ramips: remove legacy ethernet driver components for mt7621

The mt7621 subtarget has been switched to DSA quite a while ago and
seems to run sufficiently fine. Build with older kernels than 5.4 has
been disabled directly during the kernel bump, so our local ethernet
driver is unused in master since then.

Therefore, let's remove the mt7621-specific parts of "our" ethernet
driver, so we don't have to maintain them and it's obvious to
everybody that they are not used anymore.

This also drops the offloading components as this was specifically
implemented to depend on mt7621.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit is contained in:
Adrian Schmutzler 2020-08-14 12:01:31 +02:00
parent 373d4cc360
commit 734a8c46e7
8 changed files with 6 additions and 1433 deletions

View File

@ -27,23 +27,15 @@ config NET_RALINK_MT7620
bool "MT7620"
depends on MIPS && SOC_MT7620
config NET_RALINK_MT7621
bool "MT7621"
depends on MIPS && SOC_MT7621
endchoice
config NET_RALINK_OFFLOAD
def_bool NET_RALINK_SOC
depends on NET_RALINK_MT7621
config NET_RALINK_HW_QOS
def_bool NET_RALINK_SOC
depends on NET_RALINK_MT7623
config NET_RALINK_MDIO
def_bool NET_RALINK_SOC
depends on (NET_RALINK_RT2880 || NET_RALINK_RT3883 || NET_RALINK_MT7620 || NET_RALINK_MT7621)
depends on (NET_RALINK_RT2880 || NET_RALINK_RT3883 || NET_RALINK_MT7620)
select PHYLIB
config NET_RALINK_MDIO_RT2880
@ -53,7 +45,7 @@ config NET_RALINK_MDIO_RT2880
config NET_RALINK_MDIO_MT7620
def_bool NET_RALINK_SOC
depends on (NET_RALINK_MT7620 || NET_RALINK_MT7621)
depends on NET_RALINK_MT7620
select NET_RALINK_MDIO
config NET_RALINK_ESW_RT3050
@ -63,8 +55,4 @@ config NET_RALINK_ESW_RT3050
config NET_RALINK_GSW_MT7620
def_tristate NET_RALINK_SOC
depends on NET_RALINK_MT7620
config NET_RALINK_GSW_MT7621
def_tristate NET_RALINK_SOC
depends on NET_RALINK_MT7621
endif

View File

@ -8,15 +8,11 @@ ralink-eth-$(CONFIG_NET_RALINK_MDIO) += mdio.o
ralink-eth-$(CONFIG_NET_RALINK_MDIO_RT2880) += mdio_rt2880.o
ralink-eth-$(CONFIG_NET_RALINK_MDIO_MT7620) += mdio_mt7620.o
ralink-eth-$(CONFIG_NET_RALINK_OFFLOAD) += mtk_offload.o mtk_debugfs.o
ralink-eth-$(CONFIG_NET_RALINK_RT2880) += soc_rt2880.o
ralink-eth-$(CONFIG_NET_RALINK_RT3050) += soc_rt3050.o
ralink-eth-$(CONFIG_NET_RALINK_RT3883) += soc_rt3883.o
ralink-eth-$(CONFIG_NET_RALINK_MT7620) += soc_mt7620.o
ralink-eth-$(CONFIG_NET_RALINK_MT7621) += soc_mt7621.o
obj-$(CONFIG_NET_RALINK_ESW_RT3050) += esw_rt3050.o
obj-$(CONFIG_NET_RALINK_GSW_MT7620) += gsw_mt7620.o mt7530.o
obj-$(CONFIG_NET_RALINK_GSW_MT7621) += gsw_mt7621.o mt7530.o
obj-$(CONFIG_NET_RALINK_SOC) += ralink-eth.o

