mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-18 02:40:13 +00:00
Added notion of Flows
This commit is contained in:
parent
15e44f0ddd
commit
0634214f2c
@ -434,27 +434,49 @@ enum ZT_ResultCode
|
||||
enum ZT_MultipathMode
|
||||
{
|
||||
/**
|
||||
* No active multipath.
|
||||
*
|
||||
* Traffic is merely sent over the strongest path. That being
|
||||
* said, this mode will automatically failover in the event that a link goes down.
|
||||
* No fault tolerance or balancing.
|
||||
*/
|
||||
ZT_MULTIPATH_NONE = 0,
|
||||
|
||||
/**
|
||||
* Traffic is randomly distributed among all active paths.
|
||||
*
|
||||
* Will cease sending traffic over links that appear to be stale.
|
||||
* Sends traffic out on all paths.
|
||||
*/
|
||||
ZT_MULTIPATH_RANDOM = 1,
|
||||
ZT_MULTIPATH_BROADCAST = 1,
|
||||
|
||||
/**
|
||||
* Traffic is allocated across all active paths in proportion to their strength and
|
||||
* reliability.
|
||||
*
|
||||
* Will cease sending traffic over links that appear to be stale.
|
||||
* Sends traffic out on only one path at a time. Immediate fail-over.
|
||||
*/
|
||||
ZT_MULTIPATH_PROPORTIONALLY_BALANCED = 2,
|
||||
ZT_MULTIPATH_ACTIVE_BACKUP= 2,
|
||||
|
||||
/**
|
||||
* Sends traffic out on all interfaces according to a uniform random distribution.
|
||||
*/
|
||||
ZT_MULTIPATH_BALANCE_RANDOM = 3,
|
||||
|
||||
/**
|
||||
* Stripes packets across all paths.
|
||||
*/
|
||||
ZT_MULTIPATH_BALANCE_RR_OPAQUE = 4,
|
||||
|
||||
/**
|
||||
* Balances flows across all paths.
|
||||
*/
|
||||
ZT_MULTIPATH_BALANCE_RR_FLOW = 5,
|
||||
|
||||
/**
|
||||
* Hashes flows across all paths.
|
||||
*/
|
||||
ZT_MULTIPATH_BALANCE_XOR_FLOW = 6,
|
||||
|
||||
/**
|
||||
* Balances traffic across all paths according to observed performance.
|
||||
*/
|
||||
ZT_MULTIPATH_BALANCE_DYNAMIC_OPAQUE = 7,
|
||||
|
||||
/**
|
||||
* Balances flows across all paths.
|
||||
*/
|
||||
ZT_MULTIPATH_BALANCE_DYNAMIC_FLOW = 8,
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -266,6 +266,12 @@
|
||||
*/
|
||||
#define ZT_LOCAL_CONF_FILE_CHECK_INTERVAL 10000
|
||||
|
||||
/**
|
||||
* How long before we consider a flow to be dead and remove it from the balancing
|
||||
* policy's list.
|
||||
*/
|
||||
#define ZT_MULTIPATH_FLOW_EXPIRATION 60000
|
||||
|
||||
/**
|
||||
* How frequently to check for changes to the system's network interfaces. When
|
||||
* the service decides to use this constant it's because we want to react more
|
||||
|
@ -308,7 +308,6 @@ public:
|
||||
*/
|
||||
inline void recordOutgoingPacket(int64_t now, int64_t packetId, uint16_t payloadLength, Packet::Verb verb)
|
||||
{
|
||||
DEBUG_INFO("");
|
||||
Mutex::Lock _l(_statistics_m);
|
||||
if (verb != Packet::VERB_ACK && verb != Packet::VERB_QOS_MEASUREMENT) {
|
||||
if ((packetId & (ZT_PATH_QOS_ACK_PROTOCOL_DIVISOR - 1)) == 0) {
|
||||
@ -332,7 +331,6 @@ public:
|
||||
*/
|
||||
inline void recordIncomingPacket(int64_t now, int64_t packetId, uint16_t payloadLength, Packet::Verb verb)
|
||||
{
|
||||
DEBUG_INFO("");
|
||||
Mutex::Lock _l(_statistics_m);
|
||||
if (verb != Packet::VERB_ACK && verb != Packet::VERB_QOS_MEASUREMENT) {
|
||||
if ((packetId & (ZT_PATH_QOS_ACK_PROTOCOL_DIVISOR - 1)) == 0) {
|
||||
@ -353,7 +351,6 @@ public:
|
||||
*/
|
||||
inline void receivedAck(int64_t now, int32_t ackedBytes)
|
||||
{
|
||||
DEBUG_INFO("");
|
||||
_expectingAckAsOf = 0;
|
||||
_unackedBytes = (ackedBytes > _unackedBytes) ? 0 : _unackedBytes - ackedBytes;
|
||||
int64_t timeSinceThroughputEstimate = (now - _lastThroughputEstimation);
|
||||
@ -398,7 +395,6 @@ public:
|
||||
*/
|
||||
inline void sentAck(int64_t now)
|
||||
{
|
||||
DEBUG_INFO("");
|
||||
Mutex::Lock _l(_statistics_m);
|
||||
_inACKRecords.clear();
|
||||
_packetsReceivedSinceLastAck = 0;
|
||||
@ -416,7 +412,6 @@ public:
|
||||
*/
|
||||
inline void receivedQoS(int64_t now, int count, uint64_t *rx_id, uint16_t *rx_ts)
|
||||
{
|
||||
DEBUG_INFO("");
|
||||
Mutex::Lock _l(_statistics_m);
|
||||
// Look up egress times and compute latency values for each record
|
||||
std::map<uint64_t,uint64_t>::iterator it;
|
||||
@ -441,7 +436,6 @@ public:
|
||||
*/
|
||||
inline int32_t generateQoSPacket(int64_t now, char *qosBuffer)
|
||||
{
|
||||
DEBUG_INFO("");
|
||||
Mutex::Lock _l(_statistics_m);
|
||||
int32_t len = 0;
|
||||
std::map<uint64_t,uint64_t>::iterator it = _inQoSRecords.begin();
|
||||
@ -466,7 +460,6 @@ public:
|
||||
* @param Current time
|
||||
*/
|
||||
inline void sentQoS(int64_t now) {
|
||||
DEBUG_INFO("");
|
||||
_packetsReceivedSinceLastQoS = 0;
|
||||
_lastQoSMeasurement = now;
|
||||
}
|
||||
@ -586,7 +579,6 @@ public:
|
||||
inline void processBackgroundPathMeasurements(const int64_t now)
|
||||
{
|
||||
if (now - _lastPathQualityComputeTime > ZT_PATH_QUALITY_COMPUTE_INTERVAL) {
|
||||
DEBUG_INFO("");
