Replace numerical values, BIT(x) and (1 << x) in
drivers/net/phy/rtl83xx-phy.c with constants from <linux/mii.h> to
improve code readability.
To make reviewing easier, this commit only addresses MII_BMCR and BMCR_*
constants.
Suggested-by: DENG Qingfang <dqfext@gmail.com>
Signed-off-by: Pascal Ernster <git@hardfalcon.net>
Add support for ComFast CF-E390AX. It is a 802.11 wifi6 cieling AP, based on MediaTek MT7261AT.
Specifications:
SoC: MediaTek MT7621AT
RAM: 128 MiB
Flash: 16 MiB NOR (Macronix mx25l12805d)
Wireless: MT7915E (2.4G) 802.11ax/b/g/n MT7915E (5G) 802.11ac/ax/n
Ethernet: 2 x 1Gbs
Button: 1 x "Reset" button
LED: 1x Blue LED + 1x Red LED + 1x green LED
Power: PoE
Manufacturer Page:
http://en.comfast.com.cn/index.php?m=content&c=index&a=show&catid=84&id=75
Flash Layout:
0x000000000000-0x000000030000 : "bootloader"
0x000000030000-0x000000040000 : "config"
0x000000050000-0x000000060000 : "factory"
0x000000090000-0x000001000000 : "firmware"
First install:
1. Set device into http firmware fail safe upload mode by pressing the reset button for 10 seconds while powering
it on. Once the LED stops flashing, safe mode will be running.
2. Set PC IP address to 192.168.1.2
3. Browse to 192.168.1.1 and upload the factory image using the web interface.
Signed-off-by: Usama Nassir <usama.nassir@gmail.com>
COMFAST CF-E380AC v2 is a ceiling mount AP with PoE
support, based on Qualcomm/Atheros QCA9558+QCA9880+AR8035.
There are two versions of this model, with different RAM
and U-Boot mtd partition sizes:
- v1: 128 MB of RAM, 128 KB U-Boot image size
- v2: 256 MB of RAM, 256 KB U-Boot image size
Version number is available only inside vendor GUI,
hardware and markings are the same.
Short specification:
- 720/600/200 MHz (CPU/DDR/AHB)
- 1x 10/100/1000 Mbps Ethernet, with PoE support
- 128 or 256 MB of RAM (DDR2)
- 16 MB of FLASH
- 3T3R 2.4 GHz, with external PA (SE2576L), up to 28 dBm
- 3T3R 5 GHz, with external PA (SE5003L1), up to 30 dBm
- 6x internal antennas
- 1x RGB LED, 1x button
- UART (T11), LEDs/GPIO (J7) and USB (T12) headers on PCB
- external watchdog (Pericon Technology PT7A7514)
COMFAST MAC addresses :
Though the OEM firmware has four adresses in the usual locations,
it appears that the assigned addresses are just incremented in a different way:
Interface address location
Lan *:00 0x0
2.4g *:0A n/a (0x0 + 10)
5g *:02 0x6
Unused Addresses found in ART hexdump
address location
*:01 0x1002
*:03 0x5006
To keep code consistency the MAC address assignments are made based on increments of the one found in 0x0;
Signed-off-by: Joao Henrique Albuquerque <joaohccalbu@gmail.com>
This commit adds support for following wireless routers:
- Beeline SmartBox PRO (Serсomm S1500 AWI)
- WiFire S1500.NBN (Serсomm S1500 BUC)
This commit is based on this PR:
- Link: https://github.com/openwrt/openwrt/pull/4770
- Author: Maximilian Weinmann <x1@disroot.org>
The opening of this PR was agreed with author.
My changes:
- Sorting, minor changes and some movings between dts and dtsi
- Move leds to dts when possible
- Recipes for the factory image
- Update of the installation/recovery/return to stock guides
- Add reset GPIO for the pcie1
Common specification
--------------------
SoC: MediaTek MT7621AT (880 MHz, 2 cores)
Switch: MediaTek MT7530 (via SoC MT7621AT)
Wireless: 2.4 GHz, MT7602EN, b/g/n, 2x2
Wireless: 5 GHz, MT7612EN, a/n/ac, 2x2
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
Mini PCIe: via J2 on PCB, not soldered on the board
UART: J4 -> GND[], TX, VCC(3.3V), RX
BootLoader: U-Boot SerComm/Mediatek
Beeline SmartBox PRO specification
----------------------------------
RAM (Nanya NT5CB128M16FP): 256 MiB
NAND-Flash (ESMT F59L2G81A): 256 MiB
USB ports: 2xUSB2.0
LEDs: Status (white), WPS (blue), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (reset, wps), 1 switch button (ROUT<->REP)
Power: 12 VDC, 1.5 A
PCB Sticker: 970AWI0QW00N256SMT Ver. 1.0
CSN: SG15********
MAC LAN: 94:4A:0C:**:**:**
Manufacturer's code: 0AWI0500QW1
WiFire S1500.NBN specification
------------------------------
RAM (Nanya NT5CC64M16GP): 128 MiB
NAND-Flash (ESMT F59L1G81MA): 128 MiB
USB ports: 1xUSB2.0
LEDs: Status (white), WPS (white), 2g (white), 5g (white) + 10 LED Ethernet
Buttons: 2 button (RESET, WPS)
Power: 12 VDC, 1.0 A
PCB Sticker: 970BUC0RW00N128SMT Ver. 1.0
CSN: MH16********
MAC WAN: E0:60:66:**:**:**
Manufacturer's code: 0BUC0500RW1
MAC address table (PRO)
-----------------------
use address source
LAN *:23 factory 0x1000 (label)
WAN *:24 factory $label +1
2g *:23 factory $label
5g *:25 factory $label +2
MAC addresses (NBN)
-------------------
use address source
LAN *:0e factory 0x1000
WAN *:0f LAN +1 (label)
2g *:0f LAN +1
5g *:10 LAN +2
OEM easy installation
---------------------
1. Remove all dots from the factory image filename (except the dot
before file extension)
2. Upload and update the firmware via the original web interface
3. Two options are possible after the reboot:
a. OpenWrt - that's OK, the mission accomplished
b. Stock firmware - install Stock firmware (to switch booflag from
Sercomm0 to Sercomm1) and then OpenWrt factory image.
Return to Stock
---------------
1. Change the bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock2
reboot
2. Install stock firmware via the web OEM firmware interface
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
Tested-by: Pavel Ivanov <pi635v@gmail.com>
Tested-by: Denis Myshaev <denis.myshaev@gmail.com>
Tested-by: Oleg Galeev <olegingaleev@gmail.com>
Tested-By: Ivan Pavlov <AuthorReflex@gmail.com>
Co-authored-by: Maximilian Weinmann <x1@disroot.org>
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
This commit moves a part of the code from the "sercomm-factory-cqr" recipe
to the separate "sercomm-mkhash" recipe. This simplifies recipes and
allows insert additional recipes between these code blocks (required for
the future support for Beeline SmartBox PRO router).
dd automatically fills the file by 0x00 if the filesize is less than
offset where we start writing. We drop such dd command so we need to add
--extra-padding-size 0x190 to the sercomm-pid.py call.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Mikrotik RB951 router has a buzzer on the board, which makes annoying noises
due to the interference caused by PoE input or Wifi transmission
when no GPIO pin state is set.
I added buzzer node to device's DTS in order to set deault level to 1
and to provide easier access for it.
Signed-off-by: Pavel Pernička <pernicka.pa@gmail.com>
The Traverse LS1043 boards were not publicly released,
all the production has been going to OEM customers who
do not use the image format defined in the OpenWrt tree.
Only a few samples were circulated outside Traverse
and our OEM customers. The public release (then called
Five64) of this series was cancelled in favour of our
LS1088A based design (Ten64).
