The TP-LINK TL-ST1008F has active-high LEDs, so we need a device tree
property to express this.
Signed-off-by: Lorenz Brun <lorenz@brun.one>
[Tidy up code, restrict changes to 5.15]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
On RTL931x builds, CONFIG_RTL931X was used as a stand-in for
CONFIG_NO_EXCEPT_FILL. Now that the latter is always selected for
devices in the realtek target, this hack can be removed. Resulting
device images are binary identical.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
It seems like we are offsetting the KERNEL_ENTRY to +0x400, which is
also accomplished by the NO_EXCEPT_FILL configuration option.
Since this is the default for MIPS_GENERIC_KERNEL, lets push a little
bit closer to that one by doing the same thing.
Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>
It appears that only a few users are using the pistachio SoC. The most
active user of the target has already approved the testing kernel and
so it is very unlikely bugs will be reported in the near future.
Therefore, the target should be directly bumped to 5.15.
Acked-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: Nick Hainke <vincent@systemli.org>
Copy config and patch from kernel 5.10 to kernel 5.15.
Signed-off-by: Nick Hainke <vincent@systemli.org>
[Updated the copy]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Recent backport of NVMEM layout support as well as acommpanying OF changes
introduced a false #nvmem-cell-cells warning as #nvmem-cell-cells are
fully optional.
So, backport an upstream fix for this.
Fixes: 11759a5bf3 ("kernel: backport of changes & helpers")
Signed-off-by: Robert Marko <robimarko@gmail.com>
This device has two sets of volumes: main ones (`kernel`, `rootfs`, etc) and
'backup' (`kernel.b`, `rootfs.b`, etc). Bootloader tries to determine which set of
volumes to use by looking at contens of `extra-para` and `extra-para.b` volumes.
These volumes contain JSON that looks like this:
```
{
"dbootFlag": "1",
"integerFlag": "1",
"fwFlag": "GOOD",
"score":1
}
```
It looks like the bootloader looks for `"fwFlag": "GOOD"` (as opposed to `BAD`)
then it compares `score` field - whichever 'good' volume has bigger score wins.
This determines which set of volumes to use to boot.
So for example if `extra-para` is good and has bigger score then `kernel`,
`rootfs`, etc volumes are used. This means bootloader needs to explain to the
kernel which volume to use for the rootfs. After looking at bootloader code with
disassembler I think it contains a bug. Relevant part of code looks something
like this:
```
if (image_id == 0) {
rootfs_volume_id = 8;
rootfs_volume_name = "rootfs";
}
else {
rootfs_volume_id = 0xf;
rootfs_volume_name = "rootfs.b";
}
sprintf(
&buffer,
0x800,
"console=ttyS0,115200 noinitrd ubi.mtd=3,2048 ubi.block=0,%s
root=/dev/ubiblock0_%d DKMGT_IMAGE_ID=%d DKMGT_IMAGE_TYPE=ubi",
rootfs_volume_name,
rootfs_volume_id,
image_id
);
```
Where `image_id == 0` if 'normal' (not '*.b' set of volumes is used).
However from device dumps we know that from the factory `rootfs.b` has id 8 and
`rootfs` has id 15.
So from above we can see that ids and names of rootfs volumes do not match. More
over - they are hardcoded in the bootloader.
Both things are problematic for OpwnWRT which completely removes volumes on
update meaning that volume ids may actually change.
So instead of relying on bootloader to provide the kernel with root device this
patch forces kernel to determine root automatically - and it defaults to
`rootfs` volume which is correct for our purposes.
Overall this makes image boot fine from flash after sysupgrade from inirams.
assuming `extra-para*` volumes make bootloader use non-'*.b' set of volumes.
Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com>
After commit e0d2c59ee995 ("genirq: Always limit the affinity to online
CPUs", 5.10) on Linux, the cpumask passed to irq_set_affinity of irqchip
driver is limited to online CPUs. When irq_do_set_affinity called from
otto timer driver with only one secondary CPU, that CPU is not marked as
online yet, filtered out by cpu_online_mask and fall to error path.
Then, fail to set affinity for that CPU and it leads to instability of
timer on secondary CPU(s).
At least, RTL839x system will be affected.
log:
[ 37.560020] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[ 37.638025] rcu: 1-...!: (0 ticks this GP) idle=6ac/0/0x0 softirq=0/0 fqs=1 (false positive?)
[ 37.752683] (detected by 0, t=6002 jiffies, g=-1179, q=26293)
[ 37.829510] Sending NMI from CPU 0 to CPUs 1:
[ 37.886857] NMI backtrace for cpu 1 skipped: idling at r4k_wait_irqoff+0x1c/0x24
[ 37.984801] rcu: rcu_sched kthread timer wakeup didn't happen for 5999 jiffies! g-1179 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402
[ 38.132743] rcu: Possible timer handling issue on cpu=1 timer-softirq=0
[ 38.221033] rcu: rcu_sched kthread starved for 6000 jiffies! g-1179 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 ->cpu=1
[ 38.356336] rcu: Unless rcu_sched kthread gets sufficient CPU time, OOM is now expected behavior.