|
||||
Mutex::Lock _l(_statistics_m);
|
||||
_lastPathQualityComputeTime = now;
|
||||
address().toString(_addrString);
|
||||
|
215
node/Peer.cpp
215
node/Peer.cpp
@ -75,7 +75,9 @@ Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Ident
|
||||
_linkIsRedundant(false),
|
||||
_remotePeerMultipathEnabled(false),
|
||||
_lastAggregateStatsReport(0),
|
||||
_lastAggregateAllocation(0)
|
||||
_lastAggregateAllocation(0),
|
||||
_virtualPathCount(0),
|
||||
_roundRobinPathAssignmentIdx(0)
|
||||
{
|
||||
if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH))
|
||||
throw ZT_EXCEPTION_INVALID_ARGUMENT;
|
||||
@ -195,6 +197,9 @@ void Peer::received(
|
||||
} else {
|
||||
attemptToContact = true;
|
||||
}
|
||||
|
||||
// Every time we learn of new path, rebuild set of virtual paths
|
||||
constructSetOfVirtualPaths();
|
||||
}
|
||||
}
|
||||
|
||||
@ -256,6 +261,39 @@ void Peer::received(
|
||||
}
|
||||
}
|
||||
|
||||
void Peer::constructSetOfVirtualPaths()
|
||||
{
|
||||
if (!_remoteMultipathSupported) {
|
||||
return;
|
||||
}
|
||||
Mutex::Lock _l(_virtual_paths_m);
|
||||
|
||||
int64_t now = RR->node->now();
|
||||
_virtualPathCount = 0;
|
||||
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
||||
if (_paths[i].p && _paths[i].p->alive(now)) {
|
||||
for(unsigned int j=0;j<ZT_MAX_PEER_NETWORK_PATHS;++j) {
|
||||
if (_paths[j].p && _paths[j].p->alive(now)) {
|
||||
int64_t localSocket = _paths[j].p->localSocket();
|
||||
bool foundVirtualPath = false;
|
||||
for (int k=0; k<_virtualPaths.size(); k++) {
|
||||
if (_virtualPaths[k]->localSocket == localSocket && _virtualPaths[k]->p == _paths[i].p) {
|
||||
foundVirtualPath = true;
|
||||
}
|
||||
}
|
||||
if (!foundVirtualPath)
|
||||
{
|
||||
VirtualPath *np = new VirtualPath;
|
||||
np->p = _paths[i].p;
|
||||
np->localSocket = localSocket;
|
||||
_virtualPaths.push_back(np);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Peer::recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId,
|
||||
uint16_t payloadLength, const Packet::Verb verb, int64_t now)
|
||||
{
|
||||
@ -320,10 +358,10 @@ void Peer::computeAggregateAllocation(int64_t now)
|
||||
for(uint16_t i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
||||
if (_paths[i].p) {
|
||||
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_RANDOM) {
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_RANDOM) {
|
||||
_paths[i].p->updateComponentAllocationOfAggregateLink(((float)_pathChoiceHist.countValue(i) / (float)_pathChoiceHist.count()) * 255);
|
||||
}
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_PROPORTIONALLY_BALANCED) {
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_DYNAMIC_OPAQUE) {
|
||||
_paths[i].p->updateComponentAllocationOfAggregateLink((unsigned char)((_paths[i].p->relativeQuality() / totalRelativeQuality) * 255));
|
||||
}
|
||||
}
|
||||
@ -382,9 +420,22 @@ int Peer::aggregateLinkLogicalPathCount()
|
||||
return pathCount;
|
||||
}
|
||||
|
||||
SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired)
|
||||
std::vector<SharedPtr<Path>> Peer::getAllPaths(int64_t now)
|
||||
{
|
||||
Mutex::Lock _l(_virtual_paths_m); // FIXME: TX can now lock RX
|
||||
std::vector<SharedPtr<Path>> paths;
|
||||
for (int i=0; i<_virtualPaths.size(); i++) {
|
||||
if (_virtualPaths[i]->p) {
|
||||
paths.push_back(_virtualPaths[i]->p);
|
||||
}
|
||||
}
|
||||
return paths;
|
||||
}
|
||||
|
||||
SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired, int64_t flowId)
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
SharedPtr<Path> selectedPath;
|
||||
unsigned int bestPath = ZT_MAX_PEER_NETWORK_PATHS;
|
||||
|
||||
/**
|
||||
@ -410,52 +461,129 @@ SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired)
|
||||
return SharedPtr<Path>();
|
||||
}
|
||||
|
||||
// Update path measurements
|
||||
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
||||
if (_paths[i].p) {
|
||||
_paths[i].p->processBackgroundPathMeasurements(now);
|
||||
}
|
||||
}
|
||||
// Detect new flows and update existing records
|
||||
if (_flows.count(flowId)) {
|
||||
_flows[flowId]->lastSend = now;
|
||||
}
|
||||
else {
|
||||
fprintf(stderr, "new flow %llx detected between this node and %llx (%lu active flow(s))\n",
|
||||
flowId, this->_id.address().toInt(), (_flows.size()+1));
|
||||
struct Flow *newFlow = new Flow(flowId, now);
|
||||
_flows[flowId] = newFlow;
|
||||
newFlow->assignedPath = nullptr;
|
||||
}
|
||||
// Construct set of virtual paths if needed
|
||||
if (!_virtualPaths.size()) {
|
||||
constructSetOfVirtualPaths();
|
||||
}
|
||||
if (!_virtualPaths.size()) {
|
||||
fprintf(stderr, "no paths to send packet out on\n");
|
||||
return SharedPtr<Path>();
|
||||
}
|
||||
|
||||
/**
|
||||
* Randomly distribute traffic across all paths
|
||||
* Traffic is randomly distributed among all active paths.
