Specifications:
- Device: Edimax BR-6208AC V2
- SoC: MT7620A
- Flash: 16 MiB
- RAM: 64 MiB
- Switch: 1 WAN, 3 LAN (10/100 Mbps)
- WiFi: MT7620 2.4 GHz + MT7610E 5 GHz
- LEDs: 1x POWER (green, not configurable)
1x Firmware (green, configurable)
1x Internet (green, configurable)
1x VPN (green, configurable)
1x 2.4G (green, not configurable)
1x 5G (green, not configurable)
Normal installation:
- Upload the sysupgrade image via the default web interface
Installation with U-Boot and TFTP:
- Requires a TFTP server which provides the sysupgrade image
- Requires a connection to the serial port of the device, rate 57600
Signed-off-by: Stefan Weil <sw@weilnetz.de>
(cherry picked from commit 8d06bc1751)
Netgear EAX12, EAX11v2, EAX15v2 are wall-plug 802.11ax (Wi-Fi 6)
extenders that share the SoC, WiFi chip, and image format with the
WAX202.
Specifications:
* MT7621, 256 MiB RAM, 128 MiB NAND
* MT7915: 2.4/5 GHz 2x2 802.11ax (DBDC)
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)
All LEDs and buttons appear to work without state_default.
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
References in GPL source:
https://www.downloads.netgear.com/files/GPL/EAX12_EAX11v2_EAX15v2_GPL_V1.0.3.34_src.tar.gz
* target/linux/ramips/dts/mt7621-rfb-ax-nand.dts
DTS file for this device.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
(cherry picked from commit 32ea8a9a7e)
The PHY of the wan2 port on MQmaker WiTi is wired to the second MAC of the
SoC. Rename the wan interface to wan1 and define it under the switch node,
effectively disabling the PHY muxing of the MT7530 switch's phy4.
Define the PHY of the wan2 port and adjust the gmac1 node accordingly. Now
that the PHY muxing feature is not being used anymore, the wan2 port can be
used to achieve 2 Gbps total bandwidth to the CPU.
Tested-by: Demetris Ierokipides <ierokipides.dem@gmail.com>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
(cherry picked from commit 8bf9a8a5e6)
General specification:
SoC Type: MediaTek MT7620A (580MHz)
ROM: 8 MB SPI-NOR (MX25L6406E)
RAM: 64 MB DDR (W9751G6KB-25)
Switch: MediaTek MT7530
Ethernet: 5 ports - 5×100MbE (WAN, LAN1-4)
Wireless: 2.4 GHz (MediaTek RT5390): b/g/n
Wireless: 5 GHz (MediaTek MT7610EN): ac/n
Buttons: 2 button (POWER, WPS/RESET)
Bootloader: U-Boot 1.1.3
Power: 12 VDC, 0.5 A
MACs:
| LAN | [Factory + 0x04] - 2 |
| WLAN 2.4g | [Factory + 0x04] - 1 |
| WLAN 5g | [Factory + 0x8004] - 3 |
| WAN | [Factory + 0x04] - 2 |
OEM easy installation:
1. Use a PC to browse to http://192.168.0.1.
2. Go to the System section and open the Firmware Update section.
3. Under the Local Update at the right, click on the CHOOSE FILE...
4. When a modal window appears, choose the firmware file and click on
the Open.
5. Next click on the UPDATE FIRMWARE button and upload the firmware image.
Wait for the router to flash and reboot.
OEM installation using the TFTP method (need level converter):
1. Download the latest firmware image.
2. Set up a Tftp server on a PC (e.g. Tftpd32) and place the firmware
image to the root directory of the server.
3. Power off the router and use a twisted pair cable to connect the PC
to any of the router's LAN ports.
4. Configure the network adapter of the PC to use IP address 192.168.0.180
and subnet mask 255.255.255.0.
5. Connect serial port (57600 8N1) and turn on the router.
6. Then interrupt "U-Boot Boot Menu" by hitting 2 key (select "2: Load
system code then write to Flash via TFTP.").
7. Press Y key when show "Warning!! Erase Linux in Flash then burn new
one. Are you sure? (Y/N)"
Input device IP (192.168.0.1) ==:192.168.0.1
Input server IP (192.168.0.180) ==:192.168.0.180
Input Linux Kernel filename () ==:firmware_name
The router should download the firmware via TFTP and complete flashing in
a few minutes.
After flashing is complete, use the PC to browse to http://192.168.1.1 or
ssh to proceed with the configuration.
Signed-off-by: Alexey Bartenev <41exey@proton.me>
(cherry picked from commit ce998cb6e1)
Cudy assigns hardware versions to its devices on its website, and
the Cudy TR1200 router is now Cudy TR1200 v1.
