ZeroTierOne/node/Switch.hpp

333 lines
11 KiB
C++
Raw Normal View History

/*
2020-05-12 08:35:48 +00:00
* Copyright (c)2013-2020 ZeroTier, Inc.
*
2019-08-23 16:23:39 +00:00
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
2020-08-20 19:51:39 +00:00
* Change Date: 2025-01-01
*
2019-08-23 16:23:39 +00:00
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
2019-08-23 16:23:39 +00:00
/****/
#ifndef ZT_N_SWITCH_HPP
#define ZT_N_SWITCH_HPP
#include <map>
#include <set>
#include <vector>
#include <list>
2013-09-17 19:46:56 +00:00
#include "Constants.hpp"
#include "Mutex.hpp"
#include "MAC.hpp"
#include "Packet.hpp"
#include "Utils.hpp"
#include "InetAddress.hpp"
#include "Topology.hpp"
#include "Network.hpp"
#include "SharedPtr.hpp"
#include "IncomingPacket.hpp"
#include "Hashtable.hpp"
2019-07-29 17:19:20 +00:00
/* Ethernet frame types that might be relevant to us */
#define ZT_ETHERTYPE_IPV4 0x0800
#define ZT_ETHERTYPE_ARP 0x0806
#define ZT_ETHERTYPE_RARP 0x8035
#define ZT_ETHERTYPE_ATALK 0x809b
#define ZT_ETHERTYPE_AARP 0x80f3
#define ZT_ETHERTYPE_IPX_A 0x8137
#define ZT_ETHERTYPE_IPX_B 0x8138
#define ZT_ETHERTYPE_IPV6 0x86dd
namespace ZeroTier {
class RuntimeEnvironment;
class Peer;
/**
* Core of the distributed Ethernet switch and protocol implementation
2014-09-24 20:45:58 +00:00
*
* This class is perhaps a bit misnamed, but it's basically where everything
* meets. Transport-layer ZT packets come in here, as do virtual network
* packets from tap devices, and this sends them where they need to go and
* wraps/unwraps accordingly. It also handles queues and timeouts and such.
*/
2018-01-27 02:34:56 +00:00
class Switch
{
2018-07-10 23:50:12 +00:00
struct ManagedQueue;
struct TXQueueEntry;
2020-05-12 08:35:48 +00:00
friend class SharedPtr<Peer>;
2018-07-10 23:50:12 +00:00
typedef struct {
TXQueueEntry *p;
bool ok_to_drop;
} dqr;
public:
Switch(const RuntimeEnvironment *renv);
/**
* Called when a packet is received from the real network
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
2017-07-06 18:45:22 +00:00
* @param localSocket Local I/O socket as supplied by external code
* @param fromAddr Internet IP address of origin
* @param data Packet data
* @param len Packet length
*/
2017-07-06 18:45:22 +00:00
void onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddress &fromAddr,const void *data,unsigned int len);
/**
* Returns whether our bonding or balancing policy is aware of flows.
*/
bool isFlowAware();
/**
* Called when a packet comes from a local Ethernet tap
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param network Which network's TAP did this packet come from?
* @param from Originating MAC address
* @param to Destination MAC address
* @param etherType Ethernet packet type
* @param vlanId VLAN ID or 0 if none
* @param data Ethernet payload
* @param len Frame length
*/
void onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len);
2018-07-10 23:50:12 +00:00
/**
* Determines the next drop schedule for packets in the TX queue
*
* @param t Current time
* @param count Number of packets dropped this round
*/
uint64_t control_law(uint64_t t, int count);
/**
* Selects a packet eligible for transmission from a TX queue. According to the control law, multiple packets
* may be intentionally dropped before a packet is returned to the AQM scheduler.
