Commit Graph

1587 Commits

Author SHA1 Message Date
Edward Chow
50f727b773 ath79: add support for Linksys EA4500 v3
Add support for the Linksys EA4500 v3 wireless router

Hardware
--------
SoC:    Qualcomm Atheros QCA9558
RAM:    128M DDR2 (Winbond W971GG6KB-25)
FLASH:  128M SPI-NAND (Spansion S34ML01G100TFI00)
WLAN:   QCA9558 3T3R 802.11 bgn
        QCA9580 3T3R 802.11 an
ETH:    Qualcomm Atheros QCA8337
UART:   115200 8n1, same as ea4500 v2
USB:	1 single USB 2.0 host port
BUTTON: Reset - WPS
LED:    1x system-LED
        LEDs besides the ethernet ports are controlled
        by the ethernet switch

MAC Address:
 use        address(sample 1)    source
 label      94:10:3e:xx:xx:6f   caldata@cal_macaddr
 lan        94:10:3e:xx:xx:6f   $label
 wan        94:10:3e:xx:xx:6f   $label
 WiFi4_2G   94:10:3e:xx:xx:70   caldata@cal_ath9k_soc
 WiFi4_5G   94:10:3e:xx:xx:71   caldata@cal_ath9k_pci

Installation from Serial Console
------------

1. Connect to the serial console. Power up the device and interrupt
   autoboot when prompted

2. Connect a TFTP server reachable at 192.168.1.0/24
   (e.g. 192.168.1.66) to the ethernet port. Serve the OpenWrt
   initramfs image as "openwrt.bin"

3. To test OpenWrt only, go to step 4 and never execute step 5;
   To install, auto_recovery should be disabled first, and boot_part
   should be set to 1 if its current value is not.

   ath> setenv auto_recovery no
   ath> setenv boot_part 1
   ath> saveenv

4. Boot the initramfs image using U-Boot

   ath> setenv serverip 192.168.1.66
   ath> tftpboot 0x84000000 openwrt.bin
   ath> bootm

5. Copy the OpenWrt sysupgrade image to the device using scp and
   install it like a normal upgrade (with no need to keeping config
   since no config from "previous OpenWRT installation" could be kept
   at all)

   # sysupgrade -n /path/to/openwrt/sysupgrade.bin

Note: Like many other routers produced by Linksys, it has a dual
      firmware flash layout, but because I do not know how to handle
      it, I decide to disable it for more usable space. (That is why
      the "auto_recovery" above should be disabled before installing
      OpenWRT.) If someone is interested in generating factory
      firmware image capable to flash from stock firmware, as well as
      restoring the dual firmware layout, commented-out layout for the
      original secondary partitions left in the device tree may be a
      useful hint.

Installation from Web Interface
------------

1. Login to the router via its web interface (default password: admin)

2. Find the firmware update interface under "Connectivity/Basic"

3. Choose the OpenWrt factory image and click "Start"

4. If the router still boots into the stock firmware, it means that
   the OpenWrt factory image has been installed to the secondary
   partitions and failed to boot (since OpenWrt on EA4500 v3 does not
   support dual boot yet), and the router switched back to the stock
   firmware on the primary partitions. You have to install a stock
   firmware (e.g. 3.1.6.172023, downloadable from
   https://www.linksys.com/support-article?articleNum=148385 ) first
   (to the secondary partitions) , and after that, install OpenWrt
   factory image (to the primary partitions). After successful
   installation of OpenWrt, auto_recovery will be automatically
   disabled and router will only boot from the primary partitions.

Signed-off-by: Edward Chow <equu@openmail.cc>
2022-10-30 23:14:45 +01:00
John Audia
a34255b795 kernel: bump 5.15 to 5.15.75
Removed upstreamed:
   bcm27xx/patches-5.15/950-0446-drm-vc4-Fix-timings-for-VEC-modes.patch[1]

Manually rebased:
   patches-5.15/950-0600-xhci-quirks-add-link-TRB-quirk-for-VL805.patch
   bcm27xx/patches-5.15/950-0606-usb-xhci-add-VLI_TRB_CACHE_BUG-quirk.patch
   bcm27xx/patches-5.15/950-0717-usb-xhci-add-a-quirk-for-Superspeed-bulk-OUT-transfe.patch
   bcm53xx/patches-5.15/180-usb-xhci-add-support-for-performing-fake-doorbell.patch

All other patches automatically rebased

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.75&id=2810061452f9b748b096ad023d318690ca519aa3

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200
Run-tested: bcm2711/RPi4B, mt7622/RT3200

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-10-30 17:54:59 +01:00
John Audia
aa2fa2eb76 kernel: bump 5.10 to 5.10.150
Manually rebased:
  bcm53xx/patches-5.10/180-usb-xhci-add-support-for-performing-fake-doorbell.patch

All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
[Move gro_skip in 680-NET-skip-GRO-for-foreign-MAC-addresses.patch to old position]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2022-10-30 17:52:42 +01:00
Pavel Kamaev
a716ac5564 ath79: fix reference clock for RouterBoard 912UAG
This fixes reference clock frequency of RB912. 25 MHz frequency leads
to system clock running too fast, uptime incrementing too fast and
delays (like `sleep 10`) returning too early.

Board has quartz with NSK 3KHAA Z 40 000 marking.

Signed-off-by: Pavel Kamaev <pavel@kamaev.me>
2022-10-23 01:45:52 +02:00
Chukun Pan
7b863af180 kernel: move mac-address-ascii patches to generic
This enables other targets to use the mac-address-ascii
feature.

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2022-10-23 01:45:52 +02:00
Petr Štetiar
329b583aad ath79: refresh kernel patches
Refresh dirty patches after commit 711f1a8bcb ("kernel: mtd: backport
SafeLoader parser").

Fixes: 711f1a8bcb ("kernel: mtd: backport SafeLoader parser")
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2022-10-20 09:53:23 +02:00
INAGAKI Hiroshi
48bb71ff28 ath79: improve MAC address configuration of ELECOM devices
Get MAC address of WAN from HW.WAN.MAC.Address in hwconfig partition
instead of calculated one from wlan's address.
And added label_mac.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2022-10-19 22:58:12 +02:00
INAGAKI Hiroshi
961d4230f4 ath79: use NVMEM for wlan caldata on ELECOM devices
Use NVMEM "calibration" implementation for ath9k/ath10k(-ct) on ELECOM
WRC-300GHBK2-I and WRC-1750GHBK2-I/C instead of mtd-cal-data property
or user-space script.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2022-10-19 22:58:12 +02:00
INAGAKI Hiroshi
2e1ffc3412 ath79: use ARTIFACTS for initramfs-factory of ELECOM devices
Use ARTIFACTS to generate factory image of the following ELECOM devices
instead of redundant recipe which generate on KERNEL_INITRAMFS.

- ELECOM WRC-300GHBK2-I
- ELECOM WRC-1750GHBK2-I/C

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2022-10-19 22:58:12 +02:00
Rafał Miłecki
711f1a8bcb kernel: mtd: backport SafeLoader parser
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-10-19 07:07:14 +02:00
John Audia
9110126620 kernel: bump 5.15 to 5.15.72
Removed upstreamed:
  generic/pending-5.15/722-net-mt7531-only-do-PLL-once-after-the-reset.patch[1]
  bcm53xx/patches-5.15/082-v6.0-clk-iproc-Do-not-rely-on-node-name-for-correct-PLL-s.patch[2]

All other patches automatically rebased

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200, mvebu/cortexa72
Run-tested: bcm2711/RPi4B, mt7622/RT3200, mvebu/cortexa72 (RB5009UG+S+IN)

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.72&id=5de02ab84aeca765da0e4d8e999af35325ac67c2
2. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.72&id=ab5c5787ab5ecdc4a7ea20b4ef542579e1beb49d

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-10-09 22:26:16 +02:00
John Audia
e2da6a0a59 kernel: bump 5.10 to 5.10.147
Removed upstreamed:
  bcm53xx/patches-5.10/083-v6.0-clk-iproc-Do-not-rely-on-node-name-for-correct-PLL-s.patch[1]

All other patches automatically rebased.

1. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.10.147&id=a8e6cde5062fb2aff81f86cc0770591714bee545

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-10-09 22:18:24 +02:00
Tom Herbers
7d6032f310 ath79: fix model name of Extreme Networks WS-AP3805i
Everywhere else the device is referred to as WS-AP3805i,
only the model name wrongly only said AP3805i.

Signed-off-by: Tom Herbers <mail@tomherbers.de>
2022-10-08 01:34:28 +02:00
Robert Meijer
c3b9f00aaa
ath79: increase max tx ring buffer for ag71xx
This allows the user to specify a larger tx ring buffer size via ethtool.
Having symmetrical ring buffer sizes increases throughput on high bandwidth
(1 gbps tested) network connections.

The default value is not changed so the same behaviour is saved.

Signed-off-by: Robert Meijer <robert.s.meijer@gmail.com>
[ improve title, commit description and wrap to 80 columns ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-10-06 16:45:43 +02:00
Santiago Piccinini
2ad949b11d ath79: fix LibreRouter-v1 watchdog and poe_pass
Watchdog and poe_passthrough gpios require the jtag disabled.

Signed-off-by: Santiago Piccinini <spiccinini@altermundi.net>
2022-10-02 11:39:13 +02:00
Olliver Schinagl
ba6096d04b
ath79: Convert incorrect 5.10 and 5.15 patches
OpenWRT's developer guide prefers having actual patches so they an be
sent upstream more easily.

However, in this case, Adding proper fields also allows for `git am` to
properly function. Some of these patches are quite old, and lack much
traceable history.

This commit tries to rectify that, by digging in the history to find
where and how it was first added.

It is by no means perfect and also shows some patches that should have
been long gone.

Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>
2022-10-01 02:47:56 +02:00
Felix Fietkau
36f2ab4bfd kernel: move kernel image cmdline hack to the octeon target
It is the only remaining user of this hack

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2022-09-30 13:13:51 +02:00
Felix Fietkau
4363faef8a kernel: move ubnt ledbar driver to a separate package
Simplifies the tree by removing a non-upstream kernel patch and related kconfig
symbols

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2022-09-30 11:28:51 +02:00
Nick Hainke
579703f38c ath79: switch to 5.15 as default kernel
The 5.15 kernel has new interesting features like MGLRU. Most of the
targets already have added support for testing kernel 5.15 since April
2022. Set 5.15 as default for all subtargets.

Testing support was added here:
- ae6bfb7d67 ("ath79: tiny: add 5.15 support for tiny subtarget")
- 9a0155bc4f ("ath79: add 5.15 support for generic subtarget")
- 5af9aafabb ("ath79: mikrotik: add 5.15 support for mikrotik subtarget")
- f3fa68e515 ("ath79: nand: add 5.15 support for nand subtarget")

Tested on:
- Nanostation M5 XM (tiny)
- TP-Link EAP-225 Outdoor (generic)
- TP-Link CPE210 (generic)

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-09-24 13:04:24 +02:00
Sungbo Eo
deb6f378bf ath79: specify factory.bin recipe for ASUS RP-AC51
Currently factory.bin image recipe of ASUS RP-AC51 is not specified
explicitly and is thus set to the leaked one from the device recipe
right above, i.e. ASUS PL-AC56. Fix it to avoid potential breakage.

Fixes: 416d4483e8 ("ath79: add support for ASUS RP-AC51")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2022-09-18 03:09:19 +09:00
John Audia
b77217d916 kernel: bump 5.10 to 5.10.143
All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-09-17 14:16:37 +02:00
John Audia
fe209fa47d kernel: bump 5.15 to 5.15.68
All patches automatically rebased

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200
Run-tested: bcm2711/RPi4B, mt7622/RT3200

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-09-17 14:16:37 +02:00
Hauke Mehrtens
76fc277917 ath79: Make patches apply again
The patch adding support for LEDs connected to a reset controller did
not apply any more, refresh it on top of current master.

Fixes: 53fc987b25 ("generic: move ledbar driver from mediatek target")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2022-09-11 22:17:47 +02:00
Will Moss
e22ca21daa ath79: add support for TP-Link TL-WR941ND v5
Specifications:
- SoC: ar9341
- RAM: 32M
- Flash: 4M
- Ethernet: 5x FE ports
- WiFi: ar9341-wmac

Flash instruction:
Upload generated factory firmware on vendor's web interface.

This device is very similar to the TL-WR841N v8, only two LED GPIOs are
different.
Buttons configuration is similar to TL-WR842ND v2 but both buttons are
active low.