[ 38.474440] rcu: RCU grace-period kthread stack dump:
...
Replace to irq_force_affinity from irq_set_affinity and ignore
cpu_online_mask to fix the issue.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Tested-by: Olliver Schinagl <oliver@schinagl.nl>
_oob_read returns number of bitflips on success while
bbt_nand_read should return 0.
Fixes: 2d49e49b18 ("mediatek: bmt: use generic mtd api")
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
TP-Link and ASUS OnHub devices are very similar, sharing many of the
same characteristics and much of their Device Tree. They both run a
version of ChromeOS for their factory firmware, and so installation
instructions look very similar to Google Wifi [1].
Things I've tested, and are working:
* Ethernet
* WiFi (2.4 and 5 GHz)
* LEDs
* USB
* eMMC
* Serial console (if you wire it up yourself)
* 2x CPU
* Speaker
== Installation instructions summary ==
1. Flash *-factory.bin to a USB drive (e.g., with `dd`)
2. Insert USB drive, to boot OpenWrt from USB
3. Copy the same *-factory.bin over to device, and flash it to eMMC to
make OpenWrt permanent
== Developer mode, booting from USB (Step 2) ==
To enter Developer Mode and boot OpenWrt from a USB stick:
1. Unplug power
2. Gain access to the "developer switch" through the bottom of the
device
3. Hold down the "reset switch" (near the USB port / power plug)
4. Plug power back in
5. The LED on the device should turn white, then blink orange, then
red. Release the reset switch.
6. Insert USB drive with OpenWrt factory.bin
7. Press the hidden developer switch under the device to boot to USB;
you should see some activity lights (if you have any) on your USB
drive
8. Depending on your configuration, the router's LED(s) should come on.
You're now running OpenWrt off a USB stick.
These instructions are derived from:
https://www.exploitee.rs/index.php/Rooting_The_Google_OnHub#Enabling_%22Developer_Mode%22_on_the_OnHubhttps://www.exploitee.rs/index.php/Asus_OnHub#Enabling_%22Developer_Mode%22_on_the_OnHub
~~Finding the developer switch:~~ for TP-Link, the developer switch is
on the bottom of the device, underneath some of the rubber padding and a
screw. For ASUS, remove the entire base, via 4 screws under the rubber
feet. See the Exploitee instructions for more info and photos.
== Making OpenWrt permanent (on eMMC) (Step 3) ==
Once you're running OpenWrt via USB:
1. Connect Ethernet to the LAN port; router's LAN address should be at
192.168.1.1
2. Connect another system to the router's LAN, and copy the factory.bin
image over, via SCP and SSH:
scp -O openwrt-ipq806x-chromium-tplink_onhub-squashfs-factory.bin root@192.168.1.1:
ssh root@192.168.1.1 -C "dd if=/dev/zero bs=512 seek=7552991 of=/dev/mmcblk0 count=33 && \
dd if=/root/openwrt-ipq806x-chromium-tplink_onhub-squashfs-factory.bin of=/dev/mmcblk0"
3. Reboot and remove the USB drive.
== Developer mode beep ==
Note that every time you boot the OnHub in developer mode, the device
will play a loud "beep" after a few seconds. This is described in the
Chromium docs [2], and is intended to make it clear that the device is
not running Google software. It is nontrivial to completely disable this
beep, although it's possible to "acknowledge" developer mode (and skip
the beep) by using a USB keyboard to press CTRL+D every time you boot.
[1] https://openwrt.org/toh/google/wifi
[2] https://chromium.googlesource.com/chromiumos/docs/+/HEAD/developer_mode.md
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
For IPQ8064 systems based off the "Google Storm" reference platform,
such as the TP-Link OnHub.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
This fixes device tree registration for 'qcom,lpass-cpu' as used by
qcom-ipq8064 SoCs, and allows speaker audio to function.
This patch has been submitted (and merged, for -next; likely v6.3)
upstream.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Refresh target config with `make kernel_menuconfig`, then save the
result. This drops missing symbols or otherwise accounts for defaults.
It should not change any functionality.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Similar to commit 4d8b42d8a7 ("ipq40xx: point to externally compiled
dtbs in recipes").
Currently, we patch our DTS files into the kernel source tree, so the
kernel build process will produce DTBs for us. The kernel-to-DTS
dependency can cause buildroot to perform excessive rebuilds of the
kernel though, which slows down device development iteration.
Buildroot also compiles DTBs on its own, to
$(KDIR)/image-$(DEVICE_DTS).dtb. With small adjustments, we can leverage
this, and stop patching DTS files into the kernel Makefile at the same
time.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Due to upstream change in U-boot the binaries were renamed [1].
