Phicomm K2G:
add missing label_mac
Phicomm PSG1218A & PSG1218B:
The previous wan mac was set as factory@0x28 +1 (originally based
on the default case for the ramips target), but the correct wan mac
is factory@0x28 -1, being equal to factory@0x2e.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[minor commit title/message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Netgear EX6150 can, just like the D-Link DIR-860L rev B1, fail to
initialise both radios in some cases. Add the reset GPIOs explicitly
so the PCI-E devices get re-initialised properly. See also FS #3632.
Error shows up in dmesg as follows:
[ 1.560764] mt7621-pci 1e140000.pcie: pcie1 no card, disable it (RST & CLK)
Tested-by: Kurt Roeckx <kurt@roeckx.be>
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[removed period from commit title]
Signed-off-by: David Bauer <mail@david-bauer.net>
As kernel size increased it start to fail to load squishfs image,
using lzma-loader fixed it.
wevo_11acnas is almost same device as w2914ns-v2 except ram size,
so I expect same thing would've happen in that device too.
Signed-off-by: Seo Suchan <abnoeh@mail.com>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
The TP-Link EAP235-Wall is a wall-mounted, PoE-powered AC1200 access
point with four gigabit ethernet ports.
When connecting to the device's serial port, it is strongly advised to
use an isolated UART adapter. This prevents linking different power
domains created by the PoE power supply, which may damage your devices.
The device's U-Boot supports saving modified environments with
`saveenv`. However, there is no u-boot-env partition, and saving
modifications will cause the partition table to be overwritten. This is
not an issue for running OpenWrt, but will prevent the vendor FW from
functioning properly.
Device specifications:
* SoC: MT7621DAT
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (MT7603EN): b/g/n, 2x2
* Wireless 5GHz (MT7613BEN): a/n/ac, 2x2
* Ethernet: 4× GbE
* Back side: ETH0, PoE PD port
* Bottom side: ETH1, ETH2, ETH3
* Single white device LED
* LED button, reset button (available for failsafe)
* PoE pass-through on port ETH3 (enabled with GPIO)
Datasheet of the flash chip specifies a maximum frequency of 33MHz, but
that didn't work. 20MHz gives no errors with reading (flash dump) or
writing (sysupgrade).
Device mac addresses:
Stock firmware uses the same MAC address for ethernet (on device label)
and 2.4GHz wireless. The 5GHz wireless address is incremented by one.
This address is stored in the 'info' ('default-mac') partition at an
offset of 8 bytes.
From OEM ifconfig:
eth a4:2b:b0:...:88
ra0 a4:2b:b0:...:88
rai0 a4:2b:b0:...:89
Flashing instructions:
* Enable SSH in the web interface, and SSH into the target device
* run `cliclientd stopcs`, this should return "success"
* upload the factory image via the web interface
Debricking:
U-boot can be interrupted during boot, serial console is 57600 baud, 8n1
This allows installing a sysupgrade image, or fixing the device in
another way.
* Access serial header from the side of the board, close to ETH3,
pin-out is (1:TX, 2:RX, 3:GND, 4:3.3V), with pin 1 closest to ETH3.
* Interrupt bootloader by holding '4' during boot, which drops the
bootloader into its shell
* Change default 'serverip' and 'ipaddr' variables (optional)
* Download initramfs with `tftpboot`, and boot image with `bootm`
# tftpboot 84000000 openwrt-initramfs.bin
# bootm
Revert to stock:
Using the tplink-safeloader utility from the firmware-utils package,
TP-Link's firmware image can be converted to an OpenWrt-compatible
sysupgrade image:
$ ./staging_dir/host/bin/tplink-safeloader -B EAP235-WALL-V1 \
-z EAP235-WALLv1_XXX_up_signed.bin -o eap235-sysupgrade.bin
This can then be flashed using the OpenWrt sysupgrade interface. The
image will appear to be incompatible and must be force flashed, without
keeping the current configuration.
Known issues:
- DFS support is incomplete (known issue with MT7613)
- MT7613 radio may stop responding when idling, reboot required.
This was an issue with the ddc75ff704 version of mt76, but appears to
have improved/disappeared with bc3963764d.
Error notice example:
[ 7099.554067] mt7615e 0000:02:00.0: Message 73 (seq 1) timeout
Hardware was kindly provided for porting by Stijn Segers.
Tested-by: Stijn Segers <foss@volatilesystems.org>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Similarly to the Archer C2 v1, the Archer C20 v1 will brick when one
tries to flash an OpenWrt factory image through the TP-Link web UI.
The wiki page contains an explicit warning about this [1].
Disable the factory image altogether since it serves no purpose.
[1] https://openwrt.org/toh/tp-link/tp-link_archer_c20_v1#installation
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Ran update_kernel.sh in a fresh clone without any existing toolchains.
No manual changes needed.
Build system: x86_64
Build-tested: bcm27xx/bcm2711
Signed-off-by: John Audia <graysky@archlinux.us>
The Netgear EX6150 has an Access Point/Extender switch. Set it as
an EV_SW. Otherwise when it's set to Access Point, it will trigger
failsafe mode during boot.
Fixes: FS#3590
Signed-off-by: Kurt Roeckx <kurt@roeckx.be>
The bootloader of a number of recent TP-Link devices does not properly
initialise the MT7621's internal switch when booting from flash. To
enable the mt7530 driver to clear the reset on the switch, the ramips
reset controller must be allowed to toggle these.
Backport upstream commit 3f9ef7785a9c from mips-next to allow control of
the "mcm" reset line.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Initial commit 8375623a06 ("ramips: add support for TP-Link Archer
C2") contains detailed installation instructions, which do not mention
a factory image. From what I can see, no support to install OpenWrt
through the vendor web interface has been added since. The factory
image is also conspicuously absent from the device page in the wiki.
Yet, it is available for download.
I bricked my Archer C2 loading the factory image through the web UI.
Serial showed this error during bootloop:
Uncompressing Kernel Image ... LZMA ERROR 1 - must RESET board to recover
This patch disables the undocumented factory image so users won't get
tricked into thinking easy web UI flashing actually works.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7603E, MediaTek MT7612E
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 3.0
- Buttons: Reset, WPS
- LEDs: Power, System, Wan, Lan 1-4, WiFi 2.4G, WiFi 5G, WPS, USB
- Power: DC 12V 1A tip positive
UART Serial:
115200 baud
Located on unpopulated 4 pin header near J4:
J4
[o] Rx
[o] Tx
[o] GND
[ ] Vcc - Do not connect
Installation:
Download and flash the manufacturer's built OpenWRT image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWRT image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings. The force upgrade may need to be checked
due to differences in router naming conventions.
Recovery:
- Loads only signed manufacture firmware due to bootloader RSA verification
- serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
- connect to any lan ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button for image to
download
- See http://www.cudytech.com/newsinfo/547425.html
MAC addresses as verified by OEM firmware:
use address source
LAN *:f0 label
WAN *:f1 label + 1
2g *:f0 label
5g *:f2 label + 2
The label MAC address is found in bdinfo 0xde00.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
While the latest version of 19.07 release is usable,
the current master is unbootable on the device in a normal way.
"Normal way" installations includes:
- sysupgrade (e.g. from 19.07)
- RESET button recovery with Ron Curry's (Wingspinner) UBoot image
(10.10.10.3 + "Kernal.bin")
- RESET button recovery with original U-Boot
(10.10.10.254 + "kernel")
One could flash and boot the latest master sysupgrade image successfully
with serial access to the device. But a sysupgrade from this state still
breaks the U-Boot and soft-bricks the device.
Signed-off-by: Szabolcs Hubai <szab.hu@gmail.com>
shellcheck recommends || and && over "-a" and "-o" because the
latter are not well defined.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This replaces several full-text and abbreviated licenses found in
DTS files by the corresponding SPDX identifiers.
This should make it easier to identify the license both by humans
and machines.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
UniElec U7621-01 is a router platform board, the smaller model of
the U7621-06.
The device has the following specifications:
- MT7621AT (880 MHz)
- 256 of RAM (DDR3)
- 16 MB of FLASH (SPI NOR)
- 5x 1 Gbps Ethernet (MT7621 built-in switch)
- 1x 2.4Ghz MT7603E
- 1x 5Ghz MT7612
- 1x miniPCIe slots (PCIe bus only)
- 1x miniSIM slot
- 1x USB 2.0 (uses the usb 3.0 driver)
- 8x LEDs (1x GPIO-controlled)
- 1x reset button
- 1x UART header (4-pins)
- 1x GPIO header (30-pins)
- 1x DC jack for main power (12 V)
The following has been tested and is working:
- Ethernet switch
- 1x 2.4Ghz MT7603E (wifi)
- 1x 5Ghz MT7612 (wifi)
- miniPCIe slots (tested with Wi-Fi cards and LTE modem cards)
- miniSIM slot (works with normal size simcard)
- sysupgrade
- reset button
Installation:
This board has no locked down bootloader. The seller can be asked to
install openwrt v18.06, so upgrades are standard sysupgrade method.
Recovery:
This board contains a Chinese, closed-source bootloader called Breed
(Boot and Recovery Environment for Embedded Devices). Breed supports web
recovery and to enter it, you keep the reset button pressed for around
5 seconds during boot. Your machine will be assigned an IP through DHCP
and the router will use IP address 192.168.1.1. The recovery website is
in Chinese, but is easy to use. Click on the second item in the list to
access the recovery page, then the second item on the next page is where
you select the firmware. In order to start the recovery, you click the
button at the bottom.
LEDs list (left to right):
- ESW_P0_LED_0
- ESW_P1_LED_0
- ESW_P2_LED_0
- ESW_P3_LED_0
- ESW_P4_LED_0
- CTS2_N (GPIO10, configured as "status" LED)
- LED_WLAN# (connected with pin 44 in wifi1 slot)
Signed-off-by: David Bentham <db260179@gmail.com>
[add DEVICE_VARIANT, fix DEVICE_PACKAGES, remove &gpio]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MediaTek MT7688AN
- RAM: 128 MB
- Flash: 32 MB
- Ethernet: 5x 10/100 (1x WAN, 4x LAN)
- Wireless: built in 2.4GHz (bgn)
- USB: 1x USB 2.0 port
- Buttons: 1x Reset
- LEDs: 1x (WiFi)
Flash instructions:
- Configure TFTP server with IP address 10.10.10.3
- Name the firmware file as firmware.bin
- Connect any Ethernet port to the TFTP server's LAN
- Choose option 2 in U-Boot
- Alternatively choose option 7 to upload firmware to the built-in
web server
MAC addresses as verified by OEM firmware:
use address source
2g *:XX factory 0x4
LAN *:XX+1 factory 0x28
WAN *:XX+1 factory 0x2e
Notes:
This board is ostensibly a module containing the MediaTek MT7688AN SoC,
128 MB DDR2 SDRAM and 32 MB flash storage. The SoC can be operated in
IoT Gateway Mode or IoT Device Mode.
From some vendors the U-Boot that comes installed operates on UART 2
which is inaccessible in gateway mode and operates unreliably in the
Linux kernel when using more than 64 MB of RAM. For those, updating
U-Boot is recommended.
Signed-off-by: Ewan Parker <ewan@ewan.cc>
[add WLAN to 01_leds]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
On a platform with many very different devices, like found on ramips,
the generic profiles seem like remnants of the past that do not
have a real use anymore.
Remove them to have one thing less to maintain.
Actually, rt288x didn't have a default profile in the first place.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
The majority of our targets provide a default value for the variable
SUPPORTED_DEVICES, which is used in images to check against the
compatible on a running device:
SUPPORTED_DEVICES := $(subst _,$(comma),$(1))
At the moment, this is implemented in the Device/Default block of
the individual targets or even subtargets. However, since we
standardized device names and compatible in the recent past, almost
all targets are following the same scheme now:
device/image name: vendor_model
compatible: vendor,model
The equal redundant definitions are a symptom of this process.
Consequently, this patch moves the definition to image.mk making it
a global default. For the few targets not using the scheme above,
SUPPORTED_DEVICES will be defined to a different value in
Device/Default anyway, overwriting the default. In other words:
This change is supposed to be cosmetic.
This can be used as a global measure to get the current compatible
with: $(firstword $(SUPPORTED_DEVICES))
(Though this is not precisely an achievement of this commit.)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "edimax,uimage"" parser can be replaced by the generic
parser using device specific openwrt,partition-magic and
openwrt,offset properties.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The only difference between the "openwrt,okli" and the generic
parser is the magic. Set this in device tree for all affected
devices and remove the "openwrt,okli" parser.
Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Convert users of the "fonfxc" and "sge" parsers to the generic
"openwrt,uimage", using device specific "openwrt,padding" properties.
Tested-by: Stijn Segers <foss@volatilesystems.org> [DIR-878 A1]
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The OEM assignment of LAN ports is swapped.
Fixes: c2a7bb520a ("ramips: mt7621: add support for Xiaomi Mi Router 4")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).
Specifications:
Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A
UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it
MAC addresses as verified by OEM firmware:
use address source
LAN *:c2 factory 0xe000 (label)
WAN *:c3 factory 0xe006
2g *:c4 factory 0x0000
5g *:c5 factory 0x8000
Flashing instructions:
1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:
setenv uart_en 1
saveenv
boot
3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/
Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion
Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a DTSI for Xiaomi devices with 128M NAND.
This allows to consolidate the partitions and a few other nodes for
AC2100 family and Mi Router 3G.
Note that the Mi Router 3 Pro has 256M NAND and differently sized
partitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a shared device definition for Xiaomi devices with
NAND and "separate" images, i.e. kernel1.bin and rootfs0.bin.
This allows to consolidate similar/duplicate code for AC2100 family
and Mi Router 3G.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The removed config symbols are already enabled by the generic kernel
configuration (or by default), while the added ones are forcefully
enabled by the specific architecture.
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
The following four led triggers are enabled in generic config.
* kmod-ledtrig-default-on
* kmod-ledtrig-heartbeat
* kmod-ledtrig-netdev
* kmod-ledtrig-timer
Drop the packages and remove them from DEVICE_PACKAGES.
