++i) {
float val = expf(x[i] - max);
sum += (ggml_float)val;
y[i] = val;
}
return sum;
}
inline static float ggml_silu_backward_f32(float x, float dy) {
const float s = 1.0f/(1.0f + expf(-x));
return dy*s*(1.0f + x*(1.0f - s));
}
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
for (int i = 0; i < n; ++i) {
dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
}
}
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
ggml_float sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += (ggml_float)x[i];
}
*s = sum;
#else
vDSP_sve(x, 1, s, n);
#endif
}
inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
ggml_float sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += (ggml_float)x[i];
}
*s = sum;
}
inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
float sum = 0.0f;
for (int i = 0; i < n; ++i) {
sum += GGML_FP16_TO_FP32(x[i]);
}
*s = sum;
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
float sum = 0.0f;
for (int i = 0; i < n; ++i) {
sum += GGML_BF16_TO_FP32(x[i]);
}
*s = sum;
}
inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
float max = -INFINITY;
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
}
*s = max;
#else
vDSP_maxv(x, 1, s, n);
#endif
}
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
ggml_vec_norm_f32(n, s, x);
*s = 1.f/(*s);
}
2022-09-25 18:23:15 +00:00
inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
float max = -INFINITY;
int idx = 0;
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
if (max == x[i]) { idx = i; }
}
*s = idx;
}
2022-09-25 18:23:15 +00:00
//
// data types
//
2023-06-25 11:22:21 +00:00
static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
2022-09-25 18:23:15 +00:00
"NONE",
"DUP",
"ADD",
"ADD1",
"ACC",
2022-09-25 18:23:15 +00:00
"SUB",
"MUL",
"DIV",
"SQR",
"SQRT",
"LOG",
2022-09-25 18:23:15 +00:00
"SUM",
"SUM_ROWS",
2022-09-25 18:23:15 +00:00
"MEAN",
"ARGMAX",
2022-09-25 18:23:15 +00:00
"REPEAT",
2023-06-25 11:22:21 +00:00
"REPEAT_BACK",
"CONCAT",
"SILU_BACK",
2022-09-25 18:23:15 +00:00
"NORM",
"RMS_NORM",
"RMS_NORM_BACK",
"GROUP_NORM",
2022-09-25 18:23:15 +00:00
"MUL_MAT",
"MUL_MAT_ID",
2023-06-25 11:22:21 +00:00
"OUT_PROD",
2022-09-25 18:23:15 +00:00
"SCALE",
"SET",
2022-09-25 18:23:15 +00:00
"CPY",
"CONT",
2022-09-25 18:23:15 +00:00
"RESHAPE",
"VIEW",
"PERMUTE",
"TRANSPOSE",
"GET_ROWS",
"GET_ROWS_BACK",
"DIAG",
2022-09-25 18:23:15 +00:00
"DIAG_MASK_INF",
"DIAG_MASK_ZERO",
2022-09-25 18:23:15 +00:00
"SOFT_MAX",
2023-06-25 11:22:21 +00:00
"SOFT_MAX_BACK",
2022-09-25 18:23:15 +00:00
"ROPE",
"ROPE_BACK",
"CLAMP",
"CONV_TRANSPOSE_1D",
"IM2COL",
"CONV_TRANSPOSE_2D",
"POOL_1D",
"POOL_2D",
"UPSCALE",
"PAD",
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT",
"LEAKY_RELU",
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
"FLASH_ATTN_EXT",
2023-06-25 11:22:21 +00:00
"FLASH_ATTN_BACK",
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
"SSM_CONV",
"SSM_SCAN",
2023-06-25 11:22:21 +00:00
"WIN_PART",
"WIN_UNPART",
"GET_REL_POS",
"ADD_REL_POS",
"UNARY",
2023-04-14 16:20:39 +00:00
"MAP_UNARY",
"MAP_BINARY",
2022-09-25 18:23:15 +00:00
"MAP_CUSTOM1_F32",
"MAP_CUSTOM2_F32",
"MAP_CUSTOM3_F32",
2023-06-25 11:22:21 +00:00
"MAP_CUSTOM1",
"MAP_CUSTOM2",
"MAP_CUSTOM3",
"CROSS_ENTROPY_LOSS",
"CROSS_ENTROPY_LOSS_BACK",
};
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
2022-09-25 18:23:15 +00:00
"none",
"x",
"x+y",
"x+y",
"view(x,nb,offset)+=y->x",
2022-09-25 18:23:15 +00:00
"x-y",
"x*y",
"x/y",
"x^2",
"√x",
"log(x)",
2022-09-25 18:23:15 +00:00
"Σx",
"Σx_k",
2022-09-25 18:23:15 +00:00
"Σx/n",
"argmax(x)",
2022-09-25 18:23:15 +00:00
"repeat(x)",
2023-06-25 11:22:21 +00:00
"repeat_back(x)",
"concat(x, y)",
"silu_back(x)",
2022-09-25 18:23:15 +00:00
"norm(x)",
"rms_norm(x)",
"rms_norm_back(x)",
"group_norm(x)",
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
"X*Y",
"X[i]*Y",
2022-09-25 18:23:15 +00:00
"X*Y",
"x*v",
"y-\\>view(x)",
2022-09-25 18:23:15 +00:00
"x-\\>y",
"cont(x)",
2022-09-25 18:23:15 +00:00
"reshape(x)",
"view(x)",
"permute(x)",
"transpose(x)",
"get_rows(x)",
"get_rows_back(x)",
"diag(x)",
2022-09-25 18:23:15 +00:00
"diag_mask_inf(x)",
"diag_mask_zero(x)",
2022-09-25 18:23:15 +00:00
"soft_max(x)",
2023-06-25 11:22:21 +00:00
"soft_max_back(x)",
2022-09-25 18:23:15 +00:00
"rope(x)",
"rope_back(x)",
"clamp(x)",
"conv_transpose_1d(x)",
"im2col(x)",
"conv_transpose_2d(x)",
"pool_1d(x)",
"pool_2d(x)",
"upscale(x)",
"pad(x)",
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)",
"leaky_relu(x)",
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
"flash_attn_ext(x)",
2023-06-25 11:22:21 +00:00
"flash_attn_back(x)",
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
"ssm_conv(x)",
"ssm_scan(x)",
2023-06-25 11:22:21 +00:00
"win_part(x)",
"win_unpart(x)",
"get_rel_pos(x)",
"add_rel_pos(x)",
"unary(x)",
2023-04-14 16:20:39 +00:00
"f(x)",
"f(x,y)",
2023-06-25 11:22:21 +00:00
"custom_f32(x)",
"custom_f32(x,y)",
"custom_f32(x,y,z)",
2023-06-25 11:22:21 +00:00
"custom(x)",
"custom(x,y)",
"custom(x,y,z)",
"cross_entropy_loss(x,y)",
"cross_entropy_loss_back(x,y)",
2022-09-25 18:23:15 +00:00
};
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
2022-09-25 18:23:15 +00:00
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"ABS",
"SGN",
"NEG",
"STEP",
"TANH",
"ELU",
"RELU",
"SIGMOID",
"GELU",
"GELU_QUICK",
"SILU",
"HARDSWISH",
"HARDSIGMOID",
};
static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
2022-09-25 18:23:15 +00:00
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
// WARN:
// Mis-configuration can lead to problem that's hard to reason about:
// * At best it crash or talks nosense.
// * At worst it talks slightly difference but hard to perceive.
//
// An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
// Take care about compile options (e.g., GGML_USE_xxx).
static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
static void ggml_setup_op_has_task_pass(void) {
{ // INIT
bool * p = GGML_OP_HAS_INIT;
p[GGML_OP_ACC ] = true;
p[GGML_OP_MUL_MAT ] = true;
p[GGML_OP_MUL_MAT_ID ] = true;
p[GGML_OP_OUT_PROD ] = true;
p[GGML_OP_SET ] = true;
p[GGML_OP_GET_ROWS_BACK ] = true;
p[GGML_OP_DIAG_MASK_INF ] = true;
p[GGML_OP_DIAG_MASK_ZERO ] = true;
p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
p[GGML_OP_FLASH_ATTN_BACK ] = true;
p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
p[GGML_OP_ADD_REL_POS ] = true;
}
{ // FINALIZE
bool * p = GGML_OP_HAS_FINALIZE;
p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
}
}
//
// NUMA support
//
#define GGML_NUMA_MAX_NODES 8
#define GGML_NUMA_MAX_CPUS 512
struct ggml_numa_node {
uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
uint32_t n_cpus;
};
struct ggml_numa_nodes {
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
enum ggml_numa_strategy numa_strategy;
struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
uint32_t n_nodes;
uint32_t total_cpus; // hardware threads on system
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
uint32_t current_node; // node on which main process is execting
#if defined(__gnu_linux__)
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
cpu_set_t cpuset; // cpuset from numactl
#else
uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
#endif
};
2022-09-25 18:23:15 +00:00
//
// ggml state
//
struct ggml_state {
struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
struct ggml_numa_nodes numa;
2022-09-25 18:23:15 +00:00
};
// global state
static struct ggml_state g_state;
static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
2022-09-25 18:23:15 +00:00
// barrier via spin lock
inline static void ggml_critical_section_start(void) {
while (atomic_flag_test_and_set(&g_state_critical)) {
// spin
sched_yield();
}
}
// TODO: make this somehow automatically executed
// some sort of "sentry" mechanism
inline static void ggml_critical_section_end(void) {
atomic_flag_clear(&g_state_critical);
}
#if defined(__gnu_linux__)
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
static cpu_set_t ggml_get_numa_affinity(void) {
cpu_set_t cpuset;
pthread_t thread;
thread = pthread_self();
CPU_ZERO(&cpuset);
pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
return cpuset;
}
#else
static uint32_t ggml_get_numa_affinity(void) {
return 0; // no NUMA support
}
#endif
void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
if (g_state.numa.n_nodes > 0) {
fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
return;
}
#if defined(__gnu_linux__)
struct stat st;
char path[256];
int rv;
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
// set numa scheme
g_state.numa.numa_strategy = numa_flag;
GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
g_state.numa.cpuset = ggml_get_numa_affinity();
// enumerate nodes
while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
if (stat(path, &st) != 0) { break; }
++g_state.numa.n_nodes;
}
// enumerate CPUs
while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
if (stat(path, &st) != 0) { break; }
++g_state.numa.total_cpus;
}
GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
// figure out which node we're on
uint current_cpu;
int getcpu_ret = 0;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
#else
// old glibc doesn't have a wrapper for this call. Fall back on direct syscall
# if !defined(SYS_getcpu) && defined(SYS_get_cpu)
# define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
# endif
getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
#endif
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
g_state.numa.n_nodes = 0;
return;
}
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
struct ggml_numa_node * node = &g_state.numa.nodes[n];
GGML_PRINT_DEBUG("CPUs on node %u:", n);
node->n_cpus = 0;
for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
if (stat(path, &st) == 0) {
node->cpus[node->n_cpus++] = c;
GGML_PRINT_DEBUG(" %u", c);
}
}
GGML_PRINT_DEBUG("\n");
}
if (ggml_is_numa()) {
FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
if (fptr != NULL) {
char buf[42];
if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
}
fclose(fptr);
}
}
#else
GGML_UNUSED(numa_flag);
// TODO
#endif
}
bool ggml_is_numa(void) {
return g_state.numa.n_nodes > 1;
}
2022-09-25 18:23:15 +00:00
////////////////////////////////////////////////////////////////////////////////
void ggml_print_object(const struct ggml_object * obj) {
GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
obj->type, obj->offs, obj->size, (const void *) obj->next);
2022-09-25 18:23:15 +00:00
}
void ggml_print_objects(const struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin;
GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
while (obj != NULL) {
ggml_print_object(obj);
obj = obj->next;
}
GGML_PRINT("%s: --- end ---\n", __func__);
}
GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 09:18:18 +00:00
size_t nbytes;
size_t blck_size = ggml_blck_size(tensor->type);
if (blck_size == 1) {
nbytes = ggml_type_size(tensor->type);
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
}
}
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 09:18:18 +00:00
else {
nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
}
}
return nbytes;
}
size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
2023-06-25 11:22:21 +00:00
}
GGML_CALL int ggml_blck_size(enum ggml_type type) {
return type_traits[type].blck_size;
2022-09-25 18:23:15 +00:00
}
GGML_CALL size_t ggml_type_size(enum ggml_type type) {
return type_traits[type].type_size;
2022-09-25 18:23:15 +00:00
}
GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
assert(ne % ggml_blck_size(type) == 0);
return ggml_type_size(type)*ne/ggml_blck_size(type);
}
double ggml_type_sizef(enum ggml_type type) {
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
}
GGML_CALL const char * ggml_type_name(enum ggml_type type) {
return type_traits[type].type_name;
}
GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
return type_traits[type].is_quantized;
}
GGML_CALL const char * ggml_op_name(enum ggml_op op) {
2023-06-25 11:22:21 +00:00
return GGML_OP_NAME[op];
}
const char * ggml_op_symbol(enum ggml_op op) {
return GGML_OP_SYMBOL[op];
}
const char * ggml_unary_op_name(enum ggml_unary_op op) {
return GGML_UNARY_OP_NAME[op];
}
GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
if (t->op == GGML_OP_UNARY) {
enum ggml_unary_op uop = ggml_get_unary_op(t);
return ggml_unary_op_name(uop);
}
else {
return ggml_op_name(t->op);
}
}
GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
return ggml_type_size(tensor->type);
2022-09-25 18:23:15 +00:00
}
bool ggml_is_scalar(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_vector(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_matrix(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_3d(const struct ggml_tensor * tensor) {
return tensor->ne[3] == 1;
}
int ggml_n_dims(const struct ggml_tensor * tensor) {
for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
if (tensor->ne[i] > 1) {
return i + 1;
}
}
return 1;
}
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[0] == t1->ne[0]) &&
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
(t1->ne[3]%t0->ne[3] == 0);
}
2023-06-25 11:22:21 +00:00
static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[1] == t1->ne[1]) &&
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
(t1->ne[3]%t0->ne[3] == 0);
2023-06-25 11:22:21 +00:00
}
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
enum ggml_type wtype = GGML_TYPE_COUNT;
switch (ftype) {
case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
2023-06-25 11:22:21 +00:00
case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
2024-02-21 14:19:39 +00:00
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
}
GGML_ASSERT(wtype != GGML_TYPE_COUNT);
return wtype;
}
2023-06-25 11:22:21 +00:00
size_t ggml_tensor_overhead(void) {
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
2023-06-25 11:22:21 +00:00
}
GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
return tensor->nb[0] > tensor->nb[1];
2022-09-25 18:23:15 +00:00
}
GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
return ggml_is_contiguous(tensor);
}
GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
2022-09-25 18:23:15 +00:00
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
2023-06-25 11:22:21 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
}
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
2022-09-25 18:23:15 +00:00
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
2022-09-25 18:23:15 +00:00
}
GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
if (tensor->ne[i] == 0) {
// empty if any dimension has no elements
return true;
}
}
return false;
}
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
(t0->ne[0] == t1->ne[0] ) &&
(t0->ne[1] == t1->ne[1] ) &&
(t0->ne[2] == t1->ne[2] ) &&
(t0->ne[3] == t1->ne[3] );
}
bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
(t0->nb[0] == t1->nb[0] ) &&
(t0->nb[1] == t1->nb[1] ) &&
(t0->nb[2] == t1->nb[2] ) &&
(t0->nb[3] == t1->nb[3] );
}
2022-09-25 18:23:15 +00:00
// check if t1 can be represented as a repeatition of t0
static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
2022-09-25 18:23:15 +00:00
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return ggml_is_empty(t0) ? ggml_is_empty(t1) :
2022-09-25 18:23:15 +00:00
(t1->ne[0]%t0->ne[0] == 0) &&
(t1->ne[1]%t0->ne[1] == 0) &&
(t1->ne[2]%t0->ne[2] == 0) &&
(t1->ne[3]%t0->ne[3] == 0);
}
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
}
static inline int ggml_up32(int n) {
2022-09-25 18:23:15 +00:00
return (n + 31) & ~31;
}
//static inline int ggml_up64(int n) {
// return (n + 63) & ~63;
//}
2022-09-25 18:23:15 +00:00
static inline int ggml_up(int n, int m) {
// assert m is a power of 2
GGML_ASSERT((m & (m - 1)) == 0);
return (n + m - 1) & ~(m - 1);
}
2022-09-25 18:23:15 +00:00
// assert that pointer is aligned to GGML_MEM_ALIGN
#define ggml_assert_aligned(ptr) \
GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
2022-09-25 18:23:15 +00:00
////////////////////////////////////////////////////////////////////////////////
struct ggml_context * ggml_init(struct ggml_init_params params) {
// make this function thread safe
ggml_critical_section_start();
static bool is_first_call = true;
if (is_first_call) {
// initialize time system (required on Windows)
ggml_time_init();
2023-06-25 11:22:21 +00:00
// initialize GELU, Quick GELU, SILU and EXP F32 tables
{
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
for (int i = 0; i < (1 << 16); ++i) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
union {
uint16_t u16;
ggml_fp16_t fp16;
} u = {i};
float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
}
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
2023-06-25 11:22:21 +00:00
GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
// initialize g_state
{
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
g_state = (struct ggml_state) {
2023-01-07 07:34:39 +00:00
/*.contexts =*/ { { 0 } },
/*.numa =*/ {
.n_nodes = 0,
.total_cpus = 0,
},
};
for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
g_state.contexts[i].used = false;
}
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
#if defined(GGML_USE_CLBLAST)
ggml_cl_init();
#endif
ggml_setup_op_has_task_pass();
is_first_call = false;
}
2022-09-25 18:23:15 +00:00
// find non-used context in g_state
struct ggml_context * ctx = NULL;
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
if (!g_state.contexts[i].used) {
g_state.contexts[i].used = true;
ctx = &g_state.contexts[i].context;
GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
break;
}
}
if (ctx == NULL) {
GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
ggml_critical_section_end();
2022-09-25 18:23:15 +00:00
return NULL;
}
// allow to call ggml_init with 0 size
if (params.mem_size == 0) {
params.mem_size = GGML_MEM_ALIGN;
}
const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
2023-04-14 16:20:39 +00:00
2022-09-25 18:23:15 +00:00
*ctx = (struct ggml_context) {
2023-04-14 16:20:39 +00:00
/*.mem_size =*/ mem_size,
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
/*.no_alloc =*/ params.no_alloc,
2023-06-25 11:22:21 +00:00
/*.no_alloc_save =*/ params.no_alloc,
/*.n_objects =*/ 0,
/*.objects_begin =*/ NULL,
/*.objects_end =*/ NULL,
/*.scratch =*/ { 0, 0, NULL, },
/*.scratch_save =*/ { 0, 0, NULL, },
2022-09-25 18:23:15 +00:00
};
2023-04-14 16:20:39 +00:00
GGML_ASSERT(ctx->mem_buffer != NULL);
2022-09-25 18:23:15 +00:00
ggml_assert_aligned(ctx->mem_buffer);
GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
ggml_critical_section_end();
2022-09-25 18:23:15 +00:00
return ctx;
}
void ggml_free(struct ggml_context * ctx) {
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
if (ctx == NULL) {
return;
}
// make this function thread safe
ggml_critical_section_start();
bool found = false;
2022-09-25 18:23:15 +00:00
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
if (&g_state.contexts[i].context == ctx) {
g_state.contexts[i].used = false;
GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
__func__, i, ggml_used_mem(ctx));
2022-09-25 18:23:15 +00:00
if (ctx->mem_buffer_owned) {
GGML_ALIGNED_FREE(ctx->mem_buffer);
2022-09-25 18:23:15 +00:00
}
found = true;
break;
2022-09-25 18:23:15 +00:00
}
}
if (!found) {
GGML_PRINT_DEBUG("%s: context not found\n", __func__);
}
ggml_critical_section_end();
2022-09-25 18:23:15 +00:00
}
size_t ggml_used_mem(const struct ggml_context * ctx) {
return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
}
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
ctx->scratch = scratch;
return result;
2022-09-25 18:23:15 +00:00
}
bool ggml_get_no_alloc(struct ggml_context * ctx) {
return ctx->no_alloc;
}
2023-06-25 11:22:21 +00:00
void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
ctx->no_alloc = no_alloc;
}
void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
return ctx->mem_buffer;
}
size_t ggml_get_mem_size(const struct ggml_context * ctx) {
return ctx->mem_size;
}
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
size_t max_size = 0;
for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
size_t bytes = ggml_nbytes(tensor);
max_size = MAX(max_size, bytes);
2023-06-25 11:22:21 +00:00
}
return max_size;
}
// IMPORTANT:
// when creating "opt" tensors, always save and load the scratch buffer
// this is an error prone process, but it is necessary to support inplace
// operators when using scratch buffers
// TODO: implement a better way
static void ggml_scratch_save(struct ggml_context * ctx) {
2023-06-25 11:22:21 +00:00
// this is needed to allow opt tensors to store their data
// TODO: again, need to find a better way
ctx->no_alloc_save = ctx->no_alloc;
ctx->no_alloc = false;
ctx->scratch_save = ctx->scratch;
ctx->scratch.data = NULL;
}
static void ggml_scratch_load(struct ggml_context * ctx) {
2023-06-25 11:22:21 +00:00
ctx->no_alloc = ctx->no_alloc_save;
ctx->scratch = ctx->scratch_save;
}
2022-09-25 18:23:15 +00:00
////////////////////////////////////////////////////////////////////////////////
static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
2022-09-25 18:23:15 +00:00
// always insert objects at the end of the context's memory pool
struct ggml_object * obj_cur = ctx->objects_end;
const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
const size_t cur_end = cur_offs + cur_size;
2022-09-25 18:23:15 +00:00
// align to GGML_MEM_ALIGN
size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
2022-09-25 18:23:15 +00:00
char * const mem_buffer = ctx->mem_buffer;
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
__func__, cur_end + size_needed, ctx->mem_size);
assert(false);
return NULL;
}
*obj_new = (struct ggml_object) {
.offs = cur_end + GGML_OBJECT_SIZE,
.size = size_needed,
.next = NULL,
.type = type,
};
ggml_assert_aligned(mem_buffer + obj_new->offs);
if (obj_cur != NULL) {
obj_cur->next = obj_new;
} else {
// this is the first object in this context
ctx->objects_begin = obj_new;
}
ctx->objects_end = obj_new;
//printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
return obj_new;
}
static struct ggml_tensor * ggml_new_tensor_impl(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t * ne,
struct ggml_tensor * view_src,
size_t view_offs) {
assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
// find the base tensor and absolute offset
if (view_src != NULL && view_src->view_src != NULL) {
view_offs += view_src->view_offs;
view_src = view_src->view_src;
}
size_t data_size = ggml_row_size(type, ne[0]);
for (int i = 1; i < n_dims; i++) {
data_size *= ne[i];
}
GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
void * data = view_src != NULL ? view_src->data : NULL;
if (data != NULL) {
data = (char *) data + view_offs;
}
size_t obj_alloc_size = 0;
if (view_src == NULL && !ctx->no_alloc) {
if (ctx->scratch.data != NULL) {
// allocate tensor data in the scratch buffer
if (ctx->scratch.offs + data_size > ctx->scratch.size) {
GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
__func__, ctx->scratch.offs + data_size, ctx->scratch.size);
assert(false);
return NULL;
}
2022-09-25 18:23:15 +00:00
data = (char * const) ctx->scratch.data + ctx->scratch.offs;
ctx->scratch.offs += data_size;
} else {
// allocate tensor data in the context's memory pool
obj_alloc_size = data_size;
}
2022-09-25 18:23:15 +00:00
}
struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
2022-09-25 18:23:15 +00:00
// TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
2022-09-25 18:23:15 +00:00
struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
2022-09-25 18:23:15 +00:00
#ifdef __clang__
// temporary until ggml_tensor::backend is removed
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
2022-09-25 18:23:15 +00:00
*result = (struct ggml_tensor) {
/*.type =*/ type,
/*.backend =*/ GGML_BACKEND_TYPE_CPU,
/*.buffer =*/ NULL,
2022-09-25 18:23:15 +00:00
/*.ne =*/ { 1, 1, 1, 1 },
/*.nb =*/ { 0, 0, 0, 0 },
/*.op =*/ GGML_OP_NONE,
/*.op_params =*/ { 0 },
/*.flags =*/ 0,
2022-09-25 18:23:15 +00:00
/*.grad =*/ NULL,
/*.src =*/ { NULL },
2022-09-25 18:23:15 +00:00
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
/*.view_src =*/ view_src,
/*.view_offs =*/ view_offs,
/*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
/*.name =*/ { 0 },
2023-06-25 11:22:21 +00:00
/*.extra =*/ NULL,
/*.padding =*/ { 0 },
2022-09-25 18:23:15 +00:00
};
#ifdef __clang__
#pragma clang diagnostic pop
#endif
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
//ggml_assert_aligned(result->data);
2022-09-25 18:23:15 +00:00
for (int i = 0; i < n_dims; i++) {
result->ne[i] = ne[i];
}
result->nb[0] = ggml_type_size(type);
result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
for (int i = 2; i < GGML_MAX_DIMS; i++) {
2022-09-25 18:23:15 +00:00
result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
}
ctx->n_objects++;
return result;
}
struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t * ne) {
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0) {
2022-09-25 18:23:15 +00:00
return ggml_new_tensor(ctx, type, 1, &ne0);
}
struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1) {
const int64_t ne[2] = { ne0, ne1 };
2022-09-25 18:23:15 +00:00
return ggml_new_tensor(ctx, type, 2, ne);
}
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
const int64_t ne[3] = { ne0, ne1, ne2 };
2022-09-25 18:23:15 +00:00
return ggml_new_tensor(ctx, type, 3, ne);
}
struct ggml_tensor * ggml_new_tensor_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
2022-09-25 18:23:15 +00:00
return ggml_new_tensor(ctx, type, 4, ne);
}
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
ggml_scratch_save(ctx);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
ggml_scratch_load(ctx);
ggml_set_i32(result, value);
return result;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
ggml_scratch_save(ctx);
2022-09-25 18:23:15 +00:00
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_scratch_load(ctx);
2022-09-25 18:23:15 +00:00
ggml_set_f32(result, value);
return result;
}
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
}
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
assert(params_size <= GGML_MAX_OP_PARAMS);
memcpy(tensor->op_params, params, params_size);
}
static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
return ((const int32_t *)(tensor->op_params))[i];
}
static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
return ((const float *)(tensor->op_params))[i];
}
static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
((int32_t *)(tensor->op_params))[i] = value;
2022-09-25 18:23:15 +00:00
}
static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
((float *)(tensor->op_params))[i] = value;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
memset(tensor->data, 0, ggml_nbytes(tensor));
return tensor;
}
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
const int n = ggml_nrows(tensor);
const int nc = tensor->ne[0];
const size_t n1 = tensor->nb[1];
char * const data = tensor->data;
switch (tensor->type) {
case GGML_TYPE_I8:
{
assert(tensor->nb[0] == sizeof(int8_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I16:
{
assert(tensor->nb[0] == sizeof(int16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I32:
{
assert(tensor->nb[0] == sizeof(int32_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_F16:
{
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
}
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
}
} break;
case GGML_TYPE_F32:
{
assert(tensor->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
}
} break;
default:
{
GGML_ASSERT(false);
} break;
}
return tensor;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
const int n = ggml_nrows(tensor);
const int nc = tensor->ne[0];
const size_t n1 = tensor->nb[1];
char * const data = tensor->data;
switch (tensor->type) {
2022-09-25 18:23:15 +00:00
case GGML_TYPE_I8:
{
assert(tensor->nb[0] == sizeof(int8_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I16:
{
assert(tensor->nb[0] == sizeof(int16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I32:
{
assert(tensor->nb[0] == sizeof(int32_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_F16:
{
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
2022-09-25 18:23:15 +00:00
}
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
assert(tensor->nb[0] == sizeof(ggml_bf16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
}
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
{
assert(tensor->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
}
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
return tensor;
}
void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
const int64_t ne2 = tensor->ne[2];
const int64_t ne1 = tensor->ne[1];
const int64_t ne0 = tensor->ne[0];
const int64_t i3_ = (i/(ne2*ne1*ne0));
const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
if (i0) {
* i0 = i0_;
}
if (i1) {
* i1 = i1_;
}
if (i2) {
* i2 = i2_;
}
if (i3) {
* i3 = i3_;
}
}
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
if (!ggml_is_contiguous(tensor)) {
int64_t id[4] = { 0, 0, 0, 0 };
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
}
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
return ((int8_t *)(tensor->data))[i];
}
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
return ((int16_t *)(tensor->data))[i];
}
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
return ((int32_t *)(tensor->data))[i];
}
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
}
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
return ((float *)(tensor->data))[i];
}
default:
{
GGML_ASSERT(false);
}
}
return 0.0f;
}
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
if (!ggml_is_contiguous(tensor)) {
int64_t id[4] = { 0, 0, 0, 0 };
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
return;
}
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
((int8_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
((int16_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
((int32_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
((float *)(tensor->data))[i] = value;
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
switch (tensor->type) {
case GGML_TYPE_I8:
return ((int8_t *) data)[0];
case GGML_TYPE_I16:
return ((int16_t *) data)[0];
case GGML_TYPE_I32:
return ((int32_t *) data)[0];
case GGML_TYPE_F16:
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
case GGML_TYPE_F32:
return ((float *) data)[0];
default:
GGML_ASSERT(false);
}
return 0.0f;
}
void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
switch (tensor->type) {
case GGML_TYPE_I8:
{
((int8_t *)(data))[0] = value;
} break;
case GGML_TYPE_I16:
{
((int16_t *)(data))[0] = value;
} break;
case GGML_TYPE_I32:
{
((int32_t *)(data))[0] = value;
} break;
case GGML_TYPE_F16:
{
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
} break;
case GGML_TYPE_F32:
{
((float *)(data))[0] = value;
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
if (!ggml_is_contiguous(tensor)) {
int64_t id[4] = { 0, 0, 0, 0 };
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
}
2022-09-25 18:23:15 +00:00
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
2022-09-25 18:23:15 +00:00
return ((int8_t *)(tensor->data))[i];
}
2022-09-25 18:23:15 +00:00
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
2022-09-25 18:23:15 +00:00
return ((int16_t *)(tensor->data))[i];
}
2022-09-25 18:23:15 +00:00
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
2022-09-25 18:23:15 +00:00
return ((int32_t *)(tensor->data))[i];
}
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
}
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
2022-09-25 18:23:15 +00:00
return ((float *)(tensor->data))[i];
}
default:
{
GGML_ASSERT(false);
}
}
return 0.0f;
}
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
if (!ggml_is_contiguous(tensor)) {
int64_t id[4] = { 0, 0, 0, 0 };
ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
return;
}
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
((int8_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
((int16_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
((int32_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
((float *)(tensor->data))[i] = value;
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
switch (tensor->type) {
case GGML_TYPE_I8:
return ((int8_t *) data)[0];
case GGML_TYPE_I16:
return ((int16_t *) data)[0];
case GGML_TYPE_I32:
return ((int32_t *) data)[0];
case GGML_TYPE_F16:
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
case GGML_TYPE_F32:
return ((float *) data)[0];
default:
GGML_ASSERT(false);
}
2022-09-25 18:23:15 +00:00
return 0.0f;
}
void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
2022-09-25 18:23:15 +00:00
switch (tensor->type) {
case GGML_TYPE_I8:
{
((int8_t *)(data))[0] = value;
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_I16:
{
((int16_t *)(data))[0] = value;
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_I32:
{
((int32_t *)(data))[0] = value;
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F16:
{
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
2022-09-25 18:23:15 +00:00
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
{
((float *)(data))[0] = value;
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
void * ggml_get_data(const struct ggml_tensor * tensor) {
return tensor->data;
}
float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
assert(tensor->type == GGML_TYPE_F32);
return (float *)(tensor->data);
}
GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->op == GGML_OP_UNARY);
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
}
const char * ggml_get_name(const struct ggml_tensor * tensor) {
return tensor->name;
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
strncpy(tensor->name, name, sizeof(tensor->name) - 1);
tensor->name[sizeof(tensor->name) - 1] = '\0';
2023-06-25 11:22:21 +00:00
return tensor;
}
struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
va_end(args);
return tensor;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_view_tensor(
struct ggml_context * ctx,
struct ggml_tensor * src) {
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (view)", src->name);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
result->nb[i] = src->nb[i];
}
return result;
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
return (struct ggml_tensor *)(mem_buffer + obj->offs);
}
obj = obj->next;
}
return NULL;
}
struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
obj = obj->next;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
return (struct ggml_tensor *)(mem_buffer + obj->offs);
}
obj = obj->next;
}
return NULL;
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
if (strcmp(cur->name, name) == 0) {
return cur;
}
2023-06-25 11:22:21 +00:00
}
obj = obj->next;
}
return NULL;
}
2022-09-25 18:23:15 +00:00
////////////////////////////////////////////////////////////////////////////////
// ggml_dup
static struct ggml_tensor * ggml_dup_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_DUP;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_dup(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_dup_impl(ctx, a, false);
}
struct ggml_tensor * ggml_dup_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_dup_impl(ctx, a, true);
}
// ggml_add
static struct ggml_tensor * ggml_add_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
// TODO: support backward pass for broadcasting
GGML_ASSERT(ggml_are_same_shape(a, b));
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_ADD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_add(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_add_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add_impl(ctx, a, b, true);
}
// ggml_add_cast
static struct ggml_tensor * ggml_add_cast_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
enum ggml_type type) {
// TODO: support less-strict constraint
// GGML_ASSERT(ggml_can_repeat(b, a));
GGML_ASSERT(ggml_can_repeat_rows(b, a));
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
// currently only supported for quantized input and f16
GGML_ASSERT(ggml_is_quantized(a->type) ||
a->type == GGML_TYPE_F16 ||
a->type == GGML_TYPE_BF16);
bool is_node = false;
if (a->grad || b->grad) {
// TODO: support backward pass for broadcasting
GGML_ASSERT(ggml_are_same_shape(a, b));
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
result->op = GGML_OP_ADD;
result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_add_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
enum ggml_type type) {
return ggml_add_cast_impl(ctx, a, b, type);
}
// ggml_add1
2022-09-25 18:23:15 +00:00
static struct ggml_tensor * ggml_add1_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_is_scalar(b));
GGML_ASSERT(ggml_is_padded_1d(a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
2023-06-25 11:22:21 +00:00
if (a->grad || b->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_ADD1;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_add1(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add1_impl(ctx, a, b, false);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_add1_inplace(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add1_impl(ctx, a, b, true);
2022-09-25 18:23:15 +00:00
}
// ggml_acc
2022-09-25 18:23:15 +00:00
static struct ggml_tensor * ggml_acc_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset,
2022-09-25 18:23:15 +00:00
bool inplace) {
GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(a->type == GGML_TYPE_F32);
GGML_ASSERT(b->type == GGML_TYPE_F32);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ACC;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_acc(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_acc_inplace(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
2022-09-25 18:23:15 +00:00
}
// ggml_sub
2022-09-25 18:23:15 +00:00
static struct ggml_tensor * ggml_sub_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SUB;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_sub(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_sub_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_sub_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_sub_impl(ctx, a, b, true);
}
// ggml_mul
static struct ggml_tensor * ggml_mul_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
// TODO: support backward pass for broadcasting
GGML_ASSERT(ggml_are_same_shape(a, b));
is_node = true;
}
if (inplace) {
GGML_ASSERT(!is_node);
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_MUL;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_mul(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_mul_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_mul_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_mul_impl(ctx, a, b, true);
}
// ggml_div
static struct ggml_tensor * ggml_div_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_can_repeat(b, a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
if (inplace) {
GGML_ASSERT(!is_node);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_DIV;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_div(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_div_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_div_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_div_impl(ctx, a, b, true);
}
// ggml_sqr
static struct ggml_tensor * ggml_sqr_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SQR;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_sqr(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqr_impl(ctx, a, false);
}
struct ggml_tensor * ggml_sqr_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqr_impl(ctx, a, true);
}
// ggml_sqrt
static struct ggml_tensor * ggml_sqrt_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SQRT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_sqrt(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqrt_impl(ctx, a, false);
}
struct ggml_tensor * ggml_sqrt_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqrt_impl(ctx, a, true);
}
// ggml_log
static struct ggml_tensor * ggml_log_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_LOG;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_log(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_log_impl(ctx, a, false);
}
struct ggml_tensor * ggml_log_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_log_impl(ctx, a, true);
}
2022-09-25 18:23:15 +00:00
// ggml_sum
struct ggml_tensor * ggml_sum(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
result->op = GGML_OP_SUM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_sum_rows
struct ggml_tensor * ggml_sum_rows(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
int64_t ne[GGML_MAX_DIMS] = { 1 };
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
ne[i] = a->ne[i];
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
result->op = GGML_OP_SUM_ROWS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_mean
struct ggml_tensor * ggml_mean(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
is_node = true;
}
int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_MEAN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_argmax
struct ggml_tensor * ggml_argmax(
struct ggml_context * ctx,
struct ggml_tensor * a) {
GGML_ASSERT(ggml_is_matrix(a));
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false);
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
result->op = GGML_OP_ARGMAX;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_repeat
struct ggml_tensor * ggml_repeat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_repeat(a, b));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_REPEAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_repeat_back
struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_repeat(b, a));
bool is_node = false;
if (a->grad) {
is_node = true;
}
if (ggml_are_same_shape(a, b) && !is_node) {
return a;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_REPEAT_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
// ggml_concat
struct ggml_tensor * ggml_concat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int dim) {
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
int64_t ne[GGML_MAX_DIMS];
for (int d = 0; d < GGML_MAX_DIMS; ++d) {
if (d == dim) {
ne[d] = a->ne[d] + b->ne[d];
continue;
}
GGML_ASSERT(a->ne[d] == b->ne[d]);
ne[d] = a->ne[d];
}
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
ggml_set_op_params_i32(result, 0, dim);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_CONCAT;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_abs
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_abs_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
2022-09-25 18:23:15 +00:00
}
// ggml_sgn
struct ggml_tensor * ggml_sgn(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_sgn_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