[1] 87ac4b4b4c
Fixes: 2f83369e3e ("uboot-mvebu: update to version 2023.01")
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
ZyXEL NBG7815 is a premium 802.11ax "tri"-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
* RAM: 1 GB 2x Nanya NT5CC256M16ER-EK
* Storage:
* 8MB serial flash Winbond W25Q64DW
* 4GB eMMC flash Kingston EMMC04G-M627
* Ethernet:
* 4x1G RJ45 ports (QCA8074A) with 1x status LED per port
* 1x2.5G RJ45 port (QCA8081) with 1x status LED
* 1x10G RJ45 port (AQR113C) with 1x status LED
* Switch: Qualcomm Atheros QCA8075
* WLAN:
* 2.4GHz: Qualcomm QCN5024 4x4@40MHz 802.11b/g/n/ax 1147 Mbps PHY rate
* 2x 5GHz: Qualcomm QCN5054 4x4 802.11a/b/g/n/ac/ax 2402 PHY rate
* Bluetooth CSR8811 using HSUART, currently unsupported
* USB: 1x USB3.0 Type-A port
* LED-s currently not supported:
* White
* Dark Blu
* Amber
* Purple
* Purple and dark blue
* Red
* Buttons:
* 1x Soft reset
* Power: 12V DC Jack
Installation instructions:
* Disconnect WAN
* Reset device to factory defaults by pushing reset button 15 sec,
LEDs should lit orange color.
* After 5-10 minutes, when the LEDs turn constant dark blue,
put your LAN cable and connect at address 192.168.123.1 by telnet on port 23
* Login with
NBG7815 login: root
password: nbg7815@2019
* cd /tmp/ApplicationData
* wget -O openwrt-ipq807x-generic-zyxel_nbg7815-squashfs-sysupgrade.bin http://...
* wget https://github.com/itorK/nbg7815_tools/blob/main/flash_to_openwrt.sh
* run flash_to_openwrt.sh
If you can't use wget, you can transfer the files via nc.
See https://openwrt.org/inbox/toh/zyxel/nbg7815_armor_g5 for installation details.
Bluetooth usage:
* you need at least package bluez-utils, recommended bluez-daemon
* run following commands to enable and start
hciattach /dev/ttyMSM1 bcsp
hciconfig hci0 up
Many thanks to itorK for his work on this device:
https://github.com/itorK/openwrt/tree/nbg7815
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: André Valentin <avalentin@marcant.net>
Enabling kernel symbol CONFIG_NVMEM_U_BOOT_ENV allows to use u-boot
environement variable ethaddr with nvmen. That way it is possible to assign
the MAC address to the ethernet device driver.
Example of usage in dts:
....
partition@600000 {
compatible = "u-boot,env";
label = "0:appsblenv";
reg = <0x600000 0x10000>;
macaddr_lan: ethaddr {
};
};
....
&dp5 {
status = "okay";
phy-handle = <&qca8081>;
label = "wan";
nvmem-cells = <&macaddr_lan>;
nvmem-cell-names = "mac-address-ascii";
mac-address-increment = <1>;
};
This is needed for Zyxel NBG7815.
Signed-off-by: André Valentin <avalentin@marcant.net>
Set up MAC, LED, settings and default packages for DSL usage, similar
to the lantiq target.
Due to licensing uncertainty, we do not include the firmware files for the
DSL drivers. To have a working DSL setup, follow the instructions below.
Download the firmware files locally:
mkdir -p files/lib/firmware/09a9
wget -P files/lib/firmware/09a9 https://gitlab.com/prpl-foundation/intel/vrx518_aca_fw/-/raw/ugw-8.5.2/platform/xrx500/aca_fw.bin
wget -P files/lib/firmware https://gitlab.com/prpl-foundation/intel/vrx518_ppe_fw/-/raw/ugw_8.5.2.10/platform/xrx500/ppe_fw.bin
wget -P files/lib/firmware https://gitlab.com/prpl-foundation/intel/dsl_vr11_firmware_xdsl/-/raw/ugw-8.5.2/xcpe_8D1507_8D0901.bin
ln -s xcpe_8D1507_8D0901.bin files/lib/firmware/vdsl.bin
For people building their own images:
Run the above commands in the root of your local OpenWrt clone,
and the firmware files will be part of the resulting images.
For people downloading images:
Copy the firmware files onto the router once it's booted up:
scp -O -r files/lib/firmware root@fritz:/lib
Reboot the device afterwards.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[cleaned up]
Signed-off-by: Andre Heider <a.heider@gmail.com>
[set up LED]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
Signed-off-by: Andre Heider <a.heider@gmail.com>
This is needed by the mei driver to be able to download the firmware.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
Signed-off-by: Andre Heider <a.heider@gmail.com>
Similar to the lantiq platform, these are required for DSL support.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[switch to kernel 5.10 and 5.15]
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
[update patches based on UGW 8.5.2.10, remove 5.10 support]
Signed-off-by: Andre Heider <a.heider@gmail.com>
A previous attempt to simplify things went wrong and now sysupgrade
is broken on this device. Fix that.
