The board has been redesigned due to previous hardware bugs
(with other reasons maybe).
Changes in new board:
- Added a gpio beeper
- Added a Atmel i2c eeprom
- Added a Atmel i2c ECC accelerator
- Added a Philips RTC module
- Added two RS485
- Removed WPS button
- Replaced USB3 port with M.2 B-key for LTE modules
- Swapped GbE LEDs gpio
Also assigned wifi mac with nvmem binding, added iface setup for failsafe,
increased phy assert time for rtl8221b, and updated LED labels.
Keeping compatibility for old version is not necessary here as only
few samples were sent to those interested in it.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/17253
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
NRadio C8-668GL is a Wi-Fi 6 5G cellular router based on MediaTek MT7981B SoC.
- **SoC**: MediaTek MT7981B (2x Cortex-A53, 1.3GHz)
- **RAM**: Nanya NT5AD512M16C4-JR 1GB DDR4
- **Flash**: ESMT FC51L08SFY3A 8GB eMMC
- **Ethernet**:
- 1x 2.5GbE (via GMAC0 and GPY211 PHY, shared with MT7531AE)
- 3x 10/100/1000 Mbps (via MT7531AE, connected to GMAC0)
- 5G Modem: GMAC1 (via GPY211 PHY - RTL8125BG - RM520N-GL)
- **Wi-Fi**: MediaTek MT7976CN (2.4GHz/5GHz, 802.11ax, 2x2 MIMO, AX3000)
- **Buttons**: Reset, WPS
- **LEDs**: Power, 5G, 4G, WiFi
- **SIM Slot**: 1x Nano SIM
- **5G Modem**: Quectel RM520N-GL (Snapdragon™ X62)
- **Power**: 12V/2A DC, 5.5×2.1 connector
The MAC addresses are derived from the `fac_mac` field in the `bdinfo` partition, formatted as `fac_mac = HWMAC`. The allocation is as follows:
| Vendor | OpenWrt Interface | Address | Notes |
|---------|-------------------|---------------|------------------------------------------------|
| LAN | br-lan | Label MAC | Default |
| WAN | lan4 | Label MAC+1 | Only when lan4 is switched to WAN |
| 2.4GHz | phy0-ap0 | Label MAC | |
| 5GHz | phy1-ap0 | Label MAC | (Local Admin bit set) |
| Modem | eth1 | Label MAC+2 | |
1. Log in to the router via `http://192.168.66.1`/.
2. Upgrade the official firmware to dual-system mode.
3. Select **Burn second system** and upload the `sysupgrade.bin` image.
- Download the image from the OpenWrt build system or build it yourself using the OpenWrt buildroot.
4. Wait for 30 seconds and click **Switch system**.
5. The device will reboot and switch to OpenWrt.
Set the U-Boot environment variable `boot_system=0` and reboot:
```bash
fw_setenv boot_system 0
```
Power off the router, hold the **WPS button**, and power it back on.
1. Rename the stock firmware file to **`recovery.bin`**.
2. Set your PC's Ethernet IP to **192.168.1.88** and connect it to the lan1 port on the router.
3. Run a TFTP server and place the `recovery.bin` file in its root directory.
4. Power off the router, press and hold the **Reset button**, and power it back on.
5. Release the Reset button when the TFTP server shows activity.
6. Wait for the router to flash the firmware and reboot automatically.
- By default, `lan4` is part of `br-lan` and uses the label MAC address.
- To query the RM520N-GL module, use the following command:
```bash
cat /dev/ttyUSB2 & printf 'ATI\r\n' > /dev/ttyUSB2
```
Signed-off-by: Yaoguang Bai <0xdeadc0de@badguys.club>
Link: https://github.com/openwrt/openwrt/pull/17093
Signed-off-by: John Crispin <john@phrozen.org>
The device path to the devices changed. Migrate the wifi
configurations from the old path to the new one. This is needed to
migrate Wireless configurations from OpenWrt 23.05 to OpenWrt 24.10.
This script is based on these two files:
target/linux/ramips/mt7621/base-files/etc/hotplug.d/ieee80211/05-wifi-migrate
target/linux/qualcommax/ipq807x/base-files/etc/hotplug.d/ieee80211/05-wifi-migrate
Fixes: 0ef9274721 ("mediatek: filogic: move mt7981 on-SoC blocks to "soc" node in DT")
Fixes: https://github.com/openwrt/openwrt/issues/17174
Link: https://github.com/openwrt/openwrt/pull/17210
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specification:
* Mediatek MT7981BA
* 256 MB SPI-NAND
* 512 MB DDR4 RAM
* MT7976CN DBDC AX Wi-Fi
* MediaTek MT7531AE (3x LAN Gigabit ports) + Internal Gbe Phy (1x WAN Gigabit port)
* 4x LED (power, internet, fn, wifi)
* 3x buttons (wps, fn, reset)
* 1x USB 3.0 port
Serial Interface:
* 3 Pins GND, RX, TX
* Settings: 115200, 8N1
Notes:
* The device supports dual boot mode
* Fn led reassigned to wlan 2.4
Flash instruction:
The only way to flash OpenWrt image is to use tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24 and tftp server.
2. Rename "openwrt-mediatek-filogic-keenetic_kn-3811-squashfs-factory.bin"
to "KN-3811_recovery.bin" and place it in tftp server directory.
3. Connect PC with ethernet port, press the reset button, power up
the device and keep button pressed until status led start blinking.
4. Device will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17135
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specification:
- MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
- 512MB RAM
- 128MB SPI NAND
- 2 LEDs (green, orange)
- 3 buttons (fn, reset, wps)
- 2 2.5Gbit ethernet ports based on Airoha EN8811H phy
Serial Interface:
- 3 Pins GND, RX, TX
- Settings: 115200, 8N1
Notes:
- The device supports dual boot mode
Flash instruction:
The only way to flash OpenWrt image is to use tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24 and tftp server.
2. Rename "openwrt-mediatek-filogic-keenetic_kn-3911-squashfs-factory.bin"
to "KN-3911_recovery.bin" and place it in tftp server directory.
3. Connect PC with ethernet port, press the reset button, power up
the device and keep button pressed until status led start blinking.
