The former is deprecated in favor of nvmem-layout. In preparation for
eventual removal from the kernel, do so here.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16097
Signed-off-by: Robert Marko <robimarko@gmail.com>
The former is deprecated in favor of nvmem-layout. In preparation for
eventual removal from the kernel, do so here.
Some of these are leftovers from nvmem-layout conversion.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16097
Signed-off-by: Robert Marko <robimarko@gmail.com>
Specification:
- MT7986 CPU using 2.4GHz and 5GHz WiFi (both AX)
- MT7531 switch
- 512MB RAM
- 128MB NAND flash (MX35LF1GE4AB-Z4I) with two UBI partitions with identical size
- 1 multi color LED (red, green, blue, white) connected via GCA230718 (Same as D-Link M30 A1)
- 3 buttons (WPS, reset, LED on/off)
- 1x 2.5 Gbit WAN port with Maxlinear GPY211C
- 4x 1 Gbit LAN ports
Disassembly:
- There are five screws at the bottom: 2 under the rubber feet, 3 under the label.
- After removing the screws, the white plastic part can be shifted out of the blue part.
- Be careful because the antennas are mounted on the side and the top of the white part.
Serial Interface
- The serial interface can be connected to the 4 pin holes next to/under the antenna cables.
- Note that there is another set of 4 pin holes on the side of the board, it's not used.
- Pins (from front to rear):
- 3.3V (do not connect)
- TX
- RX
- GND
- Settings: 115200, 8N1
MAC addresses:
- MAC address is stored in partition "Odm" at offset 0x81 (for example XX:XX:XX:XX:XX:52)
- MAC address on the device label is ODM + 1 (for example XX:XX:XX:XX:XX:53)
- WAN MAC is the one from the ODM partition (for example XX:XX:XX:XX:XX:52)
- LAN MAC is the one from the ODM partition + 1 (for example XX:XX:XX:XX:XX:53)
- WLAN MAC (2.4 GHz) is the one from the ODM partition + 2 (for example (XX:XX:XX:XX:XX:54)
- WLAN MAC (5 GHz) is the one from the ODM partition + 5 (for example (XX:XX:XX:XX:XX:57)
Flashing via OEM web interface:
- Currently not supported because image crypto is not known
Flashing via recovery web interface:
- This is only working if the first partition is active because recovery images are always flashed to the active partition and OpenWrt can only be executed from the first partition
- Use a Chromium based browser, otherwise firmware upgrade might not work
- Recovery web interface is accessible via 192.168.200.1 after keeping the reset button pressed during start of the device until the LED blinks red
- Upload the recovery image, this will take some time. LED will continue flashing red during the update process
- The after flashing, the recovery web interface redirects to http://192.168.0.1. This can be ignored. OpenWrt is accessible via 192.168.1.1 after flashing
- If the first partition isn't the active partition, OpenWrt will hang during the boot process. In this case:
- Download the recovery image from https://github.com/RolandoMagico/openwrt/releases/tag/M60-Recovery-UBI-Switch (UBI switch image)
- Enable recovery web interface again and load the UBI switch image. This image works on the second partition of the M60
- OpenWrt should boot now as expected. After booting, flash the normal OpenWrt sysupgrade image (for example in the OpenWrt web interface)
- Flashing a sysupgrade image from the UBI switch image will make the first partition the active partition and from now on, default OpenWrt images can be used
Flashing via Initramfs:
- Before switching to OpenWrt, ensure that both partitions contain OEM firmware.
- This can be achieved by re-flashing the same OEM firmware version again via the OEM web interface.
- Flashing via OEM web interface will automatically flash the currently not active partition.
- Open router, connect serial interface
- Start a TFTP server at 192.168.200.2 and provide the initramfs image there
- When starting the router, select "7. Load Image" in U-Boot
- Settings for load address, load method can be kept as they are
- Specify host and router IP address if you use different ones than the default (Router 192.168.200.1, TFTP server 192.168.200.2)
- Enter the file name of the initramfs image
- Confirm "Run loaded data now?" question after loading the image with "Y"
- OpenWrt initramfs will start now
- Before flashing OpenWrt, create a backup of the "ubi" partition. It is required when reverting back to OEM
- Flash sysupgrade image to flash, during flashing the U-Boot variable sw_tryactive will be set to 0
- During next boot, U-Boot tries to boot from the ubi partition. If it fails, it will switch to the ubi1 partition
Reverting back to OEM:
- Boot the initramfs image as described in "Flashing via Initramfs" above
- Copy the backed up ubi partition to /tmp (e.g. by using SCP)
- Write the backup to the UBI partition: mtd write /tmp/OpenWrt.mtd4.ubi.bin /dev/mtd4
- Reboot the device, OEM firmware will start now
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17296
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Tenbay WR3000K is an 802.11ax (Wi-Fi 6) router, based on MediaTek MT7981B.