It is best to remove these boards to avoid wasting
OpenWrt project and contributor resources.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: W25N01GVZEIG 128MB
RAM: NT5CB128M16JR-FL 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, WPS
Power: DC 12V 1A
Flash instructions:
1. PC run command: "telnet 192.168.124.1 99"
Username: H3C, password is the web login
password of the router.
2. Download preloader.bin and bl31-uboot.fip
3. PC run command: "python3 -m http.server 80"
4. Download files in the telnet window:
"wget http://192.168.124.xx/xxx.bin"
Replace xx with your PC's IP and
the preloader.bin and bl31-uboot.fip.
5. Flushing openwrt's uboot:
"mtd write xxx-preloader.bin BL2"
"mtd write xxx-bl31-uboot.fip FIP"
6. Connect to the router via the Lan port,
set a static ip of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
7. Download initramfs image, reboot router,
waiting for tftp recovery to complete.
8. After openwrt boots up, perform sysupgrade.
Note:
1. The u-boot-env partition on mtd is empty,
OEM stores their env on ubi:u-boot-env.
2. Back up all mtd partitions before flashing.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Netgear EX6250v2, EX6400v3, EX6410v2, EX6470 are wall-plug 802.11ac
(Wi-Fi 5) extenders. Like other MT7629 devices, Wi-Fi does not work
currently as there is no driver.
Related: https://github.com/openwrt/openwrt/pull/5084
For future reference, 2.4GHz MAC = LAN+1, 5GHz MAC = LAN+2.
Specifications:
* MT7629, 256 MiB RAM, 16 MiB SPI NOR
* MT7761N (2.4GHz) / MT7762N (5GHz) - no driver
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
* After installation, perform a factory reset. Wait for the device to
boot, then hold the reset button for 10 seconds. This is needed
because sysupgrade in the stock firmware will attempt to preserve its
configuration using sysupgrade.tgz.
See https://github.com/openwrt/openwrt/pull/4182
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
Netgear EAX12, EAX11v2, EAX15v2 are wall-plug 802.11ax (Wi-Fi 6)
extenders that share the SoC, WiFi chip, and image format with the
WAX202.
Specifications:
* MT7621, 256 MiB RAM, 128 MiB NAND
* MT7915: 2.4/5 GHz 2x2 802.11ax (DBDC)
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)
All LEDs and buttons appear to work without state_default.
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
References in GPL source:
https://www.downloads.netgear.com/files/GPL/EAX12_EAX11v2_EAX15v2_GPL_V1.0.3.34_src.tar.gz
* target/linux/ramips/dts/mt7621-rfb-ax-nand.dts
DTS file for this device.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
These fields are used for EAX12 and EX6250v2 series, and perhaps other
devices. Compatibility is preserved with the WAX202 and WAX206.
In addition, adds the related vars to DEVICE_VARS so that the variables
work correctly with multiple devices.
References in GPL source:
https://www.downloads.netgear.com/files/GPL/EAX12_EAX11v2_EAX15v2_GPL_V1.0.3.34_src.tar.gz
* tools/imgencoder/src/gj_enc.c
Contains code that generates the encrypted image.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
CONFIG_FRAME_WARN is set dynamically, so there is no need for it to be set
in target kernel configs, so lets remove it from all configs.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
CONFIG_FRAME_WARN value is set by config/Config-kernel.in based on the
target type dynamically since commit:
16a2051 ("kernel: Set CONFIG_FRAME_WARN depending on target").
However, CONFIG_FRAME_WARN was not set to get filtered out so it ended up
in multiple target configs during refreshes.
So, lets filter out CONFIG_FRAME_WARN as its set dynamically to prevent it
ending up in more target configs.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Migrate to "new" image generation method. Device profiles will be generated
based on image/Makefile instead of profiles/ , which will also allow to
automatically build images for all supported devices via buildbot.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Calling rtl822x_probe() on phy devices which uses the rtl822x_read_mmd()
and rtl822x_write_mmd() functions makes no sense and the probe ends with
an EOPNOTSUPP error.
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
The mdio bus is used to control externel switch. In most cases, they are
disabled, which is the normal behavior. Treating this as an error makes
no sense, so we need to change the notification level from error to info.
Fixes: a2acdf9607 ("ramips: mt7620: remove useless GMAC nodes")
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
General specification:
SoC Type: MediaTek MT7620A (580MHz)
ROM: 8 MB SPI-NOR (MX25L6406E)
RAM: 64 MB DDR (W9751G6KB-25)
Switch: MediaTek MT7530
Ethernet: 5 ports - 5×100MbE (WAN, LAN1-4)
Wireless: 2.4 GHz (MediaTek RT5390): b/g/n
Wireless: 5 GHz (MediaTek MT7610EN): ac/n
Buttons: 2 button (POWER, WPS/RESET)
Bootloader: U-Boot 1.1.3
Power: 12 VDC, 0.5 A
MACs:
| LAN | [Factory + 0x04] - 2 |
| WLAN 2.4g | [Factory + 0x04] - 1 |
| WLAN 5g | [Factory + 0x8004] - 3 |
| WAN | [Factory + 0x04] - 2 |
OEM easy installation:
1. Use a PC to browse to http://192.168.0.1.
2. Go to the System section and open the Firmware Update section.
3. Under the Local Update at the right, click on the CHOOSE FILE...
4. When a modal window appears, choose the firmware file and click on
the Open.
5. Next click on the UPDATE FIRMWARE button and upload the firmware image.
Wait for the router to flash and reboot.
OEM installation using the TFTP method (need level converter):
1. Download the latest firmware image.
2. Set up a Tftp server on a PC (e.g. Tftpd32) and place the firmware
image to the root directory of the server.
3. Power off the router and use a twisted pair cable to connect the PC
to any of the router's LAN ports.
4. Configure the network adapter of the PC to use IP address 192.168.0.180
and subnet mask 255.255.255.0.
5. Connect serial port (57600 8N1) and turn on the router.
6. Then interrupt "U-Boot Boot Menu" by hitting 2 key (select "2: Load
system code then write to Flash via TFTP.").
7. Press Y key when show "Warning!! Erase Linux in Flash then burn new
one. Are you sure? (Y/N)"
Input device IP (192.168.0.1) ==:192.168.0.1
Input server IP (192.168.0.180) ==:192.168.0.180
Input Linux Kernel filename () ==:firmware_name
The router should download the firmware via TFTP and complete flashing in
a few minutes.
After flashing is complete, use the PC to browse to http://192.168.1.1 or
ssh to proceed with the configuration.
Signed-off-by: Alexey Bartenev <41exey@proton.me>
This is required for managed operation of the SFP ports on
the Ten64 (LS1088A) and other boards.
The two issues resolved are:
- Validation of 10G SFP link modes fail as Linux did not
consider the equivalence of modes like XFI, 10GBase-R
- Fix a locking issue that prevented the system rebooting
when SFP ports were controlled by the SFP driver.
Please note, these patches are replaced by upstream ones
in 6.x, see: commit 61ec9a8154 ("armvirt: add SFP support
patches for NXP Layerscape DPAA2 platforms") in OpenWrt for
the relevant patches.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
The Ten64 board[1] is based around NXP's Layerscape LS1088A SoC.
It is capable of booting both standard Linux distributions
from disk devices, using EFI, and booting OpenWrt
from NAND.
See the online manual for more information, including the
flash layout[2].
This patchset adds support for generating Ten64 images
for NAND boot.
For disk boot, one can use the EFI support that was
recently added to the armvirt target.
