This drops a use of downstream "mac-address-increment".
Cc: Christian Svensson <blue@cmd.nu>
Cc: Tommy Nevtelen <tommy@nevtelen.com>
Cc: Viktor Ekmark <viktor@ekmark.se>
Cc: Daniel Wennberg <github@networkninja.se>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Tested-by: Christian Svensson <blue@cmd.nu>
With upstream accepted "mac-base" binding there is no need for a
downstream "mac-address-ascii" workaround anymore.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
[TP-Link EC330-G5u v1 - OK]
Tested-by: Mikhail Zhilkin <csharper2005@gmail.com>
return ubnt_rocket-m and ubnt_powerbridge-m back to ath79-generic
They have enough RAM-ressources to not be considered as tiny.
This reverts the commit f4415f7635 partially
Signed-off-by: Felix Baumann <felix.bau@gmx.de>
the SDK's Makefile referenced the old file name.
Update it too.
Fixes: 2d5f7035cf ("sdk: rename README")
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Hardware information:
---------------------
- RTL8380 SoC
- 8 Gigabit RJ45 PoE ports (built-in RTL8218B)
- 2 SFP ports (built-in SerDes)
- RJ45 RS232 port on front panel
- 32 MiB NOR Flash
- 128 MiB DDR3 DRAM
- PT7A7514 watchdog
- PoE chips: Nuvoton M0516LDE + BCM59121
Known issues:
---------------------
- PoE LEDs are uncontrolled.
(Manual taken from f2f09bc002)
Booting initramfs image:
------------------------
- Prepare a FTP or TFTP server serving the OpenWrt initramfs image and
connect the server to a switch port.
- Connect to the console port of the device and enter the extended
boot menu by typing Ctrl+B when prompted.
- Choose the menu option "<3> Enter Ethernet SubMenu".
- Set network parameters via the option "<5> Modify Ethernet Parameter".
Enter the FTP/TFTP filename as "Load File Name" ("Target File Name"
can be left blank, it is not required for booting from RAM). Note that
the configuration is saved on flash, so it only needs to be done once.
- Select "<1> Download Application Program To SDRAM And Run".
Initial installation:
---------------------
- Boot an initramfs image as described above, then use sysupgrade to
install OpenWrt permanently. After initial installation, the
bootloader needs to be configured to load the correct image file
- Enter the extended boot menu again and choose "<4> File Control",
then select "<2> Set Application File type".
- Enter the number of the file "openwrt-kernel.bin" (should be 1), and
use the option "<1> +Main" to select it as boot image.
- Choose "<0> Exit To Main Menu" and then "<1> Boot System".
NOTE: The bootloader on these devices can only boot from the VFS
filesystem which normally spans most of the flash. With OpenWrt, only
the first part of the firmware partition contains a valid filesystem,
the rest is used for rootfs. As the bootloader does not know about this,
you must not do any file operations in the bootloader, as this may
corrupt the OpenWrt installation (selecting the boot image is an
exception, as it only stores a flag in the bootloader data, but doesn't
write to the filesystem).
Example PoE config file (/etc/config/poe):
---------------------
config global
option budget '180'
config port
option enable '1'
option id '1'
option name 'lan8'
option poe_plus '1'
option priority '2'
config port
option enable '1'
option id '2'
option name 'lan7'
option poe_plus '1'
option priority '2'
config port
option enable '1'
option id '3'
option name 'lan6'
option poe_plus '1'
option priority '2'
config port
option enable '1'
option id '4'
option name 'lan5'
option poe_plus '1'
option priority '2'
config port
option enable '1'
option id '5'
option name 'lan4'
option poe_plus '1'
option priority '2'
config port
option enable '1'
option id '6'
option name 'lan3'
option poe_plus '1'
option priority '2'
config port
option enable '1'
option id '7'
option name 'lan2'
option poe_plus '1'
option priority '2'
config port
option enable '1'
option id '8'
option name 'lan1'
option poe_plus '1'
option priority '2'
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
removed redundant eeprom partition nodes from
cn7130_ubnt_edgerouter-4.dts and cn7130_ubnt_edgerouter-6p.dts
as they are identically defined in cn7130_ubnt_edgerouter-e300.dtsi.
Signed-off-by: Carsten Spieß <mail@carsten-spiess.de>
(integrated eeprom referenced node in the .dtsi)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The MAC addresses should be read from 3rd MTD partition,
but only two MTD partitions are populated.
To fix it, a partitions node has to surround the partition
nodes in device tree.
Tested with Edgerouter 6P
Signed-off-by: Carsten Spieß <mail@carsten-spiess.de>
(fixed checkpatch complains)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
LEDs on Edgerouter 6P didn't work correctly:
blue /white LED swapped, on/off state inverted
Fixed in device tree:
swap the GPIO ports for power:blue and power:white LEDs
change LED activity from LOW to HIGH
Tested on Edgerouter 6P
Signed-off-by: Carsten Spieß <mail@carsten-spiess.de>
This is the first commit to introduce the base for the N821 board used
in Cisco vEdge 1000.
This commit does not include the custom CPLD drivers but rather
everything else that is already present in the upstream kernel.
This results in an image that boots, but e.g. the SFP ports are not
usable.
Hardware:
- CPU: Cavium Networks CN6130, 4 cores @ 1.0 GHz
- Flash:
- 16 MiB SPI NOR presented as 2x8 MiB for A/B boot recovery
- 8192 MiB eMMC
- RAM: 4096 MiB
- Ethernet 1Gbit ports: 1x
- Ethernet SFP ports: 8x
- USB ports: 2x 3.0 Type-A on front panel
- Serial: Two, one internal and one external
- JTAG: Yes
- LED count: 18x
- Button count: 1x
- GPIOs: 1x
- Power: 2x redundant DC 12V barrel plug
- Extra: Slot for SD card on front
See the OpenWrt wiki for more hardware details.