View File

@ -1,275 +0,0 @@
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2015 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2015 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2013-2015 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <ralink_regs.h>
#include "mtk_eth_soc.h"
#include "gsw_mt7620.h"
void mtk_switch_w32(struct mt7620_gsw *gsw, u32 val, unsigned reg)
{
iowrite32(val, gsw->base + reg);
}
u32 mtk_switch_r32(struct mt7620_gsw *gsw, unsigned reg)
{
return ioread32(gsw->base + reg);
}
static irqreturn_t gsw_interrupt_mt7621(int irq, void *_priv)
{
struct fe_priv *priv = (struct fe_priv *)_priv;
struct mt7620_gsw *gsw = (struct mt7620_gsw *)priv->soc->swpriv;
u32 reg, i;
reg = mt7530_mdio_r32(gsw, 0x700c);
mt7530_mdio_w32(gsw, 0x700c, reg);
for (i = 0; i < 5; i++)
if (reg & BIT(i)) {
unsigned int link;
link = mt7530_mdio_r32(gsw,
0x3008 + (i * 0x100)) & 0x1;
if (link != priv->link[i]) {
priv->link[i] = link;
if (link)
netdev_info(priv->netdev,
"port %d link up\n", i);
else
netdev_info(priv->netdev,
"port %d link down\n", i);
}
}
mt7620_handle_carrier(priv);
return IRQ_HANDLED;
}
static void mt7621_hw_init(struct mt7620_gsw *gsw, struct device_node *np)
{
u32 i;
u32 val;
/* wardware reset the switch */
fe_reset(RST_CTRL_MCM);
mdelay(10);
/* reduce RGMII2 PAD driving strength */
rt_sysc_m32(3 << 4, 0, SYSC_PAD_RGMII2_MDIO);
/* gpio mux - RGMII1=Normal mode */
rt_sysc_m32(BIT(14), 0, SYSC_GPIO_MODE);
/* set GMAC1 RGMII mode */
rt_sysc_m32(3 << 12, 0, SYSC_REG_CFG1);
/* enable MDIO to control MT7530 */
rt_sysc_m32(3 << 12, 0, SYSC_GPIO_MODE);
/* turn off all PHYs */
for (i = 0; i <= 4; i++) {
val = _mt7620_mii_read(gsw, i, 0x0);
val |= BIT(11);
_mt7620_mii_write(gsw, i, 0x0, val);
}
/* reset the switch */
mt7530_mdio_w32(gsw, 0x7000, 0x3);
usleep_range(10, 20);
/* (GE1, Force 1000M/FD, FC OFF, MAX_RX_LENGTH 1536) */
mtk_switch_w32(gsw, 0x2305e30b, GSW_REG_MAC_P0_MCR);
mt7530_mdio_w32(gsw, 0x3600, 0x5e30b);
/* (GE2, Link down) */
mtk_switch_w32(gsw, 0x8000, GSW_REG_MAC_P1_MCR);
/* Set switch max RX frame length to 2k */
mt7530_mdio_w32(gsw, GSW_REG_GMACCR, 0x3F0B);
/* Enable Port 6, P5 as GMAC5, P5 disable */
val = mt7530_mdio_r32(gsw, 0x7804);
val &= ~BIT(8);
val |= BIT(6) | BIT(13) | BIT(16);
mt7530_mdio_w32(gsw, 0x7804, val);
val = rt_sysc_r32(0x10);
val = (val >> 6) & 0x7;
if (val >= 6) {
/* 25Mhz Xtal - do nothing */
} else if (val >= 3) {
/* 40Mhz */
/* disable MT7530 core clock */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x410);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
_mt7620_mii_write(gsw, 0, 14, 0x0);
/* disable MT7530 PLL */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x40d);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
_mt7620_mii_write(gsw, 0, 14, 0x2020);
/* for MT7530 core clock = 500Mhz */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x40e);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
_mt7620_mii_write(gsw, 0, 14, 0x119);
/* enable MT7530 PLL */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x40d);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
_mt7620_mii_write(gsw, 0, 14, 0x2820);
usleep_range(20, 40);
/* enable MT7530 core clock */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x410);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
} else {
/* 20Mhz Xtal - TODO */
}
/* RGMII */
_mt7620_mii_write(gsw, 0, 14, 0x1);
/* set MT7530 central align */
val = mt7530_mdio_r32(gsw, 0x7830);
val &= ~BIT(0);
val |= BIT(1);
mt7530_mdio_w32(gsw, 0x7830, val);
val = mt7530_mdio_r32(gsw, 0x7a40);
val &= ~BIT(30);
mt7530_mdio_w32(gsw, 0x7a40, val);
mt7530_mdio_w32(gsw, 0x7a78, 0x855);
/* delay setting for 10/1000M */
mt7530_mdio_w32(gsw, 0x7b00, 0x102);
mt7530_mdio_w32(gsw, 0x7b04, 0x14);
/* lower Tx Driving*/
mt7530_mdio_w32(gsw, 0x7a54, 0x44);
mt7530_mdio_w32(gsw, 0x7a5c, 0x44);
mt7530_mdio_w32(gsw, 0x7a64, 0x44);
mt7530_mdio_w32(gsw, 0x7a6c, 0x44);
mt7530_mdio_w32(gsw, 0x7a74, 0x44);
mt7530_mdio_w32(gsw, 0x7a7c, 0x44);
/* turn on all PHYs */
for (i = 0; i <= 4; i++) {
val = _mt7620_mii_read(gsw, i, 0);
val &= ~BIT(11);
_mt7620_mii_write(gsw, i, 0, val);
}
/* enable irq */
mt7530_mdio_w32(gsw, 0x7008, 0x1f);
val = mt7530_mdio_r32(gsw, 0x7808);
val |= 3 << 16;
mt7530_mdio_w32(gsw, 0x7808, val);
}
static const struct of_device_id mediatek_gsw_match[] = {
{ .compatible = "mediatek,mt7621-gsw" },
{},
};
MODULE_DEVICE_TABLE(of, mediatek_gsw_match);
int mtk_gsw_init(struct fe_priv *priv)
{
struct device_node *np = priv->switch_np;
struct platform_device *pdev = of_find_device_by_node(np);
struct mt7620_gsw *gsw;
if (!pdev)
return -ENODEV;
if (!of_device_is_compatible(np, mediatek_gsw_match->compatible))
return -EINVAL;
gsw = platform_get_drvdata(pdev);
priv->soc->swpriv = gsw;
if (gsw->irq) {
request_irq(gsw->irq, gsw_interrupt_mt7621, 0,
"gsw", priv);
disable_irq(gsw->irq);
}
mt7621_hw_init(gsw, np);
if (gsw->irq)
enable_irq(gsw->irq);
return 0;
}
static int mt7621_gsw_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
struct mt7620_gsw *gsw;
gsw = devm_kzalloc(&pdev->dev, sizeof(struct mt7620_gsw), GFP_KERNEL);
if (!gsw)
return -ENOMEM;
gsw->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(gsw->base))
return PTR_ERR(gsw->base);
gsw->dev = &pdev->dev;
gsw->irq = platform_get_irq(pdev, 0);
platform_set_drvdata(pdev, gsw);
return 0;
}
static int mt7621_gsw_remove(struct platform_device *pdev)
{
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver gsw_driver = {
.probe = mt7621_gsw_probe,
.remove = mt7621_gsw_remove,
.driver = {
.name = "mt7621-gsw",
.owner = THIS_MODULE,
.of_match_table = mediatek_gsw_match,
},
};
module_platform_driver(gsw_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("GBit switch driver for Mediatek MT7621 SoC");
MODULE_VERSION(MTK_FE_DRV_VERSION);

View File

@ -1,115 +0,0 @@
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2014-2016 Sean Wang <sean.wang@mediatek.com>
* Copyright (C) 2016-2017 John Crispin <blogic@openwrt.org>
*/
#include "mtk_offload.h"
static const char *mtk_foe_entry_state_str[] = {
"INVALID",
"UNBIND",
"BIND",
"FIN"
};
static const char *mtk_foe_packet_type_str[] = {
"IPV4_HNAPT",
"IPV4_HNAT",
"IPV6_1T_ROUTE",
"IPV4_DSLITE",
"IPV6_3T_ROUTE",
"IPV6_5T_ROUTE",
"IPV6_6RD",
};
#define IPV4_HNAPT 0
#define IPV4_HNAT 1
#define IS_IPV4_HNAPT(x) (((x)->bfib1.pkt_type == IPV4_HNAPT) ? 1: 0)
struct mtk_eth *_eth;
#define es(entry) (mtk_foe_entry_state_str[entry->bfib1.state])
//#define ei(entry, end) (MTK_PPE_TBL_SZ - (int)(end - entry))
#define ei(entry, end) (MTK_PPE_ENTRY_CNT - (int)(end - entry))
#define pt(entry) (mtk_foe_packet_type_str[entry->ipv4_hnapt.bfib1.pkt_type])
static int mtk_ppe_debugfs_foe_show(struct seq_file *m, void *private)
{
struct mtk_eth *eth = _eth;
struct mtk_foe_entry *entry, *end;
int i = 0;
entry = eth->foe_table;
end = eth->foe_table + MTK_PPE_ENTRY_CNT;
while (entry < end) {
if (IS_IPV4_HNAPT(entry)) {
__be32 saddr = htonl(entry->ipv4_hnapt.sip);
__be32 daddr = htonl(entry->ipv4_hnapt.dip);
__be32 nsaddr = htonl(entry->ipv4_hnapt.new_sip);
__be32 ndaddr = htonl(entry->ipv4_hnapt.new_dip);
unsigned char h_dest[ETH_ALEN];
unsigned char h_source[ETH_ALEN];
*((u32*) h_source) = swab32(entry->ipv4_hnapt.smac_hi);
*((u16*) &h_source[4]) = swab16(entry->ipv4_hnapt.smac_lo);
*((u32*) h_dest) = swab32(entry->ipv4_hnapt.dmac_hi);
*((u16*) &h_dest[4]) = swab16(entry->ipv4_hnapt.dmac_lo);
seq_printf(m,
"(%x)0x%05x|state=%s|type=%s|"
"%pI4:%d->%pI4:%d=>%pI4:%d->%pI4:%d|%pM=>%pM|"
"etype=0x%04x|info1=0x%x|info2=0x%x|"
"vlan1=%d|vlan2=%d\n",
i,
ei(entry, end), es(entry), pt(entry),
&saddr, entry->ipv4_hnapt.sport,
&daddr, entry->ipv4_hnapt.dport,
&nsaddr, entry->ipv4_hnapt.new_sport,
&ndaddr, entry->ipv4_hnapt.new_dport, h_source,
h_dest, ntohs(entry->ipv4_hnapt.etype),
entry->ipv4_hnapt.info_blk1,
entry->ipv4_hnapt.info_blk2,
entry->ipv4_hnapt.vlan1,
entry->ipv4_hnapt.vlan2);
} else
seq_printf(m, "0x%05x state=%s\n",
ei(entry, end), es(entry));
entry++;
i++;
}
return 0;
}
static int mtk_ppe_debugfs_foe_open(struct inode *inode, struct file *file)
{
return single_open(file, mtk_ppe_debugfs_foe_show, file->private_data);
}
static const struct file_operations mtk_ppe_debugfs_foe_fops = {
.open = mtk_ppe_debugfs_foe_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
int mtk_ppe_debugfs_init(struct mtk_eth *eth)
{
struct dentry *root;
_eth = eth;
root = debugfs_create_dir("mtk_ppe", NULL);
if (!root)
return -ENOMEM;
debugfs_create_file("all_entry", S_IRUGO, root, eth, &mtk_ppe_debugfs_foe_fops);
return 0;
}