- SoC: MetiaTek MT7981B
- RAM: Hynex H5TQ2G863GFR 512MiB
- Flash: Winbond W25N01GVZEIG 128MiB
- Wi-Fi: MediaTek MT7976C (2.4GHz/5GHz, 802.11ax, 2x2 MIMO, AX3000)
- MediaTek MT7915E: 2.4GHz and 5GHz
- Ethernet: 1x 10/100/1000 Mbps WAN + 3x 10/100/1000 Mbps LAN
- Switch: MediaTek MT7531AE
- UART: J4 (115200 baud)
- LEDs: Power
- Buttons: Reset, WPS
- PWR: 12V/1A DC, 5.5×2.1 connector
| Vendor | OpenWrt Interface | Address | Notes |
|---------|-------------------|---------------|------------------------------------------------|
| WAN | wan | Label MAC | Stored MAC in factory + offset 4, label MAC is Stored MAC - 2 |
| LAN | br-lan | Label MAC+1 | |
| 2.4GHz | phy0-ap0 | Label MAC + 2 | |
| 5GHz | phy1-ap0 | Label MAC + 3 | |
- 0x000000000000-0x000000100000 : "BL2"
- 0x000000100000-0x000000180000 : "u-boot-env"
- 0x000000180000-0x000000380000 : "Factory"
- 0x000000380000-0x000000580000 : "FIP"
- 0x000000580000-0x000003580000 : "ubi"
- 0x000003580000-0x000006580000 : "ubi1"
- 0x000006580000-0x0000065a0000 : "Product"
- 0x0000065a0000-0x000007580000 : "Custom"
- The original partition-Ubi partition-Ubi1 is an AB dual system, and Openwrt only uses Ubi. So flash requires modifying the uboot variable `boot_from=ubi` to ensure that it only starts from Ubi.
- The Product and Custom partitions are original and only exist to align with the original layout; they are not used by OpenWrt.
- id: 0, kernel
- id: 1, rootfs
- id: 2, rootfs_data
- **USB-to-TTL Serial Adapter** (e.g., CH340 or CP2102).
- **Dupont Wires** (male-to-male, 3 wires).
- **PC/Laptop** with a serial communication tool.
- Screwdriver (to open the router case).
1. **OpenWrt Firmware**:
- Download the appropriate `wr3000k-<build_time>-mediatek-filogic-tenbay_wr3000k-squashfs-sysupgrade.bin` firmware file for your router from the [OpenWrt website](https://openwrt.org/).
2. **Serial Communication Tool**:
- Windows: PuTTY, Tera Term.
- Linux/Mac: Minicom, screen.
3. (Optional) **TFTP Server**:
- Install a TFTP server like Tftpd64 or tftp-hpa.
---
1. Open the router casing and locate the **TX, RX, and GND** pins.
2. Connect the router pins to the USB-to-TTL adapter as follows:
- **TX (router)** → **RX (adapter)**
- **RX (router)** → **TX (adapter)**
- **GND (router)** → **GND (adapter)**
3. Do **not** connect the VCC pin to avoid damage.
- **Baud rate**: 115200
- **Data bits**: 8
- **Stop bits**: 1
- **Parity**: None
- **Flow control**: None
---
1. Power on the router and observe the serial terminal output.
2. When prompted (e.g., `Hit any key to stop autoboot: 3`), press the '/' key quickly to interrupt the boot process.
3. You will see the U-Boot Boot Menu:
```plaintext
*** U-Boot Boot Menu ***
1. Factory mode
2. Startup system (Default)
3. Upgrade firmware
4. Upgrade ATF BL2
5. Upgrade ATF FIP
6. Upgrade single image
7. Load image
0. U-Boot console
Press UP/DOWN to move, ENTER to select, ESC/CTRL+C to quit
```
4. Select Option 0 by typing 0 and pressing Enter.
5. Input into
```plaintext
MT7981> setenv boot_from ubi
MT7981> saveenv
Saving Environment to MTD... Erasing on MTD device 'nmbm0'... OK
Writing to MTD device 'nmbm0'... OK
OK
MT7981> printenv
baudrate=115200
boot_from=ubi
...