Installation:
- Flash squashfs to /dev/sda2 and put kernel on /dev/sda1.
- Update uboot's bootcmd environment variable to match.
Full installation guide will be added to OpenWrt wiki when sysupgrade
support is added.
Signed-off-by: Christian Svensson <blue@cmd.nu>
Signed-off-by: Tommy Nevtelen <tommy@nevtelen.com>
Tested-by: Viktor Ekmark <viktor@ekmark.se>
Tested-by: Daniel Wennberg <github@networkninja.se>
For the N821 platform we need to load the AT24 EEPROM driver before
everything else in order for the MAC address to be available at
driver initialization time.
Signed-off-by: Christian Svensson <blue@cmd.nu>
'help' target fails not finding a file, so follow up on a change[2] made
as a fix for main README[1].
1. d0113711a3 ("README: port to 21st century")
2. 751486b31f ("build: fix README.md reference after rename")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Some device recipes remove default target packages. If user tries to add
them back they will be ignored, since packages list is processed in one
go. Process the device recipe packages first and do user ones later, so
additions won't get filtered out.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
There is no need to use reference if original node it specified in
exactly the same file. This is a minor cleanup simplifying DTS code.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
DT binding for MAC cells in fixed layout was upstream approved and
accepted. Add support for it. This can replace quite some of our
downstream hacks.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
The PHY of the wan2 port on MQmaker WiTi is wired to the second MAC of the
SoC. Rename the wan interface to wan1 and define it under the switch node,
effectively disabling the PHY muxing of the MT7530 switch's phy4.
Define the PHY of the wan2 port and adjust the gmac1 node accordingly. Now
that the PHY muxing feature is not being used anymore, the wan2 port can be
used to achieve 2 Gbps total bandwidth to the CPU.
Tested-by: Demetris Ierokipides <ierokipides.dem@gmail.com>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Rename GB-PC1 to GnuBee GB-PC1, and GB-PC2 to GnuBee GB-PC2. Let's not make
naming exceptions because of marketing whims.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
ASUS RT-AC59U / RT-AC59U v2 are wi-fi routers with a large number of
alternate names, including RT-AC1200GE, RT-AC1300G PLUS, RT-AC1500UHP,
RT-AC57U v2/v3, RT-AC58U v2/v3, and RT-ACRH12.
ASUS ZenWiFi AC Mini(CD6) is a mesh wifi system. The unit labeled CD6R
is the router, and CD6N is the node.
Hardware:
- SoC: QCN5502
- RAM: 128 MiB
- UART: 115200 baud (labeled on boards)
- Wireless:
- 2.4GHz: QCN5502 on-chip 4x4 802.11b/g/n
currently unsupported due to missing support for QCN550x in ath9k
- 5GHz: QCA9888 pcie 5GHz 2x2 802.11a/n/ac
- Flash: SPI NOR
- RT-AC59U / CD6N: 16 MiB
- RT-AC59U v2 / CD6R: 32 MiB
- Ethernet: gigabit
- RT-AC59U / RT-AC59U v2: 4x LAN 1x WAN
- CD6R: 3x LAN 1x WAN
- CD6N: 2x LAN
- USB:
- RT-AC59U / RT-AC59U v2: 1 port USB 2.0
- CD6R / CD6N: none
WiFi calibration data contains valid MAC addresses.
The initramfs image is uncompressed because I was unable to boot a
compressed initramfs from memory (gzip or lzma). Booting a compressed
image from flash works fine.
Installation:
To install without opening the case:
- Set your computer IP address to 192.168.1.10/24
- Power up with the Reset button pressed
- Release the Reset button after about 5 seconds or until you see the
power LED blinking slowly
- Upload OpenWRT factory image via TFTP client to 192.168.1.1
Revert to stock firmware using the same TFTP method.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
All the tools (e.g fw_setenv, ubiupdatevol) and config (fw_env.config)
needed for sysupgrade are already included in /lib/upgrade/stage2
Signed-off-by: Mathew McBride <matt@traverse.com.au>
The PHY driver needs to read a register containing the values of the
bootstrap pins (which happen to be the PHY LEDs) to determine the LED
polarities. Allow regmap access to first pinctrl bank by adding the
'syscon' compatible, and reference the pinctrl in the MDIO bus where
the PHY driver will look for it.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This option was removed from upstream kernel back in 2022.
See commits:
2d16803c562ecc644803d42ba98a8e0aef9c014e (>=6.0)
3dd33a09f5dc12ccb0902923c4c784eb0f8c7554 (>=5.15.61 backport)
Signed-off-by: Christian Svensson <blue@cmd.nu>
With Linux 6.1 many of our downstream patches and out-of-tree files
can be removed or at least replaced by backported upstream commits.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[fix CMDLINE_OVERRIDE for arm64]
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The old RealTek RTL8367S switch driver which is used for some MT7622
devices needs to be modified to no longer free the GPIO after reset
has completed.
This is due to Linux 5.19 removing devm_gpio_free via commit
2b038e786f83 ("gpiolib: devres: Get rid of unused devm_gpio_free()")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
When refreshing the hack patches for Linux 6.1 the part of the uImage.FIT
partition parser patch which takes care of allowing mtdblock and ubiblock
devices to have partitions has been dropped, supposedly by accident.
