Sometimes the mmc deivce may come up later than kernel attempts to
mount rootfs, resulting kernel panic. Enable rootwait to fix it.
Reported-by: Yangyu Chen <cyy@cyyself.name>
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/15077
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Sometimes the mmc deivce may come up later than kernel attempts to
mount rootfs, resulting kernel panic. Enable rootwait to fix it.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Make sure patch sequence number is unique by moving patch
440-add-jdcloud_re-cp-03.patch -> 441-add-jdcloud_re-cp-03.patch
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 2302a7c5ad)
Netgear EAX12, EAX11v2, EAX15v2 are wall-plug 802.11ax (Wi-Fi 6)
extenders that share the SoC, WiFi chip, and image format with the
WAX202.
Specifications:
* MT7621, 256 MiB RAM, 128 MiB NAND
* MT7915: 2.4/5 GHz 2x2 802.11ax (DBDC)
* Ethernet: 1 port 10/100/1000
* UART: 115200 baud (labeled on board)
All LEDs and buttons appear to work without state_default.
Installation:
* Flash the factory image through the stock web interface, or TFTP to
the bootloader. NMRP can be used to TFTP without opening the case.
Revert to stock firmware:
* Flash the stock firmware to the bootloader using TFTP/NMRP.
References in GPL source:
https://www.downloads.netgear.com/files/GPL/EAX12_EAX11v2_EAX15v2_GPL_V1.0.3.34_src.tar.gz
* target/linux/ramips/dts/mt7621-rfb-ax-nand.dts
DTS file for this device.
Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
(cherry picked from commit 32ea8a9a7e)
General specification:
SoC Type: MediaTek MT7620A (580MHz)
ROM: 8 MB SPI-NOR (MX25L6406E)
RAM: 64 MB DDR (W9751G6KB-25)
Switch: MediaTek MT7530
Ethernet: 5 ports - 5×100MbE (WAN, LAN1-4)
Wireless: 2.4 GHz (MediaTek RT5390): b/g/n
Wireless: 5 GHz (MediaTek MT7610EN): ac/n
Buttons: 2 button (POWER, WPS/RESET)
Bootloader: U-Boot 1.1.3
Power: 12 VDC, 0.5 A
MACs:
| LAN | [Factory + 0x04] - 2 |
| WLAN 2.4g | [Factory + 0x04] - 1 |
| WLAN 5g | [Factory + 0x8004] - 3 |
| WAN | [Factory + 0x04] - 2 |
OEM easy installation:
1. Use a PC to browse to http://192.168.0.1.
2. Go to the System section and open the Firmware Update section.
3. Under the Local Update at the right, click on the CHOOSE FILE...
4. When a modal window appears, choose the firmware file and click on
the Open.
5. Next click on the UPDATE FIRMWARE button and upload the firmware image.
Wait for the router to flash and reboot.
OEM installation using the TFTP method (need level converter):
1. Download the latest firmware image.
2. Set up a Tftp server on a PC (e.g. Tftpd32) and place the firmware
image to the root directory of the server.
3. Power off the router and use a twisted pair cable to connect the PC
to any of the router's LAN ports.
4. Configure the network adapter of the PC to use IP address 192.168.0.180
and subnet mask 255.255.255.0.
5. Connect serial port (57600 8N1) and turn on the router.
6. Then interrupt "U-Boot Boot Menu" by hitting 2 key (select "2: Load
system code then write to Flash via TFTP.").
7. Press Y key when show "Warning!! Erase Linux in Flash then burn new
one. Are you sure? (Y/N)"
Input device IP (192.168.0.1) ==:192.168.0.1
Input server IP (192.168.0.180) ==:192.168.0.180
Input Linux Kernel filename () ==:firmware_name
The router should download the firmware via TFTP and complete flashing in
a few minutes.
After flashing is complete, use the PC to browse to http://192.168.1.1 or
ssh to proceed with the configuration.
Signed-off-by: Alexey Bartenev <41exey@proton.me>
(cherry picked from commit ce998cb6e1)
Specification:
- MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
- MT7531 switch
- 512MB RAM
- 128MB NAND flash with two UBI partitions with identical size
- 1 multi color LED (red, green, blue, white) connected via GCA230718
- 3 buttons (WPS, reset, LED on/off)
- 1 1Gbit WAN port
- 4 1Gbit LAN ports
Disassembly:
- There are four screws at the bottom: 2 under the rubber feets, 2 under the label.
- After removing the screws, the white plastic part can be shifted out of the blue part.
- Be careful because the antennas are mounted on the side and the top of the white part.
Serial Interface
- The serial interface can be connected to the 4 pin holes on the side of the board.
- Pins (from front to rear):
- 3.3V
- RX
- TX
- GND
- Settings: 115200, 8N1
MAC addresses:
- WAN MAC is stored in partition "Odm" at offset 0x81
- LAN (as printed on the device) is WAN MAC + 1
- WLAN MAC (2.4 GHz) is WAN MAC + 2
- WLAN MAC (5GHz) is WAN MAC + 3
Flashing via Recovery Web Interface:
- The recovery web interface always flashes to the currently active partition.