OpenWrt currently uses both variants, and this commit removes
inconsistencies using only the new name.
Signed-off-by: Luis Mita <luis@luismita.com>
(cherry picked from commit d780d530dd)
Link: https://github.com/openwrt/openwrt/pull/15875
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Hardware:
- SoC: MediaTek MT7628AN (MIPS 580MHz)
- Flash: 16 MiB XMC 25QH128CH10
- RAM: 128 MiB ESMT M14D1G1664A
- WLAN: 2.4 GHz (MT7628), 5 GHz (MT7613BEN 802.11ac)
- Ethernet: 1x 10/100 Mbps WAN, 1x 10/100 LAN (MT7628)
- USB 2.0 port
- Buttons: 1 Reset button, 1 slider button
- LEDs: 1x Red, 1x White
- Serial console: unpopulated header, 115200 8n1
- Power: 5 VDC, 2 A
MAC addresses:
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| WAN | 80:af:ca:xx:xx:x0 | label |
| LAN | 80:af:ca:xx:xx:x0 | label |
| WLAN 2g | 80:af:ca:xx:xx:x0 | label |
| WLAN 5g | 80:af:ca:xx:xx:x2 | label+2 |
+---------+-------------------+-----------+
Installation:
The installation must be done via TFTP by disassembling the router.
On other occasions Cudy has distributed intermediate firmware to make
installation easier, and so I recommend checking the Wiki for this
device if there is a more convenient solution than the one below.
To install using TFTP:
1. Upgrade to a beta firmware (signed by Cudy) that can be downloaded
from the wiki. This is required in order to use an unlocked u-boot.
2. Connect to UART.
3. While the router is turning on, press 1.
4. Connect to LAN and set your IP to 192.168.1.88/24. Configure a TFTP
server and an OpenWrt initramfs-kernel.bin firmware file as recovery.bin.
5. Press Enter three times. Verify the filename.
6. If you can reach LuCI or SSH now, just use the sysupgrade image with
the 'Keep settings' option turned off.
If you don't want to use the beta firmware nor the unlocked u-boot, you
can install the firmware writing the sysupgrade image on the firmware
partition of the SPI flash.
Signed-off-by: Luis Mita <luis@luismita.com>
(cherry picked from commit f1091ef7ac)
Link: https://github.com/openwrt/openwrt/pull/15875
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Turns out the device got two buttons, while the currently listed on is
actually WPS, and the other (will hidden) button is intended as RESET.
Update DT accordingly.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 646ebbd32c)
This commit adds support for Z-ROUTER ZR-2660 (also known as Routerich
AX1800) wireless WiFi 6 router.
Specification
-------------
- SoC : MediaTek MT7621AT, MIPS, 880 MHz
- RAM : 256 MiB
- Flash : NAND 128 MiB (AMD/Spansion S34ML01G2)
- WLAN :
- 2.4 GHz : MediaTek MT7905D/MT7975 (14c3:7916), b/g/n/ax, MIMO 2x2
- 5 GHz : MediaTek MT7915E (14c3:7915), a/n/ac/ax, MIMO 2x2
- Ethernet : 10/100/1000 Mbps x4 (1x WAN, 3x LAN)
- USB : 1x 2.0
- UART : 3.3V, 115200n8, pins are silkscreened on the pcb
- Buttons : 1x Reset
- LEDs : 1x WiFi 2.4 GHz (green)
1x WiFi 5 GHz (green)
1x LAN (green)
1x WAN (green)
1x WAN no-internet (red)
- Power : 12 VDC, 1 A
Installation
------------
1. Run tftp server on your PC (IP: 192.168.2.2) and put OpenWrt initramfs
image (initramfs.bin) to the tftp root dir
2. Open the following link in the browser to enable telnet:
http://192.168.2.1/cgi-bin/telnet_ssh
3. Connect to the router (default IP: 192.168.2.1) using telnet shell
(credentials - user:admin)
4. Run the following commands in the telnet shell (this will install
OpenWrt initramfs image on nand flash):
cd /tmp
tftp -g -r initramfs.bin 192.168.2.2
mtd write initramfs.bin firmware
mtd erase firmware_backup
reboot
5. Copy OpenWrt sysupgrade image (sysupgrade.bin) to the /tmp dir of the
router
6. Connect to the router (IP: 192.168.1.1) using ssh shell and run
sysupgrade command:
sysupgrade -n /tmp/sysupgrade.bin
Return to stock
---------------
1. Copy stock firmware (stock.bin) to the /tmp dir of the router using scp
2. Run following command in the router shell:
cd /tmp
mtd write stock.bin firmware
reboot
Recovery
--------
Connect uart (pins are silkscreened on the pcb), interrupt boot process by
pressing any key, use u-boot menu to flash stock firmware image or OpenWrt
initramfs image.