View File

@ -960,18 +960,11 @@ static int fe_poll_rx(struct napi_struct *napi, int budget,
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
RX_DMA_VID(trxd.rxd3));
#ifdef CONFIG_NET_RALINK_OFFLOAD
if (mtk_offload_check_rx(priv, skb, trxd.rxd4) == 0) {
#endif
stats->rx_packets++;
stats->rx_bytes += pktlen;
stats->rx_packets++;
stats->rx_bytes += pktlen;
napi_gro_receive(napi, skb);
napi_gro_receive(napi, skb);
#ifdef CONFIG_NET_RALINK_OFFLOAD
} else {
dev_kfree_skb(skb);
}
#endif
ring->rx_data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
@ -1308,9 +1301,6 @@ static int fe_open(struct net_device *dev)
napi_enable(&priv->rx_napi);
fe_int_enable(priv->soc->tx_int | priv->soc->rx_int);
netif_start_queue(dev);
#ifdef CONFIG_NET_RALINK_OFFLOAD
mtk_ppe_probe(priv);
#endif
return 0;
}
@ -1347,10 +1337,6 @@ static int fe_stop(struct net_device *dev)
fe_free_dma(priv);
#ifdef CONFIG_NET_RALINK_OFFLOAD
mtk_ppe_remove(priv);
#endif
return 0;
}
@ -1511,23 +1497,6 @@ static int fe_change_mtu(struct net_device *dev, int new_mtu)
return fe_open(dev);
}
#ifdef CONFIG_NET_RALINK_OFFLOAD
static int
fe_flow_offload(enum flow_offload_type type, struct flow_offload *flow,
struct flow_offload_hw_path *src,
struct flow_offload_hw_path *dest)
{
struct fe_priv *priv;
if (src->dev != dest->dev)
return -EINVAL;
priv = netdev_priv(src->dev);
return mtk_flow_offload(priv, type, flow, src, dest);
}
#endif
static const struct net_device_ops fe_netdev_ops = {
.ndo_init = fe_init,
.ndo_uninit = fe_uninit,
@ -1545,9 +1514,6 @@ static const struct net_device_ops fe_netdev_ops = {
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = fe_poll_controller,
#endif
#ifdef CONFIG_NET_RALINK_OFFLOAD
.ndo_flow_offload = fe_flow_offload,
#endif
};
static void fe_reset_pending(struct fe_priv *priv)

