The RTL8221B PHY is a newer version of the RTL8226, also supporting
2.5GBit Ethernet. It is found with RTL931X devices such as the
EdgeCore ECS4125-10P
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Both the Aquantia AQR113c and the RTL8226 PHYs in the Zyxel XGS1250 and the
Zyxel XGS1210 require special polling configuration settings in the
RTL930X_SMI_10GPHY_POLLING_REGxx_CFG configuration registers. Set them.
Additionally, for RTL 1GBit phys set the RTL930X_SMI_PRVTE_POLLING_CTRL bits
in the poll mask.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
For SFP slots on the RTL9302, the link status is not correctly detected.
Use the link media status instead.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
We add the RTL931X sub-target with kernel configuration for
a dual core MIPS InterAptive CPU.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
We add HW support routines for the RTL931X SoC family for handling
the Packet Inspection Engine, L2 table handling and STP aging.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
We need to store and restore MC memberships in HW when a port joins or
leaves a bridge as well as when it is enabled or disabled, as these
properties should not change in these situations.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
In order to receive STP information at the kernel level, we make sure
that all Bridge Protocol Data Units are copied to the CPU-Port.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Instead of a generic L2 aging configuration function with complex
logic, we implement an individual function for all SoC types.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Add functionality to enable or disable L2 learning offload and port flooding
for RTL83XX.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Adds the DSA API for bridge configuration (flooding, L2 learning,
and aging) offload as found in Linux 5.12 so that we can implement
it in our drivver.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This adds LAG support for all 4 SoC families, including support
ofr the use of different distribution algorithm for the load-
balancing between individual links.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Add the LAG configuration API for DSA as found in Linux 5.12 so that we
can implement it in the dsa driver.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Use setting functions instead of register numbers in order to clean up the code.
Also use enums to define inner/outer VLAN types and the filter type.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
The ZyXEL XGS1250-12 Switch is a 11 + 1 port multi-GBit switch with
8 x 1000BaseT, 3 x 1000/2500/5000/10000BaseT Ethernet ports and
1 SFP+ module slot.
Hardware:
- RTL9302B SoC
- Macronix MX25L12833F (16MB flash)
- Nanja NT5CC64M16GP-1 (128MB DDR3 SDRAM)
- RTL8231 GPIO extender to control the port LEDs
- RTL8218D 8x Gigabit PHY
- Aquantia AQR113c 1/2.5/5/10 Gigabit PHYs
- SFP+ 10GBit slot
Power is supplied via a 12V 2A standard barrel connector. At the
right side behind the grid is UART serial connector. A Serial
header can be connected to from the outside of the switch trough
the airvents with a standard 2.54mm header.
Pins are from top to bottom Vcc(3.3V), TX, RX and GND. Serial
connection is via 115200 baud, 8N1.
A reset button is accessble through a hole in the front panel
At the time of this commit, all ethernet ports work under OpenWRT,
including the various NBaseT modes, however the 10GBit SFP+ slot is not
supported.
Installation
--------------
* Connect serial as per the layout above. Connection parameters: 115200 8N1.
* Navigate to 'Management' in the OEM web interface and click on 'Firmware upgrade'
to the left.
* Upload the OpenWrt initramfs image, and wait till the switch reboots.
* Connect to the device through serial and change the U-boot boot command.
> fw_setenv bootcmd 'rtk network on; boota'
* Reboot, scp the sysupgrade image to /tmp, verify the checksum and flash it:
> sysupgrade /tmp/openwrt-realtek-rtl930x-zyxel_xgs1250-12-squashfs-sysupgrade.bin
* Upon reboot, you have a functional OpenWrt installation. Leave the bootcmd
value as is - without 'rtk network on' the switch will fail to initialise
the network.
Web recovery
------------
The XGS1250-12 has a handy web recovery that will load when U-boot does
not find a bootable kernel. In case you would like to trigger the web
recovery manually, partially overwrite the firmware partition with some
zeroes:
# dd if=/dev/zero of=/dev/mtd5 bs=1M count=2
If you have serial connected you'll see U-boot will start the web recovery
and print it's listening on 192.168.1.1, but by default it seems to be on
the OEM default IP for the switch - 192.168.1.3. The web recovery only
listens on HTTP (80) and *not* on 443 (HTTPS) unlike the web UI.
Return to stock
---------------
You can flash the ZyXEL firmware images to return to stock:
# sysupgrade -F -n XGS1250-12_Firmware_V1.00(ABWE.1)C0.bix
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Adds configuration routines for the internal SerDes of the
RTL930X and RTL931X.
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Adds a rtl931x_phylink_mac_config for the RTL931X and improve
the handling of the RTL930X phylink configuration. Add separate
handling of the RTL839x since some configurations are different
from the RTL838X.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
We were using the PHY-ids (the reg entries in the PHY
sections of the .dts) as the port numbers. Now scan the
ports section in the .dts, and use the actual port numbers,
following the phy-handle to the PHY properties.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
When a port is brought up, read the SDS-id via the phy_device
for a given port and use this to configure the SDS when it
is brought up.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
The RTL839X does not have an internal phy and thus does not need to have any
firmware as part of the kernel, especially not firmware for the RTL838X.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Selects the new CEVT timer for Realtek instead of the previous
timer driver. While we are at it, we explicitily state we do
not use the I2C driver of the RTL9300.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
The RTL9300 has a broken R4K MIPS timer interrupt, however, the
R4K clocksource works. We replace the RTL9300 timer with a
Clock Event Timer (CEVT), which is VSMP aware and can be instantiated
as part of brining a VSMTP cpu up instead of the R4K CEVT source.