|
||||
*/
|
||||
int numAlivePaths = 0;
|
||||
int numStalePaths = 0;
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_RANDOM) {
|
||||
computeAggregateAllocation(now); /* This call is algorithmically inert but gives us a value to show in the status output */
|
||||
int alivePaths[ZT_MAX_PEER_NETWORK_PATHS];
|
||||
int stalePaths[ZT_MAX_PEER_NETWORK_PATHS];
|
||||
memset(&alivePaths, -1, sizeof(alivePaths));
|
||||
memset(&stalePaths, -1, sizeof(stalePaths));
|
||||
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
||||
if (_paths[i].p) {
|
||||
if (_paths[i].p->alive(now)) {
|
||||
alivePaths[numAlivePaths] = i;
|
||||
numAlivePaths++;
|
||||
}
|
||||
else {
|
||||
stalePaths[numStalePaths] = i;
|
||||
numStalePaths++;
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_RANDOM) {
|
||||
int sz = _virtualPaths.size();
|
||||
if (sz) {
|
||||
int idx = _freeRandomByte % sz;
|
||||
_pathChoiceHist.push(idx);
|
||||
char pathStr[128];
|
||||
_virtualPaths[idx]->p->address().toString(pathStr);
|
||||
fprintf(stderr, "sending out: (%llx), idx=%d: path=%s, localSocket=%lld\n",
|
||||
this->_id.address().toInt(), idx, pathStr, _virtualPaths[idx]->localSocket);
|
||||
return _virtualPaths[idx]->p;
|
||||
}
|
||||
// This call is algorithmically inert but gives us a value to show in the status output
|
||||
computeAggregateAllocation(now);
|
||||
}
|
||||
|
||||
/**
|
||||
* All traffic is sent on all paths.
|
||||
*/
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BROADCAST) {
|
||||
// Not handled here. Handled in Switch.cpp
|
||||
}
|
||||
|
||||
/**
|
||||
* Only one link is active. Fail-over is immediate.
|
||||
*/
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_ACTIVE_BACKUP) {
|
||||
// fprintf(stderr, "ZT_MULTIPATH_ACTIVE_BACKUP\n");
|
||||
}
|
||||
|
||||
/**
|
||||
* Packets are striped across all available paths.
|
||||
*/
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_RR_OPAQUE) {
|
||||
// fprintf(stderr, "ZT_MULTIPATH_BALANCE_RR_OPAQUE\n");
|
||||
int16_t previousIdx = _roundRobinPathAssignmentIdx;
|
||||
if (_roundRobinPathAssignmentIdx < (_virtualPaths.size()-1)) {
|
||||
_roundRobinPathAssignmentIdx++;
|
||||
}
|
||||
else {
|
||||
_roundRobinPathAssignmentIdx = 0;
|
||||
}
|
||||
selectedPath = _virtualPaths[previousIdx]->p;
|
||||
char pathStr[128];
|
||||
selectedPath->address().toString(pathStr);
|
||||
fprintf(stderr, "sending packet out on path %s at index %d\n",
|
||||
pathStr, previousIdx);
|
||||
return selectedPath;
|
||||
}
|
||||
|
||||
/**
|
||||
* Flows are striped across all available paths.
|
||||
*/
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_RR_FLOW) {
|
||||
// fprintf(stderr, "ZT_MULTIPATH_BALANCE_RR_FLOW\n");
|
||||
}
|
||||
|
||||
/**
|
||||
* Flows are hashed across all available paths.
|
||||
*/
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_XOR_FLOW) {
|
||||
// fprintf(stderr, "ZT_MULTIPATH_BALANCE_XOR_FLOW (%llx) \n", flowId);
|
||||
char pathStr[128];
|
||||
struct Flow *currFlow = NULL;
|
||||
if (_flows.count(flowId)) {
|
||||
currFlow = _flows[flowId];
|
||||
if (!currFlow->assignedPath) {
|
||||
int idx = abs((int)(currFlow->flowId % (_virtualPaths.size()-1)));
|
||||
currFlow->assignedPath = _virtualPaths[idx];
|
||||
_virtualPaths[idx]->p->address().toString(pathStr);
|
||||
fprintf(stderr, "assigning flow %llx between this node and peer %llx to path %s at index %d\n",
|
||||
currFlow->flowId, this->_id.address().toInt(), pathStr, idx);
|
||||
}
|
||||
else {
|
||||
if (!currFlow->assignedPath->p->alive(now)) {
|
||||
char newPathStr[128];
|
||||
currFlow->assignedPath->p->address().toString(pathStr);
|
||||
// Re-assign
|
||||
int idx = abs((int)(currFlow->flowId % (_virtualPaths.size()-1)));
|
||||
currFlow->assignedPath = _virtualPaths[idx];
|
||||
_virtualPaths[idx]->p->address().toString(newPathStr);
|
||||
fprintf(stderr, "path %s assigned to flow %llx between this node and %llx appears to be dead, reassigning to path %s\n",
|
||||
pathStr, currFlow->flowId, this->_id.address().toInt(), newPathStr);
|
||||
}
|
||||
}
|
||||
}
|
||||
unsigned int r = _freeRandomByte;
|
||||
if (numAlivePaths > 0) {
|
||||
int rf = r % numAlivePaths;
|
||||
_pathChoiceHist.push(alivePaths[rf]); // Record which path we chose
|
||||
return _paths[alivePaths[rf]].p;
|
||||
}
|
||||
else if(numStalePaths > 0) {
|
||||
// Resort to trying any non-expired path
|
||||
int rf = r % numStalePaths;
|
||||
return _paths[stalePaths[rf]].p;
|
||||
return currFlow->assignedPath->p;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Proportionally allocate traffic according to dynamic path quality measurements
|
||||
* Proportionally allocate traffic according to dynamic path quality measurements.