Re-add a that part to the patch, so devices using a uImage.FIT filesystem
sub-image as rootfs can work with Linux 6.1.
Fixes: 19a246bb65 ("generic: 6.1: manually refresh hack patches")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Manually rebased:
generic/hack-6.1/220-arm-gc_sections.patch
armsr/patches-6.1/221-armsr-disable_gc_sections_armv7.patch
All other patches automatically rebased.
Signed-off-by: John Audia <therealgraysky@proton.me>
All patches automatically rebased.
Acknowledgment to @john-tho for the changes to fs.mk to accommodate new paths
introduced in 29429a1f58
Build system: x86_64
Build-tested: bcm2711/RPi4B
Run-tested: bcm2711/RPi4B
Signed-off-by: John Audia <therealgraysky@proton.me>
The upstream board-2.bin file in the linux-firmware.git
repository for the QCA4019 contains a packed board-2.bin
for this device for both 2.4G and 5G wifis. This isn't
something that the ath10k driver supports.
Until this feature either gets implemented - which is
very unlikely -, or the upstream boardfile is mended
(both, the original submitter and ath10k-firmware
custodian have been notified). OpenWrt will go back
and use its own bespoke boardfile. This unfortunately
means that 2.4G and on some revisions the 5G WiFi is
not available in the initramfs image for this device.
Fixes: #12886
Reported-by: Christian Heuff <christian@heuff.at>
Debugged-by: Georgios Kourachanis <geo.kourachanis@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
CONFIG_NVME_HWMON exposes /sys/class/nvme/nvme0/device/hwmon
to allow sensors (and others) to see NVMe drive health
Signed-off-by: John Audia <therealgraysky@proton.me>
In commit b2d1eb717b ("generic: 5.15: enable Werror by default for
kernel compile") CONFIG_WERROR=y was enabled and all warnings/errors
reported with GCC 12 were fixed.
Keeping this in sync with past/future GCC versions is going to be uphill
battle, so lets introduce new KERNEL_WERROR config option, enable it by
default only for tested/known working combinations and on buildbots.
References: #12687
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The TP-Link EAP613 v1 is a ceiling-mount 802.11ax access point. It can
be powered via PoE or a DC barrel connector (12V). Connecting to the
UART requires fine soldering and careful manipulation of any soldered
wires.
Device details:
* SoC: MT7621AT
* Flash: 16 MiB SPI NOR
* RAM: 256 MiB DDR3L
* Wi-Fi:
* MT7905DA + MT7975D: 2.4 GHz + 5 GHz (DBDC), 2x2:2
* Two stamped metal antennas (ANT1, ANT2)
* One PCB antenna (ANT3)
* One unpopulated antenna (ANT4)
* Ethernet:
* 1× 10/100/1000 Mbps port with PoE
* LEDs:
* Array of four blue LEDs with one control line
* Buttons:
* Reset
* Board test points:
* UART: next to CPU RF-shield and power circuits
* JTAG: under CPU RF-shield (untested)
* Watchdog: 3PEAK TPV706 (not implemented)
Althought three antennas are populated, the MT7905DA does not support
the additional Rx chain for background DFS detection (or Bluetooth)
according to commit 6cbcc34f50 ("ramips: disable unsupported
background radar detection").
MAC addresses:
* LAN: 48:22:54:xx:xx:a2 (device label)
* WLAN 2.4 GHz: 48:22:54:xx:xx:a2
* WLAN 5 GHz: 48:22:54:xx:xx:a3
The radio calibration blob stored in flash also contains valid MAC
addresses for both radio bands (OUI 00:0c:43).
Factory install:
1. Enable SSH on the device via web interface
2. Log in with SSH, and run `cliclientd stopcs`
3. Upload -factory.bin image via web interface. It may be necessary to
shorten the filename of the image to e.g. 'factory.bin'.
Recovery:
1. Open the device by unscrewing four screws from the backside
2. Carefully remove board from the housing
3. Connect to UART (3.3V):
* Find test points labelled "VCC", "GND", "UART_TX", "UART_RX"
* Solder wires to test points or connect otherwise. Be careful not
to damage the PCB e.g. by pulling on soldered wires.
* Open console with 115200n8 settings
4. Interrupt bootloader and use tftpboot to start an initramfs:
setenv ipaddr $DEVICE_IP
setenv serverip $SERVER_IP
tftpboot 84000000 openwrt-initramfs-kernel.bin
bootm
DO NOT use saveenv to store modified u-boot environment variables. The
environment is saved at flash offset 0x30000, which erases part of the
(secondary) bootloader.
The device uses two bootloader stages. The first stage will load the
second stage from a uImage stored at flash offset 0x10000. In case of
a damaged second stage, the first stage should allow uploading a new
image via y-modem (untested).
Signed-off-by: Sander Vanheule <sander@svanheule.net>
The NETGEAR WAX220 employs NMBM on SPI-NAND. In order to avoid dealing
with invalid factory data, enable NMBM in the area preceding the UBI
volume.
Signed-off-by: David Bauer <mail@david-bauer.net>
To improve code readability in drivers/net/phy/rtl83xx-phy.c, replace
constants MMD_AN and MMD_VEND2 from drivers/net/phy/rtl83xx-phy.h with
MDIO_MMD_AN and MDIO_MMD_VEND2 from <linux/mdio.h>.
Also, replace
BIT(0) with MDIO_EEE_2_5GT,
BIT(1) with MDIO_EEE_100TX,
BIT(2) with MDIO_EEE_1000T,
BIT(9) with MDIO_AN_CTRL1_RESTART,
BIT(12) with MDIO_AN_CTRL1_ENABLE,
32 with MDIO_AN_10GBT_CTRL,
60 with MDIO_AN_EEE_ADV, and
62 with MDIO_AN_EEE_ADV2
from <linux/mdio.h>.