View File

@ -1,540 +0,0 @@
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2018 John Crispin <john@phrozen.org>
*/
#include "mtk_offload.h"
#define INVALID 0
#define UNBIND 1
#define BIND 2
#define FIN 3
#define IPV4_HNAPT 0
#define IPV4_HNAT 1
static u32
mtk_flow_hash_v4(struct flow_offload_tuple *tuple)
{
u32 ports = ntohs(tuple->src_port) << 16 | ntohs(tuple->dst_port);
u32 src = ntohl(tuple->dst_v4.s_addr);
u32 dst = ntohl(tuple->src_v4.s_addr);
u32 hash = (ports & src) | ((~ports) & dst);
u32 hash_23_0 = hash & 0xffffff;
u32 hash_31_24 = hash & 0xff000000;
hash = ports ^ src ^ dst ^ ((hash_23_0 << 8) | (hash_31_24 >> 24));
hash = ((hash & 0xffff0000) >> 16 ) ^ (hash & 0xfffff);
hash &= 0x7ff;
hash *= 2;;
return hash;
}
static int
mtk_foe_prepare_v4(struct mtk_foe_entry *entry,
struct flow_offload_tuple *tuple,
struct flow_offload_tuple *dest_tuple,
struct flow_offload_hw_path *src,
struct flow_offload_hw_path *dest)
{
int is_mcast = !!is_multicast_ether_addr(dest->eth_dest);
if (tuple->l4proto == IPPROTO_UDP)
entry->ipv4_hnapt.bfib1.udp = 1;
entry->ipv4_hnapt.etype = htons(ETH_P_IP);
entry->ipv4_hnapt.bfib1.pkt_type = IPV4_HNAPT;
entry->ipv4_hnapt.iblk2.fqos = 0;
entry->ipv4_hnapt.bfib1.ttl = 1;
entry->ipv4_hnapt.bfib1.cah = 1;
entry->ipv4_hnapt.bfib1.ka = 1;
entry->ipv4_hnapt.iblk2.mcast = is_mcast;
entry->ipv4_hnapt.iblk2.dscp = 0;
entry->ipv4_hnapt.iblk2.port_mg = 0x3f;
entry->ipv4_hnapt.iblk2.port_ag = 0x1f;
#ifdef CONFIG_NET_RALINK_HW_QOS
entry->ipv4_hnapt.iblk2.qid = 1;
entry->ipv4_hnapt.iblk2.fqos = 1;
#endif
#ifdef CONFIG_RALINK
entry->ipv4_hnapt.iblk2.dp = 1;
if ((dest->flags & FLOW_OFFLOAD_PATH_VLAN) && (dest->vlan_id > 1))
entry->ipv4_hnapt.iblk2.qid += 8;
#else
entry->ipv4_hnapt.iblk2.dp = (dest->dev->name[3] - '0') + 1;
#endif
entry->ipv4_hnapt.sip = ntohl(tuple->src_v4.s_addr);
entry->ipv4_hnapt.dip = ntohl(tuple->dst_v4.s_addr);
entry->ipv4_hnapt.sport = ntohs(tuple->src_port);
entry->ipv4_hnapt.dport = ntohs(tuple->dst_port);
entry->ipv4_hnapt.new_sip = ntohl(dest_tuple->dst_v4.s_addr);
entry->ipv4_hnapt.new_dip = ntohl(dest_tuple->src_v4.s_addr);
entry->ipv4_hnapt.new_sport = ntohs(dest_tuple->dst_port);
entry->ipv4_hnapt.new_dport = ntohs(dest_tuple->src_port);
entry->bfib1.state = BIND;
if (dest->flags & FLOW_OFFLOAD_PATH_PPPOE) {
entry->bfib1.psn = 1;
entry->ipv4_hnapt.etype = htons(ETH_P_PPP_SES);
entry->ipv4_hnapt.pppoe_id = dest->pppoe_sid;
}
if (dest->flags & FLOW_OFFLOAD_PATH_VLAN) {
entry->ipv4_hnapt.vlan1 = dest->vlan_id;
entry->bfib1.vlan_layer = 1;
switch (dest->vlan_proto) {
case htons(ETH_P_8021Q):
entry->ipv4_hnapt.bfib1.vpm = 1;
break;
case htons(ETH_P_8021AD):
entry->ipv4_hnapt.bfib1.vpm = 2;
break;
default:
return -EINVAL;
}
}
return 0;
}
static void
mtk_foe_set_mac(struct mtk_foe_entry *entry, u8 *smac, u8 *dmac)
{
entry->ipv4_hnapt.dmac_hi = swab32(*((u32*) dmac));
entry->ipv4_hnapt.dmac_lo = swab16(*((u16*) &dmac[4]));
entry->ipv4_hnapt.smac_hi = swab32(*((u32*) smac));
entry->ipv4_hnapt.smac_lo = swab16(*((u16*) &smac[4]));
}
static int
mtk_check_entry_available(struct mtk_eth *eth, u32 hash)
{
struct mtk_foe_entry entry = ((struct mtk_foe_entry *)eth->foe_table)[hash];
return (entry.bfib1.state == BIND)? 0:1;
}
static void
mtk_foe_write(struct mtk_eth *eth, u32 hash,
struct mtk_foe_entry *entry)
{
struct mtk_foe_entry *table = (struct mtk_foe_entry *)eth->foe_table;
memcpy(&table[hash], entry, sizeof(*entry));
}
int mtk_flow_offload(struct mtk_eth *eth,
enum flow_offload_type type,
struct flow_offload *flow,
struct flow_offload_hw_path *src,
struct flow_offload_hw_path *dest)
{
struct flow_offload_tuple *otuple = &flow->tuplehash[FLOW_OFFLOAD_DIR_ORIGINAL].tuple;
struct flow_offload_tuple *rtuple = &flow->tuplehash[FLOW_OFFLOAD_DIR_REPLY].tuple;
u32 time_stamp = mtk_r32(eth, 0x0010) & (0x7fff);
u32 ohash, rhash;
struct mtk_foe_entry orig = {
.bfib1.time_stamp = time_stamp,
.bfib1.psn = 0,
};
struct mtk_foe_entry reply = {
.bfib1.time_stamp = time_stamp,
.bfib1.psn = 0,
};
if (otuple->l4proto != IPPROTO_TCP && otuple->l4proto != IPPROTO_UDP)
return -EINVAL;
if (type == FLOW_OFFLOAD_DEL) {
flow = NULL;
synchronize_rcu();
return 0;
}
switch (otuple->l3proto) {
case AF_INET:
if (mtk_foe_prepare_v4(&orig, otuple, rtuple, src, dest) ||
mtk_foe_prepare_v4(&reply, rtuple, otuple, dest, src))
return -EINVAL;