4. Device will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16830
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This commit adds OpenWrt U-Boot layout support for Routerich AX3000. The
aims:
1. Get open-source U-Boot;
2. Get maximum available free space in OpenWrt.
Install
-------
1. Copy OpenWrt ubootmod-bl31-uboot.fip, ubootmod-preloader.bin, to the
/tmp folder of the router using scp.
2. Make mtd partitions backups:
http://192.168.1.1/cgi-bin/luci/admin/system/flash -> Save mtdblock
contents
3. Install kmod-mtd-rw:
```
opkg update && opkg install kmod-mtd-rw
```
4. Write FIP and preloader:
```
insmod mtd-rw i_want_a_brick=1
mtd unlock BL2
mtd erase BL2
mtd write /tmp/ubootmod-preloader.bin BL2
mtd unlock FIP
mtd erase FIP
mtd write /tmp/ubootmod-bl31-uboot.fip FIP
```
5. Copy OpenWrt ubootmod-initramfs-recovery.itb to the tftp server root
with IP 192.168.1.254.
6. Reboot router:
```
reboot
```
U-Boot will automatically download from the tftp server and boot OpenWrt
initramfs system.
7. Copy OpenWrt ubootmod-squashfs-sysupgrade.itb to the /tmp dir of the
router using scp.
8. Run sysupgrade:
```
sysupgrade -n /tmp/squashfs-sysupgrade.itb
```
Recovery
--------
1. Place OpenWrt initramfs-recovery.itb image (with original name) on the
tftp server (IP: 192.168.1.254).
2. Press "reset" button and power on the router. After ~10 sec release the
button.
3. Use OpenWrt initramfs system for recovery.
BL2 and FIP recovery
--------------------
Use mtk_uartboot and UART connection if BL2 or FIP in UBI is destroyed:
Link: https://github.com/981213/mtk_uartboot
Return to stock:
----------------
1. Copy partition backups (BL2.bin and FIP.bin) to the /tmp dir of the
router using scp.
2. Install kmod-mtd-rw:
```
opkg update && opkg install kmod-mtd-rw
```
3. Restore stock U-Boot and reboot:
```
insmod mtd-rw i_want_a_brick=1
mtd unlock BL2
mtd erase BL2
mtd write /tmp/BL2.bin BL2
mtd unlock FIP
mtd erase FIP
mtd write /tmp/FIP.bin FIP
reboot
```
4. Open U-Boot web recovery, upload stock firmware image and start
upgrade.
Link: http://192.168.1.1
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16791
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Hardware
--------
MediaTek MT7981 WiSoC
256MB DDR3 RAM
128MB SPI-NAND (XMC XM25QH128C)
MediaTek MT7981 2x2 DBDC 802.11ax 2T2R (2.4 / 5)
UART: 115200 8N1 3.3V
MAC:
LAN MAC: label mac
WAN MAC: label mac + 1
2.4G MAC: label mac
5G MAC: label mac + 1 with LA bit set
Installation
------------
1. Connect to the serial port as described in the "Hardware" section.
2. Power on the device + press reset pin. Keep pressing reset pin to enter the U-Boot shell.
3. Download the OpenWrt initramfs image. Place it on an TFTP server
connected to the Cudy LAN ports. Make sure the server is reachable at
192.168.1.88. Rename the image to "cudy3000s.bin"
4. Download and boot the OpenWrt initramfs image.
$ tftpboot 0x46000000 cudy3000s.bin; bootm 0x46000000
5. Transfer the OpenWrt sysupgrade image to the device using scp.
Install with sysupgrade.
Signed-off-by: David Ignjic <ignjic@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16939
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This commit adds support for two variants of the already supported router
Acer Predator Connect W6: The Acer Predator Connect W6d (W6 without 6 GHz
wifi) and the Acer Connect Vero W6m (W6 without 2.5G eth1 port, usb3 port,
and the 6 on-board gpio RGB LEDs, and with a KTD2026 RGB LED controller
instead of the KTD2061 LED controller of the W6/W6d).
The device tree for the W6m refers to the KTD202x driver suggested in
PR #16860.
Patching target/linux/mediatek/filogic/base-files/lib/upgrade/platform.sh
removes the code repetition in (old) lines 121 to 124 on the occasion.
This is the last of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
In order to prepare OpenWrt support for other Acer W6 devices and to adapt
the procedure to read and set mac addresses which other devices of the same
target are using (instead of needing an additional script and creating an
additional structure in the file system), this commit
- reads device mac addresses from u-boot environment
- avoids the detour via the file system to set the mac addresses
- drops redundant file /lib/preinit/05_extract_factory_data.sh
The idea and the implementation were thankfully taken from PR #16410.
This is the second of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Read WiFi calibration data via NVMEM framework. The MAC addresses are
stored inside a file on a filesystem and hence still have to be
extracted in userspace.
WiFI EEPROM extraction has already accidentally been partially removed
by commit 3e6de5d77a ("mediatek: use NVMEM framework on all Adtran
devices").
Fixes: 3e6de5d77a ("mediatek: use NVMEM framework on all Adtran devices")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Specification is similar to other devices of the MT Stuart series:
* Mediatek MT7988D (3x Cortex-A73, up to 1.8 GHz clock speed)
* 8 GiB eMMC
* 2 GiB DDR4 RAM
* 2500M/1000M/100M LAN port
* 10000M/5000M/2500M/1000M/100M/10M WAN port
* MT7992 Tri-band (2.4G, 5G, 6G) 2T2R+3T3R+3T3R 802.11be Wi-Fi
* Renesas DA14531MOD Bluetooth
* 2 buttons (Reset, Mesh/WPS)
* uC-controlled RGB LED via I2C
* 2x LED for the 2.5G port, 3x LED for the 10G port
* 3.3V-level 115200 baud UART console via 4-pin Dupont connector
exposed at the bottom of the device
* USB-C PD power input
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Fix a typo in the MAC address assignment script affecting SDG-8734.