We previously supported NAND users by building
inside our armvirt/EFI target[3], but this approach
is not suitable for OpenWrt upstream. Users who
used our supplied NAND images will be able to upgrade
to this via sysupgrade.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
[1] - https://www.traverse.com.au/hardware/ten64
[2] - https://ten64doc.traverse.com.au/hardware/flash/
[3] - Example:
285e4360e1
The ZTE MF287+ is a LTE router used (exclusively?) by the network operator
"3". The MF287 (i.e. non-plus aka 3Neo) is also supported (the only
difference is the LTE modem)
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12 (MF287+) / ZTE Cat6 (MF287)
WiFi: 802.11a/b/g/n/ac SoC-integrated
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m14
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd13 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock13 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 14
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Some ZTE devices require the gpio-restart driver to support restarting the
LTE modem along with OpenWrt
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Specifications:
- Device: Edimax BR-6208AC V2
- SoC: MT7620A
- Flash: 16 MiB
- RAM: 64 MiB
- Switch: 1 WAN, 3 LAN (10/100 Mbps)
- WiFi: MT7620 2.4 GHz + MT7610E 5 GHz
- LEDs: 1x POWER (green, not configurable)
1x Firmware (green, configurable)
1x Internet (green, configurable)
1x VPN (green, configurable)
1x 2.4G (green, not configurable)
1x 5G (green, not configurable)
Normal installation:
- Upload the sysupgrade image via the default web interface
Installation with U-Boot and TFTP:
- Requires a TFTP server which provides the sysupgrade image
- Requires a connection to the serial port of the device, rate 57600
Signed-off-by: Stefan Weil <sw@weilnetz.de>
MikroTik RB951G-2HnD is a wireless SOHO router that was previously
supported by the ar71xx target, see commit 7a709573d7 ("ar71xx: add
kernel support for the Mikrotik RB951G board").
Specifications
--------------
- SoC: Atheros AR9344 (600 MHz)
- RAM: 128 MB (2x 64 MB)
- Storage: 128 MB NAND flash (various manufacturers)
- Ethernet: Atheros AR8327 switch, 5x 10/100/1000 Mbit/s
- 1x PoE in (port 1, 8-30 V input)
- Wireless: Atheros AR9340 (802.11b/g/n)
- USB: 2.0 (1A)
- 8x LED:
- 1x power (green, not configurable)
- 1x user (green, not configurable)
- 5x GE ports (green, not configurable)
- 1x wireless (green, not configurable)
- 1x button (restart)
Unlike on the RB951Ui-2HnD, none of the LEDs on this device seem to be
GPIO-controllable, which was also the case for older OpenWRT versions
that supported this board via a mach file. The Ethernet port LEDs are
controlled by the switch chip.
See https://mikrotik.com/product/RB951G-2HnD for more details.
Flashing
--------
TFTP boot initramfs image and then perform sysupgrade. Follow
common MikroTik procedures at https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
Mikrotik RouterBOARD 951Ui-2HnD and Mikrotik RouterBOARD RB951G-2HnD are
very similar devices. Extract the DTS bits that are identical for these
two boards to a separate DTSI file.
Signed-off-by: Michał Kępień <openwrt@kempniu.pl>
ath79_pll_base was declared as extern but no code exported it.
Anyone including arch/mips/include/asm/mach-ath79/ath79.h and compiled
as a module would break with:
ERROR: modpost: "ath79_pll_base" [drivers/net/ethernet/atheros/ag71xx/ag71xx.ko] undefined!
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Device specifications:
======================
* Qualcomm/Atheros AR9344
* 128 MB of RAM
* 16 MB of SPI NOR flash
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4/5 GHz Wi-Fi
* 4x GPIO-LEDs (1x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* 2x fast ethernet
- lan1
+ builtin switch port 1
+ used as WAN interface
- lan2
+ builtin switch port 2
+ used as LAN interface
* 9-30V DC
* external antennas
Flashing instructions:
======================
Log in to https://192.168.127.253/
Username: admin
Password: moxa
Open Maintenance > Firmware Upgrade and install the factory image.
Serial console access:
======================
Connect a RS232-USB converter to the maintenance port.
Pinout: (reset button left) [GND] [NC] [RX] [TX]
Firmware Recovery:
==================
When the WLAN and SYS LEDs are flashing, the device is in recovery mode.
Serial console access is required to proceed with recovery.
Download the original image from MOXA and rename it to 'awk-1137c.rom'.
Set up a TFTP server at 192.168.127.1 and connect to a lan port.
Follow the instructions on the serial console to start the recovery.
Signed-off-by: Maximilian Martin <mm@simonwunderlich.de>
This commit adds support for Mercusys MR90X(EU) v1 router.
Device specification
--------------------
SoC Type: MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM: MediaTek MT7986BLA (512MB)
Flash: SPI NAND GigaDevice GD5F1GQ5UEYIGY (128 MB)
Ethernet: MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet: 1x2.5Gbe (WAN/LAN 2.5Gbps), 3xGbE (WAN/LAN 1Gbps, LAN1, LAN2)
WLAN 2g: MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g: MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs: 1 orange and 1 green status LEDs, 4 green gpio-controlled
LEDs on ethernet ports
Button: 1 (Reset)
USB ports: No
Power: 12 VDC, 2 A
Connector: Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, both UBI
slots contain "seconduboot" (also U-Boot 2022.01-rc4)
Serial console (UART)
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
|
+--- Don't connect
The R3 (TX line) and R6 (RX line) are absent on the PCB. You should
solder them or solder the jumpers.
Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Once inside OpenWrt, set / update env variables:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Installation (without UART)
---------------------------
1. Login as root via SSH (router IP, port 20001, password - your web
interface password)
2. Open for editing /etc/hotplug.d/iface/65-iptv (e.g., using WinSCP and
SSH settings from the p.1)
3. Add a newline after "#!/bin/sh":
telnetd -l /bin/login.sh
4. Save "65-iptv" file
5. Toggle "IPTV/VLAN Enable" checkbox in the router web interface and
save
6. Make sure that telnetd is running:
netstat -ltunp | grep 23
7. Login via telnet to router IP, port 23 (no username and password are
required)
8 Upload OpenWrt "initramfs-kernel.bin" to the "/tmp" folder of the
router (e.g., using WinSCP and SSH settings from the p.1)
9. Stock busybox doesn't contain ubiupdatevol command. Hence, we need to
download and upload the full version of busybox to the router. For
example, from here:
https://github.com/xerta555/Busybox-Binaries/raw/master/busybox-arm64
Upload busybox-arm64 to the /tmp dir of the router and run:
in the telnet shell:
cd /tmp
chmod a+x busybox-arm64
10. Check "initramfs-kernel.bin" size:
du -h initramfs-kernel.bin
11. Delete old and create new "kernel" volume with appropriate size
(greater than "initramfs-kernel.bin" size):
ubirmvol /dev/ubi0 -N kernel
ubimkvol /dev/ubi0 -n 1 -N kernel -s 9MiB
12. Write OpenWrt "initramfs-kernel.bin" to the flash:
./busybox-arm64 ubiupdatevol /dev/ubi0_1 /tmp/initramfs-kernel.bin
13. u-boot-env can be empty so lets create it (or overwrite it if it
already exists) with the necessary values:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
14. Reboot to OpenWrt initramfs:
reboot
15. Login as root via SSH (IP 192.168.1.1, port 22)
16. Upload OpenWrt sysupgrade.bin image to the /tmp dir of the router
17. Run sysupgrade:
sysupgrade -n /tmp/sysupgrade.bin
Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.1.1/) and
upload the OEM firmware
Recovery (UART)
---------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Do what you need (restore partitions from a backup, install OpenWrt
etc.)