There's no other package depending on them in this repo.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Remove trailing whitespaces in two *.mk files.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[fix title, add message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The MT7915 radio currently advertises 2.4GHz channels while the antenna
path only supports 5 GHz. Limit the radio to 5GHz channels to prevent
users from configuring non-supported channels.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware
--------
MediaTek MT7621AT
256M DDR3
32M SPI-NOR
MediaTek MT7603 2T2R 802.11n 2.4GHz
MediaTek MT7915 2T2R 802.11ax 5GHz
Not Working
-----------
- Bluetooth (connected to UART3)
UART
----
UART is located in the lower left corner of the board. Pinout is
0 - 3V3 (don't connect)
1 - RX
2 - TX
3 - GND
Console is 115200 8N1.
Boot
----
1. Connect to the serial console and connect power.
2. Double-press ESC when prompted
3. Set the fdt address
$ fdt addr $(fdtcontroladdr)
4. Remove the signature node from the control FDT
$ fdt rm /signature
5. Transfer and boot the OpenWrt initramfs image to the device.
Make sure to name the file C0A80114.img and have it reachable at
192.168.1.1/24
$ tftpboot; bootm
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt".
2. Update the bootloader environment.
$ fw_setenv devmode TRUE
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
3. Transfer the OpenWrt sysupgrade image to the device using SCP.
4. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
5. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
7. Reboot the device. It should boot into OpenWrt.
Below are the original installation instructions prior to the discovery
of "devmode=TRUE". They are not required for installation and are
documentation only.
The bootloader employs signature verification on the FIT image
configurations. This way, booting unauthorized image without patching
the bootloader is not possible. Manually configuring the bootcmd in the
U-Boot envronment won't work, as this is restored to the default value
if modified.
The bootloader is made up of three different parts.
1. The SPL performing early board initialization and providing a XModem
recovery in case the PBL is missing
2. The PBL being the primary U-Boot application and containing the
control FDT. It is LZMA packed with a uImage header.
3. A Ubiquiti standalone U-Boot application providing the main boot
routine as well as their recovery mechanism.
In a perfect world, we would only replace the PBL, as the SPL does not
perform checks on the PBLs integrity. However, as the PBL is in the same
eraseblock as the SPL, we need to at least rewrite both.
The bootloader will only verify integrity in case it has a "signature"
node in it's control device-tree. Renaming the signature node to
something else will prevent this from happening.
Warning: These instructions are based on the firmware intially
shipped with the device and potentially brick your device in a way it
can only be recovered using a SPI flasher.
Only (!) proceed if you understand this!
1. Extract the bootloader from the U-Boot partition using the OpenWrt
initramfs image.
2. Split the bootloader into it's 3 components:
$ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056
$ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360
$ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416
3. Strip the uImage header from the PBL
$ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1
4. Decompress the PBL
$ lzma -d pbl.lzma --single-stream
The decompressed PBL sha256sum should be
d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235
5. Open the decompressed PBL using your favorite hexeditor. Locate the
control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the
label for the signature node is located. Rename the "signature"
string at this offset to "signaturr".
The patched PBL sha256sum should be
d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97
6. Compress the patched PBL
$ lzma -z pbl --lzma1=dict=67108864
The resulting pbl.lzma file should have the sha256sum
7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42
7. Create the PBL uimage
$ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma
-n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000
-T firmware -d pbl.lzma patched_pbl.uimage
The resulting patched_pbl.uimage should have the sha256sum
b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce
8. Reassemble the complete bootloader
$ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1
conv=sync
$ cat spl.bin > patched_uboot.bin
$ cat aligned_pbl.uimage >> patched_uboot.bin
$ cat ubnt.uimage >> patched_uboot.bin
The resulting patched_uboot.bin should have the sha256sum
3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b
9. Transfer your patched bootloader to the device. Also install the
kmod-mtd-rw package using opkg and load it.
$ insmod mtd-rw.ko i_want_a_brick=1
Write the patched bootloader to mtd0
$ mtd write patched_uboot.bin u-boot
10. Erase the kernel1 partition, as the bootloader might otherwise
decide to boot from there.
$ mtd erase kernel1
11. Transfer the OpenWrt sysupgrade image to the device and install
using sysupgrade.
FIT configurations
------------------
In the future, the MT7621 UniFi6 family can be supported by a single
OpenWrt image.
config@1: U6 Lite
config@2: U6 IW
config@3: U6 Mesh
config@4: U6 Extender
config@5: U6 LR-EA (Early Access - GA is MT7622)
Signed-off-by: David Bauer <mail@david-bauer.net>
A few devices in ath79 and ramips use mtd-concat to concatenate
individual partitions into a bigger "firmware" or "ubi" partition.
However, the original partitions are still present and visible,
and one can write to them directly although this might break the
actual virtual, concatenated partition.
As we cannot do much about the former, let's at least choose more
descriptive names than just "firmwareX" in order to indicate the
concatenation to the user. He might be less tempted into overwriting
a "fwconcat1" than a "firmware1", which might be perceived as an
alternate firmware for dual boot etc.
This applies the new naming consistently for all relevant devices,
i.e. fwconcatX for virtual "firmware" members and ubiconcatX for
"ubi" members.
While at it, use DT labels and label property consistently, and
also use consistent zero-based indexing.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ELECOM WRC-1167GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 256 MiB
- Flash : SPI-NOR 32 MiB
- WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 6x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from ethernet port side
- 57600n8
- Power : 12VDC, 1A
MAC addresses:
LAN : 04:AB:18:**:**:07 (Factory, 0xE000 (hex))
WAN : 04:AB:18:**:**:08 (Factory, 0xE006 (hex))
2.4 GHz : 04:AB:18:**:**:09 (none)
5 GHz : 04:AB:18:**:**:0A (none)
Flash instruction using factory image:
1. Boot WRC-1167GST2 normally
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing
Notes:
- there is no way to configure the correct MAC address for secondary phy
(5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
ieee80211-freq-limit
(fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
mtd-mac-address-increment
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ELECOM WRC-1167GS2-B is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : SPI-NOR 16 MiB
- WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 6x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from ethernet port side
- 57600n8
- Power : 12VDC, 1A
MAC addresses:
LAN : 04:AB:18:**:**:13 (Factory, 0xFFF4 (hex))
WAN : 04:AB:18:**:**:14 (Factory, 0xFFFA (hex))
2.4 GHz : 04:AB:18:**:**:15 (none)
5 GHz : 04:AB:18:**:**:16 (Factory, 0x4 (hex))
Flash instruction using factory image:
1. Boot WRC-1167GS2-B normally
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~120 seconds to complete flashing
Notes:
- there is no way to configure the correct MAC address for secondary phy
(5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
ieee80211-freq-limit
(fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
mtd-mac-address-increment
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI patch]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a dedicated DTSI for ELECOM WRC GS devices with 2 PCI
WiFi chips in preparation for the 1 chip - dual radio devices, so
the latter can reuse part of the common definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7615N (x2)
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 2.0, 1 USB 3.0
- Buttons: Reset, WiFi Toggle, WPS
- LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0
The R1 revision is identical to the A1 revision except
- No Config2 Parition, therefore
- factory partition resized to 64k from 128K
- Firmware partition offset is 0x50000 not 0x60000
- Firmware partitions size increased by 64K
- Firmware partition type is "denx,uimage", not "sge,uimage"
- Padding of image creation "uimage-padhdr 96" removed
Installation:
- Older firmware versions: put the factory image on a USB stick, turn on
the telnet console, and flash using the following cmd
"fw_updater Linux /mnt/usb_X_X/firmware.bin"
- D-Link FailsafeUI:
Power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing, then jack into any lan port and manually assign a static IP
address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2)
and go to http://192.168.0.1
Flash with the factory image.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
Some Russian d-link routers require that their firmware be signed with a
salted md5 checksum followed by the bytes 0x00 0xc0 0xff 0xee. This tool
signs factory images the OEM's firmware accepts them.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
FCC ID: A8J-ESR750H
Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.
**Specification:**
- RT3662F MIPS SOC, 5 GHz WMAC (2x2)
- RT5392L PCI on-board, 2.4 GHz (2x2)
- AR8327 RGMII, 7-port GbE, 25 MHz clock
- 40 MHz reference clock
- 8 MB FLASH 25L6406EM2I-12G
- 64 MB RAM
- UART at J12 (unpopulated)
- 2 internal antennas (5 GHz)
- 2 external antennas (2.4 GHz)
- 9 LEDs, 1 button (power, wps, wifi2g, wifi5g, 5 LAN/WAN)
- USB 2 port (GPIO controlled power)
**MAC addresses:**
MAC Addresses are labeled as WAN and WLAN
U-boot environment has the the vendor MAC address for ethernet
MAC addresses in "factory" are part of wifi calibration data
eth0.2 WAN *:13:e7 u-boot-env wanaddr
eth0.1 ---- *:13:e8 u-boot-env wanaddr + 1
phy0 WLAN *:14:b8 factory 0x8004
phy1 ---- *:14:bc factory 0x4
**Installation:**
Method 1: Firmware upgrade page
OEM webpage at 192.168.0.1
username and password "admin"
Navigate to Network Setting --> Tools --> Firmware
Click Browse and select the factory.dlf image
Click Continue to confirm and wait 6 minutes or more...
Method 2: Serial console to load TFTP image:
(see TFTP recovery)
**Return to OEM:**
Unlike most Engenius boards, this does not have a 'failsafe' image
the only way to return to OEM is serial access to uboot
Unlike most Engenius boards, public images are not available...
so the only way to return to OEM is to have a copy
of the MTD partition "firmware" BEFORE flashing openwrt.
**TFTP recovery:**
Unlike most Engenius boards, TFTP is reliable here
however it requires serial console access
(soldering pins to the UART pinouts)
build your own image...
with 'ramdisk' selected under 'Target Images'
rename initramfs-kernel.bin to 'uImageESR-600H'
make the file available on a TFTP server at 192.168.99.8
interrupt boot by holding or pressing '4' in serial console
as soon as board is powered on
`tftpboot 0x81000000`
`bootm 0x81000000`
perform a sysupgrade
**Format of OEM firmware image:**
This Engenius board uses the Senao proprietary header
with a unique Product ID. The header for factory.bin is
generated by the mksenaofw program included in openwrt.
.dlf file extension is also required for OEM software to accept it
**Note on using OKLI:**
the kernel is now too large for the bootloader to handle
so OKLI is used via the `kernel-loader` image command
recently in master several other ramips boards have the same problem
'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'
see commit ad19751edc
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Most of Build/elecom-wrc-factory and Build/elecom-wrc-gs-factory are
nearly equal, Unify those definitions by using "-N" option of mkhash and
splitting the appending text at the end of firmware image for WRC-GS/GST
devices.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
All modifications made by update_kernel.sh run in a fresh clone
without any existing toolchains.
Build system: x86_64
Build-tested: ipq806x/R7800, ath79/generic, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Commit "initramfs: switch to tmpfs to fix ujail" switched initramfs to
now use tmpfs, it causes $(rootfs_type) to now return tmpfs when
running initramfs image instead of being empty.
This broke initramfs detection which is required so that when installing
on MikroTik devices firmware partition would first get erased fully
before writing.
So, lets test for $(rootfs_type) returning "tmpfs" instead.
Fixes: 7fd3c68 ("initramfs: switch to tmpfs to fix ujail)
Signed-off-by: Robert Marko <robimarko@gmail.com>
The GL-MT1300 is a high-performance new generation pocket-sized router
that offers a powerful hardware and first-class cybersecurity protocol
with unique and modern design.
Specifications:
- SoC: MT7621A, Dual-Core @880MHz
- RAM: 256 MB DDR3
- Flash: 32 MB
- Ethernet: 3 x 10/100/1000: 2 x LAN + 1 x WAN
- Wireless: 1 x MT7615D Dual-Band 2.4GHz(400Mbps) + 5GHz(867Mbps)
- USB: 1 x USB 3.0 port
- Slot: 1 x MicroSD card slot
- Button: 1 x Reset button
- Switch: 1 x Mode switch
- LED: 1 x Blue LED + 1 x White LED
MAC addresses based on vendor firmware:
WAN : factory 0x4000
LAN : Mac from factory 0x4000 + 1
2.4GHz : factory 0x4
5GHz : Mac form factory 0x4 + 1
Flashing instructions:
1.Connect to one of LAN ports.
2.Set the static IP on the PC to 192.168.1.2.
3.Press the Reset button and power the device (do not release the button).
After waiting for the blue led to flash 5 times, the white led will
come on and release the button.
4.Browse the 192.168.1.1 web page and update firmware according to web
tips.
5.The blue led will flash when the firmware is being upgraded.
6.The blue led stops blinking to indicate that the firmware upgrade is
complete and U-Boot automatically starts the firmware.
For more information on GL-MT1300, see the OFFICIAL GL.iNet website:
https://www.gl-inet.com/products/gl-mt1300/
Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com>
[add input-type for switch, wrap long line in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This aligns the device/image names of the older Xiaomi Mi Router
devices with their "friendly" model and DEVICE_MODEL properties.
This also reintroduces consistency with the newer devices already
following that scheme.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Xiaomi Mi Router 4A (100M) and 4C are relatively similar in
their specs. Create a shared DTSI for them.
Partitions are split in preparation for Mi Router 4AC.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
mt7621, mt7628an and rt5350 have USB controllers (ehci/ohci or xhci)
enabled by default. Thus, this patch drops redundant status=okay
statements in derived device DTS files.
While at it, also drop an explicit status=okay in mt7621.dtsi, as
this is default.
Note:
For rt5350, about 50 % of the devices enabled ehci/ohci in the DTS
files, and there is actually no device actively disabling it.
It looks like only a few people are aware that the controllers are
enabled by default here.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
At the moment, ehci/ohci is enabled in mt7628an SoC DTSI, then
disabled in the TP-Link-specific DTSI files, and finally enabled
again in the DTS files of the devices needing it.
This on-off-on scheme is hard to grasp on a quick look. Thus, this
patch drops the status in the TP-Link-specific DTSI files, having
the TP-Link devices treated like the rest of mt7628an DTSes, i.e.
ehci/ohci is enabled by default and needs to be disabled explicitly
where needed.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The first gpio controller (gpio or gpio0) is always enabled by
default in the SoC DTSI files. No need to set status=okay in the
device DTS files a second time.