Fixes: c71b68acdd ("mediatek: filogic: add Adtran SmartRG Mount Stuart series")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware specification:
SoC: MediaTek MT7986A 4x A53
Flash: ESMT F50L1G41LB 128MB
RAM: MT40A512M16TB-062ER 1GB
Ethernet: 2x 2.5G, 4x 1G Lan
WiFi1: MT7976GN 2.4GHz 4T4R
WiFi2: MT7976AN 5.2GHz 4T4R
WiFi3: MT7915AN 5.8GHz 4T4R
Button: Reset, WPS, Turbo
USB: 1 x USB 3.0
Power: DC 12V 5A
Flash instructions:
1. Execute the following operation to open nc shell:
https://openwrt.org/inbox/toh/tp-link/xdr-6086#rooting
2. Replace the stock bootloader to OpenWrt's:
dd bs=131072 conv=sync of=/dev/mtdblock9 if=/tmp/xxx-preloader.bin
dd bs=131072 conv=sync of=/dev/mtdblock9 seek=28 if=/tmp/xxx-bl31-uboot.fip
3. Connect to your PC via the Gigabit port of the router,
set a static ip on the ethernet interface of your PC.
4. Download the initramfs image, and restart the router,
waiting for tftp recovery to complete.
5. After openwrt boots up, perform sysupgrade.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Link: https://github.com/openwrt/openwrt/pull/15930
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, Mesh
Power: DC 12V 1A
Gain telnet access:
1. Login into web interface, and download the configuration.
2. Decode and uncompress the configuration:
* Enter fakeroot if you are not login as root.
base64 -d e-xxxxxxxxxxxx-cfg.tar.gz | tar -zx
3. Edit 'etc/passwd', remove root password: 'root::1:0:99999:7:::'.
4. Edit 'etc/rc.local', insert telnetd command before 'exit 0':
( sleep 3s; /usr/sbin/telnetd; ) &
5. Repack the configuration:
tar -zc etc/ | base64 > e-xxxxxxxxxxxx-cfg.tar.gz
6. Upload new configuration via web interface, now you can connect to
ASR3000 via telnet.
Flash instructions:
1. Connect to ASR3000, backup everything, especially 'Factory' part.
2. Write new BL2:
mtd write openwrt-mediatek-filogic-abt_asr3000-preloader.bin BL2
3. Write new FIP:
mtd write openwrt-mediatek-filogic-abt_asr3000-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254/24, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/15887
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Switch to new nvmem binding.
Also fixes a issue that the MAC address assigned to lan/wan was
reversed on eMMC boards.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
WiFi calibration data is already obtained via in-kernel NVMEM framework.
There is no need to also do so in userspace.
Fixes: dd58ad968a ("mediatek/filogic: add OpenWrt One support")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This commit adds support for TP-LINK RE6000XD.
The device is quite similar to the Mercusys MR90X V1,
except only 3 LAN ports and more LEDs.
So thanks to csharper2005 for doing all the groundwork.
Device specification
--------------------
SoC Type: MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM: MediaTek MT7986BLA (512MB)
Flash: SPI NAND GigaDevice (128 MB)
Ethernet: MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet: 1x2.5Gbe (LAN3 2.5Gbps), 2xGbE (LAN 1Gbps, LAN1,
LAN2)
WLAN 2g: MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g: MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs: 8 LEDs, 1 status blue, 2x WIFI blue, 2x signal
blue/red, 3 LAN blue gpio-controlled
Button: 2 (Reset, WPS)
USB ports: No
Power: 12 VDC, 2 A
Connector: Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, ubi0
partition contain "seconduboot" (also U-Boot 2022.01-rc4)
Serial console (UART), unpopulated
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
|
+--- Don't connect
Disassemble: rm the 2 screws at the bottom and the one at the backside.
un-clip the case starting at the edge above the LEDs.
Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot openwrt-mediatek-filogic-tplink_re6000xd-initramfs-kernel.bin bootm
4. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Notice: while I was successfull at activating ssh (as described
here:
https://www.lisenet.com/2023/gaining-ssh-access-to-tp-link-re200-wi-fi-range-extender/)
Unfortunately I haven't found the correct root password.
Looks like they are using a static password
(md5crypt, salt + 21 characters) that is not the web
interface admin password.
The TP-LINK RE900XD looks like the very same device,
according to the pictures and the firmware.
But I haven't checked if the OpenWrt firmware works as well
on that device.
The second ubi partition (ubi1) is empty and there is no known
dual-partition mechanism, neither in u-boot nor in the stock firmware.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Switch to new nvmem binding.
Also fixes a issue that the MAC address assigned to lan/wan was reversed.
Tested-by: Yangyu Chen <cyy@cyyself.name>
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, WPS/Mesh
Power: DC 12V 1A
Gain SSH access:
1. Login into web interface, and download the configuration.
2. Download the configration utilities:
https://firmware.download.immortalwrt.eu.org/cnsztl/mediatek/filogic/openwrt-mediatek-mt7981-nokia-ea0326gmp-config-utils.tar.gz
These binaries are extraced from the factory firmware, which are
dynamically linked with aarch64 musl 1.1.24. To use them, you
must run them under the same runtime environment, otherwise the
binaries will not work properly!
3. Upload the configuration and utilities to a suitable environment.
4. Uncompress the utilities, move them to '/bin' and give them executable permisison:
tar -zxf openwrt-mediatek-mt7981-nokia-ea0326gmp-config-utils.tar.gz
mv mkconfig seama /bin
chmod +x /bin/mkconfig
chmod +x /bin/seama
5. Decrypt and uncompress the configuration:
Enter fakeroot if you are not login as root.
mkconfig -a de-enca -m EA0326GMP_3FE79221BAAA -i EA0326GMP_3FE79221BAAA-xxxxxxxx-backup.tar.gz -o backup.tar.gz
tar -zxf backup.tar.gz
6. Edit 'etc/config/dropbear', set 'enable' to '1'.
7. Edit 'etc/passwd', remove root password: 'root::1:0:99999:7:::'.
8. Repack the configuration:
tar -zcf backup.tar.gz etc/
mkconfig -a enca -m EA0326GMP_3FE79221BAAA -i backup.tar.gz -o EA0326GMP_3FE79221BAAA-xxxxxxxx-backup.tar.gz
9. Upload new configuration via web interface, now you can SSH to EA0326GMP.
A minimum configuration which enabled SSH access is also provided
to simplify the process:
https://firmware.download.immortalwrt.eu.org/cnsztl/mediatek/filogic/openwrt-mediatek-mt7981-nokia-ea0326gmp-enable-ssh.tar.gz
Flash instructions:
1. SSH to EA0326GMP, backup everything, especially 'Factory' part.
2. Write new BL2:
mtd write openwrt-mediatek-filogic-nokia_ea0326gmp-preloader.bin BL2
3. Write new FIP:
mtd write openwrt-mediatek-filogic-nokia_ea0326gmp-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254/24, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
This pull request ports Ruijie RG-X60 Pro router support to the main branch.