```
the above indicates system will start from *ubi*.
and then type
```plaintext
MT7981> reset
```
will boot from *ubi*
1. Power on the router and observe the serial terminal output.
2. When prompted (e.g., `Hit any key to stop autoboot: 3`), press the '/' key quickly to interrupt the boot process.
3. You will see the U-Boot Boot Menu:
```plaintext
*** U-Boot Boot Menu ***
1. Factory mode
2. Startup system (Default)
3. Upgrade firmware
4. Upgrade ATF BL2
5. Upgrade ATF FIP
6. Upgrade single image
7. Load image
0. U-Boot console
Press UP/DOWN to move, ENTER to select, ESC/CTRL+C to quit
```
4. Choose Option 3: Upgrade Firmware
Enter Upgrade Mode
Select Option 3 by typing 3 and pressing Enter.
Upgrade Methods
You will be prompted to choose between:
```plaintext
*** Upgrading Firmware ***
Run image after upgrading? (Y/n): y
Available load methods:
0 - TFTP client (Default)
1 - Xmodem
2 - Ymodem
3 - Kermit
4 - S-Record
5 - RAM
Select (enter for default): 0
Input U-Boot's IP address: 192.168.1.1
Input TFTP server's IP address: 192.168.1.10
Input IP netmask: 255.255.255.0
Input file name: wr3000k-<build_time>-mediatek-filogic-tenbay_wr3000k-squashfs-sysupgrade.bin
```
Type Enter to proceed. The router will erase the old firmware and write the new one.
Signed-off-by: Jianyu Zhuang <xzjianyu@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17172
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Hardware:
SoC: MT7981b
RAM: 512 MB
Flash: 256 MB SPI NAND
Ethernet:
1x2.5Gbps (rtl8221b)
WiFi: 2x2 MT7981
Button: Reset
LED: 1x multicolor
Installation
------------
At the moment, firmware installation is only possible via a transition firmware.
It's can be requested from the manufacturer by email to support@cudy.com
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17225
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The board has been redesigned due to previous hardware bugs
(with other reasons maybe).
Changes in new board:
- Added a gpio beeper
- Added a Atmel i2c eeprom
- Added a Atmel i2c ECC accelerator
- Added a Philips RTC module
- Added two RS485
- Removed WPS button
- Replaced USB3 port with M.2 B-key for LTE modules
- Swapped GbE LEDs gpio
Also assigned wifi mac with nvmem binding, added iface setup for failsafe,
increased phy assert time for rtl8221b, and updated LED labels.
Keeping compatibility for old version is not necessary here as only
few samples were sent to those interested in it.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/17253
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Sets openwrt,netdev-name for the gmac nodes in the dts of BPI-R4 which
correspond to the two sfp slots. By default they are automatically
named as eth1 and eth2 in bad order, however 'SFP1-WAN' and 'SFP2-LAN'
are printed on the PCB and the official metal case has labels 'SFP-WAN'
and 'SFP-LAN'. Thus, label the ports accordingly to match the
board/case labels.
The COMPAT_VERSION is increased to denote that configuration has to be
adjusted manually.
Signed-off-by: Jonas Jelonek <jelonek.jonas@gmail.com>
Sets openwrt,netdev-name for the gmac1 node in the dts of BPI-R3, which
corresponds to the sfp1 slot, to have a proper naming and match the
label on the official BPI-R3 metal case. This renames the port from eth1
to sfp1.
The COMPAT_VERSION is increased to denote that configuration has to be
adjusted manually.
Signed-off-by: Jonas Jelonek <jelonek.jonas@gmail.com>
Add support in filogic subtarget for our own custom property
`openwrt,netdev-name` in the device tree instead of `label` for
renaming interfaces. This was suggested upstream to avoid potential
conflicts [1].
[1] https://lore.kernel.org/netdev/20240709124503.pubki5nwjfbedhhy@skbuf/
Signed-off-by: Jonas Jelonek <jelonek.jonas@gmail.com>
NRadio C8-668GL is a Wi-Fi 6 5G cellular router based on MediaTek MT7981B SoC.