- If OpenWrt is flahsed to the second partition, it will not boot.
- Ensure that you have an OEM image available (encrypted and decrypted version). Decryption is described in the end.
- Set your IP address to 192.168.200.10, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Download openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-recovery.bin
- The recovery web interface always reports successful flashing, even if it fails
- After flashing, the recovery web interface will try to forward the browser to 192.168.0.1 (can be ignored)
- If OpenWrt was flashed to the first partition, OpenWrt will boot (The status LED will start blinking white and stay white in the end). In this case you're done and can use OpenWrt.
- If OpenWrt was flashed to the second partition, OpenWrt won't boot (The status LED will stay red forever). In this case, the following steps are reuqired:
- Start the web recovery interface again and flash the **decrypted OEM image**. This will be flashed to the second partition as well. The OEM firmware web interface is afterwards accessible via http://192.168.200.1.
- Now flash the **encrypted OEM image** via OEM firmware web interface. In this case, the new firmware is flashed to the first partition. After flashing and the following reboot, the OEM firmware web interface should still be accessible via http://192.168.200.1.
- Start the web recovery interface again and flash the OpenWrt recovery image. Now it will be flashed to the first partition, OpenWrt will boot correctly afterwards and is accessible via 192.168.1.1.
Flashing via U-Boot:
- Open the case, connect to the UART console
- Set your IP address to 192.168.200.2, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-initramfs-kernel.bin.
- Power on the device and select "7. Load image" in the U-Boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
- The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
- Perform a sysupgrade using openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-sysupgrade.bin
- Reboot the device. OpenWrt should start from flash now
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.200.2, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
- Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
- Run ./m32-firmware-util M30 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
- Example for firmware M30A1_FW101B05: ./m32-firmware-util M30 --DecryptFactoryImage M30A1_FW101B05\(0725091522\).bin M30A1_FW101B05\(0725091522\)_decrypted.bin
Flashing via OEM web interface is not possible, as it will change the active partition and OpenWrt is only running on the first UBI partition.
Controlling the LEDs:
- The LEDs are controlled by a chip called "GCA230718" which is connected to the main CPU via I2C (address 0x40)
- I didn't find any documentation or driver for it, so the information below is purely based on my investigations
- If there is already I driver for it, please tell me. Maybe I didn't search enough
- I implemented a kernel module (leds-gca230718) to access the LEDs via DTS
- The LED controller supports PWM for brightness control and ramp control for smooth blinking. This is not implemented in the driver
- The LED controller supports toggling (on -> off -> on -> off) where the brightness of the LEDs can be set individually for each on cycle
- Until now, only simple active/inactive control is implemented (like when the LEDs would have been connected via GPIO)
- Controlling the LEDs requires three sequences sent to the chip. Each sequence consists of
- A reset command (0x81 0xE4) written to register 0x00
- A control command (for example 0x0C 0x02 0x01 0x00 0x00 0x00 0xFF 0x01 0x00 0x00 0x00 0xFF 0x87 written to register 0x03)
- The reset command is always the same
- In the control command
- byte 0 is always the same
- byte 1 (0x02 in the example above) must be changed in every sequence: 0x02 -> 0x01 -> 0x03)
- byte 2 is set to 0x01 which disables toggling. 0x02 would be LED toggling without ramp control, 0x03 would be toggling with ramp control
- byte 3 to 6 define the brightness values for the LEDs (R,G,B,W) for the first on cycle when toggling
- byte 7 defines the toggling frequency (if toggling enabled)
- byte 8 to 11 define the brightness values for the LEDs (R,G,B,W) for the second on cycle when toggling
- byte 12 is constant 0x87
Comparison to M32/R32:
- The algorithms for decrypting the OEM firmware are the same for M30/M32/R32, only the keys differ
- The keys are available in the GPL sources for the M32
- The M32/R32 contained raw data in the firmware images (kernel, rootfs), the R30 uses a sysupgrade tar instead
- Creation of the recovery image is quite similar, only the header start string changes. So mostly takeover from M32/R32 for that.
- Turned out that the bytes at offset 0x0E and 0x0F in the recovery image header are the checksum over the data area
- This checksum was not checked in the recovery web interface of M32/R32 devices, but is now active in R30
- I adapted the recovery image creation to also calculate the checksum over the data area
- The recovery image header for M30 contains addresses which don't match the memory layout in the DTS. The same addresses are also present in the OEM images
- The recovery web interface either calculates the correct addresses from it or has it's own logic to determine where which information must be written
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
(cherry picked from commit 29cca6cfee)
The vendor uboot requires special fit verification.
So add a custom uboot build for this device.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
(cherry picked from commit 0170666d89)
The vendor U-Boot has enabled signature verification, so add
a custom U-Boot build for OpenWrt.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
(cherry picked from commit 6fa4fbbc52)
R32 is like the M32 part of the EAGLE PRO AI series from D-Link.