Parameters:
- SoC : MediaTek MT7986A Quad-core ARM Cortex-A53 2.0GHz
- RAM : DDR3 512MiB (W634GU6QB)
- Flash : SPI-NAND 128 MiB (W25N01GVZEIG)
- WLAN : MediaTek MT7986A integration dual-band WiFi 6
- 2.4 GHz : b/g/n/ax, MIMO 4x4
- 5 GHz : a/n/ac/ax, MIMO 4x4
- Ethernet : 10/100/1000 Mbps x4 (MediaTek MT7531AE)
2500Mbps x 1 (Realtek RTL8221B-VB-CG)
- UART : through-hole on PCB
- [J500] GND, TX, RX, 3.3V (115200n1)
- Buttons : Mesh, Reset
- LEDs : 1x Power (Blue)
1x Turbo (Purple)
- Power : 12 VDC, 3 A
How to Installation:
1. Remove the case and connect the TTL cable to the corresponding position.
2. Power on the device and quickly press "down" on the keyboard, then
U-Boot will stay in the menu.
3. Select "1. Upgrade Firmware", select "0. TFTP Client(Default)".
4. Input the IP address, input the Openwrt image file name to be
flashed, start the TFTP server, and press "Enter".
5. Wait for the flashing to complete.
How return to stock:
1. Remove the case and connect the TTL cable to the corresponding
position.
2. Power on the device and quickly press "down" on the keyboard, then
U-Boot will stay in the menu.
3. Select "1. Upgrade Firmware", select "0. TFTP Client(Default)".
4. Input the IP address, input the Stock “E-WEBOS” image file name to
be flashed, start the TFTP server, and press "Enter".
5. Wait for the flashing to complete.
About recovery:
Connect uart, use u-boot menu to flash stock firmware image or boot
OpenWrt initramfs image.
About MAC Address:
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| WAN | 10:82:3D:XX:XX:9E | label |
| LAN | 10:82:3D:XX:XX:9F | label+1 |
| WLAN 2g | 10:82:3D:XX:XX:A0 | label+2 |
| WLAN 5g | 10:82:3D:XX:XX:A1 | label+3 |
+---------+-------------------+-----------+
Signed-off-by: Ashley Lee <code@emtips.net>
Add missing ';;' to the end of shell switch case statement.
Fixes: c71b68acdd ("mediatek: filogic: add Adtran SmartRG Mount Stuart series")
Reported-by: @gl-dude
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Common specifications:
* Mediatek MT7988A (4x Cortex-A73, up to 1.8 GHz clock speed)
* 8 GiB eMMC
* 2 GiB DDR4 RAM
* 1x 10000M/1000M/100M + 3x 1000M/100M/10M LAN ports
* MT7996 Tri-band (2.4G, 5G, 6G) 4T4R 802.11be Wi-Fi
* Airoha AG3352 GPS
* Renesas DA14531MOD Bluetooth
* 2 buttons (Reset, Mesh/WPS)
* uC-controlled RGB LED via I2C
* 2x LED for each 1G port, 3x LED for each 10G port
* USB 3.0 type A port
* 3.3V-level 115200 baud UART console via 4-pin Dupont connector
exposed at the bottom of the device
* USB-C PD power input
SDG-8733: 1x 10000M/1000M/100M WAN port
SDG-8734: 1x USXGMII/10GBase-R/5GBase-R/2500Base-X/1000Base-X/SGMII SFP+
Both models are also available in versions including 2x FXS POTS interfaces
for analog phones. Those interfaces are not supported by OpenWrt.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
filogic: Add support for D-Link AQUILA PRO AI M30
Specification:
- MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
- 1GB RAM
- 16MB NOR
- 128MB NAND
- 3 LEDs (red, green, blue, white)
- 2 buttons (reset, user defined)
- 1 2.5Gbit WAN port (Airoha EN8811h)
- 1 1Gbit LAN ports
- 1 single lane M.2 SSD slot
- 1 mikroBus socket
- externel HW WDT (25s refresh time)
- i2c RTC (with battery backup)
Serial Interface
- UBS-C CDC-ACM
- 3 Pins GND, RX, TX
- Settings: 115200, 8N1
MAC addresses are not populated on the early samples.
Signed-off-by: John Crispin <john@phrozen.org>
Hardware:
SoC: MT7981b
RAM: 256 MB
Flash: 128 MB SPI NAND
Ethernet:
1x 2.5Gbps (rtl8221b)
1x 1Gbps (integrated phy)
WiFi: 2x2 MT7981
Buttons: Reset, WPS
LED: 1x multicolor
Solder on UART:
- remove rubber ring on the bottom
- remove screws
- pull up the cylinder, maybe help by push on an ethernet socket with a screwdriver
- remove the (3) screws holding the board in the frame
- remove the board from the frame to get to the screws for the silver, flat heat shield
- remove the (3) screws holding the heat shield
- solder UART pins to the back of the board
- make sure to have the pins point out on side with the black, finned heat spread
- the markings for the pins are going to be below the silver heat shield
- Vcc is not needed
If you don't intend on using the UART outside of the installation process, you might not
want to solder:
- carefully scrape off the thin layer of epoxy on the holes (not the copper)
- place your pin header with the UART attached in the holes
- the pins, starting with the one closest to the socket:
- Vcc (not required)
- GND
- RX
- TX
- either wedge the header or hold it with your fingers so that the pins stay in contact with the board
Installation (UART):
- attach an Ethernet cable to the 1Gbps port (black) on the router
- hold the reset button while powering the router
- press CTRL-C or wait for the timeout to get to the U-Boot prompt
- prepare a TFTP server on the network to supply ..-initramfs-kernel.bin
- use 'tftpboot' in the U-Boot shell to pull the image
- boot the image using 'bootm'
- push the ..-sysupgrade to the router using your preferred method
- perform the upgrade with 'sysupgrade -n'
There is a recovery mechanism that involves fetching a file called 'recovery.bin' but that is not understood yet.
