Files
Signal-Server/models.cpp
2015-02-27 21:27:10 +00:00

249 lines
6.5 KiB
C++

/*****************************************************************************
* RF propagation models for Signal Server by Alex Farrant, CloudRF.com *
* *
* This program is free software; you can redistribute it and/or modify it *
* under the terms of the GNU General Public License as published by the *
* Free Software Foundation; either version 2 of the License or any later *
* version. *
* *
* This program is distributed in the hope that it will useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. *
*****************************************************************************/
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <stdio.h>
using namespace std;
/*
Whilst every effort has been made to ensure the accuracy of the models, their accuracy is not guaranteed.
Finding a reputable paper to source these models from took a while. There was lots of bad copy-pasta out there.
A good paper: http://www.cl.cam.ac.uk/research/dtg/lce-pub/public/vsa23/VTC05_Empirical.pdf
*/
#define PI 3.14159265
/* Acute Angle from Rx point to an obstacle of height (opp) and distance (adj) */
double incidenceAngle(double opp, double adj){
return atan2(opp,adj) * 180 / PI;
}
/*
Knife edge diffraction:
This is based upon a recognised formula like Huygens, but trades thoroughness for increased speed
which adds a proportional diffraction effect to obstacles.
*/
double ked(double freq, double elev[], double rxh, double dkm){
double obh,obd,rxobaoi=0,d,dipheight=25;
obh=0; // Obstacle height
obd=0; // Obstacle distance
dkm=dkm*1000; // KM to metres
// walk along path
for(int n=2;n<(dkm/elev[1]);n++){
d = (n-2)*elev[1]; // no of points * delta = km
//Find dip(s)
if(elev[n]<(obh+dipheight)){
// Angle from Rx point to obstacle
rxobaoi = incidenceAngle((obh-(elev[n]+rxh)),d-obd);
} else{
// Line of sight or higher
rxobaoi=0;
}
//note the highest point
if(elev[n]>obh){
obh=elev[n];
obd=d;
}
}
if(rxobaoi >= 0){
return rxobaoi / (300/freq); // Diffraction angle divided by wavelength (m)
}else{
return 0;
}
}
double HATApathLoss(float f,float TxH, float RxH, float d, int mode){
/*
HATA model for cellular planning
Frequency (MHz) 150 to 1500MHz
Base station height 30-200m
Mobile station height 1-10m
Distance 1-20km
modes 1 = URBAN, 2 = SUBURBAN, 3 = OPEN
*/
if(f<150 || f>1500){
printf("Error: Hata model frequency range 150-1500MHz\n");
return 0;
}
float lRxH = log10(11.75*RxH);
float C_H = 3.2*lRxH*lRxH-4.97;
float logf = log10(f);
float L_u = 69.55 + 26.16*logf - 13.82*log10(TxH) - C_H + (44.9 - 6.55*log10(TxH))*log10(d);
if(!mode || mode==1){
return L_u; //URBAN
}
if(mode==2){ //SUBURBAN
float logf_28 = log10(f/28);
return L_u - 2*logf_28*logf_28 - 5.4;
}
if(mode==3){ //OPEN
return L_u - 4.78*logf*logf + 18.33*logf - 40.94;
}
return 0;
}
double COST231pathLoss(float f,float TxH, float RxH, float d, int mode){
/*
COST231 extension to HATA model
Frequency 1500 to 2000MHz
TxH = Base station height 30 to 200m
RxH = Mobile station height 1 to 10m
Distance 1-20km
modes 1 = URBAN, 2 = SUBURBAN, 3 = OPEN
*/