Suggested-by: DENG Qingfang <dqfext@gmail.com>
Signed-off-by: Pascal Ernster <git@hardfalcon.net>
Replace BIT(x) and numerical values in drivers/net/phy/rtl83xx-phy.c
with constants from <linux/mii.h> to improve code readability.
To make reviewing easier, this commit only addresses ADVERTISE_* and
MII_PHYSID* constants.
Signed-off-by: Pascal Ernster <git@hardfalcon.net>
Replace numerical values, BIT(x) and (1 << x) in
drivers/net/phy/rtl83xx-phy.c with constants from <linux/mii.h> to
improve code readability.
To make reviewing easier, this commit only addresses MII_BMCR and BMCR_*
constants.
Suggested-by: DENG Qingfang <dqfext@gmail.com>
Signed-off-by: Pascal Ernster <git@hardfalcon.net>
Add support for ComFast CF-E390AX. It is a 802.11 wifi6 cieling AP, based on MediaTek MT7261AT.
Specifications:
SoC: MediaTek MT7621AT
RAM: 128 MiB
Flash: 16 MiB NOR (Macronix mx25l12805d)
Wireless: MT7915E (2.4G) 802.11ax/b/g/n MT7915E (5G) 802.11ac/ax/n
Ethernet: 2 x 1Gbs
Button: 1 x "Reset" button
LED: 1x Blue LED + 1x Red LED + 1x green LED
Power: PoE
Manufacturer Page:
http://en.comfast.com.cn/index.php?m=content&c=index&a=show&catid=84&id=75
Flash Layout:
0x000000000000-0x000000030000 : "bootloader"
0x000000030000-0x000000040000 : "config"
0x000000050000-0x000000060000 : "factory"
0x000000090000-0x000001000000 : "firmware"
First install:
1. Set device into http firmware fail safe upload mode by pressing the reset button for 10 seconds while powering
it on. Once the LED stops flashing, safe mode will be running.
2. Set PC IP address to 192.168.1.2
3. Browse to 192.168.1.1 and upload the factory image using the web interface.
Signed-off-by: Usama Nassir <usama.nassir@gmail.com>
COMFAST CF-E380AC v2 is a ceiling mount AP with PoE
support, based on Qualcomm/Atheros QCA9558+QCA9880+AR8035.
There are two versions of this model, with different RAM
and U-Boot mtd partition sizes:
- v1: 128 MB of RAM, 128 KB U-Boot image size
- v2: 256 MB of RAM, 256 KB U-Boot image size
Version number is available only inside vendor GUI,
hardware and markings are the same.
Short specification:
- 720/600/200 MHz (CPU/DDR/AHB)
- 1x 10/100/1000 Mbps Ethernet, with PoE support
- 128 or 256 MB of RAM (DDR2)
- 16 MB of FLASH
- 3T3R 2.4 GHz, with external PA (SE2576L), up to 28 dBm
- 3T3R 5 GHz, with external PA (SE5003L1), up to 30 dBm
- 6x internal antennas
- 1x RGB LED, 1x button
- UART (T11), LEDs/GPIO (J7) and USB (T12) headers on PCB
- external watchdog (Pericon Technology PT7A7514)
COMFAST MAC addresses :
Though the OEM firmware has four adresses in the usual locations,
it appears that the assigned addresses are just incremented in a different way:
Interface address location
Lan *:00 0x0
2.4g *:0A n/a (0x0 + 10)
5g *:02 0x6
Unused Addresses found in ART hexdump
address location
*:01 0x1002
*:03 0x5006
To keep code consistency the MAC address assignments are made based on increments of the one found in 0x0;
Signed-off-by: Joao Henrique Albuquerque <joaohccalbu@gmail.com>
This commit adds support for following wireless routers:
- Beeline SmartBox PRO (Serсomm S1500 AWI)
- WiFire S1500.NBN (Serсomm S1500 BUC)
This commit is based on this PR:
- Link: https://github.com/openwrt/openwrt/pull/4770
- Author: Maximilian Weinmann <x1@disroot.org>
The opening of this PR was agreed with author.
My changes:
- Sorting, minor changes and some movings between dts and dtsi
- Move leds to dts when possible
- Recipes for the factory image
- Update of the installation/recovery/return to stock guides
- Add reset GPIO for the pcie1
Common specification
--------------------
SoC: MediaTek MT7621AT (880 MHz, 2 cores)
Switch: MediaTek MT7530 (via SoC MT7621AT)
Wireless: 2.4 GHz, MT7602EN, b/g/n, 2x2
Wireless: 5 GHz, MT7612EN, a/n/ac, 2x2
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
Mini PCIe: via J2 on PCB, not soldered on the board
UART: J4 -> GND[], TX, VCC(3.3V), RX
BootLoader: U-Boot SerComm/Mediatek
Beeline SmartBox PRO specification
----------------------------------
RAM (Nanya NT5CB128M16FP): 256 MiB
NAND-Flash (ESMT F59L2G81A): 256 MiB
USB ports: 2xUSB2.0
LEDs: Status (white), WPS (blue), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (reset, wps), 1 switch button (ROUT<->REP)
Power: 12 VDC, 1.5 A
PCB Sticker: 970AWI0QW00N256SMT Ver. 1.0
CSN: SG15********
MAC LAN: 94:4A:0C:**:**:**
Manufacturer's code: 0AWI0500QW1
WiFire S1500.NBN specification
------------------------------
RAM (Nanya NT5CC64M16GP): 128 MiB
NAND-Flash (ESMT F59L1G81MA): 128 MiB
USB ports: 1xUSB2.0
LEDs: Status (white), WPS (white), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (RESET, WPS)
Power: 12 VDC, 1.0 A
PCB Sticker: 970BUC0RW00N128SMT Ver. 1.0
CSN: MH16********
MAC WAN: E0:60:66:**:**:**
Manufacturer's code: 0BUC0500RW1
MAC address table (PRO)
-----------------------
use address source
LAN *:23 factory 0x1000 (label)
WAN *:24 factory $label +1
2g *:23 factory $label
5g *:25 factory $label +2
MAC addresses (NBN)
-------------------
use address source
LAN *:0e factory 0x1000
WAN *:0f LAN +1 (label)
2g *:0f LAN +1
5g *:10 LAN +2
OEM easy installation
---------------------
1. Remove all dots from the factory image filename (except the dot
before file extension)
2. Upload and update the firmware via the original web interface
3. Two options are possible after the reboot:
a. OpenWrt - that's OK, the mission accomplished
b. Stock firmware - install Stock firmware (to switch booflag from
Sercomm0 to Sercomm1) and then OpenWrt factory image.