ohash = mtk_flow_hash_v4(otuple);
rhash = mtk_flow_hash_v4(rtuple);
break;
case AF_INET6:
return -EINVAL;
default:
return -EINVAL;
}
/* Two-way hash: when hash collision occurs, the hash value will be shifted to the next position. */
if (!mtk_check_entry_available(eth, ohash)){
if (!mtk_check_entry_available(eth, ohash + 1))
return -EINVAL;
ohash += 1;
}
if (!mtk_check_entry_available(eth, rhash)){
if (!mtk_check_entry_available(eth, rhash + 1))
return -EINVAL;
rhash += 1;
}
mtk_foe_set_mac(&orig, dest->eth_src, dest->eth_dest);
mtk_foe_set_mac(&reply, src->eth_src, src->eth_dest);
mtk_foe_write(eth, ohash, &orig);
mtk_foe_write(eth, rhash, &reply);
rcu_assign_pointer(eth->foe_flow_table[ohash], flow);
rcu_assign_pointer(eth->foe_flow_table[rhash], flow);
return 0;
}
#ifdef CONFIG_NET_RALINK_HW_QOS
#define QDMA_TX_SCH_TX 0x1a14
static void mtk_ppe_scheduler(struct mtk_eth *eth, int id, u32 rate)
{
int exp = 0, shift = 0;
u32 reg = mtk_r32(eth, QDMA_TX_SCH_TX);
u32 val = 0;
if (rate)
val = BIT(11);
while (rate > 127) {
rate /= 10;
exp++;
}
val |= (rate & 0x7f) << 4;
val |= exp & 0xf;
if (id)
shift = 16;
reg &= ~(0xffff << shift);
reg |= val << shift;
mtk_w32(eth, val, QDMA_TX_SCH_TX);
}
#define QTX_CFG(x) (0x1800 + (x * 0x10))
#define QTX_SCH(x) (0x1804 + (x * 0x10))
static void mtk_ppe_queue(struct mtk_eth *eth, int id, int sched, int weight, int resv, u32 min_rate, u32 max_rate)
{
int max_exp = 0, min_exp = 0;
u32 reg;
if (id >= 16)
return;
reg = mtk_r32(eth, QTX_SCH(id));
reg &= 0x70000000;
if (sched)
reg |= BIT(31);
if (min_rate)
reg |= BIT(27);
if (max_rate)
reg |= BIT(11);
while (max_rate > 127) {
max_rate /= 10;
max_exp++;
}
while (min_rate > 127) {
min_rate /= 10;
min_exp++;
}
reg |= (min_rate & 0x7f) << 20;
reg |= (min_exp & 0xf) << 16;
reg |= (weight & 0xf) << 12;
reg |= (max_rate & 0x7f) << 4;
reg |= max_exp & 0xf;
mtk_w32(eth, reg, QTX_SCH(id));
resv &= 0xff;
reg = mtk_r32(eth, QTX_CFG(id));
reg &= 0xffff0000;
reg |= (resv << 8) | resv;
mtk_w32(eth, reg, QTX_CFG(id));
}
#endif
static int mtk_init_foe_table(struct mtk_eth *eth)
{
if (eth->foe_table)
return 0;
eth->foe_flow_table = devm_kcalloc(eth->dev, MTK_PPE_ENTRY_CNT,
sizeof(*eth->foe_flow_table),
GFP_KERNEL);
if (!eth->foe_flow_table)
return -EINVAL;
/* map the FOE table */
eth->foe_table = dmam_alloc_coherent(eth->dev, MTK_PPE_TBL_SZ,
&eth->foe_table_phys, GFP_KERNEL);
if (!eth->foe_table) {
dev_err(eth->dev, "failed to allocate foe table\n");
kfree(eth->foe_flow_table);
return -ENOMEM;
}
return 0;
}
static int mtk_ppe_start(struct mtk_eth *eth)
{
int ret;
ret = mtk_init_foe_table(eth);
if (ret)
return ret;
/* tell the PPE about the tables base address */
mtk_w32(eth, eth->foe_table_phys, MTK_REG_PPE_TB_BASE);
/* flush the table */
memset(eth->foe_table, 0, MTK_PPE_TBL_SZ);
/* setup hashing */
mtk_m32(eth,
MTK_PPE_TB_CFG_HASH_MODE_MASK | MTK_PPE_TB_CFG_TBL_SZ_MASK,
MTK_PPE_TB_CFG_HASH_MODE1 | MTK_PPE_TB_CFG_TBL_SZ_4K,
MTK_REG_PPE_TB_CFG);
/* set the default hashing seed */
mtk_w32(eth, MTK_PPE_HASH_SEED, MTK_REG_PPE_HASH_SEED);
/* each foe entry is 64bytes and is setup by cpu forwarding*/
mtk_m32(eth, MTK_PPE_CAH_CTRL_X_MODE | MTK_PPE_TB_CFG_ENTRY_SZ_MASK |
MTK_PPE_TB_CFG_SMA_MASK,
MTK_PPE_TB_CFG_ENTRY_SZ_64B | MTK_PPE_TB_CFG_SMA_FWD_CPU,
MTK_REG_PPE_TB_CFG);
/* set ip proto */
mtk_w32(eth, 0xFFFFFFFF, MTK_REG_PPE_IP_PROT_CHK);
/* setup caching */
mtk_m32(eth, 0, MTK_PPE_CAH_CTRL_X_MODE, MTK_REG_PPE_CAH_CTRL);
mtk_m32(eth, MTK_PPE_CAH_CTRL_X_MODE, MTK_PPE_CAH_CTRL_EN,
MTK_REG_PPE_CAH_CTRL);
/* enable FOE */
mtk_m32(eth, 0, MTK_PPE_FLOW_CFG_IPV4_NAT_FRAG_EN |
MTK_PPE_FLOW_CFG_IPV4_NAPT_EN | MTK_PPE_FLOW_CFG_IPV4_NAT_EN |
MTK_PPE_FLOW_CFG_IPV4_GREK_EN,
MTK_REG_PPE_FLOW_CFG);
/* setup flow entry un/bind aging */
mtk_m32(eth, 0,
MTK_PPE_TB_CFG_UNBD_AGE | MTK_PPE_TB_CFG_NTU_AGE |
MTK_PPE_TB_CFG_FIN_AGE | MTK_PPE_TB_CFG_UDP_AGE |
MTK_PPE_TB_CFG_TCP_AGE,
MTK_REG_PPE_TB_CFG);
mtk_m32(eth, MTK_PPE_UNB_AGE_MNP_MASK | MTK_PPE_UNB_AGE_DLTA_MASK,
MTK_PPE_UNB_AGE_MNP | MTK_PPE_UNB_AGE_DLTA,
MTK_REG_PPE_UNB_AGE);
mtk_m32(eth, MTK_PPE_BND_AGE0_NTU_DLTA_MASK |
MTK_PPE_BND_AGE0_UDP_DLTA_MASK,
MTK_PPE_BND_AGE0_NTU_DLTA | MTK_PPE_BND_AGE0_UDP_DLTA,
MTK_REG_PPE_BND_AGE0);
mtk_m32(eth, MTK_PPE_BND_AGE1_FIN_DLTA_MASK |
MTK_PPE_BND_AGE1_TCP_DLTA_MASK,
MTK_PPE_BND_AGE1_FIN_DLTA | MTK_PPE_BND_AGE1_TCP_DLTA,