Specification:
- MT7622BV SoC with 2.4GHz wifi
- MT7975AN + MT7915AN for 5GHz
- MT7531BE Switch
- 512MB RAM
- 128 MB flash
- 2 LEDs (Status and Internet, both can be either orange or white)
- 2 buttons (WPS and Reset)
Compared to M32, the R32 has the following differences:
- 4 LAN ports instead of 2
- The recory image starts with DLK6E6015001 instaed of DLK6E6010001
- Individual LEDs for power and internet
- MAC address is stored at another offset in the ODM partition
MAC addresses:
- WAN MAC is stored in partition "Odm" at offset 0x81
- LAN (as printed on the device) is WAN MAC + 1
- WLAN MAC (2.4 GHz) is WAN MAC + 2
- WLAN MAC (5GHz) is WAN MAC + 3
Flashing via Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the internet LED blinks fast
- Open a Chromium based and goto http://192.168.0.1
- Download openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-a1-squashfs-recovery.bin
Flashing via uBoot:
- Open the case, connect to the UART console
- Set your IP address to 10.10.10.3, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-initramfs-kernel.bin.
- You can rename the file to iverson_uImage (no extension), then you don't have to enter the whole file name in uboot later.
- Power on the device and select "1. System Load Linux to SDRAM via TFTP." in the boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
- The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
- Create a backup of the Kernel1 partition, this file is required if a revert to stock should be done later
- Perform a sysupgrade using openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-squashfs-sysupgrade.bin
- Reboot the device. OpenWrt should start from flash now
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the internet LED blinks fast
- Open a Chromium based and goto http://192.168.0.1
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
- Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
- Run ./m32-firmware-util R32 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
- Example for firmware R32A1_FW103B01: ./m32-firmware-util R32 --DecryptFactoryImage R32A1_FW103B01.bin R32A1_FW103B01.decrypted.bin
Revert back to stock using uBoot:
- Open the case, connect to the UART console
- Set your IP address to 10.10.10.3, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides the previously created backup of the Kernel1 partition.
- You can rename the file to iverson_uImage (no extension), then you don't have to enter the whole file name in uboot later.
- Power on the device and select "2. System Load Linux Kernel then write to Flash via TFTP." in the boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to FLASH will start. After a few seconds the stock firmware should start again
There is also an image openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-a1-squashfs-tftp.bin which can directly be flashed via U-Boot and TFTP.
It can be used if no backup of the Kernel1 partition is reuqired.
Flahsing via OEM web interface is currently not possible, the OEM images are encrypted. Creating images is only possible manually at the moment.
The support for the M32/R32 already includes support for flashing from the OEM web interface:
- The device tree contains both partitions (Kernel1 and Kernel2) with conditions to select the correct one based on the kernel command line
- The U-Boot variable "boot_part" is set accordingly during startup to finish the partition swap after flashing from the OEM web interface
- OpenWrt sysupgrade flashing always uses the partition where it was initially flashed to (no partition swap)
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
(cherry picked from commit fdb87a91b4)
Link: https://github.com/openwrt/openwrt/pull/15776
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Comfast CF-E393AX is a dual-band Wi-Fi 6 POE ceiling mount access point.
Oem firmware is a custom openwrt 21.02 snapshot version.
We can gain access via ssh once we remove the root password.
Hardware specification:
SoC: MediaTek MT7981A 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB DDR3
Ethernet: 1x 10/100/1000 Mbps built-in PHY (WAN)
1x 10/100/1000/2500 Mbps MaxLinear GPY211C (LAN)
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976D
LEDS: 1x (Red, Blue and Green)
Button: Reset
UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | VCC GND TX RX | <= |
| ----------------- |
--------------------------
Gain SSH access:
1. Login into web interface (http://apipaddress/computer/login.html),
and download the
configuration(http://apipaddress/computer/config.html).
2. Rename downloaded backup config - 'backup.file to backup.tar.gz',
Enter 'fakeroot' command then decompress the configuration:
tar -zxf backup.tar.gz
3. Edit 'etc/shadow', update (remove) root password:
With password =
'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
to
Without password =
'root::0:99999:7:::'
'root::0:99999:7:::'
4. Repack 'etc' directory back to a new backup file:
tar -zcf backup-ssh.tar.gz etc/
5. Rename new config tar.gz file to 'backup-ssh.file'
Exit fakeroot - 'exit'
6. Upload new configuration via web interface, now you
can SSH with the following:
'ssh -vv -o HostKeyAlgorithms=+ssh-rsa \
-o PubkeyAcceptedAlgorithms=+ssh-rsa root@192.168.10.1'.
Backup the mtd partitions
- https://openwrt.org/docs/guide-user/installation/generic.backup
7. Copy openwrt factory firmware to the tmp folder to install via ssh:
'scp -o HostKeyAlgorithms=+ssh-rsa \
-o PubkeyAcceptedAlgorithms=+ssh-rsa \
*-mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin \
root@192.168.10.1:/tmp/'
'sysupgrade -n -F \
/tmp/*--mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin'
8. Once led has stopped flashing - Connect via ssh with the
default openwrt ip address - 'ssh root@192.168.1.1'
9. SSH copy the openwrt sysupgrade firmware and upgrade
as per the default instructions.