For this we place the RTL9300 CEVT timer in arch/mips/kernel
together with other MIPS CEVT timers, initialize the SoC IRQs
from a modified smp-mt.c and instantiate each timer as part
of the MIPS time setup in arch/mips/include/asm/time.h instead
of the R4K CEVT, similarly as is done by other MIPS CEVT timers.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Various fixes to enable Ethernet on the RTL931X:
- Network start and stop sequence for RTL931X HW
- MDIO access on RTL931X SoC
- Chip initialization
- SerDes setup
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Do not lock the register structure in IRQ context. It is not
necessary and leads to lockups under SMP load.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Rename the SoC-specific rtl838x_reg structure in the Ethernet
driver to avoid confusion with the structure of the same name
in the DSA driver. New name is: rtl838x_eth_reg
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Setting bits 20 and 23 in a u16 is obviously wrong.
According to https://www.svanheule.net/realtek/cypress/cputag
cpu_tag[2] starts at bit 48 in the cpu-tag structure, so
bit 43 is bit 5 in cpu_tag[2] and bit 40 is bit 8 in
cpu_tag[2].
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Set CONFIG_FORCE_MAX_ZONEORDER setting to 13 to allow larger
contiguous memory allocation for the DMA of the Ethernet
driver. Increase the number of entries in the RX ring
to 300 making use of the larger DMA region now possible for
receiveing packets.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
The GS1900-48 is a 48 + 2 port Gigabit L2 switch with 48 gigabit ports.
Hardware:
RTL8393M SoC
Macronix MX25l12805D (16MB flash)
128MB RAM
6 * RTL8218B external PHY
2 * RTL8231 GPIO extenders to control the port LEDs, system LED and
Reset button
2 Uplink ports are SFP cages which support 1000 Base-X mini GBIC modules.
Power is supplied via a 230 volt mains connector.
The board has a hard reset switch SW1, which is is not reachable from the outside.
J4 provides a 12V RS232 serial connector which is connected through U8 to
the 3.3V UART of the RTL8393. Conversion is done by U8, a SIPEX 3232EC.
To connect to the UART, wires can be soldered to R603 (TX) and R602 (RX).
Installation:
Install the squashfs image via Realtek's original Web-Interface.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Update the IRQ configuration to work with the new rtl-intc controller.
Also change all KSEG1 addresses in reg = <> of the devics to physical
addresses.
Use the new gpio-otto controller instead of the legacy driver.
Also remove the memory node as this is better put into a device .dts.
Also remove the RTL8231 GPIO controller node from this base file
since the chip might not be found in all Realtek RTL839x devices.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Replace the interrupt controller node with the new realtek,rtl-intc
node and change all device interrupts to use the 2 field notation:
interrupts = <[SoC IRQ] [Index to MIPS IRQ]>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
In order to support VSMP, enable support for both VPEs
of the RTL839X and RTL930X SoCs in the irq-realtek-rtl
driver. Add support for IRQ affinity setting.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
In order for the Platform includes to be available on
all sub-targets, make them dependent on CONFIG_RTL83XX.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
The RTL838X SoCs do not use Aquantia PHYs, remove this.
Also the RTL838X uses a high resolution R4K timer.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Creates RTL83XX as a basic kernel config parameter for the
RTL838X, RTL839x, RTL930X and RTL931X platforms with respective
configurations for the SoCs, which are introduced in addition.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
Create the RTL838x specific Makefiles. Move CPU-type into
rtl838x.mk as this is specifc to that platform. Add
rtl838x subtarget into main Makefile.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
mv generic/target.mk to rtl838x/target.mk in order to create
an initial makefile for the rtl838x sub-architecture
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
The EEPROMs on SFP modules are compatible both to I2C as well
as SMBus. However, the kernel so far only supports I2C
access. We add SMBus access routines, because the I2C driver
for the RTL9300 HW only supports that protocol. At the same
time we disable I2C access to PHYs on SFP modules as otherwise
detection of any SFP module would fail. This is not in any
way problematic at this point in time since the RTL93XX
platform so far does not support PHYs on SFP modules.
The patches are copied and rebased version of:
https://bootlin.com/blog/sfp-modules-on-a-board-running-linux/
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
The RTL9300/RTL9310 I2C controllers have support for 2 independent I2C
masters, each with a fixed SCL pin, that cannot be changed. Each of these
masters can use 8 (RTL9300) or 16 (RTL9310) different pins for SDA.
This multiplexer directly controls the two masters and their shared
IO configuration registers to allow multiplexing between any of these
busses. The two masters cannot be used in parallel as the multiplex
is protected by a standard multiplex lock.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This adds support for the RTL9300 and RTL9310 I2C controller.
The controller implements the SMBus protocol for SMBus transfers
over an I2C bus. The driver supports selecting one of the 2 possible
SCL pins and any of the 8 possible SDA pins. Bus speeds of
100kHz (standard speed) and 400kHz (high speed I2C) are supported.
Signed-off-by: Birger Koblitz <git@birger-koblitz.de>