Signed-off-by: Will Moss <willormos@gmail.com>
2022-09-11 22:00:22 +02:00
Nick French
20581ee8b5 ath79: add support for TP-Link Deco S4
Add support for TP-Link Deco S4 wifi router

The label refers to the device as S4R and the TP-Link firmware
site calls it the Deco S4 v2. (There does not appear to be a v1)

Hardware (and FCC id) are identical to the Deco M4R v2 but the
flash layout is ordered differently and the OEM firmware encrypts
some config parameters (including the label mac address) in flash

In order to set the encrypted mac address, the wlan's caldata
node is removed from the DTS so the mac can be decrypted with
the help of the uencrypt tool and patched into the wlan fw
via hotplug

Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR

UART serial access (115200N1) on board via solder pads:
RX = TP1 pad
TX = TP2 pad
GND = C201 (pad nearest board edge)

The device's bootloader and web gui will only accept images that
were signed using TP-Link's RSA key, however a memory safety bug
in the bootloader can be leveraged to install openwrt without
accessing the serial console. See developer forum S4 support page
for link to a "firmware" file that starts a tftp client, or you
may generate one on your own like this:
```
python - > deco_s4_faux_fw_tftp.bin <<EOF
import sys
from struct import pack

b = pack('>I', 0x00008000) + b'X'*16 + b"fw-type:" \
  + b'x'*256 + b"S000S001S002" + pack('>I', 0x80060200) \

b += b"\x00"*(0x200-len(b)) \
  + pack(">33I", *[0x3c0887fc, 0x35083ddc, 0xad000000, 0x24050000,
                   0x3c048006, 0x348402a0, 0x3c1987f9, 0x373947f4,
                   0x0320f809, 0x00000000, 0x24050000, 0x3c048006,
                   0x348402d0, 0x3c1987f9, 0x373947f4, 0x0320f809,
                   0x00000000, 0x24050000, 0x3c048006, 0x34840300,
                   0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000,
                   0x24050000, 0x3c048006, 0x34840400, 0x3c1987f9,
                   0x373947f4, 0x0320f809, 0x00000000, 0x1000fff1,
                   0x00000000])

b += b"\xff"*(0x2A0-len(b)) + b"setenv serverip 192.168.0.2\x00"
b += b"\xff"*(0x2D0-len(b)) + b"setenv ipaddr 192.168.0.1\x00"
b += b"\xff"*(0x300-len(b)) + b"tftpboot 0x81000000 initramfs-kernel.bin\x00"
b += b"\xff"*(0x400-len(b)) + b"bootm 0x81000000\x00"
b += b"\xff"*(0x8000-len(b))

sys.stdout.buffer.write(b)
EOF
```

Installation:
1. Run tftp server on pc with static ip 192.168.0.2
2. Place openwrt "initramfs-kernel.bin" image in tftp root dir
3. Connect pc to router ethernet port1
4. While holding in reset button on bottom of router, power on router
5. From pc access router webgui at http://192.168.0.1
6. Upload deco_s4_faux_fw_tftp.bin
7. Router will load and execture in-memory openwrt
8. Switch pc back to dhcp or static 192.168.1.x
9. Flash openwrt sysupgrade image via luci/ssh at 192.168.1.1

Revert to stock:
Press and hold reset button while powering device to start the
bootloader's recovery mode, where stock firmware can be uploaded
via web gui at 192.168.0.1

Please note that one additional non-github commits is also needed:
firmware-utils: add tplink-safeloader support for Deco S4

Signed-off-by: Nick French <nickfrench@gmail.com>
2022-09-11 21:54:00 +02:00
Michael Pratt
5df1b33298 ath79: add support for Senao Watchguard AP100
FCC ID: U2M-CAP2100AG

WatchGuard AP100 is an indoor wireless access point with
1 Gb ethernet port, dual-band but single-radio wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP300 v2
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC          MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2
  - AR8035-A EPHY       RGMII GbE with PoE+ IN
  - 25 MHz clock
  - 16 MB FLASH         mx25l12805d
  - 2x 64 MB RAM
  - UART console        J11, populated
  - GPIO watchdog       GPIO 16, 20 sec toggle
  - 2 antennas          5 dBi, internal omni-directional plates
  - 5 LEDs              power, eth0 link/data, 2G, 5G
  - 1 button            reset

**MAC addresses:**

  Label has no MAC
  Only one Vendor MAC address in flash at art 0x0

  eth0 ---- *:e5 art 0x0 -2
  phy0 ---- *:e5 art 0x0 -2

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell

    It may be necessary to use a Watchguard router to flash the image to the AP
    and / or to downgrade the software on the AP to access SSH
    For some Watchguard devices, serial console over UART is disabled.

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  reset button has no function at boot time
  only possible with modified uboot environment,
  (see commit message for Watchguard AP300)

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM reliably

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For AR934x series, the PLL registers for eth0
  can be see in the DTSI as 0x2c.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Steve Wheeler <stephenw10@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
9f6e247854 ath79: add support for Senao WatchGuard AP200
FCC ID: U2M-CAP4200AG

WatchGuard AP200 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP600
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - AR9382 WLAN		PCI card 168c:0030, 5 GHz, 2x2, 26dBm
  - AR8035-A EPHY	RGMII GbE with PoE+ IN
  - 25 MHz clock
  - 16 MB FLASH		mx25l12805d
  - 2x 64 MB RAM
  - UART console        J11, populated
  - GPIO watchdog       GPIO 16, 20 sec toggle
  - 4 antennas          5 dBi, internal omni-directional plates
  - 5 LEDs              power, eth0 link/data, 2G, 5G
  - 1 button            reset

**MAC addresses:**

  Label has no MAC
  Only one Vendor MAC address in flash at art 0x0

  eth0 ---- *:be art 0x0 -2
  phy1 ---- *:bf art 0x0 -1
  phy0 ---- *:be art 0x0 -2

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell

    It may be necessary to use a Watchguard router to flash the image to the AP
    and / or to downgrade the software on the AP to access SSH
    For some Watchguard devices, serial console over UART is disabled.

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  reset button has no function at boot time
  only possible with modified uboot environment,
  (see commit message for Watchguard AP300)

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM reliably

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For AR934x series, the PLL registers for eth0
  can be see in the DTSI as 0x2c.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Steve Wheeler <stephenw10@gmail.com>
Tested-by: John Delaney <johnd@ankco.net>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
146aaeafb7 ath79: add support for Senao WatchGuard AP300
FCC ID: Q6G-AP300

WatchGuard AP300 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9558 SOC		MIPS 74kc, 2.4 GHz WMAC, 3x3
  - QCA9880 WLAN	PCI card 168c:003c, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 32 MB FLASH		S25FL512S
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated
  - GPIO watchdog	GPIO 16, 20 sec toggle
  - 6 antennas		5 dBi, internal omni-directional plates
  - 5 LEDs		power, eth0 link/data, 2G, 5G
  - 1 button		reset

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:3c art 0x0
  phy1 ---- *:3d ---
  phy0 ---- *:3e ---

**Serial console access:**

  For this board, its not certain whether UART is possible
  it is likely that software is blocking console access

  the RX line on the board for UART is shorted to ground by resistor R176
  the resistors R175 and R176 are next to the UART RX pin at J10

  however console output is garbage even after this fix

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell access

    downgrade XTM firewall to v2.0.0.1
    downgrade AP300 firmware: v1.0.1
    remove / unpair AP from controller
    perform factory reset with reset button
    connect ethernet to a computer
    login to OEM webpage with default address / pass: wgwap
    enable SSHD in OEM webpage settings
    access root shell with SSH as user 'root'
    modify uboot environment to automatically try TFTP at boot time
    (see command below)

    rename initramfs-kernel.bin to test.bin
    load test.bin over TFTP (see TFTP recovery)
    (optionally backup all mtdblocks to have flash backup)
    perform a sysupgrade with sysupgrade.bin

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  server ip: 192.168.1.101

  reset button seems to do nothing at boot time...
  only possible with modified uboot environment,
  running this command in the root shell:

  fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi'

  and verify that it is correct with

  fw_printenv

  then, before boot, the device will attempt TFTP from 192.168.1.101
  looking for file 'test.bin'

  to return uboot environment to normal:

  fw_setenv bootcmd 'bootm 0x9f0a0000'

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM
  (see installation method 2)

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Alessandro Kornowski <ak@wski.org>
Tested-by: John Wagner <john@wagner.us.org>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
c107506883 ath79: fix RGMII delay for ar9344 Senao APs
after some trial and error, it was discovered
that by setting TX only delay on the AR8035 PHY
that setting GMAC registers is no longer necessary.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
513f9855e9 ath79: rename an engenius DTSI to generic senao name
Other vendors can use this DTSI, for example, WatchGuard
there are likely several brands that use the same board design
because of outsourcing hardware from Senao.

For example, Watchguard AP300
has the same hardware as Engenius EAP600
so we use ar9344_engenius_exx600.dtsi for that

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Lech Perczak
f1d112ee5a ath79: support Ruckus ZoneFlex 7321
Ruckus ZoneFlex 7321 is a dual-band, single radio 802.11n 2x2 MIMO enterprise
access point. It is very similar to its bigger brother, ZoneFlex 7372.

Hardware highligts:
- CPU: Atheros AR9342 SoC at 533 MHz
- RAM: 64MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi: AR9342 built-in dual-band 2x2 MIMO radio
- Ethernet: single Gigabit Ethernet port through AR8035 gigabit PHY
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7321-U variant.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1 ----------
   |1|x3|4|5|
   ----------

Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

JTAG: Connector H5, unpopulated, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:

------- H5
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------

3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected

Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server,  and removing a single T10 screw,
  but with much less manual steps, and is generally recommended, being
  safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
  work on some rare versions of stock firmware. A more involved, and
  requires installing `mkenvimage` from u-boot-tools package if you
  choose to rebuild your own environment, but can be used without
  disassembly or removal from installation point, if you have the
  credentials.
  If for some reason, size of your sysupgrade image exceeds 13312kB,
  proceed with method [1]. For official images this is not likely to
  happen ever.

[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0x9f040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7321-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7321_fw1_backup.bin
   $ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7321_fw2_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin

[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
   it boots, hold the reset button near Ethernet connectors for 5
   seconds.

1. Connect the device to the network. It will acquire address over DHCP,
   so either find its address using list of DHCP leases by looking for
   label MAC address, or try finding it by scanning for SSH port:

   $ nmap 10.42.0.0/24 -p22

   From now on, we assume your computer has address 10.42.0.1 and the device
   has address 10.42.0.254.

2. Set up a TFTP server on your computer. We assume that TFTP server
   root is at /srv/tftp.

3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
   frmware is pretty ancient and requires enabling HMAC-MD5.

   $ ssh 10.42.0.254 \
   -o UserKnownHostsFile=/dev/null \
   -o StrictHostKeyCheking=no \
   -o MACs=hmac-md5

   Login. User is "super", password is "sp-admin".
   Now execute a hidden command:

   Ruckus

   It is case-sensitive. Copy and paste the following string,
   including quotes. There will be no output on the console for that.

   ";/bin/sh;"

   Hit "enter". The AP will respond with:

   grrrr
   OK

   Now execute another hidden command:

   !v54!

   At "What's your chow?" prompt just hit "enter".
   Congratulations, you should now be dropped to Busybox shell with root
   permissions.

4. Optional, but highly recommended: backup the flash contents before
   installation. At your PC ensure the device can write the firmware
   over TFTP:

   $ sudo touch /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
   $ sudo chmod 666 /srv/tftp/ruckus_zf7321_firmware{1,2}.bin

   Locate partitions for primary and secondary firmware image.
   NEVER blindly copy over MTD nodes, because MTD indices change
   depending on the currently active firmware, and all partitions are
   writable!

   # grep rcks_wlan /proc/mtd

   Copy over both images using TFTP, this will be useful in case you'd
   like to return to stock FW in future. Make sure to backup both, as
   OpenWrt uses bot firmwre partitions for storage!

   # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7321_firmware1.bin -p 10.42.0.1
   # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7321_firmware2.bin -p 10.42.0.1

   When the command finishes, copy over the dump to a safe place for
   storage.

   $ cp /srv/tftp/ruckus_zf7321_firmware{1,2}.bin ~/

5. Ensure the system is running from the BACKUP image, i.e. from
   rcks_wlan.bkup partition or "image 2". Otherwise the installation
   WILL fail, and you will need to access mtd0 device to write image
   which risks overwriting the bootloader, and so is not covered here
   and not supported.

   Switching to backup firmware can be achieved by executing a few
   consecutive reboots of the device, or by updating the stock firmware. The
   system will boot from the image it was not running from previously.
   Stock firmware available to update was conveniently dumped in point 4 :-)

6. Prepare U-boot environment image.
   Install u-boot-tools package. Alternatively, if you build your own
   images, OpenWrt provides mkenvimage in host staging directory as well.
   It is recommended to extract environment from the device, and modify
   it, rather then relying on defaults:

   $ sudo touch /srv/tftp/u-boot-env.bin
   $ sudo chmod 666 /srv/tftp/u-boot-env.bin

   On the device, find the MTD partition on which environment resides.
   Beware, it may change depending on currently active firmware image!

   # grep u-boot-env /proc/mtd

   Now, copy over the partition

   # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1

   Store the stock environment in a safe place:

   $ cp /srv/tftp/u-boot-env.bin ~/

   Extract the values from the dump:

   $ strings u-boot-env.bin | tee u-boot-env.txt

   Now clean up the debris at the end of output, you should end up with
   each variable defined once. After that, set the bootcmd variable like
   this:

   bootcmd=bootm 0x9f040000

   You should end up with something like this:

bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
mtdids=nor0=ar7100-nor0
bootdelay=2
ethact=eth0
filesize=78a000
fileaddr=81000000
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=10.0.0.1
serverip=10.0.0.5
stdin=serial
stdout=serial
stderr=serial

   These are the defaults, you can use most likely just this as input to
   mkenvimage.

   Now, create environment image and copy it over to TFTP root:

   $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
   $ sudo cp u-boot-env.bin /srv/tftp

   This is the same image, gzipped and base64-encoded:

H4sIAAAAAAAAA+3QQW7TQBQAUF8EKRtQI6XtJDS0VJoN4gYcAE3iCbWS2MF2Sss1ORDYqVq6YMEB3rP0
Z/7Yf+aP3/56827VNP16X8Zx3E/Cw8dNuAqDYlxI7bcurpu6a3Y59v3jlzCbz5eLECbt8HbT9Y+HHLvv
x9TdbbpJVVd9vOxWVX05TotVOpZt6nN8qilyf5fKso3hIYTb8JDSEFarIazXQyjLIeRc7PvykNq+iy+T
1F7PQzivmzbcLpYftmfH87G56Wz+/v18sT1r19vu649dqi/2qaqns0W4utmelalPm27I/lac5/p+OluO
NZ+a1JaTz8M3/9hmtT0epmMjVdnF8djXLZx+TJl36TEuTlda93EYQrGpdrmrfuZ4fZPGHzjmp/vezMNJ
MV6n6qumPm06C+MRZb6vj/v4Mk/7HJ+6LarDqXweLsZnXnS5vc9tdXheWRbd0GIdh/Uq7cakOfavsty2
z1nxGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAD+1x9eTkHLAAAEAA==

7. Perform actual installation. Copy over OpenWrt sysupgrade image to
   TFTP root:

   $ sudo cp openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin /srv/tftp

   Now load both to the device over TFTP:

   # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
   # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin -g 10.42.0.1

   Vverify checksums of both images to ensure the transfer over TFTP
   was completed:

   # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin

   And compare it against source images:

   $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin

   Locate MTD partition of the primary image:

   # grep rcks_wlan.main /proc/mtd

   Now, write the images in place. Write U-boot environment last, so
   unit still can boot from backup image, should power failure occur during
   this. Replace MTD placeholders with real MTD nodes:

   # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
   # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>

   Finally, reboot the device. The device should directly boot into
   OpenWrt. Look for the characteristic power LED blinking pattern.