Stock layout
------------
0x000000000000-0x000000200000 : "boot"
0x000000200000-0x000000300000 : "u-boot-env"
0x000000300000-0x000003500000 : "ubi0"
0x000003500000-0x000006700000 : "ubi1"
0x000006700000-0x000006f00000 : "userconfig"
0x000006f00000-0x000007300000 : "tp_data"
ubi0/ubi1 format
----------------
U-Boot at boot checks that all volumes are in place:
+-------------------------------+
| Volume Name: uboot Vol ID: 0|
| Volume Name: kernel Vol ID: 1|
| Volume Name: rootfs Vol ID: 2|
+-------------------------------+
MAC addresses
-------------
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| label | 00:eb:xx:xx:xx:be | label |
| LAN | 00:eb:xx:xx:xx:be | label |
| WAN | 00:eb:xx:xx:xx:bf | label+1 |
| WLAN 2g | 00:eb:xx:xx:xx:be | label |
| WLAN 5g | 00:eb:xx:xx:xx:bd | label-1 |
+---------+-------------------+-----------+
label MAC address was found in UBI partition "tp_data", file
"default-mac". OEM wireless eeprom is also there (file
"MT7986_EEPROM.bin").
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
After migrating to kernel 5.15, upgrading causes the units to become
soft-bricked, hanging forever at the kernel startup.
Kernel size limitation of 4000000 bytes is suspected here, but this is
not fully confirmed.
Disable the images to protect users from inadvertent bricking of units,
because recovery of those is painful with Cisco's U-boot, until the root
cause is found and fixed.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
As already documented in the wiki (https://openwrt.org/toh/wavlink/quantum_dax_wn538a8),
this router is based on the Phicomm K3. Just the flashing method is different
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Previously both lan1 and lan2 leds were wrongly labelled as lan2.
Moreover they were connected to the wrong lan port.
Fixes 8fde82095b ("ramips: add support for Wavlink WL-WN535K1")
Reported-by: Nicolò Maria Semprini <nicosemp@gmail.com>
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Hardware
========
CPU Qualcomm Atheros QCA9558
RAM 256MB DDR2
FLASH 2x 16M SPI-NOR (Macronix MX25L12805D)
WIFI Qualcomm Atheros QCA9558
Atheros AR9590
Installation
============
1. Attach to the serial console of the AP-105.
Interrupt autoboot and change the U-Boot env.
$ setenv rb_openwrt "setenv ipaddr 192.168.1.1;
setenv serverip 192.168.1.66;
netget 0x80060000 ap115.bin; go 0x80060000"
$ setenv fb_openwrt "bank 1;
cp.b 0xbf100040 0x80060000 0x10000; go 0x80060000"
$ setenv bootcmd "run fb_openwrt"
$ saveenv
2. Load the OpenWrt initramfs image on the device using TFTP.
Place the initramfs image as "ap105.bin" in the TFTP server
root directory, connect it to the AP and make the server reachable
at 192.168.1.66/24.
$ run rb_openwrt
3. Once OpenWrt booted, transfer the sysupgrade image to the device
using scp and use sysupgrade to install the firmware.
Signed-off-by: David Bauer <mail@david-bauer.net>
The Arcadyan AR7516, AKA Orange Bright Box or EE Bright Box 1, is a wifi
fast ethernet router, 2.4 GHz single band with two internal antennas. It
comes with a horizontal stand black shiny casing.
Newer Bright Box 1 model stands vertically, and comes with a totally
different board inside, not compatible with this firmware.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 V7.5 @ 320Mhz
- RAM: 64 MB DDR2
- Flash: 8 MB SPI NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: Broadcom BCM43227 802.11bgn (onboard)
- USB: 1x 2.0
- ADSL: yes, unsupported
- Buttons: 2x
- LEDs: 9x, power LED is hardware controlled
- UART: yes
Installation in two steps, new CFE bootloader and firmware:
Install new CFE:
1. Power off the router and press the RESET button
2. Power on the router and wait some seconds
3. Release the RESET button
3. Browse to http://192.168.1.1, this web interface will offer both
firmware (“Software”) upgrade and bootloader upgrade; be sure to
use the bootloader section of the upload form.
4. Upload the new CFE (availabe at the wiki page)
5. Wait about a minute for flashing to finish and reboot into the new bootloader.
Install OpenWrt via new CFE web UI:
1. After installing the new CFE, visit http://192.168.1.1
2. Upload the Openwrt cfe firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Hardware
--------
SOC: MediaTek MT7986
RAM: 1024MB DDR3
FLASH: 128MB SPI-NAND (Winbond)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: Realtek RTL8221B-VB-CG 2.5 N-Base-T PHY with PoE
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Installation
------------
1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
2. Connect the TFTP server to the WAX220. Conect to the serial console,
interrupt the autoboot process by pressing '0' when prompted.
3. Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.2.1
$ setenv serverip 192.168.2.2
$ tftpboot openwrt.bin
$ bootm
4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Signed-off-by: Flole Systems <flole@flole.de>
Signed-off-by: Stefan Agner <stefan@agner.ch>
Zbtlink ZBT-WG1608 is a Wi-Fi router intendent to use with WWAN (4G/5G)
modems.
Specifications:
* SoC: MediaTek MT7621A
* RAM: 256/512 MiB
* Flash: 16/32 MiB (SPI NOR)
* Wi-Fi:
* MediaTek MT7603E : 2.4Ghz
* MediaTek MT7613BE : 5Ghz
* Ethernet: 10/100/1000 Mbps Ethernet x5 ports (4xLAN + WAN)
* M.2: 1x slot with USB&SIM
* EM7455/EM12-G/EM160R/RM500Q-AE
* USB: 1x 3.0 Type-A port
* External storage: 1x microSD (SDXC) slot
* UART: console (115200 baud)
* LED:
* 1 power indicator
* 1 WLAN 2.4G controlled (wlan 2G)
* 3 SoC controlled (wlan 5G, wwan, internet)
* 5 per Eth phy (4xLAN + WAN)
MAC Addresses:
* LAN : f8:5e:3c:xx:xx:e0 (Factory, 0xe000 (hex))
* WAN : f8:5e:3c:xx:xx:e1 (Factory, 0xe006 (hex))
* 2.4 GHz: f8:5e:3c:xx:xx:de (Factory, 0x0004 (hex))
* 5 GHz : f8:5e:3c:xx:xx:df (Factory, 0x8004 (hex))
Installation:
* Vendor's firmware is OpenWrt (LEDE) based, so the sysupgrade image can
be directly used to install OpenWrt. Firmware must be upgraded using the
'force' and 'do not save configuration' command line options (or
correspondig web interface checkboxes) since the vendor firmware is from
the pre-DSA era.
Recovery Mode:
* Press reset button, power up the device, wait for about 10sec.
* Upload sysupgrade image through the firmware recovery mode web page at
192.168.1.1.
Signed-off-by: Kim DoHyoung <azusahmr@k-on.kr>
Aligned to size of mtd-concat partition (firmware)
- in this device we have mtd-concat driver that joins multiple flash partitions
- since sysupgrade works with mtd devices the rootfs partition is already joined
- we can use a bigger sysupgrade image than factory/TFTP install images
Checked on hardware, no issues seen.
No modifications to images other than sysupgrade (i.e. TFTP / recovery images not touched).
Signed-off-by: Russell Morris <rmorris@rkmorris.us>
These patches were earlier mislabled as v6.1 and therefore dropped. They
are in fact from v6.2.