Signed-off-by: David Bentham <db260179@gmail.com>
(cherry picked from commit d8f4453bf2)
Specifications:
SoC: MediaTek MT7981B
RAM: 256MiB
Flash: SPI-NAND 128 MiB
Switch: 1 WAN, 3 LAN (Gigabit)
Buttons: Reset, Mesh
Power: DC 12V 1A
WiFi: MT7976CN
UART: 115200n8
UART Layout:
VCC-RX-TX-GND
No. of Antennas: 6
Note: Upon opening the router, only 5 antennas were connected
to the mainboard.
Led Layout:
Power-Mesh-5gwifi-WAN-LAN3-LAN2-LAN1-2gWiFi
Buttons:
Reset-Mesh
Installation:
A. Through OpenWrt Dashboard:
If your router comes with OpenWrt preinstalled (modified by the seller),
you can easily upgrade by going to the dashboard (192.168.1.1) and then
navigate to System -> Backup/Flash firmware, then flash the firmware
B. Through TFTP
Standard installation via UART:
1. Connect USB Serial Adapter to the UART, (NOTE: Don't connect the VCC pin).
2. Power on the router. Make sure that you can access your router via UART.
3. Restart the router then repeatedly press ctrl + c to skip default boot.
4. Type > bootmenu
5. Press '2' to select upgrade firmware
6. Press 'Y' on 'Run image after upgrading?'
7. Press '0' and hit 'enter' to select TFTP client (default)
8. Fill the U-Boot's IP address and TFTP server's IP address.
9. Finally, enter the 'firmware' filename.
Signed-off-by: Ian Oderon <ianoderon@gmail.com>
(cherry picked from commit 4300bc6688)
This reverts commit dcdcfc1511.
This is a firmware for third-party u-boot mod, which should not
be carried here by us.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
(cherry picked from commit 1b7e62b20b)
This reverts commit 997ff740dc.
78cbd5apick as it should be fixed in commit 78cbd5a57e11 ("tools: macOS:
types.h: fix missing unsigned types").
References: #13833
Signed-off-by: Petr Štetiar <ynezz@true.cz>
(cherry picked from commit f691830307)
This reverts commit 3cc57ba462 as it
should be fixed in commit 78cbd5a57e11 ("tools: macOS: types.h: fix
missing unsigned types").
References: #13833
Signed-off-by: Petr Štetiar <ynezz@true.cz>
(cherry picked from commit bc47613cf0)
Huawei AP5030DN is a dual-band, dual-radio 802.11ac Wave 1 3x3 MIMO
enterprise access point with two Gigabit Ethernet ports and PoE
support.
Hardware highlights:
- CPU: QCA9550 SoC at 720MHz
- RAM: 256MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: QCA9550-internal radio
- Wi-Fi 5GHz: QCA9880 PCIe WLAN SoC
- Ethernet 1: 10/100/1000 Mbps Ethernet through Broadcom B50612E PHY
- Ethernet 2: 10/100/1000 Mbps Ethernet through Marvell 88E1510 PHY
- PoE: input through Ethernet 1 port
- Standalone 12V/2A power input
- Serial console externally available through RJ45 port
- External watchdog: SGM706 (1.6s timeout)
Serial console:
9600n8 (9600 baud, no stop bits, no parity, 8 data bits)
MAC addresses:
Each device has 32 consecutive MAC addresses allocated by
the vendor, which don't overlap between devices.
This was confirmed with multiple devices with consecutive
serial numbers.
The MAC address range starts with the address on the label.
To be able to distinguish between the interfaces,
the following MAC address scheme is used:
- eth0 = label MAC
- eth1 = label MAC + 1
- radio0 (Wi-Fi 5GHz) = label MAC + 2
- radio1 (Wi-Fi 2.4GHz) = label MAC + 3
Installation:
0. Connect some sort of RJ45-to-USB adapter to "Console" port of the AP
1. Power up the AP
2. At prompt "Press f or F to stop Auto-Boot in 3 seconds",
do what they say.
Log in with default admin password "admin@huawei.com".
3. Boot the OpenWrt initramfs from TFTP using the hidden script
"run ramboot". Replace IP address as needed:
> setenv serverip 192.168.1.10
> setenv ipaddr 192.168.1.1
> setenv rambootfile
openwrt-ath79-generic-huawei_ap5030dn-initramfs-kernel.bin
> saveenv
> run ramboot
4. Optional but recommended as the factory firmware cannot
be downloaded publicly:
Back up contents of "firmware" partition using the web interface or ssh:
$ ssh root@192.168.1.1 cat /dev/mtd11 > huawei_ap5030dn_fw_backup.bin
5. Run sysupgrade using sysupgrade image. OpenWrt
shall boot from flash afterwards.