|
||||
*/
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_PROPORTIONALLY_BALANCED) {
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_DYNAMIC_OPAQUE) {
|
||||
if ((now - _lastAggregateAllocation) >= ZT_PATH_QUALITY_COMPUTE_INTERVAL) {
|
||||
_lastAggregateAllocation = now;
|
||||
computeAggregateAllocation(now);
|
||||
@ -476,6 +604,13 @@ SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired)
|
||||
return _paths[bestPath].p;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Flows are dynamically allocated across paths in proportion to link strength and load.
|
||||
*/
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_DYNAMIC_FLOW) {
|
||||
}
|
||||
|
||||
return SharedPtr<Path>();
|
||||
}
|
||||
|
||||
@ -676,10 +811,20 @@ inline void Peer::processBackgroundPeerTasks(const int64_t now)
|
||||
_localMultipathSupported = ((RR->node->getMultipathMode() != ZT_MULTIPATH_NONE) && (ZT_PROTO_VERSION > 9));
|
||||
_remoteMultipathSupported = _vProto > 9;
|
||||
// If both peers support multipath and more than one path exist, we can use multipath logic
|
||||
DEBUG_INFO("from=%llx, _localMultipathSupported=%d, _remoteMultipathSupported=%d, (_uniqueAlivePathCount > 1)=%d",
|
||||
this->_id.address().toInt(), _localMultipathSupported, _remoteMultipathSupported, (_uniqueAlivePathCount > 1));
|
||||
_canUseMultipath = _localMultipathSupported && _remoteMultipathSupported && (_uniqueAlivePathCount > 1);
|
||||
}
|
||||
|
||||
// Remove old flows
|
||||
std::map<int64_t, struct Flow *>::iterator it = _flows.begin();
|
||||
while (it != _flows.end()) {
|
||||
if ((now - it->second->lastSend) > ZT_MULTIPATH_FLOW_EXPIRATION) {
|
||||
fprintf(stderr, "forgetting flow %llx between this node and %llx (%lu active flow(s))\n",
|
||||
it->first, this->_id.address().toInt(), _flows.size());
|
||||
it = _flows.erase(it);
|
||||
} else {
|
||||
it++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Peer::sendACK(void *tPtr,const SharedPtr<Path> &path,const int64_t localSocket,const InetAddress &atAddress,int64_t now)
|
||||
|
@ -28,6 +28,8 @@
|
||||
#define ZT_PEER_HPP
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <queue>
|
||||
|
||||
#include "../include/ZeroTierOne.h"
|
||||
|
||||
@ -147,6 +149,8 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
void constructSetOfVirtualPaths();
|
||||
|
||||
/**
|
||||
* Record statistics on outgoing packets
|
||||
*
|
||||
@ -216,14 +220,17 @@ public:
|
||||
*/
|
||||
int aggregateLinkLogicalPathCount();
|
||||
|
||||
std::vector<SharedPtr<Path>> getAllPaths(int64_t now);
|
||||
|
||||
/**
|
||||
* Get the most appropriate direct path based on current multipath and QoS configuration
|
||||
*
|
||||
* @param now Current time
|
||||
* @param flowId Session-specific protocol flow identifier used for path allocation
|
||||
* @param includeExpired If true, include even expired paths
|
||||
* @return Best current path or NULL if none
|
||||
*/
|
||||
SharedPtr<Path> getAppropriatePath(int64_t now, bool includeExpired);
|
||||
SharedPtr<Path> getAppropriatePath(int64_t now, bool includeExpired, int64_t flowId = -1);
|
||||
|
||||
/**
|
||||
* Generate a human-readable string of interface names making up the aggregate link, also include
|
||||
@ -680,6 +687,44 @@ private:
|
||||
int64_t _lastAggregateAllocation;
|
||||
|
||||
char _interfaceListStr[256]; // 16 characters * 16 paths in a link
|
||||
|
||||
//
|
||||
struct LinkPerformanceEntry
|
||||
{
|
||||
int64_t packetId;
|
||||
struct VirtualPath *egressVirtualPath;
|
||||
struct VirtualPath *ingressVirtualPath;
|
||||
};
|
||||
|
||||
// Virtual paths
|
||||
int _virtualPathCount;
|
||||
Mutex _virtual_paths_m;
|
||||
struct VirtualPath
|
||||
{
|
||||
SharedPtr<Path> p;
|
||||
int64_t localSocket;
|
||||
std::queue<struct LinkPerformanceEntry *> performanceEntries;
|
||||
};
|
||||
std::vector<struct VirtualPath*> _virtualPaths;
|
||||
|
||||
// Flows
|
||||
struct Flow
|
||||
{
|
||||
Flow(int64_t fid, int64_t ls) :
|
||||
flowId(fid),
|
||||
lastSend(ls),
|
||||
assignedPath(NULL)
|
||||
{}
|
||||
|
||||
int64_t flowId;
|
||||
int64_t bytesPerSecond;
|
||||
int64_t lastSend;
|
||||
struct VirtualPath *assignedPath;
|
||||
};
|
||||
|
||||
std::map<int64_t, struct Flow *> _flows;
|
||||
|
||||
int16_t _roundRobinPathAssignmentIdx;
|
||||
};
|
||||
|
||||
} // namespace ZeroTier
|
||||
|
232
node/Switch.cpp
232
node/Switch.cpp
@ -255,6 +255,35 @@ void Switch::onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddre
|
||||
} catch ( ... ) {} // sanity check, should be caught elsewhere
|
||||
}
|
||||
|
||||
// Returns true if packet appears valid; pos and proto will be set
|
||||
static bool _ipv6GetPayload(const uint8_t *frameData,unsigned int frameLen,unsigned int &pos,unsigned int &proto)
|
||||
{
|
||||
if (frameLen < 40)
|
||||
return false;
|
||||
pos = 40;
|
||||
proto = frameData[6];
|
||||
while (pos <= frameLen) {
|
||||
switch(proto) {
|
||||
case 0: // hop-by-hop options
|
||||
case 43: // routing
|
||||
case 60: // destination options
|
||||
case 135: // mobility options
|
||||
if ((pos + 8) > frameLen)
|
||||
return false; // invalid!