- **SoC**: MediaTek MT7981B (2x Cortex-A53, 1.3GHz)
- **RAM**: Nanya NT5AD512M16C4-JR 1GB DDR4
- **Flash**: ESMT FC51L08SFY3A 8GB eMMC
- **Ethernet**:
- 1x 2.5GbE (via GMAC0 and GPY211 PHY, shared with MT7531AE)
- 3x 10/100/1000 Mbps (via MT7531AE, connected to GMAC0)
- 5G Modem: GMAC1 (via GPY211 PHY - RTL8125BG - RM520N-GL)
- **Wi-Fi**: MediaTek MT7976CN (2.4GHz/5GHz, 802.11ax, 2x2 MIMO, AX3000)
- **Buttons**: Reset, WPS
- **LEDs**: Power, 5G, 4G, WiFi
- **SIM Slot**: 1x Nano SIM
- **5G Modem**: Quectel RM520N-GL (Snapdragon™ X62)
- **Power**: 12V/2A DC, 5.5×2.1 connector
The MAC addresses are derived from the `fac_mac` field in the `bdinfo` partition, formatted as `fac_mac = HWMAC`. The allocation is as follows:
| Vendor | OpenWrt Interface | Address | Notes |
|---------|-------------------|---------------|------------------------------------------------|
| LAN | br-lan | Label MAC | Default |
| WAN | lan4 | Label MAC+1 | Only when lan4 is switched to WAN |
| 2.4GHz | phy0-ap0 | Label MAC | |
| 5GHz | phy1-ap0 | Label MAC | (Local Admin bit set) |
| Modem | eth1 | Label MAC+2 | |
1. Log in to the router via `http://192.168.66.1`/.
2. Upgrade the official firmware to dual-system mode.
3. Select **Burn second system** and upload the `sysupgrade.bin` image.
- Download the image from the OpenWrt build system or build it yourself using the OpenWrt buildroot.
4. Wait for 30 seconds and click **Switch system**.
5. The device will reboot and switch to OpenWrt.
Set the U-Boot environment variable `boot_system=0` and reboot:
```bash
fw_setenv boot_system 0
```
Power off the router, hold the **WPS button**, and power it back on.
1. Rename the stock firmware file to **`recovery.bin`**.
2. Set your PC's Ethernet IP to **192.168.1.88** and connect it to the lan1 port on the router.
3. Run a TFTP server and place the `recovery.bin` file in its root directory.
4. Power off the router, press and hold the **Reset button**, and power it back on.
5. Release the Reset button when the TFTP server shows activity.
6. Wait for the router to flash the firmware and reboot automatically.
- By default, `lan4` is part of `br-lan` and uses the label MAC address.
- To query the RM520N-GL module, use the following command:
```bash
cat /dev/ttyUSB2 & printf 'ATI\r\n' > /dev/ttyUSB2
```
Signed-off-by: Yaoguang Bai <0xdeadc0de@badguys.club>
Link: https://github.com/openwrt/openwrt/pull/17093
Signed-off-by: John Crispin <john@phrozen.org>
The device path to the devices changed. Migrate the wifi
configurations from the old path to the new one. This is needed to
migrate Wireless configurations from OpenWrt 23.05 to OpenWrt 24.10.
This script is based on these two files:
target/linux/ramips/mt7621/base-files/etc/hotplug.d/ieee80211/05-wifi-migrate
target/linux/qualcommax/ipq807x/base-files/etc/hotplug.d/ieee80211/05-wifi-migrate
Fixes: 0ef927472148 ("mediatek: filogic: move mt7981 on-SoC blocks to "soc" node in DT")
Fixes: https://github.com/openwrt/openwrt/issues/17174
Link: https://github.com/openwrt/openwrt/pull/17210
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The vendor U-Boot on the Cudy WR3000 assign random mac addresses on boot
and set the 'local-mac-address' property which prevents Openwrt from
assigning the correct address from evmem.
This patch removes the alias for ethernet0 so that U-Boot doesn't add
the property.