Return to factory firmware (using firmware upgrade package downloaded from
non-public Huawei website):
1. Start a TFTP server in the directory where
the firmware upgrade package is located
2. Boot to u-boot as described above
3. Install firmware upgrade package and format the config partitions:
> update system FatAP5X30XN_SOMEVERSION.bin
> format_fs
Return to factory firmware (from previously created backup):
1. Copy over the firmware partition backup to /tmp,
for example using scp
2. Use sysupgrade with force to restore the backup:
sysupgrade -F huawei_ap5030dn_fw_backup.bin
3. Boot AP to U-Boot as described above
Quirks and known issues
-----------------------
- On initial power-up, the Huawei-modified bootloader suspends both
ethernet PHYs (it sets the "Power Down" bit in the MII control
register). Unfortunately, at the time of the initial port, the kernel
driver for the B50612E/BCM54612E PHY behind eth0 doesn't have a resume
callback defined which would clear this bit. This makes the PHY unusable
since it remains suspended forever. This is why the backported kernel
patches in this commit are required which add this callback and for
completeness also a suspend callback.
- The stock firmware has a semi dual boot concept where the primary
kernel uses a squashfs as root partition and the secondary kernel uses
an initramfs. This dual boot concept is circumvented on purpose to gain
more flash space and since the stock firmware's flash layout isn't
compatible with mtdsplit.
- The external watchdog's timeout of 1.6s is very hard to satisfy
during bootup. This is why the GPIO15 pin connected to the watchdog input
is configured directly in the LZMA loader to output the CPU_CLK/4 signal
which keeps the watchdog happy until the wdt-gpio kernel driver takes
over. Because it would also take too long to read the whole kernel image
from flash, the uImage header only includes the loader which then reads
the kernel image from flash after GPIO15 is configured.
Signed-off-by: Marco von Rosenberg <marcovr@selfnet.de>
[fixed 6.6 backport patch naming]
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 06cdc07f8c)
This adds support for the Iomega ix4-200d device in uboot-envtools.
Signed-off-by: Sander van Deijck <sander@vandeijck.com>
(cherry picked from commit 2cfe86d383)
The ubootmod bootlaoder for EX5601-T0 uses two partitions
in ubi to store enviroment variables. so proper config
is needed.
Signed-off-by: Nicolò Veronese <nicveronese@gmail.com>
(cherry picked from commit 2a0805fd3d)
Flash procedure is described in next commit.
TLDR:
Copy preloader and uboot to /tmp and write them in the mtd.
This will also require new UBI partition and
volumes to boot openwrt.
mtd write /tmp/openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-preloader.bin bl2
mtd write /tmp/openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-bl31-uboot.fip fip
Changelist:
- Added profile for 4k+256 SPI NAND_TYPE
- Added basic Zyxel EX5601-T0 uboot profile
Backported from hitech95 branch:
- Button RESET pin fix
- Button WPS pin fix
Signed-off-by: Valerio 'ftp21' Mancini <ftp21@ftp21.eu>
Signed-off-by: Nicolò Veronese <nicveronese@gmail.com>
(cherry picked from commit a9cf87027e)
(based on support for ASUS RT-AX59U by liushiyou006)
SOC: MediaTek MT7986
RAM: 512MB DDR4
FLASH: 128MB SPI-NAND (Winbond W25N01GV)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: MediaTek MT7531 Switch
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Upgrade from AsusWRT to OpenWRT using UART
Download the OpenWrt initramfs image.
Copy the image to a TFTP server reachable at 192.168.1.70/24. Rename the image to rtax59u.bin.
Connect the PC with TFTP server to the RT-AX59U.
Set a static ip on the ethernet interface of your PC.
(ip address: 192.168.1.70, subnet mask:255.255.255.0)
Conect to the serial console, interrupt the autoboot process by pressing '4' when prompted.
Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.1.1
$ setenv serverip 192.168.1.70
$ tftpboot 0x46000000 rtax59u.bin
$ bootm 0x46000000
Wait for OpenWrt to boot. Transfer the sysupgrade image to the device using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Upgrade from AsusWRT to OpenWRT using WebUI
Download transit TRX file from https://drive.google.com/drive/folders/1A20QdjK7Udagu31FSszpWAk8-cGlCwsq
Upgrade firmware from WebUI (192.168.50.1) using downloaded TRX file
Wait for OpenWRT to boot (192.168.1.1).
Upgrade system with sysupgrade image using luci or uploading it through scp and executing sysupgrade command
MAC Address for WLAN 5g is not following the same algorithm as in AsusWRT.
We have increased by one the WLAN 5g to avoid collisions with other networks from WLAN 2g
when bit 28 is already set.