2022-09-25 18:23:15 +00:00
}
// ggml_neg
struct ggml_tensor * ggml_neg(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_neg_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
2022-09-25 18:23:15 +00:00
}
// ggml_step
struct ggml_tensor * ggml_step(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_step_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
2022-09-25 18:23:15 +00:00
}
// ggml_tanh
struct ggml_tensor * ggml_tanh(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
}
struct ggml_tensor * ggml_tanh_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
}
// ggml_elu
struct ggml_tensor * ggml_elu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
}
struct ggml_tensor * ggml_elu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
}
2022-09-25 18:23:15 +00:00
// ggml_relu
struct ggml_tensor * ggml_relu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
2022-09-25 18:23:15 +00:00
}
// ggml_leaky_relu
struct ggml_tensor * ggml_leaky_relu(
struct ggml_context * ctx,
struct ggml_tensor * a, float negative_slope, bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
result->op = GGML_OP_LEAKY_RELU;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_sigmoid
struct ggml_tensor * ggml_sigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
}
struct ggml_tensor * ggml_sigmoid_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
}
2022-09-25 18:23:15 +00:00
// ggml_gelu
struct ggml_tensor * ggml_gelu(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_gelu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
// ggml_gelu_quick
struct ggml_tensor * ggml_gelu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
2023-06-25 11:22:21 +00:00
}
struct ggml_tensor * ggml_gelu_quick_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
2023-06-25 11:22:21 +00:00
}
// ggml_silu
struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
}
struct ggml_tensor * ggml_silu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
}
// ggml_silu_back
struct ggml_tensor * ggml_silu_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
bool is_node = false;
if (a->grad || b->grad) {
// TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SILU_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml hardswish
struct ggml_tensor * ggml_hardswish(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
}
// ggml hardsigmoid
struct ggml_tensor * ggml_hardsigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
}
2022-09-25 18:23:15 +00:00
// ggml_norm
static struct ggml_tensor * ggml_norm_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps,
2022-09-25 18:23:15 +00:00
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
GGML_ASSERT(false); // TODO: implement backward
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_norm_impl(ctx, a, eps, false);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_norm_impl(ctx, a, eps, true);
2022-09-25 18:23:15 +00:00
}
// ggml_rms_norm
static struct ggml_tensor * ggml_rms_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_RMS_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_rms_norm_impl(ctx, a, eps, false);
}
struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_rms_norm_impl(ctx, a, eps, true);
}
// ggml_rms_norm_back
struct ggml_tensor * ggml_rms_norm_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float eps) {
bool is_node = false;
if (a->grad) {
// TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_RMS_NORM_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_group_norm
static struct ggml_tensor * ggml_group_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op_params[0] = n_groups;
result->op = GGML_OP_GROUP_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_group_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups) {
return ggml_group_norm_impl(ctx, a, n_groups, false);
}
struct ggml_tensor * ggml_group_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups) {
return ggml_group_norm_impl(ctx, a, n_groups, true);
}
2022-09-25 18:23:15 +00:00
// ggml_mul_mat
struct ggml_tensor * ggml_mul_mat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_mul_mat(a, b));
GGML_ASSERT(!ggml_is_transposed(a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_MUL_MAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
void ggml_mul_mat_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec) {
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 0, prec_i32);
}
// ggml_mul_mat_id
/*
c = ggml_mul_mat_id(ctx, as, b, ids);
as -> [cols, rows, n_expert]
ids -> [n_experts_used, n_tokens] (i32)
b -> [cols, n_expert_used, n_tokens]
c -> [cols, n_expert_used, n_tokens]
in b, n_experts_used can be broadcasted to match the n_expert_used of ids
c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
*/
struct ggml_tensor * ggml_mul_mat_id(
struct ggml_context * ctx,
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
struct ggml_tensor * as,
struct ggml_tensor * b,
struct ggml_tensor * ids) {
GGML_ASSERT(!ggml_is_transposed(as));
GGML_ASSERT(ids->type == GGML_TYPE_I32);
GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
GGML_ASSERT(b->ne[3] == 1); // b is 3d
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
bool is_node = false;
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
if (as->grad || b->grad) {
is_node = true;
}
const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_MUL_MAT_ID;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
result->src[0] = as;
result->src[1] = b;
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
result->src[2] = ids;
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_out_prod
struct ggml_tensor * ggml_out_prod(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_out_prod(a, b));
GGML_ASSERT(!ggml_is_transposed(a));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
// a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_OUT_PROD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-06-25 11:22:21 +00:00
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_scale
static struct ggml_tensor * ggml_scale_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
float s,
2022-09-25 18:23:15 +00:00
bool inplace) {
GGML_ASSERT(ggml_is_padded_1d(a));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2022-09-25 18:23:15 +00:00
ggml_set_op_params(result, &s, sizeof(s));
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_SCALE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, false);
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * ggml_scale_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, true);
2022-09-25 18:23:15 +00:00
}
// ggml_set
static struct ggml_tensor * ggml_set_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset,
bool inplace) {
GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
bool is_node = false;
2023-06-25 11:22:21 +00:00
if (a->grad || b->grad) {
is_node = true;
}
// make a view of the destination
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SET;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
struct ggml_tensor * ggml_set_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
}
struct ggml_tensor * ggml_set_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset) {
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
}
struct ggml_tensor * ggml_set_1d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset) {
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
}
struct ggml_tensor * ggml_set_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
}
struct ggml_tensor * ggml_set_2d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
}
2022-09-25 18:23:15 +00:00
// ggml_cpy
static struct ggml_tensor * ggml_cpy_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
// inplace is false and either one have a grad
2022-09-25 18:23:15 +00:00
is_node = true;
}
// make a view of the destination
struct ggml_tensor * result = ggml_view_tensor(ctx, b);
2023-06-25 11:22:21 +00:00
if (strlen(b->name) > 0) {
ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
} else {
ggml_format_name(result, "%s (copy)", a->name);
}
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_CPY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_cpy(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_cpy_impl(ctx, a, b);
2022-09-25 18:23:15 +00:00
}
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_type type) {
bool is_node = false;
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
ggml_format_name(result, "%s (copy)", a->name);
result->op = GGML_OP_CPY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = result;
return result;
}
// ggml_cont
static struct ggml_tensor * ggml_cont_impl(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (cont)", a->name);
result->op = GGML_OP_CONT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_cont_impl(ctx, a);
}
// make contiguous, with new shape
GGML_API struct ggml_tensor * ggml_cont_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0) {
return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
}
GGML_API struct ggml_tensor * ggml_cont_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1) {
return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
}
GGML_API struct ggml_tensor * ggml_cont_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
}
struct ggml_tensor * ggml_cont_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
bool is_node = false;
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
ggml_format_name(result, "%s (cont)", a->name);
result->op = GGML_OP_CONT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_reshape
struct ggml_tensor * ggml_reshape(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_is_contiguous(a));
// as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
if (b->grad) {
// gradient propagation is not supported
//GGML_ASSERT(false);
}
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_reshape_1d(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[1] = { ne0 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_reshape_2d(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[2] = { ne0, ne1 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[3] = { ne0, ne1, ne2 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (reshaped)", a->name);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
static struct ggml_tensor * ggml_view_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_dims,
const int64_t * ne,
size_t offset) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
ggml_format_name(result, "%s (view)", a->name);
ggml_set_op_params(result, &offset, sizeof(offset));
result->op = GGML_OP_VIEW;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_view_1d
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
2022-09-25 18:23:15 +00:00
size_t offset) {
struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_view_2d
struct ggml_tensor * ggml_view_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
2022-09-25 18:23:15 +00:00
size_t nb1,
size_t offset) {
const int64_t ne[2] = { ne0, ne1 };
2022-09-25 18:23:15 +00:00
struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
2023-06-25 11:22:21 +00:00
result->nb[1] = nb1;
2022-09-25 18:23:15 +00:00
result->nb[2] = result->nb[1]*ne1;
result->nb[3] = result->nb[2];
return result;
}
// ggml_view_3d
struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1,
size_t nb2,
size_t offset) {
const int64_t ne[3] = { ne0, ne1, ne2 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
result->nb[3] = result->nb[2]*ne2;
return result;
}
// ggml_view_4d
struct ggml_tensor * ggml_view_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
result->nb[3] = nb3;
return result;
}
2022-09-25 18:23:15 +00:00
// ggml_permute
struct ggml_tensor * ggml_permute(
struct ggml_context * ctx,
struct ggml_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3) {
GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
GGML_ASSERT(axis0 != axis1);
GGML_ASSERT(axis0 != axis2);
GGML_ASSERT(axis0 != axis3);
GGML_ASSERT(axis1 != axis2);
GGML_ASSERT(axis1 != axis3);
GGML_ASSERT(axis2 != axis3);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (permuted)", a->name);
2022-09-25 18:23:15 +00:00
int ne[GGML_MAX_DIMS];
int nb[GGML_MAX_DIMS];
ne[axis0] = a->ne[0];
ne[axis1] = a->ne[1];
ne[axis2] = a->ne[2];
ne[axis3] = a->ne[3];
nb[axis0] = a->nb[0];
nb[axis1] = a->nb[1];
nb[axis2] = a->nb[2];
nb[axis3] = a->nb[3];
result->ne[0] = ne[0];
result->ne[1] = ne[1];
result->ne[2] = ne[2];
result->ne[3] = ne[3];
result->nb[0] = nb[0];
result->nb[1] = nb[1];
result->nb[2] = nb[2];
result->nb[3] = nb[3];
result->op = GGML_OP_PERMUTE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
int32_t params[] = { axis0, axis1, axis2, axis3 };
ggml_set_op_params(result, params, sizeof(params));
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_transpose
struct ggml_tensor * ggml_transpose(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_format_name(result, "%s (transposed)", a->name);
2022-09-25 18:23:15 +00:00
result->ne[0] = a->ne[1];
result->ne[1] = a->ne[0];
result->nb[0] = a->nb[1];
result->nb[1] = a->nb[0];
result->op = GGML_OP_TRANSPOSE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_get_rows
struct ggml_tensor * ggml_get_rows(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(a->ne[2] == b->ne[1]);
GGML_ASSERT(b->ne[3] == 1);
GGML_ASSERT(b->type == GGML_TYPE_I32);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
// TODO: implement non F32 return
enum ggml_type type = GGML_TYPE_F32;
if (a->type == GGML_TYPE_I32) {
type = a->type;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_GET_ROWS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_get_rows_back
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_get_rows_back(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad || b->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
// TODO: implement non F32 return
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_GET_ROWS_BACK;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_diag
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_diag(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a) {
GGML_ASSERT(a->ne[1] == 1);
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
2022-09-25 18:23:15 +00:00
result->op = GGML_OP_DIAG;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
// ggml_diag_mask_inf
static struct ggml_tensor * ggml_diag_mask_inf_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
bool inplace) {
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { n_past };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_DIAG_MASK_INF;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_diag_mask_inf(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
}
struct ggml_tensor * ggml_diag_mask_inf_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
}
// ggml_diag_mask_zero
static struct ggml_tensor * ggml_diag_mask_zero_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
bool inplace) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { n_past };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_DIAG_MASK_ZERO;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_diag_mask_zero(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_diag_mask_zero_inplace(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
}
// ggml_soft_max
static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias,
bool inplace) {
GGML_ASSERT(ggml_is_contiguous(a));
if (mask) {
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(ggml_is_matrix(mask));
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
GGML_ASSERT(mask->ne[0] == a->ne[0]);
GGML_ASSERT(mask->ne[1] >= a->ne[1]);
}
if (max_bias > 0.0f) {
GGML_ASSERT(mask);
}
2022-09-25 18:23:15 +00:00
bool is_node = false;
if (a->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2022-09-25 18:23:15 +00:00
float params[] = { scale, max_bias };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SOFT_MAX;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = mask;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * ggml_soft_max_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
}
struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias) {
return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
}
2023-06-25 11:22:21 +00:00
// ggml_soft_max_back
static struct ggml_tensor * ggml_soft_max_back_impl(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
bool is_node = false;
if (a->grad || b->grad) {
is_node = true; // TODO : implement backward pass
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SOFT_MAX_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_soft_max_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_soft_max_back_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_soft_max_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_soft_max_back_impl(ctx, a, b, true);
}
// ggml_rope
static struct ggml_tensor * ggml_rope_impl(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down,
bool inplace) {
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
GGML_ASSERT(ggml_is_vector(b));
GGML_ASSERT(b->type == GGML_TYPE_I32);
GGML_ASSERT(a->ne[2] == b->ne[0]);
if (c) {
GGML_ASSERT(c->type == GGML_TYPE_F32);
GGML_ASSERT(c->ne[0] >= n_dims / 2);
}
2022-09-25 18:23:15 +00:00
bool is_node = false;
2023-06-25 11:22:21 +00:00
if (a->grad) {
2022-09-25 18:23:15 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2022-09-25 18:23:15 +00:00
int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
memcpy(params + 5, &freq_base, sizeof(float));
memcpy(params + 6, &freq_scale, sizeof(float));
memcpy(params + 7, &ext_factor, sizeof(float));
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(params + 11, &xpos_base, sizeof(float));
memcpy(params + 12, &xpos_down, sizeof(bool));
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE;
2022-09-25 18:23:15 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
2022-09-25 18:23:15 +00:00
return result;
}
struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
);
}
struct ggml_tensor * ggml_rope_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
);
}
struct ggml_tensor * ggml_rope_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
);
}
struct ggml_tensor * ggml_rope_ext_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
);
}
struct ggml_tensor * ggml_rope_custom(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
);
}
struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
);
}
struct ggml_tensor * ggml_rope_xpos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
float base,
bool down) {
return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
}
// ggml_rope_back
struct ggml_tensor * ggml_rope_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down) {
GGML_ASSERT(ggml_is_vector(b));
GGML_ASSERT(b->type == GGML_TYPE_I32);
GGML_ASSERT(a->ne[2] == b->ne[0]);
GGML_ASSERT(c == NULL && "freq factors not implemented yet");
GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
bool is_node = false;
if (a->grad) {
2023-06-25 11:22:21 +00:00
is_node = false; // TODO: implement backward
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
memcpy(params + 5, &freq_base, sizeof(float));
memcpy(params + 6, &freq_scale, sizeof(float));
memcpy(params + 7, &ext_factor, sizeof(float));
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(params + 11, &xpos_base, sizeof(float));
memcpy(params + 12, &xpos_down, sizeof(bool));
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_clamp
struct ggml_tensor * ggml_clamp(
struct ggml_context * ctx,
struct ggml_tensor * a,
float min,
float max) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
// TODO: when implement backward, fix this:
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
float params[] = { min, max };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CLAMP;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_conv_1d
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
}
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
struct ggml_tensor * result =
ggml_mul_mat(ctx,
ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OCIC, K] => [OC, IC * K]
result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
return result;
}
// ggml_conv_1d_ph
struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d) {
return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
}
// ggml_conv_transpose_1d
static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
}
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
GGML_ASSERT(ggml_is_matrix(b));
GGML_ASSERT(a->ne[2] == b->ne[1]);
GGML_ASSERT(a->ne[3] == 1);
GGML_ASSERT(p0 == 0);
GGML_ASSERT(d0 == 1);
bool is_node = false;
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = {
ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
a->ne[1], b->ne[2], 1,
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { s0, p0, d0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CONV_TRANSPOSE_1D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_conv_depthwise
struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC1, KH, KW] => [1, OC, 1, KH * KW]
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
return result;
}
// ggml_conv_2d
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
// a: [OCIC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OH, OW, IC*KH*KW]
struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
bool is_2D,
enum ggml_type dst_type) {
if(is_2D) {
GGML_ASSERT(a->ne[2] == b->ne[2]);
} else {
GGML_ASSERT(a->ne[1] == b->ne[1]);
}
bool is_node = false;
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
const int64_t ne[4] = {
is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
OW,
is_2D ? OH : b->ne[2],
is_2D ? b->ne[3] : 1,
};
struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_IM2COL;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-06-25 11:22:21 +00:00
return result;
}
// a: [OCIC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OC, OH, OW]
struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
struct ggml_tensor * result =
ggml_mul_mat(ctx,
ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OCIC, KH, KW] => [OC, IC * KH * KW]
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_conv_2d_sk_p0
struct ggml_tensor * ggml_conv_2d_sk_p0(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
}
// ggml_conv_2d_s1_ph
struct ggml_tensor * ggml_conv_2d_s1_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
}
// ggml_conv_transpose_2d_p0
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
return (ins - 1) * s - 2 * p + ks;
}
struct ggml_tensor * ggml_conv_transpose_2d_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int stride) {
GGML_ASSERT(a->ne[3] == b->ne[2]);
bool is_node = false;
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = {
ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
a->ne[2], b->ne[3],
};
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
ggml_set_op_params_i32(result, 0, stride);
result->op = GGML_OP_CONV_TRANSPOSE_2D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_pool_*
static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
return (ins + 2 * p - ks) / s + 1;
}
// ggml_pool_1d
struct ggml_tensor * ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int s0,
int p0) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = {
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
a->ne[1],
a->ne[2],
a->ne[3],
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { op, k0, s0, p0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_POOL_1D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_pool_2d
struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result;
const int64_t ne[3] = {
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
a->ne[2],
};
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_POOL_2D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_upscale
static struct ggml_tensor * ggml_upscale_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2,
int ne3) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
GGML_ASSERT(a->ne[0] <= ne0);
GGML_ASSERT(a->ne[1] <= ne1);
GGML_ASSERT(a->ne[2] <= ne2);
GGML_ASSERT(a->ne[3] <= ne3);
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
ne0,
ne1,
ne2,
ne3
);
result->op = GGML_OP_UPSCALE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor) {
return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
}
struct ggml_tensor * ggml_upscale_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2,
int ne3) {
return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
}
// ggml_pad
struct ggml_tensor * ggml_pad(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0, int p1, int p2, int p3) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
a->ne[0] + p0,
a->ne[1] + p1,
a->ne[2] + p2,
a->ne[3] + p3);
result->op = GGML_OP_PAD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_arange
struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step) {
GGML_ASSERT(stop > start);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
result->op = GGML_OP_ARANGE;
ggml_set_op_params_f32(result, 0, start);
ggml_set_op_params_f32(result, 1, stop);
ggml_set_op_params_f32(result, 2, step);
return result;
}
// ggml_timestep_embedding
struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period) {
bool is_node = false;
if (timesteps->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
int actual_dim = dim;
if (dim % 2 != 0) {
actual_dim = dim + 1;
}
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
result->op = GGML_OP_TIMESTEP_EMBEDDING;
ggml_set_op_params_i32(result, 0, dim);
ggml_set_op_params_i32(result, 1, max_period);
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = timesteps;
return result;
}
// ggml_argsort
struct ggml_tensor * ggml_argsort(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_sort_order order) {
bool is_node = false;
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
ggml_set_op_params_i32(result, 0, (int32_t) order);
result->op = GGML_OP_ARGSORT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_top_k
struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx,
struct ggml_tensor * a,
int k) {
GGML_ASSERT(a->ne[0] >= k);
struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
result = ggml_view_4d(ctx, result,
k, result->ne[1], result->ne[2], result->ne[3],
result->nb[1], result->nb[2], result->nb[3],
0);
return result;
}
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
// ggml_flash_attn_ext
struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale,
float max_bias) {
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1);
GGML_ASSERT(mask->ne[3] == 1);
GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
"the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
//GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
}
if (max_bias > 0.0f) {
GGML_ASSERT(mask);
}
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
bool is_node = false;
if (q->grad || k->grad || v->grad) {
is_node = true;
}
// permute(0, 2, 1, 3)
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
float params[] = { scale, max_bias };
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_FLASH_ATTN_EXT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
result->src[3] = mask;
return result;
}
void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec) {
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
}
2023-06-25 11:22:21 +00:00
// ggml_flash_attn_back
struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * d,
bool masked) {
GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
// d shape [D,N,ne2,ne3]
// q shape [D,N,ne2,ne3]
// k shape [D,M,kvne2,ne3]
// v shape [M,D,kvne2,ne3]
2023-06-25 11:22:21 +00:00
const int64_t D = q->ne[0];
const int64_t N = q->ne[1];
const int64_t M = k->ne[1];
const int64_t ne2 = q->ne[2];
const int64_t ne3 = q->ne[3];
const int64_t kvne2 = k->ne[2];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(k->ne[0] == D);
GGML_ASSERT(v->ne[0] == M);
GGML_ASSERT(v->ne[1] == D);
GGML_ASSERT(d->ne[0] == D);
GGML_ASSERT(d->ne[1] == N);
GGML_ASSERT(k->ne[2] == kvne2);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(k->ne[3] == ne3);
GGML_ASSERT(v->ne[2] == kvne2);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(v->ne[3] == ne3);
GGML_ASSERT(d->ne[2] == ne2);
GGML_ASSERT(d->ne[3] == ne3);
GGML_ASSERT(ne2 % kvne2 == 0);
2023-06-25 11:22:21 +00:00
bool is_node = false;
if (q->grad || k->grad || v->grad) {
// when using this operation (in backwards pass) these grads are set.
// we don't want to create (big) grad of our result, so is_node is false.
is_node = false;
}
// store gradients of q, k and v as continuous tensors concatenated in result.
// note: v and gradv are actually transposed, i.e. v->ne[0] != D.
const int64_t elem_q = ggml_nelements(q);
const int64_t elem_k = ggml_nelements(k);
const int64_t elem_v = ggml_nelements(v);
2023-06-25 11:22:21 +00:00
enum ggml_type result_type = GGML_TYPE_F32;
GGML_ASSERT(ggml_blck_size(result_type) == 1);
const size_t tsize = ggml_type_size(result_type);
const size_t offs_q = 0;
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
const size_t nelements = (end + tsize - 1)/tsize;
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
2023-06-25 11:22:21 +00:00
int32_t masked_i = masked ? 1 : 0;
ggml_set_op_params(result, &masked_i, sizeof(masked_i));
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_FLASH_ATTN_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
result->src[3] = d;
2023-06-25 11:22:21 +00:00
return result;
}
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
// ggml_ssm_conv
struct ggml_tensor * ggml_ssm_conv(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * c,
struct ggml_tensor * sq) {
GGML_ASSERT(ggml_is_3d(s));
GGML_ASSERT(ggml_is_matrix(x));
GGML_ASSERT(ggml_is_matrix(c));
GGML_ASSERT(ggml_is_matrix(sq));
GGML_ASSERT(sq->type == GGML_TYPE_I32);
const int64_t d_conv = c->ne[0];
const int64_t d_inner = c->ne[1];
const int64_t n_tokens = x->ne[1];
const int64_t n_kv = s->ne[2];
GGML_ASSERT( s->ne[0] == d_conv - 1);
GGML_ASSERT( s->ne[1] == d_inner);
GGML_ASSERT( x->ne[0] == d_inner);
GGML_ASSERT(sq->ne[0] == n_kv);
GGML_ASSERT(sq->ne[1] == n_tokens);
bool is_node = false;
if (s->grad || x->grad || c->grad || sq->grad) {
GGML_ASSERT(false); // TODO: implement
is_node = true;
}
// 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
result->op = GGML_OP_SSM_CONV;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = s;
result->src[1] = x;
result->src[2] = c;
result->src[3] = sq;
return result;
}
// ggml_ssm_scan
struct ggml_tensor * ggml_ssm_scan(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B,
struct ggml_tensor * C,
struct ggml_tensor * sq) {
GGML_ASSERT(ggml_is_contiguous(s));
GGML_ASSERT(ggml_is_contiguous(x));
GGML_ASSERT(ggml_is_contiguous(dt));
GGML_ASSERT(ggml_is_contiguous(A));
GGML_ASSERT(sq->type == GGML_TYPE_I32);
GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
GGML_ASSERT(ggml_are_same_shape(x, dt));
{
const int64_t d_state = s->ne[0];
const int64_t d_inner = s->ne[1];
const int64_t n_tokens = x->ne[1];
GGML_ASSERT(x->ne[0] == d_inner);
GGML_ASSERT(A->ne[0] == d_state);
GGML_ASSERT(A->ne[1] == d_inner);
GGML_ASSERT(B->ne[0] == d_state);
GGML_ASSERT(B->ne[1] == n_tokens);
GGML_ASSERT(C->ne[0] == d_state);
GGML_ASSERT(C->ne[1] == n_tokens);
}
bool is_node = false;
if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
GGML_ASSERT(false); // TODO: implement
is_node = true;
}
// 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
result->op = GGML_OP_SSM_SCAN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = s;
result->src[1] = x;
result->src[2] = dt;
result->src[3] = A;
result->src[4] = B;
result->src[5] = C;
result->src[6] = sq;
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_win_part
struct ggml_tensor * ggml_win_part(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w) {
GGML_ASSERT(a->ne[3] == 1);
GGML_ASSERT(a->type == GGML_TYPE_F32);
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
// padding
const int px = (w - a->ne[1]%w)%w;
const int py = (w - a->ne[2]%w)%w;
const int npx = (px + a->ne[1])/w;
const int npy = (py + a->ne[2])/w;
const int np = npx*npy;
const int64_t ne[4] = { a->ne[0], w, w, np, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { npx, npy, w };
ggml_set_op_params(result, params, sizeof(params));
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_WIN_PART;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
// ggml_win_unpart
struct ggml_tensor * ggml_win_unpart(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w0,
int h0,
int w) {
GGML_ASSERT(a->type == GGML_TYPE_F32);
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
int32_t params[] = { w };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_WIN_UNPART;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
2023-06-25 11:22:21 +00:00
// ggml_get_rel_pos
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_get_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
int qh,
int kh) {
GGML_ASSERT(qh == kh);
GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
2023-06-25 11:22:21 +00:00
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
result->op = GGML_OP_GET_REL_POS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_add_rel_pos
static struct ggml_tensor * ggml_add_rel_pos_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(pw, ph));
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_is_contiguous(pw));
GGML_ASSERT(ggml_is_contiguous(ph));
GGML_ASSERT(ph->type == GGML_TYPE_F32);
GGML_ASSERT(pw->type == GGML_TYPE_F32);
GGML_ASSERT(pw->ne[3] == a->ne[2]);
GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
bool is_node = false;
if (!inplace && (a->grad || pw->grad || ph->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
result->op = GGML_OP_ADD_REL_POS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = pw;
result->src[2] = ph;
return result;
}
struct ggml_tensor * ggml_add_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph) {
return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
}
struct ggml_tensor * ggml_add_rel_pos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph) {
return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
}
// gmml_unary
static struct ggml_tensor * ggml_unary_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, (int32_t) op);
result->op = GGML_OP_UNARY;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op) {
return ggml_unary_impl(ctx, a, op, false);
}
struct ggml_tensor * ggml_unary_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op) {
return ggml_unary_impl(ctx, a, op, true);
}
2023-04-14 16:20:39 +00:00
// ggml_map_unary
static struct ggml_tensor * ggml_map_unary_impl_f32(
2023-04-14 16:20:39 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
2023-04-14 16:20:39 +00:00
result->op = GGML_OP_MAP_UNARY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-04-14 16:20:39 +00:00
return result;
}
struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, false);
}
struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, true);
}
// ggml_map_binary
static struct ggml_tensor * ggml_map_binary_impl_f32(
2023-04-14 16:20:39 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
2023-04-14 16:20:39 +00:00
result->op = GGML_OP_MAP_BINARY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-04-14 16:20:39 +00:00
return result;
}
struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom1_f32
2022-09-25 18:23:15 +00:00
static struct ggml_tensor * ggml_map_custom1_impl_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun,
bool inplace) {
bool is_node = false;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (!inplace && a->grad) {
is_node = true;
}
2022-09-25 18:23:15 +00:00
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM1_F32;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, false);
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
}
2022-09-25 18:23:15 +00:00
// ggml_map_custom2_f32
2023-06-25 11:22:21 +00:00
static struct ggml_tensor * ggml_map_custom2_impl_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
2022-09-25 18:23:15 +00:00
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_MAP_CUSTOM2_F32;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom3_f32
2023-06-25 11:22:21 +00:00
static struct ggml_tensor * ggml_map_custom3_impl_f32(
2023-06-25 11:22:21 +00:00
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad || b->grad || c->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
2023-06-25 11:22:21 +00:00
result->op = GGML_OP_MAP_CUSTOM3_F32;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
}
struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
}
// ggml_map_custom1
struct ggml_map_custom1_op_params {
ggml_custom1_op_t fun;
int n_tasks;
void * userdata;
};
static struct ggml_tensor * ggml_map_custom1_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
2023-06-25 11:22:21 +00:00
bool is_node = false;
if (!inplace && a->grad) {
2023-06-25 11:22:21 +00:00
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2023-06-25 11:22:21 +00:00
struct ggml_map_custom1_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM1;
2023-06-25 11:22:21 +00:00
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
2023-06-25 11:22:21 +00:00
return result;
}
struct ggml_tensor * ggml_map_custom1(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_map_custom1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
2023-06-25 11:22:21 +00:00
}
// ggml_map_custom2
2023-06-25 11:22:21 +00:00
struct ggml_map_custom2_op_params {
ggml_custom2_op_t fun;
int n_tasks;
void * userdata;
};
2023-06-25 11:22:21 +00:00
static struct ggml_tensor * ggml_map_custom2_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
2023-06-25 11:22:21 +00:00
bool is_node = false;
2023-06-25 11:22:21 +00:00
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom2_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM2;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_custom2(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom2_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
}
// ggml_map_custom3
struct ggml_map_custom3_op_params {
ggml_custom3_op_t fun;
int n_tasks;
void * userdata;
};
static struct ggml_tensor * ggml_map_custom3_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
bool is_node = false;
if (!inplace && (a->grad || b->grad || c->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom3_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM3;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
struct ggml_tensor * ggml_map_custom3(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom3_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
}
// ggml_cross_entropy_loss
struct ggml_tensor * ggml_cross_entropy_loss(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
result->op = GGML_OP_CROSS_ENTROPY_LOSS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_cross_entropy_loss_back
struct ggml_tensor * ggml_cross_entropy_loss_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_are_same_shape(a, b));
GGML_ASSERT(ggml_is_scalar(c));
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
result->grad = NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_set_param(
struct ggml_context * ctx,
struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_PARAM;
GGML_ASSERT(tensor->grad == NULL);
tensor->grad = ggml_dup_tensor(ctx, tensor);
ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
}
// ggml_compute_forward_dup
static void ggml_compute_forward_dup_same_cont(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == dst->type);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const size_t nb00 = src0->nb[0];
const size_t nb0 = dst->nb[0];
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by elements
const int ne = ggml_nelements(dst);
const int dr = (ne + nth - 1) / nth;
const int ie0 = dr * ith;
const int ie1 = MIN(ie0 + dr, ne);
if (ie0 < ie1) {
memcpy(
((char *) dst->data + ie0*nb0),
((char *) src0->data + ie0*nb00),
(ie1 - ie0) * ggml_type_size(src0->type));
2023-06-25 11:22:21 +00:00
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_dup_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
ggml_compute_forward_dup_same_cont(params, dst);
2022-09-25 18:23:15 +00:00
return;
}
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
if (ggml_is_contiguous(dst)) {
if (nb00 == sizeof(ggml_fp16_t)) {
if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
const size_t rs = ne00 * nb00;
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (type_traits[dst->type].from_float) {
ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
}
quantize_row_q(src0_f32, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
if (++i10 == ne00) {
i10 = 0;
if (++i11 == ne01) {
i11 = 0;
if (++i12 == ne02) {
i12 = 0;
if (++i13 == ne03) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
2022-09-25 18:23:15 +00:00
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
static void ggml_compute_forward_dup_bf16(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
ggml_compute_forward_dup_same_cont(params, dst);
2022-09-25 18:23:15 +00:00
return;
}
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
2022-09-25 18:23:15 +00:00
}
}
}
return;
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
if (ggml_is_contiguous(dst)) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
if (nb00 == sizeof(ggml_bf16_t)) {
if (dst->type == GGML_TYPE_BF16) {
size_t id = 0;
const size_t rs = ne00 * nb00;
char * dst_ptr = (char *) dst->data;
2022-09-25 18:23:15 +00:00
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
2022-09-25 18:23:15 +00:00
}
id += rs * (ne01 - ir1);
2022-09-25 18:23:15 +00:00
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (type_traits[dst->type].from_float) {
ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
}
quantize_row_q(src0_f32, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
2022-09-25 18:23:15 +00:00
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
2022-09-25 18:23:15 +00:00
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_BF16) {
size_t id = 0;
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
2022-09-25 18:23:15 +00:00
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
id++;
}
2022-09-25 18:23:15 +00:00
}
id += ne00 * (ne01 - ir1);
2022-09-25 18:23:15 +00:00
}
}
} else {
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
}
}
return;
}
2022-09-25 18:23:15 +00:00
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
if (dst->type == GGML_TYPE_BF16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
if (++i10 == ne00) {
i10 = 0;
if (++i11 == ne01) {
i11 = 0;
if (++i12 == ne02) {
i12 = 0;
if (++i13 == ne03) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
} else if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