Remove the redundant statements.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: MediaTek MT7621ST (880 MHz)
FLASH: 16 MiB (Macronix MX25L12835FM2I-10G)
RAM: 128 MiB (Nanya NT5CB64M16FP-DH)
WiFi: MediaTek MT7603EN bgn 2x2:2
WiFi: MediaTek MT7612EN an 2x2:2
BTN: Reset, WPS
LED: - Power
- WiFi 2.4 GHz
- WiFi 5 GHz
- WAN
- LAN {1-4}
- USB {1-2}
UART: UART is present as pin hole next to the aluminium capacitor.
3V3 - RX - GND - TX / 115200-8N1
3V3 is the nearest on the aluminium capacitor and nut hole (pin1).
USB: 2 ports
POWER: 12VDC, 1.5A (Barrel 5.5x2.1)
Installation:
Via TFTP:
Set your computers IP-Address to 192.168.1.75
Power up the Router with the Reset button pressed.
Release the Reset button after 5 seconds.
Upload OpenWRT sysupgrade image via TFTP:
tftp -4 -v -m binary 192.168.1.1 -c put IMAGE
MAC addresses:
0x4 *:98 2g/wan, label
0x22 *:9c
0x28 *:98
0x8004 *:9c 5g/lan
Though addresses are written to 0x22 and 0x28, it appears that the
vendor firmware actually only uses 0x4 and 0x8004. Thus, we do the
same here.
Signed-off-by: Pavel Chervontsev <cherpash@gmail.com>
[add MAC address overview, add label-mac-device, fix IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
custom-initramfs-uimage was replaced by calls to uImage, but apparently
mtc_wr1201 was missed in the transistion. Use uImage for this device
too.
Fixes: 9f574b1b87 "ramips: mt7621: drop custom uImage function"
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Strictly, an SPDX identifier requires a space between the comment
marker and the identifier itself. The choice of the comment marker
itself is irrelevant.
Correct:
// SPDX-License-Identifier: GPL-2.0-or-later OR MIT
Wrong:
//SPDX-License-Identifier: GPL-2.0-or-later OR MIT
Fix that in the whole tree (actually, only ramips contained wrong
uses).
Found by checkpatch.pl
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for Xiaomi's Mi Router 4C device.
Specifications:
- CPU: MediaTek MT7628AN (580MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LEDs: 2x yellow/blue. Programmable (labelled as power on case)
- Non-programmable (shows WAN activity)
- Button: Reset
How to install:
1- Use OpenWRTInvasion to gain telnet and ftp access.
2- Push openwrt firmware to /tmp/ using ftp.
3- Connect to router using telnet. (IP: 192.168.31.1 -
Username: root - No password)
4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into
the router..
5- It takes around 2 minutes. After that router will restart itself
to OpenWrt.
Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com>
[wrap commit message, bump PKG_RELEASE for uboot-envtools, remove
dts-v1 from DTS, fix LED labels]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Use the mkimage argument overrides provided by uImage to implement the
customisations required for the initramfs, instead of the near-identical
custom function.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
TL-MR6400v5 is very similar to TL-MR6400v4. Main differences are:
- smaller form factor
- different LED GPIOs
- different switch connections
You can flash via tftp recovery:
- serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
- connect to any ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button
Flashing via OEM web interface does not work.
LTE module does not support DHCP so it must be configured via QMI.
Hardware Specification (v5.0 EU):
- SoC: MT7628NN
- Flash: Winbond W25Q64JVS (8MiB)
- RAM: ESMT M14D5121632A (64MiB)
- Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
- Ethernet: 1NIC (4x100M)
- WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
- Power: DC 9V 0.85A
Signed-off-by: Filip Moc <lede@moc6.cz>
Manually rebased patches:
ath79/patches-5.4/910-unaligned_access_hacks.patch
bcm27xx/patches-5.4/950-0135-spi-spi-bcm2835-Disable-forced-software-CS.patch
bcm27xx/patches-5.4/950-0414-SQUASH-Fix-spi-driver-compiler-warnings.patch
ipq806x/patches-5.4/093-4-v5.8-ipq806x-PCI-qcom-Use-bulk-clk-api-and-assert-on-error.patch
Removed since could be reverse-applied by quilt and found to be included upstream:
ipq806x/patches-5.4/096-PCI-qcom-Make-sure-PCIe-is-reset-before-init-for-rev.patch
All modifications made by update_kernel.sh
Build system: x86_64
Build-tested: ipq806x/R7800, ath79/generic, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
[refresh altered targets after rebase]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Currently sfp_select_interface() return the fastest interface that
the sfp modules supports even if the phy don't support that mode.
For example an GPON module that support both 2500basex and 1000basex.
Currently sfp_select_interface() picks 2500basex instead of 1000basex.
So limit the interfaces which both sides supports before calling
sfp_select_interface() or return an error if we don't have match.
Reviewed-by: John Thomson <git@johnthomson.fastmail.com.au>
Tested-by: Braihan Cantera <bcanterac@gmail.com> [MikroTik RB760iGS + Nokia G-010S-A 3FE46541AA SFP]
Tested-by: John Thomson <git@johnthomson.fastmail.com.au> [Mikrotik rb760igs + SFP SM/LC, SFP base1000T, SFP+ passive DAC]
Signed-off-by: René van Dorst <opensource@vdorst.com>
You can flash via tftp recovery:
- serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
- connect to any ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button
Flashing via OEM web interface does not work.
LTE module does not support DHCP so it must be configured via QMI.
Hardware Specification (v4.0 EU):
- SoC: MT7628NN
- Flash: Winbond W25Q64JVS (8MiB)
- RAM: ESMT M14D5121632A (64MiB)
- Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
- Ethernet: 1NIC (4x100M)
- WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
- Power: DC 9V 0.85A
Signed-off-by: Filip Moc <lede@moc6.cz>
This patch adds support for the WiFi Pineapple Mark 7, a wireless
penetration testing tool.
Specifications:
* SoC: MediaTek MT7628 (580MHz)
* RAM: 256MiB (DDR2)
* Storage 1: 32MiB NOR (SPI)
* Storage 2: 2GB eMMC
* Wireless 1: 802.11b/g/n 2.4GHz (Built In)
* Wireless 2: 802.11b/g/n 2.4GHz (MT7601)
* Wireless 3: 802.11b/g/n 2.4GHz (MT7601)
* USB: 1x USB Type-A 2.0 Host Port
* Ethernet: 1x USB Type-C AX88772C Ethernet
* UART: 57600 8N1 on PCB
* Inputs: 1x Reset Button
* Outputs: 1x RGB LED
* FCCID: 2AA52MK7
Flash Instructions:
Original firmware is based on OpenWRT.
Use sysupgrade via SSH to flash.
Signed-off-by: Marc Egerton <foxtrot@realloc.me>
[pepe2k@gmail.com: set only required/used gpio groups to gpio function]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
The Xiaomi Mi Router 4A Gigabit model has a race condition on bootup
causing the SQUASHFS data errors to appear and create a bootloop
scenario.
Adding the m25p,fast-read property resolves this issue.
Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device has previously been supported by the image
for Xiaomi Mi Router 3G v2. Since this is not obvious, the
4A is marketed as a new major revision and it also seems to
have a different bootloader, this will be both more tidy and
more helpful for the users.
Apart from that, note that there also is a 100M version of
the device that uses mt7628 platform, so a specifically named
image will also prevent confusion in this area.
Specifications:
- SoC: MediaTek MT7621
- Flash: 16 MiB NOR SPI
- RAM: 128 MiB DDR3
- Ethernet: 3x 10/100/1000 Mbps (switched, 2xLAN + WAN)
- WIFI0: MT7603E 2.4GHz 802.11b/g/n
- WIFI1: MT7612E 5GHz 802.11ac
- Antennas: 4x external (2 per radio), non-detachable
- LEDs: Programmable "power" LED (two-coloured, yellow/blue)
Non-programmable "internet" LED (shows WAN activity)
- Buttons: Reset
Installation:
Bootloader won't accept any serial input unless "boot_wait" u-boot
environment variable is changed to "on".
Vendor firmware won't accept any serial input until "uart_en" is
set to "1".
Using the https://github.com/acecilia/OpenWRTInvasion exploit you
can gain access to shell to enable these options:
To enable uart keyboard actions - 'nvram set uart_en=1'
To make uboot delay boot work - 'nvram set boot_wait=on'
Set boot delay to 5 - 'nvram set bootdelay=5'
Then run 'nvram commit' to make the changes permanent.
Once in the shell (following the OpenWRTInvasion instructions) you
can then run the following to flash OpenWrt and then reboot:
'cd /tmp; curl https://downloads.openwrt.org/...-sysupgrade.bin
--output firmware.bin; mtd -e OS1 -r write firmware.bin OS1'
Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for D-Link DIR-2640 A1.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (blue/orange), Internet (blue/orange), WiFi 2.4G (blue),
WiFi 5G (blue), USB 3.0 (blue), USB 2.0 (blue)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
MAC addresses:
lan factory 0xe000 *:a7 (label)
wan factory 0xe006 *:aa
2.4 factory 0xe000 +1 *:a8
5.0 factory 0xe000 +2 *:a9
Seems like vendor didn't replace the dummy entries in the calibration data.
Signed-off-by: James McGuire <jamesm51@gmail.com>
[fix device definition title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
`mt7621_nfc_write_page_hwecc` may be called with `buf=NULL`, but
`mt7621_nfc_check_empty_page` always tries to read it.
That caused Oops:
`Unable to handle kernel paging request at virtual address 00000000`
Fixes: FS#3416
Signed-off-by: Anton Ryzhov <anton@ryzhov.me>
- minimal built initramfs: 11MB vmlinux ELF -> 4.5MB vmlinuz
- ~5 seconds for kernel decompression, which was equivalent to the
additional time to load the uncompressed ELF from SPI NOR.
- Removes requirement for lzma-loader, which may have been causing some
image builds to fail to boot on Mikrotik mt7621.
Fixes: FS#3354
Suggested-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
linux-mips has zboot code which can create a self-extracting kernel
image.
This allows enabling kernel zboot support for ramips targets.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Same hardware as Phicomm K2G but different flash layout.
Specification:
- SoC: MediaTek MT7620A
- Flash: 8 MB
- RAM: 64 MB
- Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5)
- Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped
with external PA.
- UART: 1 x UART on PCB - 57600 8N1
Flash instruction:
To avoid requiring UART for TFTP a dual flash procedure is suggested
to install the squashfs image:
1. Rename openwrt-ramips-mt7620-wavlink_wl-wn530hg4-initramfs-kernel.bin
to WN530HG4-WAVLINK.
2. Flash this file with the factory web interface.
3. With OpenWRT now running use standard sysupgrade to install the
squashfs image.
Signed-off-by: Nuno Goncalves <nunojpg@gmail.com>
[remove dts-v1, remove model from LED labels, wrap commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 16MB (EN25QH128A)
- Ethernet: 5xGbE
- WiFi: MT7915 2x2 2.4G 573.5Mbps + 2x2 5G 1201Mbps
Known issue:
MT7915 DBDC variant isn't supported yet.
Flash instruction:
Upload the sysupgrade firmware to the firmware upgrade page in
vendor fw.
Other info:
MT7915 seems to have two PCIEs connected to MT7621. Card detected on
PCIE0 has an ID of 14c3:7916 and the other one on PCIE1 has 14c3:7915.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
TP-Link RE200 v4 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas.
It's based on MediaTek MT7628AN+MT7610EN like the v2/v3.
Specifications
--------------
- MediaTek MT7628AN (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
- 8x LED (GPIO-controlled), 2x button
- UART connection holes on PCB (57600 8n1)
There are 2.4G and 5G LEDs in red and green which are controlled
separately.
MAC addresses
-------------
The MAC address assignment matches stock firmware, i.e.:
LAN : *:8E
2.4G: *:8D
5G : *:8C
MAC address assignment has been done according to the RE200 v2.
The label MAC address matches the OpenWrt ethernet address.
Installation
------------
Web Interface
-------------
It is possible to upgrade to OpenWrt via the web interface. Simply flash
the -factory.bin from OEM. In contrast to a stock firmware, this will not
overwrite U-Boot.
Recovery
--------
Unfortunately, this devices does not offer a recovery mode or a tftp
installation method. If the web interface upgrade fails, you have to open
your device and attach serial console.
Instructions for serial console and recovery may be checked out in
commit 6d6f36ae78 ("ramips: add support for TP-Link RE200 v2") or on
the device's Wiki page.
Signed-off-by: Richard Fröhning <misanthropos@gmx.de>
[removed empty line, fix commit message formatting]
Signed-off-by: David Bauer <mail@david-bauer.net>
The code is now much cleaner and works better than the old code.
Preparation for submitting it upstream (though with a different API)
Also add back MT7621 support and fix flow table coherence issues on
MT7622
Signed-off-by: Felix Fietkau <nbd@nbd.name>
The ramips target only supports 5.4, so drop all kernel version
switches for older kernels there.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The D-Link DIR-645 currently uses an incorrect logic level for its
buttons.
Correct them in order to prevent unintentional activation of failsafe
mode.
Reported-by: Perry Melange <isprotejesvalkata@gmail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
While we mostly use the ucidef_set_led_* functions directly in 01_leds
we still have the set_wifi_led function in parallel for several old
devices. This is not only inconsistent with the other definitions,
it also links to the wlan0 interface instead of using a phy trigger
which would be independent of the interface name (and is used for
all newer devices anyway). Apart from that, the standard names
"wifi" and "wifi-led" are not very helpful in a world with different
radio bands either.
Thus, this patch removes the set_wifi_led function and puts the
relevant commands into the cases explicitly. This makes the
mechanism used more evident and will hopefully lead to some future
improvements or at least prevent some copy-pasting of the old
setups.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
In ramips, it's not common to use an alias for specifying the WiFi
LED; actually only one device uses this mechanism (TL-WR841N v14).
Particularly since the WiFi LEDs are typically distinguished between
2.4G and 5G etc. it is also not very useful for this target.
Thus, this patch removes the setup lines for this mechanism and
converts the TL-WR841N v14 to the normal setup.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Like in the previous patch for ath79 target, this will remove the
"devicename" from LED labels in ramips as well.
The devicename is removed in DTS files and 01_leds, consolidation
of definitions into DTSI files is done where (easily) possible,
and migration scripts are updated.
For the latter, all existing definitions were actually just
devicename migrations anyway. Therefore, those are removed and
a common migration file is created in target base-files. This is
actually another example of how the devicename removal makes things
easier.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The ethernet setup/label MAC address for RT-AC51U and RT-AC54U are
the same, so move them into the shared DTSI.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "/dts-v1/;" identifier is supposed to be present once at the
top of a device tree file after the includes have been processed.