Fixes boot failure on ASUS TUF-AX4200
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The NuCom R5010UNv2 is a wifi fast ethernet router, 2.4 GHz single band
with two external antennas.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 V7.5 @ 320Mhz
- RAM: 64 MB DDR2
- Flash: 16 MB SPI NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: Broadcom BCM43217 802.11bgn (onboard)
- USB: 1x 2.0
- Buttons: 2x
- ADSL: yes, unsupported
- LEDs: 7x
- UART: yes
Installation via CFE web UI:
1. Power off the router and press the RESET button
2. Power on the router and wait 12 or more seconds
3. Release the RESET button
4. Browse to http://192.168.1.1 and upload the Openwrt cfe firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
The data RAC is left disabled by the bootloader in some SoCs, at least in
the core it boots from. Enabling this feature increases the performance up
to +30% depending on the task.
The kernel enables the whole RAC unconditionally on BMIPS3300 CPUs. Enable
the data RAC in a similar way also for BMIPS4350.
Tested on DGND3700 v1 (BCM6368) and HG556a (BCM6358).
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
In pushing and refreshing 6.1 pull request, dbac8e8819 ("ipq806x: 6.1:
copy patches, files and config from 5.15") wasn't correctly updated and
resulted in missing the dts for Netgear XR450. This caused compilation
error with Netgear R7800 or XR500 if testing kernel version was used.
Fix this by adding back the missing dts for Netgear XR450 from kernel
5.15.
Fixes: dbac8e8819 ("ipq806x: 6.1: copy patches, files and config from 5.15")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Critical thermal trips patch got merged upstream, so use the upstreamed
patch and mark it as backport along with the future 6.5 kernel version.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Without it the WAN port won't be initialized properly.
Fixes: 8f578c15b3 ("rockchip: add NanoPi R2C support")
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Currently, Compex WPQ873 images are not including the ath11k BDF-s at all
and this means that there is no WLAN support, so lets include the BDF as
its already packaged.
Fixes: 07c45c0859 ("ipq807x: add support for Compex WPQ873")
Signed-off-by: Robert Marko <robimarko@gmail.com>
Move default cpufreq governor from ONDEMAND to PERFORMANCE. The temp
increase is just 2°C and Watt usage the change is minimal in the order
of additional millwatt. The SoC and krait in general looks to suffer for
some problem with cache scaling. To have better system stability, force
cpu freq and cache freq to the max value supported by the system. This
follows mvebu platform where cpufreq is broken and cause minimal
temp/watt increase.
User can still tweak the governor to ondemand using sysfs entry if
needed.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Now that qualcommax exists as a target and dependencies have been updated
let move ipq807x support to subtarget of qualcommax.
This is mostly copy/paste with the exception of having to update SSDK and
NSS-DP to use CONFIG_TARGET_SUBTARGET.
This is a preparation for later addition of IPQ60xx and IPQ50xx support.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Currently, ipq807x only covers Qualcomm IPQ807x SoC-s.
However, Qualcomm also has IPQ60xx and IPQ50xx SoC-s under the AX WiSoC-s
and they share a lot of stuff with IPQ807x, especially IPQ60xx so to avoid
duplicating kernel patches and everything lets make a common target with
per SoC subtargets.
Start doing that by renaming ipq807x to qualcommax so that dependencies
on ipq807x target can be updated.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Power LED register is wrong at dts. Fix it.
Fixes: 9ceeaf4c6c ("brcm63xx: switch to hardware led controllers")
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
The Comtrend VG-8050 is a wifi gigabit ethernet router, 2.4 GHz single band with
two external antennas.
Hardware:
- SoC: Broadcom BCM63169
- CPU: dual core BMIPS4350 @ 400Mhz
- RAM: 128 MB DDR
- Flash: 128 MB NAND
- LAN switch: Broadcom BCM53125, 5x 1Gbit
- Wifi 2.4 GHz: SoC (BCM63268) 802.11bgn
- USB: 1x 2.0 (optional)
- Buttons: 2x (reset)
- LEDs: yes
- UART: yes
Installation via CFE web UI:
1. Power off the router.
2. Press reset button near the power switch.
3. Keep it pressed while powering up during ~20+ seconds.
4. Browse to http://192.168.1.1 and upload the firmware.
5. Wait a few minutes for it to finish.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
All switch ports are labeled as port@address so let's follow the same pattern.
Fixes: ed79519b8d ("bmips: add support for Netgear DGND3700 v1, DGND3800B")
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The Sercomm AD1018 is a wifi fast ethernet router, 2.4 GHz single band with
two internal antennas.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 @ 320Mhz
- RAM: 64 MB (v1) / 128 MB (v2) DDR
- Flash: 128 MB NAND
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: miniPCI Broadcom BCM43217 802.11bgn
- USB: 1x 2.0
- Buttons: 3x (reset)
- LEDs: yes
- UART: yes
Installation via OEM web UI:
1. Use the admin credentials to login via web UI
2. Go to Managament->Update firmware and select the OpenWrt CFE firmware
3. Press "Update Firmware" button and wait some minutes until it finish
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
This is needed on devices like Sercomm AD1018 for booting recent kernels due
to bigger kernels.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Maintaining bcm63xx is a nightmare due to the amount of devices and patches
required, since every board requires an individual patch due to the lack of
full device tree compatibility.
Moreover, there are a lot of devices supported on this target which won't work
due to not having enough resources (16M-32M of RAM and/or 4M of flash).
Therefore, any development efforts should be focused on bmips and support for
those devices with enough resources should be added on bmips target.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The Actiontec R1000H is a gigabit wifi router, 2.4 GHz single band with
two external antennas. It comes with a coaxial HomePNA port.
Hardware:
- SoC: Broadcom BCM6368
- CPU: dual core BMIPS4350 V3.1 @400Mhz
- RAM: 64 MB DDR
- Flash: 32 MB parallel NOR
- LAN switch: Broadcom BCM53115, 5x 1Gbit
- LAN coaxial : 1x HPNA 3.1, CG3211 + CG3213
- Wifi 2.4 GHz: Broadcom BCM4322 802.11bgn
- USB: 1x 2.0
- Buttons: 2x, 1 reset
- LEDs: 7x
- UART: yes
The HPNA hardware probably needs a firmware to make the coaxial port work.
In the OEM firmware, it's apparently sent with an utility (inhpna) through
the ethernet port.
Installation via CFE web UI:
1. Connect the UART serial port.
2. Power on the router and press enter at the console prompt to stop the
bootloader.
4. Browse to http://192.168.1.1 and upload the OpenWrt CFE firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Now that JFFS2 cleanmarkers are supported on the standard nand_do_upgrade
function we can start using it on bcm63xx.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Now that JFFS2 cleanmarkers are supported on the standard nand_do_upgrade
function we can start using it on bmips.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The DGND3700v2 renames the cferam bootloader from cferam to cfeXXX, where XXX
is the number of firmware upgrades performed by the bootloader. Other bcm63xx
devices rename cferam.000 to cferam.XXX, but this device is special because
the cferam name isn't changed on the first firmware flashing but it's changed
on the subsequent ones.
Therefore, we need to look for "cfe" instead of "cferam" to properly detect
the cferam partition and fix the bootlop.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The DGND3700v2 renames the cferam bootloader from cferam to cfeXXX, where XXX
is the number of firmware upgrades performed by the bootloader. Other bcm63xx
devices rename cferam.000 to cferam.XXX, but this device is special because
the cferam name isn't changed on the first firmware flashing but it's changed
on the subsequent ones.
Therefore, we need to look for "cfe" instead of "cferam" to properly detect
the cferam partition and fix the bootlop.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Some devices rename cferam bootloader using specific patterns and don't follow
broadcom standards for renaming cferam files. This requires supporting
different cferam file names.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
This patch initially introduced in 94b4da9b4a
breaks mvebu devices when using vlan filtering with kernel 5.15 or 6.1,
it was working ok in 5.10.
With this patch, frame that should exit untagged from the switch exit tagged.