*(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
2022-09-25 18:23:15 +00:00
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
2022-09-25 18:23:15 +00:00
}
}
} else {
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
static void ggml_compute_forward_dup_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
ggml_compute_forward_dup_same_cont(params, dst);
return;
}
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
if (ggml_is_contiguous(dst)) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
// TODO: simplify
if (nb00 == sizeof(float)) {
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
const size_t rs = ne00 * nb00;
char * dst_ptr = (char *) dst->data;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else if (type_traits[dst->type].from_float) {
ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
quantize_row_q(src0_ptr, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
}
} else {
GGML_ASSERT(false); // TODO: implement
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_BF16) {
size_t id = 0;
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(float));
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_BF16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
}
// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
static void ggml_compute_forward_dup_bytes(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(src0->type == dst->type);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
ggml_compute_forward_dup_same_cont(params, dst);
return;
}
GGML_TENSOR_UNARY_OP_LOCALS;
const size_t type_size = ggml_type_size(src0->type);
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == type_size && nb0 == type_size) {
// copy by rows
const size_t rs = ne00 * type_size;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
if (ggml_is_contiguous(dst)) {
size_t id = 0;
char * dst_ptr = (char *) dst->data;
const size_t rs = ne00 * type_size;
if (nb00 == type_size) {
// src0 is contigous on first dimension, copy by rows
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int64_t i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, type_size);
id += type_size;
}
}
id += rs * (ne01 - ir1);
}
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, type_size);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
}
static void ggml_compute_forward_dup(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (src0->type == dst->type) {
ggml_compute_forward_dup_bytes(params, dst);
return;
}
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_dup_f16(params, dst);
2022-09-25 18:23:15 +00:00
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
ggml_compute_forward_dup_bf16(params, dst);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
{
ggml_compute_forward_dup_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_add
static void ggml_compute_forward_add_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
#ifdef GGML_USE_CLBLAST
if (src1->backend == GGML_BACKEND_TYPE_GPU) {
// TODO: OpenCL kernel support full broadcast
GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
if (ith == 0) {
ggml_cl_add(src0, src1, dst);
}
return;
}
#endif
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(float)) {
for (int ir = ir0; ir < ir1; ++ir) {
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
const int64_t nr0 = ne00 / ne10;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
for (int64_t r = 0; r < nr0; ++r) {
#ifdef GGML_USE_ACCELERATE
vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
#else
ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
#endif
}
}
} else {
// src1 is not contiguous
for (int ir = ir0; ir < ir1; ++ir) {
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int64_t i10 = i0 % ne10;
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
}
}
}
}
static void ggml_compute_forward_add_f16_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
if (dst->type == GGML_TYPE_F32) {
GGML_ASSERT( nb0 == sizeof(float));
}
else {
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
}
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(float)) {
if (dst->type == GGML_TYPE_F16) {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
}
}
} else {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
}
}
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
else {
// src1 is not contiguous
GGML_ASSERT(false);
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
static void ggml_compute_forward_add_bf16_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
if (dst->type == GGML_TYPE_F32) {
GGML_ASSERT( nb0 == sizeof(float));
}
else {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(float)) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
if (dst->type == GGML_TYPE_BF16) {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
}
}
} else {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
}
}
}
}
else {
// src1 is not contiguous
GGML_ASSERT(false);
}
}
static void ggml_compute_forward_add_f16_f16(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
2022-09-25 18:23:15 +00:00
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
2022-09-25 18:23:15 +00:00
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(ggml_fp16_t)) {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
2022-09-25 18:23:15 +00:00
}
}
}
else {
// src1 is not contiguous
GGML_ASSERT(false);
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
static void ggml_compute_forward_add_bf16_bf16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
GGML_ASSERT(src1->type == GGML_TYPE_BF16);
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(ggml_bf16_t)) {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
}
}
}
else {
// src1 is not contiguous
GGML_ASSERT(false);
}
}
static void ggml_compute_forward_add_q_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
const enum ggml_type dtype = dst->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ggml_is_quantized(src0->type));
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
for (int ir = ir0; ir < ir1; ++ir) {
// src0 indices
const int i03 = ir/(ne02*ne01);
const int i02 = (ir - i03*ne02*ne01)/ne01;
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
// src1 and dst are same shape as src0 => same indices
const int i13 = i03;
const int i12 = i02;
const int i11 = i01;
const int i3 = i03;
const int i2 = i02;
const int i1 = i01;
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
2023-06-25 11:22:21 +00:00
void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
assert(ne00 % 32 == 0);
// unquantize row from src0 to temp buffer
dequantize_row_q(src0_row, wdata, ne00);
// add src1
ggml_vec_acc_f32(ne00, wdata, src1_row);
// quantize row to dst
if (quantize_row_q != NULL) {
quantize_row_q(wdata, dst_row, ne00);
} else {
memcpy(dst_row, wdata, ne0*nb0);
}
}
2022-09-25 18:23:15 +00:00
}
static void ggml_compute_forward_add(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add_f32(params, dst);
}
else {
GGML_ASSERT(false);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F16:
{
if (src1->type == GGML_TYPE_F16) {
ggml_compute_forward_add_f16_f16(params, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add_f16_f32(params, dst);
}
else {
GGML_ASSERT(false);
}
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
if (src1->type == GGML_TYPE_BF16) {
ggml_compute_forward_add_bf16_bf16(params, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add_bf16_f32(params, dst);
}
else {
GGML_ASSERT(false);
}
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_add_q_f32(params, dst);
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_add1
static void ggml_compute_forward_add1_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_add1_f32);
vDSP_vadd(
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
(float *) ((char *) src1->data), 0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
ne0);
#else
ggml_vec_add1_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
*(float *) src1->data);
#endif
}
}
static void ggml_compute_forward_add1_f16_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_f16_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// scalar to add
const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_q_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0
GGML_ASSERT(nb00 == ggml_type_size(type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ggml_is_quantized(src0->type));
GGML_ASSERT(dst->type == src0->type);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
assert(ne0 % 32 == 0);
// unquantize row from src0 to temp buffer
dequantize_row_q(src0_row, wdata, ne0);
// add src1
ggml_vec_acc1_f32(ne0, wdata, v);
// quantize row to dst
quantize_row_q(wdata, dst_row, ne0);
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
static void ggml_compute_forward_add1_bf16_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_bf16_bf16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// scalar to add
const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
GGML_ASSERT(src1->type == GGML_TYPE_BF16);
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add1_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
if (src1->type == GGML_TYPE_F16) {
ggml_compute_forward_add1_f16_f16(params, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add1_f16_f32(params, dst);
}
else {
GGML_ASSERT(false);
}
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
if (src1->type == GGML_TYPE_BF16) {
ggml_compute_forward_add1_bf16_bf16(params, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add1_bf16_f32(params, dst);
}
else {
GGML_ASSERT(false);
}
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_add1_q_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_acc
static void ggml_compute_forward_acc_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
// view src0 and dst with these strides and data offset inbytes during acc
// nb0 is implicitly element_size because src0 and dst are contiguous
size_t nb1 = ((int32_t *) dst->op_params)[0];
size_t nb2 = ((int32_t *) dst->op_params)[1];
size_t nb3 = ((int32_t *) dst->op_params)[2];
size_t offset = ((int32_t *) dst->op_params)[3];
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
if (params->ith != 0) {
return;
}
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src1);
const int nc = src1->ne[0];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
// src0 and dst as viewed during acc
const size_t nb0 = ggml_element_size(src0);
const size_t nb00 = nb0;
const size_t nb01 = nb1;
const size_t nb02 = nb2;
const size_t nb03 = nb3;
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are viewed with shape of src1 and offset
// => same indices
const int i3 = ir/(ne12*ne11);
const int i2 = (ir - i3*ne12*ne11)/ne11;
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
#ifdef GGML_USE_ACCELERATE
vDSP_vadd(
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
#else
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
#endif
}
}
static void ggml_compute_forward_acc(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_acc_f32(params, dst);
} break;
case GGML_TYPE_F16:
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sub
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_sub_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int nr = ggml_nrows(src0);
2022-09-25 18:23:15 +00:00
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (nb10 == sizeof(float)) {
for (int ir = 0; ir < nr; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
#ifdef GGML_USE_ACCELERATE
vDSP_vsub(
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
ne0);
#else
ggml_vec_sub_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
#endif
// }
// }
}
} else {
// src1 is not contiguous
for (int ir = 0; ir < nr; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i0 = 0; i0 < ne0; i0++) {
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
}
}
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_sub(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sub_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_mul
static void ggml_compute_forward_mul_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
#if defined(GGML_USE_CLBLAST)
if (src1->backend == GGML_BACKEND_TYPE_GPU) {
// TODO: OpenCL kernel support full broadcast
GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
if (ith == 0) {
2023-06-25 11:22:21 +00:00
ggml_cl_mul(src0, src1, dst);
}
return;
}
#endif
const int64_t nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (nb10 == sizeof(float)) {
for (int64_t ir = ith; ir < nr; ir += nth) {
// src0 and dst are same shape => same indices
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
const int64_t nr0 = ne00 / ne10;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
for (int64_t r = 0 ; r < nr0; ++r) {
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_mul_f32);
vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
#else
ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
#endif
}
}
} else {
// src1 is not contiguous
for (int64_t ir = ith; ir < nr; ir += nth) {
// src0 and dst are same shape => same indices
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
for (int64_t i0 = 0; i0 < ne00; ++i0) {
const int64_t i10 = i0 % ne10;
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
}
}
}
}
static void ggml_compute_forward_mul(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_mul_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_div
static void ggml_compute_forward_div_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int64_t nr = ggml_nrows(src0);
2022-09-25 18:23:15 +00:00
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (nb10 == sizeof(float)) {
for (int64_t ir = ith; ir < nr; ir += nth) {
// src0 and dst are same shape => same indices
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
const int64_t nr0 = ne00 / ne10;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
for (int64_t r = 0; r < nr0; ++r) {
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_div_f32);
vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
#else
ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
#endif
}
}
} else {
// src1 is not contiguous
for (int64_t ir = ith; ir < nr; ir += nth) {
// src0 and dst are same shape => same indices
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
for (int64_t i0 = 0; i0 < ne00; ++i0) {
const int64_t i10 = i0 % ne10;
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
}
}
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_div(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_div_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_sqr
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_sqr_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
2022-09-25 18:23:15 +00:00
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sqr_f32(nc,
2022-09-25 18:23:15 +00:00
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_sqr(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sqr_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_sqrt
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_sqrt_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
2022-09-25 18:23:15 +00:00
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sqrt_f32(nc,
2022-09-25 18:23:15 +00:00
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_sqrt(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sqrt_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_log
static void ggml_compute_forward_log_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_are_same_shape(src0, dst));
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
GGML_ASSERT( dst->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[0] == sizeof(float));
2022-09-25 18:23:15 +00:00
for (int i = 0; i < n; i++) {
ggml_vec_log_f32(nc,
2022-09-25 18:23:15 +00:00
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_log(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_log_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_sum
static void ggml_compute_forward_sum_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_is_scalar(dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
assert(ggml_is_scalar(dst));
assert(src0->nb[0] == sizeof(float));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
2022-09-25 18:23:15 +00:00
ggml_float sum = 0;
ggml_float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f32_ggf(ne00,
&row_sum,
2022-09-25 18:23:15 +00:00
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
sum += row_sum;
2022-09-25 18:23:15 +00:00
}
}
}
((float *) dst->data)[0] = sum;
2022-09-25 18:23:15 +00:00
}
static void ggml_compute_forward_sum_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_is_scalar(dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
assert(src0->nb[0] == sizeof(ggml_fp16_t));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
float sum = 0;
float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f16_ggf(ne00,
&row_sum,
(ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
sum += row_sum;
}
}
}
((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
static void ggml_compute_forward_sum_bf16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_is_scalar(dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
assert(src0->nb[0] == sizeof(ggml_bf16_t));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
float sum = 0;
float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_bf16_ggf(ne00,
&row_sum,
(ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
sum += row_sum;
}
}
}
((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
}
static void ggml_compute_forward_sum(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sum_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_sum_f16(params, dst);
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
ggml_compute_forward_sum_bf16(params, dst);
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_sum_rows
static void ggml_compute_forward_sum_rows_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(dst->nb[0] == sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(ne0 == 1);
GGML_ASSERT(ne1 == ne01);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
for (int64_t i3 = 0; i3 < ne03; i3++) {
for (int64_t i2 = 0; i2 < ne02; i2++) {
for (int64_t i1 = 0; i1 < ne01; i1++) {
float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
ggml_vec_sum_f32(ne00, &row_sum, src_row);
dst_row[0] = row_sum;
}
}
}
}
static void ggml_compute_forward_sum_rows(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sum_rows_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_mean
static void ggml_compute_forward_mean_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
assert(src0->nb[0] == sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
assert(ne0 == 1);
assert(ne1 == ne01);
assert(ne2 == ne02);
assert(ne3 == ne03);
UNUSED(ne0);
UNUSED(ne1);
UNUSED(ne2);
UNUSED(ne3);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
2022-09-25 18:23:15 +00:00
ggml_vec_sum_f32(ne00,
(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
*(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
}
}
}
}
static void ggml_compute_forward_mean(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_mean_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_argmax
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_argmax_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
assert(src0->nb[0] == sizeof(float));
assert(dst->nb[0] == sizeof(float));
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const size_t nb01 = src0->nb[1];
const size_t nb0 = dst->nb[0];
for (int64_t i1 = 0; i1 < ne01; i1++) {
float * src = (float *) ((char *) src0->data + i1*nb01);
int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
int v = 0;
ggml_vec_argmax_f32(ne00, &v, src);
dst_[0] = v;
}
}
static void ggml_compute_forward_argmax(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_argmax_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_repeat
static void ggml_compute_forward_repeat_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_can_repeat(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne0/ne00);
const int nr1 = (int)(ne1/ne01);
const int nr2 = (int)(ne2/ne02);
const int nr3 = (int)(ne3/ne03);
2022-09-25 18:23:15 +00:00
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
2022-09-25 18:23:15 +00:00
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne03; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne02; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne01; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_vec_cpy_f32(ne00,
(float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
(float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
}
}
}
}
2022-09-25 18:23:15 +00:00
}
}
}
}
static void ggml_compute_forward_repeat_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_can_repeat(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne0/ne00);
const int nr1 = (int)(ne1/ne01);
const int nr2 = (int)(ne2/ne02);
const int nr3 = (int)(ne3/ne03);
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne03; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne02; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne01; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
// ggml_vec_cpy_f16(ne00, y, x)
for (int i = 0; i < ne00; ++i) {
y[i] = x[i];
}
}
}
}
}
}
}
}
}
static void ggml_compute_forward_repeat(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F16:
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
case GGML_TYPE_I16:
{
ggml_compute_forward_repeat_f16(params, dst);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
case GGML_TYPE_I32:
2022-09-25 18:23:15 +00:00
{
ggml_compute_forward_repeat_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_repeat_back
static void ggml_compute_forward_repeat_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_can_repeat(dst, src0));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
2023-06-25 11:22:21 +00:00
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne00/ne0);
const int nr1 = (int)(ne01/ne1);
const int nr2 = (int)(ne02/ne2);
const int nr3 = (int)(ne03/ne3);
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (ggml_is_contiguous(dst)) {
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
} else {
for (int k3 = 0; k3 < ne3; k3++) {
for (int k2 = 0; k2 < ne2; k2++) {
for (int k1 = 0; k1 < ne1; k1++) {
ggml_vec_set_f32(ne0,
(float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
0);
}
}
}
}
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne3; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne2; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne1; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_vec_acc_f32(ne0,
(float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
(float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
}
}
}
}
}
}
}
}
static void ggml_compute_forward_repeat_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_repeat_back_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_concat
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_concat_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
2022-09-25 18:23:15 +00:00
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
2022-09-25 18:23:15 +00:00
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
2022-09-25 18:23:15 +00:00
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = src0->ne[dim];
const float * x;
// TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
} else {
x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
}
float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
}
}
}
}
}
static void ggml_compute_forward_concat(
const struct ggml_compute_params * params,
2024-05-29 02:09:31 +00:00
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
case GGML_TYPE_I32:
{
ggml_compute_forward_concat_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_abs
static void ggml_compute_forward_abs_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_abs_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_abs(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_abs_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sgn
static void ggml_compute_forward_sgn_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sgn_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_sgn(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sgn_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_neg
static void ggml_compute_forward_neg_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_neg_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_neg(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_neg_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_step
static void ggml_compute_forward_step_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_step_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_step(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_step_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_tanh
static void ggml_compute_forward_tanh_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_tanh_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_tanh(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_tanh_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_elu
static void ggml_compute_forward_elu_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_elu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_elu(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_elu_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_relu
static void ggml_compute_forward_relu_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_relu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_relu(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_relu_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_sigmoid
static void ggml_compute_forward_sigmoid_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sigmoid_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_sigmoid(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sigmoid_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_gelu
static void ggml_compute_forward_gelu_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
2022-09-25 18:23:15 +00:00
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_gelu(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_gelu_quick
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_gelu_quick_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
2023-06-25 11:22:21 +00:00
ggml_vec_gelu_quick_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_gelu_quick(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_quick_f32(params, dst);
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_silu
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_silu_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
2023-06-25 11:22:21 +00:00
ggml_vec_silu_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
2023-06-25 11:22:21 +00:00
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_silu(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_silu_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_leaky_relu
static void ggml_compute_forward_leaky_relu_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_leaky_relu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
}
}
static void ggml_compute_forward_leaky_relu(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_leaky_relu_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_silu_back
static void ggml_compute_forward_silu_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * grad = dst->src[1];
GGML_ASSERT(ggml_is_contiguous_1(grad));
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_are_same_shape(src0, grad));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
2023-06-25 11:22:21 +00:00
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
2023-06-25 11:22:21 +00:00
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_backward_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])),
(float *) ((char *) grad->data + i1*(grad->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_silu_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_silu_back_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_hardswish_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_hardswish_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_hardswish(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_hardswish_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_hardsigmoid_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_hardsigmoid_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_hardsigmoid(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_hardsigmoid_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_norm
static void ggml_compute_forward_norm_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps > 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)x[i00];
}
float mean = sum/ne00;
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
ggml_float sum2 = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sum2 += (ggml_float)(v*v);
}
float variance = sum2/ne00;
const float scale = 1.0f/sqrtf(variance + eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
static void ggml_compute_forward_norm(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_norm_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_group_rms_norm
static void ggml_compute_forward_rms_norm_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
2022-09-25 18:23:15 +00:00
GGML_TENSOR_UNARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
2022-09-25 18:23:15 +00:00
GGML_ASSERT(eps > 0.0f);
2022-09-25 18:23:15 +00:00
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
2022-09-25 18:23:15 +00:00
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)(x[i00] * x[i00]);
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
const float mean = sum/ne00;
2022-09-25 18:23:15 +00:00
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
memcpy(y, x, ne00 * sizeof(float));
// for (int i00 = 0; i00 < ne00; i00++) {
// y[i00] = x[i00];
// }
2022-09-25 18:23:15 +00:00
const float scale = 1.0f/sqrtf(mean + eps);
2022-09-25 18:23:15 +00:00
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
static void ggml_compute_forward_rms_norm(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rms_norm_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_rms_norm_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
// src1 is same shape as src0 => same indices
const int64_t i11 = i01;
const int64_t i12 = i02;
const int64_t i13 = i03;
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
ggml_float sum_xx = 0.0;
ggml_float sum_xdz = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum_xx += (ggml_float)(x[i00] * x[i00]);
sum_xdz += (ggml_float)(x[i00] * dz[i00]);
}
//const float mean = (float)(sum_xx)/ne00;
const float mean_eps = (float)(sum_xx)/ne00 + eps;
const float sum_eps = (float)(sum_xx) + eps*ne00;
//const float mean_xdz = (float)(sum_xdz)/ne00;
// we could cache rms from forward pass to improve performance.
// to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
//const float rms = sqrtf(mean_eps);
const float rrms = 1.0f / sqrtf(mean_eps);
//const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
{
// z = rms_norm(x)
//
// rms_norm(src0) =
// scale(
// src0,
// div(
// 1,
// sqrt(
// add(
// scale(
// sum(
// sqr(
// src0)),
// (1.0/N)),
// eps))));
// postorder:
// ## op args grad
// 00 param src0 grad[#00]
// 01 const 1
// 02 sqr (#00) grad[#02]
// 03 sum (#02) grad[#03]
// 04 const 1/N
// 05 scale (#03, #04) grad[#05]
// 06 const eps
// 07 add (#05, #06) grad[#07]
// 08 sqrt (#07) grad[#08]
// 09 div (#01,#08) grad[#09]
// 10 scale (#00,#09) grad[#10]
//
// backward pass, given grad[#10]
// #10: scale
// grad[#00] += scale(grad[#10],#09)
// grad[#09] += sum(mul(grad[#10],#00))
// #09: div
// grad[#08] += neg(mul(grad[#09], div(#09,#08)))
// #08: sqrt
// grad[#07] += mul(grad[#08], div(0.5, #08))
// #07: add
// grad[#05] += grad[#07]
// #05: scale
// grad[#03] += scale(grad[#05],#04)
// #03: sum
// grad[#02] += repeat(grad[#03], #02)
// #02:
// grad[#00] += scale(mul(#00, grad[#02]), 2.0)
//
// substitute and simplify:
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
// grad[#02] = repeat(grad[#03], #02)
// grad[#02] = repeat(scale(grad[#05],#04), #02)
// grad[#02] = repeat(scale(grad[#07],#04), #02)
// grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
// grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
// grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
// grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
// grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
// a = b*c + d*e
// a = b*c*f/f + d*e*f/f
// a = (b*c*f + d*e*f)*(1/f)
// a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
// a = (b + d*e/c)*c
// b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
// a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
// a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
// a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
// a = (dz + x*div(-mean_xdz,mean_eps))*rrms
// grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
// grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
}
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
// post-order:
// dx := x
// dx := scale(dx,-mean_xdz/mean_eps)
// dx := add(dx, dz)
// dx := scale(dx, rrms)
float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
ggml_vec_cpy_f32 (ne00, dx, x);
// ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
ggml_vec_acc_f32 (ne00, dx, dz);
ggml_vec_scale_f32(ne00, dx, rrms);
}
}
}
}
static void ggml_compute_forward_rms_norm_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rms_norm_back_f32(params, dst);
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_group_norm
static void ggml_compute_forward_group_norm_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const float eps = 1e-6f; // TODO: make this a parameter
// TODO: optimize
int n_channels = src0->ne[2];
int n_groups = dst->op_params[0];
int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
for (int i = ith; i < n_groups; i += nth) {
int start = i * n_channels_per_group;
int end = start + n_channels_per_group;
if (end > n_channels) {
end = n_channels;
}
int step = end - start;
for (int64_t i03 = 0; i03 < ne03; i03++) {
ggml_float sum = 0.0;
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sumr += (ggml_float)x[i00];
}
sum += sumr;
}
}
const float mean = sum / (ne00 * ne01 * step);
ggml_float sum2 = 0.0;
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sumr += (ggml_float)(v * v);
}
sum2 += sumr;
}
}
const float variance = sum2 / (ne00 * ne01 * step);
const float scale = 1.0f / sqrtf(variance + eps);
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
}
static void ggml_compute_forward_group_norm(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_group_norm_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_mul_mat
2023-06-25 11:22:21 +00:00
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
//const int64_t ne00 = src0->ne[0];
//const int64_t ne01 = src0->ne[1];
2022-09-25 18:23:15 +00:00
const int64_t ne10 = src1->ne[0];
2022-09-25 18:23:15 +00:00
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
// all the experts for each batch element and the processing would become incredibly slow
// TODO: find the optimal values for these
if (dst->op != GGML_OP_MUL_MAT_ID &&
ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
//src0->type == GGML_TYPE_F32 &&
src1->type == GGML_TYPE_F32 &&
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
return true;
}
return false;
}
#endif
static void ggml_compute_forward_mul_mat_one_chunk(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const int64_t num_rows_per_vec_dot,
const int64_t ir0_start,
const int64_t ir0_end,
const int64_t ir1_start,
const int64_t ir1_end) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const enum ggml_type type = src0->type;
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
// broadcast factors
const int64_t r2 = ne12 / ne02;
const int64_t r3 = ne13 / ne03;
//printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
// threads with no work simply yield (not sure if it helps)
if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
return;
}
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(ne12 % ne02 == 0);
assert(ne13 % ne03 == 0);
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
// attempt to reduce false-sharing (does not seem to make a difference)
// 16 * 2, accounting for mmla kernels
float tmp[32];
for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
const int64_t i13 = (ir1 / (ne12 * ne1));
const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
// broadcast src0 into src1
const int64_t i03 = i13 / r3;
const int64_t i02 = i12 / r2;
const int64_t i1 = i11;
const int64_t i2 = i12;
const int64_t i3 = i13;
const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char*)wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
: (i11 * nb11 + i12 * nb12 + i13 * nb13));
float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//}
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
}
for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
}
}
}
}
}
static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
struct ggml_compute_state * state) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
int64_t const vec_dot_num_rows = type_traits[type].nrows;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12 / ne02;
const int64_t r3 = ne13 / ne03;
UNUSED(r2);
UNUSED(r3);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
2023-06-25 11:22:21 +00:00
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
2023-06-25 11:22:21 +00:00
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(dst)) {
const int64_t ne_plane = ne01*ne00;
const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
UNUSED(desired_wsize);
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_INIT) {
if (type != GGML_TYPE_F32) {
assert(params->wsize >= desired_wsize);
// parallelize by src0 rows
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
// broadcast src0 into src1 across 2nd,3rd dimension
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
ggml_to_float_t const to_float = type_traits[type].to_float;
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
}
}
}
}
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
2022-09-25 18:23:15 +00:00
// perform sgemm, parallelization controlled by blas lib
if (ith != 0) {
return;
}
//const int64_t tgemm0 = ggml_perf_time_us();
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
if (type != GGML_TYPE_F32) {
x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
}
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne1, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
//printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
}
#endif
#if GGML_USE_LLAMAFILE
const bool src1_cont = ggml_is_contiguous(src1);
if (src1_cont) {
for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(src0->type),
(const char *)src1->data + i12*nb12 + i13*nb13,
nb11/ggml_type_size(src1->type),
(char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type),
ith, nth,
params->type,
src0->type,
src1->type,
dst->type))
goto UseGgmlGemm1;
return;
}
UseGgmlGemm1:;
#endif
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
atomic_store(&state->shared->current_chunk, nth);
if (src1->type != vec_dot_type) {
char * wdata = params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(params->wsize >= ne11*ne12*ne13*row_size);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size;
}
}
}
}
return;
2022-09-25 18:23:15 +00:00
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
#if GGML_USE_LLAMAFILE
if (src1->type != vec_dot_type) {
const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(src0->type),
(const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
row_size/ggml_type_size(vec_dot_type),
(char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type),
ith, nth,
params->type,
src0->type,
vec_dot_type,
dst->type))
goto UseGgmlGemm2;
return;
}
UseGgmlGemm2:;
#endif
#ifdef GGML_PERF
int chunks_executed = 0;
UNUSED(chunks_executed);
#endif
// This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
const int64_t nr0 = ne0;
// This is the size of the rest of the dimensions of the result
const int64_t nr1 = ne1 * ne2 * ne3;
// dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
int64_t num_rows_per_vec_dot = vec_dot_num_rows;
// TODO: currently the mmla kernels support only even numbered rows/cols.
// this check can be removed once they are extended to support odd numbered rows/cols too
if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
num_rows_per_vec_dot = 1;
}
// Now select a reasonable chunk size.
int chunk_size = 16;
// We need to step up the size if it's small
if (nr0 == 1 || nr1 == 1) {
chunk_size = 64;
}
// distribute the work across the inner or outer loop based on which one is larger
// The number of chunks in the 0/1 dim.
// CEIL(nr0/chunk_size)
int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
// If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
// Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
// In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
// distribute the thread work across the inner or outer loop based on which one is larger
nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
}
// The number of elements in each chunk
const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
//if (ith == 0)
// printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
// The first chunk comes from our thread_id, the rest will get auto-assigned.
int current_chunk = ith;
while (current_chunk < nchunk0 * nchunk1) {
const int64_t ith0 = current_chunk % nchunk0;
const int64_t ith1 = current_chunk / nchunk0;
const int64_t ir0_start = dr0 * ith0;
const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
const int64_t ir1_start = dr1 * ith1;
const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
#ifdef GGML_PERF
chunks_executed++;
#endif
if (nth >= nchunk0 * nchunk1) {
break;
}
current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
}
#ifdef GGML_PERF
// These numbers are useful when trying to measure how well the threading scheduling works.
//int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
//float time = (ggml_perf_time_us() - t0);
//printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
#endif
}
// ggml_compute_forward_mul_mat_id
static void ggml_compute_forward_mul_mat_id(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
const struct ggml_tensor * ids = dst->src[2];
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// row groups
const int n_ids = ids->ne[0]; // n_expert_used
const int n_as = ne02; // n_expert
char * wdata_src1_end = (src1->type == vec_dot_type) ?