In ramips, we therefore requested to have in the DTS files so far,
and omit it in the DTSI files. However, essentially the syntax of
the parent mtxxxx/rtxxxx DTSI files already determines the DTS
version, so putting it into the DTS files is just a useless repetition.
Consequently, this patch puts the dts-v1 statement into the top-level
SoC-based DTSI files, and removes all other occurences.
Since the dts-v1 statement needs to be before any other definitions,
this also moves the includes accordingly where necessary.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This submission relied heavily on the work of
Santiago Rodriguez-Papa <contact at rodsan.dev>
Specifications:
* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: Winbond W632GG6MB-12 (256M DDR3-1600)
* Flash: Winbond W29N01HVSINA (128M NAND)
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7603E/MT7615N (2.4 GHz & 5 GHz)
4 antennae: 1 internal and 3 non-deatachable
* USB: 3.0 (x1)
* LEDs:
White (x1 logo)
Green (x6 eth + wps)
Orange (x5, hardware-bound)
* Buttons:
Reset (x1)
WPS (x1)
Installation:
Flash factory image through GUI.
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
Signed-off-by: J. Scott Heppler <shep971@centurylink.net>
SPDX moved from GPL-2.0 to GPL-2.0-only and from GPL-2.0+ to
GPL-2.0-or-later. Reflect that in the SPDX license headers.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
All modifications made by update_kernel.sh/no manual intervention needed
Run-tested: ipq806x (R7800), ath79 (Archer C7v5), x86/64
No dmesg regressions, everything appears functional
Signed-off-by: John Audia <graysky@archlinux.us>
[add run test from PR]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
this board has a pcie to sata bridge connected to pcie2 with a
separated pcie reset on gpio7.
add reset-gpios and corresponding pinctrl nodes into dts.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
HooToo HT-TM05 and RAVPower RP-WD03 have almost identical hardware
(except for RAM size) and are from the same vendor (SunValley).
Create a common DTSI file for them.
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The baud rate for the RAVPower RP-WD03 is 57600, not 115200.
Since this is the default from mt7620n.dtsi, the chosen node can
simply be removed from the device DTS.
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
According to the User Manual, there is a "Wi-Fi LED" with blue and
green colors, doing the following by default:
Flashing Blue: System loading
Solid Blue: System loaded
Flashing Green: Connecting to the Internet
Solid Green: Connected to the Internet
According to this vendor behavior, we keep refer to the LED as "wifi"
but implement the according default behavior as in OEM firmware.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
MAC assignment based on vendor firmware:
2.4 GHz *:b4 (factory 0x04)
LAN/label *:b4 (factory 0x28)
WAN *:b5 (factory 0x2e)
The previously used location 0x4000 for ethernet is actually empty.
Therefore, fix the ethernet MAC address and set it as label-mac-address.
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The RAVPower RP-WD03 is a battery powered router, with an Ethernet and
USB port. Due due a limitation in the vendor supplied U-Boot bootloader,
we cannot exceed a 1.5 MB kernel size, as is the case with recent builds
(i.e. post v19.07). This breaks both factory and sysupgrade images.
To address this, use the lzma loader (loader-okli) to work around this
limitation.
The improvements here also address the "misplaced" U-Boot environment
partition, which is located between the kernel and rootfs in the stock
image / implementation. This is addressed by making use of mtd-concat,
maximizing space available in the booted image.
This will make sysupgrade from earlier versions impossible.
Changes are based on the recently supported HooToo HT-TM05, as the
hardware is almost identical (except for RAM size) and is from the same
vendor (SunValley). While at it, also change the SPI frequency
accordingly.
Installation:
- Download the needed OpenWrt install files, place them in the root
of a clean TFTP server running on your computer. Rename the files as,
- openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-kernel.bin => kernel
- openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-rootfs.bin => rootfs
- Plug the router into your computer via Ethernet
- Set your computer to use 10.10.10.254 as its IP address
- With your router shut down, hold down the power button until the first
white LED lights up.
- Push and hold the reset button and release the power button. Continue
holding the reset button for 30 seconds or until it begins searching
for files on your TFTP server, whichever comes first.
- The router (10.10.10.128) will look for your computer at 10.10.10.254
and install the two files. Once it has finished installation, it will
automatically reboot and start up OpenWrt.
- Set your computer to use DHCP for its IP address
Notes:
- U-Boot environment can be modified, u-boot-env is preserved on initial
install or sysupgrade
- mtd-concat functionality is included, to leave a "hole" for u-boot-env,
combining the OEM kernel and rootfs partitions
Most of the changes in this commit are the work of Russell Morris (as
credited below), I only wrapped them up and added compat-version.
Thanks to @mpratt14 and @xabolcs for their help getting the lzma loader
to work!
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The uci-default mechanism to update the compat-version was only
meant for early DSA-adopters, which should have updated by now.
Remove this workaround again in order to prevent the intended
experiences for all the other people.
This reverts:
a9703db720 ("mvebu: fix sysupgrade experience for early DSA-adopters")
86c89bf5e8 ("kirkwood: fix sysupgrade experience for early DSA-adopters")
Partially reverted:
1eac573b53 ("ramips: mt7621: implement compatibility version for DSA migration")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This reverts commit e81e625ca3.
This was meant just for early DSA-adopters. Those should have
updated by now, remove it so future updaters get the intended
experience.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Manually merged:
hack-5.4
230-openwrt_lzma_options.patch
bcm27xx
950-0283-hid-usb-Add-device-quirks-for-Freeway-Airmouse-T3-an.patch
x86
011-tune_lzma_options.patch
Remove upstreamed patches in collaboration with Ansuel Smith:
ipq806x
093-1-v5.8-ipq806x-PCI-qcom-Add-missing-ipq806x-clocks-in-PCIe-driver.patch
093-2-v5.8-ipq806x-PCI-qcom-Change-duplicate-PCI-reset-to-phy-reset.patch
093-3-v5.8-ipq806x-PCI-qcom-Add-missing-reset-for-ipq806x.patch
All other modifications made by update_kernel.sh
Build-tested: bcm27xx/bcm2708, ipq806x, x86/64
Run-tested: ipq806x (R7800), x86/64
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
[update commit message/tested]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for D-Link DIR-2660 A1.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (white/orange), Internet (white/orange), WiFi 2.4G (white),
WiFi 5G (white), USB 3.0 (white), USB 2.0 (white)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
MAC addresses:
lan factory 0xe000 *:a7 (label)
wan factory 0xe006 *:aa
2.4 factory 0xe000 +1 *:a8
5.0 factory 0xe000 +2 *:a9
Seems like vendor didn't replace the dummy entries in the calibration data.
Signed-off-by: Josh Bendavid <joshbendavid@gmail.com>
[rebase onto already merged DIR-1960 A1, add MAC addresses to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The HooToo HT-TM05 is a battery powered router, with an Ethernet and USB port.
Vendor U-Boot limited to 1.5 MB kernel size, so use lzma loader (loader-okli).
Specifications:
SOC: MediaTek MT7620N
BATTERY: 10400mAh
WLAN: 802.11bgn
LAN: 1x 10/100 Mbps Ethernet
USB: 1x USB 2.0 (Type-A)
RAM: 64 MB
FLASH: GigaDevice GD25Q64, Serial 8 MB Flash, clocked at 50 MHz
Flash itself specified to 80 MHz, but speed limited by mt7620 SPI
fast-read enabled (m25p)
LED: Status LED (blue after boot, green with WiFi traffic
4 leds to indicate power level of the battery (unable to control)
INPUT: Power, reset button
MAC assignment based on vendor firmware:
2.4 GHz *:b4 (factory 0x04)
LAN/label *:b4 (factory 0x28)
WAN *:b5 (factory 0x2e)
Tested and working:
- Ethernet
- 2.4 GHz WiFi (Correct MAC-address)
- Installation from TFTP (recovery)
- OpenWRT sysupgrade (Preserving and non-preserving), through the usual
ways: command line and LuCI
- LEDs (except as noted above)
- Button (reset)
- I2C, which is needed for reading battery charge status and level
- U-Boot environment / variables (from U-Boot, and OpenWrt)
Installation:
- Download the needed OpenWrt install files, place them in the root
of a clean TFTP server running on your computer. Rename the files as,
- ramips-mt7620-hootoo_tm05-squashfs-kernel.bin => kernel
- ramips-mt7620-hootoo_tm05-squashfs-rootfs.bin => rootfs
- Plug the router into your computer via Ethernet
- Set your computer to use 10.10.10.254 as its IP address
- With your router shut down, hold down the power button until the first
white LED lights up.
- Push and hold the reset button and release the power button. Continue
holding the reset button for 30 seconds or until it begins searching
for files on your TFTP server, whichever comes first.
- The router (10.10.10.128) will look for your computer at 10.10.10.254
and install the two files. Once it has finished installation, it will
automatically reboot and start up OpenWrt.
- Set your computer to use DHCP for its IP address
Notes:
- U-Boot environment can be modified, u-boot-env is preserved on initial
install or sysupgrade
- mtd-concat functionality is included, to leave a "hole" for u-boot-env,
combining the OEM kernel and rootfs partitions
I would like to thank @mpratt14 and @xabolcs for their help getting the
lzma loader to work!
Signed-off-by: Russell Morris <rmorris@rkmorris.us>
[drop changes in image/Makefile, fix indent and PKG_RELEASE in
uboot-envtools, fix LOADER_FLASH_OFFS, minor commit message facelift,
add COMPILE to Device/Default]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
FLASH_START is supposed to point at the memory area where NOR flash are
mapped. We currently have an incorrect FLASH_START copied from ar71xx
back then and the loader doesn't work under OKLI mode.
On ramips, mt7621 has it's flash mapped to 0x1fc00000 and other SoCs
uses 0x1c000000. This commit makes FLASH_START a configurable value to
handle both cases.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
The target seems to be working on 5.4, so drop 4.14 support in
preparation for removing it from master entirely.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The DIR-645 fails to boot if the kernel is large.
Enabling lzma-loader resolves the issue.
Run-tested on D-Link DIR-645.
Signed-off-by: Perry Melange <isprotejesvalkata@gmail.com>
This patch adds support for Wavlink WL-WN531A6 (Quantum D6).
Specifications:
--------------
* SoC: Mediatek MT7621AT 2C2T, 880MHz
* RAM: 128MB DDR3, Nanya NT5CB64M16GP-EK
* Flash: 16MB SPI NOR flash, GigaDevice GD25Q127CSIG
* WiFi 5GHz: Mediatek MT7615N (4x4:4) on mini PCIE slot.
* WiFi 2.4GHz: Mediatek MT7603EN (2x2:2) on mini PCIE slot.
* Ethernet: MT7630, 5x 1000Base-T
* LED: Power, WAN, LAN(x4), WiFi, WPS, dual color
"WAVLINK" LED logo on the top cover.
* Buttons: Reset, WPS, "Turbo", touch button on the top
cover via RH6015C touch sensor.
* UART: UART1: serial console (57600 8n1) on the J4 header
located below the top heatsink.
UART2: J12 header, located on the right side of
the board.
* USB: One USB3 port.
* I2C: J9 header, located below the top heatsink.
Backup the OEM Firmware:
-----------------------
There isn't any firmware released for the WL-WN531A6 on
the Wavlink web site. Reverting back to the OEM firmware is
not possible unless we have a backup of the original OEM
firmware.
The OEM firmware is stored on /dev/mtd4 ("Kernel").
1) Plug a FAT32 formatted USB flash drive into the USB port.
2) Navigate to "Setup->USB Storage". Under the "Available
Network folder" you can see part of the mount point of
the newly mounted flash drive filesystem - e.g "sda1".
The full mount point is prefixed with "/media", so in
this case the mount point becomes "/media/sda1".
3) Go to http://192.168.10.1/webcmd.shtml .
4) Type the following line in the "Command" input box:
dd if=/dev/mtd4ro of=/media/sda1/firmware.bin
5) Click "Apply"
6) After few seconds, in the text area should appear this
output:
30080+0 records in
30080+0 records out
7) Type "sync" in the "Command" input box and click "Apply".
8) At this point the OEM firmware is stored on the flash
drive as "firmware.bin". The size of the file is 15040 KB.
Installation:
------------
* Flashing instructions (OEM web interface):
The OEM web interface accepts only files with names containing
"WN531A6". It's also impossible to flash the *-sysupgrade.bin
image, so we have to flash the *-initramfs-kernel.bin first and
use the OpenWrt's upgrade interface to write the sysupgrade
image.
1) Rename openwrt-ramips-mt7621-wavlink_wl-wn531a6-initramfs-kernel.bin
to WN531A6.bin.
2) Connect your computer to the one of the LAN ports of the
router with an Ethernet cable and open http://192.168.10.1
3) Browse to Setup -> Firmware Upgrade interface.
4) Upload the (renamed) OpenWrt image - WN531A6.bin.
5) Proceed with the firmware installation and give the device
a few minutes to finish and reboot.
6) After reboot wait for the "WAVLINK" logo on the top cover
to turn solid blue, and open http://192.168.1.1
7) Use the OpenWrt's "Flash Firmware" interface to write the
OpenWrt sysupgrade image:
openwrt-ramips-mt7621-wavlink_wl-wn531a6-squashfs-sysupgrade.bin
* Flashing instructions (u-boot TFTP):
1) Configure a TFTP server on your computer and set its IP
to 192.168.10.100
2) Rename the OpenWrt sysupgrade image to firmware.bin and
place it in the root folder of the TFTP server.
3) Power off the device and connect an Ethernet cable from
one of its LAN ports your computer.
4) Press the "Reset" button (and keep it pressed)
5) Power on the device.
6) After a few seconds, when the connected port LAN LED stops
blinking fast, release the "Reset" button.
7) Flashing OpenWrt takes less than a minute, system will
reboot automatically.
8) After reboot the WAVLINK logo on the top cover will indicate
the current OpenWrt running status (wait until the logo tunrs
solid blue).
Revert to the OEM Firmware:
--------------------------
* U-boot TFTP:
Follow "Flashing instructions (u-boot TFTP)" and use the
"firmware.bin" backup image.
* OpenWrt "Flash Firmware" interface:
Upload the "firmware.bin" backup image and select "Force update"
before continuing.