   # reboot -f

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Boot into OpenWrt initramfs as for initial installation. To do that
   without disassembly, you can write an initramfs image to the device
   using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
   fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
   before installation:
   mtd write ruckus_zf7321_fw1_backup.bin /dev/mtd1
   mtd write ruckus_zf7321_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.

Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
- The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid   the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
  execute the following command before booting:
  mw.l 1804006c 40
  And also you need to disable the reset button in device tree if you
  intend to debug Linux, because reset button on GPIO0 shares the TCK
  pin.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-09-11 01:36:25 +02:00
Lech Perczak
59cb4dc91d ath79: support Ruckus ZoneFlex 7372
Ruckus ZoneFlex 7372 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.

Ruckus ZoneFlex 7352 is also supported, lacking the 5GHz radio part.

Hardware highligts:
- CPU: Atheros AR9344 SoC at 560 MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344 built-in 2x2 MIMO radio
- Wi-Fi 5Ghz: AR9582 2x2 MIMO radio (Only in ZF7372)
- Antennas:
  - Separate internal active antennas with beamforming support on both
    bands with 7 elements per band, each controlled by 74LV164 GPIO
    expanders, attached to GPIOs of each radio.
  - Two dual-band external RP-SMA antenna connections on "7372-E"
    variant.
- Ethernet 1: single Gigabit Ethernet port through AR8035 gigabit PHY
- Ethernet 2: single Fast Ethernet port through AR9344 built-in switch
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on "-U" variants.

The same image should support:
- ZoneFlex 7372E (variant with external antennas, without beamforming
  capability)
- ZoneFlex 7352 (single-band, 2.4GHz-only variant).

which are based on same baseboard (codename St. Bernard),
with different populated components.

Serial console: 115200-8-N-1 on internal H1 header.
Pinout:

H1
---
|5|
---
|4|
---
|3|
---
|x|
---
|1|
---

Pin 5 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX

JTAG: Connector H2, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:

------- H2
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------

3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected

Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
  adapter, TFTP server,  and removing a single T10 screw,
  but with much less manual steps, and is generally recommended, being
  safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
  work on some rare versions of stock firmware. A more involved, and
  requires installing `mkenvimage` from u-boot-tools package if you
  choose to rebuild your own environment, but can be used without
  disassembly or removal from installation point, if you have the
  credentials.
  If for some reason, size of your sysupgrade image exceeds 13312kB,
  proceed with method [1]. For official images this is not likely to
  happen ever.

[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
   does not back-power the board, otherwise it will fail to boot.

1. Power-on the board. Then quickly connect serial converter to PC and
   hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
   you'll enter U-boot shell. Then skip to point 3.
   Connection parameters are 115200-8-N-1.

2. Allow the board to boot.  Press the reset button, so the board
   reboots into U-boot again and go back to point 1.

3. Set the "bootcmd" variable to disable the dual-boot feature of the
   system and ensure that uImage is loaded. This is critical step, and
   needs to be done only on initial installation.

   > setenv bootcmd "bootm 0x9f040000"
   > saveenv

4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:

   > setenv serverip 192.168.1.2
   > setenv ipaddr 192.168.1.1
   > tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7372-initramfs-kernel.bin
   > bootm 0x81000000

5. Optional, but highly recommended: back up contents of "firmware" partition:

   $ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7372_fw1_backup.bin
   $ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7372_fw2_backup.bin

6. Copy over sysupgrade image, and perform actual installation. OpenWrt
   shall boot from flash afterwards:

   $ ssh root@192.168.1.1
   # sysupgrade -n openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin

[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
   it boots, hold the reset button near Ethernet connectors for 5
   seconds.

1. Connect the device to the network. It will acquire address over DHCP,
   so either find its address using list of DHCP leases by looking for
   label MAC address, or try finding it by scanning for SSH port:

   $ nmap 10.42.0.0/24 -p22

   From now on, we assume your computer has address 10.42.0.1 and the device
   has address 10.42.0.254.

2. Set up a TFTP server on your computer. We assume that TFTP server
   root is at /srv/tftp.

3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
   frmware is pretty ancient and requires enabling HMAC-MD5.

   $ ssh 10.42.0.254 \
   -o UserKnownHostsFile=/dev/null \
   -o StrictHostKeyCheking=no \
   -o MACs=hmac-md5

   Login. User is "super", password is "sp-admin".
   Now execute a hidden command:

   Ruckus

   It is case-sensitive. Copy and paste the following string,
   including quotes. There will be no output on the console for that.

   ";/bin/sh;"

   Hit "enter". The AP will respond with:

   grrrr
   OK

   Now execute another hidden command:

   !v54!

   At "What's your chow?" prompt just hit "enter".
   Congratulations, you should now be dropped to Busybox shell with root
   permissions.

4. Optional, but highly recommended: backup the flash contents before
   installation. At your PC ensure the device can write the firmware
   over TFTP:

   $ sudo touch /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
   $ sudo chmod 666 /srv/tftp/ruckus_zf7372_firmware{1,2}.bin

   Locate partitions for primary and secondary firmware image.
   NEVER blindly copy over MTD nodes, because MTD indices change
   depending on the currently active firmware, and all partitions are
   writable!

   # grep rcks_wlan /proc/mtd

   Copy over both images using TFTP, this will be useful in case you'd
   like to return to stock FW in future. Make sure to backup both, as
   OpenWrt uses bot firmwre partitions for storage!

   # tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7372_firmware1.bin -p 10.42.0.1
   # tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7372_firmware2.bin -p 10.42.0.1

   When the command finishes, copy over the dump to a safe place for
   storage.

   $ cp /srv/tftp/ruckus_zf7372_firmware{1,2}.bin ~/

5. Ensure the system is running from the BACKUP image, i.e. from
   rcks_wlan.bkup partition or "image 2". Otherwise the installation
   WILL fail, and you will need to access mtd0 device to write image
   which risks overwriting the bootloader, and so is not covered here
   and not supported.

   Switching to backup firmware can be achieved by executing a few
   consecutive reboots of the device, or by updating the stock firmware. The
   system will boot from the image it was not running from previously.
   Stock firmware available to update was conveniently dumped in point 4 :-)

6. Prepare U-boot environment image.
   Install u-boot-tools package. Alternatively, if you build your own
   images, OpenWrt provides mkenvimage in host staging directory as well.
   It is recommended to extract environment from the device, and modify
   it, rather then relying on defaults:

   $ sudo touch /srv/tftp/u-boot-env.bin
   $ sudo chmod 666 /srv/tftp/u-boot-env.bin

   On the device, find the MTD partition on which environment resides.
   Beware, it may change depending on currently active firmware image!

   # grep u-boot-env /proc/mtd

   Now, copy over the partition

   # tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1

   Store the stock environment in a safe place:

   $ cp /srv/tftp/u-boot-env.bin ~/

   Extract the values from the dump:

   $ strings u-boot-env.bin | tee u-boot-env.txt

   Now clean up the debris at the end of output, you should end up with
   each variable defined once. After that, set the bootcmd variable like
   this:

   bootcmd=bootm 0x9f040000

   You should end up with something like this:

bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
bootdelay=2
mtdids=nor0=ar7100-nor0
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
ethact=eth0
filesize=1000000
fileaddr=81000000
ipaddr=192.168.0.7
serverip=192.168.0.51
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
stdin=serial
stdout=serial
stderr=serial

   These are the defaults, you can use most likely just this as input to
   mkenvimage.

   Now, create environment image and copy it over to TFTP root:

   $ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
   $ sudo cp u-boot-env.bin /srv/tftp

   This is the same image, gzipped and base64-encoded:

H4sIAAAAAAAAA+3QTW7TQBQAYB+AQ2TZSGk6Tpv+SbNBrNhyADSJHWolsYPtlJaDcAWOCXaqQhdIXOD7
Fm/ee+MZ+/nHu58fV03Tr/dFHNf9JDzdbcJVGGRjI7Vfurhu6q7ZlbHvnz+FWZ4vFyFM2mF30/XPhzJ2
X4+pe9h0k6qu+njRrar6YkyzVToWberL+HImK/uHVBRtDE8h3IenlIawWg1hvR5CUQyhLE/vLcpdeo6L
bN8XVdHFumlDTO1NHsL5mI/9Q2r7Lv5J3uzeL5bX27Pj+XjRdJZfXuaL7Vm73nafv+1SPd+nqp7OFuHq
dntWpD5tuqH6e+K8rB+ns+V45n2T2mLyYXjmH9estsfD9DTSuo/DErJNtSu76vswbjg5NU4D3752qsOp
zu8W8/z6dh7mN1lXto9lWx3eNJd5Ng5V9VVTn2afnSYuysf6uI9/8rQv48s3Z93wn+o4XFWl3Vg0x/5N
Vbbta5X9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAID/+Q2Z/B7cAAAEAA==

7. Perform actual installation. Copy over OpenWrt sysupgrade image to
   TFTP root:

   $ sudo cp openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin /srv/tftp

   Now load both to the device over TFTP:

   # tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
   # tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin -g 10.42.0.1

   Verify checksums of both images to ensure the transfer over TFTP
   was completed:

   # sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin

   And compare it against source images:

   $ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin

   Locate MTD partition of the primary image:

   # grep rcks_wlan.main /proc/mtd

   Now, write the images in place. Write U-boot environment last, so
   unit still can boot from backup image, should power failure occur during
   this. Replace MTD placeholders with real MTD nodes:

   # flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
   # flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>

   Finally, reboot the device. The device should directly boot into
   OpenWrt. Look for the characteristic power LED blinking pattern.

   # reboot -f

   After unit boots, it should be available at the usual 192.168.1.1/24.

Return to factory firmware:

1. Boot into OpenWrt initramfs as for initial installation. To do that
   without disassembly, you can write an initramfs image to the device
   using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
   fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
   fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
   before installation:
   mtd write ruckus_zf7372_fw1_backup.bin /dev/mtd1
   mtd write ruckus_zf7372_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.

Quirks and known issues:
- This is first device in ath79 target to support link state reporting
  on FE port attached trough the built-in switch.
- Flash layout is changed from the factory, to use both firmware image
  partitions for storage using mtd-concat, and uImage format is used to
  actually boot the system, which rules out the dual-boot capability.
  The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
  OpenWrt by choice.
  It is controlled by data in the top 64kB of RAM which is unmapped,
  to avoid   the interference in the boot process and accidental
  switch to the inactive image, although boot script presence in
  form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
  execute the following command before booting:
  mw.l 1804006c 40
  And also you need to disable the reset button in device tree if you
  intend to debug Linux, because reset button on GPIO0 shares the TCK
  pin.
- On some versions of stock firmware, it is possible to obtain root shell,
  however not much is available in terms of debugging facitilies.
  1. Login to the rkscli
  2. Execute hidden command "Ruckus"
  3. Copy and paste ";/bin/sh;" including quotes. This is required only
     once, the payload will be stored in writable filesystem.
  4. Execute hidden command "!v54!". Press Enter leaving empty reply for
     "What's your chow?" prompt.
  5. Busybox shell shall open.
  Source: https://alephsecurity.com/vulns/aleph-2019014
- Stock firmware has beamforming functionality, known as BeamFlex,
  using active multi-segment antennas on both bands - controlled by
  RF analog switches, driven by a pair of 74LV164 shift registers.
  Shift registers used for each radio are connected to GPIO14 (clock)
  and GPIO15 of the respective chip.
  They are mapped as generic GPIOs in OpenWrt - in stock firmware,
  they were most likely handled directly by radio firmware,
  given the real-time nature of their control.
  Lack of this support in OpenWrt causes the antennas to behave as
  ordinary omnidirectional antennas, and does not affect throughput in
  normal conditions, but GPIOs are available to tinker with nonetheless.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-09-11 01:36:25 +02:00
John Thomson
62b72eafe4 ath79: mikrotik: use OpenWrt loader for initram image
Return to using the OpenWrt kernel loader to decompress and load kernel
initram image.

Continue to use the vmlinuz kernel for squashfs.

Mikrotik's bootloader RouterBOOT on some ath79 devices is
failing to boot the current initram, due to the size of the initram image.

On the ath79 wAP-ac:
a 5.7MiB initram image would fail to boot
After this change:
a 6.6MiB initram image successfully loads

This partially reverts commit e91344776b.

An alternative of using RouterBOOT's capability of loading an initrd ELF
section was investigated, but the OpenWrt kernel loader allows larger image.

Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
2022-09-11 01:30:11 +02:00
John Audia
e8a62a1e60 kernel: bump 5.10 to 5.10.141
All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-09-11 01:30:11 +02:00
David Bauer
1e1695f959 ath79: add support for ZTE MF281
Add support for the ZTE MF281 battery-powered WiFi router.