Running 'tcpdump -Q out -evnnli eth1' (eth1 being the dsa interface)
- with the hack, frame is sent directly to the
destination port 4 with VID 2, so the switch leave the tag as instructed:
11:22:33:44:55:66 > 77:88:99:aa:bb:cc, Marvell EDSA ethertype 0xdada (Unknown), rsvd 0 0, mode From CPU, target dev 0, port 4, tagged, VID 2, FPri 0, ethertype ARP (0x0806), length 50: Ethernet (len 6), IPv4 (len 4), Request who-has 5.6.7.8 tell 1.2.3.4, length 28
- without the hack, frame is sent to the switch that
performs the forwarding decision and untagging:
11:22:33:44:55:66 > 77:88:99:aa:bb:cc, Marvell EDSA ethertype 0xdada (Unknown), rsvd 0 0, mode Forward, dev 1, port 0, tagged, VID 2, FPri 0, ethertype ARP (0x0806), length 50: Ethernet (len 6), IPv4 (len 4), Request who-has 5.6.7.8 tell 1.2.3.4, length 28
Removing this patch makes my Turris Omnia usable with vlan filtering,
ie wifi device can talk to wired device again.
Using kernel 5.15 some broadcast/multicast traffic is still leaked
(on a VLAN 2 access port I see tagged VLAN 3 frame),
using kernel 6.1 fixes that.
People needing the extra performance should try the bridger package.
Acked-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Etienne Champetier <champetier.etienne@gmail.com>
The Comtrend AR-5381u is a wifi fast ethernet router, 2.4 GHz single band with
two internal antennas.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 @ 320Mhz
- RAM: 64 MB DDR
- Flash: 16 MB SPI NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: miniPCI Broadcom BCM43225 802.11bgn
- USB: 1x 2.0
- Buttons: 1x (reset)
- LEDs: yes
- UART: yes
Installation via CFE web UI:
1. Power off the router.
2. Press reset button near the power switch.
3. Keep it pressed while powering up during ~20+ seconds.
4. Browse to http://192.168.1.1 and upload the firmware.
5. Wait a few minutes for it to finish.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
This was done by executing these commands:
$ ./scripts/kconfig.pl '+' target/linux/generic/config-6.1 /dev/null > target/linux/generic/config-6.1-new
$ mv target/linux/generic/config-6.1-new target/linux/generic/config-6.1
Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
This ports the TP-Link TL-WDR6500 v2 from ar71xx to ath79.
Specifications:
SoC: QCA9561
CPU: 750 MHz
Flash: 8 MiB (Winbond W25Q64FVSIG)
RAM: 128 MiB
WiFi 2.4 GHz: QCA956X 3x3 MIMO 802.11b/g/n
WiFi 5 GHz: QCA9882-BR4A 2x2 MIMO 802.11a/n/ac
Ethernet: 4x LAN and 1x WAN (all 100M)
USB: 1x Header
Flashing instructions:
As it appears, the device does not support flashing via GUI or
TFTP, only serial is possible.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Xiaobing Luo <luoxiaobing0926@gmail.com>
source.codeaurora.org project has been shut down and the nxp
repositories has been moved to github. Update the link reference to the
new location.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
The Comtrend WAP-5813n is a wifi gigabit router, 2.4 GHz single band with
two external antennas.
Hardware:
- SoC: Broadcom BCM6369
- CPU: dual core BMIPS4350 @ 400Mhz
- RAM: 64 MB DDR
- Flash: 8 MB parallel NOR
- LAN switch: Broadcom BCM53115, 5x 1Gbit
- Wifi 2.4 GHz: miniPCI Broadcom BCM4322 802.11bgn
- USB: 1x 2.0 (optional)
- Buttons: 3x (reset)
- LEDs: yes
- UART: yes
Installation via CFE web UI:
1. Power off the router.
2. Press reset button near the power switch.
3. Keep it pressed while powering up during ~20+ seconds.
4. Browse to http://192.168.1.1 and upload the firmware.
5. Wait a few minutes for it to finish.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
move wan port to gmac1 to achieve 2Gbps CPU bandwidth between wan and
lan on YunCore FAP-640
Signed-off-by: Volodymyr Puiul <volodymyr.puiul@gmail.com>
The Comtrend VR-3025un is a wifi gigabit router, 2.4 GHz single band with
two external antennas.
Hardware:
- SoC: Broadcom BCM6368
- CPU: dual core BMIPS4350 @ 400Mhz
- RAM: 64 MB DDR
- Flash: 8 MB parallel NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: miniPCI Broadcom BCM43222 802.11bgn
- USB: 1x 2.0
- Buttons: 1x (reset)
- LEDs: yes
- UART: yes
Installation via CFE web UI:
1. Power off the router.
2. Press reset button near the antenna.
3. Keep it pressed while powering up during ~20+ seconds.
4. Browse to http://192.168.1.1 and upload the firmware.
5. Wait a few minutes for it to finish.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Align all the device tree files and follow the same criteria before more
devices are ported from bcm63xx and this goes out of control.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The Netgear EVG2000 is a wifi gigabit router, 2.4 GHz single band with
two internal antennas integrated in the main PCB.
Hardware:
- SoC: Broadcom BCM6369
- CPU: dual core BMIPS4350 V3.1 @400Mhz
- RAM: 64 MB DDR
- Flash: 16 MB parallel NOR
- LAN switch: Broadcom BCM53115, 5x 1Gbit
- Wifi 2.4 GHz: Broadcom BCM4322 802.11bgn
- USB: 2x 2.0
- Buttons: 2x, 1 reset
- LEDs: 10x
- FXS: 2x
- UART: yes
Installation via CFE web UI:
1. Power off the router and make a temporal TX-RX shortcircuit on the
serial pins.
2. Power on the router and wait 3 or more seconds
3. Remove the TX-RX shortcircuit
4. Browse to http://192.168.1.1 or http://192.168.0.1 and upload the
firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
This adds support for Beeline Smart Box TURBO+ (Serсomm S3 CQR) router.
Device specification
--------------------
SoC Type: MediaTek MT7621AT (880 MHz, 2 cores)
RAM (Nanya NT5CC64M16GP): 128 MiB
Flash (Macronix MX30LF1G18AC): 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615N): a/n/ac, 4x4
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
USB ports: 1xUSB3.0
Buttons: 2 button (reset, wps)
LEDs: Red, Green, Blue
Zigbee (EFR32MG1B232GG): 3.0
Stock bootloader: U-Boot 1.1.3
Power: 12 VDC, 1.5 A
Installation (fw 2.0.9)
-----------------------
1. Login to the web interface under SuperUser (root) credentials.
Password: SDXXXXXXXXXX, where SDXXXXXXXXXX is serial number of the
device written on the backplate stick.