if(f<1500 || f>2000){
printf("Error: COST231 Hata model frequency range 1500-2000MHz\n");
return 0;
}
int C = 3; // 3dB for Urban
if(mode==2){
C = 0; // Suburban, rural
}
if(mode==3){
C = -3; // Suburban, rural
}
float lRxH = log10(11.75*RxH);
float C_H = 3.2*lRxH*lRxH-4.97;
float logf = log10(f);
double dbloss = 46.3 + (33.9 * logf) - (13.82 * log10(TxH)) - C_H + (44.9 - 6.55 * log10(TxH)) * log10(d) + C;
return dbloss;
}
double SUIpathLoss(float f,float TxH, float RxH, float d, int mode){
/*
f = Frequency (MHz)
TxH = Transmitter height (m)
RxH = Receiver height (m)
d = distance (km)
mode 1 = Hilly + trees
mode 2 = Flat + trees OR hilly + light foliage
mode 3 = Flat + light foliage
*/
d=d*1000; // km to m
if(f<1900 || f>11000){
printf("Error: SUI model frequency range 1.9-11GHz\n");
return 0;
}
// Terrain mode A is default
double a = 4.6;
double b = 0.0075;
double c = 12.6;
double s = 10.6;
int XhCF = -10.8;
if(mode==2){
a=4.0;
b=0.0065;
c=17.1;
s=9.6;
}
if(mode==3){
a=3.6;
b=0.005;
c=20;
s=8.2;
XhCF = -20;
}
double d0 = 100;
double A = 20 * log10((4*M_PI*d0)/(300/f));
double y = (a - b * TxH) + (c/TxH);
double Xf = 6 * log10(f/2000);
double Xh = XhCF * log10(RxH/2);
return A + (10*y*log10(d/d0)) + Xf + Xh + s;
}
double ECC33pathLoss(float f,float TxH, float RxH, float d, int mode){
// MHz to GHz
f=f/1000;
double Gr = 0.759 * RxH - 1.862; // Big city (1)
// PL = Afs + Abm - Gb - Gr
double Afs = 92.4 + 20 * log10(d) + 20 * log10(f);
double Abm = 20.41 + 9.83 * log10(d) + 7.894 * log10(f) + 9.56 * (log10(f) * log10(f));
double Gb = log10(TxH/200) * (13.958 + 5.8 * (log10(d) * log10(d)));
if(mode>1){ // Medium city
Gr = (42.57 + 13.7 * log10(f)) * (log10(RxH) - 0.585);
}
return Afs+Abm-Gb-Gr;
}
double EricssonpathLoss(float f,float TxH, float RxH, float d, int mode){
double a0=36.2, a1=30.2, a2=12, a3=0.1;
if(mode==2){ // Med loss
a0=43.2;
a1=68.93;
}
if(mode==1){ // High loss
a0=45.95;
a1=100.6;
}
double g1 = (11.75 * RxH) * (11.75 * RxH);
double g2 = (44.49 * log10(f)) - 4.78 * ((log10(f) * log10(f)));
double PL = a0+ a1 * log10(d) + a2 * log10(TxH) + a3 * log10(TxH) * log10(d) - (3.2 * log10(g1)) + g2;
return PL;
}
double FSPLpathLoss(float f, float d){
/*
Free Space Path Loss (ITU-R P.525) model
Frequency: Any
Distance: Any
*/
//MHz to GHz
f = f / 1000;
double dbloss = (20 * log10(d)) + (20 * log10(f)) + 92.45;
return dbloss;
}
/*
int main(int argc, char* argv[]){
if(argc<5){
printf("Need freq,TxH,RxH,dist,terr\n");
return 0;
}
int dis, ter;
double frq, TxH, RxH;
sscanf(argv[1],"%lf",&frq);
sscanf(argv[2],"%lf",&TxH);
sscanf(argv[3],"%lf",&RxH);
sscanf(argv[4],"%d",&dis);
sscanf(argv[5],"%d",&ter);
// ALL are freq in MHz and distances in metres
printf("FSPL: %.2f dB\n",FSPLpathLoss(frq,dis));
printf("HATA (%d): %.2f dB\n",ter,HATApathLoss(frq,TxH,RxH,dis,ter));
printf("COST-HATA (%d): %.2f dB\n",ter,COST231pathLoss(frq,TxH,RxH,dis,ter));
printf("SUI (%d): %.2f dB\n",ter,SUIpathLoss(frq,TxH,RxH,dis,ter));
printf("ECC33 (%d): %.2f dB\n",ter,ECC33pathLoss(frq,TxH,RxH,dis,ter));
printf("Ericsson (%d): %.2f dB\n",ter,EricssonpathLoss(frq,TxH,RxH,dis,ter));
}
*/