MAC addresses
-------------
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| LAN | 24:0f:5e:xx:xx:4c | label |
| WAN | 24:0f:5e:xx:xx:4d | label+1 |
| WLAN 2g | 24:0f:5e:xx:xx:4e | label+2 |
| WLAN 5g | 24:0f:5e:xx:xx:4f | label+3 |
+---------+-------------------+-----------+
The WLAN 2.4 MAC was found in 'factory', 0x4
The LAN MAC was found in 'factory', 0xfff4
The WAN MAC was found in 'factory', 0xfffa
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit 1d3d6ef826)
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
The YunCore G720 is a dual band 802.11ax router with 5 GbE ports.
Specs:
- SoC: MediaTek MT7621
- Ethernet: 5x GbE ports (built-in MT7530)
- Wireless 2.4GHz / 5GHz: MediaTek MT7915E
- RAM: 256MiB
- ROM: 16MiB (W25Q128)
- 1 Button (reset)
- 8 LEDs (1x system, 2x wifi, 5x switch ports)
Flash instructions:
The vendor firmware is based on OpenWrt, the sysupgrade image can be
flashed using the '-F' (force) option on the CLI.
Make sure not to keep settings when doing so.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 65df33fc76)
This device is very similar, if not identical, to the TP-Link AX23 v1
but is targeted at service providers and features a completely different
flash layout.
Hardware
--------
CPU: MediaTek MT7621 DAT
RAM: 128MB DDR3 (integrated)
FLASH: 16MB SPI-NOR
WiFi: MediaTek MT7905 + MT7975 (2.4 / 5 DBDC) 802.11ax
SERIAL: 115200 8N1
LEDs - (3V3 - GND - RX - TX) - ETH ports
Installation
------------
Flashing is only possible via a serial connection using the sysupgrade
image; the factory image must be signed. You can flash the sysupgrade
image directly through the U-Boot console, or preferably, by booting the
initramfs image and flashing with the sysupgrade command. Follow these
steps for sysupgrade flashing:
1. Establish a UART serial connection.
2. Set up a TFTP server at 192.168.0.2 and copy the initramfs image
there.
3. Power on the device and press any key to interrupt normal boot.
4. Load the initramfs image using tftpboot.
5. Boot with bootm.
6. If you haven't done so already, back up all stock mtd partitions.
7. Copy the sysupgrade image to the router.
8. Flash OpenWrt through either LuCI or the sysupgrade command. Remember
not to attempt saving settings.
Revert to stock firmware
------------------------
Flash stock firmware via OEM web-recovery mode. If you don't have access
to the stock firmware image, you will need to restore the firmware
partition backed up earlier.
Web-Recovery
------------
The router supports an HTTP recovery mode:
1. Turn off the router.
2. Press the reset button and power on the device.
3. When all LEDs start flashing, release reset and quickly press it
again.
The interface is reachable at 192.168.0.1 and supports installation of
the OEM factory image. Note that flashing OpenWrt this way is not
possible, as mentioned above.
Signed-off-by: Darlan Pedro de Campos <darlanpedro@gmail.com>
(cherry picked from commit 2a0c9cc8cd)
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7603E, MediaTek MT7613BE
- Switch: 1 WAN, 4 LAN (Gigabit)
- Buttons: Reset, WPS
- LEDs: System, Wan, Lan 1-4, WiFi 2.4G, WiFi 5G, WPS
- Power: DC 12V 1A tip positive
Download and flash the manufacturer's built OpenWRT image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWRT image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings. The force upgrade may need to be checked
due to differences in router naming conventions.
Cudy WR1300 v3 differs from v2 only in swapped WiFi chip PCIe slots. Common
nodes are extracted to .dtsi and new v2 and v3 dts are created.
Cudy WR1300 v2 dts now contains ieee80211-freq-limit.
The same manufacturer's built OpenWRT image is provided for both v2 and v3
devices as a step in installing, but for proper WiFi functionality,
a separate build is required.
Recovery:
- Loads only signed manufacture firmware due to bootloader RSA verification
- serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
- connect to any lan ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button for image to
download
- See http://www.cudytech.com/newsinfo/547425.html
Backported from branch main to 23.05.
Signed-off-by: Filip Milivojevic <zekica@gmail.com>
(cherry picked from commit 288738c59d)
The COVR-X1860 are MT7621-based AX1800 devices (similar to DAP-X1860, but
with two Ethernet ports and external power supply) that are sold in sets
of two (COVR-X1862) and three (COVR-X1863).