(char *) params->wdata :
(char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
char * wdata = params->wdata;
if (src1->type != vec_dot_type) {
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(params->wsize >= ne11*ne12*ne13*row_size);
assert(src1->type == GGML_TYPE_F32);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size;
}
}
}
}
// initialize matrix_row_counts
memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
// group rows by src0 matrix
for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
for (int id = 0; id < n_ids; ++id) {
const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
assert(i02 >= 0 && i02 < n_as);
MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
matrix_row_counts[i02] += 1;
}
}
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// compute each matrix multiplication in sequence
for (int cur_a = 0; cur_a < n_as; ++cur_a) {
const int64_t cne1 = matrix_row_counts[cur_a];
if (cne1 == 0) {
continue;
}
const char * src0_cur = (const char *) src0->data + cur_a*nb02;
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1; // src1 rows
// distribute the thread work across the inner or outer loop based on which one is larger
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
const int64_t ith0 = ith % nth0;
const int64_t ith1 = ith / nth0;
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
const int64_t ir010 = dr0*ith0;
const int64_t ir011 = MIN(ir010 + dr0, nr0);
const int64_t ir110 = dr1*ith1;
const int64_t ir111 = MIN(ir110 + dr1, nr1);
// threads with no work simply yield (not sure if it helps)
//if (ir010 >= ir011 || ir110 >= ir111) {
// sched_yield();
// continue;
//}
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
// attempt to reduce false-sharing (does not seem to make a difference)
float tmp[16];
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
const int64_t _i12 = ir1; // logical row index for this expert
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
const int id = row_mapping.i1; // selected expert index
const int64_t i11 = id % ne11;
const int64_t i12 = row_mapping.i2; // row index in src1
const int64_t i1 = id; // selected expert index
const int64_t i2 = i12; // row
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11)*row_size
: (i11*nb11 + i12*nb12));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//}
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
}
}
}
}
#undef MMID_MATRIX_ROW
}
// ggml_compute_forward_out_prod
static void ggml_compute_forward_out_prod_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
// int64_t t0 = ggml_perf_time_us();
// UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne3 == ne13);
GGML_ASSERT(ne03 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_CLBLAST)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
bool use_blas = ggml_is_matrix(src0) &&
ggml_is_matrix(src1) &&
ggml_is_contiguous(src0) &&
(ggml_is_contiguous(src1) || ggml_is_transposed(src1));
#endif
if (params->type == GGML_TASK_TYPE_INIT) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
if (use_blas) {
return;
}
#endif
if (ith != 0) {
return;
}
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (use_blas) {
if (params->ith != 0) { // All threads other than the first do no work.
return;
}
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
// src0: (k,n)
// src1: (k,m)
// dst: (m,n)
//
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
// Also expressed as (major,minor)
// a: (m,k): so src1 transposed
// b: (k,n): so src0
// c: (m,n)
//
// However, if ggml_is_transposed(src1) is true, then
// src1->data already contains a transposed version, so sgemm mustn't
// transpose it further.
int n = src0->ne[0];
int k = src0->ne[1];
int m = src1->ne[0];
int transposeA, lda;
if (!ggml_is_transposed(src1)) {
transposeA = CblasTrans;
lda = m;
} else {
transposeA = CblasNoTrans;
lda = k;
}
float * a = (float *) ((char *) src1->data);
float * b = (float *) ((char *) src0->data);
float * c = (float *) ((char *) dst->data);
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
return;
}
#endif
// dst[:,:,:,:] = 0
// for i2,i3:
// for i1:
// for i01:
// for i0:
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
// parallelize by last three dimensions
// total rows in dst
const int64_t nr = ne1*ne2*ne3;
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
// block-tiling attempt
const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
const int64_t blck_1 = 16;
for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
const int64_t bir1 = MIN(bir + blck_1, ir1);
for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
const int64_t bne01 = MIN(bi01 + blck_0, ne01);
for (int64_t ir = bir; ir < bir1; ++ir) {
// dst indices
const int64_t i3 = ir/(ne2*ne1);
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
const int64_t i02 = i2;
const int64_t i03 = i3;
//const int64_t i10 = i1;
const int64_t i12 = i2;
const int64_t i13 = i3;
#if GGML_VEC_MAD_UNROLL > 2
const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
}
for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32(ne0, d, s0, *s1);
}
#else
for (int64_t i01 = bi01; i01 < bne01; ++i01) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32(ne0, d, s0, *s1);
}
#endif
}
}
}
//int64_t t1 = ggml_perf_time_us();
//static int64_t acc = 0;
//acc += t1 - t0;
//if (t1 - t0 > 10) {
// printf("\n");
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
// printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
//}
}
static void ggml_compute_forward_out_prod_q_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
// int64_t t0 = ggml_perf_time_us();
// UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 dim0
GGML_ASSERT(nb00 == ggml_type_size(type));
// dst dim0 cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by last three dimensions
2022-09-25 18:23:15 +00:00
// total rows in dst
const int64_t nr = ne1*ne2*ne3;
2022-09-25 18:23:15 +00:00
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
2022-09-25 18:23:15 +00:00
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
2022-09-25 18:23:15 +00:00
// dst[:,:,:,:] = 0
// for i2,i3:
// for i1:
// for i01:
// for i0:
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
2022-09-25 18:23:15 +00:00
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
for (int64_t ir = ir0; ir < ir1; ++ir) {
// dst indices
const int64_t i3 = ir/(ne2*ne1);
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
2022-09-25 18:23:15 +00:00
const int64_t i02 = i2;
const int64_t i03 = i3;
2022-09-25 18:23:15 +00:00
//const int64_t i10 = i1;
const int64_t i12 = i2;
const int64_t i13 = i3;
2022-09-25 18:23:15 +00:00
for (int64_t i01 = 0; i01 < ne01; ++i01) {
const int64_t i11 = i01;
2022-09-25 18:23:15 +00:00
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
2022-09-25 18:23:15 +00:00
dequantize_row_q(s0, wdata, ne0);
ggml_vec_mad_f32(ne0, d, wdata, *s1);
2022-09-25 18:23:15 +00:00
}
}
//int64_t t1 = ggml_perf_time_us();
2022-09-25 18:23:15 +00:00
//static int64_t acc = 0;
//acc += t1 - t0;
//if (t1 - t0 > 10) {
// printf("\n");
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
// printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
2022-09-25 18:23:15 +00:00
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
//}
}
static void ggml_compute_forward_out_prod(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_out_prod_q_f32(params, dst);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F16:
{
GGML_ASSERT(false); // todo
// ggml_compute_forward_out_prod_f16_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_out_prod_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_scale
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_scale_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
// scale factor
float v;
memcpy(&v, dst->op_params, sizeof(float));
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const size_t nb01 = src0->nb[1];
const size_t nb1 = dst->nb[1];
2022-09-25 18:23:15 +00:00
for (int i1 = ir0; i1 < ir1; i1++) {
if (dst->data != src0->data) {
// src0 is same shape as dst => same indices
memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
}
ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_scale(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_scale_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_set
static void ggml_compute_forward_set_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
// view src0 and dst with these strides and data offset inbytes during set
// nb0 is implicitly element_size because src0 and dst are contiguous
size_t nb1 = ((int32_t *) dst->op_params)[0];
size_t nb2 = ((int32_t *) dst->op_params)[1];
size_t nb3 = ((int32_t *) dst->op_params)[2];
size_t offset = ((int32_t *) dst->op_params)[3];
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
if (params->ith != 0) {
return;
}
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src1);
const int nc = src1->ne[0];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
// src0 and dst as viewed during set
const size_t nb0 = ggml_element_size(src0);
const int im0 = (ne10 == 0 ? 0 : ne10-1);
const int im1 = (ne11 == 0 ? 0 : ne11-1);
const int im2 = (ne12 == 0 ? 0 : ne12-1);
const int im3 = (ne13 == 0 ? 0 : ne13-1);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are viewed with shape of src1 and offset
// => same indices
const int i3 = ir/(ne12*ne11);
const int i2 = (ir - i3*ne12*ne11)/ne11;
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
}
}
static void ggml_compute_forward_set(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_set_f32(params, dst);
} break;
case GGML_TYPE_F16:
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
default:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_cpy
static void ggml_compute_forward_cpy(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
ggml_compute_forward_dup(params, dst);
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_cont
static void ggml_compute_forward_cont(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
ggml_compute_forward_dup(params, dst);
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_reshape
static void ggml_compute_forward_reshape(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
// NOP
UNUSED(params);
UNUSED(dst);
}
// ggml_compute_forward_view
static void ggml_compute_forward_view(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
const struct ggml_tensor * dst) {
2022-09-25 18:23:15 +00:00
// NOP
UNUSED(params);
UNUSED(dst);
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_permute
static void ggml_compute_forward_permute(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
const struct ggml_tensor * dst) {
2022-09-25 18:23:15 +00:00
// NOP
UNUSED(params);
UNUSED(dst);
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_transpose
static void ggml_compute_forward_transpose(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
const struct ggml_tensor * dst) {
2022-09-25 18:23:15 +00:00
// NOP
UNUSED(params);
UNUSED(dst);
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_get_rows
static void ggml_compute_forward_get_rows_q(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == ggml_type_size(type));
assert(ggml_nrows(dst) == nr);
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
dequantize_row_q(
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
}
static void ggml_compute_forward_get_rows_f16(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);
2022-09-25 18:23:15 +00:00
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(ggml_fp16_t));
assert(ggml_nrows(dst) == nr);
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
ggml_fp16_to_fp32_row(
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
2022-09-25 18:23:15 +00:00
}
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
static void ggml_compute_forward_get_rows_bf16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(ggml_bf16_t));
assert(ggml_nrows(dst) == nr);
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
ggml_bf16_to_fp32_row(
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
}
static void ggml_compute_forward_get_rows_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);
2022-09-25 18:23:15 +00:00
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(float));
assert(ggml_nrows(dst) == nr);
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
2022-09-25 18:23:15 +00:00
}
}
static void ggml_compute_forward_get_rows(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_get_rows_q(params, dst);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_f16(params, dst);
2022-09-25 18:23:15 +00:00
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
ggml_compute_forward_get_rows_bf16(params, dst);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
case GGML_TYPE_I32:
2022-09-25 18:23:15 +00:00
{
ggml_compute_forward_get_rows_f32(params, dst);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
//static bool first = true;
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
//if (first) {
// first = false;
//} else {
// for (int k = 0; k < dst->ne[1]; ++k) {
// for (int j = 0; j < dst->ne[0]/16; ++j) {
// for (int i = 0; i < 16; ++i) {
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
// }
// printf("\n");
// }
// printf("\n");
// }
// printf("\n");
// exit(0);
//}
2022-09-25 18:23:15 +00:00
}
// ggml_compute_forward_get_rows_back
static void ggml_compute_forward_get_rows_back_f32_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_is_contiguous(dst));
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
if (params->type == GGML_TASK_TYPE_INIT) {
if (params->ith != 0) {
return;
}
memset(dst->data, 0, ggml_nbytes(dst));
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
for (int j = 0; j < nc; ++j) {
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
}
}
}
static void ggml_compute_forward_get_rows_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_is_contiguous(dst));
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
if (params->type == GGML_TASK_TYPE_INIT) {
if (params->ith != 0) {
return;
}
2023-06-25 11:22:21 +00:00
memset(dst->data, 0, ggml_nbytes(dst));
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(float));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) src0->data + i*src0->nb[1]));
}
}
static void ggml_compute_forward_get_rows_back(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_back_f32_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_get_rows_back_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
//static bool first = true;
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
//if (first) {
// first = false;
//} else {
// for (int k = 0; k < dst->ne[1]; ++k) {
// for (int j = 0; j < dst->ne[0]/16; ++j) {
// for (int i = 0; i < 16; ++i) {
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
// }
// printf("\n");
// }
// printf("\n");
// }
// printf("\n");
// exit(0);
//}
}
// ggml_compute_forward_diag
static void ggml_compute_forward_diag_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// TODO: handle transposed/permuted matrices
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(ne00 == ne0);
GGML_ASSERT(ne00 == ne1);
GGML_ASSERT(ne01 == 1);
GGML_ASSERT(ne02 == ne2);
GGML_ASSERT(ne03 == ne3);
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb0 == sizeof(float));
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = 0; i2 < ne2; i2++) {
for (int i1 = 0; i1 < ne1; i1++) {
float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
for (int i0 = 0; i0 < i1; i0++) {
d[i0] = 0;
}
d[i1] = s[i1];
for (int i0 = i1+1; i0 < ne0; i0++) {
d[i0] = 0;
}
}
}
}
}
static void ggml_compute_forward_diag(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_diag_mask_inf
static void ggml_compute_forward_diag_mask_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const float value) {
const struct ggml_tensor * src0 = dst->src[0];
const int ith = params->ith;
const int nth = params->nth;
const int n_past = ((int32_t *) dst->op_params)[0];
const bool inplace = src0->data == dst->data;
2023-06-25 11:22:21 +00:00
GGML_ASSERT(n_past >= 0);
2022-09-25 18:23:15 +00:00
if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
if (ith != 0) {
return;
}
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
2022-09-25 18:23:15 +00:00
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
2022-09-25 18:23:15 +00:00
// TODO: handle transposed/permuted matrices
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
const int nr = src0->ne[1];
const int nz = n/nr;
2023-06-25 11:22:21 +00:00
GGML_ASSERT( dst->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[0] == sizeof(float));
2022-09-25 18:23:15 +00:00
for (int k = 0; k < nz; k++) {
for (int j = ith; j < nr; j += nth) {
2022-09-25 18:23:15 +00:00
for (int i = n_past; i < nc; i++) {
if (i > n_past + j) {
*(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
2022-09-25 18:23:15 +00:00
}
}
}
}
}
static void ggml_compute_forward_diag_mask_inf(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_diag_mask_zero(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_mask_f32(params, dst, 0);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_soft_max
static void ggml_compute_forward_soft_max_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
assert(ggml_is_contiguous(dst));
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
// TODO: handle transposed/permuted matrices
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
//const int64_t ne11 = src1 ? src1->ne[1] : 1;
// TODO: is this supposed to be ceil instead of floor?
// https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
const uint32_t n_head = ne02;
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
for (int i1 = ir0; i1 < ir1; i1++) {
// ALiBi
const uint32_t h = (i1/ne01)%ne02; // head
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
// broadcast the mask across rows
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
ggml_vec_cpy_f32 (nc, wp, sp);
ggml_vec_scale_f32(nc, wp, scale);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
if (mp_f32) {
if (use_f16) {
for (int i = 0; i < nc; ++i) {
wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
}
} else {
for (int i = 0; i < nc; ++i) {
wp[i] += slope*mp_f32[i];
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
}
}
}
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(wp[i]));
}
#endif
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, wp);
ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(nc, dp, sum);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(dp[i]));
assert(!isinf(dp[i]));
}
#endif
}
}
static void ggml_compute_forward_soft_max(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_soft_max_back
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_soft_max_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src1, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
2023-06-25 11:22:21 +00:00
// TODO: handle transposed/permuted matrices
2023-06-25 11:22:21 +00:00
const int ith = params->ith;
const int nth = params->nth;
2023-06-25 11:22:21 +00:00
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
2023-06-25 11:22:21 +00:00
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(dy[i]));
assert(!isnan(y[i]));
}
#endif
// Jii = yi - yi*yi
// Jij = -yi*yj
// J = diag(y)-y.T*y
// dx = J * dy
// dxk = sum_i(Jki * dyi)
// dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
// dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
2023-06-25 11:22:21 +00:00
// dxk = sum_i(-yk*yi * dyi) + yk*dyk
// dxk = -yk * sum_i(yi * dyi) + yk*dyk
// dxk = -yk * dot(y, dy) + yk*dyk
// dxk = yk * (- dot(y, dy) + dyk)
// dxk = yk * (dyk - dot(y, dy))
//
// post-order:
// dot_y_dy := dot(y, dy)
// dx := dy
// dx := dx - dot_y_dy
// dx := dx * y
// linear runtime, no additional memory
float dot_y_dy = 0;
ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
2023-06-25 11:22:21 +00:00
ggml_vec_cpy_f32 (nc, dx, dy);
ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
ggml_vec_mul_f32 (nc, dx, dx, y);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(dx[i]));
assert(!isinf(dx[i]));
}
#endif
}
}
static void ggml_compute_forward_soft_max_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_back_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_clamp
static void ggml_compute_forward_clamp_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
assert(params->ith == 0);
2023-06-25 11:22:21 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
float min;
float max;
memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
const size_t nb00 = src0->nb[0];
const size_t nb01 = src0->nb[1];
const size_t nb0 = dst->nb[0];
const size_t nb1 = dst->nb[1];
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
for (int j = ith; j < n; j += nth) {
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
for (int i = 0; i < nc; i++) {
dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
}
}
}
static void ggml_compute_forward_clamp(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_clamp_f32(params, dst);
} break;
case GGML_TYPE_F16:
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
SOTA 2-bit quants (llama/4773) * iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 15:02:32 +00:00
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
2024-02-21 14:19:39 +00:00
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
2023-06-25 11:22:21 +00:00
case GGML_TYPE_Q8_K:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
case GGML_TYPE_F64:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
// ggml_compute_forward_rope
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
return 1 - MIN(1, MAX(0, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta
) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
*cos_theta = cosf(theta) * mscale;
*sin_theta = sinf(theta) * mscale;
}
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
}
static void ggml_rope_cache_init(
float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
float * cache, float sin_sign, float theta_scale
) {
float theta = theta_base;
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
rope_yarn(
theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
);
cache[i0 + 1] *= sin_sign;
theta *= theta_scale;
}
}
GGML_CALL void ggml_rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
dims[0] = MAX(0, start);
dims[1] = MIN(n_dims - 1, end);
}
static void ggml_compute_forward_rope_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const bool forward) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * src2 = dst->src[2];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
// these two only relevant for xPos RoPE:
float xpos_base;
bool xpos_down;
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
2022-09-25 18:23:15 +00:00
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
2022-09-25 18:23:15 +00:00
GGML_TENSOR_UNARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
GGML_ASSERT(nb00 == sizeof(float));
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
GGML_ASSERT(n_dims <= ne0);
GGML_ASSERT(n_dims % 2 == 0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
2023-04-14 16:20:39 +00:00
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
const float * freq_factors = NULL;
if (is_neox) {
if (src2 != NULL) {
GGML_ASSERT(src2->type == GGML_TYPE_F32);
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
freq_factors = (const float *) src2->data;
}
} else {
GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
}
// backward process uses inverse rotation by cos and sin.
// cos and sin build a rotation matrix, where the inverse is the transpose.
// this essentially just switches the sign of sin.
const float sin_sign = forward ? 1.0f : -1.0f;
const int32_t * pos = (const int32_t *) src1->data;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
const int64_t p = pos[i2];
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta_base = (float)p;
2023-04-14 16:20:39 +00:00
if (is_glm) {
theta_base = MIN(p, n_ctx - 2);
float block_theta = MAX(p - (n_ctx - 2), 0);
for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
const float cos_theta = cosf(theta_base);
const float sin_theta = sinf(theta_base) * sin_sign;
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;
theta_base *= theta_scale;
block_theta *= theta_scale;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
const float x2 = src[n_dims];
const float x3 = src[n_dims/2*3];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
}
} else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
// zeta scaling for xPos only:
float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
if (xpos_down) zeta = 1.0f / zeta;
2022-09-25 18:23:15 +00:00
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
2023-06-25 11:22:21 +00:00
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[1];
2022-09-25 18:23:15 +00:00
dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
}
} else {
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t i0 = ic/2;
const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
float cos_theta, sin_theta;
rope_yarn(
theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
2022-09-25 18:23:15 +00:00
sin_theta *= sin_sign;
theta_base *= theta_scale;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
2023-06-25 11:22:21 +00:00
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
const int64_t i0 = ic;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
2022-09-25 18:23:15 +00:00
}
}
}
}
}
// TODO: deduplicate f16/f32 code
static void ggml_compute_forward_rope_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const bool forward) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * src2 = dst->src[2];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
GGML_ASSERT(n_dims <= ne0);
GGML_ASSERT(n_dims % 2 == 0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
const float * freq_factors = NULL;
if (is_neox) {
if (src2 != NULL) {
GGML_ASSERT(src2->type == GGML_TYPE_F32);
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
freq_factors = (const float *) src2->data;
}
} else {
GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
}
// backward process uses inverse rotation by cos and sin.
// cos and sin build a rotation matrix, where the inverse is the transpose.
// this essentially just switches the sign of sin.
const float sin_sign = forward ? 1.0f : -1.0f;
const int32_t * pos = (const int32_t *) src1->data;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
const int64_t p = pos[i2];
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta_base = (float)p;
if (is_glm) {
theta_base = MIN(p, n_ctx - 2);
float block_theta = MAX(p - (n_ctx - 2), 0);
for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
const float cos_theta = cosf(theta_base);
const float sin_theta = sinf(theta_base) * sin_sign;
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;
theta_base *= theta_scale;
block_theta *= theta_scale;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
}
} else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[1]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
} else {
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t i0 = ic/2;
const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
float cos_theta, sin_theta;
rope_yarn(
theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
sin_theta *= sin_sign;
theta_base *= theta_scale;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
} else {
const int64_t i0 = ic;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
}
}
}
}
static void ggml_compute_forward_rope(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_rope_f16(params, dst, true);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_rope_f32(params, dst, true);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_rope_back
static void ggml_compute_forward_rope_back(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2022-09-25 18:23:15 +00:00
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_rope_f16(params, dst, false);
} break;
2022-09-25 18:23:15 +00:00
case GGML_TYPE_F32:
{
ggml_compute_forward_rope_f32(params, dst, false);
2022-09-25 18:23:15 +00:00
} break;
default:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
}
// ggml_compute_forward_conv_transpose_1d
2022-09-25 18:23:15 +00:00
static void ggml_compute_forward_conv_transpose_1d_f16_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02;
2022-09-25 18:23:15 +00:00
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
2022-09-25 18:23:15 +00:00
memset(params->wdata, 0, params->wsize);
// permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
2022-09-25 18:23:15 +00:00
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ne02 + i02] = src[i00];
}
}
}
}
2022-09-25 18:23:15 +00:00
// permute source data (src1) from (L x Cin) to (Cin x L)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
ggml_fp16_t * dst_data = wdata;
2022-09-25 18:23:15 +00:00
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
2022-09-25 18:23:15 +00:00
}
}
}
// need to zero dst since we are accumulating into it
memset(dst->data, 0, ggml_nbytes(dst));
2022-09-25 18:23:15 +00:00
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
2022-09-25 18:23:15 +00:00
return;
}
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
2022-09-25 18:23:15 +00:00
// total rows in dst
const int nr = ne1;
2022-09-25 18:23:15 +00:00
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
ggml_fp16_t * const wdata_src = wdata + nk;
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i10*ne11;
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f16(ne02, &v, 0,
(ggml_fp16_t *) wdata_src + i1n, 0,
(ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
dst_data[i10*s0 + i00] += v;
2022-09-25 18:23:15 +00:00
}
}
}
}
static void ggml_compute_forward_conv_transpose_1d_f32(
2022-09-25 18:23:15 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2022-09-25 18:23:15 +00:00
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
2022-09-25 18:23:15 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02;
2022-09-25 18:23:15 +00:00
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
2022-09-25 18:23:15 +00:00
memset(params->wdata, 0, params->wsize);
// prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
{
float * const wdata = (float *) params->wdata + 0;
2022-09-25 18:23:15 +00:00
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
float * dst_data = wdata + i01*ne00*ne02;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ne02 + i02] = src[i00];
}
}
}
}
// prepare source data (src1)
{
float * const wdata = (float *) params->wdata + nk;
float * dst_data = wdata;
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne11 + i11] = src[i10];
2022-09-25 18:23:15 +00:00
}
}
}
// need to zero dst since we are accumulating into it
memset(dst->data, 0, ggml_nbytes(dst));
return;
}
2022-09-25 18:23:15 +00:00
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
// total rows in dst
const int nr = ne1;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * const wdata = (float *) params->wdata + 0;
float * const wdata_src = wdata + nk;
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
float * wdata_kernel = wdata + i1*ne02*ne00;
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i10*ne11;
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f32(ne02, &v, 0,
wdata_src + i1n, 0,
wdata_kernel + i00*ne02, 0, 1);
dst_data[i10*s0 + i00] += v;
}
}
}
}
static void ggml_compute_forward_conv_transpose_1d(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_conv_transpose_1d_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// src0: kernel [OC, IC, KH, KW]
// src1: image [N, IC, IH, IW]
// dst: result [N, OH, OW, IC*KH*KW]
static void ggml_compute_forward_im2col_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = is_2D ? ne13 : ne12;
const int64_t IC = is_2D ? ne12 : ne11;
const int64_t IH = is_2D ? ne11 : 1;
const int64_t IW = ne10;
const int64_t KH = is_2D ? ne01 : 1;
const int64_t KW = ne00;
const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;
int ofs0 = is_2D ? nb13 : nb12;
int ofs1 = is_2D ? nb12 : nb11;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
{
float * const wdata = (float *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
} else {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
}
}
}
}
}
}
}
}
}
// src0: kernel [OC, IC, KH, KW]
// src1: image [N, IC, IH, IW]
// dst: result [N, OH, OW, IC*KH*KW]
static void ggml_compute_forward_im2col_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = is_2D ? ne13 : ne12;
const int64_t IC = is_2D ? ne12 : ne11;
const int64_t IH = is_2D ? ne11 : 1;
const int64_t IW = ne10;
const int64_t KH = is_2D ? ne01 : 1;
const int64_t KW = ne00;
const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;
int ofs0 = is_2D ? nb13 : nb12;
int ofs1 = is_2D ? nb12 : nb11;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
} else {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
}
}
}
}
2022-09-25 18:23:15 +00:00
}
}
}
}
}
static void ggml_compute_forward_im2col(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_im2col_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_im2col_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_conv_transpose_2d
static void ggml_compute_forward_conv_transpose_2d(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02*ne03;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
return;
}
memset(params->wdata, 0, params->wsize);
// permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
}
}
}
}
}
// permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
for (int i12 = 0; i12 < ne12; i12++) {
for (int i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
for (int i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
}
}
}
}
memset(dst->data, 0, ggml_nbytes(dst));
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int32_t stride = ggml_get_op_params_i32(dst, 0);
// total patches in dst
const int np = ne2;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
ggml_fp16_t * const wdata_src = wdata + nk;
for (int i2 = ip0; i2 < ip1; i2++) { // Cout
float * dst_data = (float *)((char *) dst->data + i2*nb2);
ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
for (int i11 = 0; i11 < ne11; i11++) {
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i11*ne10*ne12 + i10*ne12;
for (int i01 = 0; i01 < ne01; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f16(ne03, &v, 0,
wdata_src + i1n, 0,
wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
}
}
}
}
}
}
// ggml_compute_forward_pool_1d_sk_p0
static void ggml_compute_forward_pool_1d_sk_p0(
const struct ggml_compute_params * params,
const enum ggml_op_pool op,
const int k,
struct ggml_tensor * dst) {
const struct ggml_tensor * src = dst->src[0];
assert(src->type == GGML_TYPE_F32);
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const char * cdata = (const char *)src->data;
const char * const data_end = cdata + ggml_nbytes(src);
float * drow = (float *)dst->data;
const int64_t rs = dst->ne[0];
while (cdata < data_end) {
const float * const srow = (const float *)cdata;
int j = 0;
for (int64_t i = 0; i < rs; ++i) {
switch (op) {
case GGML_OP_POOL_AVG: drow[i] = 0; break;
case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
for (int ki = 0; ki < k; ++ki) {
switch (op) {
case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
++j;
}
switch (op) {
case GGML_OP_POOL_AVG: drow[i] /= k; break;
case GGML_OP_POOL_MAX: break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
}
cdata += src->nb[1];
drow += rs;
}
}
// ggml_compute_forward_pool_1d
static void ggml_compute_forward_pool_1d(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = opts[0];
const int k0 = opts[1];
const int s0 = opts[2];
const int p0 = opts[3];
GGML_ASSERT(p0 == 0); // padding not supported
GGML_ASSERT(k0 == s0); // only s = k supported
ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
}
// ggml_compute_forward_pool_2d
static void ggml_compute_forward_pool_2d(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = opts[0];
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
const char * cdata = (const char*)src->data;
const char * const data_end = cdata + ggml_nbytes(src);
const int64_t px = dst->ne[0];
const int64_t py = dst->ne[1];
const int64_t pa = px * py;
float * dplane = (float *)dst->data;
const int ka = k0 * k1;
const int offset0 = -p0;
const int offset1 = -p1;
while (cdata < data_end) {
for (int oy = 0; oy < py; ++oy) {
float * const drow = dplane + oy * px;
for (int ox = 0; ox < px; ++ox) {
float * const out = drow + ox;
switch (op) {
case GGML_OP_POOL_AVG: *out = 0; break;
case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
const int ix = offset0 + ox * s0;
const int iy = offset1 + oy * s1;
for (int ky = 0; ky < k1; ++ky) {
if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
for (int kx = 0; kx < k0; ++kx) {
int j = ix + kx;
if (j < 0 || j >= src->ne[0]) continue;
switch (op) {
case GGML_OP_POOL_AVG: *out += srow[j]; break;
case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
}
}
switch (op) {
case GGML_OP_POOL_AVG: *out /= ka; break;
case GGML_OP_POOL_MAX: break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
}
}
cdata += src->nb[2];
dplane += pa;
}
}
// ggml_compute_forward_upscale
static void ggml_compute_forward_upscale_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->type == GGML_TYPE_F32);
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const float sf0 = (float)ne0/src0->ne[0];
const float sf1 = (float)ne1/src0->ne[1];
const float sf2 = (float)ne2/src0->ne[2];
const float sf3 = (float)ne3/src0->ne[3];
// TODO: optimize
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
const int64_t i02 = i2 / sf2;
for (int64_t i1 = 0; i1 < ne1; i1++) {
const int64_t i01 = i1 / sf1;
for (int64_t i0 = 0; i0 < ne0; i0++) {
const int64_t i00 = i0 / sf0;
const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
}
}
}
}
}
static void ggml_compute_forward_upscale(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_upscale_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_pad
static void ggml_compute_forward_pad_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT( dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float * dst_ptr = (float *) dst->data;
// TODO: optimize
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
for (int64_t i3 = 0; i3 < ne3; ++i3) {
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
dst_ptr[dst_idx] = *src_ptr;
} else {
dst_ptr[dst_idx] = 0;
}
}
}
}
}
}
static void ggml_compute_forward_pad(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_pad_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_arange
static void ggml_compute_forward_arange_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const float start = ggml_get_op_params_f32(dst, 0);
const float stop = ggml_get_op_params_f32(dst, 1);
const float step = ggml_get_op_params_f32(dst, 2);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
GGML_ASSERT(ggml_nelements(dst) == steps);
for (int64_t i = ith; i < steps; i+= nth) {
float value = start + step * i;
((float *)dst->data)[i] = value;
}
}
static void ggml_compute_forward_arange(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_arange_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_timestep_embedding_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int dim = ggml_get_op_params_i32(dst, 0);
const int max_period = ggml_get_op_params_i32(dst, 1);
int half = dim / 2;
for (int64_t i = 0; i < ne00; i++) {
float * embed_data = (float *)((char *) dst->data + i*nb1);
for (int64_t j = ith; j < half; j += nth) {
float timestep = ((float *)src0->data)[i];
float freq = (float)expf(-logf(max_period) * j / half);
float arg = timestep * freq;
embed_data[j] = cosf(arg);
embed_data[j + half] = sinf(arg);
}
if (dim % 2 != 0 && ith == 0) {
embed_data[dim] = 0.f;
}
}
}
static void ggml_compute_forward_timestep_embedding(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_timestep_embedding_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_argsort
static void ggml_compute_forward_argsort_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(nb0 == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int64_t nr = ggml_nrows(src0);
enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
for (int64_t i = ith; i < nr; i += nth) {
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
const float * src_data = (float *)((char *) src0->data + i*nb01);
for (int64_t j = 0; j < ne0; j++) {
dst_data[j] = j;
}
// C doesn't have a functional sort, so we do a bubble sort instead
for (int64_t j = 0; j < ne0; j++) {
for (int64_t k = j + 1; k < ne0; k++) {
if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
(order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
int32_t tmp = dst_data[j];
dst_data[j] = dst_data[k];
dst_data[k] = tmp;
}
}
}
}
}
static void ggml_compute_forward_argsort(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_argsort_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
// ggml_compute_forward_flash_attn_ext
static void ggml_compute_forward_flash_attn_ext_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne2 == N);
// input tensor rows must be contiguous
GGML_ASSERT(nbq0 == ggml_type_size(q->type));
GGML_ASSERT(nbk0 == ggml_type_size(k->type));
GGML_ASSERT(nbv0 == ggml_type_size(v->type));
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev0 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nev0 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t rk2 = neq2/nek2;
const int64_t rk3 = neq3/nek3;
const int64_t rv2 = neq2/nev2;
const int64_t rv3 = neq3/nev3;
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
const uint32_t n_head = neq2;
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
// loop over n_batch and n_head
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
const uint32_t h = iq2; // head index
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
float S = 0.0f; // sum
float M = -INFINITY; // maximum KQ value
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
if (v->type == GGML_TYPE_F16) {
memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
} else {
memset(VKQ32, 0, D*sizeof(float));
}
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
// k indices
const int ik3 = iq3 / rk3;
const int ik2 = iq2 / rk2;
// v indices
const int iv3 = iq3 / rv3;
const int iv2 = iq2 / rv2;
const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
q_to_vec_dot(pq, Q_q, D);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
// online softmax / attention
// loop over n_kv and n_head_kv
// ref: https://arxiv.org/pdf/2112.05682.pdf
for (int64_t ic = 0; ic < nek1; ++ic) {
const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
if (mv == -INFINITY) {
continue;
}
float s; // KQ value
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
s = s*scale + mv; // scale KQ value and apply mask
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
const float Mold = M;
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
float vs = 1.0f; // post-softmax KQ value, expf(s - M)
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
if (v->type== GGML_TYPE_F16) {
if (s > M) {
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
M = s;
ms = expf(Mold - M);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
// V = V*expf(Mold - M)
ggml_vec_scale_f16(D, VKQ16, ms);
} else {
// no new maximum, ms == 1.0f, vs != 1.0f
vs = expf(s - M);
}
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
// V += v*expf(s - M)
ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
} else {
if (s > M) {
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
M = s;
ms = expf(Mold - M);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
// V = V*expf(Mold - M)
ggml_vec_scale_f32(D, VKQ32, ms);
} else {
// no new maximum, ms == 1.0f, vs != 1.0f
vs = expf(s - M);
}
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
v_to_float(v_data, V32, D);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
// V += v*expf(s - M)
ggml_vec_mad_f32(D, VKQ32, V32, vs);
}
S = S*ms + vs; // scale and increment sum with partial sum
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
}
if (v->type == GGML_TYPE_F16) {
for (int64_t d = 0; d < D; ++d) {
VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
}
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
}
// V /= S
const float S_inv = 1.0f/S;
ggml_vec_scale_f32(D, VKQ32, S_inv);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// original
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
// permute(0, 2, 1, 3)
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
}
}
static void ggml_compute_forward_flash_attn_ext(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst) {
switch (dst->op_params[2]) {
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
case GGML_PREC_DEFAULT:
case GGML_PREC_F32:
{
// uses F32 accumulators
ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_flash_attn_back
2023-04-14 16:20:39 +00:00
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_flash_attn_back_f32(
2023-04-14 16:20:39 +00:00
const struct ggml_compute_params * params,
2023-06-25 11:22:21 +00:00
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
const struct ggml_tensor * k = dst->src[1];
const struct ggml_tensor * v = dst->src[2];
const struct ggml_tensor * d = dst->src[3];
2023-06-25 11:22:21 +00:00
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
2023-04-14 16:20:39 +00:00
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
2023-06-25 11:22:21 +00:00
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
const int mxDM = MAX(D, Mup);
// GGML_ASSERT(ne0 == D);
// GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(float));
GGML_ASSERT(nbv0 == sizeof(float));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(ned0 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(ned1 == N);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
2023-06-25 11:22:21 +00:00
if (ith == 0) {
memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
}
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const int64_t elem_q = ggml_nelements(q);
const int64_t elem_k = ggml_nelements(k);
2023-06-25 11:22:21 +00:00
enum ggml_type result_type = dst->type;
GGML_ASSERT(ggml_blck_size(result_type) == 1);
const size_t tsize = ggml_type_size(result_type);
const size_t offs_q = 0;
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
void * grad_q = (char *) dst->data;
void * grad_k = (char *) dst->data + offs_k;
void * grad_v = (char *) dst->data + offs_v;
const size_t nbgq1 = nb0*neq0;
const size_t nbgq2 = nb0*neq0*neq1;
const size_t nbgq3 = nb0*neq0*neq1*neq2;
const size_t nbgk1 = nb0*nek0;
const size_t nbgk2 = nb0*nek0*nek1;
const size_t nbgk3 = nb0*nek0*nek1*neq2;
const size_t nbgv1 = nb0*nev0;
const size_t nbgv2 = nb0*nev0*nev1;
const size_t nbgv3 = nb0*nev0*nev1*neq2;
// parallelize by k rows using ggml_vec_dot_f32
// total rows in k
const int nr = nek2*nek3;
2023-06-25 11:22:21 +00:00
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
// how often k2 (and v2) is repeated in q2
int nrep = neq2/nek2;
2023-06-25 11:22:21 +00:00
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int ik3 = ir/(nek2);
const int ik2 = ir - ik3*nek2;
2023-06-25 11:22:21 +00:00
const int iq3 = ik3;
const int id3 = ik3;
const int iv3 = ik3;
const int iv2 = ik2;
2023-06-25 11:22:21 +00:00
for (int irep = 0; irep < nrep; ++irep) {
const int iq2 = ik2 + irep*nek2;
const int id2 = iq2;
2023-06-25 11:22:21 +00:00
// (ik2 + irep*nek2) % nek2 == ik2
for (int iq1 = 0; iq1 < neq1; ++iq1) {
const int id1 = iq1;
2023-06-25 11:22:21 +00:00
// not sure about CACHE_LINE_SIZE_F32..
// - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
2023-06-25 11:22:21 +00:00
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
2023-06-25 11:22:21 +00:00
const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
for (int64_t ic = 0; ic < masked_begin; ++ic) {
// k indices
const int ik1 = ic;
2023-06-25 11:22:21 +00:00
// S indices
const int i1 = ik1;
2023-06-25 11:22:21 +00:00
ggml_vec_dot_f32(neq0,
S + i1, 0,
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
2023-06-25 11:22:21 +00:00
}
// scale
ggml_vec_scale_f32(masked_begin, S, scale);
2023-06-25 11:22:21 +00:00
for (int64_t i = masked_begin; i < M; i++) {
S[i] = -INFINITY;
}
// softmax
// exclude known -INF S[..] values from max and loop
// dont forget to set their SM values to zero
2023-06-25 11:22:21 +00:00
{
float max = -INFINITY;
ggml_vec_max_f32(masked_begin, &max, S);
ggml_float sum = 0.0;
{
2023-06-25 11:22:21 +00:00
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
vvexpf(SM, SM, &Mup);
ggml_vec_sum_f32(Mup, &sum, SM);
2023-06-25 11:22:21 +00:00
#else
sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
2023-06-25 11:22:21 +00:00
#endif
}
2023-06-25 11:22:21 +00:00
assert(sum > 0.0);
2023-06-25 11:22:21 +00:00
sum = 1.0/sum;
ggml_vec_scale_f32(masked_begin, SM, sum);
2023-06-25 11:22:21 +00:00
}
// step-by-step explanation
{
// forward-process shape grads from backward process
// parallel_for ik2,ik3:
// for irep:
// iq2 = ik2 + irep*nek2
// k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
// q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
// v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
// for iq1:
// kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
// qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
// vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
// S0 = -Inf [D,1,1,1]
// ~S1[i] = dot(kcur[:D,i], qcur)
// S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
// S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
// S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
// ~S5[i] = dot(vcur[:,i], S4)
// S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
// ~dst[i,iq1,iq2,iq3] = S5[i] ^
// dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
// dst backward-/ grad[dst] = d
//
// output gradients with their dependencies:
//
// grad[kcur] = grad[S1].T @ qcur
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// grad[S4] = grad[S5] @ vcur
// grad[S4] = d[:D,id1,id2,id3] @ vcur
// grad[qcur] = grad[S1] @ kcur
// grad[vcur] = grad[S5].T @ S4
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
//
// in post-order:
//
// S1 = qcur @ kcur.T
// S2 = S1 * scale
// S3 = diag_mask_inf(S2, P)
// S4 = softmax(S3)
// grad[S4] = d[:D,id1,id2,id3] @ vcur
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
// grad[qcur] = grad[S1] @ kcur
// grad[kcur] = grad[S1].T @ qcur
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
//
// using less variables (SM=S4):
//
// S = diag_mask_inf(qcur @ kcur.T * scale, P)
// SM = softmax(S)
// S = d[:D,iq1,iq2,iq3] @ vcur
// dot_SM_gradSM = dot(SM, S)
// S = SM * (S - dot(SM, S))
// S = diag_mask_zero(S, P) * scale
//
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
// grad[k][:D,:M,ik2,ik3] += S.T @ qcur
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
}
2023-06-25 11:22:21 +00:00
// S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
// S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
// for ic:
// S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
// exclude known future zero S[..] values from operation
ggml_vec_set_f32(masked_begin, S, 0);
for (int64_t ic = 0; ic < D; ++ic) {
ggml_vec_mad_f32(masked_begin,
S,
(float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
}
2023-06-25 11:22:21 +00:00
// S = SM * (S - dot(SM, S))
float dot_SM_gradSM = 0;
ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
ggml_vec_mul_f32 (masked_begin, S, S, SM);
// S = diag_mask_zero(S, P) * scale
// already done by above ggml_vec_set_f32
// exclude known zero S[..] values from operation
ggml_vec_scale_f32(masked_begin, S, scale);
// S shape [M,1]
// SM shape [M,1]
// kcur shape [D,M]
// qcur shape [D,1]
// vcur shape [M,D]
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
// grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
// for ic:
// grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
// exclude known zero S[..] values from loop
for (int64_t ic = 0; ic < masked_begin; ++ic) {
ggml_vec_mad_f32(D,
(float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
(float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
S[ic]);
}
2023-06-25 11:22:21 +00:00
// grad[k][:D,:M,iq2,iq3] += S.T @ qcur
// for ic:
// grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
// grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
// exclude known zero S[..] values from loop
for (int64_t ic = 0; ic < masked_begin; ++ic) {
ggml_vec_mad_f32(D,
(float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
S[ic]);
}
2023-06-25 11:22:21 +00:00
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
// for ic:
// grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
// grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
// exclude known zero SM[..] values from mad
for (int64_t ic = 0; ic < D; ++ic) {
ggml_vec_mad_f32(masked_begin,
(float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
SM,
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
}
2023-06-25 11:22:21 +00:00
}
}
}
}
static void ggml_compute_forward_flash_attn_back(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (q->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
// ggml_compute_forward_ssm_conv
static void ggml_compute_forward_ssm_conv_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const struct ggml_tensor * src0 = dst->src[0]; // conv_state
const struct ggml_tensor * src1 = dst->src[1]; // x
const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
const struct ggml_tensor * src3 = dst->src[3]; // state_seq
const int ith = params->ith;
const int nth = params->nth;
const int nc = src2->ne[0]; // d_conv
const int nr = src0->ne[1]; // d_inner
const int n_t = src1->ne[1]; // n_tokens
const int n_kv = src0->ne[2]; // max number of sequences in the batch
GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
// for use with the destination state offset between sequences
GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const int ir = ir1 - ir0;
if (n_kv > 1) {
// multiple sequences means it's hard to know when it's the first time a state is read,
// so copy them all over to the destination, just to be sure.
for (int i3 = 0; i3 < n_kv; ++i3) {
float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
// can't use memcpy because of d_conv vs d_conv - 1
for (int i1 = 0; i1 < ir; ++i1) {
for (int i0 = 0; i0 < nc - 1; ++i0) {
// copy s0 to last (d_conv - 1) columns of s
s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
}
}
}
}
for (int i2 = 0; i2 < n_t; ++i2) {
int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
float * s0; // {d_conv - 1, d_inner, n_kv}
float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
int ne0s0;
GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
// avoid needing to copy the state for the first token
if (i2 == 0) {
s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
ne0s0 = src0->ne[0];
} else {
// the source is the last (d_conv - 1) columns of the destination
s0 = s + 1;
ne0s0 = nc;
}
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// shift state left
for (int i0 = 0; i0 < nc - 1; ++i0) {
s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
}
// insert x on the last column
s[(nc - 1) + i1*nc] = x0[i1];
}
// handle copies when there are multiple output states
for (int i3 = 1; i3 < n_kv; ++i3) {
int32_t seq = sq[i3];
if (0 <= seq && seq < n_kv) {
float * s1 = s + (seq - sq[0])*nc*nr;
memcpy(s1, s, nc*ir*sizeof(float));
} else {
// stop at negative or too big seq_ids
break;
}
}
// it seems a little faster when this is separate from the state shift
for (int i1 = 0; i1 < ir; ++i1) {
// rowwise dot product
float sumf = 0.0f;
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
sumf += s[i] * c[i];
}
x[i1] = sumf;
}
}
}
static void ggml_compute_forward_ssm_conv(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->src[0]->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_ssm_conv_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_ssm_scan
static void ggml_compute_forward_ssm_scan_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const struct ggml_tensor * src0 = dst->src[0]; // s
const struct ggml_tensor * src1 = dst->src[1]; // x
const struct ggml_tensor * src2 = dst->src[2]; // dt
const struct ggml_tensor * src3 = dst->src[3]; // A
const struct ggml_tensor * src4 = dst->src[4]; // B
const struct ggml_tensor * src5 = dst->src[5]; // C
const struct ggml_tensor * src6 = dst->src[6]; // sq
const int ith = params->ith;
const int nth = params->nth;
const int64_t nc = src0->ne[0]; // d_state
const int64_t nr = src0->ne[1]; // d_inner
const int64_t n_t = src1->ne[1]; // number of tokens in the batch
const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float));
// required for the dot product between s and C, and when copying the states
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
// required for per-sequence offsets for states
GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
// required to get correct offset for state destination (i.e. src1->nb[2])
GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const int ir = ir1 - ir0;
if (n_kv > 1) {
// it's hard to know if the source states have already been copied
// when there are multiple, so copy them already.
for (int i3 = 0; i3 < n_kv; ++i3) {
float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
memcpy(s, s0, nc*ir*sizeof(float));
}
}
for (int i2 = 0; i2 < n_t; ++i2) {
int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
float * s0;
float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
// avoid needing to copy the state for the first token
if (i2 == 0) {
s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
} else {
// otherwise the source is the same as the destination
s0 = s;
}
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
float sumf = 0.0f;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// state = prev_state * dA + dB * x
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// y = rowwise_dotprod(state, C)
sumf += state * C[i0];
s[i] = state;
}
y[i1] = sumf;
}
// handle copies when there are multiple output states
for (int i3 = 1; i3 < n_kv; ++i3) {
int32_t seq = sq[i3];
if (0 <= seq && seq < n_kv) {
float * s1 = s + (seq - sq[0])*nc*nr;
memcpy(s1, s, nc*ir*sizeof(float));
} else {
// stop at negative or too big seq_ids
break;
}
}
}
}
static void ggml_compute_forward_ssm_scan(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->src[0]->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_ssm_scan_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_win_part
static void ggml_compute_forward_win_part_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
2023-06-25 11:22:21 +00:00
const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
const int32_t w = ((const int32_t *)(dst->op_params))[2];
2023-06-25 11:22:21 +00:00
assert(ne00 == ne0);
assert(ne3 == nep0*nep1);
// TODO: optimize / multi-thread
for (int py = 0; py < nep1; ++py) {
for (int px = 0; px < nep0; ++px) {
const int64_t i3 = py*nep0 + px;
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int64_t i02 = py*w + i2;
const int64_t i01 = px*w + i1;
const int64_t i00 = i0;
const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
((float *) dst->data)[i] = 0.0f;
} else {
((float *) dst->data)[i] = ((float *) src0->data)[j];
}
}
}
}
}
}
}
static void ggml_compute_forward_win_part(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_win_part_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_win_unpart
static void ggml_compute_forward_win_unpart_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
2023-06-25 11:22:21 +00:00
const int32_t w = ((const int32_t *)(dst->op_params))[0];
2023-06-25 11:22:21 +00:00
// padding
const int px = (w - ne1%w)%w;
//const int py = (w - ne2%w)%w;
const int npx = (px + ne1)/w;
//const int npy = (py + ne2)/w;
assert(ne0 == ne00);
// TODO: optimize / multi-thread
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int ip2 = i2/w;
const int ip1 = i1/w;
const int64_t i02 = i2%w;
const int64_t i01 = i1%w;
const int64_t i00 = i0;
const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
((float *) dst->data)[j] = ((float *) src0->data)[i];
}
}
}
}
static void ggml_compute_forward_win_unpart(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_win_unpart_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
//gmml_compute_forward_unary
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_unary(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const enum ggml_unary_op op = ggml_get_unary_op(dst);
switch (op) {
case GGML_UNARY_OP_ABS:
{
ggml_compute_forward_abs(params, dst);
} break;
case GGML_UNARY_OP_SGN:
{
ggml_compute_forward_sgn(params, dst);
} break;
case GGML_UNARY_OP_NEG:
{
ggml_compute_forward_neg(params, dst);
} break;
case GGML_UNARY_OP_STEP:
{
ggml_compute_forward_step(params, dst);
} break;
case GGML_UNARY_OP_TANH:
{
ggml_compute_forward_tanh(params, dst);
} break;
case GGML_UNARY_OP_ELU:
{
ggml_compute_forward_elu(params, dst);
} break;
case GGML_UNARY_OP_RELU:
{
ggml_compute_forward_relu(params, dst);
} break;
case GGML_UNARY_OP_SIGMOID:
{
ggml_compute_forward_sigmoid(params, dst);
} break;
case GGML_UNARY_OP_GELU:
{
ggml_compute_forward_gelu(params, dst);
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
ggml_compute_forward_gelu_quick(params, dst);
} break;
case GGML_UNARY_OP_SILU:
{
ggml_compute_forward_silu(params, dst);
} break;
case GGML_UNARY_OP_HARDSWISH:
{
ggml_compute_forward_hardswish(params, dst);
} break;
case GGML_UNARY_OP_HARDSIGMOID:
{
ggml_compute_forward_hardsigmoid(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_get_rel_pos
static void ggml_compute_forward_get_rel_pos_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
2023-06-25 11:22:21 +00:00
GGML_TENSOR_UNARY_OP_LOCALS
2023-06-25 11:22:21 +00:00
const int64_t w = ne1;
ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
const int64_t pos = (w - i1 - 1) + i2;
for (int64_t i0 = 0; i0 < ne0; ++i0) {
dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
}
}
2023-06-25 11:22:21 +00:00
}
}
static void ggml_compute_forward_get_rel_pos(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F16:
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
2023-06-25 11:22:21 +00:00
{
ggml_compute_forward_get_rel_pos_f16(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_add_rel_pos
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_add_rel_pos_f32(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * src2 = dst->src[2];
const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
if (params->ith != 0) {
return;
}
memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
return;
}
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
float * src1_data = (float *) src1->data;
float * src2_data = (float *) src2->data;
float * dst_data = (float *) dst->data;
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int ith = params->ith;
const int nth = params->nth;
// total patches in dst
const int np = ne13;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
for (int64_t i13 = ip0; i13 < ip1; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int64_t jp0 = jp1 + i10;
const float src1_e = src1_data[jp0];
const float src2_e = src2_data[jp0];
const int64_t jdh = jp0 * ne10;
const int64_t jdw = jdh - (ne10 - 1) * i10;
for (int64_t j = 0; j < ne10; ++j) {
dst_data[jdh + j ] += src2_e;
dst_data[jdw + j*ne10] += src1_e;
}
}
}
}
}
}
static void ggml_compute_forward_add_rel_pos(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add_rel_pos_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_unary
static void ggml_compute_forward_map_unary_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
2023-06-25 11:22:21 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
2023-04-14 16:20:39 +00:00
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
2023-06-25 11:22:21 +00:00
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
2023-06-25 11:22:21 +00:00
}
}
static void ggml_compute_forward_map_unary(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_map_unary_f32(params, dst, fun);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_binary
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_map_binary_f32(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2023-06-25 11:22:21 +00:00
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
2023-06-25 11:22:21 +00:00
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
assert(src1->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])),
(float *) ((char *) src1->data + i*(src1->nb[1])));
}
2023-06-25 11:22:21 +00:00
}
static void ggml_compute_forward_map_binary(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
2023-06-25 11:22:21 +00:00
case GGML_TYPE_F32:
{
ggml_compute_forward_map_binary_f32(params, dst, fun);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_custom1
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_map_custom1_f32(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom1_op_f32_t fun) {
const struct ggml_tensor * a = dst->src[0];
2023-06-25 11:22:21 +00:00
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
fun(dst, a);
2023-06-25 11:22:21 +00:00
}
// ggml_compute_forward_map_custom2
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_map_custom2_f32(
2023-06-25 11:22:21 +00:00
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom2_op_f32_t fun) {
const struct ggml_tensor * a = dst->src[0];
const struct ggml_tensor * b = dst->src[1];
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
2023-06-25 11:22:21 +00:00
}
fun(dst, a, b);
2023-06-25 11:22:21 +00:00
}
// ggml_compute_forward_map_custom3
static void ggml_compute_forward_map_custom3_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom3_op_f32_t fun) {
const struct ggml_tensor * a = dst->src[0];
const struct ggml_tensor * b = dst->src[1];
const struct ggml_tensor * c = dst->src[1];
2023-06-25 11:22:21 +00:00
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
fun(dst, a, b, c);
}
// ggml_compute_forward_map_custom1
static void ggml_compute_forward_map_custom1(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * a = dst->src[0];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
struct ggml_map_custom1_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, a, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_map_custom2
static void ggml_compute_forward_map_custom2(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * a = dst->src[0];
const struct ggml_tensor * b = dst->src[1];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
struct ggml_map_custom2_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, a, b, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_map_custom3
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_map_custom3(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * a = dst->src[0];
const struct ggml_tensor * b = dst->src[1];
const struct ggml_tensor * c = dst->src[2];
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
2023-06-25 11:22:21 +00:00
}
struct ggml_map_custom3_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
2023-06-25 11:22:21 +00:00
}
// ggml_compute_forward_cross_entropy_loss
static void ggml_compute_forward_cross_entropy_loss_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_scalar(dst));
GGML_ASSERT(ggml_are_same_shape(src0, src1));
const int ith = params->ith;
const int nth = params->nth;
float * sums = (float *) params->wdata;
// TODO: handle transposed/permuted matrices
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
if (params->type == GGML_TASK_TYPE_INIT) {
2023-06-25 11:22:21 +00:00
if (ith == 0) {
memset(sums, 0, sizeof(float) * (nth + nth * nc));
}
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
if (ith == 0) {
float * dp = (float *) dst->data;
ggml_vec_sum_f32(nth, dp, sums);
dp[0] *= -1.0f / (float) nr;
2023-06-25 11:22:21 +00:00
}
return;
}
const double eps = 1e-9;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
float * st = ((float *) params->wdata) + nth + ith*nc;
2023-06-25 11:22:21 +00:00
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(s0[i]));
assert(!isnan(s1[i]));
}
#endif
// soft_max
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, s0);
ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
assert(sum > 0.0);
sum = (1.0 - eps) / sum;
2023-06-25 11:22:21 +00:00
// avoid log(0) by rescaling from [0..1] to [eps..1]
ggml_vec_scale_f32(nc, st, sum);
ggml_vec_add1_f32(nc, st, st, eps);
ggml_vec_log_f32(nc, st, st);
ggml_vec_mul_f32(nc, st, st, s1);
float st_sum = 0;
ggml_vec_sum_f32(nc, &st_sum, st);
sums[ith] += st_sum;
2023-06-25 11:22:21 +00:00
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(st[i]));
assert(!isinf(st[i]));
}
#endif
}
}
static void ggml_compute_forward_cross_entropy_loss(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-06-25 11:22:21 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_cross_entropy_loss_f32(params, dst);
2023-06-25 11:22:21 +00:00
} break;
default:
{
GGML_ASSERT(false);
} break;
2023-04-14 16:20:39 +00:00
}
}
2023-06-25 11:22:21 +00:00
// ggml_compute_forward_cross_entropy_loss_back
2023-04-14 16:20:39 +00:00
2023-06-25 11:22:21 +00:00
static void ggml_compute_forward_cross_entropy_loss_back_f32(
2023-04-14 16:20:39 +00:00
const struct ggml_compute_params * params,
2023-06-25 11:22:21 +00:00
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * opt0 = dst->src[2];
2023-06-25 11:22:21 +00:00
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
const int64_t ith = params->ith;
const int64_t nth = params->nth;
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
2023-06-25 11:22:21 +00:00
return;
}
const double eps = 1e-9;
2023-06-25 11:22:21 +00:00
// TODO: handle transposed/permuted matrices
const int64_t nc = src0->ne[0];
const int64_t nr = ggml_nrows(src0);
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
float * d = (float *) opt0->data;
for (int64_t i1 = ir0; i1 < ir1; i1++) {
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(s0[i]));
assert(!isnan(s1[i]));
}
#endif
// soft_max
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, s0);
ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
assert(sum > 0.0);
sum = (1.0 - eps) / sum;
2023-06-25 11:22:21 +00:00
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
ggml_vec_scale_f32(nc, ds0, sum);
ggml_vec_add1_f32(nc, ds0, ds0, eps);
ggml_vec_sub_f32(nc, ds0, ds0, s1);
ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
2023-06-25 11:22:21 +00:00
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(ds0[i]));
assert(!isinf(ds0[i]));
}
#endif
}
}
static void ggml_compute_forward_cross_entropy_loss_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
2023-04-14 16:20:39 +00:00
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
2023-04-14 16:20:39 +00:00
} break;
default:
2023-04-14 16:20:39 +00:00
{
GGML_ASSERT(false);
} break;
}
}
2022-09-25 18:23:15 +00:00
/////////////////////////////////
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
GGML_ASSERT(params);
2022-09-25 18:23:15 +00:00
if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
return;
}
2022-09-25 18:23:15 +00:00
switch (tensor->op) {
case GGML_OP_DUP:
{
ggml_compute_forward_dup(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ADD:
{
ggml_compute_forward_add(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ADD1:
{
ggml_compute_forward_add1(params, tensor);
} break;
case GGML_OP_ACC:
{
ggml_compute_forward_acc(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SUB:
{
ggml_compute_forward_sub(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_MUL:
{
ggml_compute_forward_mul(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_DIV:
{
ggml_compute_forward_div(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SQR:
{
ggml_compute_forward_sqr(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SQRT:
{
ggml_compute_forward_sqrt(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_LOG:
{
ggml_compute_forward_log(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SUM:
{
ggml_compute_forward_sum(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SUM_ROWS:
{
ggml_compute_forward_sum_rows(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_MEAN:
{
ggml_compute_forward_mean(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ARGMAX:
{
ggml_compute_forward_argmax(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_REPEAT:
{
ggml_compute_forward_repeat(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_REPEAT_BACK:
{
ggml_compute_forward_repeat_back(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
case GGML_OP_CONCAT:
{
ggml_compute_forward_concat(params, tensor);
} break;
case GGML_OP_SILU_BACK:
{
ggml_compute_forward_silu_back(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_NORM:
{
ggml_compute_forward_norm(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_RMS_NORM:
{
ggml_compute_forward_rms_norm(params, tensor);
} break;
case GGML_OP_RMS_NORM_BACK:
{
ggml_compute_forward_rms_norm_back(params, tensor);
} break;
case GGML_OP_GROUP_NORM:
{
ggml_compute_forward_group_norm(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_MUL_MAT:
{
ggml_compute_forward_mul_mat(params, tensor, state);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_MUL_MAT_ID:
{
ggml_compute_forward_mul_mat_id(params, tensor);
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_OUT_PROD:
{
ggml_compute_forward_out_prod(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SCALE:
{
ggml_compute_forward_scale(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SET:
{
ggml_compute_forward_set(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_CPY:
{
ggml_compute_forward_cpy(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_CONT:
{
ggml_compute_forward_cont(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_RESHAPE:
{
ggml_compute_forward_reshape(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_VIEW:
{
ggml_compute_forward_view(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_PERMUTE:
{
ggml_compute_forward_permute(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_TRANSPOSE:
{
ggml_compute_forward_transpose(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_GET_ROWS:
{
ggml_compute_forward_get_rows(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_GET_ROWS_BACK:
{
ggml_compute_forward_get_rows_back(params, tensor);
} break;
case GGML_OP_DIAG:
{
ggml_compute_forward_diag(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_DIAG_MASK_INF:
{
ggml_compute_forward_diag_mask_inf(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_DIAG_MASK_ZERO:
{
ggml_compute_forward_diag_mask_zero(params, tensor);
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SOFT_MAX:
{
ggml_compute_forward_soft_max(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_SOFT_MAX_BACK:
{
ggml_compute_forward_soft_max_back(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_ROPE:
{
ggml_compute_forward_rope(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ROPE_BACK:
{
ggml_compute_forward_rope_back(params, tensor);
} break;
case GGML_OP_CLAMP:
{
ggml_compute_forward_clamp(params, tensor);
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
ggml_compute_forward_conv_transpose_1d(params, tensor);
} break;
case GGML_OP_IM2COL:
{
ggml_compute_forward_im2col(params, tensor);
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
ggml_compute_forward_conv_transpose_2d(params, tensor);
} break;
case GGML_OP_POOL_1D:
{
ggml_compute_forward_pool_1d(params, tensor);
} break;
case GGML_OP_POOL_2D:
{
ggml_compute_forward_pool_2d(params, tensor);
} break;
case GGML_OP_UPSCALE:
{
ggml_compute_forward_upscale(params, tensor);
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_PAD:
{
ggml_compute_forward_pad(params, tensor);
} break;
case GGML_OP_ARANGE:
{
ggml_compute_forward_arange(params, tensor);
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
ggml_compute_forward_timestep_embedding(params, tensor);
} break;
case GGML_OP_ARGSORT:
{
ggml_compute_forward_argsort(params, tensor);
} break;
case GGML_OP_LEAKY_RELU:
{
ggml_compute_forward_leaky_relu(params, tensor);
} break;
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
case GGML_OP_FLASH_ATTN_EXT:
{
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_FLASH_ATTN_BACK:
{
int32_t t = ggml_get_op_params_i32(tensor, 0);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(t == 0 || t == 1);
bool masked = t != 0;
ggml_compute_forward_flash_attn_back(params, masked, tensor);
2023-06-25 11:22:21 +00:00
} break;
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
case GGML_OP_SSM_CONV:
{
ggml_compute_forward_ssm_conv(params, tensor);
} break;
case GGML_OP_SSM_SCAN:
{
ggml_compute_forward_ssm_scan(params, tensor);
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_WIN_PART:
{
ggml_compute_forward_win_part(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
case GGML_OP_WIN_UNPART:
{
ggml_compute_forward_win_unpart(params, tensor);
} break;
case GGML_OP_UNARY:
{
ggml_compute_forward_unary(params, tensor);
} break;
case GGML_OP_GET_REL_POS:
{
ggml_compute_forward_get_rel_pos(params, tensor);
} break;
case GGML_OP_ADD_REL_POS:
{
ggml_compute_forward_add_rel_pos(params, tensor);
2023-06-25 11:22:21 +00:00
} break;
2023-04-14 16:20:39 +00:00
case GGML_OP_MAP_UNARY:
{
ggml_unary_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_unary(params, tensor, fun);
2023-04-14 16:20:39 +00:00
}
break;
case GGML_OP_MAP_BINARY:
{
ggml_binary_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_binary(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM1_F32:
{
ggml_custom1_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom1_f32(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM2_F32:
{
ggml_custom2_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom2_f32(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM3_F32:
{
ggml_custom3_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom3_f32(params, tensor, fun);
2023-04-14 16:20:39 +00:00
}
break;
2023-06-25 11:22:21 +00:00
case GGML_OP_MAP_CUSTOM1:
{
ggml_compute_forward_map_custom1(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
case GGML_OP_MAP_CUSTOM2:
{
ggml_compute_forward_map_custom2(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
case GGML_OP_MAP_CUSTOM3:
{
ggml_compute_forward_map_custom3(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
ggml_compute_forward_cross_entropy_loss(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
ggml_compute_forward_cross_entropy_loss_back(params, tensor);
2023-06-25 11:22:21 +00:00
}
break;
2022-09-25 18:23:15 +00:00
case GGML_OP_NONE:
{
// nop
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
2022-09-25 18:23:15 +00:00
} break;
}
2022-09-25 18:23:15 +00:00
}
////////////////////////////////////////////////////////////////////////////////
static size_t ggml_hash_size(size_t min_sz) {
// next primes after powers of two
static const size_t primes[] = {
2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
2053, 4099, 8209, 16411, 32771, 65537, 131101,
262147, 524309, 1048583, 2097169, 4194319, 8388617,
16777259, 33554467, 67108879, 134217757, 268435459,
536870923, 1073741827, 2147483659
};
static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
// find the smallest prime that is larger or equal to min_sz
size_t l = 0;
size_t r = n_primes;
while (l < r) {
size_t m = (l + r)/2;
if (primes[m] < min_sz) {
l = m + 1;
} else {
r = m;
}
}
size_t sz = l < n_primes ? primes[l] : min_sz | 1;
return sz;
}
static size_t ggml_hash(const void * p) {
return (size_t)p;
}
size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
size_t h = ggml_hash(key) % hash_set.size;
// linear probing
size_t i = h;
while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
i = (i + 1) % hash_set.size;
if (i == h) {
// visited all hash table entries -> not found
return GGML_HASHTABLE_FULL;
}
}
return i;
}
bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
size_t i = ggml_hash_find(hash_set, key);
return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
}
size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
size_t i = ggml_hash_find(hash_set, key);
GGML_ASSERT(i != GGML_HASHTABLE_FULL);
if (hash_set.keys[i] == key) {
return GGML_HASHTABLE_ALREADY_EXISTS;
}
// insert
GGML_ASSERT(hash_set.keys[i] == NULL);
hash_set.keys[i] = key;
return i;
}
size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
size_t i = ggml_hash_find(hash_set, key);
GGML_ASSERT(i != GGML_HASHTABLE_FULL);
hash_set.keys[i] = key;
return i;
}
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
struct ggml_hash_set ggml_hash_set_new(size_t size) {
size = ggml_hash_size(size);
struct ggml_hash_set result;
result.size = size;
result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
return result;
}
static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
GGML_FREE(hash_set.keys);
}
struct hash_map {
struct ggml_hash_set set;
struct ggml_tensor ** vals;
};
static struct hash_map * ggml_new_hash_map(size_t size) {
struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
result->set = ggml_hash_set_new(size);
result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
return result;
}
static void ggml_hash_map_free(struct hash_map * map) {
ggml_hash_set_free(map->set);
GGML_FREE(map->vals);
GGML_FREE(map);
}
// gradient checkpointing
static struct ggml_tensor * ggml_recompute_graph_node(
struct ggml_context * ctx,
struct ggml_cgraph * graph,
struct hash_map * replacements,
struct ggml_tensor * node) {
if (node == NULL) {
return NULL;
}
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
return node;
}
if (!ggml_hash_contains(graph->visited_hash_table, node)) {
return node;
}
int count_children = 0;
for (int k = 0; k < GGML_MAX_SRC; ++k) {
if (node->src[k]) {
++count_children;
}
}
if (count_children == 0) {
return node;
}
size_t i = ggml_hash_find(replacements->set, node);
GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
if (replacements->set.keys[i] == node) {
return replacements->vals[i];
}
struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
// insert clone into replacements
GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
replacements->set.keys[i] = node;
replacements->vals[i] = clone;
clone->op = node->op;
clone->grad = node->grad;
clone->flags = node->flags;
clone->extra = node->extra;
for (int k = 0; k < GGML_MAX_DIMS; ++k) {
clone->nb[k] = node->nb[k];
}
for (int k = 0; k < GGML_MAX_SRC; ++k) {
clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
}
if (node->view_src != NULL) {
clone->data = (node->view_src->data == NULL)
? NULL // view_src not yet allocated
: (char *) node->view_src->data // view_src already allocated
+ node->view_offs;
clone->view_src = node->view_src;
clone->view_offs = node->view_offs;
}
GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
return clone;
}
void ggml_build_backward_gradient_checkpointing(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
struct ggml_cgraph * gb_tmp,
struct ggml_tensor * * checkpoints,
int n_checkpoints) {
ggml_graph_cpy(gf, gb_tmp);
ggml_build_backward_expand(ctx, gf, gb_tmp, true);
if (n_checkpoints <= 0) {
ggml_graph_cpy(gb_tmp, gb);
return;
}
struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
// insert checkpoints in replacements
for (int i = 0; i < n_checkpoints; ++i) {
size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
replacements->set.keys[k] = checkpoints[i];
replacements->vals[k] = checkpoints[i];
}
ggml_graph_cpy(gf, gb);
// rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
// replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
// by recomputing them from checkpoints
for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
struct ggml_tensor * node = gb_tmp->nodes[i];
for (int k = 0; k < GGML_MAX_SRC; ++k) {
// insert new tensors recomputing src, reusing already made replacements,
// remember replacements: remember new tensors with mapping from corresponding gf nodes
// recurse for input tensors,
// unless (i.e. terminating when) input tensors are replacements (like checkpoints)
node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
}
// insert rewritten backward node with replacements made into resulting backward graph gb
ggml_build_forward_expand(gb, node);
}
ggml_hash_map_free(replacements);
}
// functions to change gradients considering the case that input a might be initial gradient with zero value
static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
if (ggml_hash_contains(zero_table, a)) {
return b;
} else {
return ggml_add_impl(ctx, a, b, false);
}
}
static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
if (ggml_hash_contains(zero_table, a)) {
struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
} else {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
}
static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
if (ggml_hash_contains(zero_table, a)) {
return ggml_repeat(ctx, b, a);
} else {
return ggml_add1_impl(ctx, a, b, false);
}
}
static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
if (ggml_hash_contains(zero_table, a)) {
return ggml_neg(ctx, b);
} else {
return ggml_sub_impl(ctx, a, b, false);
}
}
static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
struct ggml_tensor * src0 = tensor->src[0];
struct ggml_tensor * src1 = tensor->src[1];
struct ggml_tensor * src2 = tensor->src[2];
2022-09-25 18:23:15 +00:00
switch (tensor->op) {
case GGML_OP_DUP:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_ADD:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_ADD1:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
if (src1->grad) {
src1->grad = ggml_add_or_set(ctx,
src1->grad,
ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
zero_table);
}
} break;
case GGML_OP_ACC:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
if (src1->grad) {
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
const size_t nb2 = ((int32_t *) tensor->op_params)[1];
const size_t nb3 = ((int32_t *) tensor->op_params)[2];
const size_t offset = ((int32_t *) tensor->op_params)[3];
struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
tensor->grad,
src1->grad->ne[0],
src1->grad->ne[1],
src1->grad->ne[2],
src1->grad->ne[3],
nb1, nb2, nb3, offset);
src1->grad =
ggml_add_or_set(ctx,
src1->grad,
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
zero_table);
}
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SUB:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_MUL:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_mul(ctx, src1, tensor->grad),
zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src1->grad,
ggml_mul(ctx, src0, tensor->grad),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_DIV:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_div(ctx, tensor->grad, src1),
zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad =
ggml_sub_or_set(ctx,
2022-09-25 18:23:15 +00:00
src1->grad,
ggml_mul(ctx,
tensor->grad,
ggml_div(ctx, tensor, src1)),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_SQR:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_scale(ctx,
2022-09-25 18:23:15 +00:00
ggml_mul(ctx, src0, tensor->grad),
2.0f),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_SQRT:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
src0->grad,
2023-06-25 11:22:21 +00:00
ggml_scale(ctx,
ggml_div(ctx,
2023-06-25 11:22:21 +00:00
tensor->grad,
tensor),
0.5f),
zero_table);
}
} break;
case GGML_OP_LOG:
2022-09-25 18:23:15 +00:00
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_div(ctx,
tensor->grad,
src0),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_SUM:
{
if (src0->grad) {
src0->grad =
ggml_add1_or_set(ctx,
src0->grad,
tensor->grad,
zero_table);
}
} break;
case GGML_OP_SUM_ROWS:
2022-09-25 18:23:15 +00:00
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_repeat(ctx,
tensor->grad,
src0->grad),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_REPEAT:
{
// necessary for llama
2022-09-25 18:23:15 +00:00