Related to: a55ab9e1343e ("mediatek: filogic: prevent faulty mac address assignment")
Fixes: https://github.com/openwrt/openwrt/issues/15587
Signed-off-by: Ondřej Niesner <ondra.niesner@seznam.cz>
Link: https://github.com/openwrt/openwrt/pull/17201
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specification:
* Mediatek MT7981BA
* 256 MB SPI-NAND
* 512 MB DDR4 RAM
* MT7976CN DBDC AX Wi-Fi
* MediaTek MT7531AE (3x LAN Gigabit ports) + Internal Gbe Phy (1x WAN Gigabit port)
* 4x LED (power, internet, fn, wifi)
* 3x buttons (wps, fn, reset)
* 1x USB 3.0 port
Serial Interface:
* 3 Pins GND, RX, TX
* Settings: 115200, 8N1
Notes:
* The device supports dual boot mode
* Fn led reassigned to wlan 2.4
Flash instruction:
The only way to flash OpenWrt image is to use tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24 and tftp server.
2. Rename "openwrt-mediatek-filogic-keenetic_kn-3811-squashfs-factory.bin"
to "KN-3811_recovery.bin" and place it in tftp server directory.
3. Connect PC with ethernet port, press the reset button, power up
the device and keep button pressed until status led start blinking.
4. Device will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17135
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The boot LED on OpenWrt One is PWM driven and sets the pattern trigger as the
default inside its devicetree.
Signed-off-by: John Crispin <john@phrozen.org>
Specification:
- MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
- 512MB RAM
- 128MB SPI NAND
- 2 LEDs (green, orange)
- 3 buttons (fn, reset, wps)
- 2 2.5Gbit ethernet ports based on Airoha EN8811H phy
Serial Interface:
- 3 Pins GND, RX, TX
- Settings: 115200, 8N1
Notes:
- The device supports dual boot mode
Flash instruction:
The only way to flash OpenWrt image is to use tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24 and tftp server.
2. Rename "openwrt-mediatek-filogic-keenetic_kn-3911-squashfs-factory.bin"
to "KN-3911_recovery.bin" and place it in tftp server directory.
3. Connect PC with ethernet port, press the reset button, power up
the device and keep button pressed until status led start blinking.
4. Device will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16830
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This is required for upcoming Keenetic KN-3911 support
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16830
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
DTS file for this device seems to be using CRLF line endings, so lets
convert them into Unix-style LF.
Fixes: faf4b3e0f7a5 ("mediatek: filogic: add support for Cudy WR3000S v1")
Link: https://github.com/openwrt/openwrt/pull/17096
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This commit adds kmod-leds-ktd202x to the OpenWrt image for the device
"Acer Connect Vero W6m" which is equipped with one KTD2026 controlling the
device's status LED via I2C.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16860
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Image build fails with PR #16861 merged while PR #16860 not merged.
Removing kmod-leds-ktd202x from filogic.mk will fix the build process.
Fixes: 2898d1d1269a ("mediatek: add support for Acer Predator W6d and Acer Vero W6m")
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/17087
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This commit adds OpenWrt U-Boot layout support for Routerich AX3000. The
aims:
1. Get open-source U-Boot;
2. Get maximum available free space in OpenWrt.
Install
-------
1. Copy OpenWrt ubootmod-bl31-uboot.fip, ubootmod-preloader.bin, to the
/tmp folder of the router using scp.
2. Make mtd partitions backups:
http://192.168.1.1/cgi-bin/luci/admin/system/flash -> Save mtdblock
contents
3. Install kmod-mtd-rw:
```
opkg update && opkg install kmod-mtd-rw
```
4. Write FIP and preloader:
```
insmod mtd-rw i_want_a_brick=1
mtd unlock BL2
mtd erase BL2
mtd write /tmp/ubootmod-preloader.bin BL2
mtd unlock FIP
mtd erase FIP
mtd write /tmp/ubootmod-bl31-uboot.fip FIP
```
5. Copy OpenWrt ubootmod-initramfs-recovery.itb to the tftp server root
with IP 192.168.1.254.
6. Reboot router:
```
reboot
```
U-Boot will automatically download from the tftp server and boot OpenWrt
initramfs system.
7. Copy OpenWrt ubootmod-squashfs-sysupgrade.itb to the /tmp dir of the
router using scp.
8. Run sysupgrade:
```
sysupgrade -n /tmp/squashfs-sysupgrade.itb
```
Recovery
--------
1. Place OpenWrt initramfs-recovery.itb image (with original name) on the
tftp server (IP: 192.168.1.254).