Specification:
- MT7621
- MT7915 + MT7975 2x2 802.11ax (DBDC)
- 256MB RAM
- 128 MB flash
- 3 LEDs (red, orange, white), routed to one indicator in the top of the device
- 2 buttons (WPS in the back and Reset at the bottom of the device)
MAC addresses:
- LAN MAC (printed on the device) is stored in config2 partition as ASCII (entry factory_mac=xx:xx:xx:xx:xx:xx)
- WAN MAC: LAN MAC + 3
- 2.4G MAC: LAN MAC + 1
- 5G MAC: LAN MAC + 2
The pins for the serial console are already labeled on the board (VCC, TX, RX, GND). Serial settings: 3.3V, 115200,8n1
Flashing via OEM Web Interface:
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-factory.bin via the OEM web interface firmware update
- The configuration wizard can be skipped by directly going to http://192.168.0.1/UpdateFirmware_Simple.html
Flashing via Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Download openwrt-ramips-mt7621-dlink_covr-x1860-a1-squashfs-recovery.bin
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.25
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the status LED blinks red
- Open a Chromium based browser and goto http://192.168.0.1
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/openwrt/firmware-utils/blob/master/src/dlink-sge-image.c and https://raw.githubusercontent.com/openwrt/firmware-utils/master/src/dlink-sge-image.h
- Compile a binary from the downloaded file, e.g. gcc dlink-sge-image.c -lcrypto -o dlink-sge-image
- Run ./dlink-sge-image COVR-X1860 <OriginalFirmware> <OutputFile> -d
- Example for firmware 102b01: ./dlink-sge-image COVR-X1860 COVR-X1860_RevA_Firmware_102b01.bin COVR-X1860_RevA_Firmware_102b01_Decrypted.bin -d
The pull request is based on the discussion in https://forum.openwrt.org/t/add-support-for-d-link-covr-x1860
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
(cherry picked from commit 0a18259e4a)
Signed-off-by: Florian Maurer <f.maurer@outlook.de>
MT7621 gets a new PCIe driver in the 5.15+ kernel. Allocating wrong PCIe
port will cause the PCIe NIC to not work properly. This commit fixes
the wrong port numbers on Unielec u7621-01.
According to the bootlog, MT7612E (5 GHz) is connected to pcie2, and
MT7603E (2 GHz) is connected to pcie1:
[ 1.294844] mt7621-pci 1e140000.pcie: pcie0 no card, disable it (RST & CLK)
[ 1.308635] mt7621-pci 1e140000.pcie: PCIE1 enabled
[ 1.318277] mt7621-pci 1e140000.pcie: PCIE2 enabled
Also correct the led activity for the MT7603e - not used on the MT7612e
Signed-off-by: David Bentham <db260179@gmail.com>
(cherry picked from commit 39e55bdbe2)
Signed-off-by: David Bentham <db260179@gmail.com>
The rt305x series SOC have two UART devices,
and the one at bus address 0x500 is disabled by default.
Some boards do not even have a pinout for the first one,
so use the same one that the kernel uses at 0xc00 instead.
This allows the lzma-loader printing to be visible
alongside the kernel log in the same console.
Tested-by: Lech Perczak <lech.perczak@gmail.com> # zte,mf283plus
Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit bc00c78b43)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Before this was reworked, in the file for mt7621 subtarget
(target/linux/ramips/image/lzma-loader/src/board-mt7621.c)
the "Transmitter shift register empty" bit TEMT was used instead of
the "Transmitter holding register empty" bit THRE,
but after the rework, this value was labeled as the THRE bit instead.
Functionally there is no difference, but this is confusing to read,
as it suggests that the subtargets have different bits for the same
register in UART when in reality they are exactly the same.
One can use either bit, or both, at user's descretion
in order to determine whether the UART TX buffer is ready.
The generic kernel early-printk uses both,
(arch/mips/kernel/early_printk_8250.c)
while the ralink-specific early-printk uses only THRE,
(arch/mips/ralink/early_printk.c).
Define both bits and rewrite macros for readability,
keep the same values, as changing which to use should be tested first.
Ref: c31319b66 ("ramips: lzma-loader: Refactor loader")
Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit 2e47913c64)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The native bus address for UART was entered for rt305x UART_BASE,
but the bootloaders have memory space remapped with the same
virtual memory map the kernel uses for program addressing at boot time.
In UBoot, the remapped address is often defined as TEXT_BASE.
In the kernel, for rt305x this remapped address is RT305X_SYSC_BASE.
(arch/mips/include/asm/mach-ralink/rt305x.h)
Because the ralink I/O busses begin at a low address of 0x10000000,
they are remapped using KSEG0 or KSEG1, which for all 32-bit MIPS SOCs
(arch/mips/include/asm/addrspace.h)
are offsets of 0x80000000 and 0xa0000000 respectively.