Return to Stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock2
reboot
2. Install stock firmware via the web OEM firmware interface
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
Tested-by: Pavel Ivanov <pi635v@gmail.com>
Tested-by: Denis Myshaev <denis.myshaev@gmail.com>
Tested-by: Oleg Galeev <olegingaleev@gmail.com>
Tested-By: Ivan Pavlov <AuthorReflex@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
This commit moves a part of the code from the "sercomm-factory-cqr" recipe
to the separate "sercomm-mkhash" recipe. This simplifies recipes and
allows insert additional recipes between these code blocks (required for
the future support for Beeline SmartBox PRO router).
dd automatically fills the file by 0x00 if the filesize is less than
offset where we start writing. We drop such dd command so we need to add
--extra-padding-size 0x190 to the sercomm-pid.py call.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Mikrotik RB951 router has a buzzer on the board, which makes annoying noises
due to the interference caused by PoE input or Wifi transmission
when no GPIO pin state is set.
I added buzzer node to device's DTS in order to set deault level to 1
and to provide easier access for it.
Signed-off-by: Pavel Pernička <pernicka.pa@gmail.com>
The Traverse LS1043 boards were not publicly released,
all the production has been going to OEM customers who
do not use the image format defined in the OpenWrt tree.
Only a few samples were circulated outside Traverse
and our OEM customers. The public release (then called
Five64) of this series was cancelled in favour of our
LS1088A based design (Ten64).
It is best to remove these boards to avoid wasting
OpenWrt project and contributor resources.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: W25N01GVZEIG 128MB
RAM: NT5CB128M16JR-FL 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, WPS
Power: DC 12V 1A
Flash instructions:
1. PC run command: "telnet 192.168.124.1 99"
Username: H3C, password is the web login
password of the router.
2. Download preloader.bin and bl31-uboot.fip
3. PC run command: "python3 -m http.server 80"
4. Download files in the telnet window:
"wget http://192.168.124.xx/xxx.bin"
Replace xx with your PC's IP and
the preloader.bin and bl31-uboot.fip.
5. Flushing openwrt's uboot:
"mtd write xxx-preloader.bin BL2"
"mtd write xxx-bl31-uboot.fip FIP"
6. Connect to the router via the Lan port,
set a static ip of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
7. Download initramfs image, reboot router,
waiting for tftp recovery to complete.
8. After openwrt boots up, perform sysupgrade.
Note:
1. The u-boot-env partition on mtd is empty,
OEM stores their env on ubi:u-boot-env.
2. Back up all mtd partitions before flashing.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Netgear EX6250v2, EX6400v3, EX6410v2, EX6470 are wall-plug 802.11ac
(Wi-Fi 5) extenders. Like other MT7629 devices, Wi-Fi does not work
currently as there is no driver.
Related: https://github.com/openwrt/openwrt/pull/5084
For future reference, 2.4GHz MAC = LAN+1, 5GHz MAC = LAN+2.
Specifications:
* MT7629, 256 MiB RAM, 16 MiB SPI NOR
* MT7761N (2.4GHz) / MT7762N (5GHz) - no driver
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
* After installation, perform a factory reset. Wait for the device to
boot, then hold the reset button for 10 seconds. This is needed
because sysupgrade in the stock firmware will attempt to preserve its
configuration using sysupgrade.tgz.
See https://github.com/openwrt/openwrt/pull/4182
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
Netgear EAX12, EAX11v2, EAX15v2 are wall-plug 802.11ax (Wi-Fi 6)
extenders that share the SoC, WiFi chip, and image format with the
WAX202.
Specifications:
* MT7621, 256 MiB RAM, 128 MiB NAND
* MT7915: 2.4/5 GHz 2x2 802.11ax (DBDC)
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)
All LEDs and buttons appear to work without state_default.
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
References in GPL source:
https://www.downloads.netgear.com/files/GPL/EAX12_EAX11v2_EAX15v2_GPL_V1.0.3.34_src.tar.gz
* target/linux/ramips/dts/mt7621-rfb-ax-nand.dts
DTS file for this device.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
These fields are used for EAX12 and EX6250v2 series, and perhaps other
devices. Compatibility is preserved with the WAX202 and WAX206.
In addition, adds the related vars to DEVICE_VARS so that the variables
work correctly with multiple devices.