Fixes: de94587e70 ("mediatek: filogic: don't rely on image preset in flash or sysupgrade")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
A previous attempt to simplify things went wrong and now sysupgrade
is broken on this device. Fix that.
Fixes: d640cbac0e ("mediatek: mt7622: don't rely on existing image for sysupgrade")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The patch that adds support for hw flow-offloading counters on newer
MediaTek SoCs tries to prints acct->packets and acct->bytes in debugfs,
without checking that acct isn't null. This causes a kernel panic when
trying to read /sys/kernel/debug/ppe0/entries on older MediaTek SoCs.
Fix this by adding a check for acct.
Fixes: openwrt#11756
Fixes: 9721a42a27 ("kernel: support hw flow-offloading counters on newer MediaTek SoCs")
Reported-by: Stijn Tintel <stijn@linux-ipv6.be>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
It appears that only a few users are using the archs38 SoC. The most
active user of the target has already approved the testing kernel and
so it is very unlikely bugs will be reported in the near future.
Therefore, the target should be directly bumped to 5.15.
Signed-off-by: Nick Hainke <vincent@systemli.org>
Dynalink DL-WRX36 is a AX WIFI router with 4 1G and 1 2.5G ports.
Specifications:
• CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
• RAM: 1024MB of DDR3
• Storage: 256MB Nand
• Ethernet: 4x 1G RJ45 ports (QCA8075) + 1 2.5G Port (QCA8081)
• WLAN:
2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 1174 Mbps PHY rate
5GHz: Qualcomm QCN5054 4x4 802.11a/b/g/n/ac/ax 2402 PHY rate
• 1x USB 3.0
• 1 gpio-controlled dual color led (blue/red)
• Buttons: 1x soft reset / 1x WPS
• Power: 12V DC jack
A poulated serial header is onboard (J1004)
the connector size is a 4-pin 2.0 mm JST PH.
RX/TX is working, u-boot bootwait is active, secure boot is enabled.
Notes:
- Serial is completely deactivated in the stock firmware image.
- This commit adds only single partition support, that means
sysupgrade is upgrading the current rootfs partition.
- Installation can be done by serial connection or
SSH access on OEM firmware
Installation Instructions:
Most part of the installation is performed from an initramfs image
running OpenWrt, and there are two options to boot it.
Boot initramfs option 1: Using serial connection (3.3V)
1. Stop auto boot to get to U-boot shell
2. Transfer initramfs image to device
(openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb)
Tested using TFTP and a FAT-formatted USB flash drive.
3. Boot the initramfs image
# bootm
Boot initramfs option 2: From SSH access on OEM firmware
1. Copy the initramfs image to a FAT-formatted flash drive
(tested on single-partition drive) and connect it to device USB port.
2. Change boot command so it loads the initramfs image on next boot
Fallback to OEM firmware is provided.
# fw_setenv bootcmd 'usb start && fatload usb 0:1 0x44000000 openwrt-ipq807x-generic-dynalink_dl-wrx36-initramfs-uImage.itb && bootm 0x44000000; bootipq'
3. Reboot the device to boot the initramfs
# reboot
Install OpenWrt from initramfs image:
1. Use SCP (or other way) to transfer OpenWrt factory image
2. Connect to device using SSH (on a LAN port)
3. Check MTD partition table.
rootfs and rootfs_1 should be mtd18 and mtd20
depending on current OEM slot.
# cat /proc/mtd
4. Do a ubiformat to both rootfs partitions:
# ubiformat /dev/mtd18 -y -f /path_to/factory_image
# ubiformat /dev/mtd20 -y -f /path_to/factory_image
5. Set U-boot env variable: mtdids
# fw_setenv mtdids 'nand0=nand0'
6. Get offset of mtd18 to determine current OEM slot
- If current OEM slot is 1, offset is 16777216 (0x1000000)
- If current OEM slot is 2, offset is 127926272 (0x7a00000)
# cat /sys/class/mtd/mtd18/offset
7. Set U-boot env variable: mtdparts
If current OEM slot is 1, run:
# fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x1000000(fs),0x6100000@0x7a00000(fs_1)'
If current OEM slot is 2, run:
# fw_setenv mtdparts 'mtdparts=nand0:0x6100000@0x7a00000(fs),0x6100000@0x1000000(fs_1)'
8. Set U-boot env variable: bootcmd
# fw_setenv bootcmd 'setenv bootargs console=ttyMSM0,115200n8 ubi.mtd=rootfs rootfstype=squashfs rootwait; ubi part fs; ubi read 0x44000000 kernel; bootm 0x44000000#config@rt5010w-d350-rev0'
9. Reboot the device
# reboot
Note: this PR adds only single partition support, that means sysupgrade is
upgrading the current rootfs partition
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
The Edgecore EAP102 is a wall/ceiling mountable AP. The AP can be
powered by either PoE or AC adapter.