This is consistent with the other UART_BASE macros here
and with MIPS memory map documentation.
Before the recent rework of the lzma-loader for ramips,
the original board-$(PLATFORM).c files also did not
use KSEG1ADDR for UART_BASE despite being defined,
which made this mistake easier to occur.
Fix this by defining KSEG1ADDR again and actually use it.
Copy and paste from the kernel's macros for consistency.
Link: https://training.mips.com/basic_mips/PDF/Memory_Map.pdf
Fixes: c31319b66 ("ramips: lzma-loader: Refactor loader")
Reported-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
(cherry picked from commit 4c1e9bd858)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
The ESW core needs to be reset together with FE core, so after the
relevant reset controller lines are moved under FE, drop rst_esw and all
related code, which would not execute anyway, because rst_esw would be
NULL. While at that, ensure that if reset line for EPHY cannot be
claimed, a proper error message is reported.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Co-developed-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Split out of the bigger commit, provide commit mesage, refactor error
handling]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit f393ffcac1)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Failing to do so will cause the DMA engine to not initialize properly
and fail to forward packets between them, and in some cases will cause
spurious transmission with size exceeding allowed packet size, causing a
kernel panic.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Provide commit description, split into logical changes]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit f87b66507e)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Failing to do so will cause the DMA engine to not initialize properly
and fail to forward packets between them, and in some cases will cause
spurious transmission with size exceeding allowed packet size, causing a
kernel panic.
This is behaviour of downstream driver as well, however I
haven't observed bug reports about this SoC in the wild, so this
commit's purpose is to align this chip with all other SoC's - MT7620
were already using this arrangement.
Fixes: #9284
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit fc92fecfc7)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Failing to do so will cause the DMA engine to not initialize properly
and fail to forward packets between them, and in some cases will cause
spurious transmission with size exceeding allowed packet size, causing a
kernel panic.
This is behaviour of downstream driver as well, however I
haven't observed bug reports about this SoC in the wild, so this
commit's purpose is to align this chip with all other SoC's - MT7620
were already using this arrangement.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit c5a399f372)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Failing to do so will cause the DMA engine to not initialize properly
and fail to forward packets between them, and in some cases will cause
spurious transmission with size exceeding allowed packet size, causing a
kernel panic.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Provide commit description, split into logical changes]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit 8d75b1de0f)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Enabling the FE core too early causes the system to hang during boot
uncondtionally, after the reset is released. Increate it to 1-1.2ms
range.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Split previous commit, provide rationale]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit 7eb0458c1f)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Use devm_reset_control_array_get_exclusive to register multiple
reset lines in FE driver. This is required to reattach ESW reset to FE
driver again, based on device tree bindings.
While at that, remove unused fe_priv.rst_ppe field, and add error
message if getting the reset fails.
Fixes: 60fadae62b ("ramips: ethernet: ralink: move reset of the esw into the esw instead of fe")
Co-developed-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
[Split out of the bigger commit, provide commit mesage, refactor error
handling]
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit 3f1be8edee)
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Rostelecom RT-FE-1A is a wireless WiFi 5 router manufactured by Sercomm
company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: No
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Power (green, unmanaged)
- 1x Status (green, gpio)
- 1x 2.4G (green, hardware, mt76-phy0)
- 1x 2.4G (blue, gpio)
- 1x 5G (green, hardware, mt76-phy1)
- 1x 5G (blue, gpio)
- 5x Ethernet (green, hardware, 4x LAN & WAN)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface (default http://192.168.0.1/)
under "admin" account
2. Navigate to Settings -> Configuration -> Save to Computer
3. Decode the configuration. For example, using cfgtool.py tool (see
related section):
cfgtool.py -u configurationBackup.cfg
4. Open configurationBackup.xml and find the following block:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="<some value>" writable="1" encryption="1" password="1" />
</OBJECT>
5. Replace <some value> by a new superadmin password and add a line
which enabling superadmin login after. For example, the block after
the changes:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="s0meP@ss" writable="1" encryption="1" password="1" />
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
</OBJECT>
6. Encode the configuration. For example, using cfgtool.py tool:
cfgtool.py -p configurationBackup.xml
7. Upload the changed configuration (configurationBackup_changed.cfg) to
the router
8. Login to the router web interface (superadmin:xxxxxxxxxx, where
xxxxxxxxxx is a new password from the p.5)
9. Enable SSH access to the router (Settings -> Access control -> SSH)
10. Connect to the router using SSH shell using superadmin account
11. Run in SSH shell:
sh
12. Make a mtd backup (optional, see related section)
13. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
14. Login to the router web interface under admin account
15. Remove dots from the OpenWrt factory image filename
16. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 192.168.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 192.168.0.2
MAC Addresses
-------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | f4:*:66 |
| WAN | label + 11 | f4:*:71 |
| 2g | label + 2 | f4:*:68 |
| 5g | label + 3 | f4:*:69 |
+-----+------------+---------+
The label MAC address was found in Factory, 0x21000
cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit f3cdc9f988)
This fixes a well known "LZMA ERROR 1" error on Sercomm NA502,
reported on the OpenWrt forum. [1]
[1]: https://forum.openwrt.org/t/176942
Signed-off-by: Szabolcs Hubai <szab.hu@gmail.com>
(cherry picked from commit d41b8a570f)
The label-mac of the repeater is the address used on the 2.4 GHz radio,
not the ethernet MAC.