2. Navigate to Setting -> WAN. Add:
Name - WAN1
Connection Type - Static
IP Address - 172.16.0.1
Netmask - 255.255.255.0
Save -> Apply. Set default: WAN1
3. Enable SSH and HTTP on WAN. Setting -> Remote control. Add:
Protocol - SSH
Port - 22
IP Address - 172.16.0.1
Netmask - 255.255.255.0
WAN Interface - WAN1
Save ->Apply
Add:
Protocol - HTTP
Port - 80
IP Address - 172.16.0.1
Netmask - 255.255.255.0
WAN interface - WAN1
Save -> Apply
4. Set up your PC ethernet:
Connection Type - Static
IP Address - 172.16.0.2
Netmask - 255.255.255.0
Gateway - 172.16.0.1
5. Connect PC using ethernet cable to the WAN port of the router
6. Connect to the router using SSH shell under SuperUser account
7. Make a mtd backup (optional, see related section)
8. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
9. Login to the router web interface under admin account
10. Remove dots from the OpenWrt factory image filename
11. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 172.16.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 171.16.0.2
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
MAC Addresses (fw 2.0.9)
------------------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | *:e8 |
| WAN | label + 1 | *:e9 |
| 2g | label + 4 | *:ec |
| 5g | label + 5 | *:ed |
+-----+------------+---------+
The label MAC address was found in Factory 0x21000
Factory image format
--------------------
+---+-------------------+-------------+--------------------+
| # | Offset | Size | Description |
+---+-------------------+-------------+--------------------+
| 1 | 0x0 | 0x200 | Tag Header Factory |
| 2 | 0x200 | 0x100 | Tag Header Kernel1 |
| 3 | 0x300 | 0x100 | Tag Header Kernel2 |
| 4 | 0x400 | SIZE_KERNEL | Kernel |
| 5 | 0x400+SIZE_KERNEL | SIZE_ROOTFS | RootFS(UBI) |
+---+-------------------+-------------+--------------------+
Co-authored-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
Now that the armvirt target supports real hardware, not just
VMs, thanks to the addition of EFI, rename it to something
more appropriate.
'armsr' (Arm SystemReady) was chosen after the name of
the Arm standards program.
The 32 and 64 bit targets have also been renamed
armv7 and armv8 respectively, to allow future profiles
where required (such as armv9).
See https://developer.arm.com/documentation/102858/0100/Introduction
for more information.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
armvirt was migrated to 6.1 as part of the EFI implementation.
As we are renaming the target, there is no need to take the old
kernel configs with us.
See abcb30d ("armvirt: switch to kernel 6.1") for the previous
change.
Signed-off-by: Mathew McBride <matt@traverse.com.au>
Having initramfs image built with same config as on buildbots:
CONFIG_TARGET_MULTI_PROFILE=y
CONFIG_TARGET_ALL_PROFILES=y
CONFIG_TARGET_PER_DEVICE_ROOTFS=y
Its currently impossible to flash/recover the device using that image as
losetup is missing:
root@OpenWrt:/# sysupgrade -v /tmp/openwrt-ipq807x-generic-prpl_haze-squashfs-sysupgrade.bin
...
/lib/upgrade/do_stage2: line 38: losetup: not found
Failed to detach all loop devices. Skip this try.
So lets fix it by including the needed utils for sysupgrade in
DEFAULT_PACKAGES set.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Backport patch supporting "big" kernel symbols. This is needed for
powerpc arch that seems to suffer from this problem when
CONFIG_ALL_KMODS is selected and fail to compile with the error:
Inconsistent kallsyms data
Try make KALLSYMS_EXTRA_PASS=1 as a workaround
Backport this patch to handle these corner case.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Backport upstream fix for PowerPC that fix VDSO executable stack warning
for the boot wrapper.
Fix the compilation error:
powerpc-openwrt-linux-musl-ld.bin: warning: div64.o: missing .note.GNU-stack section implies executable stack
powerpc-openwrt-linux-musl-ld.bin: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
powerpc-openwrt-linux-musl-ld.bin: warning: arch/powerpc/boot/simpleImage.ws-ap3825i has a LOAD segment with RWX permissions
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
The Netgear DGND3700 v1 and DGND3800B are the same device but with
different factory firmwares. It's an xDSL wifi router with a slim black
shiny casing and 4 PCB internal antennas connected via UFL to a miniPCI
detachable card.
Hardware:
- SoC: Broadcom BCM6368
- CPU: dual core BMIPS4350 V3.1 @400Mhz
- RAM: 128 MB DDR
- NOR Flash: 32 MB parallel (CFE and OS)
- NAND flash: 128 MB (empty)
- Ethernet LAN: 5x 1Gbit
- Wifi 2.4 GHz: Broadcom BCM43222 802.11bgn
- Wifi 5 GHz: Broadcom BCM43222 802.11abgn
- USB: 2x 2.0
- Buttons: 3x, 1 reset
- LEDs: 11x
- UART: yes
Installation via OEM web UI:
1. Open the Netgear administration web interface, by default:
http://192.168.0.1
user: admin
password: password
2. Look for "upgrade firmware" and proceed
3. Wait some minutes until it finishes
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Random_ether_addr() is a helper function which was kept for backward
compatibility. It is available in the kernel from version 3.6 to 5.16.
In newer kernel verions, it has been completely replaced by eth_random_addr().
There should be no functional changes.
Ref: ba530fea8c
Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
The network configuration at first boot for TOZED ZLT S12 PRO lacks setting
up the LAN and WAN network interfaces. Address this. The WAN port is
advertised as WAN/LAN on the device and is put on LAN on stock firmware so
put it on LAN here as well.
Fixes: ce1f9fa625 ("ramips: add support for TOZED ZLT S12 PRO")
Reported-by: Andre Cruz <me@1conan.com>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
though, ata-dwc is built-in on the target already.
Fixes: fd9dc10530 ("apm821xx: make ata-dwc as a standalone module")
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This allows booting bigger ramdisk images via TFTP at the cost of breaking 32M
RAM compatibility, but those devices have been unable to boot ramdisks on this
target for some time anyway due to not having enough RAM.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The Observa VH4032N is an xDSL wifi router with a vertical white casing
and two internal antennas connected via UFL.
Hardware:
- SoC: Broadcom BCM6368
- CPU: dual core BMIPS4350 V3.1 @400MHz
- RAM: 128 MB DDR
- Flash: 32 MB parallel NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4/5 GHz: onboard Broadcom BCM43222 802.11abgn
- USB: 3x 2.0
- Buttons: 2x, 1 reset
- LEDs: 8x, blue and red
- UART: 1x
Installation via OEM web UI:
1. Use the admin credentials to login via web UI
2. Go to Managament->Update firmware and select the OpenWrt CFE firmware
3. Press "Update Firmware" button and wait some minutes until it finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Due to the amount of patches from the RPi foundation, maintaining two kernels
version is an insane effort.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Now that critical trips are defined for all thermal zones in the SOC DTSI
there is no need to duplicate them in AC and HK DTSI.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Kernel 6.1 has started actually enforcing the bindings requirment that
thermal zones must have associated trips described as well, otherwise they
will fail during probing with:
[ 0.865494] thermal_sys: Failed to find 'trips' node
[ 0.867254] thermal_sys: Failed to find trip points for thermal-sensor id=4
[ 0.872271] thermal_sys: Failed to find 'trips' node
[ 0.878898] thermal_sys: Failed to find trip points for thermal-sensor id=5
[ 0.884222] thermal_sys: Failed to find 'trips' node
[ 0.890775] thermal_sys: Failed to find trip points for thermal-sensor id=6
[ 0.896073] thermal_sys: Failed to find 'trips' node
[ 0.902668] thermal_sys: Failed to find trip points for thermal-sensor id=7
[ 0.907964] thermal_sys: Failed to find 'trips' node
[ 0.914569] thermal_sys: Failed to find trip points for thermal-sensor id=8
[ 0.921203] thermal_sys: Failed to find 'trips' node
[ 0.926469] thermal_sys: Failed to find trip points for thermal-sensor id=14
[ 0.931759] thermal_sys: Failed to find 'trips' node
[ 0.938703] thermal_sys: Failed to find trip points for thermal-sensor id=15
So, since CPUFreq support isnt yet upstream we can start by adding critical
trips to all of the thermal zones to protect the devices against severely
overheating.
Qualcomm has set the overheat trip at 120 C but lets be conservative and
set it at 110 C.
This patch has been sent upstream as well.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Move the Qualcomm SoC ID bindings that are used by the CPUFreq NVMEM
driver that was recently backported to generic from ipq807x as that series
depends on SoC ID bindings but they were forgotten.