Signed-off-by: Leon M. Busch-George <leon@georgemail.eu>
Hardware:
- SoC: MediaTek MT7981B
- CPU: 2x 1.3 GHz Cortex-A53
- Flash: 128 MiB SPI NAND
- RAM: 512 MiB
- WLAN: 2.4 GHz, 5 GHz (MediaTek MT7976CN, 802.11ax)
- Ethernet: 1x 10/100/1000/2500 Mbps RTL8221B WAN, 1x10/100/1000 Mbps MT7981 LAN
- USB 3.0 port
- Buttons: 1 Reset button, 1 slider button
- LEDs: 1x Red, 1x White
- Serial console: internal test points, 115200 8n1
- Power: 5 VDC, 3 A
MAC addresses:
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| WAN | 80:af:ca:xx:xx:x1 | label+1 |
| LAN | 80:af:ca:xx:xx:x0 | label |
| WLAN 2g | 80:af:ca:xx:xx:x0 | label |
| WLAN 5g | 82:af:ca:xx:xx:x0 | |
+---------+-------------------+-----------+
Installation:
The installation must be done via TFTP by disassembling the router. On other occasions Cudy has distributed intermediate firmware to make installation easier, and so I recommend checking the Wiki for this device if there is a more convenient solution than the one below.
To install using TFTP:
1. Connect to UART.
2. With the router off, press the RESET button. While the router is turning on, the button should continue to be pressed for at least 5 seconds.
3. A u-boot shell will automatically open.
4. Connect to LAN and set your IP to 192.168.1.88/24. Configure a TFTP server and an OpenWrt initramfs-kernel.bin firmware file.
5. Run these steps in u-boot using the name of your file.
setenv bootfile initramfs-kernel.bin
tftpboot
bootm
6. If you can reach LuCI or SSH now, just use the sysupgrade image with the 'Keep settings' option turned off.
Signed-off-by: Luis Mita <luis@luismita.com>
This adds support for the bpi-r4 variant with internal 2.5G PHY and
additional ethernet port instead of second sfp.
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
Despite coming with multiple I2C EEPROMs supposedly dedicated for that
purpose, the BPi-R4 does not seem to have factory assigned MAC addresses.
Hence, just like for all other BPi boards, store a randomly generated
MAC address on first boot and derive WAN and Wi-Fi MAC addresses from
that as well. Not perfect, but better than random on every boot.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Specification:
- MT7981 CPU using 2.4GHz and 5GHz WiFi (both AX)
- MT7531 switch
- 512MB RAM
- 128MB NAND flash with two UBI partitions with identical size
- 1 multi color LED (red, green, blue, white) connected via GCA230718
- 3 buttons (WPS, reset, LED on/off)
- 1 1Gbit WAN port
- 4 1Gbit LAN ports
Disassembly:
- There are four screws at the bottom: 2 under the rubber feets, 2 under the label.
- After removing the screws, the white plastic part can be shifted out of the blue part.
- Be careful because the antennas are mounted on the side and the top of the white part.
Serial Interface
- The serial interface can be connected to the 4 pin holes on the side of the board.
- Pins (from front to rear):
- 3.3V
- RX
- TX
- GND
- Settings: 115200, 8N1
MAC addresses:
- WAN MAC is stored in partition "Odm" at offset 0x81
- LAN (as printed on the device) is WAN MAC + 1
- WLAN MAC (2.4 GHz) is WAN MAC + 2
- WLAN MAC (5GHz) is WAN MAC + 3
Flashing via Recovery Web Interface:
- The recovery web interface always flashes to the currently active partition.
- If OpenWrt is flahsed to the second partition, it will not boot.
- Ensure that you have an OEM image available (encrypted and decrypted version). Decryption is described in the end.
- Set your IP address to 192.168.200.10, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Download openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-recovery.bin
- The recovery web interface always reports successful flashing, even if it fails
- After flashing, the recovery web interface will try to forward the browser to 192.168.0.1 (can be ignored)
- If OpenWrt was flashed to the first partition, OpenWrt will boot (The status LED will start blinking white and stay white in the end). In this case you're done and can use OpenWrt.
- If OpenWrt was flashed to the second partition, OpenWrt won't boot (The status LED will stay red forever). In this case, the following steps are reuqired:
- Start the web recovery interface again and flash the **decrypted OEM image**. This will be flashed to the second partition as well. The OEM firmware web interface is afterwards accessible via http://192.168.200.1.
- Now flash the **encrypted OEM image** via OEM firmware web interface. In this case, the new firmware is flashed to the first partition. After flashing and the following reboot, the OEM firmware web interface should still be accessible via http://192.168.200.1.
- Start the web recovery interface again and flash the OpenWrt recovery image. Now it will be flashed to the first partition, OpenWrt will boot correctly afterwards and is accessible via 192.168.1.1.
Flashing via U-Boot:
- Open the case, connect to the UART console
- Set your IP address to 192.168.200.2, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-initramfs-kernel.bin.
- Power on the device and select "7. Load image" in the U-Boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
- The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
- Perform a sysupgrade using openwrt-mediatek-filogic-dlink_aquila-pro-ai-m30-a1-squashfs-sysupgrade.bin
- Reboot the device. OpenWrt should start from flash now
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.200.2, subnetmask 255.255.255.0
- Press the reset button while powering on the device
- Keep the reset button pressed until the LED blinks red
- Open a Chromium based and goto http://192.168.200.1 (recovery web interface)
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
- Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
- Run ./m32-firmware-util M30 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
- Example for firmware M30A1_FW101B05: ./m32-firmware-util M30 --DecryptFactoryImage M30A1_FW101B05\(0725091522\).bin M30A1_FW101B05\(0725091522\)_decrypted.bin
Flashing via OEM web interface is not possible, as it will change the active partition and OpenWrt is only running on the first UBI partition.