Hardware
--------
SoC:    Qualcomm Atheros QCA9563
RAM:    128M DDR2
FLASH:  2M SPI-NOR (GigaDevice GD25Q16)
        128M SPI-NAND (GigaDevice)
WLAN:   QCA9563 2T2R 802.11 abgn
        QCA9886 2T2R 802.11 nac
WWAN:   ASRMicro ASR1826
ETH:    Qualcomm Atheros QCA8337
UART:   115200 8n1
        Unpopulated connector next to SIM slot
        (SIM) GND - RX - TX - 3V3
        Don't connect 3V3
BUTTON: Reset - WPS
LED:    1x debug-LED (internal)
        LEDs on front of the device are controlled
        using the modem CPU and can not be controlled
        by OpenWrt

Installation
------------

1. Connect to the serial console. Power up the device and interrupt
   autoboot when prompted

2. Connect a TFTP server reachable at 192.168.1.66 to the ethernet port.
   Serve the OpenWrt initramfs image as "speedbox-2.bin"

3. Boot the initramfs image using U-Boot

   $ setenv serverip 192.168.1.66
   $ setenv ipaddr 192.168.1.154
   $ tftpboot 0x84000000 speedbox-2.bin
   $ bootm

4. Copy the OpenWrt factory image to the device using scp and write to
   the NAND flash

   $ mtd write /path/to/openwrt/factory.bin firmware

WWAN
----

The WWAN card can be used with OpenWrt. Example configuration for
connection with a unauthenticated dual-stack APN:

network.lte=interface
network.lte.proto='ncm'
network.lte.device='/dev/ttyACM0'
network.lte.pdptype='IPV4V6'
network.lte.apn='internet.telekom'
network.lte.ipv6='auto'
network.lte.delay='10'

The WWAN card is running a modified version of OpenWrt and handles
power-management as well as the LED controller (AW9523). A root shell
can be acquired by installing adb using opkg and executing "adb shell".

Signed-off-by: David Bauer <mail@david-bauer.net>
2022-09-08 13:57:18 +02:00
Nick Hainke
431526be7c ath79: move 5.15 testing kernel to common Makefile
All subtargets are using now 5.15 as testing kernel.
Move KERNEL_TESTING_PATCHVER:=5.15 to the common Makefile.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-09-06 02:57:35 +02:00
Nick Hainke
ae6bfb7d67 ath79: tiny: add 5.15 support for tiny subtarget
Tested on Ubiquiti Nanostation M5 XM with low_mem.

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-09-06 02:57:29 +02:00
Nick Hainke
f54ac98f8c ath79: add low_mem to tiny image
Devices with SMALL_FLASH enabled have "SQUASHFS_BLOCK_SIZE=1024" in
their config. This significantly increases the cache memory required by
squashfs [0]. This commit enables low_mem leading to a much better
performance because the SQUASHFS_BLOCK_SIZE is reduced to 256.

Example Nanostation M5 (XM):
The image size increases by 128 KiB. However, the memory statisitcs look
much better:

Default tiny build:
------
MemTotal:          26020 kB
MemFree:            5648 kB
MemAvailable:       6112 kB
Buffers:               0 kB
Cached:             3044 kB

low_mem enabled:
-----
MemTotal:          26976 kB
MemFree:            6748 kB
MemAvailable:      11504 kB
Buffers:               0 kB
Cached:             7204 kB

[0] - 7e8af99cf5

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-09-06 02:57:21 +02:00
Albin Hellström
f8c87aa2d2 ath79: add support for Extreme Networks WS-AP3805i
Specifications:

 - SoC:    Qualcomm Atheros QCA9557-AT4A
 - RAM:	   2x 128MB Nanya NT5TU64M16HG
 - FLASH:  64MB - SPANSION FL512SAIFG1
 - LAN:    Atheros AR8035-A (RGMII GbE with PoE+ IN)
 - WLAN2:  Qualcomm Atheros QCA9557 2x2 2T2R
 - WLAN5:  Qualcomm Atheros QCA9882-BR4A 2x2 2T2R
 - SERIAL: UART pins at J10 (115200 8n1)
           Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
 - LEDs: Power (Green/Amber)
   WiFi 5 (Green)
   WiFi 2 (Green)
 - BTN: Reset

Installation:

1. Download the OpenWrt initramfs-image.

Place it into a TFTP server root directory and rename it to 1D01A8C0.img
Configure the TFTP server to listen at 192.168.1.66/24.

2. Connect the TFTP server to the access point.

3. Connect to the serial console of the access point.

Attach power and interrupt the boot procedure when prompted.

Credentials are admin / new2day

4. Configure U-Boot for booting OpenWrt from ram and flash:

 $ setenv boot_openwrt 'setenv bootargs; bootm 0xa1280000'
 $ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
   tftpboot 0x89000000 1D01A8C0.img; bootm'
 $ setenv bootcmd 'run boot_openwrt'
 $ saveenv

5. Load OpenWrt into memory:

 $ run ramboot_openwrt

6. Transfer the OpenWrt sysupgrade image to the device.

Write the image to flash using sysupgrade:

 $ sysupgrade -n /path/to/openwrt-sysupgrade.bin

Signed-off-by: Albin Hellström <albin.hellstrom@gmail.com>
[rename vendor - minor style fixes - update commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
2022-08-29 01:09:17 +02:00
Sebastian Schaper
a434795809 ath79: add support for ZyXEL NWA1100-NH
Specifications:
 * AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
 * 1x Gigabit Ethernet (AR8035), 802.3af PoE

Installation:
* OEM Web UI is at 192.168.1.2
  login as `admin` with password `1234`
* Flash factory-AASI.bin

The string `AASI` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.

TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
  described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
  and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
  `run lk`
  `run lf`
  to flash the kernel / filesystem accordingly

MAC addresses as verified by OEM firmware:
use   address   source
LAN   *:cc      mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g    *:cd      mib0 0x4b ('wifi0mac')

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2022-08-21 00:09:53 +02:00
Sebastian Schaper
a6e0ca96da ath79: add support for ZyXEL NWA1123-AC
Specifications:
 * AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
 * QCA9882 PCIe card, 802.11ac 2T2R
 * 1x Gigabit Ethernet (AR8035), 802.3af PoE

Installation:
* OEM Web UI is at 192.168.1.2
  login as `admin` with password `1234`
* Flash factory-AAOX.bin

The string `AAOX` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.

TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
  described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
  and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
  `run lk`
  `run lf`
  to flash the kernel / filesystem accordingly

MAC addresses as verified by OEM firmware:
use   address   source
LAN   *:1c      mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g    *:1c      mib0 0x4b ('wifi0mac')
5g    *:1e      mib0 0x66 ('wifi1mac')

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2022-08-21 00:09:53 +02:00
Sebastian Schaper
527be5a456 ath79: add support for ZyXEL NWA1123-NI
Specifications:
 * AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
 * AR9382 PCIe card, 802.11n 2T2R, 5 GHz
 * 1x Gigabit Ethernet (AR8035), 802.3af PoE

Installation:
* OEM Web UI is at 192.168.1.2
  login as `admin` with password `1234`
* Flash factory-AAEO.bin

The string `AAEO` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.

TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
  described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
  and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
  `run lk`
  `run lf`
  to flash the kernel / filesystem accordingly

MAC addresses as verified by OEM firmware:
use   address   source
LAN   *:fb      mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g    *:fc      mib0 0x4b ('wifi0mac')
5g    *:fd      mib0 0x66 ('wifi1mac')

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2022-08-21 00:09:53 +02:00
Sebastian Schaper
251ecfe379 ath79: add support for ZyXEL NWA1121-NI
Specifications:
 * AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
 * 1x Gigabit Ethernet (AR8035), 802.3af PoE

Installation:
* OEM Web UI is at 192.168.1.2
  login as `admin` with password `1234`
* Flash factory-AABJ.bin

The string `AABJ` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.

TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
  described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
  and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
  `run lk`
  `run lf`
  to flash the kernel / filesystem accordingly

MAC addresses as verified by OEM firmware:
use   address   source
LAN   *:cc      mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g    *:cd      mib0 0x4b ('wifi0mac')

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2022-08-21 00:09:53 +02:00
Hauke Mehrtens
ff06edd1f0 kernel: Activate CONFIG_GPIOLIB in generic configuration
All targets expect the malta target already activate the CONFIG_GPIOLIB
option. Move it to generic kernel configuration and also activate it for
malta.

Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2022-08-10 21:36:17 +02:00
Manuel Niekamp
0dc5821489 ath79: add support for Sophos AP15
The Sophos AP15 seems to be very close to Sophos AP55/AP100.

Based on:
commit 6f1efb2898 ("ath79: add support for Sophos AP100/AP55 family")
author    Andrew Powers-Holmes <andrew@omnom.net>
          Fri, 3 Sep 2021 15:53:57 +0200 (23:53 +1000)
committer Hauke Mehrtens <hauke@hauke-m.de>
          Sat, 16 Apr 2022 16:59:29 +0200 (16:59 +0200)

Unique to AP15:
 - Green and yellow LED
 - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
 - No buttons
 - No piezo beeper
 - No 5.8GHz

Flashing instructions:
 - Derived from UART method described in referenced commit, methods
   described there should work too.
 - Set up a TFTP server; IP address has to be 192.168.99.8/24
 - Copy the firmware (initramfs-kernel) to your TFTP server directory
   renaming it to e.g. boot.bin
 - Open AP's enclosure and locate UART header (there is a video online)
 - Terminal connection parameters are 115200 8/N/1
 - Connect TFTP server and AP via ethernet
 - Power up AP and cancel autoboot when prompted
 - Prompt shows 'ath> '
 - Commands used to boot:
    ath> tftpboot 0x81000000 boot.bin
    ath> bootm 0x81000000
 - Device should boot OpenWRT
 - IP address after boot is 192.168.1.1/24
 - Connect to device via browser
 - Permanently flash using the web ui (flashing sysupgrade image)
 - (BTW: the AP55 images seem to work too, only LEDs are not working)

Testing done:
 - To be honest: Currently not so much testing done.
 - Flashed onto two devices
 - Devices are booting
 - MAC addresses are correct
 - LEDs are working
 - Scanning for WLANs is working

Big thanks to all the people working on this great project!
(Sorry about my english, it is not my native language)

Signed-off-by: Manuel Niekamp <m.niekamp@richter-leiterplatten.de>
2022-08-06 20:33:59 +02:00
Jan-Niklas Burfeind
75dffdc8cf ath79: add variant UniFi AP LR
The hardware difference is the antenna which has a higher gain compared
to the original UniFi AP.

The variant was supported before in ar71xx.

Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
2022-08-06 20:15:30 +02:00
Jan-Niklas Burfeind
50e1f3d84d ath79: rename references of UniFi to UniFi AP
extract the compatible and model to make room for other variants

follow-up of
commit dc23df8a8c ("ath79: change Ubiquiti UniFi AP model name to include "AP"")

Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
2022-08-06 20:15:30 +02:00
John Audia
ccff2fbaea kernel: bump 5.10 to 5.10.135
All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-08-06 19:58:46 +02:00
John Audia
122b625e74 kernel: bump 5.15 to 5.15.59
Patches automatically rebased.

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200
Run-tested: bcm2711/RPi4B, mt7622/RT3200

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-08-06 19:58:46 +02:00
Leo Soares
35a0f2b00c ath79: add LTE led for GL.iNet GL-XE300
This commit adds the LTE led for GL.iNet GL-XE300
to the default leds config.

Signed-off-by: Leo Soares <leo@hyper.ag>
2022-08-05 14:10:42 +02:00
John Audia
364575e3a3 kernel: bump 5.15 to 5.15.58
All patches automatically rebased.

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200
Run-tested: bcm2711/RPi4B, mt7622/RT3200

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-07-31 18:55:22 +02:00
John Audia
7be62b1187 kernel: bump 5.10 to 5.10.134
All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-07-29 23:03:41 +02:00
John Audia
7d3c0928de kernel: bump 5.10 to 5.10.132
All patches automatically rebased.

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-07-29 23:03:41 +02:00
Sieng-Piaw Liew
3acd2ea148
ath79: fix Tx cleanup when NAPI poll budget is zero
NAPI poll() function may be passed a budget value of zero, i.e. during
netpoll, which isn't NAPI context.
Therefore, napi_consume_skb() must be given budget value instead of
!flush to truly discern netpoll-like scenarios.

https://lore.kernel.org/netdev/20220707141056.2644-1-liew.s.piaw@gmail.com/t/#m470f5c20225e76fb08c44d6cfa2f1b739ffaaea4
Signed-off-by: Sieng-Piaw Liew <liew.s.piaw@gmail.com>
2022-07-14 12:51:16 +02:00
Rodrigo B. de Sousa Martins
ae07b9cc61 ath79: tplink-archer-c6-v2-us: fix inverted LED colors
The amber and green wan led color was inverted in dts file, which ends
up leaving the wan led amber when the connection is established, so,
switch gpio led number (7 and 8) in qca9563_tplink_archer-c6-v2-us.dts.

Tip: the /etc/config/system file needs to be regenerated.

Signed-off-by: Rodrigo B. de Sousa Martins <rodrigo.sousa.577@gmail.com>
Signed-off-by: Petr Štetiar <ynezz@true.cz> [commit subject]
2022-07-12 09:25:43 +02:00
Christian Marangi
1a9ee36734 kernel: backport mtd dynamic partition patch
Backport upstream solution that permits to declare nvmem cells with
dynamic partition defined by special parser.

This provide an OF node for NVMEM and connect it to the defined dynamic
partition.

Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-07-08 10:19:58 +02:00
Rafał Miłecki
41e1e838fb kernel: backport mtd patch adding of_platform_populate() calls
This is required for non-parser drivers handling MTD devices.

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2022-07-08 10:19:53 +02:00
Sieng Piaw Liew
265f402fbd
ath79: ag71xx: reuse skbuff_head with napi skb api
napi_build_skb() reuses NAPI skbuff_head cache in order to save some
cycles on freeing/allocating skbuff_heads on every new Rx or completed
Tx.
Use napi_consume_skb() to feed the cache with skbuff_heads of completed
Tx so it's never empty.

Signed-off-by: Sieng Piaw Liew <liew.s.piaw@gmail.com>
[ fixed commit title ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
2022-07-04 17:14:39 +02:00
Luiz Angelo Daros de Luca
6e0f0eae5b
ath79: use rtl8366s and rtl8366_smi as a module
rtl8366s is used only by dlink_dir-825-b1 and the netgear_wndr family
(wndr3700, wndr3700-v2, wndr3800ch, wndr3800.dts, wndrmac-v1,
wndrmac-v2).

Not tested in real hardware.

With rtl8366rb, rtl8366s, rtl8367 as modules, rtl8366_smi can also be a
loadable module. This change was tested with tl-wr2543-v1.

Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
2022-07-01 20:22:53 +02:00
Luiz Angelo Daros de Luca
b168a07799
ath79: use rtl8367 as a module
rtl8367 is used only by tl-wr2543-v1. Tested both normal and failsafe
modes.

Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
2022-07-01 20:22:52 +02:00
Luiz Angelo Daros de Luca
575ec7a4b1
ath79: use rtl8366rb as a module
It looks like rtl8366rb is used only by tplink_tl-wr1043nd-v1 and
buffalo_wzr-hp-g300nh-rb. There is no need to have it built-in as it
works as a loadable module.

Tested both failsafe and normal boot on tl-wr1043nd-v1.
buffalo_wzr-hp-g300nh-rb was not tested.

Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
2022-07-01 20:22:52 +02:00
Tamas Balogh
416d4483e8 ath79: add support for ASUS RP-AC51
Asus RP-AC51 Repeater
Category:
AC750 300+433 (OEM w. unstable driver)
AC1200 300+866 (OpenWrt w. stable driver)

Hardware specifications:
Board: AP147
SoC: QCA9531 2.4G b/g/n
WiFi: QCA9886 5G n/ac
DRAM: 128MB DDR2
Flash: gd25q128 16MB SPI-NOR
LAN/WAN: AR8229 1x100M
Clocks: CPU:650MHz, DDR:600MHz, AHB:200MHz

MAC addresses as verified by OEM firmware:
use address source
Lan/W2G *:C8 art 0x1002 (label)
5G *:CC art 0x5006

Installation:

Asus windows recovery tool:

install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
Start the Asus firmware restoration utility, specify the factory image
and press upload
Do not power off the device after OpenWrt has booted until the LED flashing.
TFTP Recovery method:

set computer to a static ip, 192.168.1.10
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit

Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
2022-06-30 00:23:42 +02:00
Tamas Balogh
e1dcaeb55c ath79: add support for ASUS PL-AC56
Asus PL-AC56 Powerline Range Extender Rev.A1
(in kit with Asus PL-E56P Powerline-slave)

Hardware specifications:
Board: AP152
SoC: QCA9563 2.4G n 3x3
PLC: QCA7500
WiFi: QCA9882 5G ac 2x2
Switch: QCA8337 3x1000M
Flash: 16MB 25L12835F SPI-NOR
DRAM SoC: 64MB w9751g6kb-25
DRAM PLC: 128MB w631gg6kb-15

Clocks: CPU:775.000MHz, DDR:650.000MHz, AHB:258.333MHz, Ref:25.000MHz

MAC addresses as verified by OEM firmware:
use address source
Lan/Wan/PLC *:10 art 0x1002 (label)
2G *:10 art 0x1000
5G *:14 art 0x5000

Important notes:

the PLC firmware has to be provided and copied manually onto the
device! The PLC here has no dedicated flash, thus the firmware file
has to be uploaded to the PLC controller at every system start
the PLC functionality is managed by the script /etc/init.d/plc_basic,
a very basic script based on the the one from Netadair (netadair dot de)
Installation:

Asus windows recovery tool:

have to have the latest Asus firmware flashed before continuing!
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
start the Asus firmware restoration utility, specify the factory image
and press upload
do NOT power off the device after OpenWrt has booted until the LED flashing
TFTP Recovery method:

have to have the latest Asus firmware flashed before continuing!
set computer to a static ip, 192.168.1.75
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
do NOT power off the device after OpenWrt has booted until the LED flashing
Additional notes:

the pairing buttons have to have pressed for at least half a second,
it doesn't matter on which plc device (master or slave) first
it is possible to pair the devices without the button-pairing requirement
simply by pressing reset on the slave device. This will default to the
firmware settings, which is also how the plc_basic script is setting up
the master device, i.e. configuring it to firmware defaults
the PL-E56P slave PLC has its dedicated 4MByte SPI, thus it is capable
to store all firmware currently available. Note that some other
slave devices are not guarantied to have the capacity for the newer
~1MByte firmware blobs!
To have a good overlook about the slave device, here are its specs:
same QCA7500 PLC controller, same w631gg6kb-15 128MB RAM,
25L3233F 4MB SPI-NOR and an AR8035-A 1000M-Transceiver

Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
2022-06-30 00:16:59 +02:00
Thibaut VARÈNE
e1223dbee3 ath79: add support for RouterBOARD mAP
The MikroTik mAP-2nd (sold as mAP) is an indoor 2.4Ghz AP with
802.3af/at PoE input and passive PoE passthrough.

See https://mikrotik.com/product/RBmAP2nD for more details.

Specifications:
 - SoC: QCA9533
 - RAM: 64MB
 - Storage: 16MB NOR
 - Wireless: QCA9533 802.11b/g/n 2x2
 - Ethernet: 2x 10/100 ports,
    802.3af/at PoE in port 1, 500 mA passive PoE out on port 2
 - 7 user-controllable LEDs

Note: the device is a tiny AP and does not distinguish between both
ethernet ports roles, so they are both assigned to lan.
With the current setup, ETH1 is connected to eth1 and ETH2 is connected
to eth0 via the embedded switch port 2.

Flashing:
 TFTP boot initramfs image and then perform sysupgrade. The "ETH1" port
 must be used to upload the TFTP image. Follow common MikroTik procedure
 as in https://openwrt.org/toh/mikrotik/common.

Tested-By: Andrew Powers-Holmes <aholmes@omnom.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-06-29 12:36:04 +02:00
John Thomson
86fb287ad5 ath79: mikrotik: add rw soft_config to extra devices
Linux MTD requires the parent partition be writable for a child
partition to be allowed write permission.

Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
2022-06-29 12:34:49 +02:00
Sven Hauer
7e21ce8e2b ath79: support for TP-Link EAP225 v4
This model is almost identical to the EAP225 v3.
Major difference is the RTL8211FS PHY Chipset.

Device specifications:
* SoC: QCA9563 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n, 3x3
* Wireless 5Ghz (QCA9886): a/n/ac, 2x2 MU-MIMO
* Ethernet (RTL8211FS): 1× 1GbE, 802.3at PoE

Flashing instructions:
* ssh into target device and run `cliclientd stopcs`
* Upgrade with factory image via web interface

Debricking:
* Serial port can be soldered on PCB J4 (1: TXD, 2: RXD, 3: GND, 4: VCC)
    * Bridge unpopulated resistors R225 (TXD) and R237 (RXD).
      Do NOT bridge R230.
    * Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via LuCI web interface
    setenv ipaddr 192.168.1.1 # default, change as required
    setenv serverip 192.168.1.10 # default, change as required
    tftp 0x80800000 initramfs.bin
    bootelf $fileaddr

MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.

Signed-off-by: Sven Hauer <sven.hauer+github@uniku.de>
2022-06-28 10:58:16 +02:00
Rui Salvaterra
b55efebb1f kernel: bump 5.15 to 5.15.47
Deleted (upstreamed):
generic/backport-5.15/702-v5.19-32-net-ethernet-mtk_eth_soc-out-of-bounds-read-in-mtk_h.patch [01]

[01] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.47&id=b24ca1cf846273361d5bd73a35de95a486a54b6d

Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
[Removed 702-v5.19-32-net-ethernet-mtk_eth_soc-out-of-bounds-read-in-mtk_h.patch]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2022-06-27 00:57:16 +02:00
Rui Salvaterra
251a382c28 kernel: bump 5.15 to 5.15.46
Deleted (upstreamed):
generic/backport-5.15/400-mtdblock-warn-if-opened-on-NAND.patch [01]
generic/backport-5.15/420-v5.19-01-mtd-spinand-gigadevice-fix-Quad-IO-for-GD5F1GQ5UExxG.patch [02]
bcm27xx/patches-5.15/950-0029-Revert-mailbox-avoid-timer-start-from-callback.patch [03]
bcm27xx/patches-5.15/950-0417-bcm2711_thermal-Don-t-clamp-temperature-at-zero.patch [04]
bcm27xx/patches-5.15/950-0740-drm-vc4-hvs-Fix-frame-count-register-readout.patch [05]
bcm27xx/patches-5.15/950-0755-drm-vc4-hvs-Reset-muxes-at-probe-time.patch [06]
bcm27xx/patches-5.15/950-0759-drm-vc4-txp-Don-t-set-TXP_VSTART_AT_EOF.patch [07]
bcm27xx/patches-5.15/950-0760-drm-vc4-txp-Force-alpha-to-be-0xff-if-it-s-disabled.patch [08]
bcm53xx/patches-5.15/031-v5.17-0005-ARM-dts-BCM5301X-update-CRU-block-description.patch [09]
mediatek/patches-5.15/102-mt7629-enable-arch-timer.patch [10]

Manually rebased:
bcm27xx/patches-5.15/950-0741-drm-vc4-hvs-Use-pointer-to-HVS-in-HVS_READ-and-HVS_W.patch

[01] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=f41c9418c5898c01634675150696da290fb86796
[02] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=d5b66645305c6f3a1b2cf75cee4157b07f293309
[03] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=119f99209d8531359bcb935f252ec435f9d21b13
[04] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=c4e1280abead1552e1764684079a43e222ccd163
[05] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=08465a1889cb48ec64431e9db745b5be15399251
[06] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=0e26a6da02e63b75b629573d13966c36aa6264f0
[07] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=01c9020b2e7c85e394879f34851805179ac3d1d8
[08] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=d47f85cc0171a5d3c5bd8cbb8a98983ca3357cbd
[09] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=5151f24ac937ff7eb1f078257c66e3c0f0296010
[10] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.46&id=ffea838686b82fbb2801cdfad6ba5309d15c032d

Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
2022-06-27 00:57:16 +02:00
John Audia
9edc514e3d kernel: bump 5.10 to 5.10.122
All patches automatically rebased.

Build system: x86_64
Build-tested: ipq806x/R7800

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-06-27 00:57:15 +02:00
John Audia
706a4ec40c kernel: bump 5.10 to 5.10.121
Manually rebased:
    oxnas/patches-5.10/100-oxnas-clk-plla-pllb.patch

All other patches automatically rebased.

Build system: x86_64
Build-tested: ipq806x/R7800

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-06-27 00:57:15 +02:00
Sebastian Schaper
f770c33d7b ath79: fix rootfs padding for D-Link DAP-2xxx
It was observed that `rootfs_data` was sometimes not correctly erased
after performing sysupgrade, resulting in previous settings to prevail.

Add call to `wrgg-pad-rootfs` in sysupgrade image recipe to ensure any
previous jffs2 will be wiped, consistent with DAP-2610 from the ipq40xx
target, which introduced the double-flashing procedure for these devices.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2022-06-24 17:10:24 +02:00
Tomasz Maciej Nowak
539e60539a generic: enable CRYPTO_LIB_BLAKE2S[_X86|_ARM]
This is now built-in, enable so it won't propagate on target configs.

Link: https://lkml.org/lkml/2022/1/3/168
Fixes: 79e7a2552e ("kernel: bump 5.15 to 5.15.44")
Fixes: 0ca9367069 ("kernel: bump 5.10 to 5.10.119")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
(Link to Kernel's commit taht made it built-in,
CRYPTO_LIB_BLAKE2S[_ARM|_X86] as it's selectable, 5.10 backport)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-24 17:10:24 +02:00
Tomasz Maciej Nowak
ecf936a70c ath79: bsap18x0: specify FIS directory location in dts
The redboot-fis parser has option to specify the location of FIS
directory, use that, instead of patching the parser to scan for it, and
specifying location in kernel config.

Tested-by: Brian Gonyer <bgonyer@gmail.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2022-06-24 17:10:24 +02:00
Tomasz Maciej Nowak
5fca475b1a treewide: use upstream compatible for RedBoot FIS parser
No reason to keep that around, since upstream one does the same.

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2022-06-24 17:10:24 +02:00
Tomasz Maciej Nowak
9decd2a843 ath79: bsap18x0: pad rootfs image
This image is supposed to be written with help of bootloader to the
flash, but as it stands, it's not aligned to block size and RedBoot will
happily create non-aligned partition size in FIS directory. This could
lead to kernel to mark the partition as read-only, therefore pad the
image to block erase size boundary.

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2022-06-24 17:10:24 +02:00
Tomasz Maciej Nowak
b52719b71a ath79: ja76pf2: use nvmem cells to specify MAC addresses
The bootloader on this board hid the partition containig MAC addresses
and prevented adding this space to FIS directory, therefore those had to
be stored in RedBoot configuration as aliases to be able to assigne them
to proper interfaces. Now that fixed partition size are used instead of
redboot-fis parser, the partition containig MAC addresses could be
specified, and with marking it as nvmem cell, we can assign them without
userspace involvement.

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2022-06-24 17:10:24 +02:00
Tomasz Maciej Nowak
5897c52e78 ath79: move image check for devices with RedBoot
Don't comence the switch to RAMFS when the image format is wrong. This
led to rebooting the device, which could lead to false impression that
upgrade succeded.
Being here, factor out the code responsible for upgrading RedBoot
devices to separate file.

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2022-06-24 17:10:24 +02:00
Tomasz Maciej Nowak
5c142aad7b ath79: switch some RedBoot based devices to OKLI loader
After the kernel has switched version to 5.10, JA76PF2 and
RouterStations lost the capability to sysupgrade the OpenWrt version.
The cause is the lack of porting the patches responsible for partial
flash erase block writing and these boards FIS directory and RedBoot
config partitions share the same erase block. Because of that the FIS
directory can't be updated to accommodate kernel/rootfs partition size
changes. This could be remedied by bootloader update, but it is very
intrusive and could potentially lead to non-trivial recovery procedure,
if something went wrong. The less difficult option is to use OpenWrt
kernel loader, which will let us use static partition sizes and employ
mtd splitter to dynamically adjust kernel and rootfs partition sizes.
On sysupgrade from ath79 19.07 or 21.02 image, which still let to modify
FIS directory, the loader will be written to kernel partition, while the
kernel+rootfs to rootfs partition.