MTK_REG_PPE_BND_AGE1);
/* setup flow entry keep alive */
mtk_m32(eth, MTK_PPE_TB_CFG_KA_MASK, MTK_PPE_TB_CFG_KA,
MTK_REG_PPE_TB_CFG);
mtk_w32(eth, MTK_PPE_KA_UDP | MTK_PPE_KA_TCP | MTK_PPE_KA_T, MTK_REG_PPE_KA);
/* setup flow entry rate limit */
mtk_w32(eth, (0x3fff << 16) | 0x3fff, MTK_REG_PPE_BIND_LMT_0);
mtk_w32(eth, MTK_PPE_NTU_KA | 0x3fff, MTK_REG_PPE_BIND_LMT_1);
mtk_m32(eth, MTK_PPE_BNDR_RATE_MASK, 1, MTK_REG_PPE_BNDR);
/* enable the PPE */
mtk_m32(eth, 0, MTK_PPE_GLO_CFG_EN, MTK_REG_PPE_GLO_CFG);
#ifdef CONFIG_RALINK
/* set the default forwarding port to QDMA */
mtk_w32(eth, 0x0, MTK_REG_PPE_DFT_CPORT);
#else
/* set the default forwarding port to QDMA */
mtk_w32(eth, 0x55555555, MTK_REG_PPE_DFT_CPORT);
#endif
/* allow packets with TTL=0 */
mtk_m32(eth, MTK_PPE_GLO_CFG_TTL0_DROP, 0, MTK_REG_PPE_GLO_CFG);
/* send all traffic from gmac to the ppe */
mtk_m32(eth, 0xffff, 0x4444, MTK_GDMA_FWD_CFG(0));
mtk_m32(eth, 0xffff, 0x4444, MTK_GDMA_FWD_CFG(1));
dev_info(eth->dev, "PPE started\n");
#ifdef CONFIG_NET_RALINK_HW_QOS
mtk_ppe_scheduler(eth, 0, 500000);
mtk_ppe_scheduler(eth, 1, 500000);
mtk_ppe_queue(eth, 0, 0, 7, 32, 250000, 0);
mtk_ppe_queue(eth, 1, 0, 7, 32, 250000, 0);
mtk_ppe_queue(eth, 8, 1, 7, 32, 250000, 0);
mtk_ppe_queue(eth, 9, 1, 7, 32, 250000, 0);
#endif
return 0;
}
static int mtk_ppe_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
u32 r = 0;
while (1) {
r = mtk_r32(eth, MTK_REG_PPE_GLO_CFG);
if (!(r & MTK_PPE_GLO_CFG_BUSY))
return 0;
if (time_after(jiffies, t_start + HZ))
break;
usleep_range(10, 20);
}
dev_err(eth->dev, "ppe: table busy timeout - resetting\n");
reset_control_reset(eth->rst_ppe);
return -ETIMEDOUT;
}
static int mtk_ppe_stop(struct mtk_eth *eth)
{
u32 r1 = 0, r2 = 0;
int i;
/* discard all traffic while we disable the PPE */
mtk_m32(eth, 0xffff, 0x7777, MTK_GDMA_FWD_CFG(0));
mtk_m32(eth, 0xffff, 0x7777, MTK_GDMA_FWD_CFG(1));
if (mtk_ppe_busy_wait(eth))
return -ETIMEDOUT;
/* invalidate all flow table entries */
for (i = 0; i < MTK_PPE_ENTRY_CNT; i++)
eth->foe_table[i].bfib1.state = FOE_STATE_INVALID;
/* disable caching */
mtk_m32(eth, 0, MTK_PPE_CAH_CTRL_X_MODE, MTK_REG_PPE_CAH_CTRL);
mtk_m32(eth, MTK_PPE_CAH_CTRL_X_MODE | MTK_PPE_CAH_CTRL_EN, 0,
MTK_REG_PPE_CAH_CTRL);
/* flush cache has to be ahead of hnat diable --*/
mtk_m32(eth, MTK_PPE_GLO_CFG_EN, 0, MTK_REG_PPE_GLO_CFG);
/* disable FOE */
mtk_m32(eth,
MTK_PPE_FLOW_CFG_IPV4_NAT_FRAG_EN |
MTK_PPE_FLOW_CFG_IPV4_NAPT_EN | MTK_PPE_FLOW_CFG_IPV4_NAT_EN |
MTK_PPE_FLOW_CFG_FUC_FOE | MTK_PPE_FLOW_CFG_FMC_FOE,
0, MTK_REG_PPE_FLOW_CFG);
/* disable FOE aging */
mtk_m32(eth, 0,
MTK_PPE_TB_CFG_FIN_AGE | MTK_PPE_TB_CFG_UDP_AGE |
MTK_PPE_TB_CFG_TCP_AGE | MTK_PPE_TB_CFG_UNBD_AGE |
MTK_PPE_TB_CFG_NTU_AGE, MTK_REG_PPE_TB_CFG);
r1 = mtk_r32(eth, 0x100);
r2 = mtk_r32(eth, 0x10c);
dev_info(eth->dev, "0x100 = 0x%x, 0x10c = 0x%x\n", r1, r2);
if (((r1 & 0xff00) >> 0x8) >= (r1 & 0xff) ||
((r1 & 0xff00) >> 0x8) >= (r2 & 0xff)) {
dev_info(eth->dev, "reset pse\n");
mtk_w32(eth, 0x1, 0x4);
}
/* set the foe entry base address to 0 */
mtk_w32(eth, 0, MTK_REG_PPE_TB_BASE);
if (mtk_ppe_busy_wait(eth))
return -ETIMEDOUT;
/* send all traffic back to the DMA engine */
#ifdef CONFIG_RALINK
mtk_m32(eth, 0xffff, 0x0, MTK_GDMA_FWD_CFG(0));
mtk_m32(eth, 0xffff, 0x0, MTK_GDMA_FWD_CFG(1));
#else
mtk_m32(eth, 0xffff, 0x5555, MTK_GDMA_FWD_CFG(0));
mtk_m32(eth, 0xffff, 0x5555, MTK_GDMA_FWD_CFG(1));
#endif
return 0;
}
static void mtk_offload_keepalive(struct fe_priv *eth, unsigned int hash)
{
struct flow_offload *flow;
rcu_read_lock();
flow = rcu_dereference(eth->foe_flow_table[hash]);
if (flow)
flow->timeout = jiffies + 30 * HZ;
rcu_read_unlock();
}
int mtk_offload_check_rx(struct fe_priv *eth, struct sk_buff *skb, u32 rxd4)
{
unsigned int hash;
switch (FIELD_GET(MTK_RXD4_CPU_REASON, rxd4)) {
case MTK_CPU_REASON_KEEPALIVE_UC_OLD_HDR:
case MTK_CPU_REASON_KEEPALIVE_MC_NEW_HDR:
case MTK_CPU_REASON_KEEPALIVE_DUP_OLD_HDR:
hash = FIELD_GET(MTK_RXD4_FOE_ENTRY, rxd4);
mtk_offload_keepalive(eth, hash);
return -1;
case MTK_CPU_REASON_PACKET_SAMPLING:
return -1;
default:
return 0;
}
}
int mtk_ppe_probe(struct mtk_eth *eth)
{
int err;
err = mtk_ppe_start(eth);
if (err)
return err;
err = mtk_ppe_debugfs_init(eth);
if (err)
return err;
return 0;
}
void mtk_ppe_remove(struct mtk_eth *eth)
{
mtk_ppe_stop(eth);
}