: Stock : OpenWrt
WLAN 2g (1) : C8:xx:xx:0D:xx:D4 : C8:xx:xx:0D:xx:D4
WLAN 2g (2) : : CA:xx:xx:0D:xx:D4
WLAN 2g (3) : : CE:xx:xx:0D:xx:D4
WLAN 5g (1) : CA:xx:xx:1D:xx:D4 : CA:xx:xx:1D:xx:D5
WLAN 5g (2) : : CE:xx:xx:1D:xx:D5
WLAN 5g (3) : : C2:xx:xx:1D:xx:D5
WLAN 2g (1) : 08:xx:xx:76:xx:BE : 08:xx:xx:76:xx:BE
WLAN 2g (2) : : 0A:xx:xx:76:xx:BE
WLAN 2g (3) : : 0E:xx:xx:76:xx:BE
WLAN 5g (1) : 0A:xx:xx:76:xx:BE : 0A:xx:xx:76:xx:BF
WLAN 5g (2) : : 0E:xx:xx:76:xx:BF
WLAN 5g (3) : : 02:xx:xx:76:xx:BF
Signed-off-by: Xavier Franquet <xavier@franquet.es>
(cherry picked from commit 782eb05008)
Rostelecom RT-FE-1A is a wireless WiFi 5 router manufactured by Sercomm
company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: No
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Power (green, unmanaged)
- 1x Status (green, gpio)
- 1x 2.4G (green, hardware, mt76-phy0)
- 1x 2.4G (blue, gpio)
- 1x 5G (green, hardware, mt76-phy1)
- 1x 5G (blue, gpio)
- 5x Ethernet (green, hardware, 4x LAN & WAN)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface (default http://192.168.0.1/)
under "admin" account
2. Navigate to Settings -> Configuration -> Save to Computer
3. Decode the configuration. For example, using cfgtool.py tool (see
related section):
cfgtool.py -u configurationBackup.cfg
4. Open configurationBackup.xml and find the following block:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="<some value>" writable="1" encryption="1" password="1" />
</OBJECT>
5. Replace <some value> by a new superadmin password and add a line
which enabling superadmin login after. For example, the block after
the changes:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="s0meP@ss" writable="1" encryption="1" password="1" />
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
</OBJECT>
6. Encode the configuration. For example, using cfgtool.py tool:
cfgtool.py -p configurationBackup.xml
7. Upload the changed configuration (configurationBackup_changed.cfg) to
the router
8. Login to the router web interface (superadmin:xxxxxxxxxx, where
xxxxxxxxxx is a new password from the p.5)
9. Enable SSH access to the router (Settings -> Access control -> SSH)
10. Connect to the router using SSH shell using superadmin account
11. Run in SSH shell:
sh
12. Make a mtd backup (optional, see related section)
13. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
14. Login to the router web interface under admin account
15. Remove dots from the OpenWrt factory image filename
16. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 192.168.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 192.168.0.2
MAC Addresses
-------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | f4:*:66 |
| WAN | label + 11 | f4:*:71 |
| 2g | label + 2 | f4:*:68 |
| 5g | label + 3 | f4:*:69 |
+-----+------------+---------+
The label MAC address was found in Factory, 0x21000
cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit f3cdc9f988)
Specifications:
SoC: MediaTek MT7981B
RAM: 1024MiB
Flash: SPI-NAND 128 MiB
Switch: 1 WAN, 4 LAN (Gigabit)
USB: two M.2 slots for 5G modems via USB 3.0 hub, external USB 3.0 port
Buttons: Reset, Mesh
Power: DC 12V 1A
WiFi: MT7976CN
UART: 115200n8
UART Layout:
VCC-RX-TX-GND
Installation:
A. Through OpenWrt Dashboard:
If your router comes with OpenWrt preinstalled (modified by the seller),
you can easily upgrade by going to the dashboard (192.168.1.1) and then
navigate to System -> Backup/Flash firmware, then flash the firmware
B. Through TFTP
Standard installation via UART:
1. Connect USB Serial Adapter to the UART, (NOTE: Don't connect the VCC pin).
2. Power on the router. Make sure that you can access your router via UART.
3. Restart the router then repeatedly press ctrl + c to skip default boot.
4. Type > bootmenu
5. Press '2' to select upgrade firmware
6. Press 'Y' on 'Run image after upgrading?'
7. Press '0' and hit 'enter' to select TFTP client (default)
8. Fill the U-Boot's IP address and TFTP server's IP address.
9. Finally, enter the 'firmware' filename.
Based on patch adding support for similar Zbtlink ZBT-Z8103AX device by
Ian Ishmael C. Oderon.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit c8c2f52262)
The vendor uboot will verify firmware at boot.
So add a custom uboot build for this device.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
(cherry picked from commit b42c527228)
**Hardware specification:**
- SoC: MediaTek MT7981B 2x A53
- Flash: ESMT F50L1G41LB 128MB
- RAM: Nanya NT5CC128M16JR-EK 256MB
- Ethernet: 4 x 10/100/1000 Mbps
- Switch: MediaTek MT7531AE
- WiFi: MediaTek MT7976C
- Button: Reset, Mesh
- Power: DC 12V 1A
- UART: 3.3v, 115200n8
| Layout: |
| :-------- |
| <Antenna> |
| VCC |
| GND |
| Tx |
| Rx |
**Flash instructions:**
1. Rename `openwrt-mediatek-filogic-cetron_ct3003-squashfs-factory.bin` to `factory.bin`.
2. Upload the `factory.bin` using the device's Web interface.
3. Click the upgrade button and wait for the process to finish.
4. Access the OpenWrt interface using the same password.
5. Use the 'Restore' function to reset the firmware to its initial state.
**Notes:**
If you plan to recovery the stock firmware in the future, it's advisable
to connect the device via the serial port and enter failsafe mode to
back up all the MTD partitions before proceeding the steps above.