2. Press "reset" button and power on the router. After ~10 sec release the
button.
3. Use OpenWrt initramfs system for recovery.
BL2 and FIP recovery
--------------------
Use mtk_uartboot and UART connection if BL2 or FIP in UBI is destroyed:
Link: https://github.com/981213/mtk_uartboot
Return to stock:
----------------
1. Copy partition backups (BL2.bin and FIP.bin) to the /tmp dir of the
router using scp.
2. Install kmod-mtd-rw:
```
opkg update && opkg install kmod-mtd-rw
```
3. Restore stock U-Boot and reboot:
```
insmod mtd-rw i_want_a_brick=1
mtd unlock BL2
mtd erase BL2
mtd write /tmp/BL2.bin BL2
mtd unlock FIP
mtd erase FIP
mtd write /tmp/FIP.bin FIP
reboot
```
4. Open U-Boot web recovery, upload stock firmware image and start
upgrade.
Link: http://192.168.1.1
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16791
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Hardware
--------
MediaTek MT7981 WiSoC
256MB DDR3 RAM
128MB SPI-NAND (XMC XM25QH128C)
MediaTek MT7981 2x2 DBDC 802.11ax 2T2R (2.4 / 5)
UART: 115200 8N1 3.3V
MAC:
LAN MAC: label mac
WAN MAC: label mac + 1
2.4G MAC: label mac
5G MAC: label mac + 1 with LA bit set
Installation
------------
1. Connect to the serial port as described in the "Hardware" section.
2. Power on the device + press reset pin. Keep pressing reset pin to enter the U-Boot shell.
3. Download the OpenWrt initramfs image. Place it on an TFTP server
connected to the Cudy LAN ports. Make sure the server is reachable at
192.168.1.88. Rename the image to "cudy3000s.bin"
4. Download and boot the OpenWrt initramfs image.
$ tftpboot 0x46000000 cudy3000s.bin; bootm 0x46000000
5. Transfer the OpenWrt sysupgrade image to the device using scp.
Install with sysupgrade.
Signed-off-by: David Ignjic <ignjic@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16939
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The label-mac does not match the one assigned to the ethernet interface.
Use the mac-address assigned to the wifi interface instead, as it
matches the one found on the device label.
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit adds support for two variants of the already supported router
Acer Predator Connect W6: The Acer Predator Connect W6d (W6 without 6 GHz
wifi) and the Acer Connect Vero W6m (W6 without 2.5G eth1 port, usb3 port,
and the 6 on-board gpio RGB LEDs, and with a KTD2026 RGB LED controller
instead of the KTD2061 LED controller of the W6/W6d).
The device tree for the W6m refers to the KTD202x driver suggested in
PR #16860.
Patching target/linux/mediatek/filogic/base-files/lib/upgrade/platform.sh
removes the code repetition in (old) lines 121 to 124 on the occasion.
This is the last of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
In order to prepare for OpenWrt support other Acer W6 devices and to get
a step further to full hardware support for Acer Predator Connect W6, this
commit
- adjusts the product name ("Acer Predator Connect W6")
- updates gpio LED labels to function/color scheme
- show router status by using first rgb led instead of it's red color only
(blue: booting/failsafe mode; red: sysupgrade; green: running – was: red)
- changes switch/eth1 led configuration to reflect RX/TX activity and speed
(green: full 1Gbps/2.5Gbps speed; amber: lower speed; blink: RX/TX)
- shortens dummy dm-mod.create string in bootargs
- enables W6's i2c interface
This is the third of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
In order to prepare OpenWrt support for other Acer W6 devices and to adapt
the procedure to read and set mac addresses which other devices of the same
target are using (instead of needing an additional script and creating an
additional structure in the file system), this commit
- reads device mac addresses from u-boot environment
- avoids the detour via the file system to set the mac addresses
- drops redundant file /lib/preinit/05_extract_factory_data.sh
The idea and the implementation were thankfully taken from PR #16410.
This is the second of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
In order to prepare OpenWrt support for other Acer W6 devices, this commit
moves all device tree components that are used by all Acer W6/W6e/W6d/W6m
routers from mt7986a-acer-predator-w6.dts to mt7986a-acer-w6-common.dtsi
(new file) and includes this dtsi file in mt7986a-acer-predator-w6.dts.