Device info:
- IPQ8071-A SoC
- 1GiB RAM
- 256MiB NAND flash
- 32MiB SPI NOR
- 2 Ethernet ports
- 1 Console port
- 2GHz/5GHz AX WLAN
- 2 USB 2.0 ports
Install instructions:
Prerequistes - TFTP server, preferrably within 192.168.1.0/24
Console cable plugged in (115200 8N1 no flow control)
1. Power on device and interrupt u-boot to obtain u-boot CLI
2. set serverip to IP address of the TFTP server:
`setenv serverip 192.168.1.250`
3. Download image from TFTP server:
`tftpboot 0x44000000 openwrt-ipq807x-generic-edgecore_eap102-squashfs-nand-factory.ubi`
4. Flash ubi image to both partitions and reset:
`sf probe
imxtract 0x44000000 ubi
nand device 0
nand erase 0x0 0x3400000
nand erase 0x3c00000 0x3400000
nand write $fileaddr 0x0 $filesize
nand write $fileaddr 0x3c00000 $filesize
reset`
Signed-off-by: Matthew Hagan <mnhagan88@gmail.com>
Xiaomi AX9000 is a premium 802.11ax "tri"-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
* RAM: 1024MB of DDR3
* Storage: 256MB of parallel NAND
* Ethernet:
* 4x1G RJ45 ports (QCA8075) with 1x status LED per port
* 1x2.5G RJ45 port (QCA8081) with 1x status LED
* WLAN:
* PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT
* 2.4GHz: Qualcomm QCN5024 4x4@40MHz 802.11b/g/n/ax 1147 Mbps PHY rate
* 5.8GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402Mbps PHY rate
* 5GHz: PCI based Qualcomm QCN9024 4x4@160MHz 802.11a/b/g/n/ac/ax 4804Mbps PHY rate
* USB: 1x USB3.0 Type-A port
* LED-s:
* System (Blue and Yellow)
* Network (Blue and Yellow)
* RGB light bar on top in X shape
* Buttons:
* 1x Power switch
* 1x Soft reset
* 1x Mesh button
* Power: 12V DC Jack
Installation instructions:
Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/ax9000#obtain_ssh_access
Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs
4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd21 and mtd22 are the correct indexes from above!
5. Use the command ubiformat to flash the opposite mtd with UBI image:
If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd22 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit
otherwise:
ubiformat /dev/mtd21 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit
6. Reboot the device by:
reboot
Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:
7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax9000-squashfs-sysupgrade.bin
Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.
Signed-off-by: Robert Marko <robimarko@gmail.com>
QNAP 301w is a AX WIFI router with 4 1G and 2 10G ports.
Specifications:
• CPU: Qualcomm IPQ8072A Quad core Cortex-A53 2.2GHz
• RAM: 1024MB of DDR3
• Storage: 4GB eMMC (contains kernel and rootfs) / 8MB NOR
(contains art and u-boot-env)
• Ethernet: 4x 1G RJ45 ports + 2 10G ports (Aquantia AQR113C)
• WLAN:
2.4GHz: Qualcomm QCN5024 4x4 (40 MHz) 802.11b/g/n/ax 1174 Mbps PHY rate
5GHz: Qualcomm QCN5054 4x4 (80 MHz) or 2x2 (160 MHz) 802.11a/b/g/n/ac/ax 2402 PHY rate
• LEDs:
7 x GPIO-controlled dual color LEDs + 2 GPIO-controlled single color LEDs
• Buttons: 1x soft reset / 1x WPS
• Power: 12V DC jack
A poulated serial header is onboard.
RX/TX is working, bootwait is active, secure boot is not enabled.
SSH can be activated in the stock firmware, hold WPS button til the second beep
(yes the router has a buzzer)
SSH is available on port 22200, login with user admin and
password "mac address of the router".
Installation Instructions:
• obtain serial access (https://openwrt.org/inbox/toh/qnap/301w#serial)
• stop auto boot
• setenv serverip 192.168.10.1
• setenv ipaddr 192.168.10.10
• tftpboot the initramfs image
(openwrt-ipq807x-generic-qnap_301w-initramfs-fit-uImage.itb)
• bootm
• make sure that current_entry is set to "0":
"fw_printenv -n current_entry" should be print "0". If not,
do "fw_setenv current_entry 0"
• copy openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin
to the device to /tmp folder
• sysupgrade -n /tmp/openwrt-ipq807x-generic-qnap_301w-squashfs-sysupgrade.bin
this flashes openwrt to the first kernel and rootfs partition (mmcblk0p1 / mmcblk0p4)
• reboot
Note: this leaves the second kernel / rootfs parition untouched. So if you want
to go back to stock, stop u-boot autoboot, "setenv current_entry 1" ,
"saveenv", "bootipq".
Stock firmware should start from the second partition.