Controlling the LEDs:
- The LEDs are controlled by a chip called "GCA230718" which is connected to the main CPU via I2C (address 0x40)
- I didn't find any documentation or driver for it, so the information below is purely based on my investigations
- If there is already I driver for it, please tell me. Maybe I didn't search enough
- I implemented a kernel module (leds-gca230718) to access the LEDs via DTS
- The LED controller supports PWM for brightness control and ramp control for smooth blinking. This is not implemented in the driver
- The LED controller supports toggling (on -> off -> on -> off) where the brightness of the LEDs can be set individually for each on cycle
- Until now, only simple active/inactive control is implemented (like when the LEDs would have been connected via GPIO)
- Controlling the LEDs requires three sequences sent to the chip. Each sequence consists of
- A reset command (0x81 0xE4) written to register 0x00
- A control command (for example 0x0C 0x02 0x01 0x00 0x00 0x00 0xFF 0x01 0x00 0x00 0x00 0xFF 0x87 written to register 0x03)
- The reset command is always the same
- In the control command
- byte 0 is always the same
- byte 1 (0x02 in the example above) must be changed in every sequence: 0x02 -> 0x01 -> 0x03)
- byte 2 is set to 0x01 which disables toggling. 0x02 would be LED toggling without ramp control, 0x03 would be toggling with ramp control
- byte 3 to 6 define the brightness values for the LEDs (R,G,B,W) for the first on cycle when toggling
- byte 7 defines the toggling frequency (if toggling enabled)
- byte 8 to 11 define the brightness values for the LEDs (R,G,B,W) for the second on cycle when toggling
- byte 12 is constant 0x87
Comparison to M32/R32:
- The algorithms for decrypting the OEM firmware are the same for M30/M32/R32, only the keys differ
- The keys are available in the GPL sources for the M32
- The M32/R32 contained raw data in the firmware images (kernel, rootfs), the R30 uses a sysupgrade tar instead
- Creation of the recovery image is quite similar, only the header start string changes. So mostly takeover from M32/R32 for that.
- Turned out that the bytes at offset 0x0E and 0x0F in the recovery image header are the checksum over the data area
- This checksum was not checked in the recovery web interface of M32/R32 devices, but is now active in R30
- I adapted the recovery image creation to also calculate the checksum over the data area
- The recovery image header for M30 contains addresses which don't match the memory layout in the DTS. The same addresses are also present in the OEM images
- The recovery web interface either calculates the correct addresses from it or has it's own logic to determine where which information must be written
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Hardware specification:
SoC: MediaTek MT7986A 4x A53
Flash: ESMT F50L1G41LB 128MB
RAM: W632GU6NB DDR3 256MB
Ethernet: 1x 2.5G + 4x 1G
WiFi1: MT7975N 2.4GHz 4T4R
WiFi2: MT7975PN 5GHz 4T4R
Button: Reset, WPS
Power: DC 12V 2A
Flash instructions:
1. Connect to the router using ssh or telnet,
username: useradmin, password is the web
login password of the router.
2. Use scp to upload bl31-uboot.fip and flash:
"mtd write xxx-preloader.bin spi0.0"
"mtd write xxx-bl31-uboot.fip FIP"
"mtd erase ubi"
3. Connect to the router via the Lan port,
set a static ip of your PC.
(ip 192.168.1.254, gateway 192.168.1.1)
4. Download initramfs image, reboot router,
waiting for tftp recovery to complete.
5. After openwrt boots up, perform sysupgrade.
Note:
1. Back up all mtd partitions before flashing.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
The GL.iNet X3000 and XE3000 are Wi-Fi 6 5G cellular routers, based on
MediaTek MT7981A SoC. The XE3000 is the same device as the X3000,
except for an additional battery.
Specifications:
- SoC: Filogic 820 MT7981A (1.3GHz)
- RAM: DDR4 512M
- Flash: eMMC 8G, MicroSD card slot
- WiFi: 2.4GHz and 5GHz with 6 antennas
- Ethernet:
- 1x LAN (10/100/1000M)
- 1x WAN (10/100/1000/2500M)
- 5G: Quectel RM520N-GL with two nano-SIM card slots
- USB: 1x USB 2.0 port
- UART:
- 3.3V, TX, RX, GND / 115200 8N1
MAC addresses as verified by OEM firmware:
vendor OpenWrt address source
WAN eth0 label factory 0x0a (label)
LAN eth1 label + 1
2g phy0-ap0 label + 2 factory 0x04
5g phy1-ap0 label + 3
Installation via U-Boot rescue:
1. Press and hold reset button while booting the device
2. Wait for the Internet led to blink 5 times
3. Release reset button
4. The rescue page is accessible via http://192.168.1.1
5. Select the OpenWrt sysupgrade image and start upgrade
6. Wait for the router to flash new firmware and reboot
Revert to stock firmware:
1. Download the stock firmware from GL.iNet website
2. Use the method explained above to flash the stock firmware
Switch the modem network port between PCIe and USB interfaces:
1. Connect to the AT commands (/dev/ttyUSB2) port using
e.g. minicom: minicom -D /dev/ttyUSB2
2. Check the current modem mode with 'AT+QCFG="data_interface"':
- 0,0 indicates that the network port uses the USB interface
- 1,0 indicates that the network port uses the PCIe interface
3. Switch the active interface with:
- 'AT+QCFG="data_interface",0,0' to use the USB interface
- 'AT+QCFG="data_interface",1,0' to use the PCIe interface
4. Reboot
Signed-off-by: Jean Thomas <jean.thomas@wifirst.fr>
MT7981B /256MB /16MB SPI (XM25QH128C)
AX 2.4Ghz
AX 5Ghz 160Mhz wide
1Gbit LAN
OEM:
root@RE3000:~# ifconfig |grep HWaddr
br-lan Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0 (label)
br-wan Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
eth0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
ra0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
ra2 Link encap:Ethernet HWaddr 82:XX:XX:28:XX:X0
rax0 Link encap:Ethernet HWaddr 82:XX:XX:38:XX:X0
rax2 Link encap:Ethernet HWaddr 82:XX:XX:58:XX:X0
OpenWrt
root@OpenWrt:/# ifconfig |grep HW
br-lan Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
eth0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
phy0-ap0 Link encap:Ethernet HWaddr 80:XX:XX:08:XX:X0
phy1-ap0 Link encap:Ethernet HWaddr 82:XX:XX:08:XX:X1
tftp Installation via u-boot:
Connect TTL3.3V converter
connector is under the radiator Set speed 115200 8 N 1
Interrupt boot process by holding down-arrow key during boot then
>> 6. Load image
>> 0 - TFTP client (Default)
enter IP adresses and initramfs-kernel.bin
write to flash via sysupgrade or gui
Signed-off-by: Robert Senderek <robert.senderek@10g.pl>
Use newly added support for NVMEM-on-UBI instead of extracting MAC
address and WiFi EEPROM data in userspace.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Use newly added support for NVMEM-on-UBI instead of extracting MAC
address and WiFi EEPROM data in userspace.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Use newly added support for NVMEM-on-UBI instead of extracting MAC
address and WiFi EEPROM data in userspace.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Now that we can reference MMC partitions in device tree, use that
to get rid of Wi-Fi EEPROM and MAC address setup in userspace.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Comfast CF-E393AX is a dual-band Wi-Fi 6 POE ceiling mount access point.