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 47818fbc01)
This commit adds support for following wireless routers:
- Rostelecom RT-FL-1 (Serсomm RT-FL-1)
- Rostelecom S1010 (Serсomm S1010.RT)
The devices are almost identical and the only difference is one bit in the
factory image PID (thanks to Maximilian Weinmann <x1@disroot.org>
(@MaxS0niX) for the info and idea to make one PR for two devices at once).
Devices specification
---------------------
SoC: MediaTek MT7620A, MIPS
RAM: 64 MB
Flash: 16 MB SPI NOR
Wireless 2.4: MT7620 (b/g/n, 2x2)
Wireless 5: MT7612EN (a/n/ac, 2x2)
Ethernet: 5xFE (WAN, LAN1-4)
BootLoader: U-Boot
Buttons: 2 (wps, reset)
LEDs: 1 amber and 1 green status GPIO leds
5 green ethernet GPIO leds
1 green GPIO 2.4 GHz WLAN led
1 green PHY 5 GHz WLAN led
1 green unmanaged power led
USB ports: No
Power: 12 VDC, 1 A
Connector: Barrel
OEM easy installation
---------------------
1. Remove all dots from the factory image filename (except the dot
before file extension)
2. Upload and update the firmware via the original web interface
3. Wait until green status led stops blinking (can take several minutes)
4. Login to OpenWrt initramsfs. It's recommended to make a backup of the
mtd partitions at this point.
4. Perform sysupgrade using the following command (or use Luci):
sysupgrade -n sysupgrade.bin
5. Wait until green status les stops blinking (can take several minutes)
6. Mission acomplished
Return to Stock
---------------
Option 1. Restore firmware Slot1 from a backup (firmware2.bin):
cd /tmp
mtd -e Firmware2 write firmware2.bin Firmware2
printf 1 | dd bs=1 seek=$((0x18007)) count=1 of=/dev/mtdblock2
reboot
Option 2. Decrypt, ungzip and split stock firmware image into the parts,
take Slot1 parts (kernel2.bin, rootfs2.bin) and write them:
cd /tmp
mtd -e Kernel2 write kernel2.bin Kernel2
mtd -e RootFS2 write rootfs2.bin RootFS2
printf 1 | dd bs=1 seek=$((0x18007)) count=1 of=/dev/mtdblock2
reboot
More about stock firmware decryption:
Link: https://github.com/Psychotropos/sercomm_fwutils/
Debricking
----------
Use sercomm-recovery tool. You can use "ALL" mtd partition backup as a
recovery image.
Link: https://github.com/danitool/sercomm-recovery
MAC addresses
-------------
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| label | 48:3e:xx:xx:xx:1e | label |
| LAN | 48:3e:xx:xx:xx:1e | label |
| WAN | 48:3e:xx:xx:xx:28 | label+10 |
| WLAN 2g | 48:3e:xx:xx:xx:20 | label+2 |
| WLAN 5g | 48:3e:xx:xx:xx:24 | label+6 |
+---------+-------------------+-----------+
Co-authored-by: Vadzim Vabishchevich <bestmc2009@gmail.com>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit 1b091311aa)
[fix rt2800_wmac eeprom load]
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
This commit makes a common recipe to set bit in Sercomm factory pid since
this is necessary for several devices (WiFire S1500.nbn, Rostelecom
RT-FL-1) at different offsets.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit e900c45211)
Hardware:
- SoC: Mediatek MT7621 (MT7621AT)
- Flash: 32 MiB SPI-NOR (Macronix MX25L25635E)
- RAM: 128 MiB
- Ethernet: Built-in, 2 x 1GbE
- 3G/4G Modem: MEIG SLM828 (currently only supported with ModemManager)
- SLIC: Si32185 (unsupported)
- Power: 12V via barrel connector
- Wifi 2.4GHz: Mediatek MT7603BE 802.11b/g/b
- Wifi 5GHz: Mediatek MT7613BE 802.11ac/n/a
- LEDs: 8x (7 controllable)
- Buttons: 2x (RESET, WPS)
Installing OpenWrt:
- sysupgrade image is compatible with vendor firmware.