The caveats are:
* image format changes, no possible upgrade from ar71xx target images
* downgrade to any older OpenWrt version will require TFTP recovery or
  usage of bootloader command line interface

To downgrade to 19.07 or 21.02, or to upgrade if one is already on
OpenWrt with kernel 5.10, for RouterStations use TFTP recovery
procedure. For JA76PF2 use instructions from this commit message:
commit 0cc87b3bac ("ath79: image: disable sysupgrade images for routerstations and ja76pf2"),
replacing kernel image with loader (loader.bin suffix) and rootfs
image with firmware (firmware.bin suffix).

Fixes: b10d604459 ("kernel: add linux 5.10 support")
Fixes: 15aa53d7ee ("ath79: switch to Kernel 5.10")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
(mkubntimage was moved to generic-ubnt.mk)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-24 17:09:54 +02:00
Tomasz Maciej Nowak
4cca0947ff ath79: jj76pf2: enable TCN75 sensor
This SBC has Microchip TCN75 sensor, wich measures ambient temperature.
Specify it in dts to allow readout by applications using kernel hwmon
API.

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2022-06-24 17:09:53 +02:00
Paul Maruhn
7e4de89e63 ath79: support for TP-Link EAP225-Outdoor v3
This model is almost identical to the EAP225-Outdoor v1.
Major difference is the RTL8211FS PHY Chipset.

Device specifications:
* SoC: QCA9563 @ 775MHz
* Memory: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n 2x2
* Wireless 5GHz (QCA9886): a/n/ac 2x2 MU-MIMO
* Ethernet (RTL8211FS): 1× 1GbE, PoE

Flashing instructions:
* ssh into target device with recent (>= v1.6.0) firmware
* run `cliclientd stopcs` on target device
* upload factory image via web interface

Debricking:
To recover the device, you need access to the serial port. This requires
fine soldering to test points, or the use of probe pins.
* Open the case and solder wires to the test points: RXD, TXD and TPGND4
  * Use a 3.3V UART, 115200 baud, 8n1
* Interrupt bootloader by holding ctrl+B during boot
* upload initramfs via built-in tftp client and perform sysupgrade
    setenv ipaddr 192.168.1.1 # default, change as required
    setenv serverip 192.168.1.10 # default, change as required
    tftp 0x80800000 initramfs.bin
    bootelf $fileaddr

MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.
From stock ifconfig:

    ath0      Link encap:Ethernet  HWaddr D8:...:2E
    ath10     Link encap:Ethernet  HWaddr D8:...:2F
    br0       Link encap:Ethernet  HWaddr D8:...:2E
    eth0      Link encap:Ethernet  HWaddr D8:...:2E

Signed-off-by: Paul Maruhn <paulmaruhn@posteo.de>
Co-developed-by: Philipp Rothmann <philipprothmann@posteo.de>
Signed-off-by: Philipp Rothmann <philipprothmann@posteo.de>
[Add pre-calibraton nvme-cells]
Tested-by: Tido Klaassen <tido_ff@4gh.eu>
Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-06-22 17:47:11 +02:00
Philipp Rothmann
8bd5bbad1e ath79: generic: add support for Realtek PHY
Some models of the TP-Link EAP225 series use a Realtek PHY,
therefore the driver is added.

Signed-off-by: Philipp Rothmann <philipprothmann@posteo.de>
2022-06-22 17:47:11 +02:00
Chris Blake
949e8ba521 ath79: add support for Netgear PGZNG1
This adds support for the Netgear PGZNG1, also known as the ADT Pulse
Gateway.

Hardware:
CPU: Atheros AR9344
Memory: 256MB
Storage: 256MB NAND Hynix H27U2G8F2CTR-BC
USB: 1x USB 2.0
Ethernet: 2x 100Mb/s
WiFi: Atheros AR9340 2.4GHz 2T2R
Leds: 8 LEDs
Button: 1x Reset Button
UART:
Header marked JPE1. Pinout is VCC, TX, RX, GND. The marked pin, closest
to the JPE1 marking, is VCC. Note VCC isn't required to be connected
for UART to work.

Enable Stock Firmware Shell Access:
1. Interrupt u-boot and run the following commands
setenv console_mode 1
saveenv
reset

This will enable a UART shell in the firmware. You can then login using
the root password of `icontrol`. If that doesn't work, the device is
running a firmware based on OpenWRT where you can drop into failsafe to
mount the FS and then modify /etc/passwd.

Installation Instructions:
1. Interupt u-boot and run the following commands
setenv active_image 0
setenv stock_bootcmd nboot 0x81000000 0 \${kernel_offset}
setenv openwrt_bootcmd nboot 0x82000000 0 \${kernel_offset}
setenv bootcmd run openwrt_bootcmd
saveenv

2. boot initramfs image via TFTP u-boot
tftpboot 0x82000000 openwrt-ath79-nand-netgear_pgzng1-initramfs-kernel.bin; bootm 0x82000000

3. Once booted, use LuCI sysupgrade to
flash openwrt-ath79-nand-netgear_pgzng1-squashfs-sysupgrade.bin

MAC Table:
WAN (eth0): xx:xa - caldata 0x0
LAN (eth1): xx:xb - caldata 0x6
WLAN (phy0): xx:xc - burned into ath9k caldata

Not Working:
Z-Wave
RS422

Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
(added more hw-info, fixed file permissions)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-19 12:31:02 +02:00
Sander Vanheule
7154a1dc7b ath79: TP-Link EAP225 v3: use pre-calibration nvmem-cell
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration". Rename the nvmem
cell node and label to match the updated cell name.

Fixes: eca0d73011 ("ath79: TP-Link EAP225 v3: convert ath10k to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 19:30:44 +02:00
Sander Vanheule
9a329668af ath79: TP-Link EAP225-Wall v2: use pre-calibration nvmem-cell
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration". Rename the nvmem
cell node and label to match the updated cell name.

Fixes: 48625a0445 ("ath79: TP-Link EAP225-Wall v1: convert radios to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 19:30:44 +02:00
Nick Hainke
0cb851cad1 ath79: TP-Link EAP225-Outdoor v1: use pre-calibration nvmem-cell
Fixes errors in the form of:
  ath10k_pci 0000:00:00.0: failed to fetch board data for bus=pci,
  vendor=168c,device=0056,subsystem-vendor=0000,subsystem-device
  =0000 from ath10k/QCA9888/hw2.0/board-2.bin
  ath10k_pci 0000:00:00.0: failed to fetch board-2.bin or board.bin
  from ath10k/QCA9888/hw2.0
  ath10k_pci 0000:00:00.0: failed to fetch board file: -12
  ath10k_pci 0000:00:00.0: could not probe fw (-12)

As described already in 2d3321619b ("ath79: TP-Link EAP245 v3: use
pre-calibration nvmem-cell"):
  Ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
  to load the device specific caldata, not "calibration".

Further rename the nvmem cell node and label to match the updated cell name.

Fixes: 23b9040745 ("ath79: TP-Link EAP225-Outdoor v1: convert ath10k to nvmem-cells")
Suggested-by: Sander Vanheule <sander@svanheule.net>
Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-06-18 19:30:44 +02:00
Sander Vanheule
849ffbd5ab ath79: D-Link DAP-2xxx (QCA953x): convert ath9k caldata to nvmem
Convert the calibration data reference for the ath9k radio to an
nvmem-cell, replacing the downstream mtd-cal-data property.

Since the 'art' label is no longer used, it can be dropped.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:21 +02:00
Sander Vanheule
b4e7b49a92 ath79: D-Link DAP-2xxx (QCA953x): move art partition to DTSI
The art partition containing the radio calibration data is in the same
location for all supported devices. Move the definition to the base file
so the reference from the wmac node can reference the same file.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:21 +02:00
Sander Vanheule
7868f7ad0f ath79: D-Link DAP-3662 A1: convert ath10k caldata to nvmem
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:21 +02:00
Sander Vanheule
e5df381208 ath79: D-Link DAP-2695 A1: convert ath10k caldata to nvmem
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:21 +02:00
Sander Vanheule
abf28b79c8 ath79: D-Link DAP-2660 A1: convert ath10k caldata to nvmem
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:21 +02:00
Sander Vanheule
8ccbc95d50 ath79: D-Link DAP-2680 A1: convert ath10k caldata to nvmem
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the pre-calibration data using nvmem-cells.

MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:19 +02:00
Sander Vanheule
e2bf11639b ath79: D-Link DAP-2xxx (QCA955x): convert ath9k caldata to nvmem
Convert the calibration data reference for the ath9k radio to an
nvmem-cell, replacing the downstream mtd-cal-data property.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:54:40 +02:00
Sander Vanheule
3a1eb93b27 ath79: D-Link DAP-2xxx (QCA955x): move art partition to DTSI
The art partition containing the radio calibration data is in the same
location for all supported devices. Move the definition to the base file
so the reference from the wmac node can refer to the same file.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:54:39 +02:00
Sander Vanheule
2d3321619b ath79: TP-Link EAP245 v3: use pre-calibration nvmem-cell
ath10k Wave-2 hardware requires an nvmem-cell called "pre-calibration"
to load the device specific caldata, not "calibration".

Update the nvmem-cell name to make the 5GHz radio work again.

Fixes: d4b3b23942 ("ath79: TP-Link EAP245 v3: convert radios to nvmem-cells")
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 09:36:21 +02:00
Sander Vanheule
9320516613 ath79: move ethernet phy node for TP-Link EAP devices
Move the ethernet phy definition from the eap2x5-1port include to the
device-specific DTS files. This is to prepare for new devices that have
a different ethernet phy, at another MDIO address.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
48625a0445 ath79: TP-Link EAP225-Wall v1: convert radios to nvmem-cells
Replace the mtd-cal-data phandle by an nvmem-cell reference to the art
partition for the 2.4GHz ath9k radio.

Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
d4b3b23942 ath79: TP-Link EAP245 v3: convert radios to nvmem-cells
Replace the mtd-cal-data phandle by an nvmem-cell reference from the art
partition for the 2.4GHz ath9k radio.

Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using an nvmem-cell.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
eca0d73011 ath79: TP-Link EAP225 v3: convert ath10k to nvmem-cells
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
23b9040745 ath79: TP-Link EAP225-Outdoor v1: convert ath10k to nvmem-cells
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
7cf3a37957 ath79: TP-Link EAP225 v1: convert ath10k to nvmem-cells
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
d61882783d ath79: TP-Link EAP245 v1: convert ath10k to nvmem-cells
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
e71b5d2db7 ath79: convert 1-port TP-Link EAP ath9k to nvmem-cells
Replace the mtd-cal-data phandle with an nvmem-cell reference for the
2.4GHz ath9k radio. This affects the following devices:
  - TP-Link EAP225 v1
  - TP-Link EAP225 v3
  - TP-Link EAP225-Outdoor v1
  - TP-Link EAP245 v1

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
dae3927527 ath79: drop phy-mask property
The phy-mask property is no longer supported by the ag71xx-mdio driver,
so let's drop it.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-15 20:07:26 +02:00
Sander Vanheule
c8c96b22c6 ath79: ag71xx-mdio: remove phy-mask property
The phy-mask property is read by the ag71xx-mdio driver to set the
mii_bus's phy_mask field. On OF platforms, the devicetree is expected to
provide all present ethernet phy-s however, so the phy_mask field is
later set to all-ones. Having a devicetree override is of no use then,
so let's drop it.

Cc: David Bauer <mail@david-bauer.net>
Cc: John Crispin <john@phrozen.org>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Acked-by: David Bauer <mail@david-bauer.net>
2022-06-15 20:07:26 +02:00
Nick Hainke
f4415f7635 ath79: move ubnt-xm to tiny
ath79 has was bumped to 5.10. With this, as with every kernel change,
the kernel has become larger. However, although the kernel gets bigger,
there are still enough flash resources. But the RAM reaches its capacity
limits. The tiny image comes with fewer kernel flags enabled and
fewer daemons.

Improves: 15aa53d7ee ("ath79: switch to Kernel 5.10")

Tested-by: Robert Foss <me@robertfoss.se>
Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-06-11 21:22:58 +02:00
Stijn Segers
0dc056eb66 ath79: D-Link DAP-2680: select QCA9984 firmware
The DAP-2680 has a QCA9984 radio [1], but the commit adding support
mistakenly adds the QCA99x0 firmware package. See forum topic [2].

[1] https://wikidevi.wi-cat.ru/D-Link_DAP-2680_rev_A1
[2] https://forum.openwrt.org/t/missing-5ghz-radio-on-dlink-dap-2680/

Fixes: 5b58710fad ("ath79: add support for D-Link DAP-2680 A1")
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Tested-by: Alessandro Fellin <af.registrazioni@gmail.com>
2022-06-11 10:20:06 +02:00
Rui Salvaterra
ed1536e0b6 kernel: bump 5.15 to 5.15.41
Deleted (upstreamed):
generic/backport-5.15/890-v5.19-net-sfp-Add-tx-fault-workaround-for-Huawei-MA5671A-SFP-ON.patch [1]

Other patches automatically rebased.

[1] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.41&id=99858114a3b2c8f5f8707d9bbd46c50f547c87c0

Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
2022-06-06 19:20:28 +02:00
John Audia
cd634afe6c kernel: bump 5.10 to 5.10.119
Delete the crypto-lib-blake2s kmod package, as BLAKE2s is now built-in.
Patches automatically rebased.

Build system: x86_64
Build-tested: ipq806x/R7800, x86/64

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-06-06 19:20:02 +02:00
Ptilopsis Leucotis
493080815d ath79: allow use GPIO17 as regular gpio on GL-AR300M devices
Small update to my previous path 'fix I2C on GL-AR300M devices'.
This update allow using GPIO17 as regular GPIO in case it not used
as I2C SDA line.

Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com>
2022-06-05 21:19:32 +02:00
Lech Perczak
5ca45e0a21 ath79: ZTE MF286[,A,R]: use GPIO19 as ath9k LED
With the pinctrl configuration set properly by the previous commit, the
LED stays lit regardless of status of 2.4GHz radio, even if 5GHz radio
is disabled. Map GPIO19 as LED for ath9k, this way the LED will show
activity for both bands, as it is bound by logical AND with output of
ath10k-phy0 LED. This works well because during management traffic,
phy*tpt triggers typically cause LEDs to blink in unison.