Then do a firmwareupgrade in the stock gui, that should overwrite the openwrt
in the first partitions
Make 10G Aquantia phy's work:
The aquantia phy's need a firmware to work. This can either be loaded
in linux with a userspace tool or in u-boot.
I was not successfull to load the firmware in linux (aq-fw-download) but luckily there is
aq_load_fw available in u-boot. But first the right firmware needs to write
to the 0:ETHPHYFW mtd partition (it is empty on my device)
Grab the ethphy firmware image from:
https://github.com/kirdesde/nbg7815_gpl/blob/master/target/linux/ipq/ipq807x_64/prebuilt_images/AQR_ethphyfw.mbn
and scp that to openwrt.
Check the 0:ETHPHYFW partition number:
cat /proc/mtd|grep "0:ETHPHYFW", should be mtd10.
Backup the 0:ETHPHYFW partition:
dd if=/dev/mtd10 of=/tmp/ethphyfw.backup, scp ethphyfw.backup to a save place.
Write the new firmware image to the 0:ETHPHYFW partition:
"mtd erase /dev/mtd10", "mtd -n write AQR_ethphyfw.mbn /dev/mtd10".
Reboot to u-boot.
Check if aq_load_fw is working:
"aq_load_fw 0", that checks the firmware and if successfull,
loads iram and dram to one of the aquantia phy's.
If that worked, add the aq_load_fw to the bootcmd:
setenv bootcmd "aq_load_fw 0 && aq_load_fw 8 && bootipq"
"saveenv"
"reset"
Board reboots and the firmware load to both phy's should start and
then openwrt boots.
Check if the 10G ports work.
Note: lan port labeled "10G-2" is configured as WAN port as per default.
All other port are in the br-lan. This can be changed in the network config.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Edimax CAX1800 is a 802.11 ax dual-band AP
with PoE. AP can be ceiling or wall mount.
Specifications:
• CPU: Qualcomm IPQ8070A Quad core Cortex-A53 1.4GHz
• RAM: 512MB of DDR3
• Storage: 128MB NAND (contains rootfs) / 8MB NOR (contains art and uboot-env)
• Ethernet: 1x 1G RJ45 port (QCA8072) PoE
• WLAN:
2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
5GHz: Qualcomm QCN5054 2x2 802.11a/b/g/n/ac/ax 1201 PHY rate
• LEDs:
3 x GPIO-controlled System-LEDs
(form one virtual RGB System-LED)
black_small_square Buttons: 1x soft reset
black_small_square Power: 12V DC jack or PoE (802.3af )
An unpopulated serial header is onboard.
RX/TX is working, bootwait is active, secure boot is not enabled.
SSH can be activated in the stock firmware, but it drops only
to a limited shell .
Installation Instructions:
black_small_square obtain serial access
black_small_square stop auto boot
black_small_square tftpboot the initramfs image (serverip is set to 192.168.99.8 in uboot)
black_small_square bootm
black_small_square copy openwrt-ipq807x-generic-edimax_cax1800-squashfs-nand-factory.ubi
to the device
black_small_square write the image to the NAND:
black_small_square cat /proc/mtd and look for rootfs partition (should be mtd0)
black_small_square ubiformat /dev/mtd0 -f -y openwrt-ipq807x-generic-edimax_cax1800-squashfs-
nand-factory.ubi
black_small_square reboot
Note: Device is not using dual partitioning (NAND contains other partitions
with different manufacture data etc.)
Draytek VigorAP 960C and Lancom LW-600 both look similar, but I haven't checked them.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Redmi AX6 is a budget 802.11ax dual-band router/AP
Specifications:
* CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz
* RAM: 512MB of DDR3
* Storage: 128MB NAND
* Ethernet: 4x1G RJ45 ports (QCA8075)
* WLAN:
* 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
* 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* LEDs:
* System (Blue/Yellow)
* Network (Blue/Yellow)
*Buttons: 1x soft reset
*Power: 12V DC jack
Installation instructions:
Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/xiaomi_redmi_ax6_ax3000#ssh_access
Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs
4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd12 and mtd13 are the correct indexes from above!
5. Use the command ubiformat to flash the opposite mtd with UBI image:
If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit
otherwise:
ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-redmi_ax6-initramfs-factory.ubi && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit
6. Reboot the device by:
reboot
Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:
7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-redmi_ax6-squashfs-sysupgrade.bin
Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.