References in GPL source:
https://www.downloads.netgear.com/files/GPL/EAX12_EAX11v2_EAX15v2_GPL_V1.0.3.34_src.tar.gz
* tools/imgencoder/src/gj_enc.c
Contains code that generates the encrypted image.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
CONFIG_FRAME_WARN is set dynamically, so there is no need for it to be set
in target kernel configs, so lets remove it from all configs.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
CONFIG_FRAME_WARN value is set by config/Config-kernel.in based on the
target type dynamically since commit:
16a2051 ("kernel: Set CONFIG_FRAME_WARN depending on target").
However, CONFIG_FRAME_WARN was not set to get filtered out so it ended up
in multiple target configs during refreshes.
So, lets filter out CONFIG_FRAME_WARN as its set dynamically to prevent it
ending up in more target configs.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Migrate to "new" image generation method. Device profiles will be generated
based on image/Makefile instead of profiles/ , which will also allow to
automatically build images for all supported devices via buildbot.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Calling rtl822x_probe() on phy devices which uses the rtl822x_read_mmd()
and rtl822x_write_mmd() functions makes no sense and the probe ends with
an EOPNOTSUPP error.
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
The mdio bus is used to control externel switch. In most cases, they are
disabled, which is the normal behavior. Treating this as an error makes
no sense, so we need to change the notification level from error to info.
Fixes: a2acdf9607 ("ramips: mt7620: remove useless GMAC nodes")
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
General specification:
SoC Type: MediaTek MT7620A (580MHz)
ROM: 8 MB SPI-NOR (MX25L6406E)
RAM: 64 MB DDR (W9751G6KB-25)
Switch: MediaTek MT7530
Ethernet: 5 ports - 5×100MbE (WAN, LAN1-4)
Wireless: 2.4 GHz (MediaTek RT5390): b/g/n
Wireless: 5 GHz (MediaTek MT7610EN): ac/n
Buttons: 2 button (POWER, WPS/RESET)
Bootloader: U-Boot 1.1.3
Power: 12 VDC, 0.5 A
MACs:
| LAN | [Factory + 0x04] - 2 |
| WLAN 2.4g | [Factory + 0x04] - 1 |
| WLAN 5g | [Factory + 0x8004] - 3 |
| WAN | [Factory + 0x04] - 2 |
OEM easy installation:
1. Use a PC to browse to http://192.168.0.1.
2. Go to the System section and open the Firmware Update section.
3. Under the Local Update at the right, click on the CHOOSE FILE...
4. When a modal window appears, choose the firmware file and click on
the Open.
5. Next click on the UPDATE FIRMWARE button and upload the firmware image.
Wait for the router to flash and reboot.
OEM installation using the TFTP method (need level converter):
1. Download the latest firmware image.
2. Set up a Tftp server on a PC (e.g. Tftpd32) and place the firmware
image to the root directory of the server.
3. Power off the router and use a twisted pair cable to connect the PC
to any of the router's LAN ports.
4. Configure the network adapter of the PC to use IP address 192.168.0.180
and subnet mask 255.255.255.0.
5. Connect serial port (57600 8N1) and turn on the router.
6. Then interrupt "U-Boot Boot Menu" by hitting 2 key (select "2: Load
system code then write to Flash via TFTP.").
7. Press Y key when show "Warning!! Erase Linux in Flash then burn new
one. Are you sure? (Y/N)"
Input device IP (192.168.0.1) ==:192.168.0.1
Input server IP (192.168.0.180) ==:192.168.0.180
Input Linux Kernel filename () ==:firmware_name
The router should download the firmware via TFTP and complete flashing in
a few minutes.
After flashing is complete, use the PC to browse to http://192.168.1.1 or
ssh to proceed with the configuration.
Signed-off-by: Alexey Bartenev <41exey@proton.me>
This is required for managed operation of the SFP ports on
the Ten64 (LS1088A) and other boards.
The two issues resolved are:
- Validation of 10G SFP link modes fail as Linux did not
consider the equivalence of modes like XFI, 10GBase-R
- Fix a locking issue that prevented the system rebooting
when SFP ports were controlled by the SFP driver.
Please note, these patches are replaced by upstream ones
in 6.x, see: commit 61ec9a8154 ("armvirt: add SFP support
patches for NXP Layerscape DPAA2 platforms") in OpenWrt for
the relevant patches.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
The Ten64 board[1] is based around NXP's Layerscape LS1088A SoC.
It is capable of booting both standard Linux distributions
from disk devices, using EFI, and booting OpenWrt
from NAND.
See the online manual for more information, including the
flash layout[2].
This patchset adds support for generating Ten64 images
for NAND boot.
For disk boot, one can use the EFI support that was
recently added to the armvirt target.
We previously supported NAND users by building
inside our armvirt/EFI target[3], but this approach
is not suitable for OpenWrt upstream. Users who
used our supplied NAND images will be able to upgrade
to this via sysupgrade.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
[1] - https://www.traverse.com.au/hardware/ten64
[2] - https://ten64doc.traverse.com.au/hardware/flash/
[3] - Example:
285e4360e1
The ZTE MF287+ is a LTE router used (exclusively?) by the network operator
"3". The MF287 (i.e. non-plus aka 3Neo) is also supported (the only
difference is the LTE modem)
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12 (MF287+) / ZTE Cat6 (MF287)
WiFi: 802.11a/b/g/n/ac SoC-integrated
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m14
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd13 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock13 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 14
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Some ZTE devices require the gpio-restart driver to support restarting the
LTE modem along with OpenWrt
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Specifications:
- Device: Edimax BR-6208AC V2
- SoC: MT7620A
- Flash: 16 MiB
- RAM: 64 MiB
- Switch: 1 WAN, 3 LAN (10/100 Mbps)
- WiFi: MT7620 2.4 GHz + MT7610E 5 GHz
- LEDs: 1x POWER (green, not configurable)
1x Firmware (green, configurable)
1x Internet (green, configurable)
1x VPN (green, configurable)
1x 2.4G (green, not configurable)
1x 5G (green, not configurable)
Normal installation:
- Upload the sysupgrade image via the default web interface
Installation with U-Boot and TFTP:
- Requires a TFTP server which provides the sysupgrade image
- Requires a connection to the serial port of the device, rate 57600
Signed-off-by: Stefan Weil <sw@weilnetz.de>
MikroTik RB951G-2HnD is a wireless SOHO router that was previously
supported by the ar71xx target, see commit 7a709573d7 ("ar71xx: add
kernel support for the Mikrotik RB951G board").
