Files
ReachableCEO-AI-Homedir-Public/databank/collab/README-PROPOSAL-AGENTS.md

7.5 KiB

🤖 README-PROPOSAL-AGENTS.md

Beautiful documentation for AI Agent Guidelines Proposal


📋 Table of Contents


🧠 Overview

Welcome to the beautifully designed documentation for the PROPOSAL-AGENTS.md file. This document outlines a comprehensive baseline for AI agent operations that can be mounted across all your projects via your AI home directory.

Attribute Details
Purpose Baseline AI agent guidelines for all projects
Target User Solo entrepreneur (Founder/CTO/Operations)
AI Usage Optimized for 14+ hours daily interaction
Structure Mountable across multiple project environments

🏗️ Proposal Structure

┌─────────────────────────────────────────────────────────────┐
│                    PROJECT ENVIRONMENT                      │
├─────────────────────────────────────────────────────────────┤
│  ┌─────────────────┐    ┌─────────────────────────────────┐ │
│  │                 │    │                                 │ │
│  │  PROJECT-SPECIFIC│    │    🏠  AI HOME DIRECTORY       │ │
│  │     CONTEXT     │    │    (Mounted Volume)             │ │
│  │                 │    │                                 │ │
│  │  - Project docs │    │  - AGENTS.md (base rules)      │ │
│  │  - Codebase     │    │  - PROPOSAL-AGENTS.md          │ │
│  │  - Requirements │    │  - Documentation Standards     │ │
│  └─────────────────┘    │  - Operational Guidelines       │ │
│                         │  - LLM Optimization Practices  │ │
│                         └─────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘

📁 File Location

AI-Home-Directory/
├── collab/                    # Collaboration directory
│   └── proposals/             # Proposals subdirectory
│       ├── PROPOSAL-AGENTS.md # Baseline agent guidelines
│       └── README-PROPOSAL-AGENTS.md # This beautiful file

Key Features

🎯 Core Principles for AI Agents

Principle Description
Context Awareness Understand the mounted AI home directory across projects
Communication Protocol Use collab/ directory as primary channel
Project Integration Respect project-specific rules and workflows

⚙️ Operational Guidelines

  • Repository Management: Clean structure with conventional commits
  • Documentation Standards: Date/time headers, revision tracking
  • Workflow Adherence: Follow question -> proposal -> implementation

🧩 LLM Optimization Practices

  • Prompt Engineering: Clear, structured requests
  • Code Generation: Consistent with project patterns
  • Error Handling: Defensive programming approach

📊 Implementation Guide

Step 1: Understanding the Framework

  1. Read Project Context → Always review project-specific documentation first
  2. Respect Existing Rules → Check collab/rules directory for project-specific guidelines
  3. Integrate with Workflow → Follow established patterns rather than creating new ones

Step 2: Following Documentation Standards

  • Include date/time header with timezone
  • Maintain change tracking/revision table
  • Create changelog in source files
  • Apply "make it beautiful" rule to all documentation

Step 3: Operational Excellence

  • Use atomic commits with conventional commit messages
  • Commit frequently to local repository
  • Avoid git push operations (as per guidelines)
  • Maintain clean top-level directory structure

🏆 Best Practices

🛡️ Security Practices

  • 🔐 Verify file permissions and access controls
  • 🛡️ Sanitize inputs and outputs appropriately
  • 🔐 Protect sensitive information and credentials
  • 🔒 Follow secure coding principles

📈 Quality Assurance

  • Implement appropriate testing strategies
  • Ensure code quality and maintainability
  • Perform regular documentation updates
  • Validate outputs against expected outcomes

Performance Considerations

  • Optimize for efficient processing
  • 💾 Minimize resource usage where possible
  • 📊 Consider impact on system performance
  • 🔄 Implement caching strategies when appropriate

🚀 Solo Entrepreneur Optimization

For someone using AI 14+ hours daily with multiple projects:

Need Solution
Time Efficiency Atomic operations, quick wins
Context Switching Consistent interfaces across projects
Decision Documentation Clear reasoning trails for complex decisions
Multi-Project Impact Considerations for interconnected projects

🤝 Communication Workflow

┌─────────────┐    ┌──────────────┐    ┌─────────────────┐
│   Question  │ -> │   Proposal   │ -> │ Implementation  │
│             │    │              │    │                 │
│ What to do? │    │ How to do it?│    │ Execute & Test  │
└─────────────┘    └──────────────┘    └─────────────────┘

Primary Channels

  • Collaboration: Use collab/ directory for all communication
  • Documentation: Maintain comprehensive records
  • Change Management: Use version control with proper tracking

💼 Founder/CTO Specific Considerations

Decision Making Framework

  • 📊 Document reasoning for complex decisions
  • 🔗 Consider impact across multiple projects
  • 📜 Maintain traceability for future reference
  • 🔄 Suggest alternatives when appropriate

Scalability Planning

  • 🏗️ Design solutions that work across multiple project contexts
  • 🧱 Use modular, reusable components
  • 📈 Plan for increasing complexity as projects grow
  • 🔗 Maintain consistent interfaces across projects

📈 Active Development Status

🔄 Note: This proposal is part of a living knowledge base that supports your 14+ hours daily AI usage.

Current Focus Areas

  • Documentation standards
  • Operational guidelines
  • LLM optimization
  • Integration patterns (planned)
  • Performance metrics (planned)

📞 Getting Help

For questions about implementing these guidelines:

  1. Create a new issue in the collab/ directory
  2. Reference this proposal document
  3. Provide specific context about your use case
  4. Follow the established question -> proposal -> implementation workflow

Last updated: October 24, 2025
Part of the AIOS (AI Operating System) ecosystem
Optimized for solo entrepreneur workflows