Notes:
-----
* The MAC address shown on the label at the back of the device
is assigned to the 2.4G WiFi adapter.
MAC addresses assigned by the OEM firmware:
2.4G: *:XX (label): factory@0x0004
5G: *:XX + 1 : factory@0x8004
WAN: *:XX - 1 : factory@0xe006
LAN: *:XX - 2 : factory@0xe000
* The I2C bus and UART2 are fully functional. The headers are
not populated.
Signed-off-by: Georgi Vlaev <georgi.vlaev@konsulko.com>
This patch adds support for the TP-Link TL-WR850N v2. This device
is very similar to TP-Link TL-WR840 v4 and TP-Link TL-WR841 v13.
Specifications:
SOC: MediaTek MT7628NN
Flash: 8 MiB SPI
RAM: 64 MiB
WLAN: MediaTek MT7628NN
Ethernet: 5 ports (100M)
Installation Using the integrated tftp capability of the router:
1. Turn off the router.
2. Connect pc to one of the router LAN ports.
3. Set your PC IPv4 address to 192.168.0.66/24.
4. Run any TFTP server on the PC.
5. Put the recovery firmware on the root directory of TFTP server
and name the file tp_recovery.bin
6. Start the router by pressing power button while holding the
WPS/Reset button (or both WPS/Reset and WIFI buttons)
7. Router connects to your PC with IPv4 address 192.168.0.2,
downloads the firmware, installs it and reboots. LEDs are
flashing. Now you have OpenWrt installed.
8. Change your IPv4 PC address to something in 192.168.1.0/24
network or use DHCP to get an address from your OpenWrt router.
9. Done! You can login to your router via ssh.
Forum link:
https://forum.openwrt.org/t/add-support-for-tp-link-tl-wr850n-v2/66899
Signed-off-by: Andrew Freeman <labz56@gmail.com>
[squash an tidy up commits, sort nodes]
Signed-off-by: Darsh Patel <darshkpatel@gmail.com>
[minor commit message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
While commit 734a8c46e7 focussed on removing stuff directly
selected by the NET_RALINK_* symbols, this patch removes additional
unused mt7621-specific code from the ethernet driver.
As with the previous patch, the main reason is to reduce the amount
of code we have to maintain and care about.
Note that this patch still keeps a few lines with
IS_ENABLED(CONFIG_SOC_MT7621) in mtk_eth_soc.h/.c, as this file is
still selected for the mt7621 subtarget.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The wg3526 fails to boot if the kernel is large.
Enabling lzma-loader resolves the issue on both the wg3526-16m
and wg3526-32m.
Fixes: FS#3143
Signed-off-by: Rustam Gaptulin <rascal6@gmail.com>
[commit message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The mt7621 subtarget has been switched to DSA quite a while ago and
seems to run sufficiently fine. Build with older kernels than 5.4 has
been disabled directly during the kernel bump, so our local ethernet
driver is unused in master since then.
Therefore, let's remove the mt7621-specific parts of "our" ethernet
driver, so we don't have to maintain them and it's obvious to
everybody that they are not used anymore.
This also drops the offloading components as this was specifically
implemented to depend on mt7621.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
In order to support SAE/WPA3-Personal in default images. Replace almost
all occurencies of wpad-basic and wpad-mini with wpad-basic-wolfssl for
consistency. Keep out ar71xx from the list as it won't be in the next
release and would only make backports harder.
Build-tested (build-bot settings):
ath79: generic, ramips: mt7620/mt76x8/rt305x, lantiq: xrx200/xway,
sunxi: a53
Signed-off-by: Petr Štetiar <ynezz@true.cz>
[rebase, extend commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This PR is a blend of several kernel bumps authored by ldir taken from his
staging tree w/ some further adjustments made by me and update_kernel.sh
Summary:
Deleted upstreamed patches:
generic:
742-v5.5-net-sfp-add-support-for-module-quirks.patch
743-v5.5-net-sfp-add-some-quirks-for-GPON-modules.patch
bcm63xx:
022-v5.8-mtd-rawnand-brcmnand-correctly-verify-erased-pages.patch
024-v5.8-mtd-rawnand-brcmnand-fix-CS0-layout.patch
mediatek:
0402-net-ethernet-mtk_eth_soc-Always-call-mtk_gmac0_rgmii.patch
Deleted patches applied differently upstream:
generic:
641-sch_cake-fix-IP-protocol-handling-in-the-presence-of.patch
Manually merged patches:
generic:
395-v5.8-net-sch_cake-Take-advantage-of-skb-hash-where-appropriate.patch
bcm27xx:
950-0132-lan78xx-Debounce-link-events-to-minimize-poll-storm.patch
layerscape:
701-net-0231-enetc-Use-DT-protocol-information-to-set-up-the-port.patch
Build system: x86_64
Build-tested: ath79/generic, bcm27xx/bcm2708, bcm27xx/bcm2711,
imx6, mvebu/cortexa9, sunxi/a53
Run-tested: Netgear R7800 (ipq806x)
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Tested-By: Lucian Cristian <Lucian.cristian@gmail.com> [mvebu]
Tested-By: Curtis Deptuck <curtdept@me.com> [x86/64]
[do not remove 395-v5.8-net-sch_cake-Take-advantage-... patch,
adjust and refresh patches, adjust commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-By: John Audia <graysky@archlinux.us> [ipq806x]
The leds block was copied over from the RT-AC85P DTS to the common
DTSI while keeping the device-specific model name in the label.
This moves the LEDs back to the DTS files and adjusts the names to
properly resemble the model name of the devices used at, just like
it is handled on most other devices.
Fixes: 7c5f712e4f ("ramips: add support for Asus RT-AC65P")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the MikroTik RouterBOARD 760iGS router.
It is similar to the already supported RouterBOARD 750Gr3.
The 760iGS device features an added SFP cage, and passive
PoE out on port 5 compared to the RB750Gr3.
https://mikrotik.com/product/hex_s
Specifications:
- SoC: MediaTek MT7621A
- CPU: 880MHz
- Flash: 16 MB
- RAM: 256 MB
- Ethernet: 5x 10/100/1000 Mbps
- SFP cage
- USB port
- microSD slot
Unsupported:
- Beeper (requires PWM driver)
- ZT2046Q (ADS7846 compatible) on SPI as slave 1 (CS1)
The linux driver requires an interrupt, and pendown GPIO
These are unknown, and not needed with the touchscreen
only used for temperature and voltage monitoring.
ads7846 hwmon:
temp0 is degrees Celsius
temp1 is voltage * 32
GPIOs:
- 07: input passive PoE out (lan5) compatible (Mikrotik) device connected
- 17: output passive PoE out (lan5) switch
Installation through RouterBoot follows the usual MikroTik method
https://openwrt.org/toh/mikrotik/common
To boot to intramfs image in RAM:
1. Setup TFTP server to serve intramfs image.
2. Plug Ethernet cable into WAN port.
3. Unplug power, hold reset button and plug power in.
Wait (~25 seconds) for beep and then release reset button.
The SFP LED will be lit in RouterBoot, but will not be lit in OpenWRT.
4. Wait for a minute. Router should be running OpenWrt,
check by plugging in to port 2-5 and going to 192.168.1.1.
To install OpenWrt to flash:
1. Follow steps above to boot intramfs image in RAM.
2. Flash the sysupgrade.bin image with web interface or sysupgrade.
3. Once the router reboots you will be running OpenWrt from flash.
OEM firmware differences:
- RouterOS assigns a different MAC address for each port
- The first address (E01 on the sticker) is used for wan (ether1 in OEM).
- The next address is used for lan2.
- The last address (E06 on the sticker) is used for sfp.
[Initial port work, shared dtsi]
Signed-off-by: Vince Grassia <vincenzo.grassia@zionark.com>
[SFP support and GPIO identification]
Signed-off-by: Luka Logar <luka.logar@iname.com>
[Misc. fixes and submission]
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
[rebase, drop uart3 from state_default on 750gr3, minor commit
title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This moves some common definitions for Mikrotik devices, mainly
routerboot partitions and reset key, to a common DTSI file.
While at it, remove unused hard_config DT label.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This beeper hardware requires a PWM driver for frequency selection.
Since the GPIO driver does not provide that, revert the beeper
support to a simple gpio-export.
This effectively reverts the corresponding changes from
6ba58b7b02 ("ramips: cleanup the RB750Gr3 support")
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
A bunch of kernel modules depends on kmod-usb-net, but does not
select it. Make AddDepends/usb-net selective, so we can drop
some redundant +kmod-usb-net definitions for DEVICE_PACKAGES.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
When comparing to the port assignment in board.d/02_network, a few
devices seem to use the wrong setup of mediatek,portmap.
The corrects the values for mt76x8 subtarget based on the location
of the wan port.
A previous cleanup of obviously wrong values has already been done in
7a387bf9a0 ("ramips: mt76x8: fix bogus mediatek,portmap")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Add a specific comment for early DSA-adopters that they can keep
their config when prompted due to compat-version increase.
This is a temporary solution, the patch should be simply reverted
before any release.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This implements the newly introduced compat-version to prevent
broken upgrade between swconfig and DSA for ramips' mt7621 subtarget.
In order to make the situation more transparent for the user, and
to prevent large switch-cases for devices, it is more convenient to
have the entire subtarget 1.1-by-default. This means that new devices
will be added with 1.1 from the start, but in contrast we don't need
to switch them in board.d files. Apart from that, users that manually
backport devices to 19.07 with swconfig will have an equivalent
upgrade experience to officially supported devices.
Since DSA support on mt7621 is out for a while already, this applies
the same uci-defaults workaround for early adopters as already
done for kirkwood and mvebu in previous commits.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The bootloader fails to extract a big kernel, e.g. v5.4 kernel image
with ALL_KMODS enabled. This can be fixed by using lzma-loader.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Currently the lzma-loader is placed in RAM at 32MB offset, which does not
make sense for devices with only 32MB RAM. If we adjust LZMA_TEXT_START to
24MB offset, then the lzma-loader can be used on those devices and still
about 24MB memory will be available for uncompressed image, which should be
enough for most use cases.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The sbutarget has testing support for kernel 5.4 for quite a while
and builds fine, however, only one devices there is > 4 MiB.
Since it's unlikely to get a Tested-by for that device, and the other
ralink subtargets appear to be working with 5.4 so far, let's set
this target to 5.4 by default as well.
That way, even if the device happens to break, we'll still have at
least usable SDK and IB for people to use.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
When comparing to the port assignment in board.d/02_network, many
devices seem to use the wrong setup of mediatek,portmap.
The corrects the values for mt7620 subtarget based on the location
of the wan port.
A previous cleanup of obviously wrong values has already been done in
d3c0a94405 ("ramips: mt7620/mt7621: remove invalid mediatek,portmap")
Cc: Sungbo Eo <mans0n@gorani.run>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
For ramips/mt7621, the wpad-basic package is not selected by default,
but added for every device individually as needed.
While this might be technically correct if the SoC does not come with
a Wifi module, only 18 of 97 devices for that platform are set up
_without_ wpad-basic currently.
Therefore, it seems more convenient to add wpad-basic by default for
the subtarget and then just remove it for the 18 mentioned devices,
instead of having to add it for about 60 times instead.
This would also match the behavior of the 5 other subtargets, where
wpad-basic/wpad-mini is added by default as well, and thus be more
obvious to developers without detailed SoC knowledge.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The target has testing support for kernel 5.4 for quite a while,
compiles fine for all devices, and has been run-tested on Asus
RT-N56U successfully.
Let's set it to kernel 5.4 by default to increase the audience
before an 20.xx stable branch.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Eneas U de Queiroz <cotequeiroz@gmail.com> [Asus RT-N56U]
Specification:
- CPU: MediaTek MT7620N (580 MHz)
- Flash size: 4 MB NOR SPI
- RAM size: 32 MB DDR1
- Bootloader: U-Boot
- Wireless: MT7620N 2x2 MIMO 802.11b/g/n (2.4 GHz)
- Switch: MT7620 built-in 10/100 switch with vlan support
- Ports: 4x LAN, 1x WAN
- Others: 7x LED, Reset button, UART header on PCB (57600 8N1)
Flash instructions:
1. Use ethernet cable to connect router with PC/Laptop, any router
LAN port will work.
2. To flash openwrt we are using nmrpflash[1].
3. Flash commands:
First we need to identify the correct Ethernet id.
nmrpflash -L
nmrpflash -i net* -f openwrt-ramips-mt7620-netgear_jwnr2010-v5-squashfs-factory.img
This will show something like "Advertising NMRP server on net*..." (net*, *=1,2,3... etc.)
4. Now remove the power cable from router back side and immediately connect it again.
You will see flash notification in CMD window, once it says reboot the device just
plug off the router and plug in again.
Revert to stock:
1. Download the stock firmware from official netgear support[2].
2. Follow the same nmrpflash procedure like above, this time just use the stock firmware.
nmrpflash -i net* -f N300-V1.1.0.54_1.0.1.img
MAC addresses on stock firmware:
LAN = *:28 (label)
WAN = *:29
WLAN = *:28
On flash, the only valid MAC address is found in factory 0x4.
Special Note:
This openwrt firmware will also support other netgear N300 routers like below as they
share same stock firmware[3].
JNR1010v2 / WNR614 / WNR618 / JWNR2000v5 / WNR2020 / WNR1000v4 / WNR2020v2 / WNR2050
[1] https://github.com/jclehner/nmrpflash
[2] https://www.netgear.com/support/product/JWNR2010v5.aspx
[3] http://kb.netgear.com/000059663
Signed-off-by: Shibajee Roy <ador250@protonmail.com>
[create DTSI, use netgear_sercomm_nor, disable by default, add MAC
addresses to commit message, add label MAC address]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This option was a spi nor hack which is dropped in commit bcf4a5f474
("ramips: remove chunked-io patch and set spi->max_transfer_size instead")
Most of it has already been removed in
be2b61e4f1 ("ramips: drop m25p,chunked-io from dts")
It seems all current usages were added after that. Remove them.
Cc: Chuanhong Guo <gch981213@gmail.com>
Reported-by: Sungbo Eo <mans0n@gorani.run>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Like NAND-based devices, SPI-NOR based Netgear devices also share
a common setup for their images. This creates a common defition
for them in image/Makefile, so it can be reused across subtargets.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Linkit Smart 7688 and Onion Omega 2(+) are one-port devices, and
have their port set to LAN by default. Setting up a WAN MAC address
for them doesn't make any sense, as no wan interface will be created
in uci config. Despite, these devices also set lan_mac in 02_network,
although mtd-mac-address sets a different address for the ethernet
interface in DTS.