|
||||
proto = frameData[pos];
|
||||
pos += ((unsigned int)frameData[pos + 1] * 8) + 8;
|
||||
break;
|
||||
|
||||
//case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway
|
||||
//case 50:
|
||||
//case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false; // overflow == invalid
|
||||
}
|
||||
|
||||
void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
|
||||
{
|
||||
if (!network->hasConfig())
|
||||
@ -271,6 +300,73 @@ void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const
|
||||
|
||||
uint8_t qosBucket = ZT_QOS_DEFAULT_BUCKET;
|
||||
|
||||
/* A pseudo-unique identifier used by the balancing and bonding policies to associate properties
|
||||
* of a specific protocol flow over time and to determine which virtual path this packet
|
||||
* shall be sent out on. This identifier consists of the source port and destination port
|
||||
* of the encapsulated frame.
|
||||
*
|
||||
* A flowId of -1 will indicate that whatever packet we are about transmit has no
|
||||
* preferred virtual path and will be sent out according to what the multipath logic
|
||||
* deems appropriate. An example of this would be an ICMP packet.
|
||||
*/
|
||||
int64_t flowId = -1;
|
||||
|
||||
if (etherType == ZT_ETHERTYPE_IPV4 && (len >= 20)) {
|
||||
uint16_t srcPort = 0;
|
||||
uint16_t dstPort = 0;
|
||||
int8_t proto = (reinterpret_cast<const uint8_t *>(data)[9]);
|
||||
const unsigned int headerLen = 4 * (reinterpret_cast<const uint8_t *>(data)[0] & 0xf);
|
||||
switch(proto) {
|
||||
case 0x01: // ICMP
|
||||
flowId = 0x01;
|
||||
break;
|
||||
// All these start with 16-bit source and destination port in that order
|
||||
case 0x06: // TCP
|
||||
case 0x11: // UDP
|
||||
case 0x84: // SCTP
|
||||
case 0x88: // UDPLite
|
||||
if (len > (headerLen + 4)) {
|
||||
unsigned int pos = headerLen + 0;
|
||||
srcPort = (reinterpret_cast<const uint8_t *>(data)[pos++]) << 8;
|
||||
srcPort |= (reinterpret_cast<const uint8_t *>(data)[pos]);
|
||||
pos++;
|
||||
dstPort = (reinterpret_cast<const uint8_t *>(data)[pos++]) << 8;
|
||||
dstPort |= (reinterpret_cast<const uint8_t *>(data)[pos]);
|
||||
flowId = ((int64_t)srcPort << 48) | ((int64_t)dstPort << 32) | proto;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (etherType == ZT_ETHERTYPE_IPV6 && (len >= 40)) {
|
||||
uint16_t srcPort = 0;
|
||||
uint16_t dstPort = 0;
|
||||
unsigned int pos;
|
||||
unsigned int proto;
|
||||
_ipv6GetPayload((const uint8_t *)data, len, pos, proto);
|
||||
switch(proto) {
|
||||
case 0x3A: // ICMPv6
|
||||
flowId = 0x3A;
|
||||
break;
|
||||
// All these start with 16-bit source and destination port in that order
|
||||
case 0x06: // TCP
|
||||
case 0x11: // UDP
|
||||
case 0x84: // SCTP
|
||||
case 0x88: // UDPLite
|
||||
if (len > (pos + 4)) {
|
||||
srcPort = (reinterpret_cast<const uint8_t *>(data)[pos++]) << 8;
|
||||
srcPort |= (reinterpret_cast<const uint8_t *>(data)[pos]);
|
||||
pos++;
|
||||
dstPort = (reinterpret_cast<const uint8_t *>(data)[pos++]) << 8;
|
||||
dstPort |= (reinterpret_cast<const uint8_t *>(data)[pos]);
|
||||
flowId = ((int64_t)srcPort << 48) | ((int64_t)dstPort << 32) | proto;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (to.isMulticast()) {
|
||||
MulticastGroup multicastGroup(to,0);
|
||||
|
||||
@ -280,7 +376,7 @@ void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const
|
||||
* otherwise a straightforward Ethernet switch emulation. Vanilla ARP
|
||||
* is dumb old broadcast and simply doesn't scale. ZeroTier multicast
|
||||
* groups have an additional field called ADI (additional distinguishing
|
||||
* information) which was added specifically for ARP though it could
|
||||
* information) which was added specifically for ARP though it could
|
||||
* be used for other things too. We then take ARP broadcasts and turn
|
||||
* them into multicasts by stuffing the IP address being queried into
|
||||
* the 32-bit ADI field. In practice this uses our multicast pub/sub
|
||||
@ -429,7 +525,7 @@ void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const
|
||||
outp.append(data,len);
|
||||
if (!network->config().disableCompression())
|
||||
outp.compress();
|
||||
aqm_enqueue(tPtr,network,outp,true,qosBucket);
|
||||
aqm_enqueue(tPtr,network,outp,true,qosBucket,flowId);
|
||||
} else {
|
||||
Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
|
||||
outp.append(network->id());
|
||||
@ -437,7 +533,7 @@ void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const
|