Signed-off-by: Zhijun You <hujy652@gmail.com>
Xiaomi AX3600 is a budget 802.11ax dual-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8071A Quad core Cortex-A53 1.4GHz
* RAM: 512MB of DDR3
* Storage: 256MB of parallel NAND
* Ethernet: 4x1G RJ45 ports (QCA8075) with 1x status LED per port
* WLAN:
* PCI based Qualcomm QCA9889 1x1 802.11ac Wawe 2 for IoT
* 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
* 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* LED-s:
* System (Blue and Yellow)
* IoT (Blue)
* Network (Blue and Yellow)
* Buttons: 1x Soft reset
* Power: 12V DC Jack
Installation instructions:
Obtaining SSH access is mandatory
https://openwrt.org/inbox/toh/xiaomi/xiaomi_ax3600#obtain_ssh_access
Installation is done by the ubiformat method, through SSH:
1. Open an SSH shell to the router
2. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi to the /tmp directory
3. Check which rootfs partition is your router booted in (0 = rootfs | 1 = rootfs_1):
nvram get flag_boot_rootfs
4. Find the rootfs and rootfs_1 mtd indexes respectively:
cat /proc/mtd
Please confirm if mtd12 and mtd13 are the correct indexes from above!
5. Use the command ubiformat to flash the opposite mtd with UBI image:
If nvram get flag_boot_rootfs returned 0:
ubiformat /dev/mtd13 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=1 && nvram set flag_last_success=1 && nvram commit
otherwise:
ubiformat /dev/mtd12 -y -f /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-initramfs-factory.ubi -s 2048 -O 2048 && nvram set flag_boot_rootfs=0 && nvram set flag_last_success=0 && nvram commit
6. Reboot the device by:
reboot
Previous commands flashed an ubinized OpenWrt initramfs that will serve as the intermediate step
since OpenWrt uses unified rootfs in order to fully utilize NAND and provide enough space for packages.
Continue in order to pernamently flash OpenWrt:
7. SSH into OpenWrt from one of the LAN ports
8. Copy the file openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin to the /tmp directory
9. Sysupgrade the device:
sysupgrade -n /tmp/openwrt-ipq807x-generic-xiaomi_ax3600-squashfs-sysupgrade.bin
Device will reboot with OpenWrt, and then sysupgrade can be used to upgrade the device when desired.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Robert Marko <robimarko@gmail.com>
Include NSS DP and SSDK (Pulled as dependency) by default on ipq807x to
provide wired networking to the target.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Qualcomm Atheros IPQ807x is a modern WiSoC featuring:
* Quad Core ARMv8 Cortex A-53
* @ 2.2 GHz (IPQ8072A/4A/6A/8A) Codename Hawkeye
* @ 1.4 GHz (IPQ8070A/1A) Codename Acorn
* Dual Band simultaneaous IEEE 802.11ax
* 5G: 8x8/80 or 4x4/160MHz (IPQ8074A/8A)
* 5G: 4x4/80 or 2x2/160MHz (IPQ8071A/2A/6A)
* 5G: 2x2/80MHz (IPQ8070A)
* 2G: 4x4/40MHz (IPQ8072A/4A/6A/8A)
* 2G: 2x2/40MHz (IPQ8070A/1A)
* 1x PSGMII via QCA8072/5 (Max 5x 1GbE ports)
* 2x SGMII/USXGMII (1/2.5/5/10 GbE) on Hawkeye
* 2x SGMII/USXGMII (1/2.5/5 GbE) on Acorn
* DDR3L/4 32/16 bit up to 2400MT/s
* SDIO 3.0/SD card 3.0/eMMC 5.1
* Dual USB 3.0
* One PCIe Gen2.1 and one PCIe Gen3.0 port (Single lane)
* Parallel NAND (ONFI)/LCD
* 6x QUP BLSP SPI/I2C/UART
* I2S, PCM, and TDMA
* HW PWM
* 1.8V configurable GPIO
* Companion PMP8074 PMIC via SPMI (GPIOS, RTC etc)
Note that only v2 SOC models aka the ones ending with A suffix are
supported, v1 models do not comply to the final 802.11ax and have
lower clocks, lack the Gen3 PCIe etc.
SoC itself has two UBI32 cores for the NSS offloading system, however
currently no offloading is supported.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This adds the MHI SBL callback that ath11k will utilize in order to
support multiple PCI cards or AHB+PCI combo which currently does not
work due to QRTR ID-s conflicting.
This is a prerequisite for the mac80211 patch targeting ath11k as it
uses MHI from kernel.
Signed-off-by: Robert Marko <robimarko@gmail.com>
archs38 seems to be pretty much unused, usually only treewide changes or
kernel bumps in order to branch off new stable are done to it.
Considering that target only support some Synopsis HS38 ARC reference
boards and no consumer hardware so mark the target as source-only to stop
using Buildbot resources on building the target and packages for it.
Signed-off-by: Robert Marko <robimarko@gmail.com>
The Arcadyan WE420223-99 is a WiFi AC simultaneous dual-band access
point distributed as Experia WiFi by KPN in the Netherlands. It features
two ethernet ports and 2 internal antennas.