Clean this up by moving the lan_mac value into DTS and dropping the
entries in 02_network completely. That way, the effective address
on the LAN interface should stay the same, but we get rid of the
extra (re)assignments.
As I don't have access to the devices, this does not tell anything
about whether 0x2e is actually a good choice, it just preserves
the existing assignment.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
WIZnet WizFi630s has three mac addresses in the factory partition:
0x04 (also on the label), 0x28 for wan mac and 0x2e as lan mac.
All three macadresses are sequential series of addresses.
This is making use of them.
While at it, also add the label MAC address to 02_network.
MAC addresses as verified by OEM firmware:
use interface source
WLAN ra0 factory 0x04 (label)
WAN eth0.2 factory 0x28 (label + 1)
LAN eth0.1 factory 0x2e (label + 2)
Signed-off-by: Tobias Welz <tw@wiznet.eu>
[fix sorting in 02_network, commit message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
WizFi630S had some pins changed in the release version of the board.
The run led, wps button and a slide switch where affected.
This patch is correcting this.
i2c is removed as it is sharing a pin with the run (system) led.
uart2 is enabled as it is also enabled in the OEM firmware.
Signed-off-by: Tobias Welz <tw@wiznet.eu>
RT3x5x seems to work fine with kernel 5.4. Set the default kernel
version to 5.4 to bring this to a broader audience.
Since 4 of 6 targets are on kernel 5.4 now, invert the kernel
version setup logic in Makefile/target.mk files.
Tested on ZyXEL Keenetic.
Signed-off-by: Alexey Dobrovolsky <dobrovolskiy.alexey@gmail.com>
[invert version setup logic]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
WIZnet WizFi630s board name is written slightly different it its OEM
OpenWrt firmware. This causes an incompatibility warning during flashing
with sysupgrade. This patch is adding the vendor board name to the
supported devices list to avoid this warning. For initial flashing you
can use sysupgrade via command line or luci beside of TFTP.
Do not keep the OEM configuration during sysupgrade.
Signed-off-by: Tobias Welz <tw@wiznet.eu>
WIZnet WizFi630S is using only 3 of the phy ports. The unused phy ports
draw unnecessarily power. This is disabling the unused phy ports.
Signed-off-by: Tobias Welz <tw@wiznet.eu>
TP-Link RE200 v3 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas. It's based on MediaTek MT7628AN+MT7610EN like the v2.
Specifications
--------------
- MediaTek MT7628AN (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
- 8x LED (GPIO-controlled), 2x button
Unverified:
- UART header on PCB (57600 8n1)
There are 2.4G and 5G LEDs in red and green which are controlled
separately.
MAC addresses
-------------
MAC address assignment has been done according to the RE200 v2.
The label MAC address matches the OpenWrt ethernet address.
Installation
------------
Web Interface
-------------
It is possible to upgrade to OpenWrt via the web interface. Simply flash
the -factory.bin from OEM. In contrast to a stock firmware, this will not
overwrite U-Boot.
Recovery
--------
Unfortunately, this devices does not offer a recovery mode or a tftp
installation method. If the web interface upgrade fails, you have to open
your device and attach serial console.
The device has not been opened for adding support. However, it is expected
that the behavior is similar to the RE200 v2. Instructions for serial console
and recovery may be checked out in commit 6d6f36ae78 ("ramips: add support
for TP-Link RE200 v2") or on the device's Wiki page.
Signed-off-by: Richard Fröhning <misanthropos@gmx.de>
[adjust commit title/message, sort support list]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
For the TP-Link 4M devices with tplink-v2-image recipe
(mktplinkfw2.c), there are two different flash layouts based
on the size of the (u)boot partition:
device uboot OEM firmware OpenWrt (incl. config)
tl-wr840n-v5 0x20000 0x3c0000 0x3d0000
tl-wr841n-v14 0x10000 0x3d0000 0x3e0000
In both cases, the 0x10000 config partition is used for the firmware
partition as well due to the limited space available and since it's
recreated by the OEM firmware anyway.
However, the TFTP flashing process will only copy data up to the
size of the initial (OEM) firmware size. Therefore, while we can
use the bigger partition to have additional erase blocks on the
device, we have to limit the image sizes to the TFTP limits.
So far, only one layout definition has been set up in mktplinkfw2.c
for 4M mediatek devices. This adds a second one and assigns them
to the devices so the image sizes are correctly restrained.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ifconfig is effectively deprecated for quite some time now. Let's
replace the remaining occurrences for our target setup by the
corresponding ip commands now.
Note that this does not touch ar71xx, as it will be dropped anyway,
and changing it would only make backports harder.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for the Jotale JS76x8 series development boards.
These devices have the following specifications:
- SOC: MT7628AN/NN, MT7688AN, MT7628DAN
- RAM of MT7628AN/NN and MT7688AN: 64/128/256 MB (DDR2)
- RAM of MT7628DAN: 64 MB (DDR2)
- FLASH:8/16/32 MB (SPI NOR)
- Ethernet:3x 10/100 Mbps ethernet ports (MT76x8 built-in switch)
- WIFI:1x 2T2R 2.4 GHz Wi-Fi
- LEDs:1x system status green LED, 1x wifi green LED,
3x ethernet green LED
- Buttons:1x reset button
- 1x microSD slot
- 4x USB 2.0 port
- 1x mini-usb debug UART
- 1x DC jack for main power (DC 5V)
- 1x TTL/RS232 UART
- 1x TTL/RS485 UART
- 13x GPIO header
- 1x audio codec(wm8960)
Installation via OpenWrt:
The original firmware is OpenWrt, so both LuCI and sysupgrade can be used.
Installation via U-boot web:
1. Power on board with reset button pressed, release it
after wifi led start blinking.
2. Setup static IP 192.168.1.123/4 on your PC.
3. Go to 192.168.1.8 in browser and upload "sysupgrade" image.
Installation via U-boot tftp:
1. Connect to serial console at the mini usb, which has been connected to UART0
on board (115200 8N1)
2. Setup static IP 192.168.1.123/4 on your PC.
3. Place openwrt-firmware.bin on your PC tftp server (192.168.1.123).
3. Connect one of LAN ports on board to your PC.
4. Start terminal software (e.g. screen /dev/ttyUSB0 115200) on PC.
5. Apply power to board.
6. Interrupt U-boot with keypress of "2".
7. At u-boot prompts:
Warning!! Erase Linux in Flash then burn new one. Are you sure?(Y/N) Y
Input device IP (192.168.1.8) ==:192.168.1.8
Input server IP (192.168.1.123) ==:192.168.1.123
Input Linux Kernel filename (root_uImage) ==:openwrt-firmware.bin
8. board will download file from tftp server, write it to flash and reboot.
Signed-off-by: Robinson Wu <wurobinson@qq.com>
[add license to DTS files, fix state_default and reduce to the mimimum,
move phy0tpt trigger to DTS, drop ucidef_set_led_timer, fix network ports]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
When selecting a channel below 100 on the 5GHz radio, the channel will
be detected as busy all the time.
Survey data from wlan1
frequency: 5240 MHz [in use]
channel active time: 165729 ms
channel busy time: 158704 ms
channel transmit time: 0 ms
Channels 100 and above work fine:
Survey data from wlan1
frequency: 5500 MHz
channel active time: 133000 ms
channel busy time: 21090 ms
channel transmit time: 0 ms
Limit the available channels, so users do not have the impression
their device is broken.
Signed-off-by: David Bauer <mail@david-bauer.net>
This patch adds support for D-Link DIR-1960 A1. Given the similarity with
the DIR-1760/2660 A1, this patch also introduces a common DTSI which can
be shared with these devices, with support to be added in future commits.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (white/orange), Internet (white/orange), WiFi 2.4G (white),
WiFi 5G (white), USB 3.0 (white)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
MAC addresses:
lan factory 0xe000 *:EB (label)
wan factory 0xe006 *:EE
2.4 factory 0xe000 +1 *:EC
5.0 factory 0xe000 +2 *:ED
Seems like vendor didn't replace the dummy entrys in the calibration data.
Signed-off-by: Josh Bendavid <joshbendavid@gmail.com>
[fix whitespace issues, create patch to merge DIR-1960 first, move
special WiFi MAC settings to DTS, extend commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This 750gr3 GPIO17 switch was added based on vendor source,
but only the 760iGS (which shares the rbsysfs board identifier)
device has the physical wiring. The 750Gr3 actually does not
support PoE out.
Apart from that, note that the gpio base (480) would have required
this GPIO to be referenced as 497 if it was kept.
Fixes: 6ba58b7b02 ("ramips: cleanup the RB750Gr3 support")
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Winstars WS-WN583A6 is a wireless repeater with 2 gigabit ethernet
ports. Even if mine is branded as "Gemeita AC2100", the sticker on the
back says WS-WN583A6. So I will refer to it as Winstars WS-WN583A6.
Probably the real product name is the Wavlink WL-WN583A6 because of
the many references to Wavlink in the OEM firmware and bootlog.
Hardware
--------
SoC: Mediatek MT7621AT (880 MHz, 2 cores 4 threads)
RAM: 128MB
FLASH: 8MB NOR (GigaDevice GD25Q64B)
ETH: 2x 10/100/1000 Mbps Ethernet (MT7530)
WIFI:
- 2.4GHz: 1x MT7603E (2x2:2)
- 5GHz: 1x MT7615E (4x4:4)
- 6 internal antennas
BTN:
- 1x Reset button
- 1x WPS button
- 1x ON/OFF switch (working but unmodifiable)
- 1x Auto/Schedule switch (working but unmodifiable. Read Note #3)
LEDS:
- 1x White led
- 1x Red led
- 1x Amber led
- 1x Blue led
- 2x Blue leds (lan and wan port status: working but unmodifiable)
UART:
- 57600-8-N-1
Everything works correctly.
Currently there is no firmware update available. Because of this, in
order to restore the OEM firmware, you must firstly dump the OEM
firmware from your router before you flash the OpenWrt image.
Backup the OEM Firmware
-----------------------
The following steps are to be intended for users having little to none
experience in linux. Obviously there are many ways to backup the OEM
firmware, but probably this is the easiest way for this router.
Procedure tested on M83A6.V5030.191210 firmware version.
1) Go to http://192.168.10.1/webcmd.shtml
2) Type the following line in the "Command" input box:
mkdir /etc_ro/lighttpd/www/dev; for i in /dev/mtd*ro; do dd if=${i} of=/etc_ro/lighttpd/www${i}; done
3) Click "Apply"
4) After few seconds, in the textarea should appear this output:
16384+0 records in
16384+0 records out
8388608 bytes (8.0MB) copied, 4.038820 seconds, 2.0MB/s
384+0 records in
384+0 records out
196608 bytes (192.0KB) copied, 0.095180 seconds, 2.0MB/s
128+0 records in
128+0 records out
65536 bytes (64.0KB) copied, 0.032020 seconds, 2.0MB/s
128+0 records in
128+0 records out
65536 bytes (64.0KB) copied, 0.031760 seconds, 2.0MB/s
15744+0 records in
15744+0 records out
8060928 bytes (7.7MB) copied, 3.885280 seconds, 2.0MB/s
dd: can't open '/dev/mtd5ro': No such device
dd: can't open '/dev/mtd6ro': No such device
dd: can't open '/dev/mtd7ro': No such device
Excluding the "X.XXXXXX seconds" part, you should get the same
exact output. If your output doesn't match mine, stop reading
and ask for help in the forum.
5) Open the following links to download the partitions of the OEM FW:
http://192.168.10.1/dev/mtd0rohttp://192.168.10.1/dev/mtd1rohttp://192.168.10.1/dev/mtd2rohttp://192.168.10.1/dev/mtd3rohttp://192.168.10.1/dev/mtd4ro
If one (or more) of these files weight 0 byte, stop reading and ask
for help in the forum.
6) Store these downloaded files in a safe place.
7) Reboot your router to remove any temporary file from your router.
Installation
------------
Flash the initramfs image in the OEM firmware interface.
When openwrt boots, flash the sysupgrade image otherwise you won't be
able to keep configuration between reboots.
Restore OEM Firmware
--------------------
Flash the "mtd4ro" file you previously backed-up directly from LUCI.
Warning: Remember to not keep settings!
Warning2: Remember to force the flash.
Notes
-----
1) The "System Command" page allows to run every command as root.
For example you can use "dd" and "nc" to backup the OEM firmware.
PC (SERVER):
nc -l 5555 > ./mtdXro
ROUTER (CLIENT):
dd if=/dev/mtdXro | nc PC_IP_ADDRESS 5555
2) The OEM web interface accepts only images containing the string
"WN583A6" in the filename.
Currently the OEM interface accepts only the initramfs image
probably because it checks if the ih_size in the image header is
equal to the whole image size (instead of the kernel size)
Read more here:
https://forum.openwrt.org/t/support-for-strong-1200/22768/19
3) The white led (namely "Smart Night Light") can be controller by the
user only if the side switch is set to "Schedule" otherwise it will
be activated by the light condition (there is a photodiode on the
top side of the router)
4) Router mac addresses:
LAN XX:XX:XX:XX:XX:8F
WAN XX:XX:XX:XX:XX:90
WIFI 2G XX:XX:XX:XX:XX:91
WIFI 5G XX:XX:XX:XX:XX:92
LABEL XX:XX:XX:XX:XX:91
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
[remove chosen node, fix whitespace]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This reverts commit 1623defbdb.
As already stated in the reverted patch, the OEM firmware will
properly recreate the config partition if it is overwritten by
OpenWrt.
The main reason for adding the partition was the image size
restriction imposed by the 0x3d0000 limitation of the TFTP
flashing process. Addressing this by shrinking the firmware
partition is not a good solution to that problem, though:
1. For a working image, the size of the content has to be smaller
than the available space, so empty erase blocks will remain.
2. Conceptually, the restriction is on the image, so it makes sense
to implement it in the same way, and not via the partitioning.
Users could e.g. do initial flash with TFTP restriction with
an older image, and then sysupgrade into a newer one, so TFTP
restriction does not apply.