View File

@ -1,260 +0,0 @@
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2014-2016 Sean Wang <sean.wang@mediatek.com>
* Copyright (C) 2016-2017 John Crispin <blogic@openwrt.org>
*/
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/if.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/netfilter.h>
#include <linux/netdevice.h>
#include <net/netfilter/nf_flow_table.h>
#include <linux/debugfs.h>
#include <linux/etherdevice.h>
#include <linux/bitfield.h>
#include "mtk_eth_soc.h"
#ifdef CONFIG_RALINK
/* ramips compat */
#define mtk_eth fe_priv
#define MTK_GDMA_FWD_CFG(x) (0x500 + (x * 0x1000))
#define mtk_m32 fe_m32
static inline u32
mtk_r32(struct mtk_eth *eth, u32 reg)
{
return fe_r32(reg);
}
static inline void
mtk_w32(struct mtk_eth *eth, u32 val, u32 reg)
{
fe_w32(val, reg);
}
#endif
#define MTK_REG_PPE_GLO_CFG 0xe00
#define MTK_PPE_GLO_CFG_BUSY BIT(31)
#define MTK_PPE_GLO_CFG_TTL0_DROP BIT(4)
#define MTK_PPE_GLO_CFG_EN BIT(0)
#define MTK_REG_PPE_FLOW_CFG 0xe04
#define MTK_PPE_FLOW_CFG_IPV4_GREK_EN BIT(19)
#define MTK_PPE_FLOW_CFG_IPV4_NAT_FRAG_EN BIT(17)
#define MTK_PPE_FLOW_CFG_IPV4_NAPT_EN BIT(13)
#define MTK_PPE_FLOW_CFG_IPV4_NAT_EN BIT(12)
#define MTK_PPE_FLOW_CFG_FUC_FOE BIT(2)
#define MTK_PPE_FLOW_CFG_FMC_FOE BIT(1)
#define MTK_REG_PPE_IP_PROT_CHK 0xe08
#define MTK_REG_PPE_TB_BASE 0xe20
#define MTK_REG_PPE_BNDR 0xe28
#define MTK_PPE_BNDR_RATE_MASK 0xffff
#define MTK_REG_PPE_BIND_LMT_0 0xe2C
#define MTK_REG_PPE_BIND_LMT_1 0xe30
#define MTK_PPE_NTU_KA BIT(16)
#define MTK_REG_PPE_KA 0xe34
#define MTK_PPE_KA_T BIT(0)
#define MTK_PPE_KA_TCP BIT(16)
#define MTK_PPE_KA_UDP BIT(24)
#define MTK_REG_PPE_UNB_AGE 0xe38
#define MTK_PPE_UNB_AGE_MNP_MASK (0xffff << 16)
#define MTK_PPE_UNB_AGE_MNP (1000 << 16)
#define MTK_PPE_UNB_AGE_DLTA_MASK 0xff
#define MTK_PPE_UNB_AGE_DLTA 3
#define MTK_REG_PPE_BND_AGE0 0xe3c
#define MTK_PPE_BND_AGE0_NTU_DLTA_MASK (0xffff << 16)
#define MTK_PPE_BND_AGE0_NTU_DLTA (5 << 16)
#define MTK_PPE_BND_AGE0_UDP_DLTA_MASK 0xffff
#define MTK_PPE_BND_AGE0_UDP_DLTA 5
#define MTK_REG_PPE_BND_AGE1 0xe40
#define MTK_PPE_BND_AGE1_FIN_DLTA_MASK (0xffff << 16)
#define MTK_PPE_BND_AGE1_FIN_DLTA (5 << 16)
#define MTK_PPE_BND_AGE1_TCP_DLTA_MASK 0xffff
#define MTK_PPE_BND_AGE1_TCP_DLTA 5
#define MTK_REG_PPE_DFT_CPORT 0xe48
#define MTK_REG_PPE_TB_CFG 0xe1c
#define MTK_PPE_TB_CFG_X_MODE_MASK (3 << 18)
#define MTK_PPE_TB_CFG_HASH_MODE1 BIT(14)
#define MTK_PPE_TB_CFG_HASH_MODE_MASK (0x3 << 14)
#define MTK_PPE_TB_CFG_KA (3 << 12)
#define MTK_PPE_TB_CFG_KA_MASK (0x3 << 12)
#define MTK_PPE_TB_CFG_FIN_AGE BIT(11)
#define MTK_PPE_TB_CFG_UDP_AGE BIT(10)
#define MTK_PPE_TB_CFG_TCP_AGE BIT(9)
#define MTK_PPE_TB_CFG_UNBD_AGE BIT(8)
#define MTK_PPE_TB_CFG_NTU_AGE BIT(7)
#define MTK_PPE_TB_CFG_SMA_FWD_CPU (0x3 << 4)
#define MTK_PPE_TB_CFG_SMA_MASK (0x3 << 4)
#define MTK_PPE_TB_CFG_ENTRY_SZ_64B 0
#define MTK_PPE_TB_CFG_ENTRY_SZ_MASK BIT(3)
#define MTK_PPE_TB_CFG_TBL_SZ_4K 2
#define MTK_PPE_TB_CFG_TBL_SZ_MASK 0x7
#define MTK_REG_PPE_HASH_SEED 0xe44
#define MTK_PPE_HASH_SEED 0x12345678
#define MTK_REG_PPE_CAH_CTRL 0xf20
#define MTK_PPE_CAH_CTRL_X_MODE BIT(9)
#define MTK_PPE_CAH_CTRL_EN BIT(0)
struct mtk_foe_unbind_info_blk {
u32 time_stamp:8;
u32 pcnt:16; /* packet count */
u32 preb:1;
u32 pkt_type:3;
u32 state:2;
u32 udp:1;
u32 sta:1; /* static entry */
} __attribute__ ((packed));
struct mtk_foe_bind_info_blk {
u32 time_stamp:15;
u32 ka:1; /* keep alive */
u32 vlan_layer:3;
u32 psn:1; /* egress packet has PPPoE session */
#ifdef CONFIG_RALINK
u32 vpm:2; /* 0:ethertype remark, 1:0x8100(CR default) */
#else
u32 vpm:1; /* 0:ethertype remark, 1:0x8100(CR default) */
u32 ps:1; /* packet sampling */
#endif
u32 cah:1; /* cacheable flag */
u32 rmt:1; /* remove tunnel ip header (6rd/dslite only) */
u32 ttl:1;
u32 pkt_type:3;
u32 state:2;
u32 udp:1;
u32 sta:1; /* static entry */
} __attribute__ ((packed));
struct mtk_foe_info_blk2 {
u32 qid:4; /* QID in Qos Port */
u32 fqos:1; /* force to PSE QoS port */
u32 dp:3; /* force to PSE port x
0:PSE,1:GSW, 2:GMAC,4:PPE,5:QDMA,7=DROP */
u32 mcast:1; /* multicast this packet to CPU */
u32 pcpl:1; /* OSBN */
u32 mlen:1; /* 0:post 1:pre packet length in meter */
u32 alen:1; /* 0:post 1:pre packet length in accounting */
u32 port_mg:6; /* port meter group */
u32 port_ag:6; /* port account group */
u32 dscp:8; /* DSCP value */
} __attribute__ ((packed));
struct mtk_foe_ipv4_hnapt {
union {
struct mtk_foe_bind_info_blk bfib1;
struct mtk_foe_unbind_info_blk udib1;
u32 info_blk1;
};
u32 sip;
u32 dip;
u16 dport;
u16 sport;
union {
struct mtk_foe_info_blk2 iblk2;
u32 info_blk2;
};
u32 new_sip;
u32 new_dip;
u16 new_dport;
u16 new_sport;
u32 resv1;
u32 resv2;
u32 resv3:26;
u32 act_dp:6; /* UDF */
u16 vlan1;
u16 etype;
u32 dmac_hi;
u16 vlan2;
u16 dmac_lo;
u32 smac_hi;
u16 pppoe_id;
u16 smac_lo;
} __attribute__ ((packed));
struct mtk_foe_entry {
union {
struct mtk_foe_unbind_info_blk udib1;
struct mtk_foe_bind_info_blk bfib1;
struct mtk_foe_ipv4_hnapt ipv4_hnapt;
};
};
enum mtk_foe_entry_state {
FOE_STATE_INVALID = 0,
FOE_STATE_UNBIND = 1,
FOE_STATE_BIND = 2,
FOE_STATE_FIN = 3
};
#define MTK_RXD4_FOE_ENTRY GENMASK(13, 0)
#define MTK_RXD4_CPU_REASON GENMASK(18, 14)
#define MTK_RXD4_SRC_PORT GENMASK(21, 19)
#define MTK_RXD4_ALG GENMASK(31, 22)
enum mtk_foe_cpu_reason {
MTK_CPU_REASON_TTL_EXCEEDED = 0x02,
MTK_CPU_REASON_OPTION_HEADER = 0x03,
MTK_CPU_REASON_NO_FLOW = 0x07,
MTK_CPU_REASON_IPV4_FRAG = 0x08,
MTK_CPU_REASON_IPV4_DSLITE_FRAG = 0x09,
MTK_CPU_REASON_IPV4_DSLITE_NO_TCP_UDP = 0x0a,
MTK_CPU_REASON_IPV6_6RD_NO_TCP_UDP = 0x0b,
MTK_CPU_REASON_TCP_FIN_SYN_RST = 0x0c,
MTK_CPU_REASON_UN_HIT = 0x0d,
MTK_CPU_REASON_HIT_UNBIND = 0x0e,
MTK_CPU_REASON_HIT_UNBIND_RATE_REACHED = 0x0f,
MTK_CPU_REASON_HIT_BIND_TCP_FIN = 0x10,
MTK_CPU_REASON_HIT_TTL_1 = 0x11,
MTK_CPU_REASON_HIT_BIND_VLAN_VIOLATION = 0x12,
MTK_CPU_REASON_KEEPALIVE_UC_OLD_HDR = 0x13,
MTK_CPU_REASON_KEEPALIVE_MC_NEW_HDR = 0x14,
MTK_CPU_REASON_KEEPALIVE_DUP_OLD_HDR = 0x15,
MTK_CPU_REASON_HIT_BIND_FORCE_CPU = 0x16,
MTK_CPU_REASON_TUNNEL_OPTION_HEADER = 0x17,
MTK_CPU_REASON_MULTICAST_TO_CPU = 0x18,
MTK_CPU_REASON_MULTICAST_TO_GMAC1_CPU = 0x19,
MTK_CPU_REASON_HIT_PRE_BIND = 0x1a,
MTK_CPU_REASON_PACKET_SAMPLING = 0x1b,
MTK_CPU_REASON_EXCEED_MTU = 0x1c,
MTK_CPU_REASON_PPE_BYPASS = 0x1e,
MTK_CPU_REASON_INVALID = 0x1f,
};
/* our table size is 4K */
#define MTK_PPE_ENTRY_CNT 0x1000
#define MTK_PPE_TBL_SZ \
(MTK_PPE_ENTRY_CNT * sizeof(struct mtk_foe_entry))
int mtk_ppe_debugfs_init(struct mtk_eth *eth);