Link: <https://github.com/openwrt/openwrt/pull/9941>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-06-05 21:19:32 +02:00
Lech Perczak
82b5984636 ath79: ZTE MF286[,A,R]: fix WLAN LED mapping
The default configuration of pinctrl for GPIO19 set by U-boot was not a
GPIO, but an alternate function, which prevented the GPIO hog from
working. Set GPIO19 into GPIO mode to allow the hog to work, then the
ath10k LED output can control the state of actual LED properly.

Link: <https://github.com/openwrt/openwrt/pull/9941>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-06-05 21:19:32 +02:00
Sebastian Schaper
4bed263af7 ath79: fix label MAC address for D-Link DIR-825B1
The label MAC address for DIR-825 Rev. B1 is the WAN address located
at 0xffb4 in `caldata`, which equals LAN MAC at 0xffa0 incremented by 1.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2022-05-29 00:00:52 +02:00
Jan-Niklas Burfeind
21a3ce97d5 ath79: NanoBeam M5 fix target_devices
Update the name of for the Ubiquiti NanoBeam M5 to match the
auto-generated one at runtime. Otherwise sysupgrade complains about
mismatching device names.

This also required renaming the DTS.

Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
2022-05-21 19:24:40 +02:00
Jan-Niklas Burfeind
4cd3ff8a79 ath79: add support for Ubiquiti NanoBeam M5
Ubiquiti NanoBeam M5 devices are CPE equipment for customer locations
with one Ethernet port and a 5 GHz 300Mbps wireless interface.

Specificatons:

- Atheros AR9342
- 535 MHz CPU
- 64 MB RAM
- 8 MB Flash
- 1x 10/100 Mbps Ethernet with passive PoE input (24 V)
- 6 LEDs of which four are rssi
- 1 reset button
- UART (4-pin) header on PCB

Notes:

The device was supported by OpenWrt in ar71xx.

Flash instructions (web/ssh/tftp):

Loading the image via ssh vias a stock firmware prior "AirOS 5.6".
Downgrading stock is possible.

* Flashing is possible via AirOS software update page:
The "factory" ROM image is recognized as non-native and then installed correctly.
AirOS warns to better be familiar with the recovery procedure.

* Flashing can be done via ssh, which is becoming difficult due to legacy
keyexchange methods.

This is an exempary ssh-config:
KexAlgorithms +diffie-hellman-group1-sha1
HostKeyAlgorithms ssh-rsa
PubkeyAcceptedKeyTypes ssh-rsa
User ubnt

The password is ubnt.

Connecting via IPv6 link local worked best for me.

1. scp the factory image to /tmp
2. fwupdate.real -m /tmp/firmware_image_file.bin -d

* Alternatively tftp is possible:

1. Configure PC with static IP 192.168.1.2/24.
2. Enter the rescue mode. Power off the device, push the reset button on
   the device (or the PoE) and keep it pressed.
   Power on the device, while still pushing the reset button.
3. When all the leds blink at the same time, release the reset button.
4. Upload the firmware image file via TFTP:

tftp 192.168.1.20
tftp> bin
tftp> trace
Packet tracing on.
tftp> put firmware_image.bin

Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
2022-05-21 13:54:15 +02:00
Maciej Krüger
5ce64e0646 ath79: add support for MikroTik hAP (RB951Ui-2nD)
The MikroTik hAP (product code RB951Ui-2nD) is
an indoor 2.4Ghz AP with a 2 dBi integrated antenna built around the
Atheros QCA9531 SoC.

Specifications:
 - SoC: Atheros QCA9531
 - RAM: 64 MB
 - Storage: 16 MB NOR - Winbond 25Q128FVSG
 - Wireless: Atheros QCA9530 (SoC) 802.11b/g/n 2x2
 - Ethernet: Atheros AR934X switch, 5x 10/100 ports,
   10-28 V passive PoE in port 1, 500 mA PoE out on port 5
 - 8 user-controllable LEDs:
   · 1x power (green)
   · 1x user (green)
   · 4x LAN status (green)
   · 1x WAN status (green)
   · 1x PoE power status (red)

See https://mikrotik.com/product/RB951Ui-2nD for more details.

Notes:
 The device was already supported in the ar71xx target.

Flashing:
 TFTP boot initramfs image and then perform sysupgrade. Follow common
 MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.

Signed-off-by: Maciej Krüger <mkg20001@gmail.com>
2022-05-21 13:54:08 +02:00
Thibaut VARÈNE
2bd33e8626 ath79: add support for MikroTik RouterBOARD hAP ac lite
The MikroTik RB952Ui-5ac2nD (sold as hAP ac lite) is an indoor 2.4Ghz
and 5GHz AP/router with a 2 dBi integrated antenna.

See https://mikrotik.com/product/RB952Ui-5ac2nD for more details.

Specifications:
 - SoC: QCA9533
 - RAM: 64MB
 - Storage: 16MB NOR
 - Wireless: QCA9533 802.11b/g/n 2x2 / QCA9887 802.11a/n/ac 2x2
 - Ethernet: AR934X switch, 5x 10/100 ports,
    10-28 V passive PoE in port 1, 500 mA PoE out on port 5
 - 6 user-controllable LEDs:
   - 1x user (green)
   - 5x port status (green)

Flashing:
 TFTP boot initramfs image and then perform sysupgrade. The "Internet"
 port (port number 1) must be used to upload the TFTP image, then
 connect to any other port to access the OpenWRT system.
 Follow common MikroTik procedure as in
 https://openwrt.org/toh/mikrotik/common.

Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-05-21 13:54:02 +02:00
John Audia
8592df67f4 kernel: bump 5.10 to 5.10.114
All patches automatically rebased.

Build system: x86_64
Build-tested: bcm2711/RPi4B
Run-tested: bcm2711/RPi4B

Signed-off-by: John Audia <therealgraysky@proton.me>
2022-05-16 20:26:38 +02:00
Lech Perczak
1fabeeb799 ath79: ZTE MF286[A,R]: add "Power button blocker" GPIO switch
ZTE MF286A and MF286R feature a "power switch override" GPIO in stock
firmware as means to prevent power interruption during firmware update,
especially when used with internal battery.
To ensure that this GPIO is
properly driven as in stock firmware, configure it with userspace GPIO
switch.

It was observed that on some units, the modem would not be
restarted together with the board itself on reboot, this should help
with that as well.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-05-15 16:32:40 +02:00
Ptilopsis Leucotis
57efdd6a2d ath79: fix I2C on GL-AR300M devices
On GL-AR300M Series GPIO17 described as I2C SDA in Device Tree.
Because of GPIO_OUT_FUNCTION4 register was not initialized on start,
GPIO17 was uncontrollable, it always in high state. According to QCA9531
documentation, default setting of GPIO17 is SYS_RST_L. In order to make
GPIO17 controllable, it should write value 0x00 on bits [15:8] of
GPIO_OUT_FUNCTION4 register, located at 0x1804003C address.

Signed-off-by: Ptilopsis Leucotis <PtilopsisLeucotis@yandex.com>
2022-05-15 16:06:20 +02:00
Rui Salvaterra
d9a063c396 kernel: bump 5.15 to 5.15.38
Deleted (upstreamed):
mediatek/patches-5.15/120-10-v5.18-mtd-nand-fix-ecc-parameters-for-mt7622.patch [1]

Other patches automatically rebased.

[1] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.38&id=3ec920d755ae69c201b358e8d8e96c32f51145d8

Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
2022-05-09 20:49:50 +01:00
Rui Salvaterra
c3569a70c6 kernel: bump 5.15 to 5.15.36
Patches automatically rebased.

Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
2022-05-09 20:49:50 +01:00
Nick Hainke
88527294cd ath79: add Netgear WNDAP360
SoC: Atheros AR7161
RAM: DDR 128 MiB (hynix h5dU5162ETR-E3C)
Flash: SPI-NOR 8 MiB (mx25l6406em2i-12g)
WLAN: 2.4/5 GHz
2.4 GHz: Atheros AR9220
5 GHz: Atheros AR9223
Ethernet: 4x 10/100/1000 Mbps (Atheros AR8021)
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: RJ45 9600,8N1
Power: 12 VDC, 1.0 A

Installation instruction:
0. Make sure you have latest original firmware (3.7.11.4)
1. Connect to the Serial Port with a Serial Cable RJ45 to DB9/RS232
   (9600,8N1)
   screen  /dev/ttyUSB0 9600,cs8,-parenb,-cstopb,-hupcl,-crtscts,clocal
2. Configure your IP-Address to 192.168.1.42
3. When device boots hit spacebar
3. Configure the device for tftpboot
   setenv ipaddr 192.168.1.1
   setenv serverip 192.168.1.42
   saveenv
4. Reset the device
   reset
5. Hit again the spacebar
6. Now load the image via tftp:
   tftpboot 0x81000000 INITRAMFS.bin
7. Boot the image:
   bootm 0x81000000
8. Copy the squashfs-image to the device.
9. Do a sysupgrade.

https://openwrt.org/toh/netgear/wndap360

The device should be converted from kmod-owl-loader to nvmem-cells in the
future. Nvmem cells were not working. Maybe ATH9K_PCI_NO_EEPROM is missing.
That is why this commit is still using kmod-owl-loader. In the future
the device tree may look like this:

&ath9k0 {
       nvmem-cells = <&macaddr_art_120c>, <&cal_art_1000>;
       nvmem-cell-names = "mac-address", "calibration";
};

&ath9k1 {
       nvmem-cells = <&macaddr_art_520c>, <&cal_art_5000>;
       nvmem-cell-names = "mac-address", "calibration";
};

&art {
	...
	cal_art_1000: cal@1000 {
		reg = <0x1000 0xeb8>;
	};

	cal_art_5000: cal@5000 {
		reg = <0x5000 0xeb8>;
	};
};

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-04-30 23:56:47 +02:00
PtilopsisLeucotis
6e9c814022 ath79: add USB power control for GL-AR300M series
Add USB power control in DTS for GL.iNet models:
- AR300M;
- AR300M-Ext;
- AR300M16;
- AR300M16-Ext.

Signed-off-by: PtilopsisLeucotis <PtilopsisLeucotis@yandex.com>
2022-04-30 23:56:47 +02:00
Foica David
063e9047cc ath79: add support for TP-Link Deco M4R v1 and v2
This commit adds support for the TP-Link Deco M4R (it can also be M4,
TP-Link uses both names) v1 and v2. It is similar hardware-wise to the
Archer C6 v2. Software-wise it is very different. V2 has a bit different
layout from V1 but the chips are the same and the OEM firmware is the same
for both versions.

Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR

Flashing:

The device's bootloader only accepts images that are signed using
TP-Link's RSA key, therefore this way of flashing is not possible. The
device has a web GUI that should be accessible after setting up the device
using the app (it requires the app to set it up first because the web GUI
asks for the TP-Link account password) but for unknown reasons, the web
GUI also refuses custom images.

There is a debug firmware image that has been shared on the device's
OpenWrt forum thread that has telnet unlocked, which the bootloader will
accept because it is signed. It can be used to transfer an OpenWrt image
file over to the device and then be used with mtd to flash the device.

Pre-requisites:

- Debug firmware.
- A way of transferring the file to the router, you can use an FTP server
  as an example.
- Set a static IP of 192.168.0.2/255.255.255.0 on your computer.
- OpenWrt image.

Installation:

- Unplug your router and turn it upside down. Using a long and thin object
  like a SIM unlock tool, press and hold the reset button on the router and
  replug it. Keep holding it until the LED flashes yellow.
- Open 192.168.0.1. You should see the bootloader recovery's webpage.
  Choose the debug firmware that you downloaded and flash it. Wait until the
  router reboots (at this stage you can remove the static IP).

- Open a terminal window and connect to the router via telnet (the primary
  router should have a 192.168.0.1 IP address, secondary routers are
  different).
- Transfer the file over to the router, you can use curl to download it
  from the internet (use the insecure flag and make sure your source accepts
  insecure downloads) or from an FTP server.
- The router's default mtd partition scheme has kernel and rootfs
  separated. We can use dd to split the OpenWrt image file and flash it with
  mtd:

   dd if=openwrt.bin of=kernel.bin skip=0 count=8192 bs=256
   dd if=openwrt.bin of=rootfs.bin skip=8192 bs=256

- Once the images are ready, you have to flash the device using mtd
  (make sure to flash the correct partitions or you may be left with a
  hard bricked router):

   mtd write kernel.bin kernel
   mtd write rootfs.bin rootfs

- Flashing is done, reboot the device now.

Signed-off-by: Foica David <superh552@gmail.com>
2022-04-30 23:56:47 +02:00
John Audia
e08942e76a kernel: bump 5.10 to 5.10.113
All patches automatically rebased.

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200
Run-tested: bcm2711/RPi4B, mt7622/RT3200

Signed-off-by: John Audia <graysky@archlinux.us>
2022-04-30 21:27:45 +02:00
Sander Vanheule
8fa4361f55 ath79: add support for TP-Link EAP265 HD
The EAP265 HD is a rebadged EAP245v3, so images are compatible with both
devices.

Link: https://fccid.io/TE7EAP265HD/Letter/6-Request-for-FCC-Change-ID-4823578.pdf
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-04-27 20:29:37 +02:00
Martin Weinelt
089eb02abc ath79: ubnt: drop swconfig on ac-{lite,lr,mesh}
These don't have switches that could be configured using swconfig.

Signed-off-by: Martin Weinelt <hexa@darmstadt.ccc.de>
2022-04-23 22:22:12 +02:00
Rui Salvaterra
daa35a4d60 kernel: bump 5.15 to 5.15.35
Patches automatically rebased.

Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
2022-04-23 20:46:25 +02:00
John Audia
cab20be008 kernel: bump 5.10 to 5.10.112
Manually rebased:
  ath79/patches-5.10/901-phy-mdio-bitbang-prevent-rescheduling-during-command.patch

All other patches automatically rebased.