3. The (content) size of the recovery image is enforced to 0x3d0000
by the tplink-v2-image command in combination with
TPLINK_FLASHLAYOUT (flash layout in mktplinkfw2.c) anyway.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
MT7620 seems to work fine with kernel 5.4. Set the default kernel
version to 5.4 to bring this to a broader audience.
Tested on Archer C2 v1 / Archer C20i
Signed-off-by: David Bauer <mail@david-bauer.net>
Increase the SPI frequency for the MT7620 based TP-Link Archer
series to 30MHz.
TP-Link uses different SPI flash chips for the same board
revision, so be conservative to not break boards with a
different chip. 30MHz should be well supported by all chips.
Tested on Archer C2 v1 (GD25Q64B) and Archer C20i (W25Q64FV).
Archer C20i (before)
====================
root@OpenWrt:~# time dd if=/dev/mtd1 of=/tmp/test.bin bs=64k
122+0 records in
122+0 records out
real 0m 15.30s
user 0m 0.00s
sys 0m 15.29s
Archer C20i (after)
===================
root@OpenWrt:~# time dd if=/dev/mtd1 of=/tmp/test.bin bs=64k
122+0 records in
122+0 records out
real 0m 5.99s
user 0m 0.00s
sys 0m 5.98s
Signed-off-by: David Bauer <mail@david-bauer.net>
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds a trigger for the WAN LED and enhances support for
the WiFi LED by enabling activity indication.
This is based on bug report feedback (see reference below).
While at it, update the LED node names in DTS file.
Fixes: FS#732
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The function name ucidef_set_interface_lan_wan does not exist,
use the proper name by adding an "s" and thereby fix network
setup on these devices.
Fixes: 22468cc40c (ramips: erx and erx-sfp: fix missing WAN interface)
Signed-off-by: Nelson Cai <niphor@gmail.com>
[commit message/title facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The config partition was missing from the flash layout of the device.
Although the stock firmware resets a corrupted config partition to the
default values, the TFTP flash with an image bigger than 0x3d0000 will
truncate the image as the bootloader only copies 0x3d0000 bytes to flash
during TFTP flashing.
Fixed by adding the config partition and shrinking the firmware
partition.
Fixes: 3fd97c522b ("ramips: add support for TP-Link TL-WR841n v14")
Signed-off-by: Alexander Müller <donothingloop@gmail.com>
The factory partition on this device is only 64k in size, so having
mediatek,mtd-eeprom = <&factory 0x10000> would place the EEPROM data
after the end of the flash. As can be verified against the TP-Link
GPL sources, which contain the EEPROM data as binary blob, the actual
address for the EEPROM data is 0x0.
Since 0x0 is default for MT7628, the incorrect line is just removed.
This error is the reason for the abysmal Wifi performance that people
are complaining about for the WR841Nv14.
Fixes: 3fd97c522b ("ramips: add support for TP-Link TL-WR841n v14")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Don't create UCI switch config for the GL.iNet microuter-N300 and
VIXMINI. These devices only have a single LAN port.
Creating the switch config makes usage of VLANs more complicated,
as they would have to be configured on the MAC as well as the "switch".
Signed-off-by: David Bauer <mail@david-bauer.net>
For mt7621, console is set up via DTS bootargs individually in
device DTS/DTSI files. However, 44 of 74 statements use the
following setting:
chosen {
bootargs = "console=ttyS0,57600";
};
Therefore, don't repeat ourselves and move that definition to the SoC
DTSI file to serve as a default value.
This patch is cosmetic.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
update_kernel.sh refreshed all patches, no human interaction was needed
Build system: x86_64
Run-tested: Netgear R7800 (ipq806x)
Signed-off-by: John Audia <graysky@archlinux.us>
This patch adds support for D-Link DIR-867 A1 and D-Link DIR-882 A1. Given
the similarity of these devices, this patch also introduces a common DTS
shared between DIR-867 A1, DIR-878 A1 and DIR-882 A1.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 128 MB (DDR3)
* Flash: 16 MB (SPI NOR)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WiFi Toggle, WPS
* LEDs: Power (green/orange), Internet (green/orange), WiFi 2.4G (green),
WiFi 5G (green), USB 2.0 (green), USB 3.0 (green)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
* DIR-867 wireless chips are limited to 3x3 streams at hardware level
* USB ports and related LEDs available only on DIR-882
Serial port:
* Parameters: 57600, 8N1
* Location: J1 header (close to the Reset, WiFi and WPS buttons)
* Pinout: 1 - VCC
2 - RXD
3 - TXD
4 - GND
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
Signed-off-by: Mateus B. Cassiano <mbc07@live.com>
[move DEVICE_VARIANT to individual definitions]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: Nanya NT5CC128M16IP-DIT (256M DDR3-1600)
* Flash: Macronix MX30LF1G18AC-TI (128M NAND)
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7615N (2.4 GHz & 5 GHz)
4 antennae: 1 internal and 3 non-deatachable
* USB: 3.0 (x1)
* LEDs:
White (x1 logo)
Green (x6 eth + wps)
Orange (x5, hardware-bound)
* Buttons:
Reset (x1)
WPS (x1)
Everything works! Been running it for a couple weeks now and haven't had
any problems. Please let me know if you run into any.
Installation:
Flash factory image through GUI.
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
Signed-off-by: Santiago Rodriguez-Papa <contact@rodsan.dev>
[use v1 only, minor DTS adjustments, use LINKSYS_HWNAME and add it to
DEVICE_VARS, wrap DEVICE_PACKAGES, adjust commit message/title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Add a common definition for ELECOM WRC "GS" devices to mt7621.mk
to not repeat the same assignments five times.
To keep the naming consistent, slightly rename the DTSI and the
factory image recipe as well.
Note that elecom_wrc-1167ghbk2-s uses a slightly different build
recipe for the factory image, so we keep it separate.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: INAGAKI Hiroshi <musashino.open@gmail.com> [WRC-1750GSV]
Specifications:
SoC: MT7621AT
RAM: 128MB
Flash: 16MB NOR SPI flash
WiFi: MT7615N (2.4GHz) and MT7615N (5Ghz)
LAN: 5x1000M
Firmware layout is Uboot with extra 96 bytes in header
Base PCB is AP-MTKH7-0002
LEDs Power Green,Power Orange,Internet Green,Internet Orange
LEDs "2.4G" Green & "5G" Green connected directly to wifi module
Buttons Reset,WPS,WIFI
Flashing instructions:
Upload image via emergency recovery mode
Push and hold reset button (on the back of the device) until power led
starts flashing (about 10 secs or so) while powering the device on.
Give it ~30 seconds, to boot the recovery mode GUI
Connect your client computer to LAN1 of the device
Set your client IP address manually to 192.168.0.2 / 255.255.255.0.
Call the recovery page for the device at http://192.168.0.1
Use the provided emergency web GUI to upload and flash a new firmware to
the device. Some browsers/OS combinations are known not to work, so if
you don't see the percentage complete displayed and moving within a few
seconds, restart the procedure from scratch and try anoher one,
or try the command line way.
Alternative method using command line on Linux:
curl -v -i -F "firmware=@openwrt-xxxx-squashfs-factory.bin" 192.168.0.1
Signed-off-by: Mathieu Martin-Borret <mathieu.mb@protonmail.com>
[use of generic uimage-padhdr in image generation code]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This creates a common DTSI and shared image definition for the
relatively similar Netgear devices for mt7628 platform.
As a side effect, this raises SPI flash frequency for the R6120,
as it's expected to work there as well if it works for R6080 and
R6020.
Based on the data from the other devices, it also seems probable
the 5g MAC address for R6120 could be extracted from the caldata,
and the mtd-mac-address there could be dropped.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
There are already two very similar recipes using uimage_padhdr
in ramips target, and a third one is about to be added.
Make the recipe more generic, so redefinitions are not necessary
anymore.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Bjørn Mork <bjorn@mork.no> [Zyxel WAP6805]
The current one only looks for mt76x2e and mt7603e, and
does not work for 2 or more same Wi-Fi chips.
Refactor the script to cover those cases.
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
At this point in v5.4 kernel we cannot use dwc2_readl() and
dwc2_writel() since they rely on the value hsotg->needs_byte_swap
which cannot be obtained before the controller wakes up.
We should use readl() and writel() to wake up the controller before
calling dwc2_check_core_endianness().
Fixes: 6be0da90a1 ("ramips: refresh patches")
Signed-off-by: Alexey Dobrovolsky <dobrovolskiy.alexey@gmail.com>
[fixed Fixes: tag]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This adds support for the Netgear R6020, aka Netgear AC750.
The R6020 appears to be the same hardware as the Netgear R6080,
aka Netgear AC1000, but it has a slightly different flash layout,
and no USB ports.
Specification:
SoC: MediaTek MT7628 (580 MHz)
Flash: 8 MiB
RAM: 64 MiB
Wireless: 2.4Ghz (builtin) and 5Ghz (MT7612E)
LAN speed: 10/100
LAN ports: 4
WAN speed: 10/100
WAN ports: 1
UART (57600 8N1) on PCB
MAC addresses based on vendor firmware:
LAN *:88 0x4
WAN *:89
WLAN2 *:88 0x4
WLAN5 *:8a 0x8004
The factory partition might have been corrupted beforehand. However,
the comparison of vendor firmware and OpenWrt still allowed to retrieve
a meaningful assignment that also matches the other similar devices.
Installation:
Flashing OpenWRT from stock firmware requires nmrpflash. Use an ethernet
cable to connect to LAN port 1 of the R6020, and power the R6020 off.
From the connected workstation, run
`nmrpflash -i eth0 -f openwrt-ramips-mt76x8-netgear_r6020-squashfs-factory.img`,
replacing eth0 with the appropriate interface (can be identified by
running `nmrpflash -L`). Then power on the R6020. After flashing has finished,
power cycle the R6020, and it will boot into OpenWRT. Once OpenWRT has been
installed, subsequent flashes can use the web interface and sysupgrade files.
Signed-off-by: Tim Thorpe <timfthorpe@gmail.com>
[slightly extend commit message, fix whitespaces in DTS, align From:
with Signed-off-by]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The rg21s fails to boot if the kernel is larger than about
2,376 KiB. The ra21s is virtually identical hardware.
Enabling lzma-loader resolves the issue on both the rg21s
and ra21s (see FS#3057 on the issue tracker).
Fixes: FS#3057
Signed-off-by: Furkan Alaca <furkan.alaca@queensu.ca>
Device specification:
SoC: RT5350
CPU Frequency: 360 MHz
Flash Chip: Macronix MX25L6406E (8192 KiB)
RAM: Winbond W9825G6JH-6 (32768 KiB)
5x 10/100 Mbps Ethernet (4x LAN, 1x WAN)
1x external antenna
UART (J1) header on PCB (57800 8n1)
Wireless: SoC-intergated: 2.4GHz 802.11bgn
USB: None
8x LED, 2x button
Flash instruction:
Configure PC with static IP 192.168.99.8/24 and start TFTP server.
Rename "openwrt-ramips-rt305x-zyxel_keenetic-lite-b-squashfs-sysupgrade.bin"
to "rt305x_firmware.bin" and place it in TFTP server directory.
Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed until power LED start blinking.
Router will download file from TFTP server, write it to flash and reboot.
Signed-off-by: Sergei Burakov <senior.anonymous@ya.ru>
Adding this has been overlooked when rebasing the commit prior to
merge.
Fixes: ba0f4f0cfd ("ramips: add support for TP-Link RE500 v1")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Hardware
--------
SoC: MediaTek MT7621ST
WiFi: MediaTek MT7603
Quantenna QT3840BC
Flash: 128M NAND
RAM: 64M
LED: Dual colour red and green
BTN: Reset
WPS
Eth: 4 x 10/100/1000 connected to MT7621 internal switch
MT7621 RGMII port connected to Quantenna module
GPIO: Power/reset of Quantenna module
Quantenna module
----------------
The Quantenna QT3840BC (or QV840) is a separate SoC running
another Linux installation. It is mounted on a wide mini-PCIe
form factor module, but is connected to the RGMII port of
the MT7621. It loads both a second uboot stage and an os
image from the MT7621 using tftp. The module is configured
using Quantenna specific RPC calls over IP, using 802.1q
over the RGMII link to support multiple SSIDs.
There is no support for using this module as a WiFi device
in OpenWrt. A package with basic firmware and management
tools is being prepared.
Serial ports
------------
Two serial ports with headers:
RRJ1 - 115200 8N1 - Connected to the Quantenna console
J1 - 57600 8N1 - Connected to the MT7621 console
Both share pinout with many other Zyxel/Mitrastar devices:
1 - NC (VDD)
2 - TX
3 - RX
4 - NC (no pin)
5 - GND
Dual system partitions
----------------------
The vendor firmware and boot loader use a dual partition
scheme storing a counter in the header of each partition. The
partition with the highest number will be selected for boot.
OpenWrt does not support this scheme and will always use the
first OS partition. It will reset both counters to zero the
first time sysupgrade is run, making sure the first partition
is selected by the boot loader.
Installation from vendor firmware
---------------------------------
1. Run a DHCP server. The WAP6805 is configured as a client device
and does not have a default static IP address. Make a note of
which address it is assigned
2. tftp the OpenWrt initramfs-kernel.bin image to this address.
Wait for the WAP6805 to reboot.
3. ssh to the OpenWrt initramfs system on 192.168.1.1. Make a
backup of all mtd partitions now. The last used OEM image is
still present in either "Kernel" or "Kernel2" at this point,
and can be restored later if you save a copy.
4. sysupgrade to the OpenWrt sysupgrade.bin image.
Installation from U-Boot
------------------------
This requires serial console access
1. Copy the OpenWrt initramfs-kernel.bin image as "ras.bin" to
your tftp server directory. Configure the server address as
192.168.0.33/24
2. Hit ESC when the message "Hit ESC key to stop autoboot"
appears
3. Type "ATGU" + Enter, and then "2" immediately after pressing enter.
4. Answer Y to the question "Erase Linux in Flash then burn new
one. Are you sure?", and answer the address/filename questions.
Defaults:
Input device IP (192.168.0.2)
Input server IP (192.168.0.33)
Input Linux Kernel filename ("ras.bin")
5. Wait until after you see the message "Done!" and power cycle
the device. It will hang after flashing.