Minor changes had to be made to the device tree in order to improve clarity
and – notably – to reduce the number of dtc warnings:
- replace (obviously wrong) led@<N> gpio led entities by led-<N>
- remove unnecessary (default-state = "off") gpio led statements
- rename entity “memory” to “memory@0”
- add missing #address-cells and #address-size in /soc/mmc@11230000
- add missing #address-cells and #address-size in /soc/pcie@11280000
- introduce symbols “nvmem” and “swport0” in dtsi (referenced in dts)
The changes were checked with `diff -BEZbdtwy --suppress-common-lines ...`
(comparing two dts files created using old and new fdt-1 blobs again), see
https://github.com/openwrt/openwrt/pull/16861/#issuecomment-2455680020 .
This is the first of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
All new routers are shipped with ubi size 112MB since early September.
Bootloader update required (ask vendor , see wiki)
These partitions weren't used:
firmware_backup
zrsave
config2
Signed-off-by: Romanov Danila <pervokur@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16686
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Popular bpi-r3 pwm fans like this one
https://www.amazon.com/youyeetoo-Barebone-Fan-BPI-R3-Integrated/dp/B0CCCTY8PS
will not work properly with current openwrt-23.05/24.10 firmware.
Trying different pwm setting
echo $value > /sys/devices/platform/pwm-fan/hwmon/hwmon1/pwm1
I found:
pwm1 value fan rotation speed cpu temperature notes
-----------------------------------------------------------------
0 maximal 31.5 Celsius too noisy
40 optimal 35.2 Celsius no noise hearable
95 minimal
above 95 does not rotate 55.5 Celsius
-----------------------------------------------------------------
At the moment we have following cooling levels:
cooling-levels = <255 96 0>;
for cpu-active-high, cpu-active-medium and cpu-active-low modes correspondingly.
Thus only cpu-active-high and cpu-active-low are usable. I think this is wrong.
This patch fixes cpu-active-medium settings for bpi-r3 board.
PS: I know, the patch is not ideal as it can break pwm fan for some users.
There are some peoples that use handmade cooling solutions, but:
* discussed cooler is the only 'official' pwm cooler for bpi-r3
available on the market.
* most peoples will use passive cooling available on the market or
the discussed cooler.
* the pwm-fan dts section was added before the official cooler
appears on the market.
Thus it should not be a lot of harm from this fix.
Signed-off-by: Mikhail Kshevetskiy <mikhail.kshevetskiy@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16974
Signed-off-by: Robert Marko <robimarko@gmail.com>
These get dynamically set based on compiler version. Not relevant for
targets.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16770
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This symbol is no longer present.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16770
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The GatoNetworks GDSP is a re-branded version of the R5000 5G Industrial
router from Yinghua Technologies.
The re-branded device comes with OpenWrt preinstalled, and an OpenWrt-based
U-Boot bootloader version. While the flash layout has been kept compatible
with the OpenWrt version found on the stock device (see [5]), the image format
changed, making a bootloader upgrade necessary.
Specifications:
SoC: Mediatek MT7981BA
RAM: 256MB
Flash: SPI-NOR 32 MiB (Winbond W25Q256)
WLAN: MT7976CN DBDC AX Wi-Fi
Switch: MT7531AE (4x LAN Gigabit ports, 1x WAN Gigabit port)
5G: Quectel RM520N modem
Watchdog: an external WDT connected to GPIO 6 is present and always running;
the built-in Mediatek watchdog is also present and effective, but
not used at the moment.
This porting has been tested only with 1x 5G modems installed (the device
supports up to two).
Installation:
Installation is possible via sysupgrade both in the stock device and
re-branded version. However, in the former case, updating the bootloader is
required.
OpenWrt-based U-Boot Bootloader installation
--------------------------------------------
The firmware flashed in the re-branded device at manifacturing time will
flash an OpenWrt-based U-Boot bootloader with some extra recovery features
(see [1]) at first boot.
To update the bootloader, you need to install the mtd-rw module and
insmod it:
insmod mtd-rw i_want_a_brick=1
Then update relevant flash partitions:
mtd erase u-boot-env
mtd erase BL2
mtd erase FIP
mtd write openwrt-mediatek-filogic-gatonetworks_gdsp-preloader.bin BL2
mtd write openwrt-mediatek-filogic-gatonetworks_gdsp-bl31-uboot.fip FIP
And reboot, making sure all previous commands ran succesfully.
