forked from ExternalVendorCode/Signal-Server
Add feature to merge lidar tiles into single dem entry
This commit is contained in:
2
common.h
2
common.h
@@ -22,6 +22,8 @@
|
||||
#define KM_PER_MILE 1.609344
|
||||
#define FOUR_THIRDS 1.3333333333333
|
||||
|
||||
#define MAX(x,y)((x)>(y)?(x):(y))
|
||||
|
||||
struct dem {
|
||||
float min_north;
|
||||
float max_north;
|
||||
|
125
inputs.cc
125
inputs.cc
@@ -322,58 +322,123 @@ int loadLIDAR(char *filenames)
|
||||
|
||||
}
|
||||
|
||||
/* Iterate through all tiles to find the largest x/y dimension
|
||||
to use as the global IPPD value. We do this here so that we are
|
||||
sure to allocate enough memory for the remainder of the calculations */
|
||||
int dimension_max = -1;
|
||||
/* Iterate through all of the tiles to find the smallest resolution. We will
|
||||
* need to rescale every tile from here on out to this value */
|
||||
int smallest_res = 0;
|
||||
int pix_per_deg = 0;
|
||||
for (size_t i = 0; i < fc; i++) {
|
||||
if( tiles[i].width > tiles[i].height && tiles[i].width > dimension_max )
|
||||
dimension_max = tiles[i].width;
|
||||
else if( tiles[i].height > dimension_max )
|
||||
dimension_max = tiles[i].height;
|
||||
if ( smallest_res == 0 || tiles[i].resolution < smallest_res ){
|
||||
smallest_res = tiles[i].resolution;
|
||||
pix_per_deg = MAX(tiles[i].width,tiles[i].height) / MAX(tiles[i].max_north - tiles[i].min_north, tiles[i].max_west - tiles[i].min_west);
|
||||
}
|
||||
}
|
||||
|
||||
MAXPAGES = fc;
|
||||
IPPD = dimension_max;
|
||||
/* Now we need to rescale all tiles the the lowest resolution. ie if we have
|
||||
* one 1m lidar and one 2m lidar, resize the 2m to fake 1m */
|
||||
for (size_t i = 0; i< fc; i++) {
|
||||
float rescale = tiles[i].resolution / smallest_res;
|
||||
if (tiles[i].resolution != smallest_res)
|
||||
tile_rescale(&tiles[i],rescale);
|
||||
}
|
||||
|
||||
/* Now we work out the size of the giant lidar tile. */
|
||||
double total_width = max_west - min_west;
|
||||
double total_height = max_north - min_north;
|
||||
/* This is how we should _theoretically_ work this out, but due to
|
||||
* the nature of floating point arithmetic and rounding errors, we need to
|
||||
* crunch the numbers the hard way */
|
||||
// size_t new_width = total_width * pix_per_deg;
|
||||
// size_t new_height = total_height * pix_per_deg;
|
||||
|
||||
size_t new_height = 0;
|
||||
size_t new_width = 0;
|
||||
for ( size_t i = 0; i < fc; i++ ) {
|
||||
double north_offset = max_north - tiles[i].max_north;
|
||||
double west_offset = max_west - tiles[i].max_west;
|
||||
size_t north_pixel_offset = north_offset * pix_per_deg;
|
||||
size_t west_pixel_offset = west_offset * pix_per_deg;
|
||||
|
||||
if ( west_pixel_offset + tiles[i].width > new_width )
|
||||
new_width = west_pixel_offset + tiles[i].width;
|
||||
if ( north_pixel_offset + tiles[i].height > new_height )
|
||||
new_height = north_pixel_offset + tiles[i].height;
|
||||
}
|
||||
size_t new_tile_alloc = new_width * new_height;
|
||||
|
||||
int * new_tile = (int*) calloc( new_tile_alloc, sizeof(int) );
|
||||
if (debug)
|
||||
fprintf(stderr,"Lidar tile dimensions w:%lf(%zu) h:%lf(%zu)\n", total_width, new_width, total_height, new_height);
|
||||
|
||||
/* ...If we wanted a value other than sea level here, we would need to initialize the array... */
|
||||
|
||||
/* Fill out the array one tile at a time */
|
||||
for (size_t i = 0; i< fc; i++) {
|
||||
double north_offset = max_north - tiles[i].max_north;
|
||||
double west_offset = max_west - tiles[i].max_west;
|
||||
size_t north_pixel_offset = north_offset * pix_per_deg;
|
||||
size_t west_pixel_offset = west_offset * pix_per_deg;