Build system: x86_64
Build-tested: bcm2711/RPi4B, mt7622/RT3200
Run-tested: bcm2711/RPi4B, mt7622/RT3200

Signed-off-by: John Audia <graysky@archlinux.us>
2022-04-23 20:46:25 +02:00
Lech Perczak
8a1003c598 ath79: ZTE MF286R: add comgt-ncm to DEVICE_PACKAGES
When adding support to the router's built-in modem, this required
package was omitted, because it was already enabled in the image
configuration in use for testing, and this went unnoticed.
In result, the modem still isn't fully supported in official images.
As it is the primary WAN interface, add the missing package.

Fixes: e02fb42c53 ("comgt: support ZTE MF286R modem")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-04-23 20:46:25 +02:00
David Musil
e20de22442 ath79: add support for MikroTik RouterBOARD wAP-2nD (wAP)
The MikroTik RouterBOARD wAP-2nd (sold as wAP) is a small
2.4 GHz 802.11b/g/n PoE-capable AP.

Specifications:
 - SoC: Qualcomm Atheros QCA9533
 - Flash: 16 MB (SPI)
 - RAM: 64 MB
 - Ethernet: 1x 10/100 Mbps (PoE in)
 - WiFi: AR9531 2T2R 2.4 GHz (SoC)
 - 3x green LEDs (1x lan, 1x wlan, 1x user)

 See https://mikrotik.com/product/RBwAP2nD for more info.

Flashing:
 TFTP boot initramfs image and then perform sysupgrade. Follow common
 MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.

Note: following 781d4bfb39
 The network setup avoids using the integrated switch and connects the
 single Ethernet port directly. This way, link speed (10/100 Mbps) is
 properly reported by eth0.

Signed-off-by: David Musil <0x444d@protonmail.com>
2022-04-18 07:24:09 +02:00
Andrew Powers-Holmes
6f1efb2898 ath79: add support for Sophos AP100/AP55 family
The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access
points based on the Qualcomm QCA9558 SoC. They share PCB designs with
several devices that already have partial or full support, most notably the
Devolo DVL1750i/e.

The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however
the 55 models' ART does not contain calibration data for their third chain
despite it being present on the PCB.

Specifications common to all models:
 - Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor)
 - 128 MB RAM
 - 16 MB SPI flash
 - 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in
 - Green and Red status LEDs sharing a single external light-pipe
 - Reset button on PCB[1]
 - Piezo beeper on PCB[2]
 - Serial UART header on PCB
 - Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC

Unique to AP100 and AP100C:
 - 3T3R 2.4GHz 802.11b/g/n via SoC WMAC
 - 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP55 and AP55C:
 - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
 - 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP100 and AP55:
 - External RJ45 serial console port[3]
 - USB 2.0 Type A port, power controlled via GPIO 11

Flashing instructions:

This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.

To flash via XG appliance:
 - Register on Sophos' website for a no-cost Home Use XG firewall license
 - Download and install the XG software on a compatible PC or virtual
   machine, complete initial appliance setup, and enable SSH console access
 - Connect the target AP device to the XG appliance's LAN interface
 - Approve the AP from the XG Web UI and wait until it shows as Active
   (this can take 3-5 minutes)
 - Connect to the XG appliance over SSH and access the Advanced Console
   (Menu option 5, then menu option 3)
 - Run `sudo awetool` and select the menu option to connect to an AP via
   SSH. When prompted to enable SSH on the target AP, select Yes.
 - Wait 2-3 minutes, then select the AP from the awetool menu again. This
   will connect you to a root shell on the target AP.
 - Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
 - Run `mtd -r write /tmp/openwrt.bin astaro_image`
 - When complete, the access point will reboot to OpenWRT.

To flash via U-Boot serial console:
 - Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
   netmask 255.255.255.0
 - Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C'
 - Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
 - Connect the AP ethernet to your PC's ethernet port
 - Connect a terminal to the UART at 115200 8/N/1 as usual
 - Power on the AP and press a key to cancel autoboot when prompted
 - Run the following commands at the U-Boot console:
    - `tftpboot`
    - `cp.b $fileaddr 0x9f070000 $filesize`
    - `boot`
 - The access point will boot to OpenWRT.

MAC addresses as verified by OEM firmware:

use   address     source
LAN   label       config 0x201a (label)
2g    label + 1   art 0x1002    (also found at config 0x2004)
5g    label + 9   art 0x5006

Increments confirmed across three AP55C, two AP55, and one AP100C.

These changes have been tested to function on both current master and
21.02.0 without any obvious issues.

[1] Button is present but does not alter state of any GPIO on SoC
[2] Buzzer and driver circuitry is present on PCB but is not connected to
    any GPIO. Shorting an unpopulated resistor next to the driver circuitry
    should connect the buzzer to GPIO 4, but this is unconfirmed.
[3] This external RJ45 serial port is disabled in the OEM firmware, but
    works in OpenWRT without additional configuration, at least on my
    three test units.
[4] On AP100/AP55 models the UART header is accessible after removing
    the device's top cover. On AP100C/AP55C models, the PCB must be removed
    for access; three screws secure it to the case.
    Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX

Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net>
2022-04-16 16:59:29 +02:00
Ryan Mounce
c2140e32ce ath79: add support for MikroTik RouterBOARD 962UiGS-5HacT2HnT (hAP ac)
This patch adds support for the MikroTik RouterBOARD 962UiGS-5HacT2HnT (hAP ac)

Specifications:
- SoC: QCA9558
- RAM: 128 MB
- Flash: 16 MB SPI
- 2.4GHz WLAN: 3x3:3 802.11n on SoC
- 5GHz WLAN: 3x3:3 802.11ac on QCA9880 connected via PCIe
- Switch: 5x 1000/100/10 on QCA8337 connected via RGMII
- SFP cage: connected via SGMII (tested with genuine & generic GLC-T)
- USB: 1x type A, GPIO power switch
- PoE: Passive input on Ether1, GPIO switched passthrough to Ether5
- Reset button
- "SFP" LED connected to SoC
- Ethernet LEDs connected to QCA8337 switch
- Green WLAN LED connected to QCA9880

Not working:
- Red WLAN LED

Installation:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.

Signed-off-by: Ryan Mounce <ryan@mounce.com.au>
2022-04-16 16:59:29 +02:00
Rui Salvaterra
de7535a6ac kernel: bump 5.15 to 5.15.34
Deleted (upstreamed):
generic/pending-5.15/850-0003-PCI-aardvark-Fix-support-for-MSI-interrupts.patch [1]

[1] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v5.15.34&id=60eabd66d17fa2cbc31f670b2f201f0bc54090a2

Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
2022-04-16 14:02:13 +02:00
Yousong Zhou
5c147d36ba ath79: port HiWiFi HC6361 from ar71xx
The device was added for ar71xx target and dropped during the ath79
transition, mainly because of the ascii mac address stored in bdinfo
partition

Device page, http://wiki.openwrt.org/toh/hiwifi/hc6361

The vendor u-boot image accepts sysupgrade.bin image with specific
requirements, including having squashfs signature "hsqs" at file offset
0x140000.  This is not possible now that OpenWrt kernel image is at
least 2MB with the signature at offset 0x240000.

Installation of current build of OpenWrt now requires a bootstrap step
of installing an earlier version first.

 - If the vendor u-boot accepts sysupgrade image, hc6361 image of LEDE
   release should work
 - If the vendor u-boot accepts only verified flashsmt image, install
   the one in the above device page.  The image is based on Barrier
   Breaker

   SHA256SUM of the flashsmt image

	81b193b95ea5f8e5c30cd62fa9facf275f39233be4fdeed7038f3deed2736156

After the bootstrap step, current build of OpenWrt can be installed
there fine.

Signed-off-by: Yousong Zhou <yszhou4tech@gmail.com>
2022-04-16 01:27:09 +00:00
Yousong Zhou
ecd81de7a5 ath79: add nvmem cell mac-address-ascii support
This is needed for devices with mac address stored in ascii format, e.g.
HiWiFi HC6361 to be ported in the following patch.

Signed-off-by: Yousong Zhou <yszhou4tech@gmail.com>
2022-04-16 00:23:08 +00:00
Thibaut VARÈNE
8084ec8061 ath79: cleanup mikrotik routerboot partitions
For some reason useless labels and aliases have been propagated through
copy-paste. Before the issue spreads any further, this patch cleans up
all relevant DTS files to the canonical form, bringing ath79 in line
with other mikrotik platforms (ramips and ipq40xx).

Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Thibaut VARÈNE
a05dcb0724 ath79: add support for Yuncore A930
Specification:

- QCA9533 (650 MHz), 64 or 128MB RAM, 16MB SPI NOR
- 2x 10/100 Mbps Ethernet, with 802.3at PoE support (WAN)
- 2T2R 802.11b/g/n 2.4GHz

Flash instructions:

If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):

  fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
  sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin

In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:

1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
   'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
   seconds, recovery mode should start downloading image from server
   (unfortunately, there is no visible indication that recovery got
   enabled - in case of problems check TFTP server logs)

Signed-off-by: Clemens Hopfer <openwrt@wireloss.net>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Thibaut VARÈNE
c91df224f5 ath79: add support for Yuncore XD3200
Specification:

- QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR
- 2T2R 802.11b/g/n 2.4GHz
- 2T2R 802.11n/ac 5GHz
- 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port)

LED for 5 GHz WLAN is currently not supported as it is connected directly
to the QCA9882 radio chip.

Flash instructions:

If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):

  fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
  sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin

In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:

1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
   'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
   seconds, recovery mode should start downloading image from server
   (unfortunately, there is no visible indication that recovery got
   enabled - in case of problems check TFTP server logs)

Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Koen Vandeputte
f3fa68e515 ath79: nand: add 5.15 support for nand subtarget
Tested on GL.iNet E750

Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2022-04-13 12:00:22 +02:00
Rui Salvaterra
5a09eb17c2 kernel: bump 5.15 to 5.15.32
Patches automatically rebased.

Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
2022-04-09 19:31:46 +02:00
Aleksander Jan Bajkowski
a98ded6c5c kernel: move some symbols to generic config
This commit add some enabled symbols to generic config.
LTO is only supported by clang compiler and therefore should
be disabled in the generic config instead of duplicating this
symbol in each target. CONFIG_LTO_NONE do this job.

The second group of symbols is enabled by the options available
in the generic config and is therefore added here:
* CONFIG_AF_UNIX_OOB is selected by CONFIG_NET && CONFIG_UNIX,
* CONFIG_BINARY_PRINTF is selected by CONFIG_BPF_SYSCALL,
* CONFIG_NET_SOCK_MSG is selected by CONFIG_BPF_SYSCALL && CONFIG_NET.

The other symbols are disabled and should be in the generic config.

This commit also removes these symbols from subtargets.

Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
2022-04-09 19:31:46 +02:00
Joe Mullally
44e1e5d153 ath79: Move TPLink WPA8630Pv2 to ath79-tiny target
These devices only have 6MiB available for firmware, which is not
enough for recent release images, so move these to the tiny target.

Note for users sysupgrading from the previous ath79-generic snapshot
images:

The tiny target kernel has a 4Kb flash erase block size instead
of the generic target's 64kb. This means the JFFS2 overlay partition
containing settings must be reformatted with the new block size or else
there will be data corruption.

To do this, backup your settings before upgrading, then during the
sysupgrade, de-select "Keep Settings". On the CLI, use "sysupgrade -n".

If you forget to do this and your system becomes unstable after
upgrading, you can do this to format the partition and recover:

* Reboot
* Press RESET when Power LED blinks during boot to enter Failsafe mode
* SSH to 192.168.1.1
* Run "firstboot" and reboot

Signed-off-by: Joe Mullally <jwmullally@gmail.com>
Tested-by: Robert Högberg <robert.hogberg@gmail.com>
2022-04-09 19:31:46 +02:00
Koen Vandeputte
d1456a4ad9 ath79: mikrotik: enable ecc hamming algorithm for kernel 5.15
This algorithm has it's own symbol now.
Enable it to fix nand support

Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2022-04-05 17:31:04 +02:00
Koen Vandeputte
5af9aafabb ath79: mikrotik: add 5.15 support for mikrotik subtarget
Tested on RB922

Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2022-04-05 17:31:04 +02:00
Oskari Lemmela
f8e65fecee ath79: fix ar934x spi driver delays
Backport spi driver delay fixes from the 5.17-rc1 kernel.

Signed-off-by: Oskari Lemmela <oskari@lemmela.net>
[port also to kernel 5.15]
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2022-04-05 17:31:04 +02:00
Jan-Niklas Burfeind
c6eb63d48f
ath79: migrate Archer C5 5GHz radio device paths
When upgrading a TP-Link Archer C5 v1 from ar71xx to ath79,
the 5ghz radio stops working because the device path changed.

Same has been done for the Archer C7 before:

commit e19506f206 ("ath79: migrate Archer C7 5GHz radio device paths")

Signed-off-by: Jan-Niklas Burfeind <git@aiyionpri.me>
2022-03-31 18:07:29 +02:00
Matthias Schiffer
aee9ccf5c1
ath79: fix label MAC address for Ubiquiti UniFi AP Outdoor+
The label has the MAC address of eth0, not the WLAN PHY address. We can
merge the definition back into ar7241_ubnt_unifi.dtsi, as both DTS
derived from it use the same interface for their label MAC addresses
after all.

Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
2022-03-30 17:48:30 +02:00
David Bauer
9a0155bc4f ath79: add 5.15 support for generic subtarget
Add Kernel 5.15 patches + config. This is currently only available for
the generic subtarget, as it was exclusively tested with this target.

Tested-on: Siemens WS-AP3610, Enterasys WS-AP3705i

Signed-off-by: David Bauer <mail@david-bauer.net>
2022-03-30 17:28:39 +02:00
David Bauer
4551bfd91f ath79: fix link for long cables with OCEDO Raccoon
The OCEDO Raccoon had significant packet-loss with cables longer than 50
meter. Disabling EEE restores normal operation.

Also change the ethernet config to reduce loss on sub-1G links.

Signed-off-by: David Bauer <mail@david-bauer.net>
2022-03-25 23:58:09 +01:00