If something goes wrong, you can recover your device via the mtk_uartboot
tool.
In my testing, it was possible to start the process even without (un)-plugging
the device, may be handy for remote recovery.
Installation from stock device and firmware
-------------------------------------------
To install vanilla OpenWrt in the stock device (R5000 5G Industrial router
from Yinghua Technologies) running the stock vendor firmware, you will need
to update your bootloader as described in previous section. Remember to use
-F (force upgrade) and -n (not keeping settings).
U-Boot Recovery
---------------
This procedure has been tested only with the OpenWrt-based U-boot bootloader.
Assign your system static IP address 192.168.1.1 and start a TFTP server. The
device will look for an initramfs image named
openwrt-mediatek-filogic-gatonetworks_gdsp-initramfs-kernel.bin
(so you may use openwrt/bin/targets/mediatek/filogic as root dir for your
TFTP server).
Power on the device while keeping the reset button pressed, until you see
a TFTP request from 192.168.1.10. Your environment will be restored to it's
default state.
MAC addresses assignment
------------------------
MAC addresses are assigned slightly differently than in stock firmware. In
particular, the 5 GHz Wi-Fi uses 2.4 GHZ MAC + 1, rather than reusing it with
LA bit set as done in stock firmware. This MAC address is allocated to the
device, so it can be used.
The 2.4 GHz Wi-Fi MAC address is the label MAC. LAN MAC is used to set the
special U-Boot environment ethaddr variable.
device MAC address U-Boot env variable factory partition offset
2.4 GHz Wi-Fi :84 wifi_mac 0x4
5.8 GHz Wi-Fi :85 not present not present
WAN :86 wan_mac 0x24
LAN :87 lan_mac 0x2A
Notes
-----
[1]: the OpenWrt-based U-Boot bootloader you will find installed in the
re-branded device is configured to request for the initramfs image via
TFTP for $gdsp_tftp_tries times before trying normal boot from NOR flash.
Setting this U-Boot environment variable to 0x0 will disable the feature,
which is not implemented in this patch.
[2]: the exposed UART port is connected to ttyS1; the ttyS0 console port is
not exposed.
[3]: the provided bootloader environment has no provision for operating on
BL2 and the FIP partitions. This is an intentional choice to make it
(slightly) more difficult to brick the device.
[4]: it seems GPIO 6 is used both for the "SYS" LED and external WDT.
[5] BL2 expects to find FIP payload at a fixed offset, so some constraints
apply.
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
Mass production units will get 16 assigned MAC addresses. This allows each phy
to spawn up to 7 VAPs which will each have unique MAC without needing the
private bit.
Signed-off-by: John Crispin <john@phrozen.org>
Mass production units will get 16 assigned MAC addresses. This allows each phy
to spawn up to 7 VAPs which will each have unique MAC without needing the
private bit.
Signed-off-by: John Crispin <john@phrozen.org>
Specifying GPIO_ACTIVE_HIGH on the GPIO for the voltage regulator doesn't
suffice. The regulator itself requires enable-active-high to be set.
Fixes: #16292
Signed-off-by: Leon M. Busch-George <leon@georgemail.eu>
Link: https://github.com/openwrt/openwrt/pull/16839
Signed-off-by: Robert Marko <robimarko@gmail.com>
The mediatek target requires refreshing after recent additions.
Fixes: cfe8e6e75f ("mediatek: add support for Realtek RTL8261n 10G PHYs")
Fixes: ddfae94a14 ("mediatek: add support for swapping the polarity on usxgmii interfaces")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Assign pwm function of PWM0 pin to the pwm-fan.
This is mostly just cosmetics as it basically reflects the default
setting of that pin.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add additionals possible pinctrl group for pwm2~7 on pins
pin 4 (GPIO_A) pwm7
pin 58 (JTAG_JTDI) pwm2
pin 59 (JTAG_JTDO) pwm3
pin 60 (JTAG_JTMS) pwm4
pin 61 (JTAG_JTCLK) pwm5
pin 62 (JTAG_JTRST_N) pwm6
They can be useful e.g. on the BPi-R4 as in that way pwm2~6 can be exposed
on the 26-pin header (pwm6 always, pwm2~5 instead of the full UART).
Signed-off-by: Daniel Golle <daniel@makrotopia.org>