||||
outp.append(data,len);
|
||||
if (!network->config().disableCompression())
|
||||
outp.compress();
|
||||
aqm_enqueue(tPtr,network,outp,true,qosBucket);
|
||||
aqm_enqueue(tPtr,network,outp,true,qosBucket,flowId);
|
||||
}
|
||||
} else {
|
||||
// Destination is bridged behind a remote peer
|
||||
@ -493,7 +589,7 @@ void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const
|
||||
outp.append(data,len);
|
||||
if (!network->config().disableCompression())
|
||||
outp.compress();
|
||||
aqm_enqueue(tPtr,network,outp,true,qosBucket);
|
||||
aqm_enqueue(tPtr,network,outp,true,qosBucket,flowId);
|
||||
} else {
|
||||
RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked (bridge replication)");
|
||||
}
|
||||
@ -501,10 +597,10 @@ void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const
|
||||
}
|
||||
}
|
||||
|
||||
void Switch::aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &packet,bool encrypt,int qosBucket)
|
||||
void Switch::aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &packet,bool encrypt,int qosBucket,int64_t flowId)
|
||||
{
|
||||
if(!network->qosEnabled()) {
|
||||
send(tPtr, packet, encrypt);
|
||||
send(tPtr, packet, encrypt, flowId);
|
||||
return;
|
||||
}
|
||||
NetworkQoSControlBlock *nqcb = _netQueueControlBlock[network->id()];
|
||||
@ -518,11 +614,9 @@ void Switch::aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &
|
||||
nqcb->inactiveQueues.push_back(new ManagedQueue(i));
|
||||
}
|
||||
}
|
||||
|
||||
// Don't apply QoS scheduling to ZT protocol traffic
|
||||
if (packet.verb() != Packet::VERB_FRAME && packet.verb() != Packet::VERB_EXT_FRAME) {
|
||||
// DEBUG_INFO("skipping, no QoS for this packet, verb=%x", packet.verb());
|
||||
// just send packet normally, no QoS for ZT protocol traffic
|
||||
send(tPtr, packet, encrypt);
|
||||
send(tPtr, packet, encrypt, flowId);
|
||||
}
|
||||
|
||||
_aqm_m.lock();
|
||||
@ -530,7 +624,7 @@ void Switch::aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &
|
||||
// Enqueue packet and move queue to appropriate list
|
||||
|
||||
const Address dest(packet.destination());
|
||||
TXQueueEntry *txEntry = new TXQueueEntry(dest,RR->node->now(),packet,encrypt);
|
||||
TXQueueEntry *txEntry = new TXQueueEntry(dest,RR->node->now(),packet,encrypt,flowId);
|
||||
|
||||
ManagedQueue *selectedQueue = nullptr;
|
||||
for (size_t i=0; i<ZT_QOS_NUM_BUCKETS; i++) {
|
||||
@ -702,7 +796,7 @@ void Switch::aqm_dequeue(void *tPtr)
|
||||
queueAtFrontOfList->byteCredit -= len;
|
||||
// Send the packet!
|
||||
queueAtFrontOfList->q.pop_front();
|
||||
send(tPtr, entryToEmit->packet, entryToEmit->encrypt);
|
||||
send(tPtr, entryToEmit->packet, entryToEmit->encrypt, entryToEmit->flowId);
|
||||
(*nqcb).second->_currEnqueuedPackets--;
|
||||
}
|
||||
if (queueAtFrontOfList) {
|
||||
@ -734,7 +828,7 @@ void Switch::aqm_dequeue(void *tPtr)
|
||||
queueAtFrontOfList->byteLength -= len;
|
||||
queueAtFrontOfList->byteCredit -= len;
|
||||
queueAtFrontOfList->q.pop_front();
|
||||
send(tPtr, entryToEmit->packet, entryToEmit->encrypt);
|
||||
send(tPtr, entryToEmit->packet, entryToEmit->encrypt, entryToEmit->flowId);
|
||||
(*nqcb).second->_currEnqueuedPackets--;
|
||||
}
|
||||
if (queueAtFrontOfList) {
|
||||
@ -758,18 +852,18 @@ void Switch::removeNetworkQoSControlBlock(uint64_t nwid)
|
||||
}
|
||||
}
|
||||
|
||||
void Switch::send(void *tPtr,Packet &packet,bool encrypt)
|
||||
void Switch::send(void *tPtr,Packet &packet,bool encrypt,int64_t flowId)
|
||||
{
|
||||
const Address dest(packet.destination());
|
||||
if (dest == RR->identity.address())
|
||||
return;
|
||||
if (!_trySend(tPtr,packet,encrypt)) {
|
||||
if (!_trySend(tPtr,packet,encrypt,flowId)) {
|
||||
{
|
||||
Mutex::Lock _l(_txQueue_m);
|
||||
if (_txQueue.size() >= ZT_TX_QUEUE_SIZE) {
|
||||
_txQueue.pop_front();
|
||||
}
|
||||
_txQueue.push_back(TXQueueEntry(dest,RR->node->now(),packet,encrypt));
|
||||
_txQueue.push_back(TXQueueEntry(dest,RR->node->now(),packet,encrypt,flowId));
|
||||
}
|
||||
if (!RR->topology->getPeer(tPtr,dest))
|
||||
requestWhois(tPtr,RR->node->now(),dest);
|
||||
@ -791,10 +885,11 @@ void Switch::requestWhois(void *tPtr,const int64_t now,const Address &addr)
|
||||
|
||||
const SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer());
|
||||
if (upstream) {
|
||||
int64_t flowId = -1;
|
||||
Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS);
|
||||
addr.appendTo(outp);
|
||||
RR->node->expectReplyTo(outp.packetId());
|