Oem firmware is a custom openwrt 21.02 snapshot version.
We can gain access via ssh once we remove the root password.
Hardware specification:
SoC: MediaTek MT7981A 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB DDR3
Ethernet: 1x 10/100/1000 Mbps built-in PHY (WAN)
1x 10/100/1000/2500 Mbps MaxLinear GPY211C (LAN)
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976D
LEDS: 1x (Red, Blue and Green)
Button: Reset
UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | VCC GND TX RX | <= |
| ----------------- |
--------------------------
Gain SSH access:
1. Login into web interface (http://apipaddress/computer/login.html),
and download the
configuration(http://apipaddress/computer/config.html).
2. Rename downloaded backup config - 'backup.file to backup.tar.gz',
Enter 'fakeroot' command then decompress the configuration:
tar -zxf backup.tar.gz
3. Edit 'etc/shadow', update (remove) root password:
With password =
'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
to
Without password =
'root::0:99999:7:::'
'root::0:99999:7:::'
4. Repack 'etc' directory back to a new backup file:
tar -zcf backup-ssh.tar.gz etc/
5. Rename new config tar.gz file to 'backup-ssh.file'
Exit fakeroot - 'exit'
6. Upload new configuration via web interface, now you
can SSH with the following:
'ssh -vv -o HostKeyAlgorithms=+ssh-rsa \
-o PubkeyAcceptedAlgorithms=+ssh-rsa root@192.168.10.1'.
Backup the mtd partitions
- https://openwrt.org/docs/guide-user/installation/generic.backup
7. Copy openwrt factory firmware to the tmp folder to install via ssh:
'scp -o HostKeyAlgorithms=+ssh-rsa \
-o PubkeyAcceptedAlgorithms=+ssh-rsa \
*-mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin \
root@192.168.10.1:/tmp/'
'sysupgrade -n -F \
/tmp/*--mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin'
8. Once led has stopped flashing - Connect via ssh with the
default openwrt ip address - 'ssh root@192.168.1.1'
9. SSH copy the openwrt sysupgrade firmware and upgrade
as per the default instructions.
Signed-off-by: David Bentham <db260179@gmail.com>
Setting/clearing bits on the first byte of the mac address causes collisions
when using multiple SSIDs on both PHYs. Change the allocation to alter the
last byte instead.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
(based on support for ASUS RT-AX59U by liushiyou006)
SOC: MediaTek MT7986
RAM: 512MB DDR4
FLASH: 128MB SPI-NAND (Winbond W25N01GV)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: MediaTek MT7531 Switch
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Upgrade from AsusWRT to OpenWRT using UART
Download the OpenWrt initramfs image.
Copy the image to a TFTP server reachable at 192.168.1.70/24. Rename the image to rtax59u.bin.
Connect the PC with TFTP server to the RT-AX59U.
Set a static ip on the ethernet interface of your PC.
(ip address: 192.168.1.70, subnet mask:255.255.255.0)
Conect to the serial console, interrupt the autoboot process by pressing '4' when prompted.
Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.1.1
$ setenv serverip 192.168.1.70
$ tftpboot 0x46000000 rtax59u.bin
$ bootm 0x46000000
Wait for OpenWrt to boot. Transfer the sysupgrade image to the device using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Upgrade from AsusWRT to OpenWRT using WebUI
Download transit TRX file from https://drive.google.com/drive/folders/1A20QdjK7Udagu31FSszpWAk8-cGlCwsq
Upgrade firmware from WebUI (192.168.50.1) using downloaded TRX file
Wait for OpenWRT to boot (192.168.1.1).
Upgrade system with sysupgrade image using luci or uploading it through scp and executing sysupgrade command
MAC Address for WLAN 5g is not following the same algorithm as in AsusWRT.
We have increased by one the WLAN 5g to avoid collisions with other networks from WLAN 2g
when bit 28 is already set.
: Stock : OpenWrt
WLAN 2g (1) : C8:xx:xx:0D:xx:D4 : C8:xx:xx:0D:xx:D4
WLAN 2g (2) : : CA:xx:xx:0D:xx:D4
WLAN 2g (3) : : CE:xx:xx:0D:xx:D4
WLAN 5g (1) : CA:xx:xx:1D:xx:D4 : CA:xx:xx:1D:xx:D5
WLAN 5g (2) : : CE:xx:xx:1D:xx:D5
WLAN 5g (3) : : C2:xx:xx:1D:xx:D5
WLAN 2g (1) : 08:xx:xx:76:xx:BE : 08:xx:xx:76:xx:BE
WLAN 2g (2) : : 0A:xx:xx:76:xx:BE
WLAN 2g (3) : : 0E:xx:xx:76:xx:BE
WLAN 5g (1) : 0A:xx:xx:76:xx:BE : 0A:xx:xx:76:xx:BF
WLAN 5g (2) : : 0E:xx:xx:76:xx:BF
WLAN 5g (3) : : 02:xx:xx:76:xx:BF
Signed-off-by: Xavier Franquet <xavier@franquet.es>
Specifications:
SoC: MediaTek MT7981B
RAM: 256MiB
Flash: SPI-NAND 128 MiB
Switch: 1 WAN, 3 LAN (Gigabit)
Buttons: Reset, Mesh
Power: DC 12V 1A
WiFi: MT7976CN
UART: 115200n8
UART Layout:
VCC-RX-TX-GND
No. of Antennas: 6
Note: Upon opening the router, only 5 antennas were connected
to the mainboard.