Due to that IPQ806x builds would fail as the backport was still in ipq807x.
Fixes: d44279 ("generic: 6.1: backport Qualcomm CPUFreq NVMEM changes")
Signed-off-by: Robert Marko <robimarko@gmail.com>
Recent binutils will warn if there is no .note.GNU-stack section and will
interpret that as that stack is executable.
So, lets modify the upstream 6.1 fix as in 5.15 VDSO32 and VDSO64 are still
separate but later they were merged to resolve:
/external-toolchain/openwrt-toolchain-mpc85xx-p1020_gcc-12.3.0_musl.Linux-x86_64/toolchain-powerpc_8548_gcc-12.3.0_musl/bin/../lib/gcc/powerpc-openwrt-linux-musl/12.3.0/../../../../powerpc-openwrt-linux-musl/bin/ld: warning: arch/powerpc/kernel/vdso32/getcpu.o: missing .note.GNU-stack section implies executable stack
/external-toolchain/openwrt-toolchain-mpc85xx-p1020_gcc-12.3.0_musl.Linux-x86_64/toolchain-powerpc_8548_gcc-12.3.0_musl/bin/../lib/gcc/powerpc-openwrt-linux-musl/12.3.0/../../../../powerpc-openwrt-linux-musl/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
Signed-off-by: Robert Marko <robimarko@gmail.com>
The compilation warning was triggered by wrongly set FRAME_WARN to 1024
even for 64bit. This was recently fix by correctly setting the
FRAME_WARN to 2048 for 64bit systems.
The compilation warning would still be triggered on 32bit system but the
actual code is never reached as ARCH_USE_GNU_PROPERTY is only set on
arm64 arch.
Drop the patch as kmalloc cause perf regression as suggested by upstream
maintainers.
Fixes: fa79baf4a6 ("generic: copy backport, hack, pending patch and config from 5.15 to 6.1")
Fixes: 5913ea1ba2 ("generic: 5.15: add pending patch fixing binfmt compilation warning")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Instead of reference vlan and do strange subtraction, use the handy
struct_group() to create a virtual struct of the same size of the
members. This permits to have a more secure memset and fix compilation
warning in 6.1 where additional checks are done.
Fix compilation warning:
| inlined from 'psb6970_reset_switch' at drivers/net/phy/psb6970.c:275:2:
| ./include/linux/fortify-string.h:314:25: error: call to '__write_overflow_field'
| declared with attribute warning: detected write beyond size of field
| (1st parameter); maybe use struct_group()? [-Werror=attribute-warning]
| 314 | __write_overflow_field(p_size_field, size);
| | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|cc1: all warnings being treated as errors
Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
Previously, CONFIG_LZ4_DECOMPRESS=y was selected by CONFIG_RD_LZ4 only.
When building kernel for initramfs, CONFIG_RD_LZ4 will be unset by
Kernel/SetInitramfs if the chosen compression method is not lz4, then
CONFIG_LZ4_DECOMPRESS will become a *module* in the newly generated
kernel config.
However, the newly added module won't be built after
38c150612c, so packaging kmod-lib-lz4
fails due to missing lz4_decompress.ko.
CONFIG_CRYPTO_LZ4=y makes CONFIG_LZ4_DECOMPRESS=y being selected w/o
CONFIG_RD_LZ4, so that the modules of the default kernel and initramfs
kernel are consistent.
Fixes: #12766
Fixes: 38c150612c ("build: revert 54070a1 (all kernels are >= 5.10)")
Signed-off-by: Jitao Lu <dianlujitao@gmail.com>
The device already has LED push button (KEY_LIGHTS_TOGGLE)
and exported GPIO control "led-light". This commit adds
button handler script for switching on/off all device LEDs.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Most of the CPUFreq NVMEM patches have been upstreamed in an improved way.
IPQ8074 support itself is being reviewed upstream currently.
Upstreamed patches have been moved to generic backports so that ipq806x can
use them as well, so lets just use the latest version of IPQ8074 support
that is being reviewed upstream.
Runtime tested on Qnap 301W (IPQ8072A) and Xiaomi AX3600 (IPQ8071A).
Signed-off-by: Robert Marko <robimarko@gmail.com>
Currently, IPQ807x is using CPUFreq NVMEM for dealing with different SoC
SKU-s having different frequency limits, and we are keeping the patches
for it in ipq807x target.
However, we managed to upstream a big cleanup of the driver in order to
make it possible for other SMEM based targets to be added to CPUFreq NVMEM.
IPQ806x will be using CPUFreq NVMEM and depends on these changes as well,
so lets put them in generic backport to avoid code duplication.
This replaces the older patches in ipq807x.
Signed-off-by: Robert Marko <robimarko@gmail.com>
MDT loader fix for remoteproc was already merged, so mark it as a backport
with the future 6.5 kernel version.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Refresh the kernel config as multiple options were disabled in the generic
config since 6.1 was added to ipq807x.
Signed-off-by: Robert Marko <robimarko@gmail.com>
We are running out of 00xx numbers to put backports into, so lets just
renumber all of the upstreamed patches back to 0000 and onwards.
Signed-off-by: Robert Marko <robimarko@gmail.com>
The MT7986 RFB was intended to use device tree overlays and for that
reason modified DTC_FLAGS. zyxel_ex5601-t0-stock later on probably
copied it from there. Both boards do not actually use device tree
overlays, so remove setting DTC_FLAGS from both.
The BPi-R3 does use device tree overlays, use DEVICE_DTC_FLAGS to give
it an extra 4kb of padding for overlays to be applied.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Backport initial LEDs hw control support. Currently this is limited to
only rx/tx and link events for the netdev trigger but the API got
accepted and the additional modes are working on and will be backported
later.
Refresh every patch and add the additional config flag for QCA8K new
LEDs support.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
If the board comes up with OpenWrt that means that the bootloader is
recent enough and knows about the new device tree overlays.
Using /etc/board.d/ is not enough in this case because it doesn't
overwrite existing configuration which may exist (and is fine to exist)
if the user updated with 'sysupgrade -F *.itb' and has kept
configuration. They would still need to manually set compat_version
even though the fact that the bootloader env has been updated can be
implied by the fact that the system has started.
Hence we can always set compat_version=1.1 for those two boards using
uci-defaults.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Sync device tree files for MT7986 boards with what landed in upstream
Linux tree to easy maintainance and also allow for a smooth update to
Linux 6.1.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Now that it is possible to load several device tree overlays by
appending their config names to bootconf the uImage.FIT partition
parser need to discard everything after the first '#' character in
bootconf when looking up the config node to be used.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Now that 6.1 is the default kernel, there is no reason to keep 5.15 around
as I dont plan to maintain it anymore so lets remove it.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Now that 6.1 kernel is working fine on ipq807x , lets switch to 6.1 as the
default kernel as its increasingly hard to keep backporting upstreamed
changes to 5.15.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Backport Russell King's series [1]
net: mvneta: reduce size of TSO header allocation
to pending-5.15 to fix random crashes on Turris Omnia.
This also backports two patches that are dependencies to this series:
net: mvneta: Delete unused variable
net: mvneta: fix potential double-frees in mvneta_txq_sw_deinit()
[1] https://lore.kernel.org/netdev/ZCsbJ4nG+So%2Fn9qY@shell.armlinux.org.uk/
Signed-off-by: Marek Behún <kabel@kernel.org>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> (squashed)
One is never to write to dev->addr directly. In 6.1 it will be a const and
with the newly enabled WERROR, we get a failing grade.
Lets fix this ahead of time.
Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>
We are missing a bunch of headers, which trigger errors on 6.1, probably
due to changed header-in-header dependencies. Best add them now.
Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>