||||
send(tPtr,outp,true);
|
||||
send(tPtr,outp,true,flowId);
|
||||
}
|
||||
}
|
||||
|
||||
@ -819,7 +914,7 @@ void Switch::doAnythingWaitingForPeer(void *tPtr,const SharedPtr<Peer> &peer)
|
||||
Mutex::Lock _l(_txQueue_m);
|
||||
for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
|
||||
if (txi->dest == peer->address()) {
|
||||
if (_trySend(tPtr,txi->packet,txi->encrypt)) {
|
||||
if (_trySend(tPtr,txi->packet,txi->encrypt,txi->flowId)) {
|
||||
_txQueue.erase(txi++);
|
||||
} else {
|
||||
++txi;
|
||||
@ -843,7 +938,7 @@ unsigned long Switch::doTimerTasks(void *tPtr,int64_t now)
|
||||
Mutex::Lock _l(_txQueue_m);
|
||||
|
||||
for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
|
||||
if (_trySend(tPtr,txi->packet,txi->encrypt)) {
|
||||
if (_trySend(tPtr,txi->packet,txi->encrypt,txi->flowId)) {
|
||||
_txQueue.erase(txi++);
|
||||
} else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
|
||||
_txQueue.erase(txi++);
|
||||
@ -907,7 +1002,7 @@ bool Switch::_shouldUnite(const int64_t now,const Address &source,const Address
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Switch::_trySend(void *tPtr,Packet &packet,bool encrypt)
|
||||
bool Switch::_trySend(void *tPtr,Packet &packet,bool encrypt,int64_t flowId)
|
||||
{
|
||||
SharedPtr<Path> viaPath;
|
||||
const int64_t now = RR->node->now();
|
||||
@ -915,54 +1010,73 @@ bool Switch::_trySend(void *tPtr,Packet &packet,bool encrypt)
|
||||
|
||||
const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,destination));
|
||||
if (peer) {
|
||||
viaPath = peer->getAppropriatePath(now,false);
|
||||
if (!viaPath) {
|
||||
peer->tryMemorizedPath(tPtr,now); // periodically attempt memorized or statically defined paths, if any are known
|
||||
const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
|
||||
if ( (!relay) || (!(viaPath = relay->getAppropriatePath(now,false))) ) {
|
||||
if (!(viaPath = peer->getAppropriatePath(now,true)))
|
||||
return false;
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BROADCAST) {
|
||||
// Nothing here, we'll grab an entire set of paths to send out on below
|
||||
}
|
||||
else {
|
||||
viaPath = peer->getAppropriatePath(now,false,flowId);
|
||||
if (!viaPath) {
|
||||
peer->tryMemorizedPath(tPtr,now); // periodically attempt memorized or statically defined paths, if any are known
|
||||
const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
|
||||
if ( (!relay) || (!(viaPath = relay->getAppropriatePath(now,false,flowId))) ) {
|
||||
if (!(viaPath = peer->getAppropriatePath(now,true,flowId)))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
|
||||
unsigned int mtu = ZT_DEFAULT_PHYSMTU;
|
||||
uint64_t trustedPathId = 0;
|
||||
RR->topology->getOutboundPathInfo(viaPath->address(),mtu,trustedPathId);
|
||||
|
||||
unsigned int chunkSize = std::min(packet.size(),mtu);
|
||||
packet.setFragmented(chunkSize < packet.size());
|
||||
|
||||
peer->recordOutgoingPacket(viaPath, packet.packetId(), packet.payloadLength(), packet.verb(), now);
|
||||
|
||||
if (trustedPathId) {
|
||||
packet.setTrusted(trustedPathId);
|
||||
} else {
|
||||
packet.armor(peer->key(),encrypt);
|
||||
}
|
||||
|
||||
if (viaPath->send(RR,tPtr,packet.data(),chunkSize,now)) {
|
||||
if (chunkSize < packet.size()) {
|
||||
// Too big for one packet, fragment the rest
|
||||
unsigned int fragStart = chunkSize;
|
||||
unsigned int remaining = packet.size() - chunkSize;
|
||||
unsigned int fragsRemaining = (remaining / (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
|
||||
if ((fragsRemaining * (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
|
||||
++fragsRemaining;
|
||||
const unsigned int totalFragments = fragsRemaining + 1;
|
||||
|
||||
for(unsigned int fno=1;fno<totalFragments;++fno) {
|
||||
chunkSize = std::min(remaining,(unsigned int)(mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
|
||||
Packet::Fragment frag(packet,fragStart,chunkSize,fno,totalFragments);
|
||||
viaPath->send(RR,tPtr,frag.data(),frag.size(),now);
|
||||
fragStart += chunkSize;
|
||||
remaining -= chunkSize;
|
||||
}
|
||||
// If sending on all paths, set viaPath to first path
|
||||
int nextPathIdx = 0;
|
||||
std::vector<SharedPtr<Path>> paths = peer->getAllPaths(now);
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BROADCAST) {
|
||||
if (paths.size()) {
|
||||
viaPath = paths[nextPathIdx++];
|
||||
}
|
||||
}
|
||||
|
||||
while (viaPath) {
|
||||
unsigned int mtu = ZT_DEFAULT_PHYSMTU;
|
||||
uint64_t trustedPathId = 0;