Led Layout:
Power-Mesh-5gwifi-WAN-LAN3-LAN2-LAN1-2gWiFi
Buttons:
Reset-Mesh
Installation:
A. Through OpenWrt Dashboard:
If your router comes with OpenWrt preinstalled (modified by the seller),
you can easily upgrade by going to the dashboard (192.168.1.1) and then
navigate to System -> Backup/Flash firmware, then flash the firmware
B. Through TFTP
Standard installation via UART:
1. Connect USB Serial Adapter to the UART, (NOTE: Don't connect the VCC pin).
2. Power on the router. Make sure that you can access your router via UART.
3. Restart the router then repeatedly press ctrl + c to skip default boot.
4. Type > bootmenu
5. Press '2' to select upgrade firmware
6. Press 'Y' on 'Run image after upgrading?'
7. Press '0' and hit 'enter' to select TFTP client (default)
8. Fill the U-Boot's IP address and TFTP server's IP address.
9. Finally, enter the 'firmware' filename.
Signed-off-by: Ian Oderon <ianoderon@gmail.com>
The Bonanza Peak series are a couple of MT7986-powered 2.5 GBit/s
Wi-Fi 6 residential gateway, access point and mesh router products.
All of them come with an eMMC to boot from, are powered via USB-C and
got a USB 3.0 type-A port. All of them got a Dialog (Renesas) DA14531
Bluetooth module connected via UART. If the device was previously
running stock firmware, the BT chip's internal flash has been loaded
with firmware and it can be attached using hciattach when using
OpenWrt.
SOC: MediaTek MT7986A
RAM: 2 GiB DDR4
eMMC: 8 GiB
Bluetooth: BLE5 (DA14531)
Serial: 3.3V level, 115200 8n1 on 4-pin connector
* SDG-8612 - Dual-band RJ-45 gateway
2x 2.5G MaxLinear PHY for WAN port
3x 1GE LAN ports via MT7531 switch
* SDG-8614 - Dual-band SFP gateway
1x SFP cage with up to 2.5G speed
1x 2.5G MaxLinear PHY for LAN port
3x 1GE LAN ports via MT7531 switch
* SDG-8622 - Tri-band mesh router
2x 2.5G MaxLinear PHY
The MT7986 2G and 5G are used as 2G and 5G high band.
There’s a MT7915 PCIe card for 5G low band.
* SDG-8632 - Tri-band mesh router with 6 GHz
2x 2.5G MaxLinear PHY
The MT7986 serves the 2G and 6G bands.
There’s a MT7915 PCIe card for 5G.
Installation via U-Boot serial console:
0. setup TFTP server with IP 192.168.1.10/24, place initramfs image
renamed to openwrt.XXX where XXX is the internal product number:
SDG-8612: XXX = 412
SDG-8614: XXX = 414
SDG-8622: XXX = 422
SDG-8632: XXX = 432
1. connect to the serial console and power on the device.
Interrupt the bootloader by pressing 'st'
2. setenv boot_mode openwrt ; saveenv
3. run boot1
Load firmware via TFTP and write to flash
4. run boot2
Now OpenWrt initramfs should boot
5. upload sysupgrade.bin via scp to /tmp
6. sysupgrade
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The flash procedure is similar to the Xiaomi AX6000 router.
Load openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-initramfs-recovery.itb from original Zyxel U-Boot:
tftpboot openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-initramfs-recovery.itb
bootm 0x46000000
Load mtd-rw
insmod /lib/modules/$(uname -r)/mtd-rw.ko i_want_a_brick=1
Format ubi and create ubootenv partitions
ubidetach -p /dev/mtd5; ubiformat /dev/mtd5 -y; ubiattach -p /dev/mtd5
ubimkvol /dev/ubi0 -n 0 -N ubootenv -s 128KiB
ubimkvol /dev/ubi0 -n 1 -N ubootenv2 -s 128KiB
Copy openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-initramfs-recovery.itb to /tmp and create recovery partition.
If your recovery image is larger than 10MiB, size the recovery partition accordingly to make it fit.
ubimkvol /dev/ubi0 -n 2 -N recovery -s 10MiB
ubiupdatevol /dev/ubi0_2 openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-initramfs-recovery.itb
Copy preloader and uboot to /tmp and write them in the mtd
mtd write /tmp/openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-preloader.bin bl2
mtd write /tmp/openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-bl31-uboot.fip fip
Now write the firmware:
sysupgrade -n /tmp/openwrt-mediatek-filogic-zyxel_ex5601-t0-ubootmod-squashfs-sysupgrade.itb
To create a correct BL2, I had to add a profile for 'spim:4k+256' as I could not find a way to value the variable 'NAND_TYPE'.
Features and fixes from hitech95 tree has been squashed, I'm attaching his commit message:
The Power LED was not working correctly and not reacting
to the boot process and statuses.
The board has space (footprint) for an unpopulated Zigbee chip,
while we dont know the device model having this chip populated
we have to assure that the common dts doesnt enable
interfaces that share pins with such device.
In this instance the PCIe and the uart1 and uart2 are disabled.
Some of the control PCIE pins seems to be used for the Zigbee chip,
UART1 seems to be used as a flash port while UART2 should be the
main comunication interface of Zigbee chip.
The Zigbee chip should be a EFR32MG21. But the pins used for UART
seems to be not on standard PINS used by other adapters.
So it cannot run firmwares shared on the web.
But it should be possible to build a custom firmware with
the corrtect pinmux.
This commit also contains the following squashed commit from hitech95
- mediatek: fix sysupgrade for Zyxel EX7601-T0 ubootmod
Changes and fixes added in common board:
- added aliases for boot status leds.
- added aliases for the mac-label-device.
- added pin claims for core features (MDIO and UART 0)
- added default LEDs configuration (01_leds)
- added default network configuration (02_network)
- added missing kmod-usb3 module for USB3
- fixed LED names
- fixed reset pin for SLIC chip
- removed unused pinmux configurations and devices
- fix LAN (switch) port numbering
- using nvmem cells for wifi eeprom, dropping deprecated "mediatek,mtd-eeprom"
- proper factory partition and mac address handling
- cleaned up spi_nand sections and partition
Changes and fixxes added in stock layout:
- added NMBM, if u-boot has it, the kernel must be informed.
Co-authored-by: Nicolò Veronese <nicveronese@gmail.com>
Co-developed-by: Nicolò Veronese <nicveronese@gmail.com>
Signed-off-by: Nicolò Veronese <nicveronese@gmail.com>
Signed-off-by: Valerio 'ftp21' Mancini <ftp21@ftp21.eu>