Signed-off-by: Patricia Lee <patricialee320@gmail.com>
(cherry picked from commit 907e9e0bd3)
Telenor quirks
--------------
The operator specific firmware running on the Telenor branded
ZyXEL EX5700 includes U-Boot modifications affecting the OpenWrt
installation.
Notable changes to U-Boot include
- environment is stored in RAM and reset to defaults when power
cycled
- dual partition scheme with "nomimal" or "rescue" systems, falling
back to "rescue" unless the OS signals success in 3 attempts
- several runtime additions to the device-tree
Some of these modifications have side effects requiring workarounds
- U-Boot modifies /chosen/bootargs in an unsafe manner, and will crash
unless this node exists
- U-Boot verifies that the selected rootfs UBI volume exists, and
refuses to boot if it doesn't. The chosen "rootfs" volume must contain
a squashfs signature even for tftp or initramfs booting.
- U-Boot parses the "factoryparams" UBI volume, setting the "ethaddr"
variable to the label mac. But "factoryparams" does not always
exist. Instead there is a "RIP" volume containing all the factory
data. Copying the "RIP" volume to "factoryparams" will fix this
Hardware
--------
SOC: MediaTek MT7986
RAM: 1GB DDR4
FLASH: 512MB SPI-NAND (Mikron xxx)
WIFI: Mediatek MT7986 802.11ax 5 GHz
Mediatek MT7916 DBDC 802.11ax 2.4 + 6 GHz
ETH: MediaTek MT7531 Switch + SoC
3 x builtin 1G phy (lan1, lan2, lan3)
2 x MaxLinear GPY211C 2.5 N-Base-T phy (lan4, wan)
USB: 1 x USB 3.2 Enhanced SuperSpeed port
UART: 3V3 115200 8N1 (Pinout: GND KEY RX TX VCC)
Installation
------------
1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
reachable at 192.168.1.2/24. Rename the image to C0A80101.img.
2. Connect the TFTP server to lan1, lan2 or lan3. Connect to the serial
console, Interrupt the autoboot process by pressing ESC when prompted.
3. Download and boot the OpenWrt initramfs image.
$ env set uboot_bootcount 0
$ env set firmware nominal
$ tftpboot
$ bootm
4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Missing features
----------------
- The "lan1", "lan2" and "lan3" port LEDs are driven by the switch but
OpenWrt does not correctly configure the output.
- The "lan4" and "wan" port LEDs are driven by the GPH211C phys and
not configured by OpenWrt.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
(cherry picked from commit 6cc14bf66a)
Add configuration to access U-Boot environment on MeiG SLT866.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit f8414f1a6f)
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 64GB eMMC or 128 MB SPI-NAND
RAM: 512MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, Mesh
Power: DC 12V 1A
- UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | GND TX VCC RX | <= |
| ----------------- |
--------------------------
Gain SSH access:
1. Login into web interface, and download the configuration.
2. Enter fakeroot, decompress the configuration:
tar -zxf cfg_export_config_file.conf
3. Edit 'etc/config/dropbear', set 'enable' to '1'.
4. Edit 'etc/shadow', update (remove) root password:
'root::19523:0:99999:7:::'
5. Repack 'etc' directory:
tar -zcf cfg_export_config_file.conf etc/
* If you find an error about 'etc/wireless/mediatek/DBDC_card0.dat',
just ignore it.
6. Upload new configuration via web interface, now you can SSH to RAX3000M.
Check stroage type:
Check the label on the back of the device:
"CH EC CMIIT ID: xxxx" is eMMC version
"CH CMIIT ID: xxxx" is NAND version
eMMC Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'factory' part.
('data' partition can be ignored, it's useless.)
2. Write new GPT table:
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-gpt.bin of=/dev/mmcblk0 bs=512 seek=0 count=34 conv=fsync
3. Erase and write new BL2:
echo 0 > /sys/block/mmcblk0boot0/force_ro
dd if=/dev/zero of=/dev/mmcblk0boot0 bs=512 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-preloader.bin of=/dev/mmcblk0boot0 bs=512 conv=fsync
4. Erase and write new FIP:
dd if=/dev/zero of=/dev/mmcblk0 bs=512 seek=13312 count=8192 conv=fsync
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-emmc-bl31-uboot.fip of=/dev/mmcblk0 bs=512 seek=13312 conv=fsync
5. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
6. Serve OpenWrt initramfs image using TFTP server.
7. Cut off the power and re-engage, wait for TFTP recovery to complete.
8. After OpenWrt has booted, perform sysupgrade.
9. Additionally, if you want to have eMMC recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
dd if=openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb of=/dev/mmcblk0p4 bs=512 conv=fsync
NAND Flash instructions:
1. SSH to RAX3000M, and backup everything, especially 'Factory' part.
2. Erase and write new BL2:
mtd erase BL2
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-preloader.bin BL2
3. Erase and write new FIP:
mtd erase FIP
mtd write openwrt-mediatek-filogic-cmcc_rax3000m-nand-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, erase UBI volumes:
ubidetach -p /dev/mtd0
ubiformat -y /dev/mtd0
ubiattach -p /dev/mtd0
8. Create new ubootenv volumes:
ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
9. Additionally, if you want to have NAND recovery boot feature:
(Don't worry! You will always have TFTP recovery boot feature.)