|
||||
RR->topology->getOutboundPathInfo(viaPath->address(),mtu,trustedPathId);
|
||||
unsigned int chunkSize = std::min(packet.size(),mtu);
|
||||
packet.setFragmented(chunkSize < packet.size());
|
||||
peer->recordOutgoingPacket(viaPath, packet.packetId(), packet.payloadLength(), packet.verb(), now);
|
||||
|
||||
if (trustedPathId) {
|
||||
packet.setTrusted(trustedPathId);
|
||||
} else {
|
||||
packet.armor(peer->key(),encrypt);
|
||||
}
|
||||
|
||||
if (viaPath->send(RR,tPtr,packet.data(),chunkSize,now)) {
|
||||
if (chunkSize < packet.size()) {
|
||||
// Too big for one packet, fragment the rest
|
||||
unsigned int fragStart = chunkSize;
|
||||
unsigned int remaining = packet.size() - chunkSize;
|
||||
unsigned int fragsRemaining = (remaining / (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
|
||||
if ((fragsRemaining * (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
|
||||
++fragsRemaining;
|
||||
const unsigned int totalFragments = fragsRemaining + 1;
|
||||
|
||||
for(unsigned int fno=1;fno<totalFragments;++fno) {
|
||||
chunkSize = std::min(remaining,(unsigned int)(mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
|
||||
Packet::Fragment frag(packet,fragStart,chunkSize,fno,totalFragments);
|
||||
viaPath->send(RR,tPtr,frag.data(),frag.size(),now);
|
||||
fragStart += chunkSize;
|
||||
remaining -= chunkSize;
|
||||
}
|
||||
}
|
||||
}
|
||||
viaPath.zero();
|
||||
if (RR->node->getMultipathMode() == ZT_MULTIPATH_BROADCAST) {
|
||||
if (paths.size() > nextPathIdx) {
|
||||
viaPath = paths[nextPathIdx++];
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -131,7 +131,7 @@ public:
|
||||
* @param encrypt Encrypt packet payload? (always true except for HELLO)
|
||||
* @param qosBucket Which bucket the rule-system determined this packet should fall into
|
||||
*/
|
||||
void aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &packet,bool encrypt,int qosBucket);
|
||||
void aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &packet,bool encrypt,int qosBucket,int64_t flowId = -1);
|
||||
|
||||
/**
|
||||
* Performs a single AQM cycle and dequeues and transmits all eligible packets on all networks
|
||||
@ -177,7 +177,7 @@ public:
|
||||
* @param packet Packet to send (buffer may be modified)
|
||||
* @param encrypt Encrypt packet payload? (always true except for HELLO)
|
||||
*/
|
||||
void send(void *tPtr,Packet &packet,bool encrypt);
|
||||
void send(void *tPtr,Packet &packet,bool encrypt,int64_t flowId = -1);
|
||||
|
||||
/**
|
||||
* Request WHOIS on a given address
|
||||
@ -212,7 +212,7 @@ public:
|
||||
|
||||
private:
|
||||
bool _shouldUnite(const int64_t now,const Address &source,const Address &destination);
|
||||
bool _trySend(void *tPtr,Packet &packet,bool encrypt); // packet is modified if return is true
|
||||
bool _trySend(void *tPtr,Packet &packet,bool encrypt,int64_t flowId = -1); // packet is modified if return is true
|
||||
|
||||
const RuntimeEnvironment *const RR;
|
||||
int64_t _lastBeaconResponse;
|
||||
@ -261,16 +261,18 @@ private:
|
||||
struct TXQueueEntry
|
||||
{
|
||||
TXQueueEntry() {}
|
||||
TXQueueEntry(Address d,uint64_t ct,const Packet &p,bool enc) :
|
||||
TXQueueEntry(Address d,uint64_t ct,const Packet &p,bool enc,int64_t fid) :
|
||||
dest(d),
|
||||
creationTime(ct),
|
||||
packet(p),
|
||||
encrypt(enc) {}
|
||||
encrypt(enc),
|
||||
flowId(fid) {}
|
||||
|
||||
Address dest;
|
||||
uint64_t creationTime;
|
||||
Packet packet; // unencrypted/unMAC'd packet -- this is done at send time
|
||||
bool encrypt;
|
||||
int64_t flowId;
|
||||
};
|
||||
std::list< TXQueueEntry > _txQueue;
|
||||
Mutex _txQueue_m;
|
||||
|
@ -109,10 +109,10 @@ void Trace::peerConfirmingUnknownPath(void *const tPtr,const uint64_t networkId,
|
||||
|
||||
void Trace::peerLinkNowAggregate(void *const tPtr,Peer &peer)
|
||||
{
|
||||
if ((RR->node->getMultipathMode() == ZT_MULTIPATH_RANDOM)) {
|
||||
if ((RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_RANDOM)) {
|
||||
ZT_LOCAL_TRACE(tPtr,RR,"link to peer %.10llx is now a randomly-distributed aggregate link",peer.address().toInt());
|
||||
}
|
||||
if ((RR->node->getMultipathMode() == ZT_MULTIPATH_PROPORTIONALLY_BALANCED)) {
|
||||
if ((RR->node->getMultipathMode() == ZT_MULTIPATH_BALANCE_DYNAMIC_OPAQUE)) {
|
||||
ZT_LOCAL_TRACE(tPtr,RR,"link to peer %.10llx is now a proportionally-balanced aggregate link",peer.address().toInt());
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user