Specifications
--------------
SOC : Mediatek MT7621AT
ETH : Two 1 gigabit ports, built into the SOC
WIFI : MT7615DN
BUTTON: Reset
BUTTON: WPS
LED : Power (green+red)
LED : WiFi (green+blue)
LED : WPS (green+red)
LED : Followme (green+red)
Power : 12 VDC, 1A barrel plug
Winbond variant:
RAM : Winbond W631GG6MB12J, 1GBIT DDR3 SDRAM
Flash : Winbond W25Q256JVFQ, 256Mb SPI
U-Boot: 1.1.3 (Nov 23 2017 - 16:40:17), Ralink 5.0.0.1
Macronix variant:
RAM : Nanya NT5CC64M16GP-DI, 1GBIT DDR3 SDRAM
Flash : MX25l25635FMI-10G, 256Mb SPI
U-Boot: 1.1.3 (Dec 4 2017 - 11:37:57), Ralink 5.0.0.1
Serial
------
The serial port needs a TTL/RS-232 3V3 level converter! The Serial
setting is 57600-8-N-1. The board has an unpopulated 2.54mm straight pin
header.
The pinout is: VCC (the square), RX, TX, GND.
Installation
------------
See the Wiki page [1] for more details, it comes down to:
1. Open the device, take off the heat sink
2. Connect the SPI flash chip to a flasher, e.g. a Raspberry Pi. Also
connect the RESET pin for stability (thanks @FPSUsername for reporting)
3. Make a backup in case you want to revert to stock later
4. Flash the squashfs-factory.trx file to offset 0x50000 of the flash
5. Ensure the bootpartition variable is set to 0 in the U-Boot
environment located at 0x30000
Note that the U-Boot is password protected, this can optionally be
removed. See the forum [2] for more details.
MAC Addresses(stock)
--------------------
+----------+------------------+-------------------+
| use | address | example |
+----------+------------------+-------------------+
| Device | label | 00:00:00:11:00:00 |
| Ethernet | + 3 | 00:00:00:11:00:03 |
| 2g | + 0x020000f00001 | 02:00:00:01:00:01 |
| 5g | + 1 | 00:00:00:11:00:01 |
+----------+------------------+-------------------+
The label address is stored in ASCII in the board_data partition
Notes
-----
- This device has a dual-boot partition scheme, but OpenWRT will claim
both partitions for more storage space.
Known issues
------------
- 2g MAC address does not match stock due to missing support for that in
macaddr_add
- Only the power LED is configured by default
References
----------
[1] https://openwrt.org/inbox/toh/arcadyan/astoria/we420223-99
[2] https://forum.openwrt.org/t/adding-openwrt-support-for-arcadyan-we420223-99-kpn-experia-wifi/132653
Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Signed-off-by: Harm Berntsen <git@harmberntsen.nl>
SOC: Qualcomm IPQ4019
WiFi 1: QCA4019 IEEE 802.11b/g/n
WiFi 2: QCA4019 IEEE 802.11a/n/ac
WiFi 3: QCA8888 IEEE 802.11a/n/ac
Bluetooth: Qualcomm CSR8811 (A12U)
Zigbee: Silicon Labs EM3581 NCP + Skyworks SE2432L
Ethernet: Qualcomm Atheros QCA8072 (2-port)
Flash 1: Mactronix MX30LF4G18AC-XKI
RAM (NAND): SK hynix H5TC4G63CFR-PBA (512MB)
LED Controller: NXP PCA9633 (I2C)
Buttons: Single reset button (GPIO).
- The three WiFis were fully tested and are configured with the same settings as in the vendor firmware.
- The specific board files were submitted to the ATH10k mailing list but I'm still waiting for a reply. They can be removed once they are approved upstream.
- Two ethernet ports are accessible on the device. By default one is configured as WAN and the other one is LAN. They are fully working.
Bluetooth:
========
- Fully working with the following caveats:
- RFKILL need to be enabled in the kernel.
- An older version of bluez is needed as bccmd is needed to configure the chip.
Zigbee:
======
- The spidev device is available in the /dev directory.
- GPIOs are configured the same way as in the vendor firmware.
- Tests are on-going. I am working on getting access to the Silicon Labs stack to validate that it is fully working.
Installation:
=========
The squash-factory image can be installed via the Linksys Web UI:
1. Open "http://192.168.1.1/ca" (Change the IP with the IP of your device).
2. Login with your admin password.
3. To enter into the support mode, click on the "CA" link and the bottom of the page.
4. Open the "Connectivity" menu and upload the squash-factory image with the "Choose file" button.
5. Click start. Ignore all the prompts and warnings by click "yes" in all the popups.
The device uses a dual partition mechanism. The device automatically revert to the previous partition after 3 failed boot attempts.
If you want to force the previous firmware to load, you can turn off and then turn on the device for 2 seconds, 3 times in a row.
It can also be done via TFTP:
1. Setup a local TFTP server and configure its IP to 192.168.1.100.
2. Rename your image to "nodes_v2.img" and put it to the TFTP root of your server.
3. Connect to the device through the serial console.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash the partition of your choice by typing "run flashimg" or "run flashimg2".
6. Once flashed, enter "reset" to reboot the device.
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Vincent Tremblay <vincent@vtremblay.dev>