|
||||
|
||||
if (debug) {
|
||||
fprintf(stderr,"mn: %lf mw:%lf globals: %lf %lf\n", tiles[i].max_north, tiles[i].max_west, max_north, max_west);
|
||||
fprintf(stderr,"Offset n:%zu w:%zu\n", north_pixel_offset, west_pixel_offset);
|
||||
fprintf(stderr,"Height: %d\n", tiles[i].height);
|
||||
}
|
||||
|
||||
/* Copy it row-by-row from the tile */
|
||||
for (size_t h = 0; h < tiles[i].height; h++) {
|
||||
register int *dest_addr = &new_tile[ (north_pixel_offset+h)*new_width + west_pixel_offset];
|
||||
register int *src_addr = &tiles[i].data[h*tiles[i].width];
|
||||
// Check if we might overflow
|
||||
if ( dest_addr + tiles[i].width > new_tile + new_tile_alloc ){
|
||||
if (debug)
|
||||
fprintf(stderr, "Overflow %zu\n",i);
|
||||
continue;
|
||||
}
|
||||
//fprintf(stderr,"dest:%p src:%p\n", dest_addr, src_addr);
|
||||
memcpy( dest_addr, src_addr, tiles[i].width * sizeof(int) );
|
||||
}
|
||||
}
|
||||
|
||||
MAXPAGES = 1;
|
||||
IPPD = MAX(new_width,new_height);
|
||||
if(debug){
|
||||
fprintf(stderr,"Setting IPPD to %d\n",IPPD);
|
||||
fflush(stderr);
|
||||
}
|
||||
// add fudge as reprojected tiles sometimes vary by a pixel or ten
|
||||
IPPD += 50;
|
||||
// IPPD += 50;
|
||||
ARRAYSIZE = (MAXPAGES * IPPD) + 50;
|
||||
do_allocs();
|
||||
// reset the IPPD after allocations
|
||||
IPPD -= 50;
|
||||
// IPPD -= 50;
|
||||
|
||||
/* Load the data into the global dem array */
|
||||
for (size_t indx = 0; indx < fc; indx++) {
|
||||
dem[indx].max_north = tiles[indx].yur;
|
||||
dem[indx].min_west = tiles[indx].xur;
|
||||
dem[indx].min_north = tiles[indx].yll;
|
||||
dem[indx].max_west = tiles[indx].xll;
|
||||
dem[indx].max_el = tiles[indx].max_el;
|
||||
dem[indx].min_el = tiles[indx].min_el;
|
||||
dem[0].max_north = max_north;
|
||||
dem[0].min_west = min_west;
|
||||
dem[0].min_north = min_north;
|
||||
dem[0].max_west = max_west;
|
||||
dem[0].max_el = max_elevation;
|
||||
dem[0].min_el = min_elevation;
|
||||
|
||||
/*
|
||||
* Copy the lidar tile data into the dem array. The dem array is rotated
|
||||
* 90 degrees (christ knows why...)
|
||||
*/
|
||||
int y = tiles[indx].height-1;
|
||||
for (size_t h = 0; h < tiles[indx].height; h++, y--) {
|
||||
int x = tiles[indx].width-1;
|
||||
for (size_t w = 0; w < tiles[indx].width; w++, x--) {
|
||||
dem[indx].data[y][x] = tiles[indx].data[h*tiles[indx].width + w];
|
||||
dem[indx].signal[y][x] = 0;
|
||||
dem[indx].mask[y][x] = 0;
|
||||
int y = new_height-1;
|
||||
for (size_t h = 0; h < new_height; h++, y--) {
|
||||
int x = new_width-1;
|
||||
for (size_t w = 0; w < new_width; w++, x--) {
|
||||
dem[0].data[y][x] = new_tile[h*new_width + w];
|
||||
dem[0].signal[y][x] = 0;
|
||||
dem[0].mask[y][x] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
ippd=IPPD;
|
||||
height = (unsigned)((max_north-min_north) / smCellsize);
|
||||
width = (unsigned)((max_west-min_west) / smCellsize);
|
||||
// height = (unsigned)((max_north-min_north) / smCellsize);
|
||||
// width = (unsigned)((max_west-min_west) / smCellsize);
|
||||
height = (unsigned)((max_north-min_north) * pix_per_deg);
|
||||
width = (unsigned)((max_west-min_west) * pix_per_deg);
|
||||
|
||||
if (debug)
|
||||
fprintf(stderr, "LIDAR LOADED %d x %d\n", width, height);
|
||||
|
94
tiles.cc
94
tiles.cc
@@ -2,11 +2,27 @@
|
||||
#include <stdio.h>
|
||||
#include <errno.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include "tiles.hh"
|
||||
#include "common.h"
|
||||
|
||||
#define MAX_LINE 25000
|
||||
|
||||
/* Computes the distance between two long/lat points */
|
||||
double haversine_formulaz(double th1, double ph1, double th2, double ph2)
|
||||