Specifications
--------------
- SoC: Atheros AR9344 (600 MHz)
- RAM: 128 MB (2x 64 MB)
- Storage: 128 MB NAND flash (various manufacturers)
- Ethernet: Atheros AR8327 switch, 5x 10/100/1000 Mbit/s
- 1x PoE in (port 1, 8-30 V input)
- Wireless: Atheros AR9340 (802.11b/g/n)
- USB: 2.0 (1A)
- 8x LED:
- 1x power (green, not configurable)
- 1x user (green, not configurable)
- 5x GE ports (green, not configurable)
- 1x wireless (green, not configurable)
- 1x button (restart)
Unlike on the RB951Ui-2HnD, none of the LEDs on this device seem to be
GPIO-controllable, which was also the case for older OpenWRT versions
that supported this board via a mach file. The Ethernet port LEDs are
controlled by the switch chip.
See https://mikrotik.com/product/RB951G-2HnD for more details.
Flashing
--------
TFTP boot initramfs image and then perform sysupgrade. Follow
common MikroTik procedures at https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
Mikrotik RouterBOARD 951Ui-2HnD and Mikrotik RouterBOARD RB951G-2HnD are
very similar devices. Extract the DTS bits that are identical for these
two boards to a separate DTSI file.
Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
ath79_pll_base was declared as extern but no code exported it.
Anyone including arch/mips/include/asm/mach-ath79/ath79.h and compiled
as a module would break with:
ERROR: modpost: "ath79_pll_base" [drivers/net/ethernet/atheros/ag71xx/ag71xx.ko] undefined!
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Device specifications:
======================
* Qualcomm/Atheros AR9344
* 128 MB of RAM
* 16 MB of SPI NOR flash
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4/5 GHz Wi-Fi
* 4x GPIO-LEDs (1x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* 2x fast ethernet
- lan1
+ builtin switch port 1
+ used as WAN interface
- lan2
+ builtin switch port 2
+ used as LAN interface
* 9-30V DC
* external antennas
Flashing instructions:
======================
Log in to https://192.168.127.253/
Username: admin
Password: moxa
Open Maintenance > Firmware Upgrade and install the factory image.
Serial console access:
======================
Connect a RS232-USB converter to the maintenance port.
Pinout: (reset button left) [GND] [NC] [RX] [TX]
Firmware Recovery:
==================
When the WLAN and SYS LEDs are flashing, the device is in recovery mode.
Serial console access is required to proceed with recovery.
Download the original image from MOXA and rename it to 'awk-1137c.rom'.
Set up a TFTP server at 192.168.127.1 and connect to a lan port.
Follow the instructions on the serial console to start the recovery.
Signed-off-by: Maximilian Martin <mm@simonwunderlich.de>
This commit adds support for Mercusys MR90X(EU) v1 router.
Device specification
--------------------
SoC Type: MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM: MediaTek MT7986BLA (512MB)
Flash: SPI NAND GigaDevice GD5F1GQ5UEYIGY (128 MB)
Ethernet: MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet: 1x2.5Gbe (WAN/LAN 2.5Gbps), 3xGbE (WAN/LAN 1Gbps, LAN1, LAN2)
WLAN 2g: MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g: MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs: 1 orange and 1 green status LEDs, 4 green gpio-controlled
LEDs on ethernet ports
Button: 1 (Reset)
USB ports: No
Power: 12 VDC, 2 A
Connector: Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, both UBI
slots contain "seconduboot" (also U-Boot 2022.01-rc4)
Serial console (UART)
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
|
+--- Don't connect
The R3 (TX line) and R6 (RX line) are absent on the PCB. You should
solder them or solder the jumpers.
Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Once inside OpenWrt, set / update env variables:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Installation (without UART)
---------------------------
1. Login as root via SSH (router IP, port 20001, password - your web
interface password)
2. Open for editing /etc/hotplug.d/iface/65-iptv (e.g., using WinSCP and
SSH settings from the p.1)
3. Add a newline after "#!/bin/sh":
telnetd -l /bin/login.sh
4. Save "65-iptv" file
5. Toggle "IPTV/VLAN Enable" checkbox in the router web interface and
save
6. Make sure that telnetd is running:
netstat -ltunp | grep 23
7. Login via telnet to router IP, port 23 (no username and password are
required)
8 Upload OpenWrt "initramfs-kernel.bin" to the "/tmp" folder of the
router (e.g., using WinSCP and SSH settings from the p.1)
9. Stock busybox doesn't contain ubiupdatevol command. Hence, we need to
download and upload the full version of busybox to the router. For
example, from here:
https://github.com/xerta555/Busybox-Binaries/raw/master/busybox-arm64
Upload busybox-arm64 to the /tmp dir of the router and run:
in the telnet shell:
cd /tmp
chmod a+x busybox-arm64
10. Check "initramfs-kernel.bin" size:
du -h initramfs-kernel.bin
11. Delete old and create new "kernel" volume with appropriate size
(greater than "initramfs-kernel.bin" size):
ubirmvol /dev/ubi0 -N kernel
ubimkvol /dev/ubi0 -n 1 -N kernel -s 9MiB
12. Write OpenWrt "initramfs-kernel.bin" to the flash:
./busybox-arm64 ubiupdatevol /dev/ubi0_1 /tmp/initramfs-kernel.bin
13. u-boot-env can be empty so lets create it (or overwrite it if it
already exists) with the necessary values:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
14. Reboot to OpenWrt initramfs:
reboot
15. Login as root via SSH (IP 192.168.1.1, port 22)
16. Upload OpenWrt sysupgrade.bin image to the /tmp dir of the router
17. Run sysupgrade:
sysupgrade -n /tmp/sysupgrade.bin
Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.1.1/) and
upload the OEM firmware
Recovery (UART)
---------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Do what you need (restore partitions from a backup, install OpenWrt
etc.)
Stock layout
------------
0x000000000000-0x000000200000 : "boot"
0x000000200000-0x000000300000 : "u-boot-env"
0x000000300000-0x000003500000 : "ubi0"
0x000003500000-0x000006700000 : "ubi1"
0x000006700000-0x000006f00000 : "userconfig"
0x000006f00000-0x000007300000 : "tp_data"
ubi0/ubi1 format
----------------
U-Boot at boot checks that all volumes are in place:
+-------------------------------+
| Volume Name: uboot Vol ID: 0|
| Volume Name: kernel Vol ID: 1|
| Volume Name: rootfs Vol ID: 2|
+-------------------------------+
MAC addresses
-------------
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| label | 00:eb:xx:xx:xx:be | label |
| LAN | 00:eb:xx:xx:xx:be | label |
| WAN | 00:eb:xx:xx:xx:bf | label+1 |
| WLAN 2g | 00:eb:xx:xx:xx:be | label |
| WLAN 5g | 00:eb:xx:xx:xx:bd | label-1 |
+---------+-------------------+-----------+
label MAC address was found in UBI partition "tp_data", file
"default-mac". OEM wireless eeprom is also there (file
"MT7986_EEPROM.bin").
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
After migrating to kernel 5.15, upgrading causes the units to become
soft-bricked, hanging forever at the kernel startup.
Kernel size limitation of 4000000 bytes is suspected here, but this is
not fully confirmed.
Disable the images to protect users from inadvertent bricking of units,
because recovery of those is painful with Cisco's U-boot, until the root
cause is found and fixed.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
As already documented in the wiki (https://openwrt.org/toh/wavlink/quantum_dax_wn538a8),
this router is based on the Phicomm K3. Just the flashing method is different
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Previously both lan1 and lan2 leds were wrongly labelled as lan2.
Moreover they were connected to the wrong lan port.
Fixes 8fde82095b ("ramips: add support for Wavlink WL-WN535K1")
Reported-by: Nicolò Maria Semprini <nicosemp@gmail.com>
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Hardware
========
CPU Qualcomm Atheros QCA9558
RAM 256MB DDR2
FLASH 2x 16M SPI-NOR (Macronix MX25L12805D)
WIFI Qualcomm Atheros QCA9558
Atheros AR9590
Installation
============
1. Attach to the serial console of the AP-105.
Interrupt autoboot and change the U-Boot env.
$ setenv rb_openwrt "setenv ipaddr 192.168.1.1;
setenv serverip 192.168.1.66;
netget 0x80060000 ap115.bin; go 0x80060000"
$ setenv fb_openwrt "bank 1;
cp.b 0xbf100040 0x80060000 0x10000; go 0x80060000"
$ setenv bootcmd "run fb_openwrt"
$ saveenv
2. Load the OpenWrt initramfs image on the device using TFTP.
Place the initramfs image as "ap105.bin" in the TFTP server
root directory, connect it to the AP and make the server reachable
at 192.168.1.66/24.
$ run rb_openwrt
3. Once OpenWrt booted, transfer the sysupgrade image to the device
using scp and use sysupgrade to install the firmware.
Signed-off-by: David Bauer <mail@david-bauer.net>
The Arcadyan AR7516, AKA Orange Bright Box or EE Bright Box 1, is a wifi
fast ethernet router, 2.4 GHz single band with two internal antennas. It
comes with a horizontal stand black shiny casing.
Newer Bright Box 1 model stands vertically, and comes with a totally
different board inside, not compatible with this firmware.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 V7.5 @ 320Mhz
- RAM: 64 MB DDR2
- Flash: 8 MB SPI NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: Broadcom BCM43227 802.11bgn (onboard)
- USB: 1x 2.0
- ADSL: yes, unsupported
- Buttons: 2x
- LEDs: 9x, power LED is hardware controlled
- UART: yes
Installation in two steps, new CFE bootloader and firmware:
Install new CFE:
1. Power off the router and press the RESET button
2. Power on the router and wait some seconds
3. Release the RESET button
3. Browse to http://192.168.1.1, this web interface will offer both
firmware (“Software”) upgrade and bootloader upgrade; be sure to
use the bootloader section of the upload form.
4. Upload the new CFE (availabe at the wiki page)
5. Wait about a minute for flashing to finish and reboot into the new bootloader.
Install OpenWrt via new CFE web UI:
1. After installing the new CFE, visit http://192.168.1.1
2. Upload the Openwrt cfe firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>