*
* @param q The TX queue that is being dequeued from
* @param now Current time
*/
dqr dodequeue(ManagedQueue *q, uint64_t now);
/**
* Presents a packet to the AQM scheduler.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param network Network that the packet shall be sent over
* @param packet Packet to be sent
* @param encrypt Encrypt packet payload? (always true except for HELLO)
* @param qosBucket Which bucket the rule-system determined this packet should fall into
*/
2020-05-12 08:35:48 +00:00
void aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &packet,bool encrypt,int qosBucket,int32_t flowId = ZT_QOS_NO_FLOW);
2018-07-10 23:50:12 +00:00
/**
* Performs a single AQM cycle and dequeues and transmits all eligible packets on all networks
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
*/
void aqm_dequeue(void *tPtr);
/**
* Calls the dequeue mechanism and adjust queue state variables
*
* @param q The TX queue that is being dequeued from
* @param isNew Whether or not this queue is in the NEW list
* @param now Current time
*/
Switch::TXQueueEntry * CoDelDequeue(ManagedQueue *q, bool isNew, uint64_t now);
/**
* Removes QoS Queues and flow state variables for a specific network. These queues are created
* automatically upon the transmission of the first packet from this peer to another peer on the
* given network.
*
* The reason for existence of queues and flow state variables specific to each network is so that
* each network's QoS rules function independently.
*
* @param nwid Network ID
*/
void removeNetworkQoSControlBlock(uint64_t nwid);
/**
* Send a packet to a ZeroTier address (destination in packet)
*
* The packet must be fully composed with source and destination but not
* yet encrypted. If the destination peer is known the packet
* is sent immediately. Otherwise it is queued and a WHOIS is dispatched.
*
* The packet may be compressed. Compression isn't done here.
*
* Needless to say, the packet's source must be this node. Otherwise it
* won't be encrypted right. (This is not used for relaying.)
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param packet Packet to send (buffer may be modified)
* @param encrypt Encrypt packet payload? (always true except for HELLO)
*/
2020-05-12 08:35:48 +00:00
void send(void *tPtr,Packet &packet,bool encrypt,int32_t flowId = ZT_QOS_NO_FLOW);
/**
* Request WHOIS on a given address
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
2017-08-23 23:42:17 +00:00
* @param now Current time
* @param addr Address to look up
*/
void requestWhois(void *tPtr,const int64_t now,const Address &addr);
/**
2014-09-24 20:45:58 +00:00
* Run any processes that are waiting for this peer's identity
*
* Called when we learn of a peer's identity from HELLO, OK(WHOIS), etc.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param peer New peer
*/
void doAnythingWaitingForPeer(void *tPtr,const SharedPtr<Peer> &peer);
2014-09-24 20:45:58 +00:00
/**
* Perform retries and other periodic timer tasks
*
* This can return a very long delay if there are no pending timer
* tasks. The caller should cap this comparatively vs. other values.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param now Current time
2014-09-24 20:45:58 +00:00
* @return Number of milliseconds until doTimerTasks() should be run again
*/
unsigned long doTimerTasks(void *tPtr,int64_t now);
2014-09-24 20:45:58 +00:00
private:
bool _shouldUnite(const int64_t now,const Address &source,const Address &destination);
2020-05-12 08:35:48 +00:00
bool _trySend(void *tPtr,Packet &packet,bool encrypt,int32_t flowId = ZT_QOS_NO_FLOW); // packet is modified if return is true
void _sendViaSpecificPath(void *tPtr,SharedPtr<Peer> peer,SharedPtr<Path> viaPath,uint16_t userSpecifiedMtu, int64_t now,Packet &packet,bool encrypt,int32_t flowId);