View File

@ -1,187 +0,0 @@
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2015 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2015 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2013-2015 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/if_vlan.h>
#include <linux/of_net.h>
#include <asm/mach-ralink/ralink_regs.h>
#include "mtk_eth_soc.h"
#include "gsw_mt7620.h"
#include "mt7530.h"
#include "mdio.h"
#define MT7620A_CDMA_CSG_CFG 0x400
#define MT7621_CDMP_IG_CTRL (MT7620A_CDMA_CSG_CFG + 0x00)
#define MT7621_CDMP_EG_CTRL (MT7620A_CDMA_CSG_CFG + 0x04)
#define MT7621_RESET_FE BIT(6)
#define MT7621_L4_VALID BIT(24)
#define MT7621_TX_DMA_UDF BIT(19)
#define MT7621_TX_DMA_FPORT BIT(25)
#define CDMA_ICS_EN BIT(2)
#define CDMA_UCS_EN BIT(1)
#define CDMA_TCS_EN BIT(0)
#define GDMA_ICS_EN BIT(22)
#define GDMA_TCS_EN BIT(21)
#define GDMA_UCS_EN BIT(20)
/* frame engine counters */
#define MT7621_REG_MIB_OFFSET 0x2000
#define MT7621_PPE_AC_BCNT0 (MT7621_REG_MIB_OFFSET + 0x00)
#define MT7621_GDM1_TX_GBCNT (MT7621_REG_MIB_OFFSET + 0x400)
#define MT7621_GDM2_TX_GBCNT (MT7621_GDM1_TX_GBCNT + 0x40)
#define GSW_REG_GDMA1_MAC_ADRL 0x508
#define GSW_REG_GDMA1_MAC_ADRH 0x50C
#define MT7621_FE_RST_GL (FE_FE_OFFSET + 0x04)
#define MT7620_FE_INT_STATUS2 (FE_FE_OFFSET + 0x08)
/* FE_INT_STATUS reg on mt7620 define CNT_GDM1_AF at BIT(29)
* but after test it should be BIT(13).
*/
#define MT7620_FE_GDM1_AF BIT(13)
#define MT7621_FE_GDM1_AF BIT(28)
#define MT7621_FE_GDM2_AF BIT(29)
static const u16 mt7621_reg_table[FE_REG_COUNT] = {
[FE_REG_PDMA_GLO_CFG] = RT5350_PDMA_GLO_CFG,
[FE_REG_PDMA_RST_CFG] = RT5350_PDMA_RST_CFG,
[FE_REG_DLY_INT_CFG] = RT5350_DLY_INT_CFG,
[FE_REG_TX_BASE_PTR0] = RT5350_TX_BASE_PTR0,
[FE_REG_TX_MAX_CNT0] = RT5350_TX_MAX_CNT0,
[FE_REG_TX_CTX_IDX0] = RT5350_TX_CTX_IDX0,
[FE_REG_TX_DTX_IDX0] = RT5350_TX_DTX_IDX0,
[FE_REG_RX_BASE_PTR0] = RT5350_RX_BASE_PTR0,
[FE_REG_RX_MAX_CNT0] = RT5350_RX_MAX_CNT0,
[FE_REG_RX_CALC_IDX0] = RT5350_RX_CALC_IDX0,
[FE_REG_RX_DRX_IDX0] = RT5350_RX_DRX_IDX0,
[FE_REG_FE_INT_ENABLE] = RT5350_FE_INT_ENABLE,
[FE_REG_FE_INT_STATUS] = RT5350_FE_INT_STATUS,
[FE_REG_FE_DMA_VID_BASE] = 0,
[FE_REG_FE_COUNTER_BASE] = MT7621_GDM1_TX_GBCNT,
[FE_REG_FE_RST_GL] = MT7621_FE_RST_GL,
[FE_REG_FE_INT_STATUS2] = MT7620_FE_INT_STATUS2,
};
static int mt7621_gsw_config(struct fe_priv *priv)
{
if (priv->mii_bus && mdiobus_get_phy(priv->mii_bus, 0x1f))
mt7530_probe(priv->dev, NULL, priv->mii_bus, 1);
return 0;
}
static void mt7621_fe_reset(void)
{
fe_reset(MT7621_RESET_FE);
}
static void mt7621_rxcsum_config(bool enable)
{
if (enable)
fe_w32(fe_r32(MT7620A_GDMA1_FWD_CFG) | (GDMA_ICS_EN |
GDMA_TCS_EN | GDMA_UCS_EN),
MT7620A_GDMA1_FWD_CFG);
else
fe_w32(fe_r32(MT7620A_GDMA1_FWD_CFG) & ~(GDMA_ICS_EN |
GDMA_TCS_EN | GDMA_UCS_EN),
MT7620A_GDMA1_FWD_CFG);
}
static void mt7621_rxvlan_config(bool enable)
{
if (enable)
fe_w32(1, MT7621_CDMP_EG_CTRL);
else
fe_w32(0, MT7621_CDMP_EG_CTRL);
}
static int mt7621_fwd_config(struct fe_priv *priv)
{
struct net_device *dev = priv_netdev(priv);
fe_w32(fe_r32(MT7620A_GDMA1_FWD_CFG) & ~0xffff,
MT7620A_GDMA1_FWD_CFG);
/* mt7621 doesn't have txcsum config */
mt7621_rxcsum_config((dev->features & NETIF_F_RXCSUM));
mt7621_rxvlan_config(dev->features & NETIF_F_HW_VLAN_CTAG_RX);
return 0;
}
static void mt7621_tx_dma(struct fe_tx_dma *txd)
{
txd->txd4 = MT7621_TX_DMA_FPORT;
}
static void mt7621_init_data(struct fe_soc_data *data,
struct net_device *netdev)
{
struct fe_priv *priv = netdev_priv(netdev);
priv->flags = FE_FLAG_PADDING_64B | FE_FLAG_RX_2B_OFFSET |
FE_FLAG_RX_SG_DMA | FE_FLAG_NAPI_WEIGHT |
FE_FLAG_HAS_SWITCH | FE_FLAG_JUMBO_FRAME;
netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_SG | NETIF_F_TSO |
NETIF_F_TSO6 | NETIF_F_IPV6_CSUM |
NETIF_F_TSO_MANGLEID;
}
static void mt7621_set_mac(struct fe_priv *priv, unsigned char *mac)
{
unsigned long flags;
spin_lock_irqsave(&priv->page_lock, flags);
fe_w32((mac[0] << 8) | mac[1], GSW_REG_GDMA1_MAC_ADRH);
fe_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
GSW_REG_GDMA1_MAC_ADRL);
spin_unlock_irqrestore(&priv->page_lock, flags);
}
static struct fe_soc_data mt7621_data = {
.init_data = mt7621_init_data,
.reset_fe = mt7621_fe_reset,
.set_mac = mt7621_set_mac,
.fwd_config = mt7621_fwd_config,
.tx_dma = mt7621_tx_dma,
.switch_init = mtk_gsw_init,
.switch_config = mt7621_gsw_config,
.reg_table = mt7621_reg_table,
.pdma_glo_cfg = FE_PDMA_SIZE_16DWORDS,
.rx_int = RT5350_RX_DONE_INT,
.tx_int = RT5350_TX_DONE_INT,
.status_int = (MT7621_FE_GDM1_AF | MT7621_FE_GDM2_AF),
.checksum_bit = MT7621_L4_VALID,
.has_carrier = mt7620_has_carrier,
.mdio_read = mt7620_mdio_read,
.mdio_write = mt7620_mdio_write,
.mdio_adjust_link = mt7620_mdio_link_adjust,
};
const struct of_device_id of_fe_match[] = {
{ .compatible = "mediatek,mt7621-eth", .data = &mt7621_data },
{},
};
MODULE_DEVICE_TABLE(of, of_fe_match);