ubimkvol /dev/ubi0 -n 2 -N recovery -s 20MiB
ubiupdatevol /dev/ubi0_2 openwrt-mediatek-filogic-cmcc_rax3000m-initramfs-recovery.itb
10. Perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
(cherry picked from commit 423186d7d8)
[rebased to 23.05]
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
The OEM U-Boot uses dual boot and signature verification which does not
support by OpenWrt. So add a custom U-Boot build for OpenWrt.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
(cherry picked from commit fddd735dd5)
With patch 101-03-spi-mtk_spim-get-spi-clk-rate-only-once.patch
a new system to calculate the SPI clocks has been added.
Unfortunately, the do_div macro overrides the global
priv->pll_clk_rate field. This will cause to have a reduced
clock rate on each subsequent SPI call.
Signed-off-by: Valerio 'ftp21' Mancini <ftp21@ftp21.eu>
Signed-off-by: Nicolò Veronese <nicveronese@gmail.com>
(cherry picked from commit 8849ccb995)
It must read the entire image for previous code of 'imsz' or 'imszb'.
Signed-off-by: Jianhui Zhao <zhaojh329@gmail.com>
Suggested-by: Chuanhong Guo <gch981213@gmail.com>
(cherry picked from commit 3bbc1d5fba)
Improve and package builds for various boot media configurations of the
MediaTek MT7981 reference board.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 8428bed15d)
When adding builds for MT7981 the related Makefile sections for MT7986
have apparently been copied, but in one instance the rename from 7986 to
7981 has been omitted. Fix that now.
Fixes: 602cb4f325 ("arm-trusted-firmware-mediatek: add build for MT7981 DDR3")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit be6e257fe6)
Commit 572ea68070 ("uboot-mediatek: add patches for MT7988 and
builds for RFB") renamed HSGMII to 2500basex, but forgot to update
the dts of Redmi Router AX6000, makes the network unusable.
This patch makes the network usable again.
Fixes: #13724
Fixes: 572ea68070 ("uboot-mediatek: add patches for MT7988 and builds for RFB")
Signed-off-by: Furong Xu <xfr@outlook.com>
(cherry picked from commit 03987d2d11)
With recent updates of TF-A the previously already fixed bug slipped
back into the source tree. Again, reorder bl2 init for MT7622 and
initialize WDT only after DRAM init has completed to avoid the
notorious hang.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 948ad2ec7a)
Sync SPI-NAND/ECC controller driver for MT7622, MT7981, MT7986 and MT7988:
* Platform data for MT7981 was actually missing and is now added.
* Add support for Winbond W25N01KV 1Gbit chip.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 9725524235)
Always enable built-in 2.5G PHY on MT7988 for now, so that it can be
used. In future it would be nice to be able to switch power and MDIO
access via address 0 at run-time in Linux, both, to be able to use
external PHYs at address 0 and to reduce power consumption on systems
not using the built-in 2.5G PHY.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 33046d2a47)
The U-Boot build for the MT7988 reference board booting from SD card
wrongly depended on the 'ddr4' variant of the ARM TrustedFirmware-A build
even though the 'comb' variant is used. Fix that dependency.
Fixes: 572ea68070 ("uboot-mediatek: add patches for MT7988 and builds for RFB")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 78e3adcaf9)
While the v2 is nearly identical to v1, v3 uses a different PHY and
needs a different build for Ethernet to work in U-Boot.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit fff4441135)
Select many potentially useful options for the MT7988 RFB U-Boot builds.
The resulting loader is intended as a development tool and intends to be
generic. It does *not* have a default bootcmd set, but allows to boot
pretty much everything, including EFI executables.
To install this U-Boot build to the eMMC:
opkg install mmc-utils partx-utils
mmc bootpart enable 1 1 /dev/mmcblk0
echo 0 > /sys/block/mmcblk0boot0/force_ro
dd if=*mediatek_mt7988a-rfb-nand-emmc-preloader.bin of=/dev/mmcblk0boot0
dd if=*mediatek_mt7988a-rfb-nand-emmc-gpt.bin of=/dev/mmcblk0
partx -a /dev/mmcblk0
dd if=*mediatek_mt7988a-rfb-nand-emmc-bl31-uboot.fip of=/dev/mmcblk0p3
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
(cherry picked from commit 1d5778e18d)
Fix compatible string to match what is supported upstream, fix alignment
and order MTD partitions according to offset.
Signed-off-by: Stefan Agner <stefan@agner.ch>
(cherry picked from commit 4af06aaf33)
Add u-boot env config for Xiaomi mi-mini for using fw_printenv and fw_setenv on this board
Signed-off-by: Ivan Pavlov <AuthorReflex@gmail.com>
(cherry picked from commit a87bc138cf)