void _recordOutgoingPacketMetrics(const Packet &p);
const RuntimeEnvironment *const RR;
int64_t _lastBeaconResponse;
volatile int64_t _lastCheckedQueues;
2017-08-23 23:42:17 +00:00
// Time we last sent a WHOIS request for each address
Hashtable< Address,int64_t > _lastSentWhoisRequest;
2017-08-23 23:42:17 +00:00
Mutex _lastSentWhoisRequest_m;
// Packets waiting for WHOIS replies or other decode info or missing fragments
struct RXQueueEntry
2014-09-24 20:45:58 +00:00
{
RXQueueEntry() : timestamp(0) {}
volatile int64_t timestamp; // 0 if entry is not in use
2017-08-23 23:42:17 +00:00
volatile uint64_t packetId;
IncomingPacket frag0; // head of packet
Packet::Fragment frags[ZT_MAX_PACKET_FRAGMENTS - 1]; // later fragments (if any)
2014-09-24 20:45:58 +00:00
unsigned int totalFragments; // 0 if only frag0 received, waiting for frags
uint32_t haveFragments; // bit mask, LSB to MSB
2017-08-23 23:42:17 +00:00
volatile bool complete; // if true, packet is complete
2020-05-12 08:35:48 +00:00
volatile int32_t flowId;
Mutex lock;
2014-09-24 20:45:58 +00:00
};
RXQueueEntry _rxQueue[ZT_RX_QUEUE_SIZE];
AtomicCounter _rxQueuePtr;
// Returns matching or next available RX queue entry
inline RXQueueEntry *_findRXQueueEntry(uint64_t packetId)
{
const unsigned int current = static_cast<unsigned int>(_rxQueuePtr.load());
for(unsigned int k=1;k<=ZT_RX_QUEUE_SIZE;++k) {
RXQueueEntry *rq = &(_rxQueue[(current - k) % ZT_RX_QUEUE_SIZE]);
if ((rq->packetId == packetId)&&(rq->timestamp)) {
return rq;
}
}
++_rxQueuePtr;
return &(_rxQueue[static_cast<unsigned int>(current) % ZT_RX_QUEUE_SIZE]);
}
// Returns current entry in rx queue ring buffer and increments ring pointer
inline RXQueueEntry *_nextRXQueueEntry()
{
return &(_rxQueue[static_cast<unsigned int>((++_rxQueuePtr) - 1) % ZT_RX_QUEUE_SIZE]);
}
// ZeroTier-layer TX queue entry
struct TXQueueEntry
{
TXQueueEntry() {}
2020-05-12 08:35:48 +00:00
TXQueueEntry(Address d,uint64_t ct,const Packet &p,bool enc,int32_t fid) :
dest(d),
creationTime(ct),
packet(p),
2019-08-20 04:52:33 +00:00
encrypt(enc),
flowId(fid) {}
Address dest;
uint64_t creationTime;
Packet packet; // unencrypted/unMAC'd packet -- this is done at send time
bool encrypt;
2020-05-12 08:35:48 +00:00
int32_t flowId;
};
std::list< TXQueueEntry > _txQueue;
Mutex _txQueue_m;
2018-07-10 23:50:12 +00:00
Mutex _aqm_m;
2014-09-24 20:45:58 +00:00
// Tracks sending of VERB_RENDEZVOUS to relaying peers
struct _LastUniteKey
{
_LastUniteKey() : x(0),y(0) {}
_LastUniteKey(const Address &a1,const Address &a2)
{
if (a1 > a2) {
x = a2.toInt();
y = a1.toInt();
} else {
x = a1.toInt();
y = a2.toInt();
}
}
2017-07-17 21:21:09 +00:00
inline unsigned long hashCode() const { return ((unsigned long)x ^ (unsigned long)y); }
inline bool operator==(const _LastUniteKey &k) const { return ((x == k.x)&&(y == k.y)); }
uint64_t x,y;
};
Hashtable< _LastUniteKey,uint64_t > _lastUniteAttempt; // key is always sorted in ascending order, for set-like behavior
Mutex _lastUniteAttempt_m;
2018-07-10 23:50:12 +00:00
// Queue with additional flow state variables
struct ManagedQueue
{
ManagedQueue(int id) :
id(id),
2020-05-12 08:35:48 +00:00
byteCredit(ZT_AQM_QUANTUM),
2018-07-10 23:50:12 +00:00
byteLength(0),
dropping(false)
{}
int id;
int byteCredit;
int byteLength;
uint64_t first_above_time;
uint32_t count;
uint64_t drop_next;
bool dropping;
uint64_t drop_next_time;
std::list< TXQueueEntry *> q;
};
// To implement fq_codel we need to maintain a queue of queues
struct NetworkQoSControlBlock
{
int _currEnqueuedPackets;
std::vector<ManagedQueue *> newQueues;
std::vector<ManagedQueue *> oldQueues;
std::vector<ManagedQueue *> inactiveQueues;
};
std::map<uint64_t,NetworkQoSControlBlock*> _netQueueControlBlock;
};
} // namespace ZeroTier
#endif