Recovery:
- Connect to any of the Ethernet ports, configure local IP:
10.10.10.3/24 (or 192.168.10.19/24, depending on OEM)
- Provide firmware file named 'mt7621.img' on TFTP server.
- Hold down both, RESET and WPS, then power on the board.
- Watch network traffic using tcpdump or wireshark in realtime to
observe progress of device requesting firmware. Once download has
completed, release both buttons and wait until firmware comes up.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit bc335f2967)
Add support for COMFAST CF-EW72 V2
Hardware:
- SoC: Mediatek MT7621 (MT7621DAT or MT7621AT)
- Flash: 16 MiB NOR
- RAM: 128 MiB
- Ethernet: Built-in, 2 x 1GbE
- Power: only 802.3af PD on any port, injector supplied in the box
- PoE passthrough: No
- Wifi 2.4GHz: Mediatek MT7603BE 802.11b/g/b
- Wifi 5GHz: Mediatek MT7613BEN 802.11ac/n/a
- LEDs: 8x (only 1 is both visible and controllable, see below)
- Buttons: 1x (RESET)
Installing OpenWrt:
Flashing is done using Mediatek U-Boot System Recovery Mode
- make wired connection with 2 cables like this:
- - PC (LAN) <-> PoE Injector (LAN)
- - PoE Injector (POE) <-> CF-EW72 V2 (LAN). Leave unconnected to CF-EW72 V2 yet.
- configure 192.168.1.(2-254)/24 static ip address on your PC LAN
- press and keep pressed RESET button on device
- power the device by plugging PoE Injector (POE) <-> CF-EW72 V2 (LAN) cable
- wait for about 10 seconds until wifi led stops blinking and release RESET button
- navigate from your PC to http://192.168.1.1 and upload OpenWrt *-factory.bin firmware file
- proceed until router starts blinking with wifi led again (flashing) and stops (rebooting to OpenWrt)
MAC addresses as verified by OEM firmware:
vendor OpenWrt address
LAN lan\eth0 label
WAN wan label + 1
2g phy0 label + 2
5g phy1 label + 3
The label MAC address was found in 0xe000.
LEDs detailed:
The only both visible and controllable indicator is blue:wlan LED.
It is not bound by default to indicate activity of any wireless interfaces.
Place (WAN->ANT) | Num | GPIO | LED name (LuCI) | Note
-----------------|-----|-----------------------------------------------------------------------------------------
power | 1 | | | POWER LED. Not controlled with GPIO.
hidden_led_2 | 2 | 13 | blue:hidden_led_2 | This LED does not have proper hole in shell.
wan | 3 | | | WAN LED. Not controlled with GPIO.
hidden_led_4 | 4 | 16 | blue:hidden_led_4 | This LED does not have proper hole in shell.
lan | 5 | | | LAN LED. Not controlled with GPIO.
noconn_led_6 | 6 | | | Not controlled with GPIO, possibly not connected
wlan | 7 | 15 | blue:wlan | WLAN LED. Wireless indicator.
noconn_led_8 | 8 | | | Not controlled with GPIO, possibly not connected
mt76-phy0 and mt76-phy1 leds also exist in OpenWrt, but do not exist on board.
Signed-off-by: Alexey D. Filimonov <alexey@filimonic.net>
(cherry picked from commit ff95f859eb)
Add support for ComFast CF-E390AX. It is a 802.11 wifi6 cieling AP, based on MediaTek MT7261AT.
Specifications:
SoC: MediaTek MT7621AT
RAM: 128 MiB
Flash: 16 MiB NOR (Macronix mx25l12805d)
Wireless: MT7915E (2.4G) 802.11ax/b/g/n MT7915E (5G) 802.11ac/ax/n
Ethernet: 2 x 1Gbs
Button: 1 x "Reset" button
LED: 1x Blue LED + 1x Red LED + 1x green LED
Power: PoE
Manufacturer Page:
http://en.comfast.com.cn/index.php?m=content&c=index&a=show&catid=84&id=75
Flash Layout:
0x000000000000-0x000000030000 : "bootloader"
0x000000030000-0x000000040000 : "config"
0x000000050000-0x000000060000 : "factory"
0x000000090000-0x000001000000 : "firmware"
First install:
1. Set device into http firmware fail safe upload mode by pressing the reset button for 10 seconds while powering
it on. Once the LED stops flashing, safe mode will be running.