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src0->grad,
ggml_repeat_back(ctx, tensor->grad, src0->grad),
zero_table);
2023-06-25 11:22:21 +00:00
}
} break;
case GGML_OP_REPEAT_BACK:
{
if (src0->grad) {
// TODO: test this
src0->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src0->grad,
ggml_repeat(ctx, tensor->grad, src0->grad),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_CONCAT:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: implement
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_SILU_BACK:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_NORM:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_RMS_NORM:
2022-09-25 18:23:15 +00:00
{
// necessary for llama
2022-09-25 18:23:15 +00:00
if (src0->grad) {
float eps;
memcpy(&eps, tensor->op_params, sizeof(float));
src0->grad = ggml_add_or_set(ctx,
2022-09-25 18:23:15 +00:00
src0->grad,
ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_RMS_NORM_BACK:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_GROUP_NORM:
2023-06-25 11:22:21 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_MUL_MAT:
2022-09-25 18:23:15 +00:00
{
// https://cs231n.github.io/optimization-2/#staged
// # forward pass
// s0 = np.random.randn(5, 10)
// s1 = np.random.randn(10, 3)
// t = s0.dot(s1)
// # now suppose we had the gradient on t from above in the circuit
// dt = np.random.randn(*t.shape) # same shape as t
// ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
// ds1 = t.T.dot(dt)
// tensor.shape [m,p,qq,rr]
// src0.shape [n,m,q1,r1]
// src1.shape [n,p,qq,rr]
// necessary for llama
2022-09-25 18:23:15 +00:00
if (src0->grad) {
struct ggml_tensor * s1_tg =
ggml_out_prod(ctx, // [n,m,qq,rr]
src1, // [n,p,qq,rr]
tensor->grad); // [m,p,qq,rr]
const int64_t qq = s1_tg->ne[2];
const int64_t rr = s1_tg->ne[3];
const int64_t q1 = src0->ne[2];
const int64_t r1 = src0->ne[3];
const bool ne2_broadcasted = qq > q1;
const bool ne3_broadcasted = rr > r1;
if (ne2_broadcasted || ne3_broadcasted) {
// sum broadcast repetitions of s1_tg into shape of src0
s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
}
src0->grad =
ggml_add_or_set(ctx,
src0->grad, // [n,m,q1,r1]
s1_tg, // [n,m,q1,r1]
zero_table);
2022-09-25 18:23:15 +00:00
}
if (src1->grad) {
src1->grad =
ggml_add_or_set(ctx,
src1->grad, // [n,p,qq,rr]
// ggml_mul_mat(ctx, // [n,p,qq,rr]
// ggml_cont(ctx, // [m,n,q1,r1]
// ggml_transpose(ctx, src0)), // [m,n,q1,r1]
// tensor->grad), // [m,p,qq,rr]
2023-06-25 11:22:21 +00:00
// // when src0 is bigger than tensor->grad (this is mostly the case in llama),
// // avoid transpose of src0, rather transpose smaller tensor->grad
// // and then use ggml_out_prod
ggml_out_prod(ctx, // [n,p,qq,rr]
src0, // [n,m,q1,r1]
ggml_transpose(ctx, // [p,m,qq,rr]
tensor->grad)), // [m,p,qq,rr]
zero_table);
2022-09-25 18:23:15 +00:00
}
} break;
case GGML_OP_MUL_MAT_ID:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_OUT_PROD:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SCALE:
{
// necessary for llama
if (src0->grad) {
float s;
memcpy(&s, tensor->op_params, sizeof(float));
src0->grad =
ggml_add_or_set(ctx,
src0->grad,
ggml_scale_impl(ctx, tensor->grad, s, false),
zero_table);
}
} break;
case GGML_OP_SET:
{
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
const size_t nb2 = ((int32_t *) tensor->op_params)[1];
const size_t nb3 = ((int32_t *) tensor->op_params)[2];
const size_t offset = ((int32_t *) tensor->op_params)[3];
struct ggml_tensor * tensor_grad_view = NULL;
if (src0->grad || src1->grad) {
GGML_ASSERT(src0->type == tensor->type);
GGML_ASSERT(tensor->grad->type == tensor->type);
GGML_ASSERT(tensor->grad->type == src1->grad->type);
tensor_grad_view = ggml_view_4d(ctx,
tensor->grad,
src1->grad->ne[0],
src1->grad->ne[1],
src1->grad->ne[2],
src1->grad->ne[3],
nb1, nb2, nb3, offset);
}
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_acc_impl(ctx,
tensor->grad,
ggml_neg(ctx, tensor_grad_view),
nb1, nb2, nb3, offset, false),
zero_table);
}
if (src1->grad) {
src1->grad =
ggml_add_or_set(ctx,
src1->grad,
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_CPY:
{
// necessary for llama
// cpy overwrites value of src1 by src0 and returns view(src1)
// the overwriting is mathematically equivalent to:
// tensor = src0 * 1 + src1 * 0
if (src0->grad) {
// dsrc0 = dtensor * 1
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
if (src1->grad) {
// dsrc1 = dtensor * 0 -> noop
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_CONT:
{
// same as cpy
if (src0->grad) {
GGML_ASSERT(ggml_is_contiguous(src0->grad));
GGML_ASSERT(ggml_is_contiguous(tensor->grad));
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_RESHAPE:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_reshape(ctx,
ggml_is_contiguous(tensor->grad)
? tensor->grad
: ggml_cont(ctx, tensor->grad),
src0->grad),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_VIEW:
{
// necessary for llama
if (src0->grad) {
size_t offset;
2023-06-25 11:22:21 +00:00
memcpy(&offset, tensor->op_params, sizeof(offset));
size_t nb1 = tensor->nb[1];
size_t nb2 = tensor->nb[2];
size_t nb3 = tensor->nb[3];
if (src0->type != src0->grad->type) {
// gradient is typically F32, but src0 could be other type
size_t ng = ggml_element_size(src0->grad);
size_t n0 = ggml_element_size(src0);
GGML_ASSERT(offset % n0 == 0);
GGML_ASSERT(nb1 % n0 == 0);
GGML_ASSERT(nb2 % n0 == 0);
GGML_ASSERT(nb3 % n0 == 0);
offset = (offset / n0) * ng;
nb1 = (nb1 / n0) * ng;
nb2 = (nb2 / n0) * ng;
nb3 = (nb3 / n0) * ng;
}
src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_PERMUTE:
{
// necessary for llama
if (src0->grad) {
int32_t * axes = (int32_t *) tensor->op_params;
2023-06-25 11:22:21 +00:00
int axis0 = axes[0] & 0x3;
int axis1 = axes[1] & 0x3;
int axis2 = axes[2] & 0x3;
int axis3 = axes[3] & 0x3;
int axes_backward[4] = {0,0,0,0};
axes_backward[axis0] = 0;
axes_backward[axis1] = 1;
axes_backward[axis2] = 2;
axes_backward[axis3] = 3;
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_permute(ctx,
tensor->grad,
axes_backward[0],
axes_backward[1],
axes_backward[2],
axes_backward[3]),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_TRANSPOSE:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_transpose(ctx, tensor->grad),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_GET_ROWS:
{
// necessary for llama (only for tokenizer)
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx, src0->grad,
// last ggml_get_rows_back argument src0->grad is only
// necessary to setup correct output shape
ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
zero_table);
}
if (src1->grad) {
// noop
}
} break;
case GGML_OP_GET_ROWS_BACK:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_DIAG:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_DIAG_MASK_INF:
{
// necessary for llama
if (src0->grad) {
const int n_past = ((int32_t *) tensor->op_params)[0];
src0->grad =
ggml_add_or_set(ctx, src0->grad,
/* ggml_diag_mask_inf_impl() shouldn't be here */
/* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
zero_table);
}
} break;
case GGML_OP_DIAG_MASK_ZERO:
{
// necessary for llama
if (src0->grad) {
const int n_past = ((int32_t *) tensor->op_params)[0];
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
zero_table);
}
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_SOFT_MAX:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx, src0->grad,
2023-06-25 11:22:21 +00:00
ggml_soft_max_back(ctx, tensor->grad, tensor),
zero_table);
}
2023-06-25 11:22:21 +00:00
} break;
case GGML_OP_SOFT_MAX_BACK:
{
GGML_ASSERT(false); // TODO: not implemented
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_ROPE:
{
// necessary for llama
if (src0->grad) {
//const int n_past = ((int32_t *) tensor->op_params)[0];
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
const int n_ctx = ((int32_t *) tensor->op_params)[3];
const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_rope_back(ctx,
tensor->grad,
src1,
src2,
n_dims,
mode,
n_ctx,
n_orig_ctx,
freq_base,
freq_scale,
ext_factor,
attn_factor,
beta_fast,
beta_slow,
xpos_base,
xpos_down),
zero_table);
}
} break;
case GGML_OP_ROPE_BACK:
{
if (src0->grad) {
//const int n_past = ((int32_t *) tensor->op_params)[0];
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
const int n_ctx = ((int32_t *) tensor->op_params)[3];
const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_rope_impl(ctx,
tensor->grad,
src1,
src2,
n_dims,
mode,
n_ctx,
n_orig_ctx,
freq_base,
freq_scale,
ext_factor,
attn_factor,
beta_fast,
beta_slow,
xpos_base,
xpos_down,
false),
zero_table);
}
2022-09-25 18:23:15 +00:00
} break;
case GGML_OP_CLAMP:
2022-09-25 18:23:15 +00:00
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_IM2COL:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_POOL_1D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_POOL_2D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_UPSCALE:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_PAD:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARANGE:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARGSORT:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_LEAKY_RELU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
case GGML_OP_FLASH_ATTN_EXT:
{
2023-06-25 11:22:21 +00:00
struct ggml_tensor * flash_grad = NULL;
if (src0->grad || src1->grad || tensor->src[2]->grad) {
int32_t t = ggml_get_op_params_i32(tensor, 0);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(t == 0 || t == 1);
bool masked = t != 0;
flash_grad =
ggml_flash_attn_back(ctx,
src0,
src1,
tensor->src[2],
2023-06-25 11:22:21 +00:00
tensor->grad,
masked);
}
const int64_t elem_q = ggml_nelements(src0);
const int64_t elem_k = ggml_nelements(src1);
const int64_t elem_v = ggml_nelements(src2);
enum ggml_type result_type = flash_grad->type;
GGML_ASSERT(ggml_blck_size(result_type) == 1);
const size_t tsize = ggml_type_size(result_type);
2023-06-25 11:22:21 +00:00
const size_t offs_q = 0;
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
if (src0->grad) {
struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
src0->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src0->grad,
grad_q,
zero_table);
2023-06-25 11:22:21 +00:00
}
if (src1->grad) {
struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
src1->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src1->grad,
grad_k,
zero_table);
2023-06-25 11:22:21 +00:00
}
if (src2->grad) {
struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
src2->grad = ggml_add_or_set(ctx,
src2->grad,
2023-06-25 11:22:21 +00:00
grad_v,
zero_table);
2023-06-25 11:22:21 +00:00
}
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_FLASH_ATTN_BACK:
{
GGML_ASSERT(false); // not supported
} break;
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
2023-06-25 11:22:21 +00:00
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_UNARY:
{
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_ABS:
{
if (src0->grad) {
src0->grad =
ggml_add_or_set(ctx,
src0->grad,
ggml_mul(ctx,
ggml_sgn(ctx, src0),
tensor->grad),
zero_table);
}
} break;
case GGML_UNARY_OP_SGN:
{
if (src0->grad) {
// noop
}
} break;
case GGML_UNARY_OP_NEG:
{
if (src0->grad) {
src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
}
} break;
case GGML_UNARY_OP_STEP:
{
if (src0->grad) {
// noop
}
} break;
case GGML_UNARY_OP_TANH:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_ELU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_RELU:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_mul(ctx,
ggml_step(ctx, src0),
tensor->grad),
zero_table);
}
} break;
case GGML_UNARY_OP_SIGMOID:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_GELU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_SILU:
{
// necessary for llama
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_silu_back(ctx, src0, tensor->grad),
zero_table);
}
} break;
default:
GGML_ASSERT(false);
}
} break;
case GGML_OP_GET_REL_POS:
case GGML_OP_ADD_REL_POS:
2023-04-14 16:20:39 +00:00
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32:
case GGML_OP_MAP_CUSTOM2_F32:
case GGML_OP_MAP_CUSTOM3_F32:
2023-06-25 11:22:21 +00:00
case GGML_OP_MAP_CUSTOM1:
case GGML_OP_MAP_CUSTOM2:
case GGML_OP_MAP_CUSTOM3:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx,
2023-06-25 11:22:21 +00:00
src0->grad,
ggml_cross_entropy_loss_back(ctx,
src0,
src1,
tensor->grad),
zero_table);
2023-06-25 11:22:21 +00:00
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
2023-04-14 16:20:39 +00:00
{
GGML_ASSERT(false); // not supported
} break;
2022-09-25 18:23:15 +00:00
case GGML_OP_NONE:
{
// nop
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
}
for (int i = 0; i < GGML_MAX_SRC; ++i) {
if (tensor->src[i] && tensor->src[i]->grad) {
GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
}
}
}
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
2022-09-25 18:23:15 +00:00
if (node->grad == NULL) {
// this usually happens when we generate intermediate nodes from constants in the backward pass
// it can also happen during forward pass, if the user performs computations with constants
if (node->op != GGML_OP_NONE) {
//GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
}
}
// check if already visited
if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
return;
2022-09-25 18:23:15 +00:00
}
for (int i = 0; i < GGML_MAX_SRC; ++i) {
const int k =
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
/* unknown order, just fall back to using i*/ i;
if (node->src[k]) {
ggml_visit_parents(cgraph, node->src[k]);
}
}
2022-09-25 18:23:15 +00:00
if (node->op == GGML_OP_NONE && node->grad == NULL) {
// reached a leaf node, not part of the gradient graph (e.g. a constant)
GGML_ASSERT(cgraph->n_leafs < cgraph->size);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (strlen(node->name) == 0) {
ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
}
2022-09-25 18:23:15 +00:00
cgraph->leafs[cgraph->n_leafs] = node;
cgraph->n_leafs++;
} else {
GGML_ASSERT(cgraph->n_nodes < cgraph->size);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (strlen(node->name) == 0) {
ggml_format_name(node, "node_%d", cgraph->n_nodes);
}
2022-09-25 18:23:15 +00:00
cgraph->nodes[cgraph->n_nodes] = node;
if (cgraph->grads) {
cgraph->grads[cgraph->n_nodes] = node->grad;
}
2022-09-25 18:23:15 +00:00
cgraph->n_nodes++;
}
}
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
2022-09-25 18:23:15 +00:00
if (!expand) {
// TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
ggml_graph_clear(cgraph);
2022-09-25 18:23:15 +00:00
}
const int n0 = cgraph->n_nodes;
UNUSED(n0);
ggml_visit_parents(cgraph, tensor);
const int n_new = cgraph->n_nodes - n0;
GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
if (n_new > 0) {
// the last added node should always be starting point
GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
2022-09-25 18:23:15 +00:00
}
}
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
ggml_build_forward_impl(cgraph, tensor, true);
}
void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
GGML_ASSERT(gf->n_nodes > 0);
2022-09-25 18:23:15 +00:00
// if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
if (keep) {
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (node->grad) {
node->grad = ggml_dup_tensor(ctx, node);
gf->grads[i] = node->grad;
}
}
}
// remember original gradients which start with zero values
struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
for (int i = 0; i < gf->n_nodes; i++) {
if (gf->grads[i]) {
ggml_hash_insert(zero_table, gf->grads[i]);
}
}
2022-09-25 18:23:15 +00:00
for (int i = gf->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = gf->nodes[i];
// inplace operations to add gradients are not created by ggml_compute_backward
// use allocator to automatically make inplace operations
2022-09-25 18:23:15 +00:00
if (node->grad) {
ggml_compute_backward(ctx, node, zero_table);
2022-09-25 18:23:15 +00:00
}
}
for (int i = 0; i < gf->n_nodes; i++) {
2022-09-25 18:23:15 +00:00
struct ggml_tensor * node = gf->nodes[i];
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
ggml_build_forward_expand(gb, node->grad);
2022-09-25 18:23:15 +00:00
}
}
ggml_hash_set_free(zero_table);
}
2022-09-25 18:23:15 +00:00
static size_t ggml_graph_nbytes(size_t size, bool grads) {
size_t nbytes = sizeof(struct ggml_cgraph);
nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
if (grads) {
nbytes += size * sizeof(struct ggml_tensor *); // grads
}
nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
return nbytes;
2022-09-25 18:23:15 +00:00
}
size_t ggml_graph_overhead_custom(size_t size, bool grads) {
return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
}
size_t ggml_graph_overhead(void) {
return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
}
struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
const size_t obj_size = ggml_graph_nbytes(size, grads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
size_t hash_size = ggml_hash_size(size * 2);
struct ggml_tensor ** nodes_ptr = data_start;
struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
// check that we allocated the correct amount of memory
assert(obj_size == (size_t) (
(grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
*cgraph = (struct ggml_cgraph) {
/*.size =*/ size,
/*.n_nodes =*/ 0,
/*.n_leafs =*/ 0,
/*.nodes =*/ nodes_ptr,
/*.grads =*/ grads_ptr,
/*.leafs =*/ leafs_ptr,
/*.hash_table =*/ { hash_size, hash_keys_ptr },
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
};
return cgraph;
}
struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
}
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
struct ggml_cgraph cgraph = {
/*.size =*/ 0,
/*.n_nodes =*/ i1 - i0,
/*.n_leafs =*/ 0,
/*.nodes =*/ cgraph0->nodes + i0,
/*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
/*.leafs =*/ NULL,
/*.hash_table =*/ { 0, NULL },
/*.order =*/ cgraph0->order,
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
};
return cgraph;
}
void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
GGML_ASSERT(dst->size >= src->n_leafs);
GGML_ASSERT(dst->size >= src->n_nodes);
GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
dst->n_leafs = src->n_leafs;
dst->n_nodes = src->n_nodes;
dst->order = src->order;
for (int i = 0; i < src->n_leafs; ++i) {
dst->leafs[i] = src->leafs[i];
}
for (int i = 0; i < src->n_nodes; ++i) {
dst->nodes[i] = src->nodes[i];
}
if (src->grads) {
GGML_ASSERT(dst->grads != NULL);
for (int i = 0; i < src->n_nodes; ++i) {
dst->grads[i] = src->grads[i];
}
}
for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
if (src->visited_hash_table.keys[i]) {
ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
}
}
}
struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
ggml_graph_cpy(cgraph, result);
return result;
}
void ggml_graph_reset(struct ggml_cgraph * cgraph) {
GGML_ASSERT(cgraph->grads != NULL);
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * grad = cgraph->grads[i];
if (grad) {
ggml_set_zero(grad);
}
}
}
void ggml_graph_clear(struct ggml_cgraph * cgraph) {
cgraph->n_leafs = 0;
cgraph->n_nodes = 0;
memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
}
2022-09-25 18:23:15 +00:00
//
// thread data
//
// synchronization is done via busy loops
// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
//
#ifdef __APPLE__
//#include <os/lock.h>
//
2022-09-25 18:23:15 +00:00
//typedef os_unfair_lock ggml_lock_t;
//
//#define ggml_lock_init(x) UNUSED(x)
//#define ggml_lock_destroy(x) UNUSED(x)
//#define ggml_lock_lock os_unfair_lock_lock
//#define ggml_lock_unlock os_unfair_lock_unlock
//
//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
typedef int ggml_lock_t;
#define ggml_lock_init(x) UNUSED(x)
#define ggml_lock_destroy(x) UNUSED(x)
#define ggml_lock_lock(x) UNUSED(x)
#define ggml_lock_unlock(x) UNUSED(x)
#define GGML_LOCK_INITIALIZER 0
#define ggml_thread_create pthread_create
#define ggml_thread_join pthread_join
2022-09-25 18:23:15 +00:00
#else
//typedef pthread_spinlock_t ggml_lock_t;
//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
//#define ggml_lock_destroy pthread_spin_destroy
//#define ggml_lock_lock pthread_spin_lock
//#define ggml_lock_unlock pthread_spin_unlock
typedef int ggml_lock_t;
#define ggml_lock_init(x) UNUSED(x)
#define ggml_lock_destroy(x) UNUSED(x)
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
#define ggml_lock_lock(x) _mm_pause()
#else
2022-09-25 18:23:15 +00:00
#define ggml_lock_lock(x) UNUSED(x)
#endif
2022-09-25 18:23:15 +00:00
#define ggml_lock_unlock(x) UNUSED(x)
#define GGML_LOCK_INITIALIZER 0
#define ggml_thread_create pthread_create
#define ggml_thread_join pthread_join
2022-09-25 18:23:15 +00:00
#endif
// Android's libc implementation "bionic" does not support setting affinity
#if defined(__gnu_linux__)
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
static void set_numa_thread_affinity(int thread_n) {
if (!ggml_is_numa()) {
return;
}
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
int node_num;
int rv;
size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
switch(g_state.numa.numa_strategy) {
case GGML_NUMA_STRATEGY_DISTRIBUTE:
// run thread on node_num thread_n / (threads per node)
node_num = thread_n % g_state.numa.n_nodes;
break;
case GGML_NUMA_STRATEGY_ISOLATE:
// run thread on current_node
node_num = g_state.numa.current_node;
break;
case GGML_NUMA_STRATEGY_NUMACTL:
// use the cpuset that numactl gave us
rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
if (rv) {
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
}
return;
default:
return;
}
struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
CPU_ZERO_S(setsize, cpus);
for (size_t i = 0; i < node->n_cpus; ++i) {
CPU_SET_S(node->cpus[i], setsize, cpus);
}
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
if (rv) {
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
}
CPU_FREE(cpus);
}
static void clear_numa_thread_affinity(void) {
if (!ggml_is_numa()) {
return;
}
size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
CPU_ZERO_S(setsize, cpus);
for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
CPU_SET_S(i, setsize, cpus);
}
int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
if (rv) {
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
}
CPU_FREE(cpus);
}
#else
// TODO: Windows etc.
// (the linux implementation may also work on BSD, someone should test)
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
static void clear_numa_thread_affinity(void) {}
#endif
static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
node->perf_runs++;
node->perf_cycles += cycles_cur;
node->perf_time_us += time_us_cur;
}
static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
int n_tasks = 0;
if (ggml_is_empty(node)) {
// no need to multi-thread a no-op
n_tasks = 1;
return n_tasks;
}
switch (node->op) {
case GGML_OP_CPY:
case GGML_OP_DUP:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_ACC:
{
n_tasks = n_threads;
} break;
case GGML_OP_SUB:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_LOG:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_LEAKY_RELU:
{
n_tasks = 1;
} break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(node)) {
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
{
n_tasks = 1;
} break;
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
{
n_tasks = n_threads;
} break;
default:
GGML_ASSERT(false);
}
break;
case GGML_OP_SILU_BACK:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_GROUP_NORM:
case GGML_OP_CONCAT:
{
n_tasks = n_threads;
} break;
case GGML_OP_MUL_MAT:
{
n_tasks = n_threads;
// TODO: use different scheduling for different matrix sizes
//const int nr0 = ggml_nrows(node->src[0]);
//const int nr1 = ggml_nrows(node->src[1]);
//n_tasks = MIN(n_threads, MAX(1, nr0/128));
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
} break;
case GGML_OP_MUL_MAT_ID:
{
n_tasks = n_threads;
} break;
case GGML_OP_OUT_PROD:
{
n_tasks = n_threads;
} break;
case GGML_OP_GET_ROWS:
{
// FIXME: the cost of launching additional threads decreases performance with GPU offloading
//n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
} break;
case GGML_OP_SCALE:
case GGML_OP_SET:
case GGML_OP_CONT:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS_BACK:
case GGML_OP_DIAG:
{
n_tasks = 1;
} break;
case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_ADD_REL_POS:
{
n_tasks = n_threads;
} break;
case GGML_OP_CLAMP:
{
n_tasks = 1; //TODO
} break;
case GGML_OP_SOFT_MAX:
{
n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
n_tasks = n_threads;
} break;
case GGML_OP_IM2COL:
{
n_tasks = n_threads;
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
n_tasks = n_threads;
} break;
case GGML_OP_POOL_1D:
case GGML_OP_POOL_2D:
{
n_tasks = 1;
} break;
case GGML_OP_UPSCALE:
{
n_tasks = n_threads;
} break;
case GGML_OP_PAD:
{
n_tasks = n_threads;
} break;
case GGML_OP_ARANGE:
{
n_tasks = n_threads;
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
n_tasks = n_threads;
} break;
case GGML_OP_ARGSORT:
{
n_tasks = n_threads;
} break;
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
case GGML_OP_FLASH_ATTN_EXT:
{
n_tasks = n_threads;
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
n_tasks = n_threads;
} break;
llama : support Mamba Selective State Space Models (llama/5328) * mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 22:31:00 +00:00
case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN:
{
n_tasks = n_threads;
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_GET_REL_POS:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32:
case GGML_OP_MAP_CUSTOM2_F32:
case GGML_OP_MAP_CUSTOM3_F32:
{
n_tasks = 1;
} break;
case GGML_OP_MAP_CUSTOM1:
{
struct ggml_map_custom1_op_params p;
memcpy(&p, node->op_params, sizeof(p));
if (p.n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p.n_tasks, n_threads);
}
} break;
case GGML_OP_MAP_CUSTOM2:
{
struct ggml_map_custom2_op_params p;
memcpy(&p, node->op_params, sizeof(p));
if (p.n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p.n_tasks, n_threads);
}
} break;
case GGML_OP_MAP_CUSTOM3:
{
struct ggml_map_custom3_op_params p;
memcpy(&p, node->op_params, sizeof(p));
if (p.n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p.n_tasks, n_threads);
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
n_tasks = n_threads;
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
n_tasks = n_threads;
} break;
case GGML_OP_NONE:
{
n_tasks = 1;
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
default:
{
fprintf(stderr, "%s: op not implemented: ", __func__);
if (node->op < GGML_OP_COUNT) {
fprintf(stderr, "%s\n", ggml_op_name(node->op));
} else {
fprintf(stderr, "%d\n", node->op);
}
GGML_ASSERT(false);
} break;
}
assert(n_tasks > 0);
return n_tasks;
}
static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
// wait for other threads to finish
const int last_node_n = * node_n;
while (true) {
if (do_yield) {
sched_yield();
}
* node_n = atomic_load(&state->shared->node_n);
if (* node_n != last_node_n) break;
#if defined(__SSE3__)
// Tell the processor we're spinning. It's a processor hint for spinlocks.
_mm_pause();
#endif
}
}
static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
// wait for other threads to finish
const int last_task_phase = * task_phase;
while (true) {
if (do_yield) {
sched_yield();
}
* task_phase = atomic_load(&state->shared->node_task);
if (* task_phase != last_task_phase) break;
#if defined(__SSE3__)
// Tell the processor we're spinning. It's a processor hint for spinlocks.
_mm_pause();
#endif
}
}
static thread_ret_t ggml_graph_compute_thread(void * data) {
2022-09-25 18:23:15 +00:00
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
const struct ggml_cgraph * cgraph = state->shared->cgraph;
const struct ggml_cplan * cplan = state->shared->cplan;
const int n_threads = state->shared->n_threads;
ggml : add numa options (llama/5377) * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 09:31:07 +00:00
set_numa_thread_affinity(state->ith);
int node_n = -1;
int task_phase = GGML_TASK_TYPE_FINALIZE;
2022-09-25 18:23:15 +00:00
while (true) {
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
state->shared->node_n += 1;
state->ec = GGML_STATUS_ABORTED;
return 0;
}
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
// all other threads are finished and spinning
// do finalize and init here so we don't have synchronize again
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_TYPE_FINALIZE,
/*.ith =*/ 0,
/*.nth =*/ 0,
/*.wsize =*/ cplan->work_size,
/*.wdata =*/ cplan->work_data,
};
if (node_n != -1) {
/* FINALIZE */
struct ggml_tensor * node = cgraph->nodes[node_n];
if (GGML_OP_HAS_FINALIZE[node->op]) {
params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
ggml_compute_forward(&params, node, state);
2022-09-25 18:23:15 +00:00
}
ggml_graph_compute_perf_stats_node(node, state->shared);
2022-09-25 18:23:15 +00:00
}
// distribute new work or execute it direct if 1T
while (++node_n < cgraph->n_nodes) {
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
state->shared->perf_node_start_cycles = ggml_perf_cycles();
state->shared->perf_node_start_time_us = ggml_perf_time_us();
params.nth = n_tasks;
2022-09-25 18:23:15 +00:00
if (n_tasks == 1) {
/* INIT */
if (GGML_OP_HAS_INIT[node->op]) {
params.type = GGML_TASK_TYPE_INIT;
ggml_compute_forward(&params, node, state);
}
// TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
// they do something more efficient than spinning (?)
params.type = GGML_TASK_TYPE_COMPUTE;
ggml_compute_forward(&params, node, state);
if (GGML_OP_HAS_FINALIZE[node->op]) {
params.type = GGML_TASK_TYPE_FINALIZE;
ggml_compute_forward(&params, node, state);
}
ggml_graph_compute_perf_stats_node(node, state->shared);
} else {
break;
}
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
break;
}
2022-09-25 18:23:15 +00:00
}
task_phase = GGML_TASK_TYPE_INIT;
atomic_store(&state->shared->n_active, n_threads);
atomic_store(&state->shared->node_n, node_n);
atomic_store(&state->shared->node_task, task_phase);
} else {
ggml_graph_compute_thread_sync_node(&node_n, state, false);
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
2022-09-25 18:23:15 +00:00
}
// check if we should stop
if (node_n >= cgraph->n_nodes) break;
2022-09-25 18:23:15 +00:00
/* INIT & COMPUTE */
struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_TYPE_INIT,
/*.ith =*/ state->ith,
/*.nth =*/ n_tasks,
/*.wsize =*/ cplan->work_size,
/*.wdata =*/ cplan->work_data,
};
if (state->ith < n_tasks) {
if (GGML_OP_HAS_INIT[node->op]) {
ggml_compute_forward(&params, node, state);
}
}
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
task_phase = GGML_TASK_TYPE_COMPUTE;
atomic_store(&state->shared->n_active, n_threads);
atomic_store(&state->shared->node_task, task_phase);
}
else {
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
// depending on the workload and the operating system.
// since it is not clear what is the best approach, it should potentially become user-configurable
// ref: https://github.com/ggerganov/ggml/issues/291
// UPD: adding the do_yield flag seems to resolve the issue universally
const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
}
if (state->ith < n_tasks) {
params.type = GGML_TASK_TYPE_COMPUTE;
ggml_compute_forward(&params, node, state);
2022-09-25 18:23:15 +00:00
}
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
task_phase = GGML_TASK_TYPE_FINALIZE;
atomic_store(&state->shared->n_active, n_threads);
atomic_store(&state->shared->node_task, task_phase);
}
else {
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
}
2022-09-25 18:23:15 +00:00
}
return 0;
2022-09-25 18:23:15 +00:00
}
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
if (n_threads <= 0) {
n_threads = GGML_DEFAULT_N_THREADS;
}
2022-09-25 18:23:15 +00:00
size_t work_size = 0;
2022-09-25 18:23:15 +00:00
struct ggml_cplan cplan;
memset(&cplan, 0, sizeof(struct ggml_cplan));
2022-09-25 18:23:15 +00:00
int max_tasks = 1;
// thread scheduling for the different operations + work buffer size estimation
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
max_tasks = MAX(max_tasks, n_tasks);
size_t cur = 0;
switch (node->op) {
case GGML_OP_CPY:
case GGML_OP_DUP:
{
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
if (ggml_is_quantized(node->type) ||
// F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
(node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
}
} break;
case GGML_OP_ADD:
case GGML_OP_ADD1:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
case GGML_OP_ACC:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
}
} break;
case GGML_OP_MUL_MAT:
{
const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
2022-09-25 18:23:15 +00:00
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
} else
#endif
2023-06-25 11:22:21 +00:00
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node)) {
if (node->src[0]->type != GGML_TYPE_F32) {
// here we need memory for fully dequantized matrix from src0
// take into account that src0 can be broadcasted into src1[2,3]
cur = ggml_type_size(GGML_TYPE_F32)
* node->src[0]->ne[0]*node->src[0]->ne[1]
* node->src[1]->ne[2]*node->src[1]->ne[3];
2022-09-25 18:23:15 +00:00
}
} else
#endif
if (node->src[1]->type != vec_dot_type) {
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
}
} break;
case GGML_OP_MUL_MAT_ID:
{
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
cur = 0;
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
const struct ggml_tensor * src0 = node->src[0];
const struct ggml_tensor * src1 = node->src[1];
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
if (src1->type != vec_dot_type) {
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
}
ggml : mul_mat_id use the same tensor for all the experts (llama/6387) * ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 13:07:05 +00:00
const int n_as = src0->ne[2];
llama : ggml-backend integration (llama/4766) * llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (llama/4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (llama/4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 19:07:38 +00:00
cur += GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
} break;
case GGML_OP_OUT_PROD:
{
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
case GGML_OP_SOFT_MAX:
case GGML_OP_ROPE:
{
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
GGML_ASSERT(node->src[0]->ne[3] == 1);
GGML_ASSERT(node->src[1]->ne[2] == 1);
GGML_ASSERT(node->src[1]->ne[3] == 1);
2023-06-25 11:22:21 +00:00
const int64_t ne00 = node->src[0]->ne[0]; // K
const int64_t ne01 = node->src[0]->ne[1]; // Cout
const int64_t ne02 = node->src[0]->ne[2]; // Cin
const int64_t ne10 = node->src[1]->ne[0]; // L
const int64_t ne11 = node->src[1]->ne[1]; // Cin
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
if ((node->src[0]->type == GGML_TYPE_F16 ||
node->src[0]->type == GGML_TYPE_BF16) &&
node->src[1]->type == GGML_TYPE_F32) {
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
cur += sizeof(ggml_fp16_t)*ne10*ne11;
} else if (node->src[0]->type == GGML_TYPE_F32 &&
node->src[1]->type == GGML_TYPE_F32) {
cur += sizeof(float)*ne00*ne01*ne02;
cur += sizeof(float)*ne10*ne11;
} else {
GGML_ASSERT(false);
}
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
const int64_t ne00 = node->src[0]->ne[0]; // W
const int64_t ne01 = node->src[0]->ne[1]; // H
const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
const int64_t ne03 = node->src[0]->ne[3]; // Channels In
2023-06-25 11:22:21 +00:00
const int64_t ne10 = node->src[1]->ne[0]; // W
const int64_t ne11 = node->src[1]->ne[1]; // H
const int64_t ne12 = node->src[1]->ne[2]; // Channels In
2023-06-25 11:22:21 +00:00
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
} break;
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
case GGML_OP_FLASH_ATTN_EXT:
{
const int64_t ne00 = node->src[0]->ne[0]; // D
cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
ggml : add Flash Attention (llama/5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (llama/6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (llama/6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
const int64_t D = node->src[0]->ne[0];
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
} else if (node->src[1]->type == GGML_TYPE_BF16) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
default:
break;
2022-09-25 18:23:15 +00:00
}
work_size = MAX(work_size, cur);
}
if (work_size > 0) {
work_size += CACHE_LINE_SIZE*(n_threads - 1);
}
cplan.n_threads = MIN(max_tasks, n_threads);
cplan.work_size = work_size;
cplan.work_data = NULL;
2022-09-25 18:23:15 +00:00
return cplan;
}
enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
{
GGML_ASSERT(cplan);
GGML_ASSERT(cplan->n_threads > 0);
if (cplan->work_size > 0) {
GGML_ASSERT(cplan->work_data);
}
2022-09-25 18:23:15 +00:00
}
const int n_threads = cplan->n_threads;
struct ggml_compute_state_shared state_shared = {
/*.cgraph =*/ cgraph,
/*.cgraph_plan =*/ cplan,
/*.perf_node_start_cycles =*/ 0,
/*.perf_node_start_time_us =*/ 0,
/*.n_threads =*/ n_threads,
/*.n_active =*/ n_threads,
/*.node_n =*/ -1,
/*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
/*.abort_callback =*/ NULL,
/*.abort_callback_data =*/ NULL,
/*.current_chunk; =*/ 0,
};
struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
// create thread pool
if (n_threads > 1) {
for (int j = 1; j < n_threads; ++j) {
workers[j] = (struct ggml_compute_state) {
.thrd = 0,
.ith = j,
.shared = &state_shared,
.ec = GGML_STATUS_SUCCESS,
};
2023-06-25 11:22:21 +00:00
const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
GGML_ASSERT(rc == 0);
UNUSED(rc);
2023-06-25 11:22:21 +00:00
}
}
workers[0].ith = 0;
workers[0].shared = &state_shared;
workers[0].ec = GGML_STATUS_SUCCESS;
2023-06-25 11:22:21 +00:00
const int64_t perf_start_cycles = ggml_perf_cycles();
const int64_t perf_start_time_us = ggml_perf_time_us();
2023-06-25 11:22:21 +00:00
// this is a work thread too
ggml_graph_compute_thread(&workers[0]);
enum ggml_status compute_status = workers[0].ec;
2023-06-25 11:22:21 +00:00
// don't leave affinity set on the main thread
clear_numa_thread_affinity();
2023-06-25 11:22:21 +00:00
// join or kill thread pool
2023-06-25 11:22:21 +00:00
if (n_threads > 1) {
for (int j = 1; j < n_threads; j++) {
const int rc = ggml_thread_join(workers[j].thrd, NULL);
2023-06-25 11:22:21 +00:00
GGML_ASSERT(rc == 0);
if (workers[j].ec != GGML_STATUS_SUCCESS)
compute_status = workers[j].ec;
2023-06-25 11:22:21 +00:00
}
}
// performance stats (graph)
{
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
cgraph->perf_runs++;
cgraph->perf_cycles += perf_cycles_cur;
cgraph->perf_time_us += perf_time_us_cur;
GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
__func__, cgraph->perf_runs,
(double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
(double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
(double) perf_time_us_cur / 1000.0,
(double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
}
return compute_status;
2023-06-25 11:22:21 +00:00
}
enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
return ggml_graph_compute(cgraph, &cplan);
}
2023-06-25 11:22:21 +00:00
struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * leaf = cgraph->leafs[i];
if (strcmp(leaf->name, name) == 0) {
return leaf;
}
}
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
if (strcmp(node->name, name) == 0) {
return node;
}
}
return NULL;
}
static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
const int64_t * ne = tensor->ne;
const size_t * nb = tensor->nb;
fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
ggml_type_name(tensor->type),
ggml_op_name (tensor->op),
ggml_n_dims(tensor),
2023-06-25 11:22:21 +00:00
ne[0], ne[1], ne[2], ne[3],
nb[0], nb[1], nb[2], nb[3],
tensor->data,
tensor->name);
}
static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
const int64_t * ne = tensor->ne;
const size_t * nb = tensor->nb;
fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
2023-06-25 11:22:21 +00:00
arg,
ggml_type_name(tensor->type),
ggml_op_name (tensor->op),
ggml_n_dims(tensor),
2023-06-25 11:22:21 +00:00
ne[0], ne[1], ne[2], ne[3],
nb[0], nb[1], nb[2], nb[3],
tensor->data,
tensor->name);
}
void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
uint64_t size_eval = 0;
// compute size of intermediate results
// TODO: does not take into account scratch buffers !!!!