6. Continue with step 3 and 4 from the vendor firmware procedure.
Notes on the WAP6805 U-Boot
---------------------------
The bootloader has been modified with both ZyXELs zyloader and the
device specific dual partition scheme. These changes appear to have
broken a few things. The zyloader shell claims to support a number
of ZyXEL AT commands, but not all of them work. The image selection
scheme is unreliable and inconsistent. A limited U-Boot menu is
available - and used by the above U-Boot install procedure. But
direct booting into an uploaded image does not work, neither with
ram nor with flash. Flashing works, but requires a hard reset after
it is finished.
Reverting to OEM firmware
-------------------------
The OEM firmware can be restored by using mtd write from OpenWrt,
flashing it to the "Kernel" partition. E.g.
ssh root@192.168.1.1 "mtd -r -e Kernel write - Kernel" < oem.bin
OEM firmwares for the WAP6805 are not avaible for public download,
so a backup of the original installation is required. See above.
Alternatively, firmware for the WAP6806 (Armor X1) may be used. This
is exactly the same hardware. But the branding features do obviously
differ.
LED controller
--------------
Hardware implementation is unknown. The dual-color LED is controlled
by 3 GPIOs:
4: red
7: blinking green
13: green
Enabling both red and green makes the LED appear yellow.
The boot loader enables hardware blinking, causing the green LED to blink
slowly on power-on, until the OpenWrt boot mode starts a faster software
blink.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
[fix alphabetic sorting for image build statement]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The Xiaomi Mi Router AC2100 is a *black* cylindrical router that shares many
characteristics (apart from its looks and the GPIO ports) with the 6-antenna
*white* "Xiaomi Redmi Router AC2100"
See the visual comparison of the two routers here:
https://github.com/emirefek/openwrt-R2100/raw/imgcdn/rm2100-r2100.jpg
Specification of R2100:
- CPU: MediaTek MT7621A
- RAM: 128 MB DDR3
- FLASH: 128 MB ESMT NAND
- WIFI: 2x2 802.11bgn (MT7603)
- WIFI: 4x4 802.11ac (MT7615)
- ETH: 3xLAN+1xWAN 1000base-T
- LED: Power, WAN in Yellow and Blue
- UART: On board (Don't know where is should be confirmed by anybody else)
- Modified u-boot
Hacking of official firmware process is same at both RM2100 and R2100.
Thanks to @namidairo
Here is the detailed guide Hack: https://github.com/impulse/ac2100-openwrt-guide
Guide is written for MacOS but it will work at linux.
needed packages: python3(with scapy), netcat, http server, telnet client
1. Run PPPoE&exploit to get nc and wget busybox, get telnet and wget firmware
2. mtd write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-kernel1.bin kernel1
3. nvram set uart_en=1
4. nvram set bootdelay=5
5. nvram set flag_try_sys1_failed=1
6. nvram commit
7. mtd -r write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-rootfs0.bin rootfs0
other than these I specified in here. Everything is same with:
f3792690c4
Thanks for all community and especially for this device:
@Ilyas @scp07 @namidairo @Percy @thorsten97 @impulse (names@forum.openwrt.com)
MAC Locations:
WAN *:b5 = factory 0xe006
LAN *:b6 = factory 0xe000
WIFI 5ghz *:b8 = factory 0x8004
WIFI 2.4ghz *:b7 = factory 0x0004
Signed-off-by: Emir Efe Kucuk <emirefek@gmail.com>
[refactored common image bits into Device/xiaomi-ac2100, fixed From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Hardware
--------
SoC: Mediatek MT7621AT (880 MHz, 2 cores 4 threads)
RAM: 128MB
FLASH: 16MB NOR (Macronix MX25L12805D)
ETH: 1x 10/100/1000 Mbps Ethernet (MT7530)
WIFI:
- 2.4GHz: 1x MT7615 (4x4:4)
- 5GHz: 1x MT7615 (4x4:4)
- 4 antennas: 2 external detachable and 2 internal
BTN:
- 1x Reset button
- 1x WPS button
LEDS:
- 1x Green led (Power)
- 1x Green-Amber-Red led (Wifi)
UART:
- 57600-8-N-1
Everything works correctly.
Installation
------------
Flash the factory image directly from OEM web interface.
(You can login using these credentials: admin/1234)
Restore OEM Firmware
--------------------
Flash the OEM "bin" firmware directly from LUCI.
The firmware is downloadable from the OEM web page.
Warning: Remember to not keep settings!
Warning2: Remember to force the flash.
Restoring procedure tested with RE23_1.08.bin
MAC addresses
-------------
factory 0x4 *:24
factory 0x8004 *:25
Cimage 0x07 *:24
Cimage 0x0D *:24
Cimage 0x13 *:24
Cimage 0x19 *:25
No other addresses were found in factory partition.
Since the label contains both the 2.4GHz and 5GHz mac address I decided
to set the 5GHz one as label-mac-device. Moreover it also corresponds
to the lan mac address.
Notes
-----
The wifi led in the OEM firmware changes colour depending on the signal
strength. This can be done in OpenWrt but just for one interface.
So for now will not be any default action for this led.
If you want to open the case, pay attention to the antenna placed on
the bottom part of the front cover.
The wire is a bit short and it breaks easily. (I broke it)
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
[fix two typos and add extended MAC address section to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This moves WiFi LED triggers from 01_leds to device tree.
While at it, convert the labels there to lower case; this is
more commonly used and the change will actually remove competition
between DT trigger and leftover uci config on already installed
systems.
Suggested-by: Georgi Vlaev <georgi.vlaev@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device uses the same hardware as RE650 v1 which got supported in
8c51dde.
Hardware specification:
- SoC 880 MHz - MediaTek MT7621AT
- 128 MB of DDR3 RAM
- 16 MB - Winbond 25Q128FVSG
- 4T4R 2.4 GHz - MediaTek MT7615E
- 4T4R 5 GHz - MediaTek MT7615E
- 1x 1 Gbps Ethernet - MT7621AT integrated
- 7x LEDs (Power, 2G, 5G, WPS(x2), Lan(x2))
- 4x buttons (Reset, Power, WPS, LED)
- UART header (J1) - 2:GND, 3:RX, 4:TX
Serial console @ 57600,8n1
Flash instructions:
Upload
openwrt-ramips-mt7621-tplink_re500-v1-squashfs-factory.bin
from the RE500 web interface.
TFTP recovery to stock firmware:
Unfortunately, I can't find an easy way to recover the RE
without opening the device and using modified binaries. The
TFTP upload will only work if selected from u-boot, which
means you have to open the device and attach to the serial
console. The TFTP update procedure does *not* accept the
published vendor firmware binaries. However, it allows to
flash kernel + rootfs binaries, and this works if you have
a backup of the original contents of the flash. It's probably
possible to create special image out of the vendor binaries
and use that as recovery image.
Signed-off-by: Christoph Krapp <achterin@googlemail.com>
[remove dts-v1 in DTSI, do not touch WiFi LEDs for RE650, keep
state_default in DTS files, fix label-mac-device, use lower case
for WiFi LEDs]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Reduce spi-max-frequency for ipTIME A8004T and disable
m25p,fast-read option.
A8004T uses `en25qh128` for the MTD.
This flash memory would allow 80MHz, sometimes kernel received
wrong id value in initramfs installed router.
(kernel expected `1c 70 18 1c 70 18`, but one of cases, it
was `9c 70 18 1c 70 18`)
In this case, openwrt can't detect the partition information,
it would write the inccorect data to the firmware partition and
also it would occur the bootlooping after sysupgrade.
Signed-off-by: Sunguk Lee <d3m3vilurr@gmail.com>
[minor commit title/message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Fixes:
- CVE-2020-10757
The "mtd: rawnand: Pass a nand_chip object to nand_release()" commit was
backported which needed some adaptations to other code.
Build tested: ramips
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
TP-Link RE220 v2 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas. It's based on MediaTek MT7628AN+MT7610EN.
This port of OpenWRT leverages work done by Andreas Böhler <dev@aboehler.at>
for the TP-Link RE200 v2 as both devices share the same SoC, flash layout
and GPIO pinout.
Specifications
MediaTek MT7628AN (580 Mhz)
64 MB of RAM
8 MB of FLASH
2T2R 2.4 GHz and 1T1R 5 GHz
1x 10/100 Mbps Ethernet
UART header on PCB (57600 8n1)
8x LED (GPIO-controlled), 2x button
There are 2.4G and 5G LEDs in red and green which are controlled separately.
Web Interface Installation
It is possible to upgrade to OpenWrt via the web interface. Simply flash
the -factory.bin from OEM. In contrast to a stock firmware, this will not
overwrite U-Boot.
Signed-off-by: Rowan Border <rowanjborder@gmail.com>
Cudy WR1000 and Wavlink WL-WN577A2 store WAN as well as label MAC address
at the same position in flash.
Suggested-by: Sungbo Eo <mans0n@gorani.run>
Signed-off-by: David Bauer <mail@david-bauer.net>
This package allows to read battery status information and control the
power state of the RAVPower RP-WD009 power management IC.
Signed-off-by: David Bauer <mail@david-bauer.net>
The RAVPower RP-WD009 is a batter-powered pocket sized router with SD
card lot and USB port.
Hardware
--------
CPU: MediaTek MT7628AN
RAM: 64M DDR2
FLASH: 16M GigaDevices SPI-NOR
WLAN: MediaTek MT7628AN 2T2R b/g/n
MediaTek MT7610E 1T1R n/ac
ETH: 1x FastEthernet
SD: SD Card slot
USB: USB 2.0
Custom PMIC on the I2C bus (address 0x0a).
Installation
------------
1. Press and hold down the reset button.
2. Power up the Device. Keep pressing the reset button for 10
more seconds until the Globe LED lights up.
3. Attach your Computer to the Ethernet port. Assign yourself the
address 10.10.10.1/24.
4. Access the recovery page at 10.10.10.128 and upload the OpenWrt
factory image.
5. The flashing will take around 1 minute. The device will reboot
automatically into OpenWrt.
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit adds support for the Wavlink WL-WN577A2 (black case) dual-band
wall-plug wireless router. In Germany this device is sold under the brand
name Maginon WL-755 (white case):
Device specifications:
- CPU: MediaTek MT7628AN (580MHz)
- Flash: 8MB
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 2x 10/100 Mbps (Ralink RT3050)
- 2.4 GHz: 802.11b/g/n SoC
- 5 GHz: 802.11a/n/ac MT7610E
- Antennas: internal
- 4 green LEDs: 1 programmable (WPS) + LAN, WAN, POWER
- Buttons: Reset, WPS
- Small sliding power switch
Flashing instructions (U-boot):
- Configure a TFTP server on your PC/Laptop and set its IP
to 192.168.10.100
- Rename the OpenWrt image to firmware.bin and place it in the
root folder of the TFTP server
- Power off (using the small sliding power switch on the left
side) the device and connect an ethernet cable from its LAN
or WAN port to your PC/Laptop
- Press the WPS button (and keep it pressed)
- Power on the device (using the small power switch)
- After a few seconds, when the WAN/LAN LED stops blinking
very fast, release the WPS button
- Flashing OpenWrt takes less than a minute, system will
reboot automatically
- After reboot the WPS LED will indicate the current OpenWrt
running status
Signed-off-by: Lars Wessels <software@bytebox.org>
[removed unused labels - fix whitespace errors - wrap commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
The WAC124 hardware appears to be identical to R6260/R6350/R6850.
SoC: MediaTek MT7621AT
RAM: 128M DDR3
FLASH: 128M NAND (Macronix MX30LF1G18AC)
WiFI: MediaTek MT7603 bgn 2T2R
MediaTek MT7615 nac 4T4R
ETH: SoC Integrated Gigabit Switch (1x WAN, 4x LAN)
USB: 1x USB 2.0
BTN: Reset, WPS
LED: Power, Internet, WiFi, USB (all green)
Installation:
The factory image can be flashed from the stock firmware web interface
or using nmrpflash. With nmrpflash it is also possible to revert to
stock firmware.
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
This adds support for the Netgear R6080, aka Netgear AC1000.
The R6080 has almost the same hardware as the Netgear R6120,
aka Netgear AC1200, but it lacks the USB port, has only 8 MiB flash and
uses a different SERCOMM_HWID.
Specification:
SoC: MediaTek MT7628 (580 MHz)
Flash: 8 MiB
RAM: 64 MiB
Wireless: 2.4Ghz (builtin) and 5Ghz (MT7612E)
LAN speed: 10/100
LAN ports: 4
WAN speed: 10/100
WAN ports: 1
UART (57600 8N1) on PCB
Installation:
Flashing OpenWRT from stock firmware requires nmrpflash. Use an ethernet
cable to connect to LAN port 1 of the R6080, and power the R6080 off.
From the connected workstation, run
`nmrpflash -i eth0 -f openwrt-ramips-mt76x8-netgear_r6080-squashfs-factory.img`,
replacing eth0 with the appropriate interface (can be identified by
running `nmrpflash -L`). Then power on the R6080. After flashing has finished,
power cycle the R6080, and it will boot into OpenWRT. Once OpenWRT has been
installed, subsequent flashes can use the web interface and sysupgrade files.
Signed-off-by: Alex Lewontin <alex.c.lewontin@gmail.com>
[rebase and adjust for 5.4]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This is fixed in 18.06, it appears again in 19.07.
Currently mt7628 sdcard driver do not support polling mode which is for
the device do not have card-detect pin to detect sd card insert. Without
this patch, device will not detect sdcard is inserted. This patch is a
fix of that.
Signed-off-by: Qin Wei <support@vocore.io>
chosen/bootargs are defined to the same value in device DTS files
that is already set in the SoC DTSI. Remove the redundant definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit performs minor janitorial work to clean up some code
formatting for the Netgear R6120.
Signed-off-by: Alex Lewontin <alex.c.lewontin@gmail.com>
This moves the trigger for the Netgear R6120's wlan2g_green LED from
base-files/etc/board.d/01_leds to the device-tree file.
This has been applied to R6120 based on findings for the very similar
Netgear R6080.
Signed-off-by: Alex Lewontin <alex.c.lewontin@gmail.com>
[merge case in 01_leds, slightly adjust commit message/title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Increase the SPI frequency for ELECOM WRC-1900GST and WRC-2533GST
to 40 MHz by updating the common DTSI file.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[WRC-1900GST]
Acked-by: NOGUCHI Hiroshi <drvlabo@gmail.com>
[split patch, adjust commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>