2. Set PC IP address to 192.168.1.2
3. Browse to 192.168.1.1 and upload the factory image using the web interface.
Signed-off-by: Usama Nassir <usama.nassir@gmail.com>
(cherry picked from commit f24c9b9d86)
HiWiFi HC5861 has a GbE port which connected to the RTL8211E PHY
chip. This patch adds the missing Realtek PHY driver package and
sets the correct external PHYs base address to make it work again.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
(cherry picked from commit f025135f16)
Set correct GPIO (10) for the WPS button. This matches GPIO settings in
vendor GPL sources. Note that GPL sources also mention a USB indicator
LED (GPIO 13) but the device has neither an external USB port nor a USB LED.
In addition, prefixes (button-, led-) are added to relevant DT entries,
as well as color and function specifications for LEDs.
Closes: #13736
Reported-by: Waldemar Czabaj <kaball@wp.pl>
Signed-off-by: Rani Hod <rani.hod@gmail.com>
(added led mitigations for wifi leds)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
(cherry picked from commit fe5e498777)
A typo snuck in with the addition of Cudy M1800, changing
"nr7101" to "nt7101". The result is a default network config
for NR7101 without the only ethernet interface on the NR7101,
thereby soft bricking it.
Fixes: f6d394e9f2 ("ramips: add support for Cudy M1800")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
(cherry picked from commit 2e57028424)
A bug report in the forum found that the MR70X lists four LAN ports in LuCI
while it has only three. This adds the device to the network setup file
to fix the issue.
Identified-by: Forum User "Lexeyko"
Signed-off-by: Andreas Böhler <dev@aboehler.at>
This commit removes the padded zeros in the date formatting.
The padded zeros from the date command causes the numbers
to be interpreted as an octal number by printf. Months, days,
and years with the number 08 or 09 raise an error in printf as an
"invalid octal number" and get interpreted as a zero.
Signed-off-by: Max Qian <public@maxqia.com>
(cherry picked from commit 794349a28a)
ALFA Network AX1800RM (FCC ID: 2AB877621) is a dual-band Wi-Fi 6
(AX1800) router, based on MediaTek MT7621A + MT79x5D platform.
Specifications:
- SOC: MT7621A (880 MHz)
- DRAM: DDR3 256 MiB (Nanya NT5CC128M16JR-EK)
- Flash: 16 MiB SPI NOR (EN25QH128A-104HIP)
- Ethernet: 4x 10/100/1000 Mbps (SOC's built-in switch)
- Wi-Fi: 2x2:2 2.4/5 GHz (MT7905DAN + MT7975DN)
(MT7905DAN doesn't support background DFS scan/BT)
- LED: 6x green, 1x green/red
- Buttons: 2x (reset, WPS)
- Antenna: 4x external, non-detachable omnidirectional
- UART: 1x 4-pin (2.54 mm pitch, J4, not populated)
- Power: 12 V DC/1 A (DC jack)
MAC addresses:
LAN: 00:c0:ca:xx:xx:4e (factory 0x4, +2)
WAN: 00:c0:ca:xx:xx:4f (factory 0x4, +3)
2.4 GHz: 00:c0:ca:xx:xx:4c (factory 0x4, device's label)
5 GHz: 00:c0:ca:xx:xx:4c (factory 0xa)
Flash instructions for web-based U-Boot recovery:
1. Power the device with WPS button pressed and wait around 10 seconds.
2. Setup static IP 192.168.1.2/24 on your PC.
3. Go to 192.168.1.1 in browser and upload 'recovery' image.
The device runs LEDE 17.01 (kernel 4.4.x) based firmware with 'failsafe'
mode available which allows alternative upgrade method:
1. Run device in 'failsafe' mode and change password for default user.
2. SSH to the device, transfer 'sysupgrade' image and perform upgrade
in forced mode, without preserving settings: 'sysupgrade -n -F ...'.
Other notes:
If you own early version of this device, the vendor firmware might
refuse OpenWrt image because of missing custom header. In that case,
ask vendor's customer support for stock firmware without custom header
support/requirement.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(backported from commit f1aaa267f0)
MT7620 wireless radio needs change the pin group function between
"gpio" and "pa" during the calibration process. However, ralink
pinctrl driver doesn't support requesting different functions for
the same group. This patch enables pinctrl consumers to perform
such operations.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
(cherry picked from commit b4ea49ad44)
Import commits from upstream Linux replacing some downstream patches.
Move accepted patches from pending-{5.15,6.1} to backport-{5.15,6.1}.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit f631c7bbb1)
Backport initial LEDs hw control support. Currently this is limited to
only rx/tx and link events for the netdev trigger but the API got
accepted and the additional modes are working on and will be backported
later.
Refresh every patch and add the additional config flag for QCA8K new
LEDs support.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 0a4b309f41)