{
|
||||
#define TO_RAD (3.1415926536 / 180)
|
||||
int R = 6371;
|
||||
double dx, dy, dz;
|
||||
ph1 -= ph2;
|
||||
ph1 *= TO_RAD, th1 *= TO_RAD, th2 *= TO_RAD;
|
||||
|
||||
dz = sin(th1) - sin(th2);
|
||||
dx = cos(ph1) * cos(th1) - cos(th2);
|
||||
dy = sin(ph1) * cos(th1);
|
||||
return asin(sqrt(dx * dx + dy * dy + dz * dz) / 2) * 2 * R;
|
||||
}
|
||||
|
||||
int tile_load_lidar(tile_t *tile, char *filename){
|
||||
FILE *fd;
|
||||
char line[MAX_LINE];
|
||||
@@ -100,6 +116,9 @@ int tile_load_lidar(tile_t *tile, char *filename){
|
||||
}//if
|
||||
}
|
||||
|
||||
double current_res_km = haversine_formulaz(tile->max_north, tile->max_west, tile->max_north, tile->min_west);
|
||||
tile->resolution = (int) ceil((current_res_km/MAX(tile->width,tile->height))*1000);
|
||||
|
||||
if (debug)
|
||||
fprintf(stderr,"Pixels loaded: %zu/%d\n",loaded,tile->width*tile->height);
|
||||
|
||||
@@ -108,3 +127,78 @@ int tile_load_lidar(tile_t *tile, char *filename){
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* A positive scale will _increase_ the size of the data
|
||||
*/
|
||||
int tile_rescale(tile_t *tile, float scale){
|
||||
int *new_data;
|
||||
size_t skip_count = 1;
|
||||
size_t copy_count = 1;
|
||||
|
||||
size_t new_height = tile->height * scale;
|
||||
size_t new_width = tile->width * scale;
|
||||
|
||||
/* Allocate the array for the lidar data */
|
||||
if ( (new_data = (int*) calloc(new_height * new_width, sizeof(int))) == NULL ) {
|
||||
return ENOMEM;
|
||||
}
|
||||
|
||||
tile->max_el = -32768;
|
||||
tile->min_el = 32768;
|
||||
|
||||
/* Making the tile data smaller */
|
||||
if (scale < 0) {
|
||||
skip_count = 1 / scale;
|
||||
} else {
|
||||
copy_count = (size_t) scale;
|
||||
}
|
||||
|
||||
fprintf(stderr,"Skip: %zu Copy: %zu\n", skip_count, copy_count);
|
||||
|
||||
|
||||
|
||||
/* Nearest neighbour normalization. For each subsample of the original, simply
|
||||
* assign the value in the top left to the new pixel */
|
||||
if (scale < 0){
|
||||
for (size_t x = 0, i = 0; i < new_width; x += skip_count, i++) {
|
||||
for (size_t y = 0, j = 0; j < new_height; y += skip_count, j++){
|
||||
new_data[i*new_width+j] = tile->data[x*tile->width+y];
|
||||
/* Update local min / max values */
|
||||
if (tile->data[x * tile->width + y] > tile->max_el)
|
||||
tile->max_el = tile->data[x * tile->width + y];
|
||||
if (tile->data[x * tile->width + y] < tile->min_el)
|
||||
tile->min_el = tile->data[x * tile->width + y];
|
||||
}
|
||||
}
|
||||
}else{
|
||||
for (size_t x = 0; x < tile->width; x++) {
|
||||
for (size_t y = 0; y < tile->height; y++){
|
||||
/* These are for scaling up the data */
|
||||
for (size_t copy_x = 0; copy_x < copy_count; copy_x++) {
|
||||
for (size_t copy_y = 0; copy_y < copy_count; copy_y++) {
|
||||
size_t new_x = (x * skip_count) + copy_x;
|
||||
size_t new_y = (y * skip_count) + copy_y;
|
||||
new_data[ new_x * new_width + new_y ] = tile->data[x * tile->width + y];
|
||||
// new_data[(x + copy_x) * new_width + (y + copy_y)] = tile->data[x * tile->width + y];
|
||||
}
|
||||
}
|
||||
/* Update local min / max values */
|
||||
if (tile->data[x * tile->width + y] > tile->max_el)
|
||||
tile->max_el = tile->data[x * tile->width + y];
|
||||
if (tile->data[x * tile->width + y] < tile->min_el)
|
||||
tile->min_el = tile->data[x * tile->width + y];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Update the date in the tile */
|
||||
free(tile->data);
|
||||
tile->data = new_data;
|
||||
|
||||
/* Update the height and width values */
|
||||
tile->height = new_height;
|
||||
tile->width = new_width;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user