for (int i = 0; i < cgraph->n_nodes; ++i) {
size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
2023-06-25 11:22:21 +00:00
}
// print
{
FILE * fout = stdout;
fprintf(fout, "\n");
fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
// header
fprintf(fout, "\n");
fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
"TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
for (int i = 0; i < cgraph->n_leafs; ++i) {
ggml_graph_export_leaf(cgraph->leafs[i], fout);
GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
2023-06-25 11:22:21 +00:00
}
// header
fprintf(fout, "\n");
fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
"ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
for (int i = 0; i < cgraph->n_nodes; ++i) {
ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
for (int j = 0; j < GGML_MAX_SRC; ++j) {
if (cgraph->nodes[i]->src[j]) {
ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
2023-06-25 11:22:21 +00:00
}
}
fprintf(fout, "\n");
}
fprintf(fout, "\n");
}
// write binary data
{
FILE * fout = ggml_fopen(fname, "wb");
2023-06-25 11:22:21 +00:00
if (!fout) {
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
return;
}
// header
{
const uint32_t magic = GGML_FILE_MAGIC;
const uint32_t version = GGML_FILE_VERSION;
const uint32_t n_leafs = cgraph->n_leafs;
const uint32_t n_nodes = cgraph->n_nodes;
2023-06-25 11:22:21 +00:00
fwrite(&magic, sizeof(uint32_t), 1, fout);
fwrite(&version, sizeof(uint32_t), 1, fout);
fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
2023-06-25 11:22:21 +00:00
fwrite(&size_eval, sizeof(uint64_t), 1, fout);
}
// leafs
{
for (int i = 0; i < cgraph->n_leafs; ++i) {
const struct ggml_tensor * tensor = cgraph->leafs[i];
const uint32_t type = tensor->type;
const uint32_t op = tensor->op;
fwrite(&type, sizeof(uint32_t), 1, fout);
fwrite(&op, sizeof(uint32_t), 1, fout);
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
const uint64_t ne = tensor->ne[j];
const uint64_t nb = tensor->nb[j];
fwrite(&ne, sizeof(uint64_t), 1, fout);
fwrite(&nb, sizeof(uint64_t), 1, fout);
}
fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
2023-06-25 11:22:21 +00:00
// dump the data
// TODO: pad this to 32 byte boundary
{
const size_t size = ggml_nbytes(tensor);
fwrite(tensor->data, sizeof(char), size, fout);
}
}
}
// nodes
{
for (int i = 0; i < cgraph->n_nodes; ++i) {
const struct ggml_tensor * tensor = cgraph->nodes[i];
const uint32_t type = tensor->type;
const uint32_t op = tensor->op;
fwrite(&type, sizeof(uint32_t), 1, fout);
fwrite(&op, sizeof(uint32_t), 1, fout);
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
const uint64_t ne = tensor->ne[j];
const uint64_t nb = tensor->nb[j];
fwrite(&ne, sizeof(uint64_t), 1, fout);
fwrite(&nb, sizeof(uint64_t), 1, fout);
}
fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
2023-06-25 11:22:21 +00:00
// output the op arguments
{
struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
2023-06-25 11:22:21 +00:00
for (int j = 0; j < GGML_MAX_SRC; ++j) {
args[j] = tensor->src[j];
2023-06-25 11:22:21 +00:00
}
for (int j = 0; j < GGML_MAX_SRC; ++j) {
2023-06-25 11:22:21 +00:00
if (args[j]) {
int32_t idx = -1;
// check if leaf
{
for (int k = 0; k < cgraph->n_leafs; ++k) {
if (args[j] == cgraph->leafs[k]) {
idx = k;
break;
}
}
}
// check if node
if (idx == -1) {
for (int k = 0; k < cgraph->n_nodes; ++k) {
if (args[j] == cgraph->nodes[k]) {
idx = cgraph->n_leafs + k;
2023-06-25 11:22:21 +00:00
break;
}
}
}
if (idx == -1) {
fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
fclose(fout);
2023-06-25 11:22:21 +00:00
return;
}
fwrite(&idx, sizeof(int32_t), 1, fout);
} else {
const int32_t nul = -1;
fwrite(&nul, sizeof(int32_t), 1, fout);
}
}
}
}
}
fclose(fout);
}
}
struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
2023-06-25 11:22:21 +00:00
assert(*ctx_data == NULL);
assert(*ctx_eval == NULL);
struct ggml_cgraph * result = NULL;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
struct ggml_tensor * data = NULL;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// read file into data
{
FILE * fin = ggml_fopen(fname, "rb");
2023-06-25 11:22:21 +00:00
if (!fin) {
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
return result;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
size_t fsize = 0;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
fseek(fin, 0, SEEK_END);
fsize = ftell(fin);
fseek(fin, 0, SEEK_SET);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// create the data context
{
const size_t overhead = 1*ggml_tensor_overhead();
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
struct ggml_init_params params = {
.mem_size = fsize + overhead,
.mem_buffer = NULL,
.no_alloc = false,
};
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
*ctx_data = ggml_init(params);
if (!*ctx_data) {
fprintf(stderr, "%s: failed to create ggml context\n", __func__);
fclose(fin);
return result;
2022-09-25 18:23:15 +00:00
}
}
2023-06-25 11:22:21 +00:00
data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
{
const size_t ret = fread(data->data, sizeof(char), fsize, fin);
if (ret != fsize) {
fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
fclose(fin);
return result;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
fclose(fin);
}
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// populate result
{
char * ptr = (char *) data->data;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (magic != GGML_FILE_MAGIC) {
fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
return result;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (version != GGML_FILE_VERSION) {
fprintf(stderr, "%s: invalid version number\n", __func__);
return result;
}
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
const int graph_size = MAX(n_leafs, n_nodes);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// create the data context
{
const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
2023-06-25 11:22:21 +00:00
struct ggml_init_params params = {
.mem_size = size_eval + overhead,
.mem_buffer = NULL,
.no_alloc = true,
};
*ctx_eval = ggml_init(params);
if (!*ctx_eval) {
fprintf(stderr, "%s: failed to create ggml context\n", __func__);
return result;
2022-09-25 18:23:15 +00:00
}
}
result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
result->n_leafs = n_leafs;
result->n_nodes = n_nodes;
2023-06-25 11:22:21 +00:00
// leafs
2022-09-25 18:23:15 +00:00
{
2023-06-25 11:22:21 +00:00
uint32_t type;
uint32_t op;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
for (uint32_t i = 0; i < n_leafs; ++i) {
type = *(const uint32_t *) ptr; ptr += sizeof(type);
op = *(const uint32_t *) ptr; ptr += sizeof(op);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
uint64_t ne_cur;
uint64_t nb_cur;
ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
ne[j] = ne_cur;
nb[j] = nb_cur;
}
struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
2023-06-25 11:22:21 +00:00
tensor->op = (enum ggml_op) op;
memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
2023-06-25 11:22:21 +00:00
tensor->data = (void *) ptr;
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
tensor->nb[j] = nb[j];
}
result->leafs[i] = tensor;
2023-06-25 11:22:21 +00:00
ptr += ggml_nbytes(tensor);
fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
ggml_set_no_alloc(*ctx_eval, false);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
// nodes
{
uint32_t type;
uint32_t op;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
for (uint32_t i = 0; i < n_nodes; ++i) {
type = *(const uint32_t *) ptr; ptr += sizeof(type);
op = *(const uint32_t *) ptr; ptr += sizeof(op);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
enum ggml_op eop = (enum ggml_op) op;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
uint64_t ne_cur;
uint64_t nb_cur;
ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
ne[j] = ne_cur;
nb[j] = nb_cur;
}
const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
2023-06-25 11:22:21 +00:00
const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
2023-06-25 11:22:21 +00:00
struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
2023-06-25 11:22:21 +00:00
// parse args
for (int j = 0; j < GGML_MAX_SRC; ++j) {
2023-06-25 11:22:21 +00:00
const int32_t arg_idx = ptr_arg_idx[j];
if (arg_idx == -1) {
continue;
}
if (arg_idx < result->n_leafs) {
args[j] = result->leafs[arg_idx];
2023-06-25 11:22:21 +00:00
} else {
args[j] = result->nodes[arg_idx - result->n_leafs];
2023-06-25 11:22:21 +00:00
}
}
// create the tensor
// "view" operations are handled differently
// TODO: handle inplace ops - currently a copy is always made
struct ggml_tensor * tensor = NULL;
switch (eop) {
// TODO: implement other view ops
case GGML_OP_RESHAPE:
{
tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
} break;
case GGML_OP_VIEW:
{
tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
size_t offs;
memcpy(&offs, ptr_op_params, sizeof(offs));
2023-06-25 11:22:21 +00:00
tensor->data = ((char *) tensor->data) + offs;
} break;
case GGML_OP_TRANSPOSE:
{
tensor = ggml_transpose(*ctx_eval, args[0]);
} break;
case GGML_OP_PERMUTE:
{
tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
} break;
default:
{
tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
2023-06-25 11:22:21 +00:00
tensor->op = eop;
} break;
}
memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
2023-06-25 11:22:21 +00:00
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
tensor->nb[j] = nb[j];
}
for (int j = 0; j < GGML_MAX_SRC; ++j) {
tensor->src[j] = args[j];
2023-06-25 11:22:21 +00:00
}
result->nodes[i] = tensor;
2023-06-25 11:22:21 +00:00
fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
}
}
2023-06-25 11:22:21 +00:00
return result;
2022-09-25 18:23:15 +00:00
}
void ggml_graph_print(const struct ggml_cgraph * cgraph) {
int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
GGML_PRINT("=== GRAPH ===\n");
GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
2022-09-25 18:23:15 +00:00
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
2022-09-25 18:23:15 +00:00
i,
node->ne[0], node->ne[1], node->ne[2],
ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
2022-09-25 18:23:15 +00:00
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
(double) node->perf_time_us / 1000.0,
(double) node->perf_time_us / 1000.0 / node->perf_runs);
}
GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * node = cgraph->leafs[i];
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 09:18:18 +00:00
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
2022-09-25 18:23:15 +00:00
i,
node->ne[0], node->ne[1],
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 09:18:18 +00:00
ggml_op_name(node->op),
ggml_get_name(node));
2022-09-25 18:23:15 +00:00
}
for (int i = 0; i < GGML_OP_COUNT; i++) {
if (perf_total_per_op_us[i] == 0) {
continue;
}
GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
2022-09-25 18:23:15 +00:00
}
GGML_PRINT("========================================\n");
}
// check if node is part of the graph
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
2022-09-25 18:23:15 +00:00
if (cgraph == NULL) {
return true;
}
for (int i = 0; i < cgraph->n_nodes; i++) {
if (cgraph->nodes[i] == node) {
return true;
}
}
return false;
}
static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
2022-09-25 18:23:15 +00:00
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * parent = cgraph->nodes[i];
if (parent->grad == node) {
return parent;
}
}
return NULL;
}
2023-06-25 11:22:21 +00:00
static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
gparent0 ? (void *) gparent0 : (void *) parent,
gparent0 ? "g" : "x",
gparent ? (void *) gparent : (void *) node,
gparent ? "g" : "x",
gparent ? "empty" : "vee",
gparent ? "dashed" : "solid",
label);
}
static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
(void *) parent, "x",
(void *) node, "x",
label);
}
2022-09-25 18:23:15 +00:00
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
char color[16];
FILE * fp = ggml_fopen(filename, "w");
GGML_ASSERT(fp);
2022-09-25 18:23:15 +00:00
fprintf(fp, "digraph G {\n");
fprintf(fp, " newrank = true;\n");
fprintf(fp, " rankdir = LR;\n");
for (int i = 0; i < gb->n_nodes; i++) {
struct ggml_tensor * node = gb->nodes[i];
if (ggml_graph_get_parent(gb, node) != NULL) {
continue;
}
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
2022-09-25 18:23:15 +00:00
snprintf(color, sizeof(color), "yellow");
} else if (node->grad) {
if (ggml_graph_find(gf, node)) {
snprintf(color, sizeof(color), "green");
} else {
snprintf(color, sizeof(color), "lightblue");
}
} else {
snprintf(color, sizeof(color), "white");
}
fprintf(fp, " \"%p\" [ "
"style = filled; fillcolor = %s; shape = record; "
"label=\"",
(void *) node, color);
if (strlen(node->name) > 0) {
2023-06-25 11:22:21 +00:00
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
} else {
fprintf(fp, "(%s)|", ggml_type_name(node->type));
}
if (ggml_is_matrix(node)) {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
2023-06-25 11:22:21 +00:00
} else {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
if (node->grad) {
fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
2022-09-25 18:23:15 +00:00
} else {
fprintf(fp, "\"; ]\n");
}
}
for (int i = 0; i < gb->n_leafs; i++) {
struct ggml_tensor * node = gb->leafs[i];
snprintf(color, sizeof(color), "pink");
fprintf(fp, " \"%p\" [ "
"style = filled; fillcolor = %s; shape = record; "
"label=\"<x>",
(void *) node, color);
if (strlen(node->name) > 0) {
2023-06-25 11:22:21 +00:00
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
} else {
fprintf(fp, "(%s)|", ggml_type_name(node->type));
}
2023-06-25 11:22:21 +00:00
fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
if (ggml_nelements(node) < 5) {
fprintf(fp, " | (");
for (int j = 0; j < ggml_nelements(node); j++) {
if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
fprintf(fp, "%d", ggml_get_i32_1d(node, j));
}
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
else if (node->type == GGML_TYPE_F32 ||
node->type == GGML_TYPE_F16 ||
node->type == GGML_TYPE_BF16) {
2023-06-25 11:22:21 +00:00
fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
}
else {
fprintf(fp, "#");
}
if (j < ggml_nelements(node) - 1) {
fprintf(fp, ", ");
}
}
2023-06-25 11:22:21 +00:00
fprintf(fp, ")");
2022-09-25 18:23:15 +00:00
}
fprintf(fp, "\"; ]\n");
2022-09-25 18:23:15 +00:00
}
for (int i = 0; i < gb->n_nodes; i++) {
struct ggml_tensor * node = gb->nodes[i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j]) {
2023-06-25 11:22:21 +00:00
char label[16];
snprintf(label, sizeof(label), "src %d", j);
ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
}
}
for (int i = 0; i < gb->n_leafs; i++) {
struct ggml_tensor * node = gb->leafs[i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j]) {
2023-06-25 11:22:21 +00:00
char label[16];
snprintf(label, sizeof(label), "src %d", j);
ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
2023-06-25 11:22:21 +00:00
}
2022-09-25 18:23:15 +00:00
}
}
fprintf(fp, "}\n");
fclose(fp);
GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
}
////////////////////////////////////////////////////////////////////////////////
static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
2022-09-25 18:23:15 +00:00
int i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
2022-09-25 18:23:15 +00:00
// TODO: add function to set tensor from array
for (int64_t j = 0; j < ne; ++j) {
2022-09-25 18:23:15 +00:00
ggml_set_f32_1d(ps[p], j, x[i++]);
}
}
}
static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
2022-09-25 18:23:15 +00:00
int i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
2022-09-25 18:23:15 +00:00
// TODO: add function to get all elements at once
for (int64_t j = 0; j < ne; ++j) {
2022-09-25 18:23:15 +00:00
x[i++] = ggml_get_f32_1d(ps[p], j);
}
}
}
static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
int64_t i = 0;
2022-09-25 18:23:15 +00:00
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
2022-09-25 18:23:15 +00:00
// TODO: add function to get all elements at once
for (int64_t j = 0; j < ne; ++j) {
2022-09-25 18:23:15 +00:00
g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
}
}
}
static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
int64_t i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
// TODO: add function to get all elements at once
for (int64_t j = 0; j < ne; ++j) {
g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
}
}
}
2022-09-25 18:23:15 +00:00
//
// Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
2022-09-25 18:23:15 +00:00
//
// (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
2022-09-25 18:23:15 +00:00
//
static enum ggml_opt_result ggml_opt_adam(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
2023-06-25 11:22:21 +00:00
struct ggml_opt_context * opt,
2022-09-25 18:23:15 +00:00
struct ggml_opt_params params,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data) {
GGML_ASSERT(ggml_is_scalar(f));
2022-09-25 18:23:15 +00:00
// these will store the parameters we want to optimize
struct ggml_tensor * ps[GGML_MAX_PARAMS];
int np = 0;
int64_t nx = 0;
2022-09-25 18:23:15 +00:00
for (int i = 0; i < gf->n_nodes; ++i) {
if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
GGML_ASSERT(np < GGML_MAX_PARAMS);
2022-09-25 18:23:15 +00:00
ps[np++] = gf->nodes[i];
nx += ggml_nelements(gf->nodes[i]);
}
}
2023-06-25 11:22:21 +00:00
if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
int iter = opt->iter;
ggml_opt_init(opt->ctx, opt, params, nx);
opt->iter = iter;
}
2022-09-25 18:23:15 +00:00
// constants
float sched = params.adam.sched;
const float alpha = params.adam.alpha;
const float decay = params.adam.decay * alpha;
2022-09-25 18:23:15 +00:00
const float beta1 = params.adam.beta1;
const float beta2 = params.adam.beta2;
const float eps = params.adam.eps;
const float gclip = params.adam.gclip;
const int decay_min_ndim = params.adam.decay_min_ndim;
const int n_accum = MAX(1, params.n_gradient_accumulation);
const float accum_norm = 1.0f / (float) n_accum;
2022-09-25 18:23:15 +00:00
float * g = opt->adam.g->data; // gradients
2023-06-25 11:22:21 +00:00
float * m = opt->adam.m->data; // first moment
float * v = opt->adam.v->data; // second moment
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
2022-09-25 18:23:15 +00:00
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
2022-09-25 18:23:15 +00:00
bool cancel = false;
// compute the function value
float fx = 0;
ggml_set_zero(opt->adam.g);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
callback(callback_data, accum_step, &sched, &cancel);
if (cancel) {
return GGML_OPT_RESULT_CANCEL;
}
}
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0);
}
fx *= accum_norm;
opt->adam.fx_prev = fx;
2023-06-25 11:22:21 +00:00
opt->adam.fx_best = opt->adam.fx_prev;
2022-09-25 18:23:15 +00:00
if (pf) {
2023-06-25 11:22:21 +00:00
pf[opt->iter % params.past] = opt->adam.fx_prev;
}
opt->loss_before = opt->adam.fx_prev;
opt->loss_after = opt->adam.fx_prev;
2023-06-25 11:22:21 +00:00
// initialize
if (opt->just_initialized) {
opt->adam.n_no_improvement = 0;
opt->just_initialized = false;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
float * fx_best = &opt->adam.fx_best;
float * fx_prev = &opt->adam.fx_prev;
int * n_no_improvement = &opt->adam.n_no_improvement;
int iter0 = opt->iter;
2022-09-25 18:23:15 +00:00
// run the optimizer
for (int t = 0; t < params.adam.n_iter; ++t) {
2023-06-25 11:22:21 +00:00
opt->iter = iter0 + t + 1;
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
for (int i = 0; i < np; ++i) {
GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
}
const int64_t t_start_wall = ggml_time_us();
const int64_t t_start_cpu = ggml_cycles();
UNUSED(t_start_wall);
UNUSED(t_start_cpu);
{
float gnorm = 1.0f;
if (gclip > 0.0f) {
// gradient clipping
ggml_float sum = 0.0;
for (int64_t i = 0; i < nx; ++i) {
sum += (ggml_float)(g[i]*g[i]);
}
ggml_float norm = sqrt(sum);
if (norm > (ggml_float) gclip) {
gnorm = (float) ((ggml_float) gclip / norm);
}
}
const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
int64_t i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]);
const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
for (int64_t j = 0; j < ne; ++j) {
float x = ggml_get_f32_1d(ps[p], j);
float g_ = g[i]*gnorm;
m[i] = m[i]*beta1 + g_*(1.0f - beta1);
v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
float mh = m[i]*beta1h;
float vh = v[i]*beta2h;
vh = sqrtf(vh) + eps;
x = x*(1.0f - p_decay) - mh/vh;
ggml_set_f32_1d(ps[p], j, x);
++i;
}
}
}
2022-09-25 18:23:15 +00:00
fx = 0;
ggml_set_zero(opt->adam.g);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
callback(callback_data, accum_step, &sched, &cancel);
if (cancel) {
return GGML_OPT_RESULT_CANCEL;;
}
}
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0);
2022-09-25 18:23:15 +00:00
}
fx *= accum_norm;
2022-09-25 18:23:15 +00:00
opt->loss_after = fx;
2022-09-25 18:23:15 +00:00
// check convergence
2023-06-25 11:22:21 +00:00
if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG("converged\n");
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
// delta-based convergence test
if (pf != NULL) {
// need at least params.past iterations to start checking for convergence
2023-06-25 11:22:21 +00:00
if (params.past <= iter0 + t) {
const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
2022-09-25 18:23:15 +00:00
if (fabsf(rate) < params.delta) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
}
2023-06-25 11:22:21 +00:00
pf[(iter0 + t)%params.past] = fx;
2022-09-25 18:23:15 +00:00
}
// check for improvement
if (params.max_no_improvement > 0) {
2023-06-25 11:22:21 +00:00
if (fx_best[0] > fx) {
fx_best[0] = fx;
n_no_improvement[0] = 0;
2022-09-25 18:23:15 +00:00
} else {
2023-06-25 11:22:21 +00:00
++n_no_improvement[0];
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (n_no_improvement[0] >= params.max_no_improvement) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
}
}
2023-06-25 11:22:21 +00:00
fx_prev[0] = fx;
2022-09-25 18:23:15 +00:00
{
const int64_t t_end_cpu = ggml_cycles();
GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
2022-09-25 18:23:15 +00:00
UNUSED(t_end_cpu);
const int64_t t_end_wall = ggml_time_us();
GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
UNUSED(t_end_wall);
}
}
return GGML_OPT_RESULT_DID_NOT_CONVERGE;
2022-09-25 18:23:15 +00:00
}
//
// L-BFGS
//
// the L-BFGS implementation below is based on the following implementation:
//
// https://github.com/chokkan/liblbfgs
//
struct ggml_lbfgs_iteration_data {
float alpha;
float ys;
float * s;
float * y;
};
static enum ggml_opt_result linesearch_backtracking(
const struct ggml_opt_params * params,
int nx,
float * x,
float * fx,
float * g,
float * d,
float * step,
const float * xp,
struct ggml_tensor * f,
struct ggml_cgraph * gb,
struct ggml_cplan * cplan,
2022-09-25 18:23:15 +00:00
const int np,
struct ggml_tensor * ps[],
bool * cancel,
ggml_opt_callback callback,
void * callback_data) {
2022-09-25 18:23:15 +00:00
int count = 0;
float width = 0.0f;
float dg = 0.0f;
float finit = 0.0f;
float dginit = 0.0f;
float dgtest = 0.0f;
const float dec = 0.5f;
const float inc = 2.1f;
const int n_accum = MAX(1, params->n_gradient_accumulation);
const float accum_norm = 1.0f / (float) n_accum;
if (*step <= 0.f) {
2022-09-25 18:23:15 +00:00
return GGML_LINESEARCH_INVALID_PARAMETERS;
}
// compute the initial gradient in the search direction
ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
2022-09-25 18:23:15 +00:00
// make sure that d points to a descent direction
if (0 < dginit) {
return GGML_LINESEARCH_FAIL;
}
// initialize local variables
finit = *fx;
dgtest = params->lbfgs.ftol*dginit;
while (true) {
ggml_vec_cpy_f32(nx, x, xp);
ggml_vec_mad_f32(nx, x, d, *step);
// evaluate the function and gradient values
{
ggml_opt_set_params(np, ps, x);
*fx = 0;
memset(g, 0, sizeof(float)*nx);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, accum_step, &sched, cancel);
if (*cancel) {
return GGML_OPT_RESULT_CANCEL;
}
}
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
*fx += ggml_get_f32_1d(f, 0);
}
*fx *= accum_norm;
2022-09-25 18:23:15 +00:00
}
++count;
if (*fx > finit + (*step)*dgtest) {
width = dec;
} else {
// Armijo condition is satisfied
if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
return count;
}
ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
2022-09-25 18:23:15 +00:00
// check the Wolfe condition
if (dg < params->lbfgs.wolfe * dginit) {
width = inc;
} else {
if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
// regular Wolfe conditions
return count;
}
if(dg > -params->lbfgs.wolfe*dginit) {
width = dec;
} else {
// strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
return count;
}
}
}
if (*step < params->lbfgs.min_step) {
return GGML_LINESEARCH_MINIMUM_STEP;
}
if (*step > params->lbfgs.max_step) {
return GGML_LINESEARCH_MAXIMUM_STEP;
}
if (params->lbfgs.max_linesearch <= count) {
return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
}
(*step) *= width;
}
GGML_ASSERT(false && "line search failed");
return GGML_LINESEARCH_FAIL;
2022-09-25 18:23:15 +00:00
}
static enum ggml_opt_result ggml_opt_lbfgs(
2022-09-25 18:23:15 +00:00
struct ggml_context * ctx,
2023-06-25 11:22:21 +00:00
struct ggml_opt_context * opt,
2022-09-25 18:23:15 +00:00
struct ggml_opt_params params,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data) {
2022-09-25 18:23:15 +00:00
if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
return GGML_OPT_RESULT_INVALID_WOLFE;
2022-09-25 18:23:15 +00:00
}
}
const int m = params.lbfgs.m;
// these will store the parameters we want to optimize
struct ggml_tensor * ps[GGML_MAX_PARAMS];
int np = 0;
int nx = 0;
for (int i = 0; i < gf->n_nodes; ++i) {
if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
2022-09-25 18:23:15 +00:00
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
GGML_ASSERT(np < GGML_MAX_PARAMS);
2022-09-25 18:23:15 +00:00
ps[np++] = gf->nodes[i];
nx += ggml_nelements(gf->nodes[i]);
}
}
2023-06-25 11:22:21 +00:00
if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
int iter = opt->iter;
ggml_opt_init(ctx, opt, params, nx);
opt->iter = iter;
}
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
2023-06-25 11:22:21 +00:00
float * x = opt->lbfgs.x->data; // current parameters
float * xp = opt->lbfgs.xp->data; // previous parameters
float * g = opt->lbfgs.g->data; // current gradient
float * gp = opt->lbfgs.gp->data; // previous gradient
float * d = opt->lbfgs.d->data; // search direction
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
2022-09-25 18:23:15 +00:00
const int n_accum = MAX(1, params.n_gradient_accumulation);
const float accum_norm = 1.0f / (float) n_accum;
2022-09-25 18:23:15 +00:00
float fx = 0.0f; // cost function value
float xnorm = 0.0f; // ||x||
float gnorm = 0.0f; // ||g||
// initialize x from the graph nodes
ggml_opt_get_params(np, ps, x);
// the L-BFGS memory
2023-06-25 11:22:21 +00:00
float * lm_alpha = opt->lbfgs.lmal->data;
float * lm_ys = opt->lbfgs.lmys->data;
float * lm_s = opt->lbfgs.lms->data;
float * lm_y = opt->lbfgs.lmy->data;
2022-09-25 18:23:15 +00:00
bool cancel = false;
2022-09-25 18:23:15 +00:00
// evaluate the function value and its gradient
{
ggml_opt_set_params(np, ps, x);
fx = 0;
memset(g, 0, sizeof(float)*nx);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, accum_step, &sched, &cancel);
if (cancel) {
return GGML_OPT_RESULT_CANCEL;
}
}
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0);
}
fx *= accum_norm;
opt->loss_before = fx;
opt->loss_after = fx;
2022-09-25 18:23:15 +00:00
}
// search direction = -gradient
ggml_vec_neg_f32(nx, d, g);
// ||x||, ||g||
ggml_vec_norm_f32(nx, &xnorm, x);
ggml_vec_norm_f32(nx, &gnorm, g);
if (xnorm < 1.0f) {
xnorm = 1.0f;
}
// already optimized
if (gnorm/xnorm <= params.lbfgs.eps) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
if (opt->just_initialized) {
if (pf) {
pf[0] = fx;
}
opt->lbfgs.fx_best = fx;
// initial step
ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
opt->lbfgs.j = 0;
opt->lbfgs.k = 1;
opt->lbfgs.end = 0;
opt->lbfgs.n_no_improvement = 0;
opt->just_initialized = false;
}
float * fx_best = &opt->lbfgs.fx_best;
float * step = &opt->lbfgs.step;
int * j = &opt->lbfgs.j;
int * k = &opt->lbfgs.k;
int * end = &opt->lbfgs.end;
int * n_no_improvement = &opt->lbfgs.n_no_improvement;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
int ls = 0;
int bound = 0;
2022-09-25 18:23:15 +00:00
float ys = 0.0f;
float yy = 0.0f;
float beta = 0.0f;
2023-06-25 11:22:21 +00:00
int it = 0;
2022-09-25 18:23:15 +00:00
while (true) {
// store the current position and gradient vectors
ggml_vec_cpy_f32(nx, xp, x);
ggml_vec_cpy_f32(nx, gp, g);
// TODO: instead of passing &cancel here, use the return code of the linesearch
// to determine if the optimization should be cancelled
// this is a simple change, but not doing this atm, since I don't have a nice
// way to test and don't want to break something with so many changes lined up
ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
if (cancel) {
return GGML_OPT_RESULT_CANCEL;
}
2022-09-25 18:23:15 +00:00
if (ls < 0) {
// linesearch failed - go back to the previous point and return
ggml_vec_cpy_f32(nx, x, xp);
ggml_vec_cpy_f32(nx, g, gp);
return ls;
}
opt->loss_after = fx;
2022-09-25 18:23:15 +00:00
ggml_vec_norm_f32(nx, &xnorm, x);
ggml_vec_norm_f32(nx, &gnorm, g);
GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
if (xnorm < 1.0f) {
xnorm = 1.0f;
2022-09-25 18:23:15 +00:00
}
if (gnorm/xnorm <= params.lbfgs.eps) {
// converged
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
// delta-based convergence test
if (pf != NULL) {
// need at least params.past iterations to start checking for convergence
2023-06-25 11:22:21 +00:00
if (params.past <= k[0]) {
const float rate = (pf[k[0]%params.past] - fx)/fx;
2022-09-25 18:23:15 +00:00
if (fabsf(rate) < params.delta) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
}
2023-06-25 11:22:21 +00:00
pf[k[0]%params.past] = fx;
2022-09-25 18:23:15 +00:00
}
// check for improvement
if (params.max_no_improvement > 0) {
2023-06-25 11:22:21 +00:00
if (fx < fx_best[0]) {
fx_best[0] = fx;
n_no_improvement[0] = 0;
2022-09-25 18:23:15 +00:00
} else {
2023-06-25 11:22:21 +00:00
n_no_improvement[0]++;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
if (n_no_improvement[0] >= params.max_no_improvement) {
return GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
}
}
}
2023-06-25 11:22:21 +00:00
if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
2022-09-25 18:23:15 +00:00
// reached the maximum number of iterations
return GGML_OPT_RESULT_DID_NOT_CONVERGE;
2022-09-25 18:23:15 +00:00
}
// update vectors s and y:
// s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
// y_{k+1} = g_{k+1} - g_{k}.
//
2023-06-25 11:22:21 +00:00
ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
2022-09-25 18:23:15 +00:00
// compute scalars ys and yy:
// ys = y^t \cdot s -> 1 / \rho.
// yy = y^t \cdot y.
//
ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
lm_ys[end[0]] = ys;
2022-09-25 18:23:15 +00:00
// find new search direction
// ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
2023-06-25 11:22:21 +00:00
bound = (m <= k[0]) ? m : k[0];
k[0]++;
it++;
end[0] = (end[0] + 1)%m;
2022-09-25 18:23:15 +00:00
// initialize search direction with -g
ggml_vec_neg_f32(nx, d, g);
2023-06-25 11:22:21 +00:00
j[0] = end[0];
2022-09-25 18:23:15 +00:00
for (int i = 0; i < bound; ++i) {
2023-06-25 11:22:21 +00:00
j[0] = (j[0] + m - 1) % m;
2022-09-25 18:23:15 +00:00
// \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
2023-06-25 11:22:21 +00:00
lm_alpha[j[0]] /= lm_ys[j[0]];
2022-09-25 18:23:15 +00:00
// q_{i} = q_{i+1} - \alpha_{i} y_{i}
2023-06-25 11:22:21 +00:00
ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
2022-09-25 18:23:15 +00:00
}
ggml_vec_scale_f32(nx, d, ys/yy);
for (int i = 0; i < bound; ++i) {
// \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
2023-06-25 11:22:21 +00:00
beta /= lm_ys[j[0]];
2022-09-25 18:23:15 +00:00
// \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
2023-06-25 11:22:21 +00:00
ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
j[0] = (j[0] + 1)%m;
2022-09-25 18:23:15 +00:00
}
2023-06-25 11:22:21 +00:00
step[0] = 1.0;
2022-09-25 18:23:15 +00:00
}
GGML_ASSERT(false && "lbfgs failed");
return GGML_OPT_RESULT_DID_NOT_CONVERGE;
2022-09-25 18:23:15 +00:00
}
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
struct ggml_opt_params result;
switch (type) {
case GGML_OPT_TYPE_ADAM:
2022-09-25 18:23:15 +00:00
{
result = (struct ggml_opt_params) {
.type = GGML_OPT_TYPE_ADAM,
.graph_size = GGML_DEFAULT_GRAPH_SIZE,
.n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
.past = 0,
.delta = 1e-5f,
2022-09-25 18:23:15 +00:00
.max_no_improvement = 100,
.print_forward_graph = true,
.print_backward_graph = true,
.n_gradient_accumulation = 1,
2022-09-25 18:23:15 +00:00
.adam = {
.n_iter = 10000,
2023-06-25 11:22:21 +00:00
.sched = 1.000f,
.decay = 0.0f,
.decay_min_ndim = 2,
2022-09-25 18:23:15 +00:00
.alpha = 0.001f,
.beta1 = 0.9f,
.beta2 = 0.999f,
.eps = 1e-8f,
.eps_f = 1e-5f,
.eps_g = 1e-3f,
.gclip = 0.0f,
2022-09-25 18:23:15 +00:00
},
};
} break;
case GGML_OPT_TYPE_LBFGS:
2022-09-25 18:23:15 +00:00
{
result = (struct ggml_opt_params) {
.type = GGML_OPT_TYPE_LBFGS,
.graph_size = GGML_DEFAULT_GRAPH_SIZE,
.n_threads = 1,
.past = 0,
.delta = 1e-5f,
2022-09-25 18:23:15 +00:00
.max_no_improvement = 0,
.print_forward_graph = true,
.print_backward_graph = true,
.n_gradient_accumulation = 1,
2022-09-25 18:23:15 +00:00
.lbfgs = {
.m = 6,
.n_iter = 100,
.max_linesearch = 20,
.eps = 1e-5f,
.ftol = 1e-4f,
.wolfe = 0.9f,
.min_step = 1e-20f,
.max_step = 1e+20f,
.linesearch = GGML_LINESEARCH_DEFAULT,
},
};
} break;
}
return result;
}
2023-06-25 11:22:21 +00:00
GGML_API void ggml_opt_init(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_opt_params params,
int64_t nx) {
opt->ctx = ctx;
opt->params = params;
opt->iter = 0;
opt->nx = nx;
opt->just_initialized = true;
if (opt->ctx == NULL) {
struct ggml_init_params ctx_opt_params;
if (opt->params.type == GGML_OPT_TYPE_ADAM) {
ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
if (opt->params.past > 0) {
ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
}
} else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
if (opt->params.past > 0) {
ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
}
}
ctx_opt_params.mem_buffer = NULL;
ctx_opt_params.no_alloc = false;
opt->ctx = ggml_init(ctx_opt_params);
}
2023-06-25 11:22:21 +00:00
switch (opt->params.type) {
case GGML_OPT_TYPE_ADAM:
2023-06-25 11:22:21 +00:00
{
opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
2023-06-25 11:22:21 +00:00
opt->adam.pf = params.past > 0
? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
2023-06-25 11:22:21 +00:00
: NULL;
ggml_set_zero(opt->adam.m);
ggml_set_zero(opt->adam.v);
if (opt->adam.pf) {
ggml_set_zero(opt->adam.pf);
}
} break;
case GGML_OPT_TYPE_LBFGS:
2023-06-25 11:22:21 +00:00
{
opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
2023-06-25 11:22:21 +00:00
opt->lbfgs.pf = params.past > 0
? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
2023-06-25 11:22:21 +00:00
: NULL;
opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
2023-06-25 11:22:21 +00:00
ggml_set_zero(opt->lbfgs.x);
ggml_set_zero(opt->lbfgs.xp);
ggml_set_zero(opt->lbfgs.g);
ggml_set_zero(opt->lbfgs.gp);
ggml_set_zero(opt->lbfgs.d);
if (opt->lbfgs.pf) {
ggml_set_zero(opt->lbfgs.pf);
}
ggml_set_zero(opt->lbfgs.lmal);
ggml_set_zero(opt->lbfgs.lmys);
ggml_set_zero(opt->lbfgs.lms);
ggml_set_zero(opt->lbfgs.lmy);
} break;
}
}
2022-09-25 18:23:15 +00:00
enum ggml_opt_result ggml_opt(
struct ggml_context * ctx,
struct ggml_opt_params params,
struct ggml_tensor * f) {
bool free_ctx = false;
if (ctx == NULL) {
struct ggml_init_params params_ctx = {
.mem_size = 16*1024*1024,
.mem_buffer = NULL,
.no_alloc = false,
2022-09-25 18:23:15 +00:00
};
ctx = ggml_init(params_ctx);
if (ctx == NULL) {
return GGML_OPT_RESULT_NO_CONTEXT;
2022-09-25 18:23:15 +00:00
}
free_ctx = true;
}
enum ggml_opt_result result = GGML_OPT_RESULT_OK;
2022-09-25 18:23:15 +00:00
2023-06-25 11:22:21 +00:00
struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
ggml_opt_init(ctx, opt, params, 0);
result = ggml_opt_resume(ctx, opt, f);
if (free_ctx) {
ggml_free(ctx);
}
return result;
}
enum ggml_opt_result ggml_opt_resume(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f) {
// build forward + backward compute graphs
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
ggml_build_forward_expand(gf, f);
struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
ggml_build_backward_expand(ctx, gf, gb, true);
return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
}
enum ggml_opt_result ggml_opt_resume_g(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data) {
// build forward + backward compute graphs
enum ggml_opt_result result = GGML_OPT_RESULT_OK;
switch (opt->params.type) {
case GGML_OPT_TYPE_ADAM:
{
result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
} break;
case GGML_OPT_TYPE_LBFGS:
{
result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
} break;
}
if (opt->params.print_forward_graph) {
ggml_graph_print (gf);
ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
}
if (opt->params.print_backward_graph) {
ggml_graph_print (gb);
ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
}
return result;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_set_input(struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_INPUT;
}
void ggml_set_output(struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_quantize_init(enum ggml_type type) {
ggml_critical_section_start();
switch (type) {
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
IQ3_S: a much better alternative to Q3_K (llama/5676) * iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * Resurrecting iq3_xs After all the experimentation, nothing was better than this. * Minor PPL improvement via a block scale fudge factor * Minor improvement via 3 neighbours * iq3_xs: working scalar and AVX2 dot products * iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s) * iq3_xs: working Metal implementation * Adding IQ3_M - IQ3_XS mix with mostly Q4_K * iiq3_xs: a 3.4375 bpw variant * iq3_xs: make CUDA work for new version * iq3_xs: make scalar and AVX2 work for new version * iq3_s: make ARM_NEON work with new version * iq3_xs: make new version work on metal Performance is very similar to Q3_K_S * iq3_xs: tiny Metal speed improvement * iq3_xs: tiny Metal speed improvement * Fix stupid warning * Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS * iq3_xs: rename to iq3_s * iq3_s: make tests pass * Move Q3_K_XS mix to 3.25 bpw * Attempt to fix failing tests * Another attempt to fix the Windows builds * Attempt to fix ROCm * ROCm again * iq3_s: partial fix for QK_K = 64 * iq3_s: make it work on metal for QK_K = 64 Pleasent surprise: the coding was super-block size independent, so all it took was to delete some QK_K == 256 guards. * Will this fix ROCm? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 14:23:52 +00:00
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
default: // nothing
break;
}
ggml_critical_section_end();
}
void ggml_quantize_free(void) {
ggml_critical_section_start();
iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
iq2xs_free_impl(GGML_TYPE_IQ2_XS);
iq2xs_free_impl(GGML_TYPE_IQ1_S);
iq3xs_free_impl(256);
ggml_critical_section_end();
}
bool ggml_quantize_requires_imatrix(enum ggml_type type) {
return
type == GGML_TYPE_IQ2_XXS ||
type == GGML_TYPE_IQ2_XS ||
type == GGML_TYPE_IQ1_S;// ||
//type == GGML_TYPE_IQ1_M;
}
size_t ggml_quantize_chunk(
enum ggml_type type,
const float * src,
void * dst,
int64_t start,
int64_t nrows,
int64_t n_per_row,
const float * imatrix) {
const int64_t n = (int64_t) nrows * n_per_row;
if (ggml_quantize_requires_imatrix(type)) {
GGML_ASSERT(imatrix != NULL);
}
GGML_ASSERT(start % type_traits[type].blck_size == 0);
GGML_ASSERT(start % n_per_row == 0);
ggml_quantize_init(type); // this is noop if already initialized
const size_t start_row = start / n_per_row;
const size_t row_size = ggml_row_size(type, n_per_row);
size_t result = 0;
switch (type) {
case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_F16:
{
size_t elemsize = sizeof(ggml_fp16_t);
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
result = n * elemsize;
} break;
ggml : introduce bfloat16 support (llama/6412) * Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-08 06:30:09 +00:00
case GGML_TYPE_BF16:
{
size_t elemsize = sizeof(ggml_bf16_t);
ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
result = n * elemsize;
} break;
case GGML_TYPE_F32:
{
size_t elemsize = sizeof(float);
result = n * elemsize;
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
} break;
default:
assert(false);
}
GGML_ASSERT(result == nrows * row_size);
return result;
}
////////////////////////////////////////////////////////////////////////////////
struct gguf_str {
uint64_t n; // GGUFv2
char * data;
};
static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_UINT8] = sizeof(uint8_t),
[GGUF_TYPE_INT8] = sizeof(int8_t),
[GGUF_TYPE_UINT16] = sizeof(uint16_t),
[GGUF_TYPE_INT16] = sizeof(int16_t),
[GGUF_TYPE_UINT32] = sizeof(uint32_t),
[GGUF_TYPE_INT32] = sizeof(int32_t),
[GGUF_TYPE_FLOAT32] = sizeof(float),
[GGUF_TYPE_BOOL] = sizeof(bool),
[GGUF_TYPE_STRING] = sizeof(struct gguf_str),
[GGUF_TYPE_UINT64] = sizeof(uint64_t),
[GGUF_TYPE_INT64] = sizeof(int64_t),
[GGUF_TYPE_FLOAT64] = sizeof(double),
[GGUF_TYPE_ARRAY] = 0, // undefined
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_UINT8] = "u8",
[GGUF_TYPE_INT8] = "i8",
[GGUF_TYPE_UINT16] = "u16",
[GGUF_TYPE_INT16] = "i16",
[GGUF_TYPE_UINT32] = "u32",
[GGUF_TYPE_INT32] = "i32",
[GGUF_TYPE_FLOAT32] = "f32",
[GGUF_TYPE_BOOL] = "bool",
[GGUF_TYPE_STRING] = "str",
[GGUF_TYPE_ARRAY] = "arr",
[GGUF_TYPE_UINT64] = "u64",
[GGUF_TYPE_INT64] = "i64",
[GGUF_TYPE_FLOAT64] = "f64",
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
union gguf_value {
uint8_t uint8;
int8_t int8;
uint16_t uint16;
int16_t int16;
uint32_t uint32;
int32_t int32;
float float32;
uint64_t uint64;
int64_t int64;
double float64;
bool bool_;
struct gguf_str str;
struct {
enum gguf_type type;
uint64_t n; // GGUFv2
void * data;
} arr;
};
struct gguf_kv {
struct gguf_str key;
enum gguf_type type;
union gguf_value value;
};
struct gguf_header {
char magic[4];
uint32_t version;
uint64_t n_tensors; // GGUFv2
uint64_t n_kv; // GGUFv2
};
struct gguf_tensor_info {
struct gguf_str name;
uint32_t n_dims;
uint64_t ne[GGML_MAX_DIMS];
enum ggml_type type;
uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
// for writing API
const void * data;
size_t size;
};
struct gguf_context {
struct gguf_header header;
struct gguf_kv * kv;
struct gguf_tensor_info * infos;
size_t alignment;
size_t offset; // offset of `data` from beginning of file
size_t size; // size of `data` in bytes
//uint8_t * padding;
void * data;
};
static size_t gguf_type_size(enum gguf_type type) {
GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
return GGUF_TYPE_SIZE[type];
}
static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
for (uint32_t i = 0; i < info->n_dims; ++i) {
GGML_ASSERT(info->ne[i] > 0);
}
// prevent overflow for total number of elements
GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
}
static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
const size_t n = fread(dst, 1, size, file);
*offset += n;
return n == size;
}
static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
p->n = 0;
p->data = NULL;
bool ok = true;
ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
// early exit if string length is invalid, prevents from integer overflow
if (p->n == SIZE_MAX) {
fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
return false;
}
p->data = GGML_CALLOC(p->n + 1, 1);
ok = ok && gguf_fread_el(file, p->data, p->n, offset);
return ok;
}
static void gguf_free_kv(struct gguf_kv * kv) {
if (kv->key.data) {
GGML_FREE(kv->key.data);
}
if (kv->type == GGUF_TYPE_STRING) {
if (kv->value.str.data) {
GGML_FREE(kv->value.str.data);
}
}
if (kv->type == GGUF_TYPE_ARRAY) {
if (kv->value.arr.data) {
if (kv->value.arr.type == GGUF_TYPE_STRING) {
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
if (str->data) {
GGML_FREE(str->data);
}
}
}
GGML_FREE(kv->value.arr.data);
}
}
}
struct gguf_context * gguf_init_empty(void) {
struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
ctx->header.version = GGUF_VERSION;
ctx->header.n_tensors = 0;
ctx->header.n_kv = 0;
ctx->kv = NULL;
ctx->infos = NULL;
ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
ctx->offset = 0;
ctx->size = 0;
ctx->data = NULL;
return ctx;
}
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
FILE * file = ggml_fopen(fname, "rb");
if (!file) {
return NULL;
}
// offset from start of file
size_t offset = 0;
char magic[4];
// check the magic before making allocations
{
gguf_fread_el(file, &magic, sizeof(magic), &offset);
for (uint32_t i = 0; i < sizeof(magic); i++) {
if (magic[i] != GGUF_MAGIC[i]) {
fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
fclose(file);
return NULL;
}
}
}
bool ok = true;
struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
// read the header
{
strncpy(ctx->header.magic, magic, 4);
ctx->kv = NULL;
ctx->infos = NULL;
ctx->data = NULL;
ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
if (ctx->header.version == 1) {
fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
// sanity-checks to prevent from integer/buffer overflows
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
if (!ok) {
fprintf(stderr, "%s: failed to read header\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
}
// read the kv pairs
{
const uint64_t n_kv = ctx->header.n_kv;
// header.n_kv will hold the actual value of pairs that were successfully read in the loop below
ctx->header.n_kv = 0;
ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
for (uint64_t i = 0; i < n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
//fprintf(stderr, "%s: reading kv %d\n", __func__, i);
ok = ok && gguf_fread_str(file, &kv->key, &offset);
ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
//fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
switch (kv->type) {
case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
case GGUF_TYPE_ARRAY:
{
ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
switch (kv->value.arr.type) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL:
{
// prevent from integer overflow in the malloc below
if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
fclose(file);
gguf_free(ctx);
return NULL;
}
kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
} break;
case GGUF_TYPE_STRING:
{
// prevent from integer overflow in the malloc below
if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
fclose(file);
gguf_free(ctx);
return NULL;
}
kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
}
} break;
case GGUF_TYPE_ARRAY:
default: GGML_ASSERT(false && "invalid type"); break;
}
} break;
default: GGML_ASSERT(false && "invalid type");
}
if (!ok) {
break;
}
ctx->header.n_kv++;
}
if (!ok) {
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
}
// read the tensor infos
if (ctx->header.n_tensors > 0) {
ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
info->ne[j] = 1;
}
ok = ok && gguf_fread_str(file, &info->name, &offset);
ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
ok = ok && (info->n_dims <= GGML_MAX_DIMS);
for (uint32_t j = 0; j < info->n_dims; ++j) {
ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
}
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
// TODO: return an error instead of crashing with GGML_ASSERT
gguf_tensor_info_sanitize(info);
// make sure there is no duplicated tensor names
for (uint64_t j = 0; j < i; ++j) {
if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
ok = false;
}
}
if (!ok) {
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
}
}
ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
int alignment_idx = gguf_find_key(ctx, "general.alignment");
if (alignment_idx != -1) {
ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
}
// we require the data section to be aligned, so take into account any padding
{
const size_t offset_pad = offset % ctx->alignment;
if (offset_pad != 0) {
offset += ctx->alignment - offset_pad;
fseek(file, offset, SEEK_SET);
}
}
// store the current file offset - this is where the data section starts
ctx->offset = offset;
// compute the total size of the data section, taking into account the alignment
{
ctx->size = 0;
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
const int64_t ne =
(int64_t) info->ne[0] *
(int64_t) info->ne[1] *
(int64_t) info->ne[2] *
(int64_t) info->ne[3];
if (ne % ggml_blck_size(info->type) != 0) {
fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
__func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
fclose(file);
gguf_free(ctx);
return NULL;
}
const size_t size_cur = ggml_row_size(info->type, ne);
ctx->size += GGML_PAD(size_cur, ctx->alignment);
}
}
// load the tensor data only if requested
if (params.ctx != NULL) {
// if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
// otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
// the ggml_tensor structs to the appropriate locations in the binary blob
// compute the exact size needed for the new ggml_context
const size_t mem_size =
params.no_alloc ?
(ctx->header.n_tensors )*ggml_tensor_overhead() :
(ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
struct ggml_init_params pdata = {
.mem_size = mem_size,
.mem_buffer = NULL,
.no_alloc = params.no_alloc,
};
*params.ctx = ggml_init(pdata);
struct ggml_context * ctx_data = *params.ctx;
struct ggml_tensor * data = NULL;
if (!params.no_alloc) {
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
ok = ok && data != NULL;
// read the binary blob with the tensor data
ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
if (!ok) {
fprintf(stderr, "%s: failed to read tensor data\n", __func__);
fclose(file);
ggml_free(ctx_data);
gguf_free(ctx);
return NULL;
}
ctx->data = data->data;
}
ggml_set_no_alloc(ctx_data, true);
// create the tensors
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
const int64_t ne[GGML_MAX_DIMS] = {
ctx->infos[i].ne[0],
ctx->infos[i].ne[1],
ctx->infos[i].ne[2],
ctx->infos[i].ne[3],
};
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
ok = ok && cur != NULL;
if (!ok) {
break;
}
ggml_set_name(cur, ctx->infos[i].name.data);
// point the data member to the appropriate location in the binary blob using the tensor infos
if (!params.no_alloc) {
//cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
}
}
if (!ok) {
fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
fclose(file);
ggml_free(ctx_data);
gguf_free(ctx);
return NULL;
}
ggml_set_no_alloc(ctx_data, params.no_alloc);
}
fclose(file);
return ctx;
}
void gguf_free(struct gguf_context * ctx) {
if (ctx == NULL) {
return;
}
if (ctx->kv) {
// free string memory - not great..
for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
gguf_free_kv(&ctx->kv[i]);
}
GGML_FREE(ctx->kv);
}
if (ctx->infos) {
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
if (info->name.data) {
GGML_FREE(info->name.data);
}
}
GGML_FREE(ctx->infos);
}
GGML_FREE(ctx);
}
const char * gguf_type_name(enum gguf_type type) {
return GGUF_TYPE_NAME[type];
}
2023-09-15 11:49:56 +00:00
int gguf_get_version(const struct gguf_context * ctx) {
return ctx->header.version;
}
2023-09-15 11:49:56 +00:00
size_t gguf_get_alignment(const struct gguf_context * ctx) {
return ctx->alignment;
}
2023-09-15 11:49:56 +00:00
size_t gguf_get_data_offset(const struct gguf_context * ctx) {
return ctx->offset;
}
2023-09-15 11:49:56 +00:00
void * gguf_get_data(const struct gguf_context * ctx) {
return ctx->data;
}
2023-09-15 11:49:56 +00:00
int gguf_get_n_kv(const struct gguf_context * ctx) {
return ctx->header.n_kv;
}
2023-09-15 11:49:56 +00:00
int gguf_find_key(const struct gguf_context * ctx, const char * key) {
// return -1 if key not found
int keyfound = -1;
const int n_kv = gguf_get_n_kv(ctx);
for (int i = 0; i < n_kv; ++i) {
if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
keyfound = i;
break;
}
}
return keyfound;
}
const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].key.data;
}
enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].type;
}
enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
return ctx->kv[key_id].value.arr.type;
}
const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
return ctx->kv[key_id].value.arr.data;
}
2023-09-15 11:49:56 +00:00
const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
struct gguf_kv * kv = &ctx->kv[key_id];
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
return str->data;
}
int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
return ctx->kv[key_id].value.arr.n;
}
uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
return ctx->kv[key_id].value.uint8;
}
int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
return ctx->kv[key_id].value.int8;
}
uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
return ctx->kv[key_id].value.uint16;
}
int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
return ctx->kv[key_id].value.int16;
}
uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
return ctx->kv[key_id].value.uint32;
}
int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
return ctx->kv[key_id].value.int32;
}
float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
return ctx->kv[key_id].value.float32;
}
uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
return ctx->kv[key_id].value.uint64;
}
int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
return ctx->kv[key_id].value.int64;
}
double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
return ctx->kv[key_id].value.float64;
}
bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
return ctx->kv[key_id].value.bool_;
}
const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
return ctx->kv[key_id].value.str.data;
}
const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
return &ctx->kv[key_id].value;
}
2023-09-15 11:49:56 +00:00
int gguf_get_n_tensors(const struct gguf_context * ctx) {
return ctx->header.n_tensors;
}
2023-09-15 11:49:56 +00:00
int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
// return -1 if tensor not found
int tensorfound = -1;
const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) {
if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
tensorfound = i;
break;
}
}
return tensorfound;
}
2023-09-15 11:49:56 +00:00
size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
return ctx->infos[i].offset;
}
2023-09-15 11:49:56 +00:00
char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
return ctx->infos[i].name.data;
}
enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
return ctx->infos[i].type;
}
// returns the index
static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
const int idx = gguf_find_key(ctx, key);
if (idx >= 0) {
return idx;
}
const int n_kv = gguf_get_n_kv(ctx);
ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
ctx->kv[n_kv].key.n = strlen(key);
ctx->kv[n_kv].key.data = strdup(key);
ctx->header.n_kv++;
return n_kv;
}
void gguf_remove_key(struct gguf_context * ctx, const char * key) {
const int idx = gguf_find_key(ctx, key);
if (idx >= 0) {
const int n_kv = gguf_get_n_kv(ctx);
gguf_free_kv(&ctx->kv[idx]);
for (int i = idx; i < n_kv-1; ++i) {
ctx->kv[i] = ctx->kv[i+1];
}
ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
ctx->header.n_kv--;
}
}
void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT8;
ctx->kv[idx].value.uint8 = val;
}
void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT8;
ctx->kv[idx].value.int8 = val;
}
void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT16;
ctx->kv[idx].value.uint16 = val;
}
void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT16;
ctx->kv[idx].value.int16 = val;
}
void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT32;
ctx->kv[idx].value.uint32 = val;
}
void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT32;
ctx->kv[idx].value.int32 = val;
}
void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
ctx->kv[idx].value.float32 = val;
}
void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT64;
ctx->kv[idx].value.uint64 = val;
}
void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT64;
ctx->kv[idx].value.int64 = val;
}
void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
ctx->kv[idx].value.float64 = val;
}
void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_BOOL;
ctx->kv[idx].value.bool_ = val;
2023-06-25 11:22:21 +00:00
}
void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
const int idx = gguf_get_or_add_key(ctx, key);
2023-06-25 11:22:21 +00:00
ctx->kv[idx].type = GGUF_TYPE_STRING;
ctx->kv[idx].value.str.n = strlen(val);
ctx->kv[idx].value.str.data = strdup(val);
}
2023-06-25 11:22:21 +00:00
void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
const int idx = gguf_get_or_add_key(ctx, key);
2023-06-25 11:22:21 +00:00
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
ctx->kv[idx].value.arr.type = type;
ctx->kv[idx].value.arr.n = n;
ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
}
2023-06-25 11:22:21 +00:00
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
ctx->kv[idx].value.arr.n = n;
ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
for (int i = 0; i < n; i++) {
struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
str->n = strlen(data[i]);
str->data = strdup(data[i]);
}
}
// set or add KV pairs from another context
void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
for (uint32_t i = 0; i < src->header.n_kv; i++) {
switch (src->kv[i].type) {
case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
case GGUF_TYPE_ARRAY:
{
if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
}
gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
GGML_FREE((void *)data);
} else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
GGML_ASSERT(false && "nested arrays not supported");
} else {
gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
}
} break;
default: GGML_ASSERT(false && "invalid type"); break;
}
}
2023-06-25 11:22:21 +00:00
}
void gguf_add_tensor(
struct gguf_context * ctx,
const struct ggml_tensor * tensor) {
if (gguf_find_tensor(ctx, tensor->name) != -1) {
GGML_ASSERT(false && "duplicated tensor name");
}
const int idx = ctx->header.n_tensors;
ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
2023-06-25 11:22:21 +00:00
ctx->infos[idx].name.n = strlen(tensor->name);
ctx->infos[idx].name.data = strdup(tensor->name);
2022-09-25 18:23:15 +00:00
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
ctx->infos[idx].ne[i] = 1;
2022-09-25 18:23:15 +00:00
}
ctx->infos[idx].n_dims = ggml_n_dims(tensor);
for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
ctx->infos[idx].ne[i] = tensor->ne[i];
2022-09-25 18:23:15 +00:00
}
ctx->infos[idx].type = tensor->type;
ctx->infos[idx].offset = 0;
ctx->infos[idx].data = tensor->data;
ctx->infos[idx].size = ggml_nbytes(tensor);
if (ctx->header.n_tensors > 0) {
ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
2022-09-25 18:23:15 +00:00
}
ctx->header.n_tensors++;
2022-09-25 18:23:15 +00:00
}
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
const int idx = gguf_find_tensor(ctx, name);
if (idx < 0) {
GGML_ASSERT(false && "tensor not found");
}
ctx->infos[idx].type = type;
}
void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
const int idx = gguf_find_tensor(ctx, name);
if (idx < 0) {
GGML_ASSERT(false && "tensor not found");
}
ctx->infos[idx].data = data;
ctx->infos[idx].size = size;
// update offsets
for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
}
}
//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
// fwrite(&val->n, sizeof(val->n), 1, file);
// fwrite(val->data, sizeof(char), val->n, file);
//}
//
//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
// fwrite(val, sizeof(char), size, file);
//}
struct gguf_buf {
void * data;
size_t size;
size_t offset;
};
static struct gguf_buf gguf_buf_init(size_t size) {
struct gguf_buf buf = {
/*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
/*buf.size =*/ size,
/*buf.offset =*/ 0,
};
return buf;
}
static void gguf_buf_free(struct gguf_buf buf) {
if (buf.data) {
GGML_FREE(buf.data);
}
}
static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
if (buf->offset + size > buf->size) {
buf->size = 1.5*(buf->offset + size);
if (buf->data) {
buf->data = realloc(buf->data, buf->size);
}
}
}
static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
gguf_buf_grow(buf, sizeof(val->n) + val->n);
if (buf->data) {
memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
}
buf->offset += sizeof(val->n);
if (buf->data) {
memcpy((char *) buf->data + buf->offset, val->data, val->n);
}
buf->offset += val->n;
}
static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
gguf_buf_grow(buf, el_size);
if (buf->data) {
memcpy((char *) buf->data + buf->offset, val, el_size);
}
buf->offset += el_size;
}
2023-09-15 11:49:56 +00:00
static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
// write header
gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
// write key-value pairs
for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
gguf_bwrite_str(buf, &kv->key);
gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
switch (kv->type) {
case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
case GGUF_TYPE_ARRAY:
{
gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
switch (kv->value.arr.type) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL:
{
gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
} break;
case GGUF_TYPE_STRING:
{
for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
}
} break;
case GGUF_TYPE_ARRAY:
default: GGML_ASSERT(false && "invalid type"); break;
}
} break;
default: GGML_ASSERT(false && "invalid type");
}
}
// write tensor infos
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
gguf_bwrite_str(buf, &info->name);
gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
for (uint32_t j = 0; j < info->n_dims; ++j) {
gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
}
gguf_bwrite_el(buf, &info->type, sizeof(info->type));
gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
}
// we require the data section to be aligned, so take into account any padding
{
const size_t offset = buf->offset;
const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
if (offset_pad != offset) {
uint8_t pad = 0;
for (size_t i = 0; i < offset_pad - offset; ++i) {
gguf_bwrite_el(buf, &pad, sizeof(pad));
}
}
}
if (only_meta) {
return;
}
size_t offset = 0;
// write tensor data
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
const size_t size = info->size;
const size_t size_pad = GGML_PAD(size, ctx->alignment);
gguf_bwrite_el(buf, info->data, size);
if (size_pad != size) {
uint8_t pad = 0;
for (size_t j = 0; j < size_pad - size; ++j) {
gguf_bwrite_el(buf, &pad, sizeof(pad));
}
}
GGML_ASSERT(offset == info->offset);
offset += size_pad;
}
}
2023-09-15 11:49:56 +00:00
void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
FILE * file = ggml_fopen(fname, "wb");
if (!file) {
GGML_ASSERT(false && "failed to open file for writing");
}
struct gguf_buf buf = gguf_buf_init(16*1024);
gguf_write_to_buf(ctx, &buf, only_meta);
fwrite(buf.data, 1, buf.offset, file);
gguf_buf_free(buf);
fclose(file);
}
2023-09-15 11:49:56 +00:00
size_t gguf_get_meta_size(const struct gguf_context * ctx) {
// no allocs - only compute size
struct gguf_buf buf = gguf_buf_init(0);
gguf_write_to_buf(ctx, &buf, true);
return buf.offset;
}
2023-09-15 11:49:56 +00:00
void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
struct gguf_buf buf = gguf_buf_init(16*1024);
gguf_write_to_buf(ctx, &buf, true);
memcpy(data, buf.data, buf.offset);
gguf_buf_free(buf);
}
////////////////////////////////////////////////////////////////////////////////
2022-11-23 11:23:24 +00:00
int ggml_cpu_has_avx(void) {
#if defined(__AVX__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx_vnni(void) {
#if defined(__AVXVNNI__)
return 1;
#else
return 0;
2022-11-23 11:23:24 +00:00
#endif
}
2022-10-25 17:18:26 +00:00
int ggml_cpu_has_avx2(void) {
#if defined(__AVX2__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512(void) {
#if defined(__AVX512F__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512_vbmi(void) {
#if defined(__AVX512VBMI__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512_vnni(void) {
#if defined(__AVX512VNNI__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512_bf16(void) {
#if defined(__AVX512BF16__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_fma(void) {
#if defined(__FMA__)
return 1;
#else
return 0;
#endif
}
2022-10-25 17:18:26 +00:00
int ggml_cpu_has_neon(void) {
#if defined(__ARM_NEON)
2022-10-25 17:18:26 +00:00
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_sve(void) {
#if defined(__ARM_FEATURE_SVE)
// TODO: Currently, SVE 256 bit is only supported.
GGML_ASSERT(svcntb() == QK8_0);
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_arm_fma(void) {
#if defined(__ARM_FEATURE_FMA)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_metal(void) {
#if defined(GGML_USE_METAL)
return 1;
#else
return 0;
#endif
}
2022-12-06 19:56:56 +00:00
int ggml_cpu_has_f16c(void) {
#if defined(__F16C__)
return 1;
#else
return 0;
#endif
}
2022-10-25 17:18:26 +00:00
int ggml_cpu_has_fp16_va(void) {
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_wasm_simd(void) {
#if defined(__wasm_simd128__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_blas(void) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_cuda(void) {
#if defined(GGML_USE_CUDA)
2022-10-25 17:18:26 +00:00
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_clblast(void) {
#if defined(GGML_USE_CLBLAST)
return 1;
#else
return 0;
#endif
}
ggml : add Vulkan backend (llama/2059) * Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:03:59 +00:00
int ggml_cpu_has_vulkan(void) {
#if defined(GGML_USE_VULKAN)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_kompute(void) {
#if defined(GGML_USE_KOMPUTE)
return 1;
#else
return 0;
#endif
}
ggml : add unified SYCL backend for Intel GPUs (llama/2690) * first update for migration * update init_cublas * add debug functio, commit all help code * step 1 * step 2 * step3 add fp16, slower 31->28 * add GGML_LIST_DEVICE function * step 5 format device and print * step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue * support main device is non-zero * step7 add debug for code path, rm log * step 8, rename all macro & func from cuda by sycl * fix error of select non-zero device, format device list * ren ggml-sycl.hpp -> ggml-sycl.h * clear CMAKE to rm unused lib and options * correct queue: rm dtct:get_queue * add print tensor function to debug * fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481 * summary dpct definition in one header file to replace folder:dpct * refactor device log * mv dpct definition from folder dpct to ggml-sycl.h * update readme, refactor build script * fix build with sycl * set nthread=1 when sycl, increase performance * add run script, comment debug code * add ls-sycl-device tool * add ls-sycl-device, rm unused files * rm rear space * dos2unix * Update README_sycl.md * fix return type * remove sycl version from include path * restore rm code to fix hang issue * add syc and link for sycl readme * rm original sycl code before refactor * fix code err * add know issue for pvc hang issue * enable SYCL_F16 support * align pr4766 * check for sycl blas, better performance * cleanup 1 * remove extra endif * add build&run script, clean CMakefile, update guide by review comments * rename macro to intel hardware * editor config format * format fixes * format fixes * editor format fix * Remove unused headers * skip build sycl tool for other code path * replace tab by space * fix blas matmul function * fix mac build * restore hip dependency * fix conflict * ren as review comments * mv internal function to .cpp file * export funciton print_sycl_devices(), mv class dpct definition to source file * update CI/action for sycl code, fix CI error of repeat/dup * fix action ID format issue * rm unused strategy * enable llama_f16 in ci * fix conflict * fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml * fix ci cases for unsupported data type * revert unrelated changed in cuda cmake remove useless nommq fix typo of GGML_USE_CLBLAS_SYCL * revert hip cmake changes * fix indent * add prefix in func name * revert no mmq * rm cpu blas duplicate * fix no_new_line * fix src1->type==F16 bug. * pass batch offset for F16 src1 * fix batch error * fix wrong code * revert sycl checking in test-sampling * pass void as arguments of ggml_backend_sycl_print_sycl_devices * remove extra blank line in test-sampling * revert setting n_threads in sycl * implement std::isinf for icpx with fast math. * Update ci/run.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * add copyright and MIT license declare * update the cmd example --------- Co-authored-by: jianyuzh <jianyu.zhang@intel.com> Co-authored-by: luoyu-intel <yu.luo@intel.com> Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 15:56:23 +00:00
int ggml_cpu_has_sycl(void) {
#if defined(GGML_USE_SYCL)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_rpc(void) {
#if defined(GGML_USE_RPC)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_gpublas(void) {
return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
ggml_cpu_has_sycl();
}
int ggml_cpu_has_sse3(void) {
#if defined(__SSE3__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_ssse3(void) {
#if defined(__SSSE3__)
return 1;
#else
return 0;
#endif
}
2023-01-05 04:00:30 +00:00
int ggml_cpu_has_vsx(void) {
#if defined(__POWER9_VECTOR__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_matmul_int8(void) {
#if defined(__ARM_FEATURE_MATMUL_INT8)
return 1;
#else
return 0;
#endif
}
2022-10-25 17:18:26 +00:00
////////////////